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Abstract

Plankton is a key component of the marine environment and provides invaluable ecosystem services,
ranging from carbon sequestration to biodiversity preservation. Plankton is embedded in patches of
water that are continuously moving, stretching, and diluting under the continuous effect of turbulent
oceanic currents. In this work, we present an ecosystem model that describes biomass production and
carbon dynamics within a Lagrangian patch in the ocean. The model accounts for spatial heterogeneity
emerging from nutrient and phytoplankton interaction and physical processes. First, we illustrate the
theoretical background starting from a simple homogeneous case. Then, we show that our framework
is able to reproduce observed biogeochemical patterns during the SOIREE fertilization experiment.
In particular, the predicted CO2 partial pressure anomaly is compared with in-situ measurement
and other modelling frameworks present in the literature. Finally, we present an extension of the
Lagrangian approach to the case of three-dimensional mesoscale eddies, and we discuss possible future
research directions.
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Un’isola è una porzione di terraferma

completamente circondata dalle acque,

un mondo a sé stante.

È luogo lontano e appartato,

uno spazio discreto e protettivo.

Un’isola deve bastare a se stessa.
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Chapter 1

Introduction

The interest in studying Lagrangian oceanic ecosystems derives from the crucial interplay between
physics, biology, and biogeochemistry. This interdisciplinary approach is becoming increasingly com-
mon in the scientific literature related to complex systems like the ocean, in which the transportation
given by the medium is so more effective with respect to what happens to living beings in the atmo-
sphere.

Fluid mechanics, in this respect, is a powerful tool to interpret water parcels’ movements. Different
approaches like Lagrangian and Eulerian descriptions can be taken depending on the contest, while
fluid deformations are mainly controlled by flow velocity fields. An important role is covered by the
system of reference in which we are observing the fluid, since it can simplify a lot the mathematics
and the understanding of the patch motion.

The growth of oceanic fauna is linked to presence of primary producers, mainly to planktonic organ-
isms. The huge number of phytoplanktonic species populating terrestrial waters form the basis of
the marine food web, collecting all the principal nutrients dissolved in sea-water to produce organic
compounds. Environmental conditions affecting survival of phytoplankton can set the foundation of
irreversible decline for many living creatures.

Primary production is related to the transformation of several basic elements from inorganic to organic.
In particular, carbon exists in water in various forms, starting from dissolved carbon dioxide coming
from the atmosphere to sedimented compounds floating in the deep ocean. Equilibrium between these
shapes plays a crucial role in regulate carbon sequestration and so Earth’s climate.

1.1 Lagrangian approach to fluids flows

1.1.1 Lagrangian and Eulerian descriptions

There are two ways to describe fluid motion. In the Lagrangian specification, we track individual fluid
particles as they move within a flow field. In the Eulerian specification, we observe the characteristics
of the flow field at fixed locations [16]. Both of the description are useful in physics, since they are
suited to different types of problems and analyses.

Lagrangian specification comes from Newton’s dynamic, in which one is normally concerned with
positions and momenta of material points [32] (that’s why is also called material point of view). The
idea is that the fluid can be subdivided into fluid particles, whose identity remains clearly separated
during the inner motion. The trajectory of a single fluid particle will satisfy Newton’s law
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CHAPTER 1. INTRODUCTION

dx(t)

dt
= F(x, t) (1.1)

with initial condition

x(0) = x0 (1.2)

Any scalar or vector property F of the flow field will then depend on the paths that relevant particles
(the one passing on x) followed

F(x(t;x0), t) (1.3)

This representation is perfectly acceptable in principle and provide a complete characterization of the
fluid dynamical system. However, in practical terms, it’s more than what is frequently needed, and
trying to make it work for many fluid particles is very complicated.

Eulerian specification focuses instead on flow field properties at specific locations in the space that
fluid particles cross in their trajectories. Spatial and temporal variables become independent of each
other, allowing to express flow field properties simply as

F(x, t) (1.4)

The condition of equivalence between the two specifications can be set requiring

F(x(t;x0), t) = F(x, t), with x = x(t;x0) (1.5)

Applying a total time derivative to the left-hand side, one would have the definition of flow-field
property temporal derivative in the Lagrangian description as

dF(x(t;x0), t)

dt
(1.6)

which can be decomposed, in the Eulerian description as

∂F

∂t
+

∂F

∂x

dx

dt
+

∂F

∂y

dy

dt
+

∂F

∂z

dz

dt
=

∂F

∂t
+ v · ∇F =

DF

Dt
(1.7)

The last equality defines the D/Dt as the total time derivative experienced in the Eulerian description
(material derivative), that turns out to be very different with respect to the one experienced in the
Lagrangian. Added to the local rate of change ∂F/∂t, there is also an advective term involving
the scalar product between the velocity field v and the spatial gradient of F. This represents the
contribution coming from surrounding fluid that has been dislocated in the new position x, and it’s
related to the mass conservation law.

1.1.2 Water patch deformations

The velocity field in a fluid, denoted with v(x, t), represents, in the Eulerian description, the velocity
of an element of fluid that is located at a position x at time t. Relative position between particles
inside a fluid can change in time, due to differences in the velocity direction and intensity at diverse
spots. If two sites in the fluid A and B are subject to the same velocity vector (v(xA, t) = v(xB, t)),
relative position between them does not change. If instead the two velocities v(xA, t) and v(xB, t) are
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1.1. LAGRANGIAN APPROACH TO FLUIDS FLOWS

different, this would lead to a sliding between A and B that modifies the distance vector d = xB−xA.
The rate at which this distance changes is

dd

dt
=

dxB

dt
− dxA

dt
= v(xB, t)− v(xA, t) ≃ ∇vT

(
xA + xB

2
, t

)
· d (1.8)

and so is related, at first order, to the gradient of the velocity field ∇v computed in the midpoint
between A and B.

Relative displacements between fluid particles in a smooth flow can indeed be characterized by the
strain-rate tensor E and the rotation tensor R, which are defined in terms of combinations of the
velocity field gradient components [16]

E =
1

2

(
∇vT +∇v

)
, R =

1

2

(
∇vT −∇v

)
Eij =

1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
, Rij =

1

2

(
∂vi
∂xj

− ∂vj
∂xi

) (1.9)

Rotational tensor R is antisymmetric, so its diagonal elements are zero and its off-diagonal elements
are equal and opposite. Given the definition of vorticity ω = ∇×v, the latter can be reformulated as

Rij = −
∑
k

ϵijkωk (1.10)

Both R and ω will then depend on the frame of reference, since it is always possible to choose a frame
of reference that rotates with the flow around the point of interest, in which R and ω are zero. In
that case, distance vector d does not change in time, meaning that rigid-like rotation expressed by
antisymmetric tensor is not a source of deformation.

The strain-rate tensor E is instead symmetric, with on- and off-diagonal terms. Diagonal terms repre-
sent a stretching along their respective axes, while off-diagonal ones are related to shear deformations
involving two coordinates at a time. An interesting point is that E cannot disappear, even choosing
accurately the frame of reference, as happens instead to R. It exists, in fact, an invariant that is
tr(E) = ∇ · v which does not depend on the frame of reference.

The tensor E can be broken down further as the sum of a diagonal tensor S, which is the spherical
part, and a traceless tensor D, that represent a deviatoric tendency [20]. The expression is

Eij = Sij +Dij =

[
1

3

(∑
k

∂vk
∂xk

)
δij

]
+

[
1

2

(
∂vi
∂xj

+
∂vj
∂xi

)
− 1

3

(∑
k

∂vk
∂xk

)
δij

]
(1.11)

We are simply separating the spherical expansion-contraction effect of S (denoting a divergence dif-
ferent from zero) and the shear-deviatorical effect of D, that does not alter the fluid parcel volume.
Imaging to describe an incompressible fluid, we will have Sij = 0 and Eij = Dij .

In particular, the deformation of a piece of incompressible fluid becomes very simple in a frame of
reference aligned with the principal axes of the D tensor. In these new coordinates, the deviatoric
tensor can be expressed as

D̄ =

D̄11 0 0
0 D̄22 0
0 0 D̄33

 , with D̄11 + D̄22 + D̄33 = 0 (1.12)
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An example of velocity field, displaying such kind of diagonalized strain-rate tensor, is the 3D stag-
nation point flow


vx = ax

vy = by

vz = cz

, with a+ b+ c = 0 (1.13)

that is suitable for modelling the dynamic of a patch of incompressible fluid in time.

1.2 Planktonic ecosystems

1.2.1 Plankton in general

Plankton represent a wide variety of microscopic organisms that float or drift in the ocean or other
bodies of water, unable to swim against the current. They form the base of the marine food web and
play a crucial role in marine ecosystems and global biogeochemical cycles. Plankton are extremely
diverse in form and function, ranging in size from one to several hundred microns [35]. Their clas-
sification into different trophic groups is based on their feeding strategies and ecological roles. The
two main ones are phytoplankton and zooplankton, representing autotroph and heterotroph organisms
respectively.

Phytoplankton are in general microalgae that perform photosynthesis, converting inorganic carbon
dioxide (CO2) and water (H2O) into organic compounds, exploiting the sunlight. They produce
indeed chlorophyll and other pigments, and they are confined to live in near-surface waters, at a
maximum depth of around 100 m. The main families of phytoplankton organisms are [3]

• Diatoms: they are characterized by their intricate silica cell walls, which give them a distinctive
glass-like appearance. They are among the most abundant and ecologically significant phyto-
plankton in the ocean, well known for their capacity to form immense blooms in spring.

• Dinoflagellates: they are characterized by the presence of two flagella that enable vertical motion.
Some species display bioluminescence, while others can produce virulent neurotoxins.

• Coccolithophores: they are characterized by their calcium carbonate plates and play a significant
role in global carbon calcification.

• Cyanobacteria: they play a unique role in the nutrient-depleted waters of the open oceans,
converting inert atmospheric nitrogen (N2) into organic forms that can serve as nutrients.

Zooplankton are a diverse group of small, heterotrophic organisms that drift in aquatic environments,
feeding mainly on phytoplankton. They are primary consumers, often referred to as grazers, trans-
ferring energy and nutrients to higher trophic levels. Crustacea, which display chitin exoskeletons,
typically dominate zooplankton communities. Other significant species include cnidarians, typically
characterized by their gelatinous bodies and stinging tentacles [3].

1.2.2 Phytoplankton and Primary production

Primary production refers to the process by which living organisms produce and store chemical energy
in the form of organic compounds. The main source of this energy is sunlight, but a minute fraction
of primary production is driven by lithotrophic organisms using the chemical energy of inorganic
molecules. Photosynthesis, in particular, takes inorganic carbon dioxide (CO2) and water (H2O) to
synthesize simple organic molecules like glucose and other sugars.
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1.2. PLANKTONIC ECOSYSTEMS

6CO2 + 6H2O + Energy → C6H12O6 + 6O2 (1.14)

The latter may be further used to obtain more complicated molecules, including proteins, complex car-
bohydrates, lipids, and nucleic acids, or be respired to perform work. The energy stored in these com-
pounds reaches higher trophic levels through grazing by heterotrophic organisms, fueling all oceanic
living systems [7].

Phytoplankton play a central role in primary production, being the principal autotrophic organism in
the ocean. They rely on elements such as carbon, nitrogen, phosphorus, sulfur, and iron to synthesize
important organic compounds. When phytoplankton die, their organic matter undergoes various
processes, including viral infection, predation, and sinking into deeper ocean layers. This leads to the
formation of particulate and dissolved organic detritus, which is subsequently decomposed and respired
by heterotrophic organisms like zooplankton and bacteria. This process, called the biological pump,
enhances the carbon stored in the deep ocean, complementing the solubility pump, which primarily
relies on the reactivity of carbon dioxide in seawater [35].

1.2.3 Limiting factors

The growth of phytoplankton, like any other organism, is subject to various limiting factors that can
affect their productivity.

Light intensity Primary production increases with the incidence of photons at low light levels but
saturates at high levels, like in an enzymatic reaction. Phytoplankton adjusts chlorophyll concentration
to optimize light harvesting, producing higher concentrations in low-light conditions and reducing it
in intense light conditions. In the latter situation, photo-protection pigments may be produced to
dissipate excess energy and protect the cell, but this can slow down photosynthesis and population
growth [35].

Temperature Within certain limits, an increase in temperature promotes metabolic processes, so a
higher temperature generally corresponds to increased phytoplankton biomass production [35]. Tem-
perature also influences other important factors for phytoplankton, such as oxygen solubility and water
mass movements, to which plankton is inherently linked by definition.

Nutrients availability The major chemical factors that control the phytoplankton productivity in
any type of aquatic ecosystem are carbon (C), nitrogen (N), phosphorus (P ) and silica (Si), but other
elements like iron (Fe) can become critical in specific environments. Carbon is the main element that
regulates the functioning of natural waters because of the intricate equilibrium that exists between
CO2, bicarbonate and carbonate that determine the presence of acidity or alkalinity. Moreover, it is
the central building block of all the organic compounds, and so is required in maximum quantity by
photosynthetic organisms [27]. Nitrogen is primarily utilized by phytoplankton in order to synthesize
proteins, enzymes, and chlorophyll, which are essential for their growth, photosynthesis, and overall
physiological functions. Scarcity of this element, in the past, was regarded as the main limiting factor
for abundance. However, other chemical factors like phosphorus are important for specific species of
phytoplankton, which flourish under nanomolar phosphorus concentrations. Phosphorus is a crucial
component of adenosine triphosphate (ATP ) and a key part of nucleic acids. Silica is instead needed
in small quantity, mainly for protein synthesis.

Stratification Differences in temperature, salinity, or density between water masses can cause the
stratification of different water layers. This stratification can impact phytoplankton in various ways,
particularly by influencing the availability of nutrients and light. Often, nutrients like nitrogen and
phosphorus can become concentrated in deeper layers due to limited vertical mixing, but depleted in
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the euphotic zone. Turbidity of the upper layers of the water column can also act as an important
regulator of the light availability in deeper layers [27].

1.2.4 Liebig’s law

Liebig’s Law of the Minimum, proposed by German chemist Justus von Liebig in the 19th century,
states that the growth of the organisms is controlled not by the total amount of resources available,
but by the scarcest resource, often referred to as the limiting factor. In other words, the growth of an
organism or population is determined by the resource that is available in the lowest amount relative
to the organism’s requirements.

For instance, imaging to model the growth of a population N which depend on a set of resources {Ri},
one can mathematically define Liebig’s Law as

νN({Ri}) = min
i

(
νi

Ri

Ri + ki

)
(1.15)

where νN is the effective growth rate of the population N and the right-hand side is the minimum
between all the Michaelis-Menten kinetic terms, representing uptake rates of all the different resources
{Ri}.

