
UNIVERSITÀ DI PADOVA FACOLTÀ DI INGEGNERIA

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE

TESI DI LAUREA

NETWORK CODING AWARE QUEUE

MANAGEMENT IN MULTI-RATE

WIRELESS NETWORKS

RELATORE: Ch.mo Prof. Michele Zorzi

CORRELATORE: Ch.mo Prof. Srikanth V. Krishnamurthy

LAUREANDO: Nicola De Coppi

Padova, October 24th 2011

ii

Contents

1 Introduction 5

1.1 Motivation . 6

1.2 Proposed solution . 6

2 Network Coding 9

2.1 Introduction . 9

2.1.1 Multicast vs Unicast . 9

2.1.2 Examples . 10

2.2 XORs in the Air - COPE . 12

2.2.1 Overview . 12

2.2.2 Coding Gain . 13

2.2.3 Coding+MAC Gain . 14

2.2.4 COPE’s Architecture . 14

2.2.5 Experiments and Results . 17

2.3 Rate Control in Network Coding . 18

2.3.1 Rate Control . 19

2.3.2 ACKer selection . 20

2.3.3 Throughput analysis . 20

2.3.4 Proposed approach . 22

2.3.5 Experiments and Results . 23

3 IEEE 802.11 Wireless Networks 25

3.1 Wireless Channel Access Protocols . 26

3.2 IEEE 802.11 . 27

3.2.1 Protocol Description - DCF . 28

3.2.2 Analytical Evaluation of the Saturation Throughput 31

iii

INDEX

3.3 Multi-Rate . 35

3.3.1 Rate Adaptation . 35

3.3.2 Performance Anomaly . 36

4 Wireless Channel Model 39

4.1 Introduction . 39

4.1.1 Signal Propagation . 40

4.2 Channel models . 41

4.2.1 Free-Space Path Loss . 41

4.2.2 Two Ray Path Loss . 42

4.3 Noise and Interference Contribution . 44

4.3.1 SNR and SINR . 44

4.4 Channel model in NS 2 . 44

4.4.1 An improved NS 2 channel model 45

4.4.2 Transmission Range, Interference Range and Carrier Sense Range 45

5 Problem Analysis and Proposed Algorithm. 49

5.1 Five nodes topology . 49

5.1.1 Modeling channel access with different PHY Rates 51

5.1.2 Simulations to test the model . 56

5.2 Rate Adaptation on top of COPE . 62

5.2.1 Tuning the MAXPER . 62

5.3 Queue Management . 63

5.3.1 Packet queues in COPE . 64

5.3.2 Parameters considered in the Algorithm 65

5.3.3 How links with different PER reflect on the virtual queues 66

5.3.4 Proposed Algorithm . 67

6 Simulations with NS 2 71

6.1 Introduction to NS 2 . 71

6.1.1 Implementation of IEEE MAC 802.11 on NS 2 72

6.2 Implementation of COPE on NS 2 . 73

6.2.1 Architecture . 74

6.2.2 Packet processing . 76

6.3 Simulation Results . 77

iv

7 Conclusion 85

Bibliography 87

1

INDEX

2

Abstract

This thesis presents a queue management algorithm to improve Network Coding in a

Multi Rate wireless scenario. Network Coding is a technique that allows to increase

the network capacity. It has been proposed as an alternative to the store and for-

ward paradigm. Network Coding aims to reduce the number of transmissions when the

network is congested. Recently some papers have presented a rate control adaptation

for network coding. They show that changing the transmission rate can improve the

performance of network coding.

In this thesis we focus on network coding for unicast flows, in particular we take into

consideration the COPE architecture. We study what happens when two nodes trans-

mit with different rates and we propose a Markov chain to model this scenario. Further-

more, we propose a queue management algorithm to increase the coding opportunity

and the throughput of the network. In COPE, a node codes two or more packets to-

gether when packets are headed to different nexthops. When there are just packets for

the same nexthop, a node loses a coding opportunity. The queue management algo-

rithm increases the coding opportunity prioritizing the channel access of sender nodes

based on the queue information and on PER of the links. We simulate this algorithm

on top of COPE in a multi rate scenario with NS 2 and we show that our algorithm

yields throughput gains of up to 57% compared to COPE.

3

INDEX

4

Chapter 1

Introduction

This thesis has been developed during the exchange program at the University of Cal-

ifornia, Riverside. During this period abroad, I had the opportunity to work in the

Networking Lab under the supervision of Prof. Srikanth V. Krishnamurthy.

Wireless networks are every year more popular and indispensable. They provide

connectivity for different types of devices: from laptops to sensors, from smartphones to

tablets. However the wireless channel puts fundamental limitations to the performance

of devices due to errors and collisions.

Several solutions have been proposed to mitigate the problem related to wireless chan-

nels and consequently to improve the throughput: one of these is Network Coding.

The fundamental idea of Network Coding is to reduce the number of wireless transmis-

sions coding together different packets. In contrast to the traditional store and forward

paradigm, Network Coding uses a store, code and forward approach.

Network Coding has been applied to both multicast and unicast traffic. In this thesis

we focus on unicast traffic, in particular we base our analysis and simulations on COPE

[2]. This architecture for wireless mesh-networks has shown that it can improve the

throughput in the presence of dense networks and bursty flows. Recently, rate adapta-

tion algorithms have been proposed [3] and [4] on top of COPE architecture to increase

further the capacity of wireless networks.

In this thesis we propose a queue management algorithm to increase the probability of

coding packets in a multi-rate wireless network.

5

1. INTRODUCTION

1.1 Motivation

In COPE, a node codes together just packets for different nexthops. When a node has

packets with different nexthops, it computes the probability that receiver nodes can

decode the coded packet. If the probability is greater that a certain threshold, it XORs

native packets and it sends the coded packet on the wireless channel.

However, when a station has packets just for the same nexthop, it sends the native

packet and it loses the coding opportunity. Each node keeps a virtual queue for packets

with the same nexthop. Since the Packet Delivery Ratio (PDR) can be different for

each wireless link, virtual queues can have different length. To have virtual queues

unbalanced can increase the probability that one of these becomes empty and the node

loses the coding opportunity.

Furthermore the physical access CSMA/CA is fair with nodes in the same Carrier

Sense range. This solution may not be optimal in the presence of heavy traffic. Let’s

consider three stationary nodes Alice, Bob and Jack. Alice and Bob send packets to

the relay node Jack and Jack forwards these packets to other nodes. Each node has the

same probability to access the channel. Since the input traffic for node Jack is double

of its output capacity, it starts accumulating packet in the queue. If we suppose that

Jack uses Network Coding, it drains the packets queue faster. However, every time

that Jack loses a coding opportunity, it reduces its speed draining and it accumulates

packets in the queue.

Therefore, our scope is to increase the coding opportunity and we do it prioritizing the

channel access based on the queue information at the node that does the coding.

1.2 Proposed solution

One solution could be to use a perfect scheduling. The node, which codes packets

together, sends the information on when to transmit to other nodes. However, this node

cannot know if other nodes have packets to transmit, thus using a perfect scheduling

is not a good solution.

For the same reason, also delaying packets is not a good solution, indeed COPE designs

the coding scheme with a principle of never delaying packets.

From these considerations, we propose to change the probability of accessing the channel

tuning the Contention Window (CW) at the MAC layer. Based on how many packets

are in the virtual queues, the relay node sends to neighbor nodes the initial value

6

of CWmin with the goal of balancing its virtual queues. Other queue management

algorithms have been proposed at top of Network Coding, however no one proposes to

change the probability of accessing the channel.

Furthermore, we propose the algorithm in a multi-rate wireless network, considering

that each node can transmit with a different rate. We analyze when two nodes transmit

with different rates and we present a Markov chain to model this behavior.

The thesis is organized in six chapters and we present topics with a top down approach.

We first introduce Network Coding and previous studies on it in Chapter 2. We present

basic information on IEEE 802.11 in Chapter 3 and fundamental analysis on wireless

channel in Chapter 4. Our innovative contributions to Network Coding are presented

in Chapters 5, 6 and 7. We first introduce the problem analysis and the model with

Markov chain and the proposed algorithm in Chapter 5. This is followed by evaluation

of our algorithm through simulation with NS 2 and the conclusions respectively in

Chapters 6 and 7.

7

1. INTRODUCTION

8

Chapter 2

Network Coding

Network Coding is a technique that allows reducing the number of transmissions mixing

data packets at intermediate nodes.

2.1 Introduction

Network Coding is used in wireless networks where the wireless channel is shared be-

tween several stations. This allows nodes to overhear packets that are not direct to

them and it creates the opportunity for the coding process.

Basically, intermediate nodes code together two or more data packets whenever there

are the conditions that the receiver nodes can decode the coded packet. Reducing the

number of transmissions increases the capacity of a wireless network.

2.1.1 Multicast vs Unicast

Most of the network coding papers in the literature are related to multicast traffic.

Network Coding has been introduced for the first time by Ahlswelde et al. [5]. He

showed that routers can achieve multicast capacity mixing information in different

messages. This paper was followed by Li et al. [7] who showed that linear codes

achieve the maximum capacity bound. Li proposes the linear network coding where

the output flow of a given node is obtained as a linear combination of its input flows.

However this approach needs a centralized knowledge about the network topology.

Koetter and Medard [9] propose random network coding where the linear coding is

9

2. NETWORK CODING

substituted with a polynomial algorithm for encoding and decoding.

Chou et al. [8] proposes a distributed scheme for pratical network coding which does

not need a centralized knowledge of the network. Furthermore, this solution is robust

to random packet loss and delay.

Katti et al. [2] were the first to show how to apply network coding to unicast traffic.

They proposed COPE as a distributed scheme where each station is in promiscuous

mode. Each station stores the overheard packets for a short time T and it needs to

know which packets its neighbors have to perform the coding. This information can

be sent in periodic reception reports or it can be estimated from the routing protocol

that uses ETX/ETT metric. Furthermore, Katti shows how network coding can be

integrated in the current network stack.

In this thesis we focus on unicast traffic considering COPE’s architecture.

2.1.2 Examples

We first consider three nodes Alice, Bob and Jack as in Figure 2.1. Alice wants to

communicate with Bob and Bob with Alice. They are not in the transmission range

and they use Jack to forward packets.

Alice
Bob

Jack

1 2

3
Alice

Bob

Jack

1 2

34

(a) Current Approach

(b) Network Coding - COPE

Figure 2.1: Current Approach

In current approaches, Alice first sends her packet to Jack, then Bob sends his

packet to Jack. Jack forwards Alice’s packet to Bob (third transmission) and Bob’s

packet to Alice (fourth transmission). All this process requires four transmissions.Alice
Bob

Jack

1 2

3
Alice

Bob

Jack

1 2

34

(a) Current Approach

(b) Network Coding - COPE

Figure 2.2: Network Coding - COPE

10

2.2 INTRODUCTION

Using Network Coding (Figure 2.2), Jack transmits only one packet which is the

bitwise sum of the packets from A and from B. Therefore the number of transmissions

is reduced from four to three.

Five nodes topology

Let’s consider an example that we will use again in this thesis. We consider a five

nodes topology as in Figure 2.3. In this network there are five nodes Alice, Bob, Chloe,

Alice
Bob

Jack

Chloe Dave

a⊕b

a b

Figure 2.3: Example five nodes using network coding

Dave and Jack and there two flows from Alice to Dave and from Bob to Chloe. As in

the first example, Jack is the relay node and it is responsible to forward packets. We

consider that network coding is used and Jack sends the XOR packet (a ⊕ b) of those

from Alice (a) and Bob (b).

Using network coding the number of transmissions is reduced from four to three. How-

ever, in this example, to decode successfully the XOR packet, stations Chloe and Dave

have to overhear correctly respectively packet a and b.

Radio channel condition and the transmission rate of the stations Alice and Bob af-

fect the overhearing property. If a receiver node cannot overhear the packet from the

sender, it will not be able to decode the XOR packet from Jack and the native packet

will be retransmitted.

In the next section we will see how COPE works. In the third section of this chapter,

we consider a rate adaptation algorithm to improve the performance of the network, in

particular we present Kim’s paper [3].

11

2. NETWORK CODING

2.2 XORs in the Air - COPE

Katti et al. [2] proposes COPE, a new forwarding architecture for wireless mesh net-

works. COPE inserts a new coding layer between the IP and MAC layer.

Katti shows that this architecture can improve the capacity of wireless networks con-

sidering unicast traffic, dynamic and potential bursty flows.

COPE identifies coding opportunities and it codes multiple packets together in a single

packet. It works with both TCP and UDP flows.

The throughput of a wireless network with COPE can be 3-4 times greater than the

same network without coding. Especially without congestion control (e.g. UDP) COPE

reduces the probability that a congested router drops packets and this involves a better

performance for the network.

2.2.1 Overview

COPE is based on three main techniques:

Opportunistic Listening: Each station is in promiscuous mode and it stores

the overheard packets for a short time T (the default time is T = 0.5s). In addition,

each node broadcasts reception reports to inform its neighbors of the packets it has

stored. When a node has a packet to transmit, it includes the list of stored packets. If

it has no packet to transmit, it sends the list in a special control packet.

Opportunistic Coding: What packets should a node code together to maximize

throughput? The idea is that each node codes together as many packets as possible

considering the decoding probability of the receiver nodes. When a receiver node de-

code the packet, it extracts its native packet. If it is not able to decode the packet, the

native packet will be retransmitted.

The coding algorithm is based on the following rules:

To transmit n packets, p1, ..., pn, to n nexthops, r1, .., rn a node can XOR n packets

only if each next-hop ri has all n-1 packets pj for j 6= i.

Learning Neighbor State: A node learns what packets its neighbors have from

the reception reports. However, if this information is not available, the station needs

12

2.2 XORS IN THE AIR - COPE

to guess whether a neighbor has a particular packet.

The wireless routing protocol computes the delivery probability between every pair of

nodes and uses it to identify good paths (e.g. ETX/ETT). Similarly COPE uses the

delivery probability to know if a packet has been received correctly. When a node

makes an incorrect guess, the native packet is retransmitted.

2.2.2 Coding Gain

A really important concept in network coding is the Coding Gain.

The Coding Gain is defined as:

Gcoding =
of transmissions

of transmissions with COPE
. (2.1)

The numerator counts the number of transmissions required without COPE, the de-

nominator counts the minimum number of transmissions used by COPE to deliver the

same amount of native packets.

Let’s compute the Coding Gain for some wireless topologies presented in Figure 2.4.

In the cross topology of Figure 2.4 (b), there are two flows of packets intersecting at

n0 n1 n2 nN-1 nN

(a) Chain topology; 2 flows in reverse directions.

(b) “X” topology (c) Cross topology
2 flows intersecting at n2. 4 flows intersecting at n2

(d) Wheel topology; many flows intersecting at the center node.

Figure 4—Simple topologies to understand COPE’s Coding and Cod-
ing+MAC Gains.

number of transmissions used by COPE to deliver the same set of
packets. By definition, this number is greater than or equal to 1.

In the Alice-and-Bob experiment, as described in §1, COPE re-
duces the number of transmissions from 4 to 3, thus producing a
coding gain of 4

3 = 1.33.
But what is the maximum achievable coding gain, i.e., what is

the theoretical capacity of a wireless network that employs COPE?
The capacity of general network coding for unicast traffic is still
an open question for arbitrary graphs [38, 16]. However, we ana-
lyze certain basic topologies that reveal some of the factors affecting
COPE’s coding gain. Our analysis assumes identical nodes, omni-
directional radios, perfect hearing within some radius, and the signal
is not heard at all outside this radius, and if a pair of nodes can hear
each other the routing will pick the direct link. Additionally, we
assume that the flows are infinite and we only consider the steady
state.

THEOREM 4.1. In the absence of opportunistic listening,
COPE’s maximum coding gain is 2, and it is achievable.

We prove the theorem by showing that the coding gain of the chain
in Fig. 4(a) tends to 2 as the number of intermediate nodes increases.
The complete proof is in Appendix A.

While we do not know the maximum gain for COPE with op-
portunistic listening, there do exist topologies where opportunistic
listening adds to the power of COPE. For example, consider the
“X”-topology shown in Fig. 4(b). This is the analogy of the Alice-
and-Bob topology, but the two flows travel along link-disjoint paths.
COPE without opportunistic listening cannot achieve any gains on

this topology. But with opportunistic listening and guessing, the
middle node can combine packets traversing in opposite directions,
for a coding gain of 4

3 = 1.33. This result is important, because
in a real wireless network, there might be only a small number of
flows traversing the reverse path of each other à la Alice-and-Bob,
but one would expect many flows to intersect at a relay, and thus can
be coded together using opportunistic listening and guessing.

The “X” and Alice-and-Bob examples can be combined to further
improve the benefits of coding, as in the cross topology of Fig. 4(c).
Without coding, 8 transmissions are necessary for each flow to send
one packet to its destination. However, assuming perfect overhear-
ing (n4 and n5 can overhear n1 and n3, and vice versa), n2 can XOR
4 packets in each transmission, thus reducing the number of trans-
missions from 8 to 5, producing a coding gain of 8

5 = 1.6.
We observe that while this section has focused on theoretical

bounds, the gains in practice tend to be lower due to the availability
of coding opportunities, packet header overheads, medium losses,
etc. However, it is important to note that COPE increases the actual
information rate of the medium far above the bit rate, and hence its
benefits are sustained even when the medium is fully utilized. This
contrasts with other approaches to improving wireless throughput,
such as opportunistic routing [6], which utilize the medium better
when it is not fully congested, but do not increase its capacity.

4.2 Coding+MAC Gain
When we ran experiments with COPE, we were surprised to see

that the throughput improvement sometimes greatly exceeded the
coding gain for the corresponding topology. It turns out that the
interaction between coding and the MAC produces a beneficial side
effect that we call the Coding+MAC gain.

The Coding+MAC gain is best explained using the Alice-and-Bob
scenario. Because it tries to be fair, the MAC divides the bandwidth
equally between the 3 contending nodes: Alice, Bob, and the router.
Without coding, however, the router needs to transmit twice as many
packets as Alice or Bob. The mismatch between the traffic the router
receives from the edge nodes and its MAC-allocated draining rate
makes the router a bottleneck; half the packets transmitted by the
edge nodes are dropped at the router’s queue. COPE allows the bot-
tleneck router to XOR pairs of packets and drain them twice as fast,
doubling the throughput of this network. Thus, the Coding+MAC
gain of the Alice-and-Bob topology is 2.

The Coding+MAC gain assumes all nodes continuously have
some traffic to send (i.e., backlogged), but are limited by their MAC-
allocated bandwidth. It computes the throughput gain with COPE
under such conditions. For topologies with a single bottleneck,
like the Alice-and-Bob’s, the Coding+MAC gain is the ratio of the
bottleneck’s draining rate with COPE to its draining rate without
COPE.

Similarly, for the “X” and cross topologies, the Coding+MAC
gain is higher than the coding gain. For the “X”, the Coding+MAC
gain is 2 since the bottleneck node is able to drain twice as many
packets, given its MAC allocated rate. For the cross topology, the
Coding+MAC gain is even higher at 4. The bottleneck is able to
send 4 packets out in each transmission, hence it is able to drain
four times as many packets compared to no coding. This begs the
question: what is the maximum Coding+MAC gain? The maxi-
mum possible Coding+MAC gains with and without opportunistic
listening are properties of the topology and the flows that exist in
a network. Here we prove some upper bounds on Coding+MAC
gains.

THEOREM 4.2. In the absence of opportunistic listening,
COPE’s maximum Coding+MAC gain is 2, and it is achievable.

n0 n1 n2 nN-1 nN

(a) Chain topology; 2 flows in reverse directions.

(b) “X” topology (c) Cross topology
2 flows intersecting at n2. 4 flows intersecting at n2

(d) Wheel topology; many flows intersecting at the center node.

Figure 4—Simple topologies to understand COPE’s Coding and Cod-
ing+MAC Gains.

number of transmissions used by COPE to deliver the same set of
packets. By definition, this number is greater than or equal to 1.

In the Alice-and-Bob experiment, as described in §1, COPE re-
duces the number of transmissions from 4 to 3, thus producing a
coding gain of 4

3 = 1.33.
But what is the maximum achievable coding gain, i.e., what is

the theoretical capacity of a wireless network that employs COPE?
The capacity of general network coding for unicast traffic is still
an open question for arbitrary graphs [38, 16]. However, we ana-
lyze certain basic topologies that reveal some of the factors affecting
COPE’s coding gain. Our analysis assumes identical nodes, omni-
directional radios, perfect hearing within some radius, and the signal
is not heard at all outside this radius, and if a pair of nodes can hear
each other the routing will pick the direct link. Additionally, we
assume that the flows are infinite and we only consider the steady
state.

THEOREM 4.1. In the absence of opportunistic listening,
COPE’s maximum coding gain is 2, and it is achievable.

We prove the theorem by showing that the coding gain of the chain
in Fig. 4(a) tends to 2 as the number of intermediate nodes increases.
The complete proof is in Appendix A.

While we do not know the maximum gain for COPE with op-
portunistic listening, there do exist topologies where opportunistic
listening adds to the power of COPE. For example, consider the
“X”-topology shown in Fig. 4(b). This is the analogy of the Alice-
and-Bob topology, but the two flows travel along link-disjoint paths.
COPE without opportunistic listening cannot achieve any gains on

this topology. But with opportunistic listening and guessing, the
middle node can combine packets traversing in opposite directions,
for a coding gain of 4

3 = 1.33. This result is important, because
in a real wireless network, there might be only a small number of
flows traversing the reverse path of each other à la Alice-and-Bob,
but one would expect many flows to intersect at a relay, and thus can
be coded together using opportunistic listening and guessing.

The “X” and Alice-and-Bob examples can be combined to further
improve the benefits of coding, as in the cross topology of Fig. 4(c).
Without coding, 8 transmissions are necessary for each flow to send
one packet to its destination. However, assuming perfect overhear-
ing (n4 and n5 can overhear n1 and n3, and vice versa), n2 can XOR
4 packets in each transmission, thus reducing the number of trans-
missions from 8 to 5, producing a coding gain of 8

5 = 1.6.
We observe that while this section has focused on theoretical

bounds, the gains in practice tend to be lower due to the availability
of coding opportunities, packet header overheads, medium losses,
etc. However, it is important to note that COPE increases the actual
information rate of the medium far above the bit rate, and hence its
benefits are sustained even when the medium is fully utilized. This
contrasts with other approaches to improving wireless throughput,
such as opportunistic routing [6], which utilize the medium better
when it is not fully congested, but do not increase its capacity.

4.2 Coding+MAC Gain
When we ran experiments with COPE, we were surprised to see

that the throughput improvement sometimes greatly exceeded the
coding gain for the corresponding topology. It turns out that the
interaction between coding and the MAC produces a beneficial side
effect that we call the Coding+MAC gain.

