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Abstract

This work describes the using of Universal and Strongly Universal classes of hash
functions for unconditionally secure message authentication in quantum cryptogra-
phy. Different classes are compared and constructions of flexible ε-Almost Strongly
Universal classes are described. A new upper bound on the lifetime of a single hash
function in one-time padded tags is introduced and optimisation on the final QKD
key rate is shown for the QuAKE experiment, a B92 based QKD system. The public
channel communication protocol of QuAKE is described, with special stress on the
security issues.
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Chapter

1
Quantum cryptography

Cryptography is the science that studies the methods of making messages meaningless
to unauthorised third parties. The usual manner to attain this purpose is to use algo-
rithms, called ciphers, that process the input message and whose output, called cypher-
text, is determined by some additional secret information, called the key. Obtaining the
original message without knowing the key must be computationally very hard; on the
contrary, extracting the message from the cyphertext and the key must be reasonably
fast.1 By means of cryptography, it is possible to transmit a message on a public channel
without anybody being able to understand its meaning, given that both the sender and
the receiver share a secret key that must be delivered on a different, secret, channel.

Symmetric key cryptography is based on cryptosystems where the same key is used
both by the sender to encrypt the message, and by the receiver to decrypt the cyphertext.
Examples of symmetric key cryptosystems are DES, AES and RC4.

Asymmetric key cryptography, also called public key cryptography, uses two dif-
ferent keys to perform the two phases of encryption and decryption, so one of the two
keys can be made public, while the other one is kept secret. This can be used in two
ways: if the public key is used to encrypt messages, the cyphertexts will be decodable
only by the owner of the private key. In the other way, the owner of the private key
can encrypt information that will be decodable by everybody: this allows what is called
“digital signature”, that is anyone can decrypt the cyphertexts and be reasonably sure
that the message may only have been sent by the owner of the private key. The most
widespread asymmetric key cryptosystem is RSA.

1In terms of complexity theory, the deciphering problem should lie within the nondeterministic poly-
nomial time (NP) class, and outside the bounded-error probabilistic polynomial time (BPP) class [KL07].
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1.1 Key distribution
The length of the key being equal, symmetric key cryptosystems are generally faster
and safer, so usually asymmetric key cyphers are used only to secretly transmit tempo-
rary keys for faster symmetric cyphers. Without using key agreement protocols, first
published by Diffie and Hellman in 1976 ([DH76]), or asymmetric key cyphers, the only
way to exchange secret keys would be by physically meeting the other party of the com-
munication, or by using a trusted courier.

Almost every cryptosystem2 grounds the secrecy of the cyphertext on the computa-
tional limitations of the possible adversaries. Most symmetric cryptosystems could be
forced if the adversary could produce all the possible messages by trying every possible
key on a given cyphertext, and then choose the message which sounds more sensible:
this operation is generally hard, because the number of all the possible keys is chosen to
be very high.

All asymmetric cryptosystems and Diffie-Hellman based key exchange protocols rely
on functions which are extremely easy to calculate, but computationally hard to invert
without a “trapdoor”. These functions are called one-way functions and exploit mathe-
matical problems like the factorisation of large numbers in two prime numbers or the
computation of the logarithm in finite fields, or operations on elliptic curves.

The main problem with these systems is that none of the mathematical problems they
are based on has ever been proven to be really intractable3, so it is possible that one day
an algorithm will be found which allows to “crack” all the cyphertexts produced until
then.

1.2 Quantum properties
A way to answer the need for a secure key distribution system comes from quantum
physics.

Quantum particles obey some laws which can be used as an advantage towards an
attacker. For example:

• it is not possible to perform measures on an unknown quantum state without per-
turbing it (uncertainty principle);

• it is not possible to duplicate an unknown quantum state (no cloning theorem);
• it is not possible to measure a photon on two nonorthogonal bases at the same time.
If we transmit information by means of single photons, it is possible to turn these

laws into a way to check if the transmission has been observed by an adversary. We can
2One-Time Pad is an example of symmetric key cryptosystem which is not based on computational

complexity to achieve the secrecy of the encrypted message. See paragraph 4.2.
3That is, not to belong to the NPP class.
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encode one bit of information in the quantum state of each transmitted photon: this unit
of information is called qubit, from “quantum bit”.4

1.3 BB84
The first protocol for quantum key distribution is BB84, and was introduced by Bennett
and Brassard in [BB84]. It is based on the transmission of single photons where the
information is encoded into the state of polarisation. The party that sends the photons
is conventionally called “Alice”, while the receiver is called “Bob”.