This principle is valid also for phytoplankton growth, meaning that the net growth rate will depend
only on the limiting nutrient present in the specific region of the ocean we are considering. For ex-
ample, if a phytoplankton species requires both nitrogen and phosphorus for growth, but nitrogen is
available in lower concentrations than phosphorus, then nitrogen becomes the limiting factor. Increas-
ing phosphorus availability will not enhance phytoplankton growth unless nitrogen is also supplied in
sufficient quantities.

Even if, in the recent literature, limitations of Liebig’s Law have been longly discussed and ascertained
[30], [14] in this work we will adopt this concept to limit the number of important nutrients necessary
for phytoplankton growth.

1.2.5 Redfield ratio

The Redfield ratio is a fundamental concept in marine biogeochemistry that describes the stoichiomet-
ric ratio of elements in phytoplankton and their role in the marine carbon cycle. It was first proposed
by American oceanographer Alfred C. Redfield in the 1930s, based on his analysis of nutrient data
from various oceanic regions.

The Redfield ratio specifically refers to the molar ratio of carbon (C), nitrogen (N), and phosphorus
(P) in phytoplankton biomass, which is approximately 106 C: 16 N : 1 P, respectively. In other words,
for every 106 atoms of carbon, phytoplankton require approximately 16 atoms of nitrogen and 1 atom
of phosphorus.

The main discovery is that the Redfield ratio exists not only within living organisms, but also in the
composition of the ocean itself. In other words, vast ocean chemistry is perfectly suited to the require-
ments of living organisms [35]. The mechanism generating these proportions between the elements
is not completely clear, even if probably related to cellular growth stoichiometry. It’s important to
specify that there is some variability in nutrient ratios due to different nutrient cycles, and this leads
to departures from the canonical Redfield values in some areas.

An extension that can be useful to consider in our work is the Redfield ratio with iron, which provides
106 C : 16 N : 1 P : 0.0075 Fe. [6].

6
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1.3 Ocean carbon dynamic

1.3.1 Forms of carbon

Carbon exists in various forms within aquatic ecosystems, each playing a distinct role in biogeochemical
cycling and ecosystem dynamics. Here’s an overview of the different forms of carbon, starting from
total carbon (TC) to dissolved and particulate organic and inorganic carbon [35]

• Total carbon (TC): refers to the sum of all carbon-containing compounds present in a sample or
ecosystem. It includes both organic and inorganic carbon compounds in dissolved, particulate,
and gaseous forms.

• Dissolved inorganic carbon (DIC): comprises carbon dioxide, carbonic acid, bicarbonate ions,
and carbonate ions dissolved in water. These compounds are inorganic and can be directly
measured in seawater or freshwater samples.

• Dissolved organic carbon (DOC): consists of organic carbon compounds that are dissolved in
water. These compounds originate from the decomposition of organic matter, such as dead
organisms, plant material, and microbial byproducts. DOC is a crucial component of aquatic
ecosystems, serving as a substrate for microbial activity and nutrient cycling.

• Particulate organic carbon (POC): refers to organic carbon compounds that are associated with
particulate matter suspended in water. This includes living organisms, such as phytoplankton
and zooplankton, as well as detritus and organic particles derived from decaying organic matter.
It serves as a source of energy and carbon for heterotrophic organisms.

• Particulate inorganic carbon (PIC): comprises inorganic carbon compounds that are associated
with particulate matter in aquatic environments. This may include calcium carbonate (CaCO3)
shells and skeletons of marine organisms like coccolithophores. PIC contributes to carbonate
sedimentation and plays a role in the global carbon cycle.

In particular, we are interested in the role of dissolved inorganic carbon (DIC) and its relationship
with carbon dioxide. The equation defining the DIC molar concentration is

DIC = [CO∗
2] + [HCO−

3 ] + [CO2−
3 ] (1.16)

where CO∗
2 includes the aqueous form of carbon dioxide, COaq

2 , and carbonic acid, H2CO3.

The majority of carbon dioxide in the ocean is transformed into bicarbonate and carbonate ions, with
approximately 90% of DIC consisting of bicarbonate ions, around 9% as carbonate ions, and a small
fraction, up to 1%, remaining as dissolved carbon dioxide. As a result of this transformation, the
ocean holds a significantly larger amount of carbon compared to the atmosphere, approximately 50
times more. The inorganic carbon stored in the ocean is approximately 40 times greater than the
amount of organic carbon present [35].

1.3.2 CO2 partial pressure

Carbon dioxide molecules continuously move across the interface between the air and sea, resulting
in gas fluxes that go inward and outward of the water. When the flux in each direction is equal, the
concentrations of CO2 in the air and water are in equilibrium. The abundance of carbon dioxide in
the surface atmosphere is quantified in terms of partial pressure, denoted as pCOatm

2 , which represents
the pressure exerted by CO2 gas at the Earth’s surface [35].

Seawater also has an effective partial pressure of carbon dioxide, denoted simply as pCO2, which
represents the partial pressure that CO2 would reach in the atmosphere if equilibrium were established
with the concentration of dissolved carbon dioxide, [CO∗

2], in surface water. The ratio between [CO∗
2]

7



CHAPTER 1. INTRODUCTION

and the effective partial pressure, pCO2, is determined by the solubility coefficient, denoted as Ko,
which is defined as

Ko =
[CO∗

2]

pCO2
(1.17)

The solubility coefficient indicates how efficient are molecules in moving into and out of the water,
and is influenced by environmental conditions such as temperature and salinity.

The air–sea flux of the carbon dioxide in a disequilibrium scenario can be written in terms of the
difference between atmospheric and water partial pressures of CO2, as

FCO2 = ρKoKg(pCO2 − pCOatm
2 ) = ρKoKg∆p (1.18)

where ρ is the water density, Ko CO2 solubility in water and Kg represent the gas transfer velocity,
depending strongly on the wind speed above the considered oceanic surface.

Another approach to characterize the imbalance between the surface ocean and atmospheric carbon
reservoirs is to subdivide dissolved inorganic carbon (DIC) into ”saturation” Csat and ”disequilibrium”
∆C components:

DIC = Csat +∆C (1.19)

Csat is the concentration of dissolved inorganic carbon that the surface ocean would have if pCO2 =
pCOatm

2 .

1.3.3 Revelle Buffer factor

The chemical buffering of anthropogenic CO2 represents the most significant oceanic process acting as
a carbon sink [24]. Practically, carbon dioxide entering the ocean is converted mainly into bicarbonate
and carbonate ions, so that the resulting increase in gaseous seawater CO2 concentration is smaller
than the amount of CO2 added per unit of seawater. This mechanism is quantified by the Revelle
buffer factor B, which express the relationship between fractional changes in pCO2 and DIC after
re-equilibrating. The explicit definition is

B =
∆p

pCO2

/
∆C

Csat
≃ const. (1.20)

In reality, Revelle buffer factor is not constant and increase with water pCO2, as shown in Fig. 1.1.
The assumption that one makes is usually that water pCO2 is very near to the equilibrium with the
atmospheric one (pCO2 ∼ pCOatm

2 ), and so nearly constant and uniform for the spatio-temporal scales
of interest.
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1.3. OCEAN CARBON DYNAMIC

Figure 1.1: Dissolved inorganic carbon (DIC) and Revelle buffer factor (B) relationships with the water CO2

partial pressure pCO2 [35].
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Chapter 2

Simple phytoplankton CR model

The dynamics of phytoplankton populations have been extensively investigated to elucidate intriguing
phenomena, such as seasonal blooms, eutrophication and the ecological diversity role on productivity.

First, let’s start with a simple model of an open ocean ecosystem that is inspired by [10]. A patch
of water (at the surface or at a given depth) contains phytoplankton and limiting nutrient with
mean concentrations P and N , while the surrounding acts like a reservoir and displays fixed mean
concentrations Pout and Nout. With respect to [10], we are modelling an external space which is not
necessarily located below the patch, but could more generally represent the rest of water ocean in
ecological equilibrium.

Focusing on what happens inside the water patch, we can imagine a Consumer-Resource dynamics
taking place, where phytoplankton exploits the available amount of nutrient to grow. The coupled
system of equations describing this phenomenon are


dN(t)

dt
= −ν

N(t)

N(t) + k
P (t) + Ω(Nout −N(t))

dP (t)

dt
= ν

N(t)

N(t) + k
P (t)−mP (t) + Ω(Pout − P (t))

(2.1)

In the first one, the nutrient N is eaten at a rate that involves Michaelis–Menten kinetics, with
maximum growth rate ν and half-saturation constant k. Here, we assume that the rate of nutrient
uptake is constrained by a maximum saturation level, while the nutrient cannot regenerate by itself.
The only source of new nutrient is coming from the outside, with a rate given by the product of an
entrainment rate Ω and the difference between external and inner concentrations.

In the second equation, nutrient depletion is converted into phytoplankton growth (there is no loss
of mass). Then, processes of grazing and degradation are collected into the phytoplankton mortality
rate m. The last term provides phytoplankton exchange between our small system and the reservoir,
depending again on Ω.

2.1 Stationary points analysis

Equilibrium for this kind of system can be characterized depending on ν, k, m, Ω, Nout and Pout. Let’s
start, for simplicity, with the case in which Pout is set to zero, meaning that there’s no phytoplankton
in the reservoir. Then, we will consider also Pout > 0 as general case.

11



CHAPTER 2. SIMPLE PHYTOPLANKTON CR MODEL

2.1.1 Pout = 0

Stationary conditions can be rearranged as:


0 = −ν

N∗

N∗ + k
P ∗ +Ω(Nout −N∗)

0 =

(
ν

N∗

N∗ + k
−m− Ω

)
P ∗

(2.2)

It is easy to show that there are two stationary points, the first is trivial and describes absence of life,
while the second admits persistent phytoplankton fed by entrainment of outside nutrient:

(N∗
trivial, P

∗
trivial) = (Nout, 0) (2.3)

(N∗, P ∗) =

(
(m+Ω)k

ν − (m+Ω)
,
ΩNout

m+Ω
− Ωk

ν − (m+Ω)

)
(2.4)

Once set the feasibility conditions

ν > m+Ω, Nout > N∗(ν, k,m,Ω) (2.5)

one can demonstrate that the trivial stationary point is unstable, while the one with phytoplankton
is stable [10]. If the second feasibility condition is not met, one would have the opposite.

In summary, presence of persistent phytoplankton inside the water patch is allowed only if Nout is
sufficiently high to counterbalance the loss of nutrient taken away for the growth.

2.1.2 Pout > 0

Similar results can be obtained in the case Pout > 0, even if the expressions involved are more complex.
Stationary conditions become now


0 = −ν

N∗

N∗ + k
P ∗ +Ω(Nout −N∗)

0 = ν
N∗

N∗ + k
P ∗ −mP ∗ +Ω(Pout − P ∗)

(2.6)

and they can be rewritten, after some manipulations, into


AN∗2 +BN∗ + C = 0

P ∗(N∗) =
Ω(Nout −N∗)

ν N∗

N∗+k

(2.7)

where

A = −(ν − (m+Ω)) (2.8)

B = [ν(Nout + Pout) + (m+Ω)(k −Nout)] (2.9)

12



2.1. STATIONARY POINTS ANALYSIS

C = −(m+Ω)kNout (2.10)

This system will have two pairs of solutions if ∆ = B2−4AC > 0, and this is proven to be guaranteed
for every value of the parameters involved. Let’s define

N∗
(1) =

−B +
√
B2 − 4AC

2A
(2.11)

N∗
(2) =

−B −
√
B2 − 4AC

2A
(2.12)

From Cartesio’s rule, we can predict the signs of N∗
(1) and N∗

(2). There are two cases:

• ν > m+Ω both solutions are positive

• ν < m+Ω only one solution is positive

First case Since the sign of P ∗(N∗) is completely determined by the one of Nout −N∗, it would be
useful to reexpress the quadratic equation in (2.7) with respect to the quantity ∆N∗ = N∗ − Nout.
This would lead to the following relations


A′∆N∗2 +B′∆N∗ + C ′ = 0

P ∗(∆N∗) =
−Ω∆N∗

ν Nout+∆N∗

Nout+∆N∗+k

(2.13)

where

A′ = A = −(ν − (m+Ω)) (2.14)

B′ = [ν(Pout −Nout) + (m+Ω)(k +Nout)] (2.15)

C ′ = νNoutPout (2.16)

We are guaranteed that ∆ remains the same in the transformation between (2.7) and (2.13), so, again,
two distinct solutions ∆N∗

(1) = N∗
(1) −Nout and ∆N∗

(2) = N∗
(2) −Nout will be present (Fig 2.1). This

time, from Cartesio’s rule, we expected that they will have opposite sign independently on the sign
of B′. One can show that ∆N∗

(1) < 0 and ∆N∗
(2) > 0, so the only acceptable solution for (2.13),

satisfying the feasibility condition P ∗(∆N∗) ≥ 0, is ∆N∗
(1). This automatically entails that the couple

(N∗
(1), P

∗
(1)) is the only feasible in our biological system.

Second case Since N∗
(1) > 0 and N∗

(2) < 0, the second solution is discarded. We can demonstrate,

applying again Cartesio’s rule on (2.13), that ∆N∗
(1) < 0, which satisfies again the feasibility condition

P ∗(∆N∗) ≥ 0 (Fig 2.2). Consequently, also in this case, the couple (N∗
(1), P

∗
(1)) is the only feasible.

In summary, in the case Pout > 0, it is not necessary to assume ν > m+Ω to have coexistence, because
P ∗ cannot be zero in presence of an external source. Anyway, for very low value of the growth rate ν,
the stationary phytoplankton concentration is very close to be absent.
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CHAPTER 2. SIMPLE PHYTOPLANKTON CR MODEL

Unfortunately, the expressions for N∗
(1) and P ∗

(1) in terms of ν, k, m, Ω, Nout and Pout are quite
complicated to write, so the stability analysis is not trivial and will not be performed analytically.
Despite that, one can show that simulations converge towards (N∗

(1), P
∗
(1)) for every feasible choice of

the initial conditions.

Figure 2.1: Quadratic equation solutions of (2.7) and (2.13), in the case ν > m + Ω. Values of the model
parameters are ν = 0.6, m = 0.05, k = 2, Ω = 0.06, Nout = 0.5, Pout = 0.1. ∆N∗

(1) is negative, satisfying
feasibility condition.

Figure 2.2: Quadratic equation solutions of (2.7) and (2.13), in the case ν < m + Ω. Values of the model
parameters are ν = 0.01, m = 0.05, k = 2, Ω = 0.06, Nout = 0.5, Pout = 0.1. In this case ∆N∗

(1) is very close to
zero, but still negative.
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Chapter 3

Lagrangian water patch dynamic

In this Chapter we study the evolution of a three-dimensional patch of water in the ocean under the
effect of advection, stirring and diffusion. We characterize its shape in terms of spatial variances in
each direction, using a Gaussian approximation. The interaction between the water patch and the
current velocity field into which it is immersed is analyzed through an advection-diffusion equation.
The shaping mechanisms determine a change in the patch characteristic sizes, in particular effective
diffusion leads to an increase of the volume occupied. The enlargement rate of the water patch is
finally linked to the entrainment rate of diverse water coming from the surrounding, which tend to
dilute the patch composition.