The Coding+MAC gain is best explained using the Alice-and-Bob
scenario. Because it tries to be fair, the MAC divides the bandwidth
equally between the 3 contending nodes: Alice, Bob, and the router.
Without coding, however, the router needs to transmit twice as many
packets as Alice or Bob. The mismatch between the traffic the router
receives from the edge nodes and its MAC-allocated draining rate
makes the router a bottleneck; half the packets transmitted by the
edge nodes are dropped at the router’s queue. COPE allows the bot-
tleneck router to XOR pairs of packets and drain them twice as fast,
doubling the throughput of this network. Thus, the Coding+MAC
gain of the Alice-and-Bob topology is 2.

The Coding+MAC gain assumes all nodes continuously have
some traffic to send (i.e., backlogged), but are limited by their MAC-
allocated bandwidth. It computes the throughput gain with COPE
under such conditions. For topologies with a single bottleneck,
like the Alice-and-Bob’s, the Coding+MAC gain is the ratio of the
bottleneck’s draining rate with COPE to its draining rate without
COPE.

Similarly, for the “X” and cross topologies, the Coding+MAC
gain is higher than the coding gain. For the “X”, the Coding+MAC
gain is 2 since the bottleneck node is able to drain twice as many
packets, given its MAC allocated rate. For the cross topology, the
Coding+MAC gain is even higher at 4. The bottleneck is able to
send 4 packets out in each transmission, hence it is able to drain
four times as many packets compared to no coding. This begs the
question: what is the maximum Coding+MAC gain? The maxi-
mum possible Coding+MAC gains with and without opportunistic
listening are properties of the topology and the flows that exist in
a network. Here we prove some upper bounds on Coding+MAC
gains.

THEOREM 4.2. In the absence of opportunistic listening,
COPE’s maximum Coding+MAC gain is 2, and it is achievable.

Figure 2.4: Simple topologies present in a wireless network from [2]

node n3. This example is equal to that presented in Figure 2.2. We have seen that

using COPE the number of transmissions is reduced from 4 to 3, thus the Coding Gain

is Gcoding = 4
3 = 1.33.

13

2. NETWORK CODING

2.2.3 Coding+MAC Gain

COPE brings improvement also to the MAC layer, indeed if a node drains the queue

at MAC layer faster, it reduces the probability to drop packets.

When node n3 is not coding and nodes n1,n4 have continuously packets to transmit,

node n3 becomes a bottleneck of the network. Indeed the MAC protocol tries to be fair

and it divides the bandwidth between the 3 contending nodes: n1,n4 and n3. Node

n3 receives an average of two packets for each packet that it transmits and it starts

accumulating packets in the queue. COPE permits to drain the queue twice as fast

doubling the throughput of this network. Therefore considering also at MAC layer, the

Coding+MAC gain for “X” topology is equal to 2.

Let’s consider Figure 2.4 (c) , where each edge node is both a sender and a receiver.

There are 4 transmissions from sender nodes and these 4 packets can be coded together

and transmitted with a single transmission. The total number of transmissions using

COPE is 5 and the Coding Gain is 8
5 = 1.6. The MAC+Coding gain turns out to be

4, since node n2 can drain the queue four times faster.

In the Wheel topology of Figure 2.4 (c), the Coding+MAC gain increases depending

Toppology Coding Gain Coding+MAC Gain

Infinite Chain (a) 2 2

“X” (b) 1.33 2

Cross (c) 1.6 4

Infinite Wheel (d) 2 inf

Table 2.1: Gain for each topology presented in Figure 2.4

on the number of outer nodes. Let’s assume N outer nodes, the inner node codes N

packets together and it drains its queue N times faster than the same topology without

COPE. The Coding Gain and Coding+MAC Gain for each topology is reported in the

Table 2.1.

2.2.4 COPE’s Architecture

This section presents more details about COPE and how it is implemented in wireless

nodes. COPE inserts a coding layer between MAC and IP layers, see Figure 2.5. The

COPE header is made by three fields: Encoded, Reports and ACKs.

The Encoded field identifies native packets that form XOR packet. When a station

14

2.2 XORS IN THE AIR - COPE

Figure 5—COPE Header. The first block identifies the native pack-
ets XOR-ed and their nexthops. The second block contains reception
reports. Each report identifies a source, the last IP sequence number re-
ceived from that source, and a bit-map of most recent packets seen from
that source. The third block contains asynchronous acks. Each entry
identifies a neighbor, an end point for the ACK map, and a bit-map of
ack-ed packets.

 Encoded?

Can send

yes

no
Schedule
retransmissions

Add reception reports

To wireless device

Add acks to header

Dequeue head of
Output Queue

Encode if
possible

 Encoded?

Packet
arrival

yes
no

Decode and schedule acks

Extract acks meant for me
Update retransmission events

yes
no

Enqueue in
Output Queue

Deliver
to host

Extract Reception Reports
Update Neighbor’s State

 Am I nexthop?

 Decodable?

 Am I destination?

yes

yes

Add to Packet Pool

Add to Packet Pool

(a) Sender side (b) Receiver side

Figure 6—Flow chart for our COPE Implementation.

stream are immediately dispatched to the transport layer, after up-
dating the sequence number state. Otherwise, they are withheld in
the buffer till the gap in the sequence numbers is filled, or until a
timer expires.

6. IMPLEMENTATION DETAILS
COPE adds special packet headers and alters the control flow of

the router to code and decode packets. This section describes both
parts.

6.1 Packet Format
COPE inserts a variable-length coding header in each packet, as

shown in Fig. 5. If the routing protocol has its own header (e.g.,
Srcr [5]), COPE’s header sits between the routing and the MAC
headers. Otherwise, it sits between the MAC and IP headers. Only
the shaded fields in Fig. 5 are required in every COPE header. The
coding header contains the following 3 blocks.

(a) Ids of the coded native packets: The first block records meta-
data to enable packet decoding. It starts with ENCODED NUM,
the number of native packets XOR-ed together. For each native
packet, the header lists its ID, which is a 32-bit hash of the packet’s
source IP address and IP sequence number. This is followed by
the MAC address of the native packet’s Nexthop. When a node
hears an XOR-ed packet, it checks the list of Nexthops to deter-
mine whether it is an intended recipient for any of the native packets
XOR-ed together, in which case it decodes the packet, and processes
it further.
(b) Reception reports: Reception reports constitute the second
block in the XOR header, as shown in Fig. 5. The block starts
with the number of the reports in the packet, REPORT NUM. Each
report specifies the source of the reported packets SRC IP. This
is followed by the IP sequence number of the last packet heard
from that source Last PKT, and a bit-map of recently heard pack-
ets. For example, a report of the form {128.0.1.9, 50,
10000001} means that the last packet this node has heard from
source 128.0.1.9 is packet 50, and it has also heard packets 42
and 49 from that source but none in between. The above representa-
tion for reception reports has two advantages: compactness and ef-
fectiveness. In particular, the bit-map allows the nodes to report each
packet multiple times with minimal overhead. This guards against
reception reports being dropped at high congestion.
(c) Expressing asynchronous acks compactly and robustly: To
ensure ack delivery with minimum overhead, we use cumulative
acks. Since they implicitly repeat ack information, cumulative acks
are robust against packet drops. Each node maintains a per-neighbor
16-bit counter, called Neighbor Seqno Counter. Whenever
the node sends a packet to that neighbor, the counter is incremented
and its value is assigned to the packet as a local sequence number,
Local PKT SEQ NUM. The two neighbors use this sequence num-
ber to identify the packet. Now, a node can use cumulative acks on
a per-neighbor basis. Each coded packet contains an ack header as
shown in Fig. 5. The ack block starts with the number of ack entries,
followed by the packet local sequence number. Each ack entry starts
with a neighbor MAC address. This is followed by a pointer to tell
the neighbor where the cumulative acks stop, and a bit-map indicat-
ing previously received and missing packets. For example, an entry
of {A, 50, 01111111} acks packet 50, as well as the sequence
43-49, from neighbor A. It also shows that packet 42 is still missing.
Note that though we use cumulative acks, we do not guarantee relia-
bility at link layer. In particular, each node retransmits a lost packet
a few times (default is 2), and then gives up.

6.2 Control Flow
Fig. 6 abstracts the architecture of COPE. On the sending side,

(shown in Fig. 6(a)), whenever the MAC signals an opportunity to
send, the node takes the packet at the head of its output queue and
hands it to the coding module (§5.1). If the node can encode mul-
tiple native packets in a single XOR-ed version, it has to schedule
asynchronous retransmissions. Either way, before the packet can
leave the node, pending reception reports and acks are added.

On the receiving side, (shown in Fig. 6(b)), when a packet arrives,
the node extracts any acks sent by this neighbor to the node. It also
extracts all reception reports and updates its view of what packets its
neighbor stores. Further processing depends on whether the packet
is intended for the node. If the node is not a nexthop for the packet,
the packet is stored in the Packet Pool. If the node is a nexthop, it
then checks if the packet is encoded. If it is, the node tries to decode
by XOR-ing the encoded packet with the native packets it stores in
its Packet Pool. After decoding it acks this reception to the previous

Figure 2.5: COPE header from [2]

receives a coded packet, it searches if it is one of the nexthop in the Encoded field. If

so, it tries to decode the packet.

The Reports field records the reception reports. These reports are used to know which

packets each node has overheard and they are needed to compute the probability of

decoding.

Since each decoded packet must be ACKed at COPE layer, Cope uses cumulative ACKs

to reduce the overhead in the network. It reports these on the ACKs field.

Let’s take a look at COPE’s main phases: coding, transmission and decoding, acknowl-

edgment and retransmission.

Coding

COPE is implemented with the principle of never delaying packets. If in the queue

there are packets with the same nexthop, nodes transmit the native packet when the

wireless channel is available. This principle is based on the fact that nodes cannot know

if they will receive a packet with a different nexthop, so it’s better not to wait and send

the native packet.

The coding phase can be listed as follows for each node:

1. dequeue the packet at the head of the OUTPUT queue

2. check if there are packets of similar size and different nexthop

3. code those packets together (XOR)

4. broadcast the coded packet

15

2. NETWORK CODING

COPE never codes together packets headed to the same nexthop, otherwise the nexthop

will not be able to decode them. Each node keeps a virtual queue with packets headed

to the same neighbor. The VIRTUAL queue contains pointers to the packets in the

OUTPUT queue. The VIRTUAL queue simplifies the searching operation. When

COPE dequeues the first packet from the OUTPUT, it chooses which packets to code

together from those at the head of each VIRTUAL queue.

The most important thing is to ensure that the receiver has high probability of decoding

its native packet. Therefore a node estimates the probability that each of its neighbors

has already heard packets that form the XOR packet. Sometimes a node can be sure

that the neighbor has heard the packet, for example if the neighbor is the previous

hop of the packet or when the node gets the receptions reports. If this information is

not available, the node estimates the probability from those computed by the routing

protocol.

In the case that a node encodes together n packets, the probability PD for a node to

decode its native packet i is equal to the probability that it has heard all the n − 1

native packets XOR-ed with it, i.e.:

PD = P1 × P2 × · · · × Pn−1 (2.2)

where Pj is the probability that the receiver node has heard packet j. COPE codes n

packets together if the probability to decode them PD is at least 0.8.

Transmission and Decoding

COPE uses a pseudo-brodcast technique to send packets. The MAC field of the coded

packet is set to one of the receivers. In the COPE header, there is a XOR field where

there is a list of all nexthops of the packet. When a node receives a packet with a MAC

address different from its own, it checks if it is included in the list of the nexthops. If

it is included, it proceeds decoding the packet even if the MAC address is different.

Since all packets are sent using 802.11 unicast, the MAC detects collisions and it uses

the backoff. Each node keeps a copy of each native packet that it has received or sent

out. When it receives a XOR-ed packet, it reads the ID of each native packet used in

the coding and it checks if it has all n− 1 native packets. If it has n− 1 native packets,

it XORs them with the coded packet to obtain its native packet.

16

2.2 XORS IN THE AIR - COPE

Acknowledgment and Retransmission

Encoded packets are headed to multiple nexthops, but the sender get synchronous

ACKs only from the MAC destination of the coded packet. How do nexthops ack the

native packet if they decode the XOR packet successfully?

COPE addresses this problem with asynchronous ACKs and retransmissions. When

a node sends an encoded packet, it schedules a retransmission events for each native

packet that is encoded. If the native packet is not acked within Ta seconds (Ta is quite

larger than a single link round trip time), the node resends the native packet. When

the nexthop receives an encoded packets in promiscuous mode, if it is able to decode

and to extract its native packet, it schedules an ACK event. To reduce the overhead of

the network, the node sends cumulative ACKs.

Figure 2.7 reports a flow chart for the sender side and for receiver side.

Figure 5—COPE Header. The first block identifies the native pack-
ets XOR-ed and their nexthops. The second block contains reception
reports. Each report identifies a source, the last IP sequence number re-
ceived from that source, and a bit-map of most recent packets seen from
that source. The third block contains asynchronous acks. Each entry
identifies a neighbor, an end point for the ACK map, and a bit-map of
ack-ed packets.

 Encoded?

Can send

yes

no
Schedule
retransmissions

Add reception reports

To wireless device

Add acks to header

Dequeue head of
Output Queue

Encode if
possible

 Encoded?

Packet
arrival

yes
no

Decode and schedule acks

Extract acks meant for me
Update retransmission events

yes
no

Enqueue in
Output Queue

Deliver
to host

Extract Reception Reports
Update Neighbor’s State

 Am I nexthop?

 Decodable?

 Am I destination?

yes

yes

Add to Packet Pool

Add to Packet Pool

(a) Sender side (b) Receiver side

Figure 6—Flow chart for our COPE Implementation.

stream are immediately dispatched to the transport layer, after up-
dating the sequence number state. Otherwise, they are withheld in
the buffer till the gap in the sequence numbers is filled, or until a
timer expires.

6. IMPLEMENTATION DETAILS
COPE adds special packet headers and alters the control flow of

the router to code and decode packets. This section describes both
parts.

6.1 Packet Format
COPE inserts a variable-length coding header in each packet, as

shown in Fig. 5. If the routing protocol has its own header (e.g.,
Srcr [5]), COPE’s header sits between the routing and the MAC
headers. Otherwise, it sits between the MAC and IP headers. Only
the shaded fields in Fig. 5 are required in every COPE header. The
coding header contains the following 3 blocks.

(a) Ids of the coded native packets: The first block records meta-
data to enable packet decoding. It starts with ENCODED NUM,
the number of native packets XOR-ed together. For each native
packet, the header lists its ID, which is a 32-bit hash of the packet’s
source IP address and IP sequence number. This is followed by
the MAC address of the native packet’s Nexthop. When a node
hears an XOR-ed packet, it checks the list of Nexthops to deter-
mine whether it is an intended recipient for any of the native packets
XOR-ed together, in which case it decodes the packet, and processes
it further.
(b) Reception reports: Reception reports constitute the second
block in the XOR header, as shown in Fig. 5. The block starts
with the number of the reports in the packet, REPORT NUM. Each
report specifies the source of the reported packets SRC IP. This
is followed by the IP sequence number of the last packet heard
from that source Last PKT, and a bit-map of recently heard pack-
ets. For example, a report of the form {128.0.1.9, 50,
10000001} means that the last packet this node has heard from
source 128.0.1.9 is packet 50, and it has also heard packets 42
and 49 from that source but none in between. The above representa-
tion for reception reports has two advantages: compactness and ef-
fectiveness. In particular, the bit-map allows the nodes to report each
packet multiple times with minimal overhead. This guards against
reception reports being dropped at high congestion.
(c) Expressing asynchronous acks compactly and robustly: To
ensure ack delivery with minimum overhead, we use cumulative
acks. Since they implicitly repeat ack information, cumulative acks
are robust against packet drops. Each node maintains a per-neighbor
16-bit counter, called Neighbor Seqno Counter. Whenever
the node sends a packet to that neighbor, the counter is incremented
and its value is assigned to the packet as a local sequence number,
Local PKT SEQ NUM. The two neighbors use this sequence num-
ber to identify the packet. Now, a node can use cumulative acks on
a per-neighbor basis. Each coded packet contains an ack header as
shown in Fig. 5. The ack block starts with the number of ack entries,
followed by the packet local sequence number. Each ack entry starts
with a neighbor MAC address. This is followed by a pointer to tell
the neighbor where the cumulative acks stop, and a bit-map indicat-
ing previously received and missing packets. For example, an entry
of {A, 50, 01111111} acks packet 50, as well as the sequence
43-49, from neighbor A. It also shows that packet 42 is still missing.
Note that though we use cumulative acks, we do not guarantee relia-
bility at link layer. In particular, each node retransmits a lost packet
a few times (default is 2), and then gives up.

6.2 Control Flow
Fig. 6 abstracts the architecture of COPE. On the sending side,

(shown in Fig. 6(a)), whenever the MAC signals an opportunity to
send, the node takes the packet at the head of its output queue and
hands it to the coding module (§5.1). If the node can encode mul-
tiple native packets in a single XOR-ed version, it has to schedule
asynchronous retransmissions. Either way, before the packet can
leave the node, pending reception reports and acks are added.

On the receiving side, (shown in Fig. 6(b)), when a packet arrives,
the node extracts any acks sent by this neighbor to the node. It also
extracts all reception reports and updates its view of what packets its
neighbor stores. Further processing depends on whether the packet
is intended for the node. If the node is not a nexthop for the packet,
the packet is stored in the Packet Pool. If the node is a nexthop, it
then checks if the packet is encoded. If it is, the node tries to decode
by XOR-ing the encoded packet with the native packets it stores in
its Packet Pool. After decoding it acks this reception to the previous

Figure 2.6: Flow chart for COPE implementation from [2]

2.2.5 Experiments and Results

Katti et al. implemented COPE in a 20-node wireless testbed. They found that:

• When the wireless medium is congested and the traffic consists of many random

UDP flows, COPE can increase throughput 3-4 times. In this case, the congestion

17

2. NETWORK CODING

control is not used and COPE’s throughput reaches the Coding+MAC gain.

• When TCP control is used, the throughput improvement with COPE agrees with

the expected coding gain unless there are many hidden terminals. In this case the

number of collisions increases and TCP reduces its packet sending rate, limiting

the coding opportunities.

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

 1 1.5 2 2.5 3

TC
P

G
oo

dp
ut

 in
 M

b/
s

Offered load in Mb/s

With COPE
Without COPE

Figure 11—COPE provides 38% increase in TCP goodput when the
testbed topology does not contain hidden terminals.

 0

 1

 2

 3

 4

 5

 6

 0 2 4 6 8 10 12 14 16 18 20 22 24

N
et

w
or

k
Th

ro
ug

hp
ut

 in
 M

b/
s

Offered load in Mb/s

With COPE
Without COPE

Figure 12—COPE can provide a several-fold (3-4x) increase in the
throughput of wireless Ad hoc networks. Results are for UDP flows with
randomly picked source-destination pairs, Poisson arrivals, and heavy-
tail size distribution.

the following experiment. We compress the topology of the testbed
by bringing the nodes closer together, so that they are within carrier
sense range. We artificially impose the routing graph and inter-node
loss rates of the original testbed. The intuition is that the nodes are
now within carrier sense range and hence can avoid collisions. This
will reduce the loss rates and enable TCP to make better use of the
medium. We repeat the above experiment with increasing levels of
congestion obtained by decreasing the inter-arrival times of the TCP
flows. Fig. 11 plots the network TCP goodput with and without
COPE as a function of the demand. For small demands, COPE of-
fers a slight improvement since coding opportunities are scarce. As
the demands increase, network congestion and coding opportunities
increase, leading to higher goodput gains. As congestion increases
beyond a certain level, the throughput levels off, reflecting the fact
that the network has reached its capacity and cannot sustain addi-
tional load. At its peak, COPE provides 38% improvement over no
coding. The medium loss rates after retransmissions are negligible.
The TCP flows are therefore able to use the medium efficiently, pro-
viding coding opportunies which result in throughput gains.

7.4.2 UDP
We repeat the large scale testbed experiments with UDP. The

flows again arrive according to a Poisson process, pick sender and
receiver randomly, and transfer files whose sizes follow the distri-
bution measured on the Internet [9]. We vary the arrival rates of the
Poisson process to control the offered load. For each arrival rate, we
run 10 trials, with coding on and then off (for a total of 500 experi-
ments), and compute the network throughput in each case.

 0

 20

 40

 60

 80

 100

 0 4 8 12 16 20 24

Pe
rc

en
ta

ge

Offered Load (Mb/s)

Packets coded due to Guessing

Figure 13—Percentage of packets coded in the testbed due to guessing,
as a function of offered load, for the set of experiments in Fig. 12.

 0

 10

 20

 30

 40

 50

 60

 1 2 3 4 5 6

Pe
rc

en
ta

ge

No. of packets coded together

Coded packets

Figure 14—Distribution of number of packets coded together in the
test bed at the peak point of Fig. 12.

Fig. 12 shows that COPE greatly improves the throughput of
these wireless networks, by a factor of 3-4x on average. The fig-
ure plots the aggregate end-to-end throughput as a function of the
demands, both with COPE and without. At low demands (below
2Mb/s), coding opportunities are scarce, and COPE performs sim-
ilarly to no coding. As demands increase, both network conges-
tion and the number of coding opportunities increase. In such dense
networks, the performance without coding deteriorates because of
the high level of contention and consequent packet loss due to col-
lisions. In contrast, coding reduces the number of transmissions,
alleviates congestion, and consequently yields higher throughput.
It is interesting to examine how much of the coding is due to

guessing, as opposed to reception reports. Fig. 13 plots the per-
centage of packets that have been coded because of guessing for the
experiments in Fig.12. It is calculated as follows: If n packets are
coded together, and at most k packets could be coded using recep-
tion reports alone, then n − k packets are considered to be coded
due to guessing. The figure shows that the benefit of guessing varies
with demands. At low demands, the bottleneck nodes have small
queues, leading to a short packet wait time. This increases depen-
dence on guessing because reception reports could arrive too late,
after the packets have been forwarded. As demands increase, the
queues at the bottlenecks increase, resulting in longer wait times,
and consequently allowing more time for reception reports to arrive.
Hence, the importance of guessing decreases. As demands surge
even higher, the network becomes significantly congested, leading
to high loss rates for reception reports. Hence, a higher percentage
of the coding decisions is again made based on guessing.
Let us now examine in greater detail the peak point in Fig. 12,

which occurs when demands reach 5.6 Mb/s. Fig. 14 shows the PDF
of the number of native packets XOR-ed at the bottleneck nodes
(i.e., the nodes that drop packets). The figure shows that, on aver-
age, nearly 3 packets are getting coded together. Due to the high
coding gain, packets are drained much faster from the queues of the
bottleneck nodes. The result is an average throughput gain of 3-4x.