Alice and Bob choose two polarisation bases that are not orthogonal to each other,
and in each basis they assign value “0” to one state and value “1” to the orthogonal state.
Let us assume that the two nonorthogonal bases are 0°/90° and 45°/-45° and the chosen
values are:

.
. 0
. 1

.
. 0
. 1

Alice chooses two random binary sequences of the same length: one for the bases
and one for the binary values to transmit. Then Alice sends the single photons polarised
according to the values of the two random sequences. At the receiving side, for every re-
ceived photon, Bob must randomly choose one of the two bases to perform his measure.
If the chosen basis is the same as the one chosen by Alice, the photon is correctly mea-
sured, while if the basis is the wrong one, the photon will give unpredictable random
results, evenly distributed between 0 and 1.

After the quantum transmission, Alice can reveal on the public channel the actual
sequence of bases used for the polarisations. Since she is only telling the bases, and not
the polarisation state, she is not disclosing any additional information on the transmitted
bits. That is, if the attacker (called “Eve”) did not perform any measure on the transmit-
ted photons, the sequence of chosen bases does not carry any information on the actual
values coded by each photon.

When Bob receives the bases used by Alice, he can reply on the public channel with
a list of positions where Bob performed a successful measure on the photon and the
two bases coincide. He can also append a random list of some of the outcomes of his
measures, so that Alice can check that the transmission has been successful. The revealed
values will then be discarded from the list of secret bits.

The only way for an attacker to extract some information from the whole process,
is to perform some measures on the polarised photons and then let these photons con-
tinue their way to the receiver, or send some other polarised photons in place of the

4Formally, a qubit is a two-dimensional vector space over the complex numbers.
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intercepted ones. In any case, for every possible strategy chosen by the opponent, these
measures will introduce either errors, or losses, or both, on the quantum channel, and
by comparing some random values of the quantum transmission it is possible to detect
intrusions with high probability.

See table 1.1 for an example of realisation of the BB84 protocol.

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Alice’s bases . . . . . . . . . . . . . . .
Values 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1

Quantum channel
Polarisation . . . . . . . . . . . . . . .
Bob’s bases . . . . . . . . . . . . . . .
Bob’s measures . . . . . . . . . . .
Bob’s values 1 0 1 0 0 0 1 0 1 0 1

Public channel
Bases comparison ✓ ✓ ✓ ✓ ✓ ✓ ✓
Sifted values 0 1 0 0 0 1
Compared values 1 0
Comparison result ✓ ✓
Final values 0 0 0 1

Table 1.1: BB84 example.

QKD cannot be efficiently used as a system to transmit a given data form the sender
to the receiver, because the received data is an unpredictable subset of the transmitted
bits without knowing the exact bases used by Alice. Yet, this uncertainty can be turned
into an advantage towards a possible attacker. Even if the final data shared by Alice and
Bob cannot be predicted at the beginning of the whole process, the important fact is that
Alice and Bob share the very same data, which, therefore, can be used as a shared secret
key.

1.4 B92
The present work has been developed to provide authentication to the QuAKE project,
developed by QuantumFuture, a strategic project of Padova University. QuAKE has
been designed to implement B92, a simple protocol introduced by Bennett in [Ben92].
B92 works with only two nonorthogonal states and does not require Alice and Bob to
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reveal the sequence of chosen bases. A possible setup is the following. Alice encodes
her random bits into the following polarisation quits:

Alice’s encoding
. 0

. 1

Bob, then, detects the received photons with two single-photon avalanche diodes
(SPAD) screened by two polarising filters, each one oriented along one of the two or-
thogonal polarisations . and . . When one of the two SPADs clicks, it is impossible
that the detected photon had a polarisation orthogonal to that of the corresponding fil-
ter, so the only possibility is that the photon had the only other possible polarisation. So
Bob’s decision rule is:

Bob’s decision rule
. 1

. 0

An example of B92 protocol is described in table 1.2.

Positions 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Values 1 0 1 1 0 1 1 0 0 0 0 1 0 1 1

Quantum channel
Polarisation . . . . . . . . . . . . . . .
Bob’s measures . . . . . . . . . .
Bob’s values 0 1 1 1 1 0 0 1 0 1

Public channel
Compared values 1 0
Comparison outcome ✓ ✓
Final values 0 1 1 1 0 0 1 1

Table 1.2: B92 example.