3.1 Three stages tracer dispersal

The analysis of tracer dispersal in the ocean is tackled in classical theory from the prospective of simple
diffusive and advective processes, which lack on describing shear and strain at difference scales. In a
turbulent media, the problem is a way more complex and requires making some distinction between
dispersal phases. In [12] three different stages are considered:

1. When the scale of the patch is smaller than the one of the straining velocity field, stirring can
be neglected and the velocity field acts like an effective diffusion process [12]. Thus, the area
grows approximately linearly in time.

2. When the scale of the patch is of the order of the straining velocity field, the patch begins to be
advected into long, thin streaks. Their length grows exponentially in time.

3. When the scale of the patch is bigger than the one of the straining velocity field, streaks start
to wrap around the eddies formations, mixing eventually the tracer. We can interpret this stage
as diffusive again.

This qualitative description finds confirmation in experiments like NATRE [29], where the dispersal
of a passive tracer in the North Atlantic is considered (Fig. 3.1). In particular, streaks formation and
size evolution, related to the second phase, can be formalized in the following sections.

3.2 Ellipsoid approximation

Let’s image to have an initial tracer distribution (Fig. 3.2) made of a single patch centered in X(t0) =
(x0, y0, z0) that can be considered approximately Gaussian, due to the initial effective diffusion phase.
Iso-surfaces of this three-dimensional distribution are described by ellipsoids, whose axes are assumed
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CHAPTER 3. LAGRANGIAN WATER PATCH DYNAMIC

Figure 3.1: Different phases of a tracer dispersal [29]. At the beginning, the patch is circular. Then, it elongates
in one direction until multiple merging streaks appear.
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3.3. SOURCES OF DEFORMATION

Figure 3.2: The evolution of a Lagrangian patch, starting from the beginning of the second phase of dispersal,
at instant t0, and affected by stirring on the y direction. At time t, the Lagrangian patch has not anymore a
symmetric shape, but can be approximated by the ellipsoid containing the majority of its volume. We keep
track of the ellipsoid semi-axes, that are width W (t), length L(t) and thickness T (t).

to be aligned with horizontal and vertical directions. Let’s define patch width W (t), length L(t)
and thickness T (t) as characteristic lengths that incorporates a major part of the tracer inside them.
They can be expressed as multiples of the 3D Gaussian standard deviations σx(t), σy(t) and σz(t).
A common choice is to set W (t) = σx(t), L(t) = σy(t) and T (t) = σz(t), although this prescription
includes only a restricted part of the tracer ”mass” inside such ellipsoid. Its volume would be

V (t) =
4π

3
W (t)L(t)T (t) (3.1)

while the horizontal projected area

A(t) = πW (t)L(t) (3.2)

This holds in the assumption that the patch is localized at a given depth such that boundaries condi-
tions (e.g. sea surface) are not meaningful.

3.3 Sources of deformation

Following a Lagrangian approach, we want to describe now how the oceanic flow alters the position and
the shape of the tracer patch. Conceptually, all rigid-like movement such pure advection and rotation
can be absorbed into the motion of the local frame of reference, that we can set to be centered in X(t)
and oriented along ellipsoid principal axes ŵ(t), l̂(t) and t̂(t). This means that the coordinate system
that will be adopted from now will have x, y and z axes which are aligned to ŵ(t), l̂(t) and t̂(t).

Patch shape modification can be caused by by horizontal stirring, divergence and diffusion. The first
two can be modeled through the local velocity field v(x, t) acting on the tracer patch, which can be
approximated, at first order, to a 3D stagnation point flow:
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v(x, t) =

((
−γ(t) +

δ(t)

2

)
x;

(
+γ(t) +

δ(t)

2

)
y; −δ(t)z

)
(3.3)

Here we are assuming that horizontal stirring acts along the y direction, which is aligned with the
l̂ axis. The quantities γ(t) and δ(t) represent time dependent horizontal strain and divergence rates
respectively, in a way that vertical dimension dynamic is independent of the horizontal one. This is
done since horizontal and vertical motions in the ocean are often driven by different processes and
span different spatio-temporal scales [12]. Moreover, this stagnation flow displays a field divergence
∇ · v that is equal to zero, since we are describing a fluid that can be assumed incompressible.

Diffusion contribution tends to enlarge the patch, diluting its content with the outside. We again
distinct between time dependent horizontal and vertical diffusivity κh(t) and κv(t), since they are
order of magnitude different [13]. The diffusion that we are treating here represent unresolved scales
of the velocity field, typically much smaller than the patch characteristic size.

Fluid dynamical parameters scaling The temporal dependence of strain, divergence and diffu-
sivities is a shorthand notation to indicate, more properly, a system size dependence. The extension of
the Lagrangian patch, indeed, varies with time and can be quantitatively measured by horizontal and
vertical characteristic sizes, denoted as Sh(t) and Sv(t). These quantities can be expressed in terms
of width W (t), length L(t) and thickness T (t) of the patch

Sh(t) = W (t) + L(t)

Sv(t) = 2T (t)
(3.4)

Following some approaches that have been found in literature [26], [9], we assume that fluid dynamical
parameters scale with horizontal and vertical characteristic sizes as

γ(Sh(t), Sv(t)) = γ0 ·
(
Sh(t)

Sh(0)

)− 2
3

δ(Sh(t), Sv(t)) = δ0

κh(Sh(t), Sv(t)) = κh0 ·
(
Sh(t)

Sh(0)

)

κv(Sh(t), Sv(t)) = κv0 ·
(
Sv(t)

Sv(0)

)
(3.5)

3.4 Advection-diffusion equation

In the Lagrangian frame of reference, the effects of the aforementioned strain, divergence and diffusion
can be joined into an advection-diffusion equation of the patch distribution θ(x, t):

∂θ(x, t)

∂t
+ v(x, t) · ∇θ(x, t) = κh(t)

(
∂2θ(x, t)

∂x2
+

∂2θ(x, t)

∂y2

)
+ κv(t)

∂2θ(x, t)

∂z2
(3.6)

This description is quite general, since it does not assume a specific shape for θ(x, t) and only requires
differentiability in space. Inserting the local velocity field of equation (3.3) inside (3.6), one gets
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Figure 3.3: Effects of horizontal and vertical diffusion, strain and divergence on the Lagrangian patch [28]. In
order to make the image more comprehensible, in place of the ellipsoid we depicted the circumscribed cylinder.
Diffusion in both directions increase the volume of the patch by diluting its content, while strain and divergence
simply stretch the patch on different axes.
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∂θ

∂t
+

(
−γ(t) +

δ(t)

2

)
x
∂θ

∂x
+

(
γ(t) +

δ(t)

2

)
y
∂θ

∂y
− δ(t)z

∂θ

∂z
= κh(t)

(
∂2θ

∂x2
+

∂2θ

∂y2

)
+ κv(t)

∂2θ

∂z2
(3.7)

This is a partial differential equation involving four time-dependent parameters: γ(t), δ(t), κh(t) and
κv(t). An analytic solution for θ(x, t) can be found only for the Gaussian approximation [29], while,
more in general, other relationship between patch distribution moments can be found to hold.

3.5 Variances dynamic

What we want to understand now is how the characteristic size of the patch distribution evolves in
time due to the presence of these ”shaping” mechanism (strain, divergence and diffusion). Reminding
the Gaussian example, standard deviations σx, σy and σz represent a good proxy of the patch size.
Let’s indeed find the spatial variances that can be computed as

σ2
x(t) =

Mx
2 (t)

Mx
0 (t)

σ2
y(t) =

My
2 (t)

My
0 (t)

σ2
z(t) =

M z
2 (t)

M z
0 (t)

(3.8)

where the time-dependent zeroth and second moments of the patch distribution are defined as

Mx
0 (t) =

∫
θ(x, t)

∣∣∣∣
y,z=0

dx ; Mx
2 (t) =

∫
x2θ(x, t)

∣∣∣∣
y,z=0

dx

My
0 (t) =

∫
θ(x, t)

∣∣∣∣
x,z=0

dy ; My
2 (t) =

∫
y2θ(x, t)

∣∣∣∣
x,z=0

dy

M z
0 (t) =

∫
θ(x, t)

∣∣∣∣
x,y=0

dz ; M z
2 (t) =

∫
z2θ(x, t)

∣∣∣∣
x,y=0

dy

(3.9)

These integral are computed respectively on the x, y and z axes, so alternately two of three coordinates
are set to zero. In particular, the zeroth moments represent just some normalizing quantities which
take into account the amount of tracer present on a given axis.

Since explicit computation of the moments would depend on the complete history of the patch distri-
bution itself, one can simply try to characterize their time evolution in a recursive manner. Integrating
the advection-diffusion equation (3.7) along the x, y and z axes would allow reexpressing the latter in
terms of the zeroth moments, obtaining
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dMx
0 (t)

dt
=

(
−γ(t) +

δ(t)

2

)
Mx

0 (t)

dMy
0 (t)

dt
=

(
γ(t) +

δ(t)

2

)
My

0 (t)

dM z
0 (t)

dt
= −δ(t)M z

0 (t)

(3.10)

We can see that, depending on the values of γ(t) and δ(t), the zeroth moments would increase or
decrease approximately exponentially (rate would depend on integrals

∫ t
0 γ(t

′)dt′ and
∫ t
0 δ(t

′)dt′), due
to the shape of the local velocity field.

Similarly, multiplying by x2, y2, z2 and integrating along the x, y and z axes equation (3.7) one would
get

dMx
2 (t)

dt
= +2κh(t)Mx

0 (t) + 3

(
−γ(t) +

δ(t)

2

)
Mx

2 (t)

dMy
2 (t)

dt
= +2κh(t)My

0 (t) + 3

(
γ(t) +

δ(t)

2

)
My

2 (t)

dM z
2 (t)

dt
= +2κv(t)M z

0 (t)− 3δ(t)M z
2 (t)

(3.11)

On the second moments, then, roughly exponential scaling is coupled with the diffusive contribution,
which can be linear, sublinear or superlinear depending on diffusivity rates.

At this point, we could exploit equations (3.10) and (3.11) to retrieve the time evolution of the patch
spatial variances. In fact, applying derivation chain rule to (3.8)

dσ2
x(t)

dt
=

1

Mx
0 (t)

(
dMx

2 (t)

dt
− σ2

x(t)
dMx

0 (t)

dt

)
dσ2

y(t)

dt
=

1

My
0 (t)

(
dMy

2 (t)

dt
− σ2

y(t)
dMy

0 (t)

dt

)
dσ2

z(t)

dt
=

1

M z
0 (t)

(
dM z

2 (t)

dt
− σ2

z(t)
dM z

0 (t)

dt

)
(3.12)

one would have, finally:

dσ2
x(t)

dt
= +2κh(t) + 2

(
−γ(t) +

δ(t)

2

)
σ2
x(t)

dσ2
y(t)

dt
= +2κh(t) + 2

(
γ(t) +

δ(t)

2

)
σ2
y(t)

dσ2
z(t)

dt
= +2κv(t)− 2δ(t)σ2

z(t)

(3.13)

Let’s analyze the right-hand side of equations (3.13), where the interplay between diffusivity and
strain-divergence plays a crucial role. In all directions, diffusion will tend to increase the spatial
variances (as one would expect from stochastic phenomena), while the combinatorial effect of strain
and divergence will act roughly exponentially, reducing or feeding variances’ increase depending on
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the axis. Assuming for simplicity that γ(t) > δ(t) > 0, dynamical equilibrium values for σ2
x(t) and

σ2
z(t) can be written as

σ2∗
x =

κh(t)

γ(t)− δ(t)
2

(3.14)

σ2∗
z =

κv(t)

δ(t)
(3.15)

3.6 Entrainment rate

Modifications in the spatial variances of θ(x, t) imply a change of the patch volume V (t) and projected
area A(t), that were defined in (3.1), (3.2). Adopting the convection whereby width, length and
thickness of the patch are identified with the standard deviations, equations (3.13) can be reformulated
as

dW (t)

dt
= +

κh(t)

W (t)
+

(
−γ(t) +

δ(t)

2

)
W (t)

dL(t)

dt
= +

κh(t)

L(t)
+

(
γ(t) +

δ(t)

2

)
L(t)

dT (t)

dt
= +

κv(t)

T (t)
− δ(t)T (t)

(3.16)

and they can be used, together with the derivation chain rule, to retrieve

dV (t)

dt
=

4π

3

[
κh(t)

(
W 2(t) + L2(t)

W (t)L(t)

)
T (t) + κv(t)

W (t)L(t)

T (t)

]
(3.17)

and

dA(t)

dt
= π

[
κh(t)

(
W 2(t) + L2(t)

W (t)L(t)

)
+ δ(t)W (t)L(t)

]
(3.18)

Notice that the rate of change of V (t) seems to depend only on the diffusive rates κh(t) and κv(t),
but in reality there is a hidden dependence also on γ(t) and δ(t) that, underneath, determine the
values of W (t), L(t) and T (t) through (3.16). From these considerations, one can understand that
the volumetric growth for this kind of process is not trivial at all, and that is the product of multiple
agents, as strain, divergence and diffusion.

Conceptually, one can subdivide horizontal and vertical components of dV/dt based on the propor-
tionality to the horizontal and vertical diffusivity:

(
dV (t)

dt

)h

=
4π

3
κh(t)

(
W 2(t) + L2(t)

W (t)L(t)

)
T (t)

(
dV (t)

dt

)v

=
4π

3
κv(t)

W (t)L(t)

T (t)

(3.19)
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3.6. ENTRAINMENT RATE

Figure 3.4: Horizontal and vertical entrainments of external water inside the patch. The vertical entrainment
depends on the horizontal area given by the two basis of the cylinder, while horizontal entrainment depends on
the lateral vertical surface.