7.5 COPE in a Mesh Access Network
There is growing interest in providing cheap Internet access using

Figure 2.7: Results for UDP flow with randomly picked source-destination pairs and

Poisson arrivals from [2]

2.3 Rate Control in Network Coding

COPE uses by default the lower rate available (i.e., for 802.11g it is 6Mb/s) so each

node can overhear a packet in its transmission range.

Recently some papers [3] and [4] have shown that rate adaptation can improve further

the capacity of wireless networks.

From one side the transmission rate should be selected to increase the probability that

nodes overhear native packets and transmissions with lower rate have a higher probabil-

ity to be received correctly. From the other side, decreasing too much the transmission

rate reduces the throughput of the wireless network. Kim et al. [3] considers rate

controls applied to network coding to optimize the throughput of the network.

In this section we present the study of Kim et al. who presents a rate control frame-

work that works over COPE and increases the performance of COPE. This framework

is based on two techniques: rate control and ACKer selection.

18

2.3 RATE CONTROL IN NETWORK CODING

2.3.1 Rate Control

Many rate control algorithms have been proposed in wireless networks [10], [11] but

they cannot be used directly with network coding. Indeed these algorithms maximize

the throughput of the link between the sender and the receiver without considering the

overhearing property.

Let’s consider the “X” topology of Figure 2.8 to explain how a rate control algorithm

should work.

The five nodes topology has been already presented, here we consider it with a rate

Alice
Bob

Jack

Chloe Dave

a⊕b

a b

Rl

Rh

Rl

Rh Rh

Rh

Figure 2.8: Each station uses a rate adaptation algorithm to improve network coding.

adaptation algorithm.

Alice and Bob want to transmit packets respectively to Dave and Chloe. These flows

are intersecting at node Jack which makes the coding. All nodes operate in promiscu-

ous mode and they start using the basic rate to transmit Rf . For this rate the Packet

Delivery Ratio (PDR) is equal to 1 for each link. When Alice transmits packet a to

Jack, also Dave overhears packet a and the same happens for Chloe with b. Jack ap-

plies a linear encoding function on Alice and Bob’s packets (a ⊕ b) and transmits this

coded packet. When Chloe and Dave receive the coded packet, they decode applying

the linear function to the coded and overheard packet.

If a typical rate control algorithm [10] or [11] is applied, Alice may choose a rate

Rh > Rf to get better performance on the link (Alice → Jack). However using the

rate Rh can decrease the probability that Chloe overhears the packet and it reduces

the probability of decoding successfully.

19

2. NETWORK CODING

Therefore if Alice chooses to transmit at rate Rl with (Rf < Rl < Rh), the throughput

of the link (Alice → Jack) is reduced but the throughput of the entire network may be

increased since Chloe can overhear the packet and decode successfully.

So the rate control has to take care not only of the direct link (Alice → Jack) but also

of indirect links (Alice→ Chloe). In this case, using a lower rate brings a higher coding

gain.

2.3.2 ACKer selection

We have seen that COPE uses a pseudo-broadcast technique to transmits XORed pack-

ets where one receiver station is chosen to be the MAC layer ACK. Hovewer both

stations schedule an asynchronous ACK transmission at COPE layer for packets de-

coded successfully.

Kim et al. presents a trivial example to explain how to choose the ACKer selection

module. He states that if the receiver nodes have different PDR, the choice of the

ACKer is important.

He considers to have the same topology of Figure 2.8 and different PDR for links (Jack

→ Dave) and (Jack → Chloe), respectively 1 and 0.1. In this configuration, they first

suppose that Chloe is the ACKer. When Chloe receives correctly the packet from Jack,

also Dave has received. Therefore on average 10 transmissions are needed to deliver

correctly two packets to Chloe and Dave.

However if Dave is chosen as ACKer, every time that Jack receives an ACK from Dave,

it codes new packets B2, B3, .., B10 with A1 (Ai and Bi are packets for Chloe and Dave).

In this case 11 packets are delivered correctly in 10 transmissions. In conclusion, choos-

ing Dave as ACKer increases the number of packet delivery.

2.3.3 Throughput analysis

In this subsection, we report the throughput analysis presented in [3]. They consider

the Figure 2.8 and the following hypothesis:

• Alice and Bob send packets a and b through the relay node Jack.

• Each rate has an associated PDR.

20

2.3 RATE CONTROL IN NETWORK CODING

• A scheduling process [6] is assumed according to which packets a and b arrive to

Jack before the latter transmits any of these two packets.

The probability of a successful packet delivered from Alice to Jack is equal to

P rAlice
Alice,Jack · P

rACK
Jack,Alice where the first term is the PDR of link (Alice → Jack) at bit

rate rAlice and the second term is the PDR for the ACK of link (Jack → Alice).

The probability that Chloe overhears packet A is given by:

P rAlice

(Alice,Jack),Chloe =
∞∑
i=1

{(1− P rAlice
Alice,JackP

rACK
Jack,Alice)

i−1 · P rAlice
Alice,JackP

rACK
Jack,Alice

·
i∑

j=1

(1− P rAlice
Alice,Chloe)

j−1 · P rAlice
Alice,Chloe} (2.3)

where
∑i

j=1(1− P rAlice
Alice,Chloe)

j−1 · P rAlice
Alice,Chloe is the probability that Chloe successfully

overhears a packet from Alice, when the latter performs exactly i transmissions.

The total number of bits delivered to Chloe and Dave is:

Lt = P rJack

(Jack,ACKer),Dave · P
rBob

(Bob,Jack),Dave · LAlice
P rJack

(Jack,ACKer),Chloe · P
rAlice

(Alice,Jack),Chloe · LBob (2.4)

where LAlice and LBob are the length of packet that Alice and Bob send. Probabilities

of links (Jack → Chloe) and (Jack → Dave) depend which node is the ACKer and it

values P rx(x,ACKer),y =
∑∞

i=1{(1 − P rxx,yP rACK
y,x)i−1 · P rxx,yP rACK

y,x if node y is the ACKer,

otherwise P rx(x,ACKer),y = P rx(x,z),y if node z is the ACKer. The expression above requires

that Chloe and Dave overhear native packets.

The duration for delivering the packets from sources to the destinations is:

Dt = N rAlice
Alice,Jack · T

rAlice
LAlice

+N rBob
Bob,Jack · T

rBob
LBob

+N rJack
Jack,ACKer · T

rJack

max(LAlice,LBob) (2.5)

where N rAlice
Alice,Jack = 1

P
rAlice
Alice,JackP

rACK
Jack,Alice

is the number of transmissions needed for a

successful one and it follows a Bernoulli process. T rAlice
LAlice

is the transmission time of

the packet with length LAlice transmitted at bit rate rAlice. In conclusion the expected

throughput with network coding is:

SNC =
Lt
Dt

(2.6)

The data rates should be selected to optimize the equation (2.6). However each

node should have an omniscient view of the traffic of the network but this in practice is

21

2. NETWORK CODING

not possible. When Alice transmits, she cannot know if also Bob has a packet to send.

If Jack has just a packet from Alice, it sends the packet when the channel is idle.

Furthermore in a more general case, with n transmitters that all use the same relay

Jack, the candidate rate set is Rn. This set grows exponentially with n and finding

rates that maximize the throughput becomes an NP-Hard problem[22].

2.3.4 Proposed approach

Once abandoned the idea of finding rates from the equation 2.6, Kim et al. shows that

a simpler approach is possible.

First, each sender identifies all his one-hop neighbors that are also neighbors of Jack.

Second, the sender chooses the rate that maximizes the expected throughput to Jack,

such that the neighbors overhear the packet with a probability greater than β.

The threshold β depends on the probability of decoding of each receiver. We have seen

the probability of decoding for COPE in a general case with n node (equation 2.2).

Similary, when n nodes uses its own data rate, the decoding probability for the n− th
receiver is :

Pdec(Dn) = P
rS1

(S1,Dj),Dn
× P rS2

(S2,Dj),Dn
× · · · × P rSn−1

(Sn−1,Dj),Dn
(2.7)

where P
rSk

(Sk,Dj),Dn
is the probability of overhearing the packet transmitted at rate rSk

from the sender k to Jack.

In COPE the probability of decoding has to be greater than a threshold θ = 0.8. At the

same way, Kim et al. set θ = βn and from the observation that Pdec(Dn) is no greater

than the minimum of probabilities P
rSk

(Sk,Dj),Dn
, they require that each term be at least

β.

Finally, the problem of rate control for each source (e.g. Alice) can be translate in the

following optimization problem:

max
rAlice∈R

LAlice
N rAlice
Alice,Jack · T

rAlice
LAlice

s.t P rAlice

(Alice,Jack),Chloe ≥ β
P rAlice

(Alice,Jack),Bob ≥ β (2.8)

22

2.3 RATE CONTROL IN NETWORK CODING

2.3.5 Experiments and Results

The framework has been tested in simulation and implemented in testbed. They have

done different simulation with different topologies and with diverse traffic characteris-

tics. They show that their framework performs better of COPE in different scenarios.

In Figure 2.9 is reported some results from simulations and testbed.
6

Fig. 2. Our framework provides
the highest throughput gains in
topologies with diverse link qual-
ities.

Fig. 3. The coding gain is
maintained at high levels with our
coding-aware rate selection mod-
ule.

Fig. 4. Our framework enables
the router to code of many native
packets into every new encoded
packet.

Fig. 5. Our framework achieves
a lower end-to-end delay in
multi-hop, multi-rate, large-scale
topologies.

<Jack→Dave>. We consider the following cases: (i) COPE-
basic where, COPE operates at the basic transmission rate (6
Mbps), (ii) our framework with and without our rate adaptation
module enabled, and (iii) COPE-amrr, where COPE operates
in conjunction with the AMRR rate adaptation algorithm [3].
The total network throughput results are plotted in Fig. 2. A
direct observation is that our framework provides up to 305%
throughput improvement as compared to COPE-amrr and up to
390% as compared to COPE-basic, depending on the quality of
the link <Jack→Chloe>. More specifically:

1. In cases with very poor link qualities, rate unawareness
can severely impact the performance: Towards increasing the
total throughput, whenever there is a large difference in the PDR
among the candidate ACKers, it is better to select an ACKer
with good link quality (as discussed earlier). We observe that
even if our framework selects the basic rate, the throughput
improvements due to selecting the appropriate ACKer is sig-
nificant: our framework at the basic rate outperforms COPE by
390% (Fig. 2) in terms of the average throughput. The use of
AMRR by COPE does not improve performance significantly,
since AMRR is coding unaware; it only targets improvements
in the local link throughput. This interacts poorly with the
random selection of the ACKer with COPE. In our example,
whenever COPE picks Dave as the ACKer, Jack selects a
high transmission rate (as per AMRR); with this, Chloe cannot
receive the encoded packet.

2. High link qualities also favor our framework: In Fig. 2,
we observe that when the PDR on all links is high (e.g. 0.8
or higher), our rate selection module boosts the total network
throughput, by as much as 75% and 30%, compared to COPE-
basic and COPE-amrr, respectively. We also observe that in
such cases, the ACKer selection does not significantly impact
throughput; this is because with good links, COPE also selects
a good ACKer. Unlike COPE however, our framework provides
high rate gains on the high quality links; high coding gains are
maintained with intelligent rate selection. As a consequence, our
framework outperforms COPE-basic and COPE-amrr by 75%
and by 30%, respectively.

The case for dense, “wheel” topologies: Next, we simulate
wheel topologies, where larger sets of nodes share a com-
mon router. A wheel topology is an extended ‘X’ topology
with more transmitters. As per [10], the maximum number
of packets encoded together typically cannot be more than 5
with COPE. Thus, here we simulate topologies with up to 6
source-destination flows and with randomly set link qualities.
Our goal here is to evaluate our framework in terms of the
achieved encoding ratio, i.e., the ratio of the encoded packets
at the output of the router to the total number of packets sent by

the router. Our simulation results are depicted in Fig. 3. First,
we wish to point out that COPE-basic is expected to provide the
best encoding ratio, since its design is geared towards achieving
high coding gain. In Fig. 3, we observe the following:

1. Our framework provides encoding ratios similar to that
with COPE: We observe that our framework, when operating
at the basic rate, provides the same ratio as COPE in all the
considered scenarios. This is somewhat expected, since the use
of a low bit rate aids coding opportunities. We observe that
when our rate selection module is enabled, our framework
still maintains an encoding ratio that is very close to that of
COPE. We verify this finding in a real setting and discuss the
observation in the following subsection.

2. COPE-amrr performs poorly in terms of the encoding
ratio with few flows: We observe that with few active flows,
the combination of COPE and AMRR leads to poor encoding
ratios. This accentuates our earlier observations with the ‘X’
topology, with regards to COPE-amrr; again, this is due to the
fact that AMRR is coding unaware. Clearly, one may expect
the same behavior with other rate adaptation algorithms [2],
[4] that do not consider network coding.

3. Our framework favors the inclusion of more packets into
an encoded packet as compared to COPE-amrr: As seen in
Fig. 3, with a larger number of flows COPE-amrr provides
high encoding ratios. However, the ratio itself is agnostic to the
population of native packets that are embedded into an encoded
packet. Fig. 4 shows the average number of native packets
combined together to form an encoded packet for the 6-flow
scenario of Fig. 3. We observe that our framework enables the
router to code nearly as many packets as COPE encodes at the
basic rate6. In contrast, COPE-amrr does not allow the router
to code as many packets together.

The potency of our framework in large-scale multi-hop
settings: Finally, we perform extensive simulations on two
large-scale, multihop topologies, which consist of 100 and 200
nodes respectively. The nodes are randomly and uniformly
distributed across a 1000×1000 m2 square region. We want to
evaluate the efficacy of our framework in scenarios with many
interfering nodes, and with flows that span a large number of
intermediate hops. Throughout these simulations we randomly
select source-destination pairs and we initiate fully-saturated
UDP flows. Paths are established using the DSR protocol [29].

Our simulation results are plotted in Fig 5. We observe that
the application of our framework leads to a significant reduction
in the average end-to-end delay, i.e., by as much as 90%

6Recall that this observation is aligned with the findings in [10] with regards
to the maximum number of native packets that can be combined together with
COPE.

(a)

8

Fig. 6. The deployment of
our wireless testbed; nodes are
represented by dots along with
their IDs.

Fig. 7. Our framework outper-
forms COPE in all considered sce-
narios in terms of achieved through-
put gain.

Fig. 8. Our framework achieves
a very similar network coding gain
as COPE, albeit the use of high bit
rates.

Fig. 9. With our framework,
routers exploit the good channel
conditions thereby using high bit
rates whenever possible.

in scenario 2. This is due to the use of high transmission
rates used by the router with our framework (shown in Fig. 9).
A higher transmission rate (in the presence of fully saturated
traffic) in these topologies results in a larger volume of packets
traversing the router in a unit of time. As a consequence, the
number of encoding opportunities at the router is higher for the
duration of each experiment, and this provides an overall higher
long-term throughput.

Scenario 3: Experiments with an ‘X’ topology comprised
of low quality links: Further, we wish to assess the efficacy
of our framework in topologies where not all links are of high
quality. We consider ‘X’ topologies (Fig. 1) wherein one of
the end receivers, e.g. Chloe, has a poor quality link with
Jack and with Dave, although her link with Bob is of high
quality. For this, we experiment with various ‘X’ topologies
where the PDR on the link <Jack→Chloe> is poorer than
that of the other links. A sample topology consists of nodes
12 (Alice), 28 (Dave), 26 (Jack), 19 (Bob) and 15 (Chloe)
in Fig. 6. Here the PDR on the link <Jack→Chloe> is 0.45,
while the PDR on the link <Bob→Chloe> is 0.75. We apply
fully saturated traffic towards nodes 15 and 28. In Fig. 7,
we observe that our framework provides significant throughput
benefits even when the router maintains poor quality links
with a receiver. Specifically, we observe that our framework
outperforms COPE by at least 100% and by as much as 189%.
However, note that in this case our framework does not perform
as well as in scenarios 1 and 2. This is attributed to the fact
that, in contrast to the previous scenarios, the router is now
(for most of the time) coerced into using low transmission
rates, to increase the probability of reception of the encoded
packet by Chloe. Indeed, as observed in Fig. 9, Jack uses
rates of 1 and 2 Mbps for most of the time. As expected, this
affects the long-term throughput to some extent (although our
framework still offers significant gains compared to COPE).
We wish to point out here that in these experiments, we
observed that Jack selected Chloe to be the ACKer in many
cases. This somewhat contradicts our discussion in Section I.
Note however that the difference in PDR between the links
<Jack→Chloe> and <Jack→Dave> is not too high. Thus,
with our framework in this case, Jack does not sacrifice the
performance on the link to Chloe for the sake of increased
total throughput. However, as we observe in our simulations
(Section IV-A), routers follow the trend of selecting an ACKer
to which they have high quality links, as long as this quality
is much higher than the quality of the link(s) with the other
candidate receiver(s). Moreover, throughout these experiments
we observed that the ACKer selection module alone does not
contribute to the throughput gain as much as the rate selection
module. This is due to the small number of intended recipients;

with such a limited set of receivers, it is highly likely that
the random ACKer selection with COPE finds the appropriate
ACKer. As we observe in our simulations, though, in dense
network settings with many intended recipients, our ACKer
selection module significantly contributes towards improving
network performance (See Fig. 5).

Scenario 4: Experiments with the cross topology and
low quality links: Finally, we examine cross topology sce-
narios with poor links. In particular, we consider the same
physical node locations as in scenario 3. However now we
have bidirectional flows, as in scenario 2. Note that the link
<Chloe↔Dave> is also poor. As with scenario 3, we observe
that the router typically prefers the use of low rates and with
this, our framework does not perform as well as in scenario 2. In
fact, from Fig. 7 we observe that the throughput gain with our
framework is even lower than in scenario 3. This is in contrast
with the expectation that due to the possibility of encoding 4
packets together, the gain would be improved. This is directly
because of the poor PDR on the link <Chloe→Jack>, which
in the sample topology of scenario 3 is 0.4. This forces Chloe
into using a low bit rate on the link to Jack. As a consequence,
the coding gain is not as high as in scenario 2. In addition,
since the link <Dave→Chloe> is also poor, Dave prefers to use
lower rates so as to increase the probability of overhearing at
Chloe. Hence, Jack receives fewer packets from Chloe and Dave
and thus, he does not encode 4 packets together as frequently.
In conjunction with Jack using low bit rates, this causes the
throughput gains with our framework to be lower than that
in the other scenarios. However, note that the gains are still
significant relative to COPE.

V. DISCUSSION

The applicability of our framework with other network
coding architectures: Our framework was designed and built
on top of COPE. The main reason for this decision was that
COPE imbibes utilities that facilitate the practical implementa-
tion of NC; examples include the exchange of reception reports
and the estimation of the link quality though periodic probing.
Our framework relies on two functions only: (a) In a generic
local NC setting, routers should either explicitly know, or be
able to predict whether certain neighbors have sniffed key
packets; and (b) Transmitters of native packets need to estimate
the quality of each link with their neighbors [2]. Given that such
functionalities are typical requirements for any practical NC
implementation, we believe that our framework can be applied
in conjunction with other NC architectures (such as [16]) with
minor modifications.

On the implementation overhead: As discussed in Section
IV, we have implemented our framework using the original

(b)

Figure 2.9: (a) throughput from simulation with different PDR, (b) throughput from

testbed with different scenarios.[3]

In Figure 2.9(a) they performs simulation on an “X” topology 2.8 with different

PDR on link (Jack → Chloe). They compare throughputs of four cases. COPE by de-

fault uses basic transmission rate (6 Mbps). They simulate also COPE with the AMRR

rate adaptation algorithm [10] and their framework with and without rate adaptation.

In cases with small PDR, rate unawareness can impact severely the performance.

In Figure 2.9(b) they show results from implementation on their framework on real

hardware. They experiments in four different scenario: “X” topology with high quality

links, cross topology with high quality links and both configurations with low quality

links. Also in these cases they performs better than COPE.

23

2. NETWORK CODING

24

Chapter 3

IEEE 802.11 Wireless Networks

Wireless communications are every year more popular and indispensable. They provide

access to the Internet and Mobile Communication to different types of devices.

Over the past few years the number of smartphones and tablets has grown. These

devices require more data traffic than common phones. Also the number of laptops

that are connecting on Internet through wireless communications is increasing. People

want to access the Internet everywhere with different devices and at higher rate. The

challenge is to create communication systems that are more reliable and have higher

data rates.

The wireless channel puts fundamental limitations to the performance of devices due

to collisions and errors. We will give an explanation of channel errors in Chapter 4;

in this chapter we focus on the collision problem and how devices access the channel

using protocols, in particular the IEEE 802.11 family.

The wireless channel is shared by similar devices which are within transmission range

and belong to the same network. When a device wants to transmit some information, it

has to access the wireless channel. While the first device is transmitting, other stations

have to wait. If two or more devices access the channel in the same time slot, they

collide and have to retransmit their information.

However, different wireless devices can transmit at the same time if they are using

different frequencies. For example, we can listen to the radio while making a phone

call. Indeed, the radio and mobile phone use different carrier frequencies.

Similar devices use the same frequencies if they belong to the same network. For

example, the Wi-Fi network in the 2.4 GHz band is divided into 13 channels spaced 5

MHz apart. If two laptops are connected to the same router, they use the same Wi-Fi

25

3. IEEE 802.11 WIRELESS NETWORKS

channel and they share a protocol to access the channel. A communication protocol is a

set of shared rules to permit communications with the same type of devices. These rules

describe all parts of the communication (signaling, message format, authentication,

error detection, etc.).

3.1 Wireless Channel Access Protocols

The simplest protocol to access the channel is called ALOHA (now ”Pure ALOHA”)

and it was presented in 1970. The idea of the protocol is simple: when a node has data

to send, it sends it. If the message collides with another transmission, the node will

resend after a certain amount of time depending of its back off. When the traffic load

goes over a threshold, the throughput decreases exponentially.

A slightly better implementation of ALOHA is Slotted ALOHA. It introduces time

slots, so a node can send only at the beginning of the time slot. This protocol reduces

collisions and increases throughput with respect to Pure ALOHA.

These protocols still have a problem: they don’t sense the channel before transmitting.

Carrier Sense Multiple Access (CSMA) protocol introduces this feature: the idea is to

“listen before talk”. A node senses the channel before transmitting. If the channel is

free, the node sends the packet, otherwise it reschedules the transmission by generating

a random time.

CSMA is a probabilistic Media Access Control (MAC) protocol and there are different

versions of it. The case that we just presented is called nonpersistent CSMA. There

are other two versions: 1-persistent CSMA and p-persistent CSMA.