1.5 Other protocols
The set of QKD protocols is not limited to polarisation-based protocols. Other QKD
systems use entangled photons and phase interference. An extensive survey on QKD
can be found in [GRTZ02].
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1.6 QKD distillation phases
Since the quantum channel is not perfect, some quits may be wrongly detected even if
the chosen basis is the right one. Alice and Bob, therefore, must correct the transmission
errors through a classical transmission on the public channel, and at the same time they
have to keep the information that Eve can gather on the final data (both from observa-
tions on the quantum channel and from the messages that have been transmitted on the
public channel) as low as possible.

In other words, there are three main aims when generating secret keys:
• correctness, i.e. Alice’s key must be equal to Bob’s key;
• secrecy, i.e. Eve’s information on the key must be zero;
• uniformity, i.e. the entropy of the final key must be maximum.
Let ka be the final key obtained by Alice, let kb be Bob’s final key and let L be the

length of ka. Let z be a random variable that describes all the observations performed
by Eve on the quantum channel, and c all the messages exchanged by Alice and Bob on
the public channel. In practice it is required that there exist three values ε′, ε′′, ε′′′, small
enough, such that:

P [ka ̸= kb] < ε′ (correctness)
I(ka, kb; z, c) < ε′′ (secrecy)
L−H(ka) < ε′′′ (uniformity)

The main way to achieve these purposes is to divide the key processing performed
by Alice and Bob in distinct phases: quantum transmission, sifting, key reconciliation,
and privacy amplification. Each of these phases aims at a different target.

Quantum transmission
During the quantum transmission Alice shares some randomness with Bob. The main
aim is to maximise the mutual information between the key sent by Alice (the raw key)
and the key received by Bob.

Sifting
The aim of sifting is to distill the advantage of Alice and Bob with respect to Eve, that is
to have a mutual information between Alice’s and Bob’s data which is greater than the
mutual information between Alice’s key and the attacker’s observations.

After the quantum transmission, Alice and Bob must agree on the positions of the
correctly transmitted photons. In the case of BB84, Alice (or Bob) transmits the sequence
of chosen bases to the other party, which replies with a list of the positions where the
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bases chosen by Alice agree with the bases chosen by Bob. In B92 it is sufficient that Bob
sends a list of the positions of all the received photons. Then a randomly chosen sample
of bits is chosen by one of the two parties and is revealed, so that it is possible to estimate
the amount of losses and errors.

The output of this phase is called sifted key.

Key reconciliation
This phase aims at reducing the probabilities that Alice’s and Bob’s final keys are differ-
ent.

After the sifting phase, Alice and Bob must correct all the errors occurred during the
quantum transmission, using reconciliation protocols like Cascade (see [BS93]), Winnow
([BLT+03]) or protocols based on LDPC ([ELAB09], [MDMD10]).

The key resulting from this phase is called reconciled key.

Privacy amplification
The aim of privacy amplification is to reduce the information that Eve still has on the
reconciled key below a given threshold. This can be achieved by estimating an upper
bound to the knowledge that Eve may have collected during all the previous phases
and by compressing the reconciled key with an appropriate function, like multiplying
the key by a random Toeplitz matrix (see paragraph 3.1).

1.7 The need for authentication
In principle, an opponent could pose as one of the legitimate parties and perform both
the quantum and the classic transmission pretending to be the intended counterpart,
without raising any suspect. The only way to prevent this kind of attack is by authenti-
cating the messages exchanged on the public classical channel through an authentication
code. Since every authentication code requires some preshared keys, Alice and Bob can-
not initiate a QKD session without some common secret information. Therefore, QKD
should actually be called quantum key growing, since it produces arbitrarily long secret
keys starting from a small amount of secure key material.





Chapter

2
Unconditionally secure authentication

2.1 Authentication codes
When we deal with QKD, if one of the messages transmitted through the public channel
is altered, the whole system could be prone to man-in-the-middle attacks, or, more gen-
erally, to denial-of-service attacks that would aim at disrupting one or all of the stages
of key sifting, reconciliation, and privacy amplification.

Authentication is the mean by which we address the issue of being sure that the
transmitted information has not been forged or modified by a third party. With the right
authentication system we can assure ourselves both that a message has been sent by the
person that claims to be the sender (i.e. the message authenticity), and that the message
has not been modified on the way to the receiver (i.e. the integrity of the message).