The interesting thing is that these equations have a nice geometric interpretation, since the perimeter
of the projected area is proportional to

√
W 2(t) + L2(t) (approximated formula for the perimeter of

an ellipse) and so horizontal and vertical components in (3.19) can be reexpressed in terms of the
circumscribed cylinder area (Fig. 3.4)

(
dV (t)

dt

)h

∝ (horizontal perimeter)2(thickness)2

volume
=

(vertical boundary area)2

volume(
dV (t)

dt

)v

∝ (horizontal boundary area)2

volume

(3.20)

The rate of change of the patch volume V (t) is also related to the rate at which water from outside
the patch enters by diffusion. This quantity was already introduced in Chapter 2 and was called
entrainment rate Ω. Physically speaking, one can think of it as a measure of the rate of exchange of
matter among the patch surface. Dimensionally, the time-dependent entrainment rate can be defined
as

Ω(t) =
1

V (t)

dV (t)

dt
(3.21)

The latter can again be decomposed in horizontal and vertical contributions, modelling the different
amount of exchange present in the two directions:

Ωh(t) =
1

V (t)

(
dV (t)

dt

)h

; Ωv(t) =
1

V (t)

(
dV (t)

dt

)v

(3.22)

The importance of these quantities will be more clear when patch interaction with the surrounding
will be investigated.
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3.7 Two-dimensional approximation

In many realistic cases, a two-dimensional representation of the water patch is enough to capture
the main properties of the system. If we are not interested in modelling the third dimension, the
above discussion can be simplified just assuming a constant thickness of the patch T (t) = T and no
divergence and vertical diffusion occurring (δ(t) = 0, κv(t) = 0). In that case, the entrainment rate
can be simplified as

Ω(t) =
1

A(t)

dA(t)

dt
(3.23)

where A(t) is just the previous projected area, that coincides with the area of the ellipse representing
the patch [28]. All the others equation still hold.
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Chapter 4

Tracers dynamic in a changing water
patch

In the previous Chapter, we analyzed how the spatial dimensions of a given water patch distribution
(in the second stage of dispersal) evolve depending on the fluid dynamical parameters and diffusivity.
What we didn’t model yet, is how the concentrations of the tracers that are linked to the patch evolve
during this stirring and expansion. This can be formulated mathematically by a full general master
equation, accounting for the entrainment of external water containing different concentrations of the
tracers, for the homogenization processes driven by turbulence and for the biogeochemical reactions
occurring among the tracers. All these terms are examined with the powerful tool of the Reynolds
decomposition, in which we renounce to characterize the entire tracers distribution and focus on the
statistical properties such as distribution moments, up to the second order. We finally end up with a
statistical model that resembles the main agents of the master equation, but in a simplified manner.

4.1 Reynolds decomposition

Inside a moving water patch, there may be very different species of inorganic and organic elements,
each one representing a given tracer with distribution ui(x, t), i = 1, ..., n. These concentrations are
well-defined only inside the ellipsoid of reference, while in external regions different distributions of
tracers containing a distinct amount of material can be considered.

Let’s define properly some statistical quantities of interest related to the internal tracer distributions.
We make use of the so-called ”Reynolds decomposition”, which express a given scalar field in terms
of its average value and the fluctuations around it. In our case, the tracer distribution ui(x, t) can be
split into

ui(x, t) = ⟨ui⟩pat(t) + u′i(x, t) (4.1)

where the mean value is defined as

⟨ui⟩pat(t) =
1

V (t)

∫
pat

ui(x, t)dV (4.2)

and pat stands for the ellipsoidal patch.

The fluctuation term u′i(x, t) can be used to determine the variance of the tracer distribution that is
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⟨u′2i ⟩pat(t) =
1

V (t)

∫
pat

u′2i (x, t)dV (4.3)

To make the things more clear, just recall the variance definition in terms of first and second moments

⟨u′2i ⟩pat(t) = ⟨u2i ⟩pat(t)− ⟨ui⟩2pat(t) (4.4)

Proceeding with the same notation, the covariance between two different tracers i and j is written as

⟨u′iu′j⟩pat(t) =
1

V (t)

∫
pat

u′i(x, t)u
′
j(x, t)dV (4.5)

These statistical quantities, which have little meaning by now, will be very useful to characterize
full tracers distributions properties of interest, without necessarily know the set of ui(x, t) complete
expressions.

4.2 Surrounding distributions

Around the water patch, we can identify three different regions: water that is present around, above
and below. The cylinder circumscribed to the ellipsoid, connected also to equations (3.20), define
clearly these regions, and is shown in Fig. 4.1.

In general, these surroundings can display very different characteristics due, for example, to light
availability or others biogeochemical properties. Tracer concentrations are indeed described separately
as hi(x, t), ai(x, t) and bi(x, t), where h stands for horizontal surrounding, a for above and b for below.

To simplify the discussion, only statistical information such as means, variances and covariances of
these distributions can be required. Their definition is straightforward, since they involve the same
integrals of equations (4.2), (4.3), (4.5), but in different regions of space

⟨hi⟩suh(t) =
1

V (t)

∫
suh

hi(x, t)dV

⟨ai⟩sua(t) =
1

V (t)

∫
sua

ai(x, t)dV

⟨bi⟩sub(t) =
1

V (t)

∫
sub

bi(x, t)dV

(4.6)

⟨h′2i ⟩suh(t) =
1

V (t)

∫
suh

h′2i (x, t)dV

⟨a′2i ⟩sua(t) =
1

V (t)

∫
sua

a′2i (x, t)dV

⟨b′2i ⟩sub(t) =
1

V (t)

∫
sub

b′2i (x, t)dV

(4.7)
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Figure 4.1: Decomposition of the water patch surrounding in three main regions: they are above, below and
horizontally placed. The tracer concentrations in these areas are called, respectively, ai(x, t), bi(x, t) and hi(x, t).

⟨h′ih′j⟩suh(t) =
1

V (t)

∫
suh

h′i(x, t)h
′
j(x, t)dV

⟨a′ia′j⟩sua(t) =
1

V (t)

∫
sua

a′i(x, t)a
′
j(x, t)dV

⟨b′ib′j⟩sub(t) =
1

V (t)

∫
sub

b′i(x, t)b
′
j(x, t)dV

(4.8)

4.3 Master equation for tracers

Starting from a general perspective, one can isolate and categorize the main processes acting on the
tracers distributions as follows:

• entrainment of external water with different tracer concentration. For a given tracer i, it can be
modelled by the term E[ui;hi, ai, bi].

• internal mixing which tend to homogenize the single tracer concentration ui. It can be repre-
sented by the mixing term M[ui]

• biogeochemical interaction between different tracers due to predation and other reactions. In-
teraction of tracer i with all the others is summarized in I[ui, {u}], where {u} is the set of all
tracers taken into account.

Mathematically, they can be thought as different terms acting on the time derivative of the patch
distribution
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dui(x, t)

dt
= E[ui(x, t);hi(x, t), ai(x, t), bi(x, t)] +M[ui(x, t)] + I[ui(x, t), {u(x, t)}]

=

[
dui(x, t)

dt

]
sur

+

[
dui(x, t)

dt

]
mix

+

[
dui(x, t)

dt

]
bio

(4.9)

The complexity of this general kind of description resides on the identification of each contribution,
especially for surrounding (sur) and mixing (mix ) terms. They in fact cannot be seen as mere products
of patch diffusion, given the presence of turbulence and intricacy of the mesoscale water flow.

We will therefore exploit the statistical quantities already defined, in order to get at least insight of
how means, variances and covariances of the tracer distributions evolve in time and interact with each
other.

4.4 Entrainment term

The exchange of material at the patch boundaries is given by the intrusion of external tracers that mix
with the ones already present. This phenomenon can be described in several ways, for example with
the definition of biogeochemical fluxes related to the entrainment rate or directly with some PDEs
accounting for the diffusion of both internal and external tracer. The second approach, however,
oversimplifies the interplay between the two boundaries, which can display a complex behavior not
only driven by diffusion. We then aim to formalize the first of them, that is more suitable for the
statistical approach we are going to take.

Consider the change of patch volume at a given time t that brings V (t) to V (t+∆t). The new added
capacity is ∆V (t) = V (t+∆t)− V (t) and it’s related to the volume derivative

∆V (t) = lim
∆t→0

dV (t)

dt
∆t (4.10)

Following the subdivision (3.19), one can split ∆V (t) into

∆V h(t) = lim
∆t→0

(
dV (t)

dt

)h

∆t ; ∆V v(t) = lim
∆t→0

(
dV (t)

dt

)v

∆t (4.11)

The added water has different characteristics, so the patch composition is modified in its properties.
Let’s find than how means, variances and covariances of the tracers distributions change in relation
to this exchange.

The mean tracer concentration of tracer i into the added volume can be found as the weighted average
of the mean concentrations in the three different surroundings.

⟨ui⟩∆V (t)(t) =
∆V h(t)⟨hi⟩suh(t) + 1

2∆V v(t) (⟨ai⟩sua(t) + ⟨bi⟩sub(t))
∆V h(t) + ∆V v(t)

(4.12)

At the same time, also the new total mean concentration ⟨ui⟩V (t+∆t)(t + ∆t) can be retrieved by a
weighted average between the old one and the one into the gained volume

⟨ui⟩V (t+∆t)(t+∆t) =
V (t)⟨ui⟩pat(t) + ∆V h(t)⟨hi⟩suh(t) + 1

2∆V v(t)(⟨ai⟩sua(t) + ⟨bi⟩sub(t))
V (t) + ∆V h(t) + ∆V v(t)

(4.13)
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4.4. ENTRAINMENT TERM

Using the definition of derivative, the temporal evolution of the means can be written as

[
d⟨ui⟩pat(t)

dt

]
sur

= lim
∆t→0

⟨ui⟩V (t+∆t)(t+∆t)− ⟨ui⟩V (t)(t)

∆t
(4.14)

which becomes in the limit

[
d⟨ui⟩pat

dt

]
sur

= Ωh(t)⟨hi⟩suh +
1

2
Ωv(t) (⟨ai⟩sua + ⟨bi⟩sub)− Ω(t)⟨ui⟩pat (4.15)

where we omitted the temporal dependence of the means to simplify the notation. Notice that the
differential equation we found depends on the geometry of the patch only through the entrainment
rate Ω(t) and its components. At stationary, the mean concentration of the tracer inside the patch is
meant to converge to a combination between the surrounding reservoirs mean concentrations.

Regarding the other statistical quantities, a similar approach permits to compute total concentration
variances and covariances depending on the weighted averages of second moments of ui, hi, ai and bi.
The equations are

⟨u′2i ⟩V (t+∆t)(t+∆t) =
V (t)⟨u2i ⟩pat(t) + ∆V h(t)⟨h2i ⟩suh(t) + 1

2∆V v(t)(⟨a2i ⟩sua(t) + ⟨b2i ⟩sub(t))
V (t) + ∆V h(t) + ∆V v(t)

− ⟨ui⟩2V (t+∆t)(t+∆t)

(4.16)

which allows retrieving the time evolution of the variances

[
d⟨u′2i ⟩pat

dt

]
sur

= Ωh(t)
(
⟨h′2i ⟩suh − ⟨u′2i ⟩pat + (⟨hi⟩suh − ⟨ui⟩pat)2

)
+

+
1

2
Ωv(t)

(
⟨a′2i ⟩sua − ⟨u′2i ⟩pat + (⟨ai⟩sua − ⟨ui⟩pat)2

)
+

+
1

2
Ωv(t)

(
⟨b′2i ⟩sub − ⟨u′2i ⟩pat + (⟨bi⟩sub − ⟨ui⟩pat)2

)
=

=

[(
d⟨u′2i ⟩pat

dt

)h
]
sur

+

[(
d⟨u′2i ⟩pat

dt

)v]
sur

(4.17)

and

⟨u′iu′j⟩V (t+∆t)(t+∆t) =
V (t)⟨uiuj⟩pat(t) + ∆V h(t)⟨hihj⟩suh(t) + 1

2∆V v(t)(⟨aiaj⟩sua(t) + ⟨bibj⟩sub(t))
V (t) + ∆V h(t) + ∆V v(t)

− ⟨ui⟩V (t+∆t)(t+∆t) · ⟨uj⟩V (t+∆t)(t+∆t)
(4.18)

which allows retrieving the time evolution of the covariances
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Figure 4.2: The entrainment of surrounding water into a Lagrangian patch leads to an increase of volume from
V (t) to V (t) + ∆V h(t) + ∆V v(t) and this modifies internal tracer distributions. In the left picture, we are
representing the projection of the water patch on the x-y plane, imaging to looking towards it from above.
Horizontal expansion of the initial core (dark orange) embeds the horizontal water of volume ∆V h(t) (light
orange). In the right picture, the patch is projected on the y-z plane as seen from the front. Vertical expansion
embeds some water from above and below, with total volume ∆V v(t).

[
d⟨u′iu′j⟩pat

dt

]
sur

= Ωh(t)
(
⟨h′ih′j⟩suh − ⟨u′iu′j⟩pat + (⟨hi⟩suh − ⟨ui⟩pat) · (⟨hj⟩suh − ⟨uj⟩pat)

)
+

+
1

2
Ωv(t)

(
⟨a′ia′j⟩sua − ⟨u′iu′j⟩pat + (⟨ai⟩sua − ⟨ui⟩pat) · (⟨aj⟩sua − ⟨uj⟩pat)

)
+

+
1

2
Ωv(t)

(
⟨b′ib′j⟩sub − ⟨u′iu′j⟩pat + (⟨bi⟩sub − ⟨ui⟩pat) · (⟨bj⟩sub − ⟨uj⟩pat)

)
=

=

[(
d⟨u′iu′j⟩pat

dt

)h
]
sur

+

[(
d⟨u′iu′j⟩pat

dt

)v
]
sur

(4.19)

Despite the large amount of terms and variables involved, the idea behind is very simple. In the case
of equilibrium between the inside and outside means, variances and covariances of the inside tracers
distribution will tend to the one outside, implying patch total dilution. If instead the mean difference
is different from zero, we expect that heterogeneity inside is enhanced with respect to the one outside.

4.5 Mixing term

In a three-dimensional incompressible turbulent flow, passive tracers undergo mixing processes that
gradually equalize their concentration over time. Various methods have been elaborated to theoreti-
cally describe the decline of tracer concentration moments [2], [31]. In particular, the rate at which
tracer second moments decrease can be linked to the diffusion rate κ(t) and the system size S(t)
considered. Due to the different horizontal and vertical dynamic of the water patch, mixing acts
separately on the two components
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4.6. INTERACTION TERM

[(
d⟨u′iu′j⟩pat

dt

)h
]
mix

= − κh(t)

(Sh(t))2
⟨u′iu′j⟩pat

[(
d⟨u′iu′j⟩pat

dt

)v
]
mix

= − κv(t)

(Sv(t))2
⟨u′iu′j⟩pat

(4.20)

We remember that system’s characteristic sizes Sh(t) and Sv(t) are expressible as

Sh(t) = W (t) + L(t)

Sv(t) = 2T (t)
(4.21)

4.6 Interaction term

Tracer’s interaction can be modelled, from the mathematical point of view, as an interaction between
scalar fields in the space. By assuming the presence of n different tracers in our description, we would
have a system of n ODEs defining in detail tracers’ relation. Using the vector U to denote the set of
the n scalar fields ui, each equation of the system can be written in the form

dui(x, t)

dt
= F bio

i (U(x, t)) U(x, t) = {u1(x, t), ..., un(x, t)} (4.22)

Since, as before, we don’t want to resolve explicitly the spatial heterogeneity of these distributions,
the idea is to understand again how the main statistical quantities are affected by the interactions.
For this purpose, the function F bio

i can be expanded [33] around tracers’ vector mean value ⟨U⟩pat =
{⟨u1⟩pat, ..., ⟨un⟩pat} and written in terms of the fluctuations as

dui(x, t)

dt
= F bio

i (U(x, t))

≃ F bio
i (⟨U⟩pat) +

n∑
l=1

∂F bio
i

∂ul
(⟨U⟩pat) · u′l(x, t)+

+
1

2

n∑
l,k=1

∂2F bio
i

∂ul∂uk
(⟨U⟩pat) · u′l(x, t)u′k(x, t) + ...