In the 1-persistent CSMA, if the channel is busy, the node sends the packet immediately

after the channel becomes idle. In this case, if there is another node which is waiting

to transmit, the two nodes will collide when the channel becomes idle.

The p-persistent CSMA doesn’t have this problem. In this case, when the medium

becomes idle, each station transmits with a probability p at the beginning of each slot

and they don’t transmit with a probability 1-p. This process continues until the packet

is sent. The p-persistent CSMA is used in CSMA/CA (where CA means Collision

Avoidance) system including IEEE 802.11.

26

3.2 IEEE 802.11

3.2 IEEE 802.11

IEEE 802.11 is a standard for Wireless Local Area Networks (WLANs). It was pro-

posed for the first time in 1997 [17]. The standard defines two operational modes for

WLANs: infrastructure-based and infrastructure-less or ad-hoc.

A group of corresponding stations is called a Basic Service Set (BSS). In the infrastructure-

based the BSS is organized around an Access Point (AP). The AP provides to other

nodes wireless access to the Internet. Members of the BSS talk to the AP only. When

the cost associated to the infrastructure is high, or when it is not possible to use the

infrastructure, for example after a disaster, an ad-hoc network can be the right solu-

tion. In this operational mode, there isn’t an AP and members of the BSS talk between

themselves directly. The collection of stations that are able to communicate with each

other directly is usually called Indipendent Basic Service Set (IBSS).

The 802.11 standard provides detailed Medium Access Control (MAC) and Physical

Layer (PHY) specification for WLAN.

MAC

The MAC Layer offers two different types of service: the Distributed Coordination

Function (DCF) and the Point Cordination Function (PCF).

DCF is a random access scheme. It is based on the Carrier Sense Multiple Access with

Collision Avoidance (CSMA/CA) protocol.

PCF is a centralized MAC protocol able to support contention-free (CF) and time

bounded services. In this chapter we just consider the DCF protocol. Information

about other protocols can be found in the IEEE standard [17].

PHY

The physical layer can be implemented using four different technologies: Infrared (IR),

Orthogonal Frequency Division Multiplexing (OFDM), Frequency Hopping Spread Spec-

trum(FHSS) and Direct Sequence Spread Spectrum (DSSS).

The 802.11 Family

Today the 802.11 family consists of four different versions, denominated with letters

(a, b, g and n). These versions have different modulations and data rates. 802.11a uses

27

3. IEEE 802.11 WIRELESS NETWORKS

the 5GHz frequency, other versions use the 2.4GHz band. 802.11n can use both 2.4

GHz and 5GHz.

802.11n, which is the most recent protocol, can reach a maximum data rate of 600

Mbit/s using Multiple Input Multiple Output (MIMO) and a larger bandwidth (40

MHz instead of 20 MHz). A brief summary of these versions is reported in Table 3.1.

802.11g operates in the same frequency band as 802.11b, and it is required to remain

backwards-compatible. So 802.11g can use also the DSSS modulation to communicate

with 802.11b stations.

Table 3.1: Parameters of IEEE 802.11 standard

802.11 a b g n

Release 1999 1999 2003 2009

Freq. (GHz) 5 2.4 2.4 2.4 or 5

Band. (MHz) 20 20 20 20 or 40

Max Data Rate 54 11 54 600

MIMO 1 1 1 4

Modulation OFDM DSSS DSSS, OFDM OFDM

3.2.1 Protocol Description - DCF

The Basic Access mechanism for packet transmission is a two-way handshaking. When

a station transmits a packet, it receives immediately an acknowledgment (ACK) from

the receiver station. If the ACK is positive, the sender station considers the packet

as received and moves forward transmitting other packets. Explicit transmission of an

ACK is required since transmitter cannot determine if the packet is received correctly

or not.

DIFS

DCF, as we have seen, uses a CSMA/CA protocol. Before transmitting a packet, the

station senses the channel to determine the channel status. If the medium is sensed idle

for a Distributed InterFrame Space (DIFS) time, the station transmits. Otherwise, if

the medium is busy, the station waits until the channel is sensed idle for a DIFS time.

28

3.2 IEEE 802.11

After this, a random backoff time is generated and it starts decreasing the backoff

counter at the beginning of each free Slot Time. This feature of the protocol is called

Collision Avoidance and is used to reduce the probability that two or more stations

transmit at the same time. To avoid that a station captures the channel, after each

successful transmission a new random backoff time is generated.

Figure 3.1 reports an example of Basic Access mechanism. It represents the axis time

for two stations, A and B. After station B has finished to transmit a packet, it generates

a random backoff time (in this case 8). Station B starts to count down its backoff, but

station A, after sensing the channel idle for DIFS, transmits its packet. B freezes its

counter and resumes its after the channel is sensed idle for a DIFS. Finally, when its

counter reaches 0, it transmits a new packet.

2

PHY Slot Time ()
FHSS 50 s 16 1024
DSSS 20 s 32 1024
IR 8 s 64 1024

TABLE I
Slot Time, minimum, and maximum contention window values for the three
PHY specified by the 802.11 standard: Frequency Hopping Spread Spectrum

(FHSS), Direct Sequence Spread Spectrum (DSSS), Infrared (IR)

are given in Section VIII.

II. 802.11 DISTRIBUTED COORDINATION FUNCTION

This section briefly summarizes the Distributed Coordination
Function (DCF) as standardized by the 802.11 protocol. For
a more complete and detailed presentation, refer to the 802.11
standard [3].

A station with a new packet to transmit monitors the channel
activity. If the channel is idle for a period of time equal to a Dis-
tributed InterFrame Space (DIFS), the station transmits. Other-
wise, if the channel is sensed busy (either immediately or during
the DIFS), the station persists to monitor the channel until it is
measured idle for a DIFS. At this point, the station generates a
random backoff interval before transmitting (this is the Collision
Avoidance feature of the protocol), to minimize the probability
of collision with packets being transmitted by other stations. In
addition, to avoid channel capture, a station must wait a ran-
dom backoff time between two consecutive new packet trans-
missions, even if the medium is sensed idle in the DIFS time1.

For efficiency reasons, DCF employs a discrete-time backoff
scale. The time immediately following an idle DIFS is slotted,
and a station is allowed to transmit only at the beginning of each
Slot Time. The Slot Time size, , is set equal to the time needed
at any station to detect the transmission of a packet from any
other station. As shown in table I, it depends on the physical
layer, and it accounts for the propagation delay, for the time
needed to switch from the receiving to the transmitting state
(RX TX Turnaround Time), and for the time to signal to the
MAC layer the state of the channel (Busy Detect Time).

DCF adopts an exponential backoff scheme. At each packet
transmission, the backoff time is uniformly chosen in the range

. The value is called Contention Window, and
depends on the number of transmissions failed for the packet.
At the first transmission attempt, is set equal to a value

called minimum contention window. After each un-
successful transmission, is doubled, up to a maximum value

. The values and re-
ported in the final version of the standard [3] are PHY-specific
and are summarized in table I.

The backoff time counter is decremented as long as the chan-
nel is sensed idle, “frozen” when a transmission is detected on
the channel, and reactivated when the channel is sensed idle

As an exception to this rule, the protocol provides a fragmentation mecha-
nism, which allows the MAC to split an MSDU (the packet delivered to the MAC
by the higher layers) into more MPDUs (packets delivered by the MAC to the
PHY layer), if the MSDU size exceeds the maximum MPDU payload size. The
different fragments are then transmitted in sequence, with only a SIFS between
them, so that only the first fragment must contend for the channel access.

PACKET A

ACK

ACK
busy medium

SIFS

DIFS
DIFS

4

DIFS DIFS

Slot Time

Slot Time

Slot Time 5: frozen backoff time
8 7 6 5 3 2 1 0

STATION B

STATION A

Fig. 1. Example of Basic Access Mechanism

with Backoff

Others

CTS

SIFS SIFS

Source

Destination

Delayed Medium Access Channel Access

SIFS DIFS

RTS DATA

ACK

NAV (RTS)

NAV (CTS)

Fig. 2. RTS/CTS Access Mechanism

again for more than a DIFS. The station transmits when the
backoff time reaches 0.

Figure 1 illustrates this operation. Two stations A and B share
the same wireless channel. At the end of the packet transmis-
sion, station B waits for a DIFS and then chooses a backoff time
equal to 8, before transmitting the next packet. We assume that
the first packet of station A arrives at the time indicated with an
arrow in the figure. After a DIFS, the packet is transmitted. Note
that the transmission of packet A occurs in the middle of the Slot
Time corresponding to a backoff value, for station B, equal to 5.
As a consequence of the channel sensed busy, the backoff time
is frozen to its value 5, and the backoff counter decrements again
only when the channel is sensed idle for a DIFS.

Since the CSMA/CA does not rely on the capability of the sta-
tions to detect a collision by hearing their own transmission, a
positive acknowledgement (ACK) is transmitted by the destina-
tion station to signal the successful packet reception. The ACK
is immediately transmitted at the end of the packet, after a pe-
riod of time called Short InterFrame Space (SIFS). As the SIFS
(plus the propagation delay) is shorter than a DIFS, no other sta-
tion is able to detect the channel idle for a DIFS until the end of
the ACK. If the transmitting station does not receive the ACK
within a specified ACK Timeout, or it detects the transmission
of a different packet on the channel, it reschedules the packet
transmission according to the given backoff rules.

The above described two-way handshaking technique for the
packet transmission is called Basic Access mechanism. DCF
defines an additional four-way handshaking technique to be op-
tionally used for a packet transmission. This mechanism, known

Figure 3.1: Example of Basic Access Mechanism from [1]

SIFS and EIFS

When a station receives a packet, it senses the channel idle for at least a Short Inter-

Frame Space (SIFS) and sends the ACK. The SIFS is shorter than a DIFS thus the

ACK can be sent immediately after receiving a packet (DIFS = SIFS + 2 x Slottime).

Since SIFS plus the propagation delay is shorter than a DIFS, no other stations can

sense the channel idle for a DIFS, so ACK cannot collide with other transmission. The

ACK is not transmitted if the received packet is corrupted. A Cyclic Redundancy

Check (CRC) algorithm is used for error detection. The probability that the CRC

doesn’t find the corruption is very low and it is often negligible.

When a collision or transmission error happens, the sender station doesn’t access the

channel for at least an Extend InterFrame Space (EIFS) interval. The relationship

29

3. IEEE 802.11 WIRELESS NETWORKS

between InterFrame Space is: EIFS ≥ DIFS ≥ SIFS.

Contention Window (CW)

DCF implements a discrete-time backoff scale that keeps stations syncronized. As we

have seen, the backoff counter decreases at the beginning of each slot. The Time Slot

length (σ) depends on the physical layer and is reported in Table 3.2.

Let’s see in more detail the backoff scheme adopted by DCF. After the channel is

sensed idle for a DIFS time, the backoff time is uniformly chosen in the range (0, w−1)

where w is the Contention Window. When a node sends a new packet, w assumes the

minimum value of contention window (CWmin). When the transmission fails, the value

of w doubles. w can reach a maximum value equal to CWmax. CWmin and CWmax

values depend on the physical layer and are reported in Table 3.2.

PHY FHSS DSSS IR OFDM (802.11a) OFDM (802.11g)

Slot Time(σ) 50 µs 20 µs 8 µs 9 µs 9 µs

DIFS 128 µs 50 µs 26 µs 34 µs 28 µs

SIFS 28 µs 10 µs 10 µs 16 µs 10 µs

CWmin 15 31 63 31 31

CWmax 1023 1023 1023 1023 1023

Table 3.2: Timing for the three PHY specified by the 802.11 standard. For the OFDM

modulation there are two values for the SIFS. We remember that the 802.11g uses also

the DSSS modulation. These values are taken from the standard [17].

RTS-CTS

In addition to the Basic Access scheme, a Request-to-Send/Clear-to-Send mechanism

can be used. In the Basic Access mechanism, the sender stations know that a packet

collides after a time that depends on the length of the packets.

The RTS/CTS mechanism aims to reduce the duration of a collision. Furthermore, this

mechanism reduces the problem of hidden terminals, which occurs when two stations

are in the opposite direction of a common destination station and they cannot hear each

other when they transmit. The RTS/CTS mechanism is shown in Figure 3.2. When the

backoff counter of a station reaches 0, a RTS is sent on the channel. This special packet

30

3.2 IEEE 802.11

is shorter than a data packet, so it reduces the time in the case of collision. If the RTS

packet is received by the destination station, this station replies with a CTS packet.

When a CTS packet is received by the sender station, it proceeds sending the message.

The destination and sender station wait for a SIFS before transmitting RTS/CTS.

The RTS and CTS frames contain the total duration of the transmission of the packet

and the ACK. This information can be read by any listening station and can be used to

set up a timer called Network Allocation Vector (NAV). The NAV information can be

received also by hidden terminals and it delays its packet transmission. The RTS/CTS

mechanism performs well when packets are large. It’s not used when packets are under

a certain size since the overhead would be greater than the effective benefit.

2

PHY Slot Time ()
FHSS 50 s 16 1024
DSSS 20 s 32 1024
IR 8 s 64 1024

TABLE I
Slot Time, minimum, and maximum contention window values for the three
PHY specified by the 802.11 standard: Frequency Hopping Spread Spectrum

(FHSS), Direct Sequence Spread Spectrum (DSSS), Infrared (IR)

are given in Section VIII.

II. 802.11 DISTRIBUTED COORDINATION FUNCTION

This section briefly summarizes the Distributed Coordination
Function (DCF) as standardized by the 802.11 protocol. For
a more complete and detailed presentation, refer to the 802.11
standard [3].

A station with a new packet to transmit monitors the channel
activity. If the channel is idle for a period of time equal to a Dis-
tributed InterFrame Space (DIFS), the station transmits. Other-
wise, if the channel is sensed busy (either immediately or during
the DIFS), the station persists to monitor the channel until it is
measured idle for a DIFS. At this point, the station generates a
random backoff interval before transmitting (this is the Collision
Avoidance feature of the protocol), to minimize the probability
of collision with packets being transmitted by other stations. In
addition, to avoid channel capture, a station must wait a ran-
dom backoff time between two consecutive new packet trans-
missions, even if the medium is sensed idle in the DIFS time1.

For efficiency reasons, DCF employs a discrete-time backoff
scale. The time immediately following an idle DIFS is slotted,
and a station is allowed to transmit only at the beginning of each
Slot Time. The Slot Time size, , is set equal to the time needed
at any station to detect the transmission of a packet from any
other station. As shown in table I, it depends on the physical
layer, and it accounts for the propagation delay, for the time
needed to switch from the receiving to the transmitting state
(RX TX Turnaround Time), and for the time to signal to the
MAC layer the state of the channel (Busy Detect Time).

DCF adopts an exponential backoff scheme. At each packet
transmission, the backoff time is uniformly chosen in the range

. The value is called Contention Window, and
depends on the number of transmissions failed for the packet.
At the first transmission attempt, is set equal to a value

called minimum contention window. After each un-
successful transmission, is doubled, up to a maximum value

. The values and re-
ported in the final version of the standard [3] are PHY-specific
and are summarized in table I.

The backoff time counter is decremented as long as the chan-
nel is sensed idle, “frozen” when a transmission is detected on
the channel, and reactivated when the channel is sensed idle

As an exception to this rule, the protocol provides a fragmentation mecha-
nism, which allows the MAC to split an MSDU (the packet delivered to the MAC
by the higher layers) into more MPDUs (packets delivered by the MAC to the
PHY layer), if the MSDU size exceeds the maximum MPDU payload size. The
different fragments are then transmitted in sequence, with only a SIFS between
them, so that only the first fragment must contend for the channel access.

PACKET A

ACK

ACK
busy medium

SIFS

DIFS
DIFS

4

DIFS DIFS

Slot Time

Slot Time

Slot Time 5: frozen backoff time
8 7 6 5 3 2 1 0

STATION B

STATION A

Fig. 1. Example of Basic Access Mechanism

with Backoff

Others

CTS

SIFS SIFS

Source

Destination

Delayed Medium Access Channel Access

SIFS DIFS

RTS DATA

ACK

NAV (RTS)

NAV (CTS)

Fig. 2. RTS/CTS Access Mechanism

again for more than a DIFS. The station transmits when the
backoff time reaches 0.

Figure 1 illustrates this operation. Two stations A and B share
the same wireless channel. At the end of the packet transmis-
sion, station B waits for a DIFS and then chooses a backoff time
equal to 8, before transmitting the next packet. We assume that
the first packet of station A arrives at the time indicated with an
arrow in the figure. After a DIFS, the packet is transmitted. Note
that the transmission of packet A occurs in the middle of the Slot
Time corresponding to a backoff value, for station B, equal to 5.
As a consequence of the channel sensed busy, the backoff time
is frozen to its value 5, and the backoff counter decrements again
only when the channel is sensed idle for a DIFS.

Since the CSMA/CA does not rely on the capability of the sta-
tions to detect a collision by hearing their own transmission, a
positive acknowledgement (ACK) is transmitted by the destina-
tion station to signal the successful packet reception. The ACK
is immediately transmitted at the end of the packet, after a pe-
riod of time called Short InterFrame Space (SIFS). As the SIFS
(plus the propagation delay) is shorter than a DIFS, no other sta-
tion is able to detect the channel idle for a DIFS until the end of
the ACK. If the transmitting station does not receive the ACK
within a specified ACK Timeout, or it detects the transmission
of a different packet on the channel, it reschedules the packet
transmission according to the given backoff rules.

The above described two-way handshaking technique for the
packet transmission is called Basic Access mechanism. DCF
defines an additional four-way handshaking technique to be op-
tionally used for a packet transmission. This mechanism, known

Figure 3.2: RTS/CTS Access Mechanism from [1]

3.2.2 Analytical Evaluation of the Saturation Throughput

In this section we present Bianchi’s analysis of saturation throughput of 802.11 wireless

network [1].

For the analysis Bianchi makes this assumptions:

• ideal channel conditions (no hidden terminals and capture)

• fixed number of stations n

• each station has a packet available for transmission (saturation conditions)

• p is the conditional collision probability and is assumed constant.

• discrete time that represents time slots

31

3. IEEE 802.11 WIRELESS NETWORKS

We want to find the probability that a station transmits in a randomly chosen slot

time. This depends on the backoff model. Bianchi shows that the backoff window size

can be represented with a discrete-time Markov Chain (Figure 3.3). Each state in the

Markov chain counts for two stochastic processes {s(t), b(t)}.
The first stochastic process s(t) represents the backoff stage. The backoff stage i is

the number of retransmissions for the same packet and it is defined by Wi = 2iW ,

where i ∈ (0,m) and m is the maximum value that i can assume from the relation

CWmax = 2mW .

The second stochastic process b(t) represents the backoff time counter for a station.

The backoff time counter k can assume values in (0,Wi−1) where i was defined above.

When a station wants to transmit a packet for the first time, it chooses a random

backoff counter uniformly between (0,W0 − 1).

The non zero one-step transition probabilities of the Markov Chain are:

P{i, k|i, k + 1} = 1 k ∈ (0,Wi − 2) i ∈ (0,m)

P{0, k|i, 0} = (1− p)/W0 k ∈ (0,W0 − 1) i ∈ (0,m)

P{i, k|i− 1, 0} = p/Wi k ∈ (0,Wi − 1) i ∈ (1,m)

P{m, k|m, 0} = p/Wm k ∈ (0,Wm − 1)

(3.1)

The first equation in (3.1) describes that at the beginning of each slot the backoff

counter is decremented. When station wants to transmit a new packet, the backoff

stage starts from 0 and it is shown in the second equation. The third equation explains

when an unsuccessful transmission occurs: the backoff stage is incremented by 1 and

the following state is chosen uniformly with a probability equal to p/Wi where Wi is

the contention window at the i-th backoff stage. The last equation accounts for the

fact that when the contention window has reached the maximum, it cannot increase

and the transition probability is p/Wm.

The stationary distribution of the chain is:

πi,k = lim
t→inf

P{s(t) = i, b(t) = k} i ∈ (0,m), k ∈ (0,Wi − 1). (3.2)

It is possible to obtain a closed-form solution of the Markov chain, all passages are

reported in [1], we just report the result. The probability τ that a station transmits in

a randomly chosen slot is:

τ =
m∑
i=0

πi,0 =
π0,0

1− p =
2(1− 2p)

(1− 2p)(W + 1) + pW (1− (2p)m)
(3.3)

32

3.2 IEEE 802.11
4

needs to wait for a random backoff time before transmitting.
Let be the stochastic process representing the backoff

time counter for a given station. A discrete and integer time
scale is adopted: and correspond to the beginning of two
consecutive slot times, and the backoff time counter of each sta-
tion decrements at the beginning of each slot time. Note that this
discrete time scale does not directly relates to the system time.
In fact, as illustrated in figure 1, the backoff time decrement
is stopped when the channel is sensed busy, and thus the time
interval between two consecutive slot time beginnings may be
much longer than the slot time size , as it may include a packet
transmission. In what follows, unless ambiguity occurs, with
the term slot time we will refer to either the (constant) value ,
and the (variable) time interval between two consecutive backoff
time counter decrements.
Since the value of the backoff counter of each station depends

also on its transmission history (e.g. how many retransmis-
sion the head-of-line packet has suffered), the stochastic pro-
cess is non markovian. However, define for convenience

. Let , “maximum backoff stage”, be the
value such that , and let us adopt the nota-
tion , where is called “backoff stage”.
Let be the stochastic process representing the backoff stage

of the station at time .
The key approximation in our model is that, at each transmis-

sion attempt, and regardless of the number of retransmissions
suffered, each packet collides with constant and independent
probability . It is intuitive that this assumption results more
accurate as long as and get larger. will be referred to as
conditional collision probability, meaning that this is the prob-
ability of a collision seen by a packet being transmitted on the
channel.
Once independence is assumed, and is supposed to be a

constant value, it is possible to model the bidimensional process
with the discrete-time Markov chain depicted in fig-

ure 4. In this Markov chain, the only non null one-step transition
probabilities are2:

(1)
The first equation in (1) account for the fact that, at the begin-
ning of each slot time, the backoff time is decremented. The
second equation accounts for the fact that a new packet follow-
ing a successful packet transmission starts with backoff stage 0,
and thus the backoff is initially uniformly chosen in the range

. The other cases model the system after an unsuc-
cessful transmission. In particular, as considered in the third
equation of (1), when an unsuccessful transmission occurs at
backoff stage , the backoff stage increases, and the new ini-
tial backoff value is uniformly chosen in the range . Fi-
nally, the fourth case models the fact that once the backoff stage
reaches the value , it is not increased in subsequent packet
transmissions.

we adopt the short notation:
.

p/W1

0,W -20 0,W0 -10,0 0,1 0,21

1 -1i-20,W

11

m,11 1 1m,0 m,2 -1m,Wm-2 m,Wm

p/Wi
p/Wi

i

p/Wm

p/Wm

0(1-p)/W
0(1-p)/W

p/Wm

0,Wi,0 i,1 i,2

i-1,0

1 1

p/Wi+1

p/Wm

Fig. 4. Markov Chain model for the backoff window size

Let , ,
be the stationary distribution of the chain. We

now show that it is easy to obtain a closed-form solution for this
Markov chain. First, note that

(2)
Owing to the chain regularities, for each , it is:

(3)

By means of relations (2), and making use of the fact that
, equation 3 rewrites as:

(4)

Thus, by relations (2) and (4), all the values are expressed as
function of the value and of the conditional collision proba-
bility . is finally determined by imposing the normalization
condition, that simplifies as follows:

(5)

from which:

(6)

We can now express the probability that a station transmits
in a randomly chosen slot time. As any transmission occurs
when the backoff time counter is equal to 0, regardless of the

Figure 3.3: Markov Chain model for the backoff window size from [1]

The probability p that a packet collides is equal to the probability that at least one of

n− 1 stations transmit in the same slot and is:

p = 1− (1− τ)n−1 (3.4)

with the assumption of independence between stations.