(4.23)

Averaging over space as usual, we get

[
d⟨ui⟩pat

dt

]
bio

≃ F bio
i (⟨U⟩pat) +

1

2

n∑
l,k=1

∂2F bio
i

∂ul∂uk
(⟨U⟩pat) · ⟨u′lu′k⟩pat (4.24)

Truncating the expansion at the second order of the fluctuation is a so-called ”closure assumption”.
We are indeed imposing to third and higher moments of being negligible, reducing the total number of
variables needed to fully describe ui(x, t). Subtracting equation (4.24) to (4.23) we find the fluctuation
time derivative
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du′i(x, t)

dt
≃

n∑
l=1

∂F bio
i

∂ul
(⟨U⟩pat) · u′l(x, t)+

+
1

2

n∑
l,k=1

∂2F bio
i

∂ul∂uk
(⟨U⟩pat) ·

(
u′l(x, t)u

′
k(x, t)− ⟨u′lu′k⟩pat

) (4.25)

If now we multiply by u′j(x, t) both members, swap the indices i and j and sum to the old expression,
finally averaging in space we obtain

[
d⟨u′iu′j⟩pat

dt

]
bio

≃
n∑

k=1

[
∂F bio

i

∂uk
(⟨U⟩pat) · ⟨u′ju′k⟩pat +

∂F bio
j

∂uk
(⟨U⟩pat) · ⟨u′iu′k⟩pat

]
(4.26)

that is the time derivative of tracers covariances. The variances’ behavior is trivially obtained for
i = j.

4.7 Statistical model summary

The master equation (4.9) denotes how a tracer distribution inside a water patch evolves due to
entrainment, mixing and interaction with the others. Through a statistical approach, this dynamic
can be approximated by evolution of the mean, variance and covariance. We have seen that changes
in the mean are due to entrainment of external water and interactions, while changes in the second
moments account also to internal mixing. All this can be summarized by

d⟨ui⟩pat
dt

=

[
d⟨ui⟩pat

dt

]
sur

+

[
d⟨ui⟩pat

dt

]
bio

d⟨u′2i ⟩pat
dt

=

[
d⟨u′2i ⟩pat

dt

]
sur

+

[
d⟨u′2i ⟩pat

dt

]
mix

+

[
d⟨u′2i ⟩pat

dt

]
bio

d⟨u′iu′j⟩pat
dt

=

[
d⟨u′iu′j⟩pat

dt

]
sur

+

[
d⟨u′iu′j⟩pat

dt

]
mix

+

[
d⟨u′iu′j⟩pat

dt

]
bio

(4.27)

Once specified the extent of the interactions between the tracers, this model requires knowing a priori
first and second moments of the surrounding tracer distributions, as well as the entrainment rate that
depends on W (t), L(t) and T (t).
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Chapter 5

Phytoplankton and carbon in the
statistical model

In this Chapter we focus on a specific scenario where the tracers under consideration are phytoplankton,
nutrients, and dissolved inorganic carbon, even if the previously presented model can be adapted to
accommodate any number of tracers. We identify the biogeochemical interactions, undergoing in the
ocean, that connect abundances of these organisms and compounds. In particular, an equation for the
pCO2 anomaly is developed starting from the carbon dynamics already discussed in the introduction.
A closed system of equations is so reached and expanded to determine the statistical contributions
entering in the full model. We finally end up with a complex set of nine equations describing first and
second moments of the phytoplankton, nutrient and partial pressure anomaly distributions.

5.1 Biogeochemical statistical model

We start from the model discussed in Section 2 and apply that consumer-resource dynamic between
two tracers, which represent phytoplankton P (x, t) and a generic limiting nutrient N(x, t). We also
describe how the amount of dissolved inorganic carbon in the patch water DIC(x, t) changes in
response to this consumption and to air-sea flux of CO2. The latter takes the form of

[
dDIC(x, t)

dt

]
bio

=

[
dDIC(x, t)

dt

]
flux

+

[
dDIC(x, t)

dt

]
upt

=

= −FCO2(x, t)

ρh
+

1

ρ
Supt(x, t)RCT :N

(5.1)

where RCT :N is the conversion factor between moles of nutrient consumed in Supt (upt stands for
”uptake”) to moles of carbon, and h is the mixed layer depth in a given region of the ocean. The
equations relating all the tracers are then

[
dN(x, t)

dt

]
bio

= −ν
N(x, t)

N(x, t) + k
P (x, t) ≡ Supt(x, t)[

dP (x, t)

dt

]
bio

= +ν
N(x, t)

N(x, t) + k
P (x, t)−mP (x, t)

[
dDIC(x, t)

dt

]
bio

= −KoKg∆p(x, t)

h
+

1

ρ
Supt(x, t)RCT :N

(5.2)
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Remember that ν is the phytoplankton maximum growth rate, k is the half-saturation constant and
m is the phytoplankton mortality. The other parameters were introduced in Section 1.3 and are CO2

solubility, Ko, CO2 transfer velocity in water, Kg, and anomaly in partial pressure of CO2, ∆p.

Notice that the first two equations do not depend on carbon utilization, since this element is generally
not considered a limiting factor for phytoplankton growth.

This system has also three equations but four variables (or better, fields) that are involved. The
relationship between DIC and ∆p needs, then, to be investigated.

5.2 pCO2 anomaly as a tracer

The last equation of (5.2) can be reformulated to achieve a closed system of ODEs, as the one expected
by (4.22) notation.

Foremost, let’s use the DIC decomposition in saturation and disequilibrium components, respectively
Csat and ∆C

DIC(x, t) = Csat(x, t) + ∆C(x, t) (5.3)

This allows to rewrite the equation (5.1) as

d∆C(x, t)

dt
= −KoKg

h
∆p(x, t) +

1

ρ
Supt(x, t)RCT :N − dCsat(x, t)

dt
(5.4)

Using the Revelle buffer factor B, introduced in Section 1.3, the residual component of the DIC can
be reexpressed in terms of saturation component and the pCO2 difference between the water and the
atmosphere.

∆C(x, t) =
Csat(x, t)

B · pCOatm
2 (x, t)

∆p(x, t) (5.5)

Deriving in time, making the assumption that pCOatm
2 (x, t) is pretty constant, we obtain

d∆C(x, t)

dt
=

1

B · pCOatm
2

d(Csat(x, t) ·∆p(x, t))

dt

=
Csat(x, t)

B · pCOatm
2

[
1

Csat(x, t)

dCsat(x, t)

dt
·∆p(x, t) +

d∆p(x, t)

dt

]

= ϕ−1(x, t)

[
1

Csat(x, t)

dCsat(x, t)

dt
·∆p(x, t) +

d∆p(x, t)

dt

]
(5.6)

where some terms are grouped into ϕ(x, t), that is defined as

ϕ(x, t) =

(
Csat(x, t)

B · pCOatm
2

)−1

(5.7)

Inserting (5.6) into (5.4) and isolating the time derivative of ∆p(x, t) leads to
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d∆p(x, t)

dt
= −ϕ(x, t)

KoKg

h
∆p(x, t) +

ϕ(x, t)

ρ
Supt(x, t)RCT :Fe − ϕ(x, t)

dCsat(x, t)

dt
+

− 1

Csat(x, t)

dCsat(x, t)

dt
·∆p(x, t) (5.8)

Equation (5.8) denotes how the time evolution of the partial pressure anomaly depends on the other
tracers N and P and also on the Csat distribution. The impact of the latter has to be properly
analyzed. Since we expect that ∆p << B · pCOatm

2 , the last term involving ∆p(x, t)/Csat(x, t) can be
considered negligible. The remaining term with Csat(x, t) derivative depends only on environmental
factors like temperature, alkalinity and salinity. Assuming that the temperature T dependence is the
stronger than the others, one can expand

dCsat(x, t)

dt
≃ dCsat(x, t)

dT(x, t)

dT(x, t)

dt
= γT

dT(x, t)

dt
(5.9)

where γT is the locally linear proportionality constant between Csat and T [35]. A last approximation
is also to consider ϕ to be constant, since its derivatives in space and time are smaller of order of
magnitudes with respect to the other quantities.

At the end, we get this simplified equation for ∆p variation

d∆p(x, t)

dt
= −ϕ

KoKg

h
∆p(x, t) +

ϕ

ρ
Supt(x, t)RCT :N − ϕγT

dT(x, t)

dt
(5.10)

which only requires knowing the temperature field dynamic, eventually retrieved from data. Relaxing
further the need to characterize temperature heterogeneity and peculiarity inside the patch, we can
simply model an average temperature present everywhere and equal to T̄.

This result indicates that, with these approximations, we can think of ∆p as the only needed field (or,
in all respects, tracer) accounting for the carbon dynamic inside the patch.

5.3 Full model description

The consumer-resource model with carbon uptake (5.2) can be written on its final shape as

[
dN(x, t)

dt

]
bio

= −ν
N(x, t)

N(x, t) + k
P (x, t) ≡ Sbio(x, t)[

dP (x, t)

dt

]
bio

= +ν
N(x, t)

N(x, t) + k
P (x, t)−mP (x, t)

[
d∆p(x, t)

dt

]
bio

=

[
d∆p(x, t)

dt

]
flux

+

[
d∆p(x, t)

dt

]
upt

+

[
d∆p(x, t)

dt

]
temp

=

= −ϕ
KoKg

h
∆p(x, t) +

ϕ

ρ
Supt(x, t)RCT :N − ϕγT

dT̄

dt

(5.11)
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Unfortunately, this is only the description of the interactions between the involved tracers, so we
have yet to formalize what are the effects of the drifting of such ecosystem in space. Taking up the
statistical approach that we defined earlier, we only need to identify the terms appearing in (4.27)
with {u1, u2, u3} being {N,P,∆p}.

5.3.1 Entrainment

The specification of the entrainment effect on tracers’ moments is trivial once defined surrounding
distribution moments as

⟨Nh⟩suh ⟨Ph⟩suh ⟨∆ph⟩suh
⟨Na⟩sua ⟨Pa⟩sua ⟨∆pa⟩sua
⟨Nb⟩sub ⟨Pb⟩sub ⟨∆pb⟩sub

⟨N ′2
h ⟩suh ⟨P ′2

h ⟩suh ⟨∆p′2h ⟩suh
⟨N ′2

a ⟩sua ⟨P ′2
a ⟩sua ⟨∆p′2a ⟩sua

⟨N ′2
b ⟩sub ⟨P ′2

b ⟩sub ⟨∆p′2b ⟩sub

⟨N ′
hP

′
h⟩suh ⟨N ′

h∆p′h⟩suh ⟨P ′
h∆p′h⟩suh

⟨N ′
aP

′
a⟩sua ⟨N ′

a∆p′a⟩sua ⟨P ′
a∆p′a⟩sua

⟨N ′
bP

′
b⟩sub ⟨N ′

b∆p′b⟩sub ⟨P ′
b∆p′b⟩sub

which are, in total, 3 · (2n+ n(n− 1)/2) = 27. The amount of statistical quantities to know a priori
seems a little bit scary, but in general one can think to model external tracer distributions that are
homogeneous, imposing second moments of the reservoirs to be negligible.

Anyway, let’s stay general and write equations (4.15), (4.17) and (4.19) for N , P , ∆p and their just
defined surroundings as

[
d⟨N⟩pat

dt

]
sur

= Ωh(t)⟨Nh⟩suh +
1

2
Ωv(t) (⟨Na⟩sua + ⟨Nb⟩sub)− Ω(t)⟨N⟩pat[

d⟨P ⟩pat
dt

]
sur

= Ωh(t)⟨Ph⟩suh +
1

2
Ωv(t) (⟨Pa⟩sua + ⟨Pb⟩sub)− Ω(t)⟨P ⟩pat[

d⟨∆p⟩pat
dt

]
sur

= Ωh(t)⟨∆ph⟩suh +
1

2
Ωv(t) (⟨∆pa⟩sua + ⟨∆pb⟩sub)− Ω(t)⟨∆p⟩pat

(5.12)
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[
d⟨N ′2⟩pat

dt

]
sur

= Ωh(t)
(
⟨N ′2

h ⟩suh − ⟨N ′2⟩pat + (⟨Nh⟩suh − ⟨N⟩pat)2
)
+

+
1

2
Ωv(t)

(
⟨N ′2

a ⟩sua − ⟨N ′2⟩pat + (⟨Na⟩sua − ⟨N⟩pat)2
)
+

+
1

2
Ωv(t)

(
⟨N ′2

b ⟩sub − ⟨N ′2⟩pat + (⟨Nb⟩sub − ⟨N⟩pat)2
)
=

=

[(
d⟨N ′2⟩pat

dt

)h
]
sur

+

[(
d⟨N ′2⟩pat

dt

)v]
sur

[
d⟨P ′2⟩pat

dt

]
sur

= Ωh(t)
(
⟨P ′2

h ⟩suh − ⟨P ′2⟩pat + (⟨Ph⟩suh − ⟨P ⟩pat)2
)
+

+
1

2
Ωv(t)

(
⟨P ′2

a ⟩sua − ⟨P ′2⟩pat + (⟨Pa⟩sua − ⟨P ⟩pat)2
)
+

+
1

2
Ωv(t)

(
⟨P ′2

b ⟩sub − ⟨P ′2⟩pat + (⟨Pb⟩sub − ⟨P ⟩pat)2
)
=

=

[(
d⟨P ′2⟩pat

dt

)h
]
sur

+

[(
d⟨P ′2⟩pat

dt

)v]
sur

[
d⟨∆p′2⟩pat

dt

]
sur

= Ωh(t)
(
⟨∆p′2h ⟩suh − ⟨∆p′2⟩pat + (⟨∆ph⟩suh − ⟨∆p⟩pat)2

)
+

+
1

2
Ωv(t)

(
⟨∆p′2a ⟩sua − ⟨∆p′2⟩pat + (⟨∆pa⟩sua − ⟨∆p⟩pat)2

)
+

+
1

2
Ωv(t)

(
⟨∆p′2b ⟩sub − ⟨∆p′2⟩pat + (⟨∆pb⟩sub − ⟨∆p⟩pat)2

)
=

=

[(
d⟨∆p′2⟩pat

dt

)h
]
sur

+

[(
d⟨∆p′2⟩pat

dt

)v]
sur

(5.13)
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[
d⟨N ′P ′⟩pat

dt

]
sur

= Ωh(t)
(
⟨N ′

hP
′
h⟩suh − ⟨N ′P ′⟩pat + (⟨Nh⟩suh − ⟨N⟩pat) · (⟨Ph⟩suh − ⟨P ⟩pat)

)
+

+
1

2
Ωv(t)

(
⟨N ′

aP
′
a⟩sua − ⟨N ′P ′⟩pat + (⟨Na⟩sua − ⟨N⟩pat) · (⟨Pa⟩sua − ⟨P ⟩pat)

)
+

+
1

2
Ωv(t)

(
⟨N ′

bP
′
b⟩sub − ⟨N ′P ′⟩pat + (⟨Nb⟩sub − ⟨N⟩pat) · (⟨Pb⟩sub − ⟨P ⟩pat)

)
=

=

[(
d⟨N ′P ′⟩pat

dt

)h
]
sur

+

[(
d⟨N ′P ′⟩pat

dt

)v]
sur

[
d⟨N ′∆p′⟩pat

dt

]
sur

= Ωh(t)
(
⟨N ′

h∆p′h⟩suh − ⟨N ′∆p′⟩pat + (⟨Nh⟩suh − ⟨N⟩pat) · (⟨∆ph⟩suh − ⟨∆p⟩pat)
)
+

+
1

2
Ωv(t)

(
⟨N ′

a∆p′a⟩sua − ⟨N ′∆p′⟩pat + (⟨Na⟩sua − ⟨N⟩pat) · (⟨∆pa⟩sua − ⟨∆p⟩pat)
)
+

+
1

2
Ωv(t)

(
⟨N ′

b∆p′b⟩sub − ⟨N ′∆p′⟩pat + (⟨Nb⟩sub − ⟨N⟩pat) · (⟨∆pb⟩sub − ⟨∆p⟩pat)
)
=

=

[(
d⟨N ′∆p′⟩pat

dt

)h
]
sur

+

[(
d⟨N ′∆p′⟩pat

dt

)v]
sur

[
d⟨P ′∆p′⟩pat

dt

]
sur

= Ωh(t)
(
⟨P ′

h∆p′h⟩suh − ⟨P ′∆p′⟩pat + (⟨Ph⟩suh − ⟨P ⟩pat) · (⟨∆ph⟩suh − ⟨∆p⟩pat)
)
+

+
1

2
Ωv(t)

(
⟨P ′

a∆p′a⟩sua − ⟨P ′∆p′⟩pat + (⟨Pa⟩sua − ⟨P ⟩pat) · (⟨∆pa⟩sua − ⟨∆p⟩pat)
)
+

+
1

2
Ωv(t)

(
⟨P ′

b∆p′b⟩sub − ⟨P ′∆p′⟩pat + (⟨Pb⟩sub − ⟨P ⟩pat) · (⟨∆pb⟩sub − ⟨∆p⟩pat)
)
=

=

[(
d⟨P ′∆p′⟩pat

dt

)h
]
sur

+

[(
d⟨P ′∆p′⟩pat

dt

)v]
sur

(5.14)

We see that, as expected, each tracer is subject to the same dilution process with the respective
reservoir.

5.3.2 Mixing

Referring to equations (4.20), for each considered tracer we have
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[(
d⟨N ′2⟩pat

dt

)h
]
mix

= − κh(t)

(Sh(t))2
⟨N ′2⟩pat

[(
d⟨N ′2⟩pat

dt

)v]
mix

= − κv(t)

(Sv(t))2
⟨N ′2⟩pat[(

d⟨P ′2⟩pat
dt

)h
]
mix

= − κh(t)

(Sh(t))2
⟨P ′2⟩pat

[(
d⟨P ′2⟩pat

dt

)v]
mix

= − κv(t)

(Sv(t))2
⟨P ′2⟩pat[(

d⟨∆p′2⟩pat
dt

)h
]
mix

= − κh(t)

(Sh(t))2
⟨∆p′2⟩pat

[(
d⟨∆p′2⟩pat

dt

)v]
mix

= − κv(t)

(Sv(t))2
⟨∆p′2⟩pat

(5.15)

[(
d⟨N ′P ′⟩pat

dt

)h
]
mix

= − κh(t)

(Sh(t))2
⟨N ′P ′⟩pat

[(
d⟨N ′P ′⟩pat

dt

)v]
mix

= − κv(t)

(Sv(t))2
⟨N ′P ′⟩pat[(

d⟨N ′∆p′⟩pat
dt

)h
]
mix

= − κh(t)

(Sh(t))2
⟨N ′∆p′⟩pat

[(
d⟨N ′∆p′⟩pat

dt

)v]
mix

= − κv(t)

(Sv(t))2
⟨N ′∆p′⟩pat[(

d⟨P ′∆p′⟩pat
dt

)h
]
mix

= − κh(t)

(Sh(t))2
⟨P ′∆p′⟩pat

[(
d⟨P ′∆p′⟩pat

dt

)v]
mix

= − κv(t)

(Sv(t))2
⟨P ′∆p′⟩pat

(5.16)

5.3.3 Interaction

The application of the closure method defined by (4.24) and (4.26) leads to the following biogeochem-
ical relations between tracer moments
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[
d⟨N⟩pat

dt

]
bio

= −ν
⟨N⟩pat⟨P ⟩pat
⟨N⟩pat + k

+ νk
⟨P ⟩pat⟨N ′2⟩pat
(⟨N⟩pat + k)3

− νk
⟨N ′P ′⟩pat

(⟨N⟩pat + k)2[
d⟨P ⟩pat

dt

]
bio

= +ν
⟨N⟩pat⟨P ⟩pat
⟨N⟩pat + k

−m⟨P ⟩pat − νk
⟨P ⟩pat⟨N ′2⟩pat
(⟨N⟩pat + k)3

+ νk
⟨N ′P ′⟩pat

(⟨N⟩pat + k)2[
d⟨∆p⟩pat

dt

]
bio

=

[
d⟨∆p⟩pat

dt

]
flux

+

[
d⟨∆p⟩pat

dt

]
upt

+

[
d⟨∆p⟩pat

dt

]
temp

=

= −ϕ
KoKg

h
⟨∆p⟩pat +

ϕ

ρ

[
d⟨N⟩pat

dt

]
bio

·RCT :N − ϕγT
dT̄

dt

(5.17)

[
d⟨N ′2⟩pat

dt

]
bio

= −2νk
⟨P ⟩pat⟨N ′2⟩pat
(⟨N⟩pat + k)2

− 2ν
⟨N⟩pat

⟨N⟩pat + k
⟨N ′P ′⟩pat

[
d⟨P ′2⟩pat

dt

]
bio

=

(
+2ν

⟨N⟩pat
⟨N⟩pat + k

− 2m

)
⟨P ′2⟩pat + 2νk

⟨P ⟩pat⟨N ′P ′⟩pat
(⟨N⟩pat + k)2[

d⟨∆p′2⟩pat
dt

]
bio

=

[
d⟨∆p′2⟩pat

dt

]
flux

+

[
d⟨∆p′2⟩pat

dt

]
upt

=

= −2ϕ
KoKg

h
⟨∆p′2⟩pat+

+
ϕ

ρ

[
−2νk

⟨P ⟩pat
(⟨N⟩pat + k)2

⟨N ′∆p′⟩pat − 2ν
⟨N⟩pat

⟨N⟩pat + k
⟨P ′∆p′⟩pat

]
RCT :N

(5.18)

[
d⟨N ′P ′⟩pat

dt

]
bio

= ν
⟨N⟩pat

⟨N⟩pat + k

(
⟨N ′P ′⟩pat − ⟨P ′2⟩pat

)
+ νk

⟨P ⟩pat
(⟨N⟩pat + k)2

(
⟨N ′2⟩pat − ⟨N ′P ′⟩pat

)
+

−m⟨N ′P ′⟩pat[
d⟨N ′∆p′⟩pat

dt

]
bio

=

[
d⟨N ′∆p′⟩pat

dt

]
flux

+

[
d⟨N ′∆p′⟩pat

dt

]
upt

=

= −ϕ
KoKg

h
⟨N ′∆p′⟩pat − ν

⟨N⟩pat
⟨N⟩pat + k

(
⟨P ′∆p′⟩pat +

ϕ

ρ
⟨N ′P ′⟩patRCT :N

)
+

− νk
⟨P ⟩pat

(⟨N⟩pat + k)2

(
⟨N ′∆p′⟩pat +

ϕ

ρ
⟨N ′2⟩patRCT :N

)
[
d⟨P ′∆p′⟩pat

dt

]
bio

=

[
d⟨P ′∆p′⟩pat

dt

]
flux

+

[
d⟨P ′∆p′⟩pat

dt

]
upt

=

= −ϕ
KoKg

h
⟨P ′∆p′⟩pat + ν

⟨N⟩pat
⟨N⟩pat + k

(
⟨P ′∆p′⟩pat −

ϕ

ρ
⟨P ′2⟩patRCT :N

)
+

+ νk
⟨P ⟩pat

(⟨N⟩pat + k)2

(
⟨N ′∆p′⟩pat −

ϕ

ρ
⟨N ′P ′⟩patRCT :N

)
+

−m⟨P ′∆p′⟩pat
(5.19)
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Obtained results are an extension of the model introduced by [28], in fact terms involving phytoplank-
ton and nutrient coincide.

5.3.4 Summary

A final summary of the statistical model describing phytoplankton, nutrient and carbon interactions
in a changing Lagrangian water patch.

d⟨N⟩pat
dt

=

[
d⟨N⟩pat

dt

]
sur

+

[
d⟨N⟩pat

dt

]
bio

d⟨P ⟩pat
dt

=

[
d⟨P ⟩pat

dt

]
sur

+

[
d⟨P ⟩pat

dt

]
bio

d⟨∆p⟩pat
dt

=

[
d⟨∆p⟩pat

dt

]
sur

+

[
d⟨∆p⟩pat

dt

]
bio

(5.20)

d⟨N ′2⟩pat
dt

=

[
d⟨N ′2⟩pat

dt

]
sur

+

[
d⟨N ′2⟩pat

dt

]
mix

+

[
d⟨N ′2⟩pat

dt

]
bio

d⟨P ′2⟩pat
dt

=

[
d⟨P ′2⟩pat

dt

]
sur

+

[
d⟨P ′2⟩pat

dt

]
mix

+

[
d⟨P ′2⟩pat

dt

]
bio

d⟨∆p′2⟩pat
dt

=

[
d⟨∆p′2⟩pat

dt

]
sur

+

[
d⟨∆p′2⟩pat

dt

]
mix

+

[
d⟨∆p′2⟩pat

dt

]
bio

(5.21)

d⟨N ′P ′⟩pat
dt

=

[
d⟨N ′P ′⟩pat

dt

]
sur

+

[
d⟨N ′P ′⟩pat

dt

]
mix

+

[
d⟨N ′P ′⟩pat

dt

]
bio

d⟨N ′∆p′⟩pat
dt

=

[
d⟨N ′∆p′⟩pat

dt

]
sur

+

[
d⟨N ′∆p′⟩pat

dt

]
mix

+

[
d⟨N ′∆p′⟩pat

dt

]
bio

d⟨P ′∆p′⟩pat
dt

=

[
d⟨P ′∆p′⟩pat

dt

]
sur

+

[
d⟨P ′∆p′⟩pat

dt

]
mix

+

[
d⟨P ′∆p′⟩pat

dt

]
bio

(5.22)
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Chapter 6

Phytoplankton CR model simulation

For now, let’s consider the statistical model applied to a Lagrangian system containing only nutrient
N and phytoplankton P , neglecting carbon dynamic. Equations (5.20), (5.21) and (5.22) regarding
N and P form a system of five equations, which conceptually extend the simple model of Chapter
2. Consistence between the two descriptions can be found only in the case of vanishing variances
and covariances, or more simply in the case of zeroth order truncation of the closure method (4.23).
Otherwise, stationary behavior of the statistical model can differ significantly, involving variances and
covariance steadily different from zero. We make now a comparison between these two cases, referring
to them as ”homogeneous statistical model” and ”heterogeneous statistical model”, understanding
how allowed heterogeneity modifies the entity of nutrient-phytoplankton interaction.

6.1 Homogeneous case

In the simple model, the water patch is surrounded by a uniform reservoir with concentrations Nout

and Pout, while in the Lagrangian statistical model, surroundings are distinct by region. A connection
between the two descriptions can be reached defining Nout(t) and Pout(t) as the average surrounding
concentrations of nutrient and phytoplankton experienced by the Lagrangian system as the patch
evolve

Nout(t) =
Ωh(t)

Ω(t)
⟨Nh⟩suh +

1

2

Ωv(t)

Ω(t)
(⟨Na⟩sua + ⟨Nb⟩sub)

Pout(t) =
Ωh(t)

Ω(t)
⟨Ph⟩suh +

1

2

Ωv(t)

Ω(t)
(⟨Pa⟩sua + ⟨Pb⟩sub)

(6.1)

where time dependent Ω and its components are defined by (3.21), (3.22). With this notation, equa-
tions (5.20) for N and P means become superimposable to the one of the simple model (2.1). Their
expressions are indeed


d⟨N⟩pat(t)

dt
= −ν

⟨N⟩pat(t)
⟨N⟩pat(t) + k

⟨P ⟩pat(t) + Ω(t)(Nout(t)− ⟨N⟩pat)

d⟨P ⟩pat(t)
dt

= ν
⟨N⟩pat(t)

⟨N⟩pat(t) + k
⟨P ⟩pat(t)−m⟨P ⟩pat(t) + Ω(t)(Pout(t)− ⟨P ⟩pat(t))

(6.2)

The only modification with respect to (2.1) is the presence of time dependent entrainment rate and
outside concentrations, which is the result of the water patch physical modelling. This dynamical
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system equilibrium changes indeed in time, making it hard to identify the steady state. At a given
time t, system’s feasible fixed point (⟨N⟩∗pat(t), ⟨P ⟩∗pat(t)) have the expression already found in (2.11).

In Fig. 6.1A we show how the initial mean concentrations evolve towards the equilibrium (⟨N⟩∗pat(t),
⟨P ⟩∗pat(t)), which in turn moves as time goes on.

6.2 Heterogeneous case

Describing now also the second moments of the tracer distributions, we have to deal with a system of
five equations from (5.20), (5.21) and (5.22). Surrounding terms for variances and covariances cannot
be written in a simple way as (6.1), so we maintain an implicit expression.

d⟨N⟩pat
dt

= Ω(t)(Nout(t)− ⟨N⟩pat) +
[
d⟨N⟩pat

dt

]
bio

d⟨P ⟩pat
dt

= Ω(t)(Pout(t)− ⟨P ⟩pat) +
[
d⟨P ⟩pat

dt

]
bio

d⟨N ′2⟩pat
dt

=

[
d⟨N ′2⟩pat

dt

]
sur

+

[
d⟨N ′2⟩pat

dt

]
mix

+

[
d⟨N ′2⟩pat

dt

]
bio

d⟨P ′2⟩pat
dt

=

[
d⟨P ′2⟩pat

dt

]
sur

+

[
d⟨P ′2⟩pat

dt

]
mix

+

[
d⟨P ′2⟩pat

dt

]
bio

d⟨N ′P ′⟩pat
dt

=

[
d⟨N ′P ′⟩pat

dt

]
sur

+

[
d⟨N ′P ′⟩pat

dt

]
mix

+

[
d⟨N ′P ′⟩pat

dt

]
bio

(6.3)

Water patch movements, and the consequent time dependent Ω(t), determine the presence of time
dependent stationary solutions (⟨N⟩∗pat(t), ⟨P ⟩∗pat(t), ⟨N ′2⟩∗pat(t), ⟨P ′2⟩∗pat(t), ⟨N ′P ′⟩∗pat(t)) difficult to
quantify and find analytically. The complexity of this dynamical system of five independent variables
may allow very intricate behaviors and multiple stable or unstable equilibria, but in this work we are
not specifically interested on that.