Throughput

The probability of a successful transmission is equal to the probability that just one

station transmits:

Ps =
P [1 station TX]

P [≥ 1 station TX]
=
nτ(1− τ)n−1

1− (1− τ)n
. (3.5)

The throughput S, defined as the fraction of time the channel is used for successful

transmissions, is equal to:

S =
E[payload TX in a time slot]

E[length of a slot time]
=

PsPtrE[P]

(1− Ptr)σ + PtrPsTs + Ptr(1− Ps)Tc
(3.6)

where at the numerator Ps is the probability of successful transmission, Ptr is the

probability that at least one station transmits in that slot and it is equal to Ptr = 1−
(1−τ)n and E[P] is the average packet payload size. The denominator of equation (3.6)

is composed by three factors. The first (1−Ptr)σ accounts for the time wasted without

any transmissions, the second PtrPsTs describes the time for a successful transmission

33

3. IEEE 802.11 WIRELESS NETWORKS

and the last term accounts for the time wasted by collisions.

Let’s see in more details the time Ts for a successful packet transmission and the time

Tc wasted for a collision presented in theFigure 3.4.
5

backoff stage, it is:

(7)
As a side note, it is interesting to highlight that, when

, i.e. no exponential backoff is considered, the probability
results to be independent of , and equation (7) becomes the
much simpler one independently found in [9] for the constant
backoff window problem:

(8)

However, in general, depends on the conditional collision
probability , which is still unknown. To find the value of
it is sufficient to note that the probability that a transmitted
packet encounters a collision, is the probability that, in a time
slot, at least one of the remaining stations transmit. The
fundamental independence assumption given above implies that
each transmission ”sees” the system in the same state, i.e. in
steady state. At steady state, each remaining station transmits a
packet with probability . This yields:

(9)

Equations (7) and (9) represent a non linear system in the two
unknowns and , which can be solved using numerical tech-
niques. It is easy to prove that this system has a unique solution.
In fact, inverting (9), we obtain .
This is a continuous and monotone increasing function in the
range , that starts from and grows up to

. Equation defined by (7) is also continuous in
the range : continuity in correspondence of the criti-
cal value is simply proven by noting that can be
alternatively written as:

and therefore . Moreover, is
trivially shown to be a monotone decreasing function that starts
from and reduces up to

. Uniqueness of the solution is now proven noting that
and .

B. Throughput

Let be the normalized system throughput, defined as the
fraction of time the channel is used to successfully transmit pay-
load bits. To compute , let us analyze what can happen in a
randomly chosen slot time. Let be the probability that there
is at least one transmission in the considered slot time. Since
stations contend on the channel, and each transmits with proba-
bility ,

(10)

The probability that a transmission occurring on the channel
is successful is given by the probability that exactly one station

RTS DIFS

T collision RTS/CTS

SIFS ACK DIFS

T success basic access

PHY
hdr PAYLOADMAC

hdr

PHY
hdr PAYLOADMAC

hdr DIFS

T collision basic access

SIFS SIFS SIFS ACK DIFSRTS CTS PHY
hdr PAYLOADMAC

hdr

T success RTS/CTS

Fig. 5. and for Basic Access and RTS/CTS mechanisms

transmits on the channel, conditioned on the fact that at least one
station transmits, i.e.:

(11)

We are now able to express as the ratio:

(12)
Being the average packet payload size, the average amount
of payload information successfully transmitted in a slot time
is , since a successful transmission occurs in a slot
time with probability . The average length of a slot time is
readily obtained considering that, with probability , the
slot time is empty; with probability it contains a success-
ful transmission, and with probability it contains a
collision. Hence, (12) becomes:

(13)

Here, is the average time the channel is sensed busy (i.e.
the slot time lasts) because of a successful transmission, and
is the average time the channel is sensed busy by each station
during a collision. is the duration of an empty slot time. Of
course, the values , , , and must be expressed with
the same unit.

Note that the throughput expression (13) has been obtained
without the need to specify the access mechanism employed.
To specifically compute the throughput for a given DCF access
mechanism it is now necessary only to specify the correspond-
ing values and .

Let us first consider a system completely managed via the
Basic Access mechanism. Let be
the packet header, and be the propagation delay. As shown in
figure 5, in the Basic Access case we obtain:

(14)

Figure 3.4: Ts adn Tc for Basic Access and RTS/CTS mechanism from [1]

For the Basic Access mechanism :
T bass = H + E[P] + SIFS + δ +ACK +DIFS + δ

T basc = H + E[P ∗] +DIFS + δ non colliding stations

T basc = H + E[P ∗] +DIFS + δ +ACKtimeout colliding stations

(3.7)

where δ is the propagation time and is usually assumed equal to 1 µs, E[P] is the

average time spent transmitting a packet and E[P ∗] is the average time of the longest

payload involved in a collision. If it is assumed for simplicity that all packets have the

same length E[P ∗] = E[P] = P . The time of collision for colliding stations reported in

equation (3.7) accounts for the fact that stations before sensing the channel again need

to wait for an ACK timeout.

In the case of RTS/CTS mechanism:
T rtss = RTS + 3SIFS + 4δ + CTS +H + E[P] +ACK +DIFS

T rtsc = RTS +DIFS + δ non colliding stations

T rtsc = RTS +DIFS + δ + CTStimeout colliding stations

(3.8)

Equation (3.8) shows clearly that there is more overhead to transmit with RTS/CTS in-

stead of Basic Access. When packets are colliding, the time wasted is just the RTS time.

34

3.3 MULTI-RATE

Colliding stations need to wait for a CTStimeout that it is similar to the ACKtimeout.

Now we have all elements to compute the throughput in equation (3.6). Bianchi’s anal-

ysis is really useful to understand the performance of wireless networks. However this

analysis assumes that all stations use the same rate and the same probability access-

ing the channel. In the next section we will see what happens when a station uses a

different Data Rate.

3.3 Multi-Rate

Multi-Rate is the ability of a station to automatically operate at several different bit-

rates. A station changes its rate depending on the channel quality. When the distance

between two hosts increases, the channel quality decreases. Thus, using a lower rate

keeps the Packet Error Rate (PER) low.

Each Data Rate uses a different Modulation (BPSK,QPSK,16-QAM,64-QAM) and a

different Coding Rate (1/2, 2/3, 3/4). A lower rate uses a modulation (e.g BPSK) where

there is a greater distance between adjacent points of the constellation and consequently

the error is lower than other modulations. Table 3.3 shows which rates are used by

802.11 family.

PHY Data Rate (Mb/s)

802.11b 1, 2, 5.5, 11

802.11g 6, 9, 12, 18, 24, 36, 48, 54

802.11a 6, 9, 12, 18, 24, 36, 48, 54

Table 3.3: PHY Data Rate for the 802.11 standard.

3.3.1 Rate Adaptation

We have said that rates change depending on the channel quality. Several algorithms

have been proposed to adapt rates, here we consider: ARF, AARF and SNR-based.

ARF

Auto Rate Fall-back [13] is a simple rate adaptation algorithm. The idea is that a

station increases its PHY Rate when a certain number of transmission successes occur

consecutively and it switches back to a lower rate after 1 or 2 consecutive failures.

35

3. IEEE 802.11 WIRELESS NETWORKS

However, this algorithm suffers when the channel conditions change very quickly since

ARF cannot adapt effectively and when the channel conditions do not change at all

since ARF would try to increase the rate. An interesting throughput analysis of ARF

in a lossy channel is presented by Yun in [14].

AARF

Adaptive Auto Rate Fall-back is the evolution of ARF. When the channel conditions

do not change, ARF is not able to stabilize for a long period and trying higher rate

decreases the application throughput. Indeed, AARF changes continuously the thresh-

old to reflect the channel conditions. When a packet fails, AARF switches back to a

lower rate and multiplies by two the number of consecutive successful transmissions

(maximum 50) required to switch to a higher rate. AARF uses a more conservative

approach with respect to ARF and has been shown to perform better than ARF in[15].

SNR-based

The SNR-based algorithm estimates the Signal to Noise Ratio of a packet for a given

wireless link. Depending on the SNR value, the algorithm chooses the best rate to

optimize the application throughput. For that rate the PER is low enough such that

the number of retransmissions is low. In the case of fixed stations or low mobility, this

algorithm is similar to AARF. The ARF and SNR-based algorithms are included in

the external library dei802.11mr [20] of ns2. In our simulations we use a SNR-based

algorithm since we consider fixed stations.

3.3.2 Performance Anomaly

We have seen some rate adaptation algorithms, each of them try to optimize the

throughput of a station varying the data rate. However, what happens if in the same

transmission range there is a station that uses a lower rate with respect to the others?

When a station uses a lower bit rate, it captures the channel for a long time, so the

performance of all the stations is considerably degraded. This problem has been ana-

lyzed by Heusse in [16] for 802.11b.

He considered N stations transmitting with different rates, N − 1 nodes use the high

transmission rate R = 11Mb/s and one uses a lower rate r = 5.5, 2 or 1 Mb/s. He

analyzed the performance of this system assuming that each node has packet to send.

He showed that the throughput at MAC layer of stations transmitting with a higher

36

3.3 MULTI-RATE

rate R is the same of the station transmitting with a lower rate r.

This is a consequence of the fairness of CSMA/CA; indeed the long term channel access

probability is equal for all the stations. Therefore, when the node transmitting with a

lower rate, (e.g r = 1Mb/s) accesses the channel, it captures the channel eleven times

longer than stations transmitting at 11 Mb/s.

37

3. IEEE 802.11 WIRELESS NETWORKS

38

Chapter 4

Wireless Channel Model

In this chapter we report a brief overview of wireless channel. We show some problems

related to the wireless channel and we present two models to characterize the wireless

channel. In the last part of the chapter we talk about the channel model used for the

simulations with ns2.

4.1 Introduction

The wireless channel puts fundamental limitations to the performance of wireless com-

munications systems. If the transmitter or the sender moves during the transmission,

the channel changes fast and the performance is reduced drastically.

The first characteristic of the wireless channel is that it attenuates the transmitted sig-

nal. Consider a signal s(t) of power Pt transmitted over the channel and the received

signal r(t) of power Pr. The radio channel attenuation is :

Pa =
Pt
Pr

(4.1)

The attenuation depends on three factors: Path Loss, Shadowing and Multipath.

• Path Loss is the main cause of signal attenuation over the distance. It is caused

by the dissipation of the power radiated by the transmitter. (variations over 100

meters)

• Shadowing is caused by obstacles which are between the transmitter and the re-

ceiver. These obstacles attenuate the signal power through absorption, reflection,

scattering, and diffraction. (variations 10-100 meters)

39

4. WIRELESS CHANNEL MODEL

• Multipath is the effect that happens when the radio signal received is composed by

signals that followed different paths. This brings to constructive and destructive

interference and phase shifting of the signal. (variations of signal wavelength λ)

These three components are presented in Figure 4.1.

michele.rossi@dei.unipd.it

Combined effect of path loss, shadowing and multi-path

PL " variations over 100 -1000 meters, large scale

Shadowing " variations over 10 – 100 meters, medium scale
Multi-path " variations over very short distances (signal wavelength),

 small-scale propagation effects
Figure 4.1: Combined effect of path loss, shadowing and multipath with increasing

distance.

4.1.1 Signal Propagation

To introduce the analytical model for the wireless channel, we have first to present the

analytical representation for the transmitted and received signal.

Consider a narrowband pass-band signal s(t) at the carrier frequency fc. The trans-

mitted and received signals are real since modulators are built using oscillators that

generate real sinusoids. The channel can be modeled as a linear filter with impulse

response h(t) (Figure 4.2).

s(t) h(t) r(t)

Figure 4.2: The channel can be represented as a linear filter with response h(t)

We can write the transmitted signal s(t) as the real part of a complex signal:

s(t) = <
{
u(t)ej2πfct

}
= <{u(t)} cos(2πfct)−={u(t)} sin(2πfct) (4.2)

where u(t) is the complex envelope of s(t) and fc is the carrier frequency. <{u(t)} is

the in-phase component and ={u(t)} is the quadrature component of the signal.

40

4.2 CHANNEL MODELS

The channel changes the amplitude and the phase at each frequency of the transmitted

signal and can be modeled by h(t) = aejφδ(t− τ).

Therefore the received signal r(t) is related to the input signal s(t) and the impulse

response h(t) by the convolution integral:

r(t) =

∫ ∞
−∞

h(ξ)s(t− ξ)dξ =

∫ ∞
−∞

aejφδ(ξ − τ)s(t− ξ)dξ = aejφs(t− τ). (4.3)

In conclusion, the channel produces an attenuation, a delayed and a deterministic

shift of the phase on the received signal.

4.2 Channel models

We introduce two analytical models for the wireless channel: free-space path loss and

two ray model.

4.2.1 Free-Space Path Loss

Suppose a signal s(t) transmitted through a free space to a receiver at distance d. We

suppose that there are no obstacles between the sender and the receiver, (no shadowing

or multipath). The signal that propagates from the transmitter to the receiver along a

straight line, is also indicated also as Line of Sight (LOS) signal.

The receiver signal r(t) is:

r(t) = <
{√

GtGre
−j2πd/λ

4πd
u(t)ej2πfct

}
(4.4)

where Gt and Gr are the antenna gains respectively at the transmitter and at receiver

in the transmission direction. e−j2πd/λ is the phase shift due to the distance d which

the wave travels. From equation (4.4), we can compute the ratio of the received to

transmitted power:
Pr
Pt

= GtGr

(
λ

4πd

)2

(4.5)

Equation (4.5), also called the Friis equation, shows the relation between the path loss

and the distance d. In particular, the signal power decreases proportionally to the

square of the distance.

The received Power can be represented in dBm by:

Pr(dBm) = Pt(dBm) + 10 log10(GtGr) + 20 log10(λ)− 20 log10(4πd) (4.6)

41

4. WIRELESS CHANNEL MODEL

The free-space path loss is defined as:

PL(dB) = 10 log10

Pt
Pr

= −10 log10

Glλ
2

(4πd)2
. (4.7)

4.2.2 Two Ray Path Loss

A more accurate model for the signal propagation is the two ray model. This model

takes into consideration the multipath effect, in particular assumes that the signal at

the receiver is composed by the LOS signal and a reflected component. The reflected

component is the transmitted signal reflected by the ground, (Figure 4.3). The received

michele.rossi@dei.unipd.it

Two-Ray model (simplest example of Ray-tracing)

-! It is used when the ground reflection dominates the multi-path effect

-! The LOS ray is given by the Free-Space propagation formula
-! We apply superposition of the effects (remember: linear channel)

Figure 4.3: Two ray model

signal is given by the sum of the two components. Since the channel is modeled as a

linear filter, we can apply superposition of the effects and find:

r2ray(t) = <
{
λ

4π

[√
Glu(t)e−j2πl/λ

l
+
R
√
Gru(t− τ)e−j2π(x+x′)/λ

x+ x′

]
ej2πfct

}
. (4.8)

The first component of equation (4.8) counts for the LOS signal where the wave prop-

agates for a distance l.
√
Gl =

√
GaGb is the product of the antenna gains in the LOS

direction. The second component of equation (4.8) counts for the reflected signal. The

distance in this case is equal to x + x′ and since x + x′ > l, this component reaches

the receiver with a time delay equal to τ = (x + x′ − l)/c. The
√
Gl =

√
GcGd is the

product of the antenna gains in the direction of reflected signal and R is the ground

reflection coefficient.

Since the transmitted signal is narrow band relative to the delay (τ << B−1
u), it follows

that u(t) ≈ u(t− τ). From this consideration we can derive the received power:

Pr = Pt

[
λ

4π

]2 ∣∣∣∣∣
√
Gl
l

+
R
√
Gre

−j∆φ

x+ x′

∣∣∣∣∣
2

. (4.9)

42

4.2 CHANNEL MODELS

where ∆φ = 2π(x+ x′) is the phase difference between the two received signals.

Furthermore, we can simplify the equation above when d >> 0 and assuming that,

x+ x′ ≈ l ≈ d, Gl ≈ Gr, ∆φ ≈ 4πhthr
λd and R = −1 and we obtain:

Pr ≈
[
λ
√
Gl

4πd

]2 [
4πhthr
λd

]2

Pt =

[√
Glhthr
d2

]2

Pt (4.10)

that in dBm is:

Pr(dBm) ≈ Pt(dBm) + 10 log10(
√
Gl) + 20 log10(hthr)− 40 log10(d). (4.11)

When the distance d between the transmitter and the receiver is large enough, from

equation (4.10) we see that the received power decreases as the fourth power of the

distance d.

In Figure 4.4, we plot the received power varying the distance d (d > 10m) and for

101 102 103 104
−130

−120

−110

−100

−90

−80

−70

−60

−50

−40

−30

log10(d)

R
ec

ei
ve

d
Po

w
er

(d
Bm

)

Two Ray
 Free−Space

Figure 4.4: Two Ray vs Free Space

the free-space and two ray model. We use the same parameters used to simulate 802.11

stations in ns2: f = 2437MHz, R = −1, hr = ht = 2m, Gt = Gr = 1 and the transmit

power Pt = 0.1W.

It is interesting to notice that with two ray model you can have a very low received

power even for small distance (10 < d < 100) .This is caused by destructive interference

of two rays.

Furthermore Figure 4.4 shows that after a distance the received power decreases faster

43

4. WIRELESS CHANNEL MODEL

with two ray model than free space. This is explained by equation (4.10) in which we

have seen that the power decreases with the fourth power of the distance.

4.3 Noise and Interference Contribution

The path loss is not the only source of attenuation. The received signal r(t) is affected

by the noise n(t), so a more accurate equation is r(t) = s(t) + n(t). The noise n(t) is

modeled as a Gaussian random process with zero mean (AWGN) and power spectral

density N0/2.

4.3.1 SNR and SINR

We define the Signal to Noise Ratio (SNR) as the ratio of the received power to the

noise power within the bandwidth of the transmitted signal. If the bandwidth of the

complex envelope u(t) is denoted with B, the bandwidth of the transmitted signal s(t)

is 2B. From this we have:

SNR =
Pr
N0B

. (4.12)

Until now, we had considered that there is just one sender and one receiver. When

there are several transmitters, the interference of other transmissions has an important

role on the quality of the received signal. We define the Signal to Interference Noise

power Ratio (SINR) as the ratio of received Power to the power of the noise with the

bandwidth and sum of the power of interference:

SINR =
Pr

N0B +
∑

i 6=r Pi
. (4.13)

4.4 Channel model in NS 2

In this section we want just to present the channel model used for the simulations.

More details about Network Simulator (NS 2) are presented in Chapter 6.

The default channel model in NS 2 is a “Black and White” model for packet reception,

where two nodes are either in range (every bit is correctly received) or out of range

(all bits are lost). Unfortunately this model does not allow for realistic rate selection.

A typical Rate Adaptation algorithm would choose the highest possible rate in the

transmission range and it would change rarely since the packet errors are just due to

collisions.

44

4.4 CHANNEL MODEL IN NS 2

For this reason, we use the external libray dei80211mr[20] which furnishes a better

channel model.

4.4.1 An improved NS 2 channel model

The channel model is implemented that whenever a node receives a packet, it calculates

the SINR for that packet and based on the SINR and the Transmission Data Rate it

computes the Packet Error Rate (PER). The PER is calculated using pre-determined

curves (PER vs SINR and packet size). Some default curves for both 802.11g and

802.11b are provided. Figure 4.5 shows the default curves for 802.11g versus experiment

for 1500Byte packets for four different rates.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

P
a
c
k
e
t
D

e
liv

e
ry

 P
ro

b
a
b
ili

ty

SNR [dB]

NS-2
Expmt.

(a) 12Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

P
a
c
k
e
t
D

e
liv

e
ry

 P
ro

b
a
b
ili

ty

SNR [dB]

NS-2
Expmt.

(b) 18Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

P
a
c
k
e
t
D

e
liv

e
ry

 P
ro

b
a
b
ili

ty

SNR [dB]

NS-2
Expmt.

(c) 24Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

P
a
c
k
e
t
D

e
liv

e
ry

 P
ro

b
a
b
ili

ty

SNR [dB]

NS-2
Expmt.

(d) 48Mbps

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 5 10 15 20 25 30

P
a
c
k
e
t
D

e
liv

e
ry

 P
ro

b
a
b
ili

ty

SNR [dB]

NS-2
Expmt.

(e) 54Mbps

Fig. 2. Experiment vs. simulation results for 1500Byte packets

54Mbps. Since we deal with static networks in this paper,
stable Signal-to-Noise Ratios (SNRs) are observed at nodes.
Hence, like [12] and [17], we measure channel conditions
at the receiver by measuring SNR of data packets. For the
same SNR, transmitting at a lower rate will tend to result in
a lower error rate. To verify this, we first plot packet delivery
probability vs. SNR in Fig. 2 for a unicast link with different
transmission rates from an experiment. Note that plots for
some of the transmission rates are not shown due to lack of
space. The experimental setup used a Linksys WRT54G with
DD-WRT access point as a sender and a Netgear WG111v2
wireless card as receiver. For each result 10000 packets of
1500Bytes were sent from the access point. We then present
corresponding results from a NS-2 simulation for comparison
in Fig. 2. Since the simulation characteristics closely mirror
those exhibited by the experiments and that presented in prior
work [6], [15], we generate further results for rate selection
using NS-2.

Though IEEE 802.11g allows transmission rates from
6Mbps to 54Mbps, the maximum achieved throughput does
not increase linearly due to protocol overhead. For a given
packet size, we can translate these transmission rates into
maximum throughput in terms of packets-per-second (pps).
We simulate a unicast link with a packet size of 1500Bytes
in NS-2 (simulation details presented later in §VI) with the
results shown in Table I.