Qualitatively, we expect that, if second moments stay limited in time, the dynamic in the phase
space will converge to a temporary equilibrium, which may surely be different from the one found for
⟨N⟩∗pat(t) and ⟨P ⟩∗pat(t) in the homogeneous case. This is in fact what happens in Fig. 6.1B, where
the ending point in the N -P phase space does not match the same of the homogeneous case, even if
the distance is not so high.

Interestingly, starting with the same parameters and initial conditions, homogeneous and heteroge-
neous statistical models can give rise to very different transient behaviors, resulting in different heights
of phytoplankton peaks (Fig. 6.2). In this specific scenario, the peak displayed in the homogeneous
case is bigger than the one in the heterogeneous case, but this can really change with different pa-
rameters value involved. The keep-in-mind message here, is that by fitting the initial phytoplankton
growth one has to pay attention to presence of heterogeneity, which can really drift the size of the
bloom generated.
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Figure 6.1: Comparison between homogeneous (6.2) and heterogeneous (6.3) model dynamic at stationary. Light
blue curves represent (⟨N⟩pat(t), ⟨P ⟩pat(t)) trajectories, while orange curve is (⟨N⟩∗pat(t), ⟨P ⟩∗pat(t)) trajectory
in the homogeneous case. In panel A, dynamic is brought towards the expected stationary values. In panel
B, convergence of the light blue line is not in the same location, meaning that the stationary point in the
heterogeneous case is different. Parameters in the two cases are the same: in particular ν = 0.8, m = 0.1,
k = 1.73, γ0 = 0.012, κh

0 = 0.01, κh
0 = 2.07 · 10−6, δ0 = 1 · 10−4 (see table 7.1 for unit of measure). Initial patch

size is W (0) = 1, L(0) = 1, T (0) = 0.03. Black stars are initial values of N and P , while red stars are computed
after 1000 days.
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Figure 6.2: Time evolution of the quantities of interest related to the homogeneous and heterogeneous model.
Panels A, B and C represent the evolutions of width, length, thickness and volume of the water patch. Their
behavior is ruled by the fluid dynamical parameters γ0, δ0, κ

h
0 and κv

0. Panel D represent the evolutions of the
two components of the entrainment rate. Panels E and F contain the two dynamics predicted by homogeneous
and heterogeneous model about the means of nutrient and phytoplankton inside the patch. In particular,
phytoplankton mean concentrations display a different behavior in the transient phase. Panels G and H hold
the predicted nutrient and phytoplankton variances and covariance in the heterogeneous case (they will be
identically zero, otherwise). Stationary values are finite and non-zero. In panels E, F, G nutrient’s y-axis is on
the left, while phytoplankton’s y-axis is on the right.
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Chapter 7

SOIREE experiment simulation

7.1 The SOIREE experiment

The Southern Ocean is known to be rich in nutrients like nitrate and phosphate, but often limited
by iron availability. Iron is a crucial micro-nutrient for phytoplankton growth, and its scarcity in
these waters restricts primary productivity. This makes potentially this ocean site one of the largest
repository of unused resources on the earth [4]. The Southern Ocean is also thought to have a
fundamental role in regulating the global carbon cycle in both present and past times. Studies related
to the Last Glacial Maximum suggest that export production was very big in these waters, likely
because of more iron being available.

All these reasons brought a team of scientists, overseen by Dr. Philip Boyd and Dr. Rob Armstrong,
to conduct an iron enrichment experiment in the waters of the Southern Ocean, called SOIREE
”Southern Ocean Iron RElease Experiment” [5], in February 1999. A large amount of acidified ferrous
sulfate FeSO4 · 7H2O was released, together with the tracer sulfur hexafluoride SF6, into the mixed
layer region over an initial area of about 50 km2. The evolution of this water patch was monitored for
about 40 days, allowing researchers to measure important physical and biochemical quantities such
as iron dispersal concentration, chlorophyll concentration, stirring and dilution rates, carbon uptake
rates, and many others [1].

Here, we want to model the experiment to assess the validity of the statistical approach introduced,
also predicting some properties that unfortunately has not been measured, like tracers variances and
covariances.

Figure 7.1: Location of the SOIREE experiment [5]

47



CHAPTER 7. SOIREE EXPERIMENT SIMULATION

7.2 Environmental parameters setup

We are interested in describing how iron and phytoplankton concentrations, as well as pCO2 level,
vary during the 42 days of water patch tracking. In situ measurements [1], [13] are compared with the
predicted evolution, both with regard to the physical patch enlargement that to phytoplankton bloom
size. Also carbon uptake, in terms of ∆p, is considered with respect to available data [18] and more
advanced designs like the SWAMCO model [19], [17].

Physical parameters like strain rate, divergence and diffusivities observed during the experiment are
retrieved from [1], [13]. Biological growth and death rates ν, m, as well as the half saturation constant
k, are manually tuned to match with the experimental bloom size. Finally, information related to
carbon parameters can be found from different sources [21], [13], [35], [25], [19] (see Tab. 7.1).

parameter value unit of measure

γ0 0.12 day−1

δ0 3 · 10−6 day−1

κh0 0.10 km2 · day−1

κv0 2.1 · 10−6 km2 · day−1

ν 0.40 day−1

k 1.73 (µmol Fe) ·m−3

m 0.05 day−1

ϕ 1.64 µatm · kg · (µmol C)−1

Ko 0.06 (µmol C) · kg−1 · µatm−1

Kg 17.28 m · day−1

h 65 m
ρ 1027 kg ·m−3

B 10 #
RCT :Fe 6 · 104 (µmol C) · (µmol Fe)−1

Table 7.1: Set of parameters used to simulate the SOIREE experiment

Initial conditions of the water patch and of the tracer concentrations are set to mimic the environment
where the iron release took place [1], [13], [11]. Moreover, the assumptions that have been made are
that above and horizontal surroundings display the same tracer concentrations, while below the patch
no presence of phytoplankton is allowed. Regarding the pCO2 anomaly, it is set to be initially zero
inside and outside the patch, since the gas is thought to be in equilibrium.

The mean value of the pCO2 anomaly ⟨∆p⟩pat would theoretically depend on variations of the patch
temperature T̄ as set in the equation (5.17). Due to the lack of consistent data among the entire
realization of the experiment, we will consider T̄ approximately constant in time, so dT̄/dt = 0.

7.3 Simulation results

The simulation is performed for 42 days, starting with a massive iron release in a circular water patch
of radius equal to 5 km. The action of strain, divergence and diffusion brings to an increase of the
size of the patch on the y-axis, reaching about 75 km on the last day (Fig. 7.2A). Patch width
initially decreases due to the stirring effect, but then stabilizes at around 4 km. Low values of vertical
diffusivity and divergence (there is no consistent upwelling) determine a very soft increase in the patch
thickness, rising from 30 to 32.5 m (Fig. 7.2B). In its entirety, the total volume grows by a factor
of 15, mainly due to horizontal intrusion of water (Fig. 7.2C, 7.2D). In particular, it’s interesting to
notice that horizontal entrainment rate peaks around day 20, which correspond to the minimum of
the patch width. Vertical entrainment is again limited by the small diffusivity and divergence.
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variable value unit of measure

W (0) 5 km
L(0) 5 km
T (0) 30 m
⟨N⟩pat(0) 3.45 (µmol Fe) ·m−3

⟨P ⟩pat(0) 0.0249 (µmol Fe) ·m−3

⟨∆p⟩pat(0) 0 µatm
⟨Nh⟩suh(0) 0.08 (µmol Fe) ·m−3

⟨P h⟩suh(0) 0.0249 (µmol Fe) ·m−3

⟨∆ph⟩suh(0) 0 µatm
⟨Na⟩sua(0) 0.08 (µmol Fe) ·m−3

⟨P a⟩sua(0) 0.0249 (µmol Fe) ·m−3

⟨∆pa⟩sua(0) 0 µatm
⟨N b⟩sub(0) 0.30 (µmol Fe) ·m−3

⟨P b⟩sub(0) 0 (µmol Fe) ·m−3

⟨∆pb⟩sub(0) 0 µatm

Table 7.2: Initial environmental conditions used to simulate the SOIREE experiment. Internal and external
variances and covariances are initially set to zero and are not reported for compactness.

Heterogeneous simulation Initial iron concentration inside the patch is on average about 40 times
higher than the environmental concentration, generating a strong gradient with the outside, which
also enhance spatial heterogeneity. Iron decay is at first strengthen by intrusion of surrounding water
(Fig. 7.3E), but then also biological consumption starts to play a role. Phytoplankton generated
bloom, in fact, peaks on its average after around 20-25 days, at a time when mean iron concentration
is already quite low (Fig. 7.3A). Even phytoplankton mean decay, at that point, is principally due to
dilution (Fig. 7.3F).

Variances of iron and phytoplankton display an interesting behavior, since the iron one peaks first,
while the phytoplankton one follows with a delay of about 10 days (Fig. 7.3B). Their values are
pretty high with respect to what is allowed by the closure method of Section 4.6, and this indicates
that possibly taking account of higher moments would be beneficial. Anyway, this behavior is mainly
motivated by the strong initial gradient, and would not appear for initial conditions more similar
to the environment. Figures 7.3G and 7.3H show that iron variance is only fed by the discrepancy
with the surroundings, while biological uptake acts reducing heterogeneity. The opposite happens for
phytoplankton variance, where consumption is linked to an enhancement of heterogeneity. In general,
all mixing terms appear to be quantitatively negligible, and this could be due to a too much high
characteristic time of decay. Future clarification will be needed to assess this hypothesis.

The covariance between iron and phytoplankton is expressed in terms of Pearson correlation (Fig.
7.3C), that is defined as

r(ui, uj)pat =
⟨u′iu′j⟩pat√

⟨u′2i ⟩pat · ⟨u′2j ⟩pat
(7.1)

and can assume values between −1 and 1. In the first part of planktonic growth, iron-phytoplankton
correlation stays positive and near 1, meaning perfect correspondence between high level of phyto-
plankton and high levels of iron available. After phytoplankton peak, the correlation drops down and
becomes negative in the final part, and this is probably related to phytoplankton overexploitation of
iron-rich areas.

CO2 sequestration inside the water patch is connected to the dynamic of the pCO2 anomaly, that is
∆p. Mean value of the latter resembles, in a rather satisfactory manner, partial pressure anomalies
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Figure 7.2: Simulation of the SOIREE water patch evolution, starting from a circular water patch with radius
of 5 km and thickness of 30 m. Predicted and measured width and length of the patch are depicted in panel
A, thickening process in panel B, while total volume increase in panel C. Horizontal and vertical entrainment
rates, obtained from relative volume changes, are represented in panel D.

encountered in data collected the first 13 days inside the patch (the bottom part of the gray cloud,
Fig. 7.4A). With respect to the SWAMCO prediction, the minimum of the pCO2 anomaly occurs
around 10 days before, in coincidence phytoplankton maximum concentration in our model. From
Fig. 7.4B, it can be seen how important is to model entrainment and air-sea exchange in order to do
not overestimate carbon uptake.

Spatial variance of ∆p rise quickly after 15 days and reach a very high value (
√
⟨∆p′2⟩pat(peak) ≃

118 µatm), meaning that in some regions pCO2 anomaly may even be positive (Fig. 7.4C). The only
term in Fig. 7.4D enhancing heterogeneity is the biological uptake of carbon, while the others tend to
flatten the ∆p distribution.

Finally, correlations of N and P with ∆p are depicted in Figures 7.4E and 7.4G. The first one start
negative and, symmetrically to r(N,P )pat, flips to positive in the final part of the experiment. This is
expected, since phytoplankton growth implies carbon uptake. The second one, instead, stays perfectly
negative from the beginning, and this is completely fair for the same reason.

Homogeneous simulation Accounting only for mean concentrations of the tracers involved, a
consistent part of the system’s behavior is preserved, but with some important differences. In the
same conditions, in fact, the generated phytoplankton bloom has a more modest size (Fig. 7.5A)
despite fitting quite well data related to the initial increase. This impacts also on the amount of pCO2

anomaly, which seems underestimated in absolute value with respect to the SWAMCO prediction. All
these observations suggest that, in particular for SOIREE simulation, introducing spatial variances
and covariances in the description helps to achieve a better representation of the system. However,
given the sparsity of the observations, we cannot fully support statistically this claim.
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Figure 7.3: Simulation of the SOIREE tracers with the statistical model, accounting for heterogeneity. In
panels A and B are represented iron and phytoplankton concentrations means and variances, respectively.
Iron-phytoplankton covariance and correlation, defined in (7.3), and covariances derivative terms of equation
(5.22) are depicted in panels C and D. Mean derivative terms for iron and phytoplankton of (5.20) are present
in panels E and F, as well as variance derivative terms (5.21) in panels G and H. See text for a complete
analysis. In panel C, note that the left y-axis is for covariance, while the right y-axis is for correlation.
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Figure 7.4: Simulation of the SOIREE tracers with the statistical model, accounting for heterogeneity. In
panel A is represented mean pCO2 anomaly, that is compared with SWAMCO model prediction on available
data. Only the bottom part of the gray points is related to the anomaly inside the patch, while the upper
regards measurements made in the surrounding. Panels C, E and G depict, respectively, ∆p variance, iron-
∆p covariance-correlation and phytoplankton-∆p covariance-correlation. On the right, all the derivative terms
present in the full model equations (5.20), (5.21), (5.22) are shown in panels B, D, F and H. In panels E and
G, note that the left y-axis is for covariance, while the right y-axis is for correlation. See text for complete
analysis.

52



7.3. SIMULATION RESULTS

Figure 7.5: Simulation of the SOIREE tracers within the statistical model, in the simplified homogeneous case.
In panel A is represented iron and phytoplankton concentrations means, while in panel B the mean pCO2

anomaly, that is compared with SWAMCO model prediction on available data. Only the bottom part of the
gray points is related to the anomaly inside the patch, while the upper regards measurements made in the
surrounding. Mean derivative terms for N , P and ∆p are depicted, respectively, in panels C, D and E. See
text for complete analysis.
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Chapter 8

Eddies in the Southern Ocean

Mesoscale eddies are coherent vortices with a rotational core, usually have a long life cycle of weeks
or months and transport heat, salt, and other passive tracers over long distances [34]. They exist
ubiquitously in the global ocean and can influence biogeochemical cycling through horizontal and
vertical transport of water masses with different physical and biogeochemical characteristics [22].
Recent satellite observations have revealed that the world ocean surfaces are mostly occupied by
oceanic mesoscale eddies and, in the Southern Ocean, eddy activity is particularly high [8].

The presence of mesoscale eddies at a given spatial scale can allow the formation of some mechanism of
physical-biological interaction. First of all, eddy stirring, driven by turbulent advection, can promote
high levels of heterogeneity and patchiness in nutrients and microorganisms concentrations in a given
region of the ocean. Secondly, non-linear eddies can trap some fluid within their interiors, maintaining
distinct physical, chemical, and biological properties over long periods [23]. These factors suggest that
a Lagrangian description for this kind of systems is suitable.

We know also that cyclonic and anticyclonic eddies induce nutrient uplift and downwelling, depending
on the eddy’s developmental stage. This process can alter nutrient availability in the euphotic zone,
influencing biological uptake of the present phytoplankton [23].

The objective is then to propose a first Lagrangian description for a mesoscale eddy, in which upwelling
of nutrients is modelled by vertical dilution. Obtained results are still quite partial, since additional
work is needed to characterize eddies specificities.

8.1 Non-rigid rotation effects

Let’s consider a mesoscale eddy of horizontal elliptic shape of width 2W (t) and length 2L(t). We can
assume that the water patch of interest is given by the resulting ellipsoid, obtained by accounting the
whole mixed layer of depth 2T (t). The Lagrangian frame of reference is situated at the center of this
ellipsoid and translates with it, absorbing the advection component of the global velocity field in that
region. Local modification of the eddy-patch shape can be modeled through the following velocity
field, that is an extension of (3.3) accounting for non-rigid body rotation

vx(x, t) =

(
−γ(t) +

δ(t)

2

)
x+

Ay

L2(t)
exp

[
− x2

2W 2(t)
− y2

2L2(t)

]

vy(x, t) =

(
+γ(t) +

δ(t)

2

)
y − Ax

W 2(t)
exp

[
− x2

2W 2(t)
− y2

2L2(t)

]
vz(x, t) = −δ(t)z

(8.1)

55



CHAPTER 8. EDDIES IN THE SOUTHERN OCEAN

Figure 8.1: Phytoplankton bloom in the Tasman Sea captured by the NASA Moderate Resolution Imaging
Spectroradiometer (MODIS) instrument on the Aqua satellite on 21 November 2017. Credit: NASA/Ocean
Biology Processing Group, Goddard Space Flight Center.

This is, in fact, a composition between a 3D stagnation point flow, already mentioned in Section 3.3,
and an eddy-like elliptical rotational flow [34]. Let’s analyze the additive rotational terms. For A > 0
we expect a clock-wise rotation, while for A < 0 the spin is opposite. The intensity of the revolution
speed has maximum value in the ellipse of semi-axes W (t) and L(t), but then decays by moving away
to the center in a Gaussian manner. In its entirety, local velocity field is divergenceless, satisfying
again fluid incompressibility (∇ · v = 0).

It would be interesting, now, to employ the same formalism of Section 3.5 in order to measure the
effect of the non-rigid body rotation on patch characteristic sizes W (t), L(t) and T (t). Integrating
the advection-diffusion equation (3.6) with local velocity field (8.1) one gets the following moments
equations for the water patch distribution θ(x, t)

dMx
0 (t)

dt
=
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−γ(t) +

δ(t)

2

)
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∫ +∞
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in which integral terms are contributions coming from the rotational flow. Essentially, we found that
non-rigid rotation can have an effect on the way patch shape modifies, and its evaluation depends on
the specific formulation of those integrals. Their expressions are in general not so simple to manipulate
as were (3.10) and (3.11), given the presence of θ derivate with respect to an axis that is not the one
of integration. We need, then, to understand in which cases non-rigid rotation contribution can be
neglected and what approximations are required.

8.2 Radial symmetry assumption

Let’s now make the assumption of starting with a circular water patch (W (0) = L(0)) and that stirring
is negligible (coherent eddy, γ(t) = 0). In this case, radial symmetry will be conserved among all the
evolution in time, letting at most the circle to grow in radius R(t) = W (t) = L(t) (Fig. 8.2). This is
reflected also in the local velocity field, that becomes easily understandable in cylindrical coordinates

vr(r, φ, z, t) =
δ(t)

2
r

vφ(r, φ, z, t) =
Ar

R2(t)
exp

[
− r2

2R2(t)

]
vz(r, φ, z, t) = −δ(t)z

(8.4)

Divergence δ(t) acts in radial direction, while the rotational flow becomes a fully angular component
of the velocity. This suggests that, if θ has radial symmetry (∂θ/∂φ = 0), the advective term in
cylindrical coordinates, that is

vr
∂θ

∂r
+ vφ

1

r

∂θ

∂φ
+ vz

∂θ

∂z
(8.5)

does not depend anymore on the expression of vφ, which contains the rotational component. In other
words, the advection-diffusion equation in cylindrical coordinates does not have any rotational term
if the water patch distribution displays radial symmetry at any time t.

This request can be translated in cartesian coordinates, imposing ∂θ/∂y|y,z=0 = 0 and ∂θ/∂x|x,z=0 = 0
for any time t. These are the conditions that allow, indeed, to discard the integral terms of (8.2) and
(8.3), making them equal to (3.10) and (3.11). Changes in W (t), L(t) and T (t) will then be regulated
by the same laws found in Section 3.5, but with γ(t) = 0.

8.3 Eddy simulation

We want to simulate the behavior of nutrient, phytoplankton and pCO2 inside a mesoscale eddy,
subject to an upwelling regime. The assumption is that radial symmetry is conserved during the
whole eddy lifetime, considered to be around 45 days. In this specific case, non-rigid rotation doesn’t
enter in the equations of the moments (8.2), (8.3) and so there’s no need to specify rotation intensity
A. We fix the origin of the Lagrangian frame of reference at the central point of the eddy, which will
translate in space with the trajectory X(t). Then, radial symmetry makes the choice of a specific
orientation of the x and y axes on the horizontal plane arbitrary, so we are free to choose a given
static direction.
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Figure 8.2: Mesoscale eddy local velocity field, projected on the x-y plane, in the special case of radial symmetry.
The radial component is given by the divergence, while the angular component is the rotational flow.

Imaging that the planktonic ecosystem we aim to describe belongs to the Southern Ocean, and so
is iron limited, we can exploit again information from [1], [13], [21], [25], [19], [11] to define realistic
parameters and concentrations in the system (see Tables 8.1, 8.2). In particular, the horizontal
diffusivity κh was kept relatively small to preserve eddy coherence [15]. Contrary to the SOIREE
experiment, initially the patch is not fertilized, so distribution means are set equal to the horizontal
surrounding. We suppose also that the eddy extends vertically until the water surface, and so only
downward vertical expansion can occur. This can be modelled just redefining equations (4.15), (4.17)
and (4.19) in a way that above increase of volume is fully redirected to the one below.

parameter value unit of measure

γ0 0 day−1

δ0 1 · 10−4 day−1

κh0 5.0 km2 · day−1

κv0 2.1 · 10−5 km2 · day−1

ν 1.1 day−1

k 1.73 (µmol Fe) ·m−3

m 0.05 day−1

ϕ 1.64 µatm · kg · (µmol C)−1

Ko 0.06 (µmol C) · kg−1 · µatm−1

Kg 17.28 m · day−1

h 65 m
ρ 1027 kg ·m−3

B 10 #
RCT :Fe 6 · 104 (µmol C) · (µmol Fe)−1

Table 8.1: Set of parameters used to simulate the mesoscale eddy.
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variable value unit of measure

W (0) 60 km
L(0) 60 km
T (0) 30 m
⟨N⟩pat(0) 0.08 (µmol Fe) ·m−3

⟨P ⟩pat(0) 0.0249 (µmol Fe) ·m−3

⟨∆p⟩pat(0) 0 µatm
⟨Nh⟩suh(0) 0.08 (µmol Fe) ·m−3

⟨P h⟩suh(0) 0.0249 (µmol Fe) ·m−3

⟨∆ph⟩suh(0) 0 µatm
⟨N b⟩sub(0) 0.30 (µmol Fe) ·m−3

⟨P b⟩sub(0) 0 (µmol Fe) ·m−3

⟨∆pb⟩sub(0) 0 µatm

Table 8.2: Initial environmental conditions used to simulate the mesoscale eddy. Internal and external variances
and covariances are initially set to zero and are not reported for compactness.

The action of divergence and horizontal diffusion brings to a slight increase of the patch radius,
reaching about 72 km on the last day (Fig. 8.3A). Upwelling, determined by vertical diffusivity and
divergence, provokes a sensible change in the patch thickness, rising from 30 to 50 m (Fig. 8.3B). In
its entirety, the total volume grows by a factor of 2, mainly due to vertical intrusion of water from
below (Fig. 8.3C, 8.3D). Initially, in fact, vertical entrainment is approximately the double of the
horizontal one, although then it drops to a similar rate.

Initial iron concentration inside the patch is risen by intrusion of nutrient-rich surrounding water, but
then, after around 20 days, is limited by the meanwhile increase of phytoplankton population, which
consume it. At the last day of the simulation, we end up with the same starting iron concentration,
but also with the double of phytoplanktonic organisms present (Fig. 8.4A, 8.4E, 8.4F).

Variances of iron and phytoplankton peak correspondingly to their means maxima (Fig. 8.4B). The
main contribution to this is given by vertical entrainment and biological uptake, working in an opposite
way for iron with respect to phytoplankton (Fig. 8.4G, 8.4H). This description remains coherent to
what we found simulating SOIREE.

During the eddy life cycle, phytoplankton population is still in the growth phase, and this stimulates
iron-phytoplankton correlation to remain positive (Fig. 8.4C). The respective covariance is mainly fed
by biological consumption, while this time entrainment acts with an opposite effect (Fig. 8.4D).

The predicted pCO2 anomaly amounts to about 6 µatm, even if the distribution is again heterogeneous
in space. As usual, entrainment and air-sea flux counterbalance the carbon consumption, both in the
dynamics of the means and the variances (Fig. 8.5A, 8.5B, 8.5C, 8.5D).

Finally, correlations of N and P with ∆p are depicted in Figures 8.5E and 8.5G. The first one stays
negative but not so distant to zero, meaning that the correlation is not so strong. This can be related
to the delay between iron and phytoplankton maxima. The second one remains instead very negative
and robust, but that’s expected since phytoplankton growth implies carbon uptake.

In summary, results of the simulation show that the upwelling of nutrients inside a mesoscale eddy in
the Southern Ocean can cause a doubling of the phytoplanktonic organisms, at least for the time scales
considered. The subsequent unraveling of the eddy shape due to the strain could then, hypothetically,
disperse the produced biomass into the surrounding ocean.
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Figure 8.3: Simulation of the eddy water patch evolution, starting from a circular water patch with radius of
60 km and thickness of 30 m. Predicted and measured width and length of the patch are depicted in panel
A, thickening process in panel B, while total volume increase in panel C. Horizontal and vertical entrainment
rates, obtained from relative volume changes, are represented in panel D.
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8.3. EDDY SIMULATION

Figure 8.4: Simulation of the eddy tracers with the statistical model, accounting for heterogeneity. In panels
A and B are represented iron and phytoplankton concentrations means and variances, respectively. Iron-
phytoplankton covariance and correlation, defined in (7.3), and covariances derivative terms of equation (5.22)
are depicted in panels C and D. Mean derivative terms for iron and phytoplankton of (5.20) are present in
panels E and F, as well as variance derivative terms (5.21) in panels G and H. See text for a complete analysis.
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Figure 8.5: Simulation of the eddy tracers with the statistical model, accounting for heterogeneity. In panel
A is represented mean pCO2 anomaly, while in panels C, E and G are depicted, respectively, ∆p variance,
iron-∆p covariance-correlation and phytoplankton-∆p covariance-correlation. On the right, all the derivative
terms present in the full model equations (5.20), (5.21), (5.22) are shown in panels B, D, F and H. See text
for complete analysis.
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Chapter 9

Conclusions and Future Works

In this work, we proposed a theory to describe plankton ecosystems in the ocean that is linked to
Lagrangian description of fluid flows. Starting from the biological interaction between phytoplankton
and a generic limiting nutrient inside a delimited water parcel, we implemented a simple homogeneous
model taking into account the entrainment of external water with different concentrations of the
elements. We then focused on the description of a water patch using a Lagrangian approach, showing
that the main sources of deformation are straining, divergence and diffusion. The rate of increase in
volume gives hence a measure of the entrainment from outside. In order to describe how a set of tracers
linked to the patch evolves in time, we defined a general master equation, accounting for entrainment,
mixing and interactions. We exploited mathematical tools like Reynolds decomposition and closure
methods to simplify the model, focusing on the characterization of means, variances and covariance
of the tracer distributions. This was a crucial point since heterogeneity has been maintained, at least
at the first order, without involving complex PDEs in the description. At this point, we applied the
statistical formalism that we presented to the initial simple schema, adding the contribution of the
carbon in terms of CO2 partial pressure anomaly. We used this approach to mimic the results of the
SOIREE fertilization experiment, obtaining good accuracy in replicating the trend of pCO2 anomaly
during the initial phase. Finally, we explored the possibility of applying this general Lagrangian
ecosystem description to model more complex three-dimensional entities like mesoscale eddies in the
ocean, obtaining a meaningful prediction of tracers’ behavior.

Some aspects of this presented work can be further explored, such as stability of the heterogeneous
N-P system from a dynamical system perspective. Some ongoing research has also to clarify the
effect of turbulent mixing on tracers’ moments decay, and what are the time scales involved in these
phenomena. Related to the SOIREE experiment simulation, the temperature contribution could be
considered once collected from continuous measurements along the 42 days, which was not possible
due to the lack of official data. In the analysis of mesoscale eddies, we also restricted ourselves to a
simple case in which non-rigid rotation is neglected, but this obviously discards important properties
of the flow.

An advantage of the proposed Lagrangian model for oceanic ecosystems is that it’s very versatile,
and can be used in a plenty of different contexts. The generic identity of the tracers involved in the
theoretical framework allows considering, for example, injections of any kind of drifting substances,
like, for instance, pollutants’. Biogeochemical description can also be enriched by considering a higher
number of phytoplanktonic or zooplanktonic consumers, together with multiple limiting nutrients.
This would get insights on how patchiness can really drive the spatial correlations between diverse
resources and organisms. Even community ecology approaches would benefit of the Lagrangian rep-
resentation, with the possibility to identify dispersal processes with the entrainment of waters across
the patch boundaries.
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