We now have the packet delivery probability for any given
SNR (cf. Fig. 2) and the maximum throughputs achieved
with all rates (cf. Table I). Therefore it is straightforward
to determine the SNR range for which each rate maximizes
throughput. This is shown in Table I. Note that 9Mbps is
never selected as a transmission rate (similar to an observation
made in [24]). We use this generic rate adaptation scheme
to determine transmission rates on unicast links. Since we
concentrate on static networks in this work, any rate adaptation
scheme that maximizes throughput will only do as well as
our rate adaptation scheme. In addition, our approach to rate
selection is orthogonal to the rate adaptation solution by
design.

III. NETWORK CODING AND RATE SELECTION

In this section we present the basic motivation and design
of our rate selection protocol. The purpose of this protocol is

TABLE I
TRANSMISSION RATES AND RATE ADAPTATION FOR 1500BYTE PACKETS

Mbps pps SNR Range Mbps pps SNR Range
6 376 ≤ 3.77 24 905 9.99-15.61
9 508 NA 36 1071 15.61-18.40

12 616 3.77-8.90 48 1182 18.4-23.10
18 783 8.9-9.99 54 1222 > 23.10

to adequately deliver packets and to gather SNR information
which is then used in the rate selection algorithm (cf. §V).

To enable inter-flow coding 2 or more flows need to intersect
appropriately i.e., with requisite overhearing requirements as
demonstrated with an example (cf. Fig. 1) in §II-A. The large
majority of coding opportunities in practical networks will
code only a few packets. We posit that in many cases coding is
limited to two packets. While scenarios may occur that result
in more packets being coded, since the likely cases will involve
just two packets, we use this as the basis for our analysis.

For the frequently occurring instance of coding only two
packets, the three simple scenarios shown in Fig. 3 (disregard
SNR and rate annotations in the figures for now) exhaustively
represent all possible inter-flow coding patterns that may occur
in a large network with our per-hop encoding and decoding
approach. Solid arrows represent actual next-hop relationships.
Dotted arrows denote overhearing required to make network
coding at the intersection node n0 feasible. Note that to enable
network coding in a large network these patterns will need to
be detected in a distributed manner.

A rate selection algorithm has to address an overhearing
tradeoff and a multicast tradeoff. Consider the 5 node scenario
in Fig 3(c). Nodes n3 and n4 have to transmit at a rate
such that overhearing is successful at n2 and n1, respectively.
If these nodes do not enable successful overhearing, coding
will not occur at n0. For example, let SNR at n0 and n2

from n3 be 23.3dB and 17.3dB, respectively. If n3 transmits
at 54Mbps (corresponding to 23.3dB, cf. Table I), packets
will be overheard at n2 with probability 0.22 - (cf. Fig. 2).
Hence promoting overhearing at n2 may require reducing the
transmission rate at node n3. But this may reduce throughput
at direct target n0. This is the overhearing tradeoff. To address
this tradeoff we maximize total throughput at hyperarc targets
- direct and overhearing, as presented in detail in §V.

Now consider node n0 in Fig. 3(c) which is connected
to n1 and n2 with links supporting 15.3dB and 23.3dB

Figure 4.5: Simulations versus Experiments for 1500 Byte packets from [4]

4.4.2 Transmission Range, Interference Range and Carrier Sense Range

We have seen that the distinction between the Transmission Range, Interference Range

and Carrier Sense Range is not clear in NS2 and it varies with different implementations

of the channel model. In this section we want to clarify these zones.

When a node transmits a packet, receiver nodes are usually divided in three groups

accordingly to the SNR received and the distance from the sender:

• transmission range (R): the range inside which nodes are able to receive the

transmitted packet.

• interference range (Ri): the range inside which any new transmission may inter-

fere with the packet reception.

• carrier sense range (Rs): the range inside which nodes are able to sense the

signal, even though correct packet reception may not be available.

45

4. WIRELESS CHANNEL MODEL

The relation between these ranges is usually R < Ri < Rs.

In the dei80211mr implementation Ri coincides with Rs and R varies depending on

the transmission rate. In the presence of a rate adaptation algorithm, we have noticed

that nodes prefer sending a packet using a low data rate to a node far away instead

of sending to an intermediate node with a higher data rate. It has been shown in [31]

and [32] that is better to have a sequence of two higher data rate transmissions than

one with lower data rate. Moreover, in our case, we need that the transmission goes

through the relay node to make the coding.

To avoid that a node chooses one single lower rate transmission instead of two higher

data rate transmissions, we reintroduce the Rx Threshold in the dei80211mr implemen-

tation. This threshold permits to fix R depending on the received power (Pr). Once

the transmitted power is fixed, the received power depends on the distance, so fixing

the Rx Threshold is like fixing the Transmission Range.

In conclusion, we fix Rx Threshold so that:

• R is about 100 metres

• Ri = Rs is 200 metres.

In [18] Deng et al. study the optimal tuning of the carrier sensing range in ad hoc

networks and they show that tuning this parameter can improve the performance of ad

hoc networks. However keeping Rs fixed and equal to Ri is reasonable and it has been

adopted also in other papers like [4].

46

4.4 CHANNEL MODEL IN NS 2

R

Ri = Rs

Figure 4.6: Transmission Range (R) and Interference Range Ri = Rs for a wireless

station.

47

4. WIRELESS CHANNEL MODEL

48

Chapter 5

Problem Analysis and Proposed

Algorithm.

We have seen in previous chapters how COPE works, the Basic Access scheme of IEEE

802.11 wireless network and wireless channel models. In this Chapter, we use these

concepts for our analysis and we present our proposed queue management algorithm.

We consider the five nodes topology network presented in Figure 5.1. The five nodes

are a recurrent topology in larger networks and it is often analyzed for its simplicity.

We assume that there are two packet flows which intersect at the relay node. The relay

node codes together packets from different flows.

First we model this scenario through a Markov chain and we compute the throughput

at the relay node. This model takes into consideration nodes with different PHY data

rate and shows how changing the Contention Window affects throughput.

Then, we propose a queue management algorithm to improve the throughput of the

network. Other queue management has been proposed in [30].

5.1 Five nodes topology

Let’s consider the five nodes topology, each node is represented by a letter in Figure 5.1.

We consider two UDP flows: from A to D and from B to C. Since A can not transmit

packets directly to D, it sends the packets to a relay node J and B sends packet to

J, too. We suppose that nodes A and B have always packets to transmit (saturation

traffic).

Each node can overhear packets transmitted in its transmission range and it saves over-

49

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

heard packets for a determined amount of time (usually T = 0.5s). Node J keeps two

virtual queues with packets for C and for D. If J has packets from both virtual queues,

it codes (XOR) together the native packets at the head of each queue.

However, when J has packets just for one nexthop, it transmits the native packet and

loses the coding opportunity.

When a receiver node, e.g. C, receives the XORed packet, it is able to decode the

packet and it extracts its native packet if it has overheard successfully the packet from

A.

Since the overhearing depends on the wireless channel and it is different for each couple

of nodes, node C may not overhear correctly the packet transmitted from A to J. In

such a case the receiver node cannot decode the XORed packet sent by J.

We also consider that the sender nodes and the relay node use a rate adaptation algo-

rithm to increase the capacity of the wireless network. The rate is chosen taking into

account overhearing and decoding probability at the receiver nodes.

A B

J

C D

Figure 5.1: Two packet flows: A→ D, B→ C. J is the relay node. C and D can overhear

packets (dotted line)

Since the Packet Error Rate (PER) can be different for each wireless link, J can

have virtual queues with different lengths. Having virtual queues unbalanced increases

the probability that one of these becomes empty and J loses the coding opportunity.

Since the input traffic for node Jack is double of its output capacity, it starts accumu-

lating packet in the queue.

For these two reasons, we studied if we can improve the capacity of this wireless net-

work balancing the queue at the relay node J.

We aim to increase the coding opportunity and the throughout. We propose to change

50

5.1 FIVE NODES TOPOLOGY

the probability of accessing the channel of the sender nodes tuning the Contention Win-

dow (CW) at the MAC layer. Based on how many packets are in the virtual queues

and on the PER of the links, the relay node J sends to sender nodes (A,B) the initial

value of CW i
min where i ∈ (A,B) with the goal to balance its virtual queues.

5.1.1 Modeling channel access with different PHY Rates

First we consider just three nodes (A,B and J) as shown in Figure 5.2. We want to

analyze channel access with different rates and we want to compute the throughput at

node J.

Sender nodes (A,B) have their own Data Rate Rn which depends on the rate adaption

algorithm. We assume that each station has packet to transmit (saturation condition).

A B

J

Ra

Wa

Rb

Wb

Figure 5.2: Two packet flows: A→ J, B → J. Rn is the data rate of node n, Wn is the

Minimum Contention Window.

We use CSMA/CA as in IEEE 802.11 to characterize the channel access. After a

node senses the channel idle for a DIFS, it chooses uniformly a backoff counter i in a

Contention Window [0,Wn − 1] with n = (A,B).

To keep the model simple, the Contention Window is not doubled after a failed trans-

mission but it is constant and equal to the Minimum Contention Window. We will

show in the simulation that the hypothesis of fixing the Contention Window is a good

approximation since there are only two nodes transmitting.

Let’s consider the example shown in Figure 5.3: A has just finished to transmit a

packet and it has another one to transmit. It chooses a random backoff time to wait

to access the channel for the new transmission. When the channel is IDLE, node A

51

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

can decrease its backoff (fa,i); when node B transmits, the channel is sensed BUSY

and node A freezes its backoff counter(txb,i). It restarts to countdown after B finishes

the transmission and the channel is sensed IDLE (fa,i′ with the backoff counter i′ < i).

When the backoff counter reaches 0, node A transmits its packet on the channel.

Figure 5.3 shows two different time axis depending on the rate of node B; when node

B uses a lower rate than A (Rb < Ra), station A has to wait more time to transmit

the new packet. The throughput of node A is reduced because the channel is occupied

more time by station B.

t

txb,ifa,i

t

txb,i’ txafa,i’ fa,i’’

txb,ifa,i txb,i’ txafa,i’ fa,i’’

new transmission

12 11 10 9 8 7 6 5 4 3 2 1 0

frame A frame B frame B frame A

frame B frame B frame Aframe A

12 11 10 9 8 7 6 5 4 3 2 1 0

new transmission

NODE A

NODE A

Ra=Rb

Ra>Rb

Figure 5.3: Time axis of node A. In the first case if the rate of node B is equal to the

rate of node A. In the second case with different rate.

The discrete Markov Chain in Figure 5.4 wants to represent the example above.

The discrete time of the chain is equal to the slot time T of the backoff counter.

Markov chain states

The state txa represents the time spent by node A transmitting a new packet and its

relative ACK. The time spent in txa depends on the length of the packet and on the

transmission data rate. We model this time with a geometric variable of parameter Ka

(it is represented in the Markov chain with a loop).

The station chooses a new backoff counter when it has new packet. It chooses with the

same probability Ka/Wa one of the state of the backoff counter.

52

5.1 FIVE NODES TOPOLOGY

After choosing the backoff counter, node A senses the channel at the beginning of each

slot and if the channel is idle, it decrements its backoff counter. This is represented by

the transition probabilities 1− p where p is the probability that node B transmits in a

free slot.

With a probability p it goes to state txb,i that represents that node B transmits while

the backoff counter of A is i. Also the time spent in txb,i is modeled with a geometric

variable of parameter Kb.

When node B has finished to occupy the channel, station A goes back sensing the

channel and counting down the backoff. When the backoff counter reaches 0, there is

a successful transmission with probability 1 − p and there is a collision with p. The

packets collision is represented by state C. The time spent in this state is a geomet-

ric time with parameters Kc and it depends on the EIFS and on the transmitted packet.

Modeling time spent in states with a geometric variable

To model the time spent in states txa, txb,i and C, we use geometric variables of param-

eter respectively Ka,Kb and Kc. These parameters depend on the length of the packet

and on the transmission data rate.

In the following equations, we report the time spent respectively to transmit the pay-

load T ipayload, the packet T ipck, the packet and the ack T aframe and the time for a collision

Tcollision considering a Basic Acces mechanism:

T ipayload = E[Lpayload]/Ri i = {a, b}

T ipck = LH/Rbasic + T ipayload + SIFS + δ i = {a, b}

T iframe = T ipck + LACK/Rbasic +DIFS + δ i = {a, b}

Tcollision = EIFS + Tslot + T apck

(5.1)

where LH and LACK are respectively the length of the packet and of the ACK, Rbasic

is the lower rate that is used to transmit the header of the packet and of the ACK and

δ is the propagation time.

From equations (5.1), we can derive the value of Ki with i = {a, b}:
Ki = Tslot

T i
frame

i = {a, b}

Kc = Tslot
Tcollision

(5.2)

53

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

Stationary distribution of the chain

txa

TxaTxa

Wa-1

Wa-2

2

1

0

txb,w-1

txb,w-2

txb,2

txb,1

p

p

p

p

1-Kb

1-Kb

1-Kb

1-Kb

Kb

Kb

Kb

1-p

1-p

1-p

1-Ka
Ka /Wa

K
a /W

a

Ka /Wa

K
a /W

aK
a/W

a

1-p

c
p

Kc /W
a

Kc /W
a

Kc /W
a

Kc /Wa

Kc /Wa
1-Kc

Kb

Figure 5.4: Markov chain modeling a packet transmission of node A.

Let’s find the stationary distribution of the Markov chain.

First, we write all stationary probabilities as a function of π0:

πtxa =
1− p
Ka

π0 (5.3)

πc =
pπ0

Kc
(5.4)

πW−1 =
Ka

Wa
πtxa +

Kc

Wa
πc +Kbπtxb,Wa−1

(5.5)

πtxb,Wa−1
= pπWa−1 + (1−Kb)πtxb,Wa−1

(5.6)

Using equations (5.5) and (5.6), we derive the following equation:

πtxb,Wa−1
=

p

Kb
πWa−1 (5.7)

Now we substitute equations (5.3), (5.4) and (5.7) in equation (5.5) and we find:

πWa−1 =
(1− p)
Wa

π0 +
p

Wa
π0 + pπWa−1 πWa−1 =

1

1− p
1

Wa
π0 (5.8)

and

πtxb,Wa−1
=

1

1− p
1

Wa

p

Kb
π0 (5.9)

54

5.1 FIVE NODES TOPOLOGY

We can now consider i ∈ (1,Wa − 2) and we have these equations:

πtxb,i =
p

Kb
πi (5.10)

πi =
Ka

Wa
πtxa +

Kc

Wa
πc +Kbπtxb,i + (1− p)πi+1 (5.11)

Equation (5.11) can be simplified using (5.3),(5.4) and (5.10):

πi =
1

(1− p)Wa
π0 + πi+1 (5.12)

Before using the normalization condition we observe that:

Wa−2∑
i=1

πi =

Wa−2∑
i=1

1

(1− p)Wa
π0 + πi+1 = (Wa − 2)πWa−1 +

(Wa − 2)(Wa − 1)

2
πWa−1

=
(Wa − 2)(Wa + 1)

2
πWa−1 =

(Wa − 2)(Wa + 1)

2

1

1− p
1

Wa
π0 (5.13)

Now we impose the normalization condition and we obtain:

1 = πtxa + πc + πWa−1 + πtxb,Wa−1
+

Wa−2∑
i=1

πi +

Wa−2∑
i=1

πtxb,i + π0

= πtxa + πc + πWa−1 + πtxb,Wa−1
+ (1 +

p

Kb
)

Wa−2∑
i=1

πi + π0

=
1− p
Ka

π0 +
pπ0

Kc
+ (1 +

p

Kb
)

1

1− p
1

Wa
π0 +

+(1 +
p

Kb
)
(Wa − 2)(Wa + 1)

2

1

1− p
1

Wa
π0 + π0

= (
1− p
Ka

+
p

Kc
+ 1 + (1 +

p

Kb
)

1

1− p
1

Wa

(Wa − 2)(Wa + 1) + 2

2
)π0 (5.14)

finally we can write that

π0 =
1

(1−p
Ka

+ p
Kc

+ 1 + (1 + p
Kb

) 1
1−p

1
Wa

(Wa−2)(Wa+1)+2
2)

(5.15)

and finally we obtain:

πtxa =
1− p
Ka

π0

=
1− p
Ka

1

(1−p
Ka

+ p
Kc

+ 1 + (1 + p
Kb

) 1
1−p

1
Wa

(Wa−2)(Wa+1)+2
2)

(5.16)

Equation (5.16) represents the percentage of time that the channel is used by station A.

We can notice that this equation depends on the contention window Wa, the probability

55

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

p that the other station transmits and the time spent in transmission or collision defined

by Ka,Kb,Kc.

To find a numerical solution for πtxa we have to consider a symmetric Markov chain

for station B. These two models are related by the probability p. For Markov chain

of node A, p is the probability that node B transmits when the channel is free. The

relation between these two models is given by equation (5.17):

p =
πB0∑
i π

B
i

(5.17)

where πB0 is the state representing the backoff counter reaches 0 for station B and∑
i π

B
i represent the time that the channel is idle.

Throughput

We can now compute the throughput at node J of the flows from A and B as follows:

Simodel = πtxi
T ipayload
T iframe

Ri i = {a, b} (5.18)

πtxa represents the fraction of time spent for the transmission included the ACK. We

multiply this by the factor
T i
payload

T i
frame

to find the fraction of time spent for the transmission

of the packet. Finally, we multiply this by rate Ri to obtain the throughput.

5.1.2 Simulations to test the model

We consider three nodes A,B and J. We compare the throughput Simodel that we obtain

from equation (5.18) with the throughput Sisimulation of the simulations with NS 2. We

use a rate adaptation algorithm SNR-based and we set to have a PER < 0.01. In our

model we do not consider channel errors. For the model and for the simulations we use

the parameters presented in Table 5.1.

Since we use the IEEE 802.11g, the PHYheader and the time to transmit a packet

depends on the PHY rate. We use equation (5.19) to compute the time to transmit a

packet. Table 5.2 shows the time spent to transmit a packet of 1500 Bytes for different

PHY rates.

Tpck = OFDMpreamble + d((OFDMServiceTail + Lpck)/nBits)e ∗OFDMSymbDuration

(5.19)

56

5.1 FIVE NODES TOPOLOGY

Name and Symbol Value

Payload Size (Lpayload) 12000bit

UDP Header (LUDP) 160bit

MAC Header (LMAC) 272bit

Ack Size (LACK) 112bit

ACKtimeout 300 µs

Propagation Delay (δ) 1 µs

Time slot (T) 9 µs

DIFS 28 µs

SIFS 10 µs

CWmax 1023

OFDMServiceTail 22bit

OFDMpreamble 26 µs

OFDMSymbDuration 4µs

Table 5.1: Parameters used for the model and for simulations in NS 2, some of them

are from 802.11g standard.

PHY Rate nBits Tpck

6 Mb/s 24 bit 2102 µs

9 Mb/s 36 bit 1410 µs

12 Mb/s 48 bit 1066 µs

18 Mb/s 72 bit 718 µs

24 Mb/s 96 bit 546 µs

36 Mb/s 144 bit 374 µs

48 Mb/s 192 bit 286 µs

54 Mb/s 216 bit 258 µs

Table 5.2: For each PHY rate of 802.11g the nBits used for the relative modulation

and the time Tpck to transmit a packet of 1554 Bytes are reported.

57

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

First scenario

We consider the PHY rate of node A fixed to Ra = 54Mb/s and PHY rate of node

B varies Rb=[6,12, 24, 36, 48, 54] MB/s. Rates 9 Mb/s and 18 Mb/s have not been

selected during the simulation and they have not been considered. Both nodes use a

minimum contention window of CWmin = 31. Each simulation last 100 seconds and it

is averaged over 5 different simulations.

We compare the NS 2 simulation with the analysis in Figure 5.5 (a). The error between

the model and the simulation is at maximum 5%.

When the same value of CWmin = 31 is used for both nodes and the channel is error

free, the throughput of both nodes is almost the same as you can see in Figure 5.5 (b).

Even if station A uses a rate Ra=54Mb/s, its throughput is reduced to almost 4.5 Mb/s

when station B uses Rb=6Mb/s. This is because station B occupies the channel most

of the time. Indeed, as you can see in Figure 5.6, when station B uses Rb=6Mb/s it

occupies the channel for 80% of the time.

Figure 5.6 shows the percentage of time spent in each state of the Markov chain.

From this graph we can deduce that the channel is occupied most of the time by the

station that uses a lower rate (in this case πtxb). When both nodes use a data rate

Ra = Rb = 54Mb/s the utilization of the channel is the same.

Furthermore, we can see that the time spent for collisions πc is around 5%. This is

because both stations use CWmin = 31 which reduces the collision probability.

The time spent in one backoff stage (
∑W−1

i=0 πi) counts more in percentage when both

nodes are using a higher rate.

Rb Sasimulation Samodel errora Sbsimulation Sbmodel errorb

6 Mb/s 4.557 Mb/s 4.450 Mb/s 2.34% 4.196 Mb/s 4.415 Mb/s 5.22%

12 Mb/s 7.141 Mb/s 7.191 Mb/s 0.7 % 6.864 Mb/s 7.1342 Mb/s 3.93%

24 Mb/s 10.387 Mb/s 10.409 Mb/s 0.22 % 10.053 Mb/s 10.327 Mb/s 2.72%

36 Mb/s 12.226 Mb/s 12.218 Mb/s 0.06% 11.853 Mb/s 12.218 Mb/s 3.08%

48 Mb/s 13.406 Mb/s 13.409 Mb/s 0.03% 13.262 Mb/s 13.410 Mb/s 1.11%

54 Mb/s 13.746 Mb/s 13.839 Mb/s 0.68 % 13.729 Mb/s 13.840 Mb/s 0.8%

Table 5.3: Comparison of the Throughput from A and from B between the model and

the simulation. Ra = 54Mb/s, CW a
min=CW b

min=31

58

5.1 FIVE NODES TOPOLOGY

0 1 2 3 4 5 6
x 107

4

5

6

7

8

9

10

11

12

13

14
x 106

Th
ro

ug
hp

ut
 fr

om
 n

od
e

A
[b

it/
s]

PHY Rate node B [bit/s]

model node A
simulation node A

(a)

0 1 2 3 4 5 6
x 107

4

5

6

7

8

9

10

11

12

13

14
x 106

Th
ro

ug
hp

ut
 [b

it/
s]

PHY Rate node B [bit/s]

simulation node B
simulation node A

(b)

Figure 5.5: (a) Throughput node A: Analysis versus simulation node A (b) Throughput:

Simulation node A versus node B. Ra = 54Mb/s and CW a
min=CW b

min=31

0.6 1.2 2.4 3.6 4.8 5.4
x 107

0

0.2

0.4

0.6

0.8

1

PHY Rate node B

D
is

tri
bu

tio
n

M
ar

ko
v

ch
ai

n
st

at
es

Σi=0
W

a
−1πi

πc
πtxa
πtxb

Figure 5.6: Distribution of Markov chain states. It shows the percentage of time

that is used by each states (πtxa ,πtxb ,πC and
∑W−1

i=0 πi). Ra = 54Mb/s and

CW a
min=CW b

min=31

59

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

Second scenario

What happens if the minumum contention window is different between stations A and

B? We consider the case that station B uses a CW b
min=63 and station A CW a

min=31.

We consider, as in the first scenario, the PHY rate of node A fixed to Ra = 54Mb/s

and PHY rate of node B varies Rb=[6,12, 24, 36, 48, 54] MB/s.

We can see from Figure 5.7 that also in this case the model represents correctly what

happens during the simulations. The error between the throughput values of the model

and of the simulation is at maximum 5%.

We can see from Figure 5.7 that the throughput of node A is greater than that of node

B. Increasing the contention window of node B (CW b
min=63) allows node A to access

more frequently the channel and this translates to a throughput gain. From the other

side the throughput of node B is reduced because it has less opportunity to transmit.

Figure 5.8 shows the channel utilization in this case. We notice that node A occupies

the channel for more time than in the first scenario. When Rb is 6 Mb/s, node B

occupies the channel for about 65 % that is less than 80 % when the CWmin was the

same for both nodes. When Rb is 54 Mb/s, that is the same as that of Ra, station A

occupies the channel for more time because it accesses it more frequently.

Furthermore the time spent in πc is lower than the first scenario since setting CW b
min=63

reduces the collision probability.

In conclusion we derive from the model that:

• When a station uses a lower bit rate, it captures the channel for a long time. The

throughput of the other stations is considerably degraded and it is almost the

same for both stations (as in performance anomaly Section 3.3.2).

• Changing the minimum contention window CWmin of a node gives more op-

portunity to transmit to the node with a lower contention window CWmin and

consequently it can increase the throughput for that node.

60

5.1 FIVE NODES TOPOLOGY

0 1 2 3 4 5 6
x 107

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2
x 107

Th
ro

ug
hp

ut
 [b

it/
s]

PHY Rate node B [bit/s]

simulation node A
model node A
simulation node B
model node B

Figure 5.7: Throughput: Analysis versus simulation node A and node B. Ra = 54Mb/s,

CW a
min=31 and CW b

min=63

0.6 1.2 2.4 3.6 4.8 5.4
x 107

0

0.2

0.4

0.6

0.8

1

PHY Rate node B

D
is

tri
bu

tio
n

M
ar

ko
v

ch
ai

n
st

at
es

Σi=0
W

a
−1πi

πc
πtxa
πtxb

Figure 5.8: Distribution of Markov chain states. It shows the percentage of time that

is used by each states (πtxa ,πtxb ,πC and
∑W−1

i=0 πi). Ra = 54Mb/s, CW a
min=31 and

CW b
min=63

61

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

5.2 Rate Adaptation on top of COPE

We consider a Rate Adaptation algorithm to increase the capacity of the network as

shown by papers [3] and [4]. In particular, we consider the IEEE 802.11 g which allows

transmission at 6, 9, 12, 18, 24, 36, 48 and 54 Mbps.

Since we deal with static networks, stable Signal-to-Noise Ratios (SNRs) are observed

at nodes. The SNR is measured from packets sent in the wireless link and it depends

on the distance between two nodes and on the noise power.

For the same SNR, transmitting at a lower rate will tend to result in a lower error rate.

We used a rate adaptation SNR-based. For a given SNR, it chooses the higher rate

that satisfies a maximum PER (MAXPER).

Furthermore, nodes need to overhear packets in the channel, thus for a given node,

the minimum rate is chosen to allow all as its neighbors to overhear packets with

PER ≤MAXPER.

Let’s consider node A in Figure 5.9; it chooses the rate Ra that satisfies both PERaj ≤
MAXPER and PERac ≤MAXPER since node C needs to overhear the packet from

A. Also nodes B and J select the PHY rate such that for each neighbor the PER is

less than MAXPER.

A B

J

C D

SNRaj Ra

PERaj
SNRbj Rb

PERbj

SNRjd Rj

PERjd

SNRjc Rj

PERjc

SNRbd Rb

PERbd

SNRac Ra

PERac

Figure 5.9: For each link the SNR, PHY Rate chosen and PER are reported. The PER

is derived by the SNR and PHY Rate.

5.2.1 Tuning the MAXPER

Having a MAXPER too low reduces the system throughput, since nodes choose a

low data rate that satisfies the MAXPER. Using a MAXPER too high can reduce the

throughput because nodes have to transmit more times the same packet for a successful

62

5.3 QUEUE MANAGEMENT

transmission. Thus it is important to find the right value for MAXPER.

We considered:

• MAXPER=[0.001 0.01 0.05 0.1 0.15 0.2 0.25 0.3]

• 48 random five nodes topologies

• two saturated UDP flows

We used the external library dei80211mr [20]. This library offers a better channel

model since it introduces the PER for each packet.

Each topology is different from the others for the positions of nodes or for the noise

power. However we selected just topologies where the relay node codes at least one

packet.

Figure 5.10(a) shows for a given MAXPER the percentage of time that the system per-

forms above 95% of the maximum throughput reached. We can see that the percentage

is growing until the MAXPER reaches 0.2. When the network uses MAXPER=0.2,

it can reach the maximum throughput in 90 % of the cases. For a greater value of

MAXPER, the percentage decreases.

The Figure 5.10(b) shows the average throughput. We can see that after MAXPER=0.1

the average throughput is almost constant.

We fixed MAXPER=0.2 for the simulations, that is also used in COPE paper [2]. Fur-

thermore, it leaves room for improvement with queue management algorithm since the

links can have different PERs.

5.3 Queue Management

We have seen from the analysis how changing the contention window affects the through-

put. However the Markov chain cannot be used in the queue management algorithm

since finding the numerical solution of equation (5.16) requires too much computational

time. Furthermore, the model is not complete since we haven’t considered the PER

that is a fundamental component in the simulation and in real world.

Therefore, we look for a queue management algorithm that can adapt fast to the virtual

queues size taking into consideration the links PER.

A queue management algorithm has been proposed also by Seferoglu et al. in [30].

However, they considered TCP flows and made modifications to congestion control

mechanism and to queue management schemes. In their solution the intermediate

63

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

0 0.05 0.1 0.15 0.2 0.25 0.3
0

10

20

30

40

50

60

70

80

90

%
 o

f r
ea

ch
in

g
M

ax
im

um
 T

hr
ou

gh
pu

t

MAXPER

(a)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35
3.5

4

4.5

5

5.5

6

6.5

Av
er

ag
e

Th
ro

ug
hp

ut
 [M

bp
s]

MAXPER

(b)

Figure 5.10: (a) For a given MAXPER this graph shows the percentage of time the

system performs above 95% of the maximum throughput. The value 0.001 has never

reached the maximum throughput. (b) shows the average throughput of the system.

nodes drops packets based on the network coding information. Our solution aims to

increase the performance prioritizing the channel access based on the queue informa-

tion.

5.3.1 Packet queues in COPE

Each station store a maximum of 50 packets in the Output queue. When COPE is

active, each packet enqueued in the Output queue is enqueued also in the Virtual

queue relative to the packet’s nexthop.

When the relay node J senses the channel idle, it dequeues the first packet in Output

queue and it searches at the head of the Virtual queues if there is a packet with a

different nexthop to code together with the dequeued packet (see Figure 5.11). The

Virtual queues are needed to speed up the search.

Since the PER can be different for each wireless link, J can have virtual queues

with different lengths (Qc 6= Qd). Having unbalanced virtual queues increases the

probability that one of these becomes empty and J loses the coding opportunity.

With our queue management algorithm we want to reduce the probability that one

virtual queue becomes empty and we do that prioritizing the channel access.

64

5.3 QUEUE MANAGEMENT

Qc
Qd

⊕

 O
ut

pu
t Q

ue
ue

Virtual Queues

Figure 5.11: Output Queue and Virtual Queues at relay node for different nexthops.

Qc and Qd are the sizes of the virtual queues headed respectively to C and to d.

5.3.2 Parameters considered in the Algorithm

Based on the information of virtual queues (Qc,Qd) and on the PERs of the links of the

network, our algorithm computes the contention window to balance the virtual queues.

Our algorithm has Qc,Qd,PERaj ,PERbj ,PERjc and PERjd as input and values of

CW a
min, CW b

min as output (see Figure 5.12).

Algorithm

PERaj ,PERbj

Qc , Qd

CWamin

CWbmin

PERjc ,PERjd

Figure 5.12: Block representation of our queue management algorithm.

How the values of CWmin are sent to sender nodes

We insert the value of CWmin in the COPE header (see Figure 2.5). We propose to

add a new field for the contention window (see Figure 5.13). Thus, whenever J sends

a packet to C or D, nodes A and B, which are in promiscuous mode, can overhear

the packet and extract the minimum Contention Window values. The overhead for the

network is almost zero since the field is about 64 bits per node and is sent in an existing

packet.

65

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

CW_MIN_NUM
CWmin NODE_ID

Figure 5.13: Field inserted in COPE header for sending the Contention Window values.

5.3.3 How links with different PER reflect on the virtual queues

We have seen during the simulations, and it is easy to understand, that links with

different PERs play an important role on the virtual queues unbalancing. In particular,

considering Figure 5.9, we have seen that:

• for sender links, when for example PERaj > PERbj , node A has to transmit

more times the same packet for a successful transmission and the virtual queue

with packets from A will have less packets than that from B.

• for receiver links, when for example PERjc > PERjd, node J accumulates packets

headed to C due of retransmissions.

Considering the entire path of packets (A → D and B → C) , we can derive which

virtual queue will tend to have less packets than the other and which more.

We consider the fraction of PERreceiver
PERsender

and we identify which sender between a and b

is sendmin, sendmax :

sendmin|min(
PERjd
PERaj

,
PERjc
PERbj

) sendmax|max(
PERjd
PERaj

,
PERjc
PERbj

). (5.20)

The worst case is when PERsender is close to MAXPER and PERreceiver is almost 0;

this means that J receives a lot of packets from the receiver but is not able to send

them all and will start accumulating them.

Which values to assign to CW a
min,CW

b
min

Once we found sendmin and sendmax, depending on the output queue size at the relay

node, we increase the probability of packet transmission of sendmin or we reduce the

probability of transmission of sendmax.

Assuming to have a link with PERlink, the average number of packet transmissions is:

1

(1− PERlink)
. (5.21)

66

5.3 QUEUE MANAGEMENT

The transmission probability in the case of a fixed contention window W is:

p =
2

(W + 1)
. (5.22)

We can compensate the number of transmissions required to transmit successfully a

packet changing the transmission probability of nodes. The idea is that when we want

to increase the transmission probability of node sendmin we set the Contention Window:

CW i
min = K ∗ (CW j

min + 1)− 1 (5.23)

where i is the sendmin node and j is the other node.

Thus, supposing that a is the sendmin and we want to increase the transmission prob-

ability sendmin keeping fixed CW b
min = 31, we compute:

CW a
min =

(1− PERaj)(1− PERjc)
(1− PERbj)(1− PERjd)

(CW b
min + 1)− 1 (5.24)

where the coefficient K =
(1−PERaj)(1−PERjc)
(1−PERbj)(1−PERjd) ≤ 1 because a is the sendmin. This

coefficient is needed to balance the delivery probability of the packets of the two paths

(A→ D and B → C).

In case we want to reduce the probability of b, we fix CW a
min = 31 and we compute

CW b
min from equation 5.24. In this case the new coefficient K ′ = K−1 ≥ 1. Since

MAXPER=0.2, the coefficients K and K ′ take values in the interval [0.64 1.56].

This solution is part of our queue management algorithm. However we have seen

that this by itself is not sufficient. Thus, in case virtual queues are highly unbalanced,

we reduce or double the Contention Window.

5.3.4 Proposed Algorithm

First we asked: how should the output queue at the relay node be to optimize network

coding?

The Output queue should have enough packets from both paths so a coded packet

can always be sent. Furthermore, the relay node should not have too much packets

otherwise it drops packets.

We divide the Output queue in three segments:

• if the queue size is (Qc + Qd) ≤ 15, we increase the probability of the sendmin

node following equation (5.24). If the virtual queues become highly unbalanced

we divide by 2 the CWmin for the node with less packets.

67

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

• if the queue size is 15 < (Qc + Qd) ≤ 30, we think that this is the right size for

the Output queue, and we balance the virtual queues following the (5.24).

• if the queue size is (Qc + Qd) > 30, there is a risk that the queue becomes full

and starts to drop packets. In this case, we reduce the transmission probability

of the node with more packets: the higher the difference |Qc − Qd|, the higher

the CWmin of the node with more packets.

In the third case, we prefer to reduce the probability of the sender node with more

packets in the queue, thus also J has more probability to access the channel and it is

able to drain its queue faster.

0 15 30 50
I II III

EnqueueDequeue

Figure 5.14: FIFO Output queue divided in three segments.

The full algorithm is reported in Algorithm 1. Simulations to prove the efficacy

of this algorithm and to extensively evaluate its performance are reported in the next

Chapter.

68

5.3 QUEUE MANAGEMENT

input : Qc,Qd, PERaj ,PERbj ,PERjc,PERjd

output: CW a
min,CW b

min

At relay node J; CW default
min = 31;

find sendmin, sendmax, K and K ′;

if (Qc +Qd) ≤ 15 then

if |Qc −Qd| < 2 then

if a==sendmin then

CW a
min = K ∗ (CW default

min + 1)− 1; CW b
min = CW default

min ;

else

CW a
min = CW default

min ; CW b
min = K ′ ∗ (CW default

min + 1)− 1;

end

else

if Qd > Qc then

CW a
min=CW default

min ; CW b
min=1

2 ∗ CW
default
min ;

else

CW a
min=1

2 ∗ CW
default
min ; CW b

min=CW default
min ;

end

end

end

if 15 < (Qc +Qd) ≤ 30 then

if |Qc −Qd| < 4 then

if a==sendmin then

CW a
min = K ∗ (CW default

min + 1)− 1; CW b
min = CW default

min ;

else

CW a
min = CW default

min ; CW b
min = K ′ ∗ (CW default

min + 1)− 1;

end

else

if a==sendmax then

CW a
min = K ∗ (CW default

min + 1)− 1; CW b
min = CW default

min ;

else

CW a
min = CW default

min ; CW b
min = K ′ ∗ (CW default

min + 1)− 1;

end

end

end

It continues in the next page

69

5. PROBLEM ANALYSIS AND PROPOSED ALGORITHM.

if (Qc +Qd) > 30 then

if |Qc −Qd| < 2 then

if a==sendmax then

CW a
min = K ∗ (CW default

min + 1)− 1; CW b
min = CW default

min ;

else

CW a
min = CW default

min ; CW b
min = K ′ ∗ (CW default

min + 1)− 1;

end

end

if 2 ≤ |Qc −Qd| < 10 then

if Qd > Qc then

CW a
min=2 ∗ CW default

min ; CW b
min=CW default

min ;

else

CW a
min=CW default

min ; CW b
min=2 ∗ CW default

min ;

end

end

if 10 ≤ |Qc −Qd| < 15 then

if Qd > Qc then

CW a
min=4 ∗ CW default

min ; CW b
min=CW default

min ;

else

CW a
min=CW default

min ; CW b
min=4 ∗ CW default

min ;

end

end

if |Qc −Qd| ≥ 15 then

if Qd > Qc then

CW a
min=8 ∗ CW default

min ; CW b
min=CW default

min ;

else

CW a
min=CW default

min ; CW b
min=8 ∗ CW default

min ;

end

end

end

Algorithm 1: Pseudo Code of the Queue Management Algorithm

70

Chapter 6

Simulations with NS 2

In this chapter we present the simulations with Network Simulator 2 (NS 2). We

compare the performance of the system in three cases: without COPE, with COPE

and COPE with the queue management algorithm. To compare the performance of

these systems we use as metrics throughput. Furthermore, we are interested in the

percentage of coded packets at the relay node and its virtual queues.

The chapter is structured as follows. First we give a brief introduction of NS 2 and we

present COPE’s implementation on NS 2. We conclude the chapter with simulation

results.

Since multi-rate is not supported by NS 2, we used the external library (dei80211mr)

developed by the University of Padua [20]. This library has also an improved channel

model. For the implementation of COPE we started from the google project [21],

keeping the basic structure of the project. We completely changed the coding and

decoding process and we fixed some bugs in the acknowledgments.

6.1 Introduction to NS 2

Network Simulator (NS) is an open-source discrete event simulator. NS provides sup-

port for different types of simulations in the networking field. Simulation of wired as

well as wireless network functions and protocols (TCP, UDP) can be done using NS.

It has been started to develop by 1989. The project has received contributions from

several Universities, in particular from University of California and Cornell University.

Since 1995 the Defense Advanced Research Projects Agency (DARPA) supported the

development of NS, as did later also the National Science Foundation (NSF).

71

6. SIMULATIONS WITH NS 2

NS 2 uses two key languages: C++ and Object-oriented Tool Command Language

(OTcl). NS 2 modules are written in C++ and they are linked to OTcl objects using

TclCL (Figure 6.1).

Why using two languages? C++ code is fast to run but it is slow to change since it has

to be compiled. Instead OTcl is slow to run but fast to change. Tcl scripts are used

for simulations and to interface with C++ code.

After the installation of NS 2, an executable file ns is created in the home directory.

The simulation file written in Tcl can be invoked from the shell environment:

$ns example.tcl

This invocation creates a trace file that is used to calculate some metrics like through-

put and delay.

20 2 Introduction to Network Simulator 2

examples for setting up basic NS2 simulation. A comprehensive list of NS2
codes contributed by researchers can be found in [13]. These introductory
online resources would be helpful in understanding the material presented in
this book.

In this chapter an introduction to NS2 is provided. In particular, Sec-
tion 2.2 presents the basic architecture of NS2. The information on NS2
installation is given in Section 2.3. Section 2.4 shows NS2 directories and
conventions. Section 2.5 shows the main steps in NS2 simulation. A simple
simulation example is given in Section 2.6. Section 2.7 describes how to include
C++ modules in NS2. Finally, Section 2.8 concludes the chapter.

2.2 Basic Architecture

Figure 2.1 shows the basic architecture of NS2. NS2 provides users with an
executable command ns which takes on input argument, the name of a Tcl
simulation scripting file. Users are feeding the name of a Tcl simulation script
(which sets up a simulation) as an input argument of an NS2 executable
command ns. In most cases, a simulation trace file is created, and is used to
plot graph and/or to create animation.

NS2 consists of two key languages: C++ and Object-oriented Tool Com-
mand Language (OTcl). While the C++ defines the internal mechanism (i.e.,
a backend) of the simulation objects, the OTcl sets up simulation by assem-
bling and configuring the objects as well as scheduling discrete events (i.e., a
frontend). The C++ and the OTcl are linked together using TclCL. Mapped
to a C++ object, variables in the OTcl domains are sometimes referred to as
handles. Conceptually, a handle (e.g., n as a Node handle) is just a string (e.g.,
_o10) in the OTcl domain, and does not contain any functionality. Instead, the
functionality (e.g., receiving a packet) is defined in the mapped C++ object
(e.g., of class Connector). In the OTcl domain, a handle acts as a frontend
which interacts with users and other OTcl objects. It may defines its own
procedures and variables to facilitate the interaction. Note that the member
procedures and variables in the OTcl domain are called instance procedures

Simulation
Objects

Simulation
Objects

TclCL

C++ OTcl
NS2 Shell Executable Command (ns)

Tcl
Simulation

Script

Simulation
Trace
File

NAM
(Animation)

Xgraph
(Plotting)

Fig. 2.1. Basic architecture of NS.

Figure 6.1: Basic Architecture of NS

6.1.1 Implementation of IEEE MAC 802.11 on NS 2

NS 2 follows the OSI model for the layering. Each layer is represented by one or more

C++ files in NS 2.

The function recv() sends packets through different layers. Each packet contain a field

direction that is used to send packets UP or DOWN the stack. The connections between

different layers are controlled by TCL files.

Since COPE has been implemented between MAC and LL, we are interested in the

Data Link Layer (DLL). Figure 6.2 (a) reports the default implementation of Data

Link Layer in NS 2. It is composed by:

72

6.2 IMPLEMENTATION OF COPE ON NS 2

• Link Layer maps the protocol address (IP) to the Hardware address (MAC).

• Output Queue has only the down-target, in other words, it is used just when a

node transmits a packet and not when it receives a packet. There are two main

implementations Droptail and PriQueue.

• Media Access Control (MAC) keeps communication between 802.11 stations by

coordinating access to a shared radio channel.

A complete overview of MAC layer of NS 2 with functions of each layer is reported by

Liu in [23] and by Robinson in [24].

6.2 Implementation of COPE on NS 2

COPE inserts a new coding layer between the LL and MAC layers as shown in Fig-

ure 6.2 (b). This layer contains the output queue since the coding is done during the

dequeuing of packets. Furthermore, other queues are presented in the COPE layer to

speed up the search of packets to code together (VirQueue) and to manage the ac-

knowledgment and retransmissions (NonAckQueue and PendAckQueue).

To perform the Opportunistic Listening, each node can overhear packets through the

function tap() present at the MAC layer. This function allows the upper layers to make

a copy of all packets overheard. Each native packet overheard is saved in PacketPool.

When the MAC layer receives a packet, it sends it up to the COPE layer. Thus, if the

packet is coded, COPE layer can decode it and it schedules an ACK packet.

LL

MAC

LL

COPE

MAC

Q
U
EU
E

(a)

LL

MAC

LL

COPE

MAC

Q
U
EU
E

(b)

Figure 6.2: (a) default DLL implementation of NS 2 (b) modified implementation to

insert COPE layer

73

6. SIMULATIONS WITH NS 2

6.2.1 Architecture

COPE needs several accessories functions for the coding and decoding process, the ac-

knowledgment and the retransmission. These functions have the correspondent C++

files in the NS 2 implementation and they are presented in Figure 6.3. For each block

the principal functions are reported. The file cope.cc contains the function recv() to

communicate with LL and MAC layer.

cope.cc

packet-pool.cc

coding

decoding

virqueue.cc

ackqueue.cc

cope-timer.cc

- start (time)
- stop

- in_pool (Packet *)
- garbage_collection ()

cope-queue.cc

- enqueue (Packet *)
- get ()
-remove (Packet *)

- send_down (Packet *)
- enqueue (Packet *)
- resume ()
- dequeue ()
- send (Packet *)

- enqueue(nodeid, P*)
- get_packet (nodeid, P*)
- lookup_packet (nodeid, P*)

nonackqueue

ackpendqueue
- has_pend (neighbor)
- enqueue_pend (neighbor)
- delete_pend (neighbor)

- recv (Packet *)
- tap (Packet *)

- encode (Packet * , Packet *)
- xor_packet(Packet * ,Packet *)
- remove (Packet *)

- decode (Packet *)
- extract_acks (Packet *)
- retrasmit (Packet *)

Figure 6.3: Files present in COPE implementation.

CopeQueue

The CopeQueue is the Output queue used by COPE. It inherits the PriQueue class of

NS 2. Its function to enqueue and dequeue the packets of the station. As PriQueue,

the CopeQueue assigns each packet to a priority queue. The Output queue can store

most 50 packets.

VirQueue

Whenever a packet is enqueued in the Output queue, a copy of it is inserted in the

Virtual queue. This is needed to speed up the search of a candidate packet to code.

74

6.2 IMPLEMENTATION OF COPE ON NS 2

NonAckQueue

NonAckQueue is used to store all native packets that are in an encoded packet and

that have not been acknowledged. Packets, which are sent as native, are not put into

NonAckQueue.

Whenever a coded packet is sent out, each native packet is enqueued in NonAckQueue

and COPE starts a timer for the native packet. The timeout is a little longer of the

Round Trip Time (RTT). If the Acknowledgment is not received before the timer ex-

pires, the native packet is inserted at the head of the Output queue. On the contrary,

if the Acknowledgment is received, the timer is stopped and the packet is deleted. The

retransmission threshold is set to 2, after which the packet is discarded.

AckPendQueue

Each node keeps a local sequence number for each packet sent to the same neighbor.

This is needed for the acknowledgment. When a coded packet is received, if it is

decodable, the node inserts the previous hop’s MAC and the local sequence number of

the native packet in the AckPendQueue. After either 8 pending ACKs or a duplicate

pending ACK, a cumulative ACK is sent out.

The cumulative ACK can be inserted in an already existing packet or a new Control

packet is created. The cumulative ACK is composed by three fields: Neighbor, LastAck

and AckMap. LastAck is the local sequence number of last ACK. When the Neighbor

receives the cumulative ACK, it knows which packets has been received and which

packets to retransmit. The AckMap is made of 8 bit and each bit represents previous

packets. For example, if the LastAck is 52 and the Ack Map is 1010111, the Neighbor

retransmits packets with local sequence number 46 and 48.

PacketPool

The PacketPool is needed to save the overheard native packets. These packets are

needed in the decoding process and they are saved in a hash map to speed up the

search during the decoding. The PacketPool is garbage collected every few seconds.

75

6. SIMULATIONS WITH NS 2

6.2.2 Packet processing

In this section we show what are the most significant steps that COPE follows when

sending (DOWN) or receiving (UP) a packet.

DOWN

The station wants to send a packet.

Enqueue

1. The file cope.cc receives the packet from the LL and calls the function send down()

of cope-queue.cc

2. The packet is enqueued in the output queue and in the virtual queue of its next-

hop.

Dequeue

1. If the channel is idle or when resume() is called the MAC, a packet is dequeued

from the Output Queue and from the virtual queue.

2. If there is a packet with a different next-hop in the virtual queues, it is encoded

together with the dequeued packet. Both packets XORed are inserted in the

NonAckQueue and a timeout is started.

3. The acks and reception reports are added to the packet.

UP

The station receives a packet.

1. The file cope.cc receives a packet from the MAC and processes it.

2. Acks and reception reports are extracted and acked packets are removed from

NonAckQueue.

3. If the packet is a control packet, it is discarded. It has been used just to send

acks and reception reports.

4. If the packet is Native, a copy is inserted in the packet pool. If the current node

is the destination, the packet is sent up to the LL, otherwise it is discarded.

76

6.3 SIMULATION RESULTS

5. If the packet is Coded and at least one of the XORed packets is for the node, the

station tries to decode. If station has the packet that composes the coded packet

in PacketPool, it can decode the packet and extract its native packet. After that,

it sends the packet to LL and it inserts a copy in PendAckQueue.

6.3 Simulation Results

We used NS 2.34 [19], the external library dei80211mr [20] and the COPE module.

The packet size is set to 1500 Bytes and we consider the five nodes topology. The

transmission range is set to 100 m and the interference range and the carrier sense

range are set to 200m. Each node has a transmission power of 20dBm and it uses the

2.4Ghz frequency. For the channel model we use the Free-Space Path Loss.

We consider the static scenario in Figure 5.9 and two saturated UDP traffic flows from

node A to node D and from node B to C.

The positions of the nodes are generated randomly and the noise power is chosen in the

set N={10e−11, 20e−11, 30e−11, 40e−11, 50e−11 }. We consider about 70 combinations

of topology and noise power. The simulations last for 100 seconds and it is shown the

mean result over three simulations.

We compare the throughput of the system obtained without COPE, with COPE and

with COPE + queue management.

Figure 6.4 shows the throughput improvement of the system in the 73 topologies with

COPE and with COPE +QUEUE MGMT with respect to the throughput without

COPE. We can notice that our algorithm increases the performance of COPE when

COPE’s gain is low. On average our algorithm increases COPE’s performance by 7.5%.

Figure 6.5 shows the throughput improvement of the system with COPE + QUEUE

MGMT with respect to the system with COPE. We can see that our algorithm is al-

ways increasing the performance of COPE. The average improvement is 7.5% and the

maximum improvement is 57%.

Figures 6.6 (a) (b) show the fraction of coded packets at the relay node with COPE

and with COPE+QUEUE MGMT. COPE codes about 70% of the packets sent out,

our algorithm brings the fraction of coded packets to 85%.

Figures 6.7 (a) (b) show the Output queue at the relay node. The size of the queue is

measured every time the node has sent a packet and is averaged over the total number

of transmissions. The average difference between the virtual queues is 10 packets with

77

6. SIMULATIONS WITH NS 2

0 10 20 30 40 50 60 70

0

20

40

60

80

100

120

140

Simulations

%
 T

hr
ou

gh
pu

t I
m

pr
ov

em
en

t

with COPE+QUEUE MGMT
with COPE
average with COPE+QUEUE MGMT
average with COPE

Figure 6.4: Throughput gain over a typical 802.11 system in two cases: with COPE

and with COPE+QUEUE MGMT

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

Simulations

%
 T

hr
ou

gh
pu

t I
m

pr
ov

em
en

t

with COPE+QUEUE MGMT
average with COPE+QUEUE MGMT

Figure 6.5: COPE+QUEUE MGMT improves gain by up to 57 % over the system with

just COPE. The average improvement is 7.5%.

78

6.3 SIMULATION RESULTS

COPE and 2.7 packets with our system. This shows that our algorithm is able to

balance the virtual queues at the relay node.

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Simulations

%
 C

od
ed

 P
ac

ke
t a

t R
el

ay
 N

od
e

% Coded Packet
Mean

(a)

0 10 20 30 40 50 60 70 80
0

10

20

30

40

50

60

70

80

90

100

Simulations

%
 C

od
ed

 P
ac

ke
t a

t R
el

ay
 N

od
e

% Coded Packet
Mean

(b)

Figure 6.6: Fraction of coded packets over total number of sent packets at the relay

node with COPE (a) and COPE+QUEUE MGMT (b). The average goes from 70% to

85%.

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

50

Simulations

O
ut

pu
t Q

ue
ue

 a
t R

el
ay

 N
od

e

Packets head to C
Packets head to D

(a)

0 10 20 30 40 50 60 70 80
0

5

10

15

20

25

30

35

40

45

Simulations

O
ut

pu
t Q

ue
ue

 a
t R

el
ay

 N
od

e

Packets headed to C
Packets headed to D

(b)

Figure 6.7: Size of the output queue with packets headed to C and D with COPE

(a) and COPE+QUEUE MGMT (b). In the second case the virtual queues are more

balanced.

79

6. SIMULATIONS WITH NS 2

Best Improvement

Let’s consider the case where our algorithm brings the system gain to 57%. This case

is shown in Figure 6.8. The noise power is fixed to N=40e−11.

We can notice that the receiver links have different values of PERs (PERjc = 0.18

and PERjd = 0.009). Packets headed to C will tend to accumulate at the relay node

queue (as shown in Figure 6.10 (a)).

A B

J

C D

SNRaj= 5.86 dB

 PERaj= 0.079

 SNRbj= 7.43
PERbj= 0.02

SNRjd = 8.54

 PERjd = 0.009
 SNRjc = 4.82

PERjc = 0.18

SNRbd = 9.9

PERbd = 0.002

SNRac = 13.29

PERac = 0

Ra=12 Mbps
Rb = 12 Mbps

Rj = 12Mbps

Figure 6.8: SNR, PHY rate and PER for each link in one of the cases where we obtain

a great throughput improvement with COPE+QUEUE.

For this topology we consider different offered load. We can see in Figure 6.9(a)

that the systems considered have the same throughput as long as the traffic offered is

less than 4 Mbps. After they reach the maximum of the network throughput, the per-

formance degrades. COPE with our algorithm is able to compensate the performance

degradation optimizing the transmission probabilities.

Furthermore, the fraction of coded packets is higher with our algorithm (see Figure 6.9

(b)).

Let’s consider the output queue at the relay node (Figure 6.10(a)). We can see that the

relay node doesn’t accumulate packets in its output queue as long as the offered load is

less than 5 Mbps. After that, the average size becomes quickly 45 packets. This means

that packets have a high probability to be dropped because the Output queue reaches

the maximum size of 50 packets. Instead, our algorithm (Figure 6.10(b)) reduces the

size of the output queue to 30 packets and balances the number of packets headed to

different nexthops increasing the coding opportunity.

80

6.3 SIMULATION RESULTS

2 4 6 8 10 12 14
1.5

2

2.5

3

3.5

4

4.5

5

5.5

Offered load [Mbps]

N
et

w
or

k
T

hr
ou

gh
pu

t [
M

bp
s]

Without COPE
With COPE
With COPE+QUEUE MGMT

(a)

2 4 6 8 10 12 14
0

10

20

30

40

50

60

70

80

90

100

Offered load [Mbps]

P
er

ce
nt

ag
e

C
od

ed

With COPE
With COPE+QUEUE MGMT

(b)

Figure 6.9: (a) COPE+QUEUE MGMT provides 57% increase in UDP troughput in

presence of saturated traffic. (b) Percentage of packets Coded at relay node J.

2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t R

el
ay

 N
od

e

Packets headed to C
Packets headed to D

(a)

2 4 6 8 10 12 14
0

5

10

15

20

25

30

35

40

45

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t R

el
ay

 N
od

e

Packets headed to C
Packets headed to D

(b)

Figure 6.10: Size of the output queue with packets headed to C and D with COPE (a)

and COPE+QUEUE MGMT (b). In the second case the output queue is reduced and

the virtual queues are more balanced

81

6. SIMULATIONS WITH NS 2

Average Improvement

In this case COPE+QUEUE MGMT improves gain by about 7% over COPE. The

noise power is set to N=10e−11. We can notice that in this case the different PERs are

at sender links (PERbj = 0.144 and PERaj = 0.012) and the receiver links have a low

values of PERs.

As we can see from Figure 6.13(a), the relay node accumulates packets headed to D.

This is explained with the fact that the relay node receives more packets from A, since

PERaj < PERbj and it codes just 60% of packets, losing coding opportunities.

A B

J

C D

SNRaj= 13.56 dB

 PERaj= 0.012

 SNRbj= 15.75
PERbj= 0.144

SNRjd = 13.32

 PERjd = 0.014
 SNRjc = 15.67

PERjc = 0.003

SNRbd = 16.39

PERbd = 0.1

SNRac = 17.92

PERac = 0

Ra=24 Mbps
Rb = 36 Mbps

Rj = 24Mbps

Figure 6.11: SNR, PHY rate and PER for each link in one of the case where we obtain

at maximum 7% throughput improvement with COPE+QUEUE.

8 10 12 14 16 18 20 22 24
5.5

6

6.5

7

7.5

8

8.5

9

9.5

10

10.5

Offered load [Mbps]

N
et

w
or

k
T

hr
ou

gh
pu

t [
M

bp
s]

Without COPE
With COPE
With COPE+QUEUE MGMT

(a)

8 10 12 14 16 18 20 22 24
0

10

20

30

40

50

60

70

80

90

Offered load [Mbps]

P
er

ce
nt

ag
e

C
od

ed

With COPE
With COPE+QUEUE MGMT

(b)

Figure 6.12: (a) COPE+QUEUE MGMT provides 7% increase in UDP troughput in

presence of saturated traffic. (b) Percentage of packets Coded at relay node J.

82

6.3 SIMULATION RESULTS

8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

45

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t R

el
ay

 N
od

e

Packets headed to C
Packets headed to D

(a)

8 10 12 14 16 18 20 22 24
0

5

10

15

20

25

30

35

40

45

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t R

el
ay

 N
od

e

Packets headed to C
Packets headed to D

(b)

Figure 6.13: Size of the output queue with packets headed to C and D with COPE (a)

and COPE+QUEUE MGMT (b). In the second case the output queue is reduced and

the virtual queues are more balanced

Little Improvement

In this case, our algorithm improves over COPE by only 1%. The noise power is set

to N=40e−11. We can notice that in this case the sender links have similar PERs and

they are greater than the receiver PERs (about 0.1 greater). In this case, the queues at

the relay node are often empty and the percentage of coded packets is around 50% (see

Figure 6.15(b)). Even if the relay node is coding just 50% of packets, it is not receiv-

ing many packets from the senders so it doesn’t accumulate packets in its output queue.

A B

J

C D

SNRaj= 10.64 dB

 PERaj= 0.148

 SNRbj= 5.30
PERbj= 0.124

SNRjd = 6.59

 PERjd = 0.045
 SNRjc = 6.42

PERjc = 0.051

SNRbd = 16.41

PERbd = 0

SNRac = 12.54

PERac = 0.028

Ra=24 Mbps
Rb = 12 Mbps

Rj = 12Mbps

Figure 6.14: SNR, PHY rate and PER for each link in one of the case where

COPE+QUEUE improves gain of 1%.

83

6. SIMULATIONS WITH NS 2

4 6 8 10 12 14 16
3.8

4

4.2

4.4

4.6

4.8

5

5.2

5.4

5.6

5.8

Offered load [Mbps]

N
et

w
or

k
T

hr
ou

gh
pu

t [
M

bp
s]

Without COPE
With COPE
With COPE+QUEUE MGMT

(a)

4 6 8 10 12 14 16
0

10

20

30

40

50

60

Offered load [Mbps]

P
er

ce
nt

ag
e

C
od

ed

With COPE
With COPE+QUEUE MGMT

(b)

Figure 6.15: (a) COPE+QUEUE MGMT provides 1% increase in UDP troughput in

presence of saturated traffic. (b) Percentage of packets Coded at relay node J.

4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t R

el
ay

 N
od

e

Packets headed to C
Packets headed to D

(a)

4 6 8 10 12 14 16
0

5

10

15

20

25

30

35

40

45

50

Offered load [Mbps]

O
ut

pu
t Q

ue
ue

 a
t R

el
ay

 N
od

e

Packets headed to C
Packets headed to D

(b)

Figure 6.16: Size of the output queue with packets headed to C and D with COPE (a)

and COPE+QUEUE MGMT (b).

84

Chapter 7

Conclusion

In this thesis we studied and analyzed COPE architecture in multi a rate wireless sce-

nario. We furnish a Markov chain to model when two nodes share the channel with

different PHY rates. Therefore, we propose a queue management algorithm on top of

COPE architecture to increase the coding opportunity and network throughput.

We simulate with NS 2 considering a five nodes topology and the 802.11g standard. We

compare the system without COPE, with COPE and with COPE + QUEUE MAN-

AGEMENT. We show that our algorithm allows to increase the throughput gain when

COPE’s gain is low.

When the channel quality between the relay node and one receiver is bad, the relay

node accumulates packets in its queue and it can drop packets. Our algorithm reduces

the size of the output queue at the relay node changing the contention window of the

sender nodes. Furthermore, the algorithm balances the virtual queues headed to dif-

ferent nexthops and increase the coding opportunity.

When the PER is low and quite the same for the receivers links, our algorithm does’t

improve the performance of the system, since the relay node is not accumulating pack-

ets in its output queue.

Our algorithm achieves a throughput gain of up to 57% over COPE, with an average

gain of 7.5%.

85

7. CONCLUSION

86

Bibliography

[1] G. Bianchi. Performance analysis of the IEEE 802.11 distributed coordination

function. IEEE Journal on Selected Areas in Communications, 18(3):535-547, 2000.

[2] S. Katti, H. Rahul, W. Hu, D. Katabi , M. Médard and J. Crowcroft “XORs in

the air: practical wireless network coding”, In ACM SIGCOMM, 2006.

[3] Kim T.S., Vural S., Broustis I., Syrivelis D., Krishnamurthy S.V., and La Porta

T., “A Framework for Joint Network Coding and Transmission Rate Control in

Wireless Networks” IEEE INFOCOM 2010, San Diego

[4] Kumar, R., Tati.S., De Mello, F., Krishnamurthy S.V. and La Porta, T. ”Network

Coding Aware Rate Selection in Multi-Rate IEEE 802.11 ” IEEE ICNP 2010,

Kyoto, Japan .

[5] R.Ahlswede, N.Cai, S.-Y.R.Li, and R.W.Yeung “Network information flow” IEEE

Transactions on Information Theory, vol. IT-46, no.4,2000.

[6] H. Seferoglu, A. Markopoulou, U. C. Kozat, “Network Coding-Aware Rate Control

and Scheduling in Wireless Networks” in Proc. of ICME09, New York, June 2009.

[7] S. R. Li, R. W. Yeung, and N. Cai. Linear Network Coding. In IEEE Transactions

on Information Theory, 2003

[8] P. A. Chou, T. Wu and K. Jain, Practical Network Coding, in 51st Allerton

Conf.Communication, Control and Computing, Oct. 2003.

[9] R. Koetter and M. Medard An algebrical approach to network coding. IEEE/ACM

Transaction on Networking, 2003li

87

Bibliography

[10] S. Pal, S. R. Kundu, K. Basu, and S. K. Das. “ IEEE 802.11 Rate Control Algo-

rithms: Experimentation and Performance Evaluation in Infrastructure Mode”. In

PAM, 2006

[11] Onoe Rate Control. http://madwifi.org/browser/trunk/ath rate/onoe.

[12] E. N. Gilbert “Capacity of a burst-noise channel” Bell System Technical Journal,

Vol. 39 (September 1960), pp. 1253-1265.

[13] A. Kamermen and L. Monteban. WaveLan-II: A High-performance wireless LAN

for the unlicensed band. Bell Lab Technical Journal, pages 118-133, Summer 1997.

[14] Ji-Hoon Yun, Throughput Analysis of IEEE 802.11 WLANs with Automatic Rate

Fallback in a Lossy Channel, IEEE Transactions on Wireless Communications

(ISSN: 1536-1276, IF’08: 2.181), Volume 8, No. 2, Feb. 2009, Pages 689-693 [Link].

[15] M. Lacage, M. H. Manshaei, and T. Turletti. IEEE 802.11 Rate Adaptation: A

Practical Approach. In ACM MSWiM, 2004

[16] M. Heusse, F. Rousseau, G. Berger-Sabbatel, and A. Duda. Performance anomaly

of 802.11b. In Proc. of IEEE INFOCOM03, April 2003.

[17] IEEE standard 802.11, Wireless LAN Medium Access Control (MAC) and Physical

Layer (PHY) Specifications, August 1999

[18] J. Deng, B. Liang, P. K. Varshney”Tuning the carrier sensing range of IEEE

802.11 MAC” IEEE GLOBECOM ’04., Vol. 5 (2004), pp. 2987-2991.

[19] NS 2 http://www.isi.edu/nsnam/ns/

[20] An improved 802.11 implementation for ns2 with enhanced interference model.

http://www.dei.unipd.it/wdyn/?IDsezione=5090

[21] COPE on NS 2, google project by Uppsala University,

http://code.google.com/p/uu-cope/

[22] C. Papadimtrou and K. Striglitz. Combinatorial Optimization: Algorithms and

Complexity. Prentice-Hall, Englewood Cliffs, NJ, 198.

[23] K. Liu Understanding the implementation of IEEE MAC 802.11 standard in NS-2.

[24] J. Robinson http://www.joshuarobinson.net/docs/802 11.html.

88

7.0BIBLIOGRAPHY

[25] S. E. Tajbakhsh, M. Orang, M. H. Sohi, A. Movaghar, A Queuing Model of Op-

portunistic Network Coding in Wireless Medium, International Conference on the

Latest Advances in Networks (ICLAN’2008), 2008.

[26] M. B. Iraji, M. H. Amerimehr, and F. Ashtiani, A Queueing Model for Wireless

Tandem Network Coding in Proceedings of the 2010 IEEE Wireless Communica-

tion and Network Confer- ence (WCNC 09), 2009.

[27] S. Floyd and V. Jacobson, Random Early Detection Gateways for Conges- tion

Avoidance, IEEE/ACM Trans. Net., vol. 1, no. 4, Aug. 1993, pp. 397413.

[28] S. Athuraliya, S. Low, V. Li, and Q. Yin. REM Active Queue Management. IEEE

Network Magazine, 15(3), May 2001.

[29] Feng W, Kandlur D, Saha D and Shin KG The BLUE Active Queue Management

Algorithms, IEEE/ACM. Transactions on Networking 10(4), 513528.

[30] H. Seferoglu and A. Markopoulou, Network coding-aware queue management for

unicast ows over coded wireless networks, in Proc. of NetCod, Toronto, Canada,

June 201

[31] Zhu, H., Cao, G.: rDCF: A relay-enabled medium access control protocol for

wireless ad hoc networks. In: Proceedings of IEEE INFOCOM. (2005)

[32] L. M. Feeney, B. Cetin, D. Hollos, M. Kubisch, S. Mengesha, and H. Karl, Multi-

rate relaying for performance improvement in IEEE 802.11 WLANs, in Proc.

International Conference on Wired/Wireless Internet Communication (WWIC),

Coimbra, Portugal, May 2007

89

Ringraziamenti
Questa volta è stata davvero dura...

Grazie a Francesca per essermi stati vicina nei momenti più difficili.

Grazie al Prof. Zorzi per i suoi preziosi consigli per la stesura della tesi e per le

correzioni.

Grazie ai miei genitori e ai miei fratelli per avermi supportato.

Thanks to Prof. Srikanth for the opportunity to work in the networking lab and

thanks to my lab mates for the great time we spent together.

Un ricordo particolare va a mia nonna Anna che mi è sempre stata vicina.

90