An authentication framework We want to be able to send one or more messages be-
longing to the message set M from a legitimate sender to a legitimate receiver, and we
want the additional property that an opponent, which is not a legitimate party of the
transmission, had a very low probability of forging a fake message or substituting a le-
gitimate message with a fake message without being detected. The situation where the
opponent simply inserts a fake message into the channel is called an impersonation attack,
while when the opponent intercepts a correct message and sends a forged message in
place of the legitimate one is called a substitution attack.

For a chosen authentication system, we call PI the maximum success probability over
all impersonation attacks, and we define PS as the maximum probability of success over
all substitution attacks.

One may wonder if there exist an optimum authentication scheme for a given key
length. Lower bounds were derived in [Mau00] for the success probability of imperson-
ation and substitution attacks on a system with multiple messages authentication over
a public error-free channel. By denoting with k the secret key shared by Alice and Bob,
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with m1, . . . ,mi the messages to be authenticated, and with x1, . . . , xi the authenticated
messages transmitted over the channel, the following bound for the impersonation at-
tack at the j-th message authentication holds [Mau00, Theorem 3]

PI(j) ≥
1

2I(k;xj |x1,...,xj−1)
∀ j = 1, . . . , i (2.1)

whereas for the substitution attack [Mau00, Theorem 6]

PS(j) ≥
1

2H(k|x1,...,xj−1,xj)
≥ 1

2H(k|x1,...,xj)
∀ j = 1, . . . , i (2.2)

The above bounds suggest partitioning the key k into i + 1 independent and uniform
subkeys k0, . . . , ki, so that

xj = f(mj, k0, kj) ∀ j = 1, . . . , i (2.3)

and f(mj, k0, ·) is a one-to-one function of kj for any value of mj, k0. A possible way to
implement (2.3) is to use a simple OTP scheme, where some subvector tj of xj is given
by

tj = g(mj, k0)⊕ kj ∀ j = 1, . . . , i (2.4)
Then, from (2.3) we have

I(k;xj|x1, . . . , xj−1) = I(kj; xj) = H(xj)−H(xj|kj) =
= H(kj) = log2(Kj) ∀ i = 1, . . . , n (2.5)

and
H(k|x1, . . . , xi) = H(k0)log2(K0) (2.6)

where Kj is the number of possible values for kj .
Observe that in this case, the lower bound in eq. (2.1) becomes

PI(j) ≥
1

Kj

∀ j = 1, . . . , i (2.7)

and is attained by the OTP scheme (2.4), which is therefore optimal in this respect.
On the other hand, the bound in eq. (2.2), which becomes

PS(j) ≥
1

K0

∀ j = 1, . . . , i (2.8)

is derived under the assumption of a generic attack aimed at recovering the key, and is
believed to be rather loose, when H(k0) < H(mj).

Nevertheless, we consider systematic authentication schemes of the type (2.3)-(2.4)
where xj = (mj, tj), g is a keyed hash function with mj as input, k0 as key, and tag tj of
the same length as kj .
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Therefore, the sender and the receiver share a secretly chosen encoding, and use it to
generate and check the tags. The opponent does not know which is the selected encod-
ing, but does know the complete description of all the possible encodings, their statistical
distribution and the statistical distribution of the messages.

Therefore, if we define a couple (m, t) to be valid if t is the correct tag for the message
m with the currently selected encoding, we can define:

PI = max
m̂∈M
t̂∈T

P [(m̂, t̂) is valid]

PS = max
m̸̂=m∈M

t̂,t∈T

P [(m̂, t̂) is valid|(m, t) has been observed]

We can view all the possible encodings as a multiset of keyed hash functions, that is, a
pool F of hash functions, each of which is uniquely identified by an index. The sender
and the receiver can agree on the selected hash function by sharing a secret key k chosen
from the set K of all the possible indexes.

If the chosen hash function family exhibits some “good properties”, the values PI

and PS will be extremely low, and therefore it will be difficult1 for an attacker to forge
the correct tag for a chosen message.

It’s important to stress the fact that in the current authentication model we are not
making any assumption on the computational capabilities of the opponents, such as
computer speed and storage memory, or time available for the attack. This is in contrast
with all the those security methods based on the difficulty of solving given problems,
for instance the factorisation of large prime numbers.

Our measure of security, that is, the limits on PI and PS that will be shown in this
work, relies only on combinatorial features which are intrinsic traits of the classes of
hash function that we will study, and for this reason this authentication is called uncon-
ditionally secure.

The other important aspect to stress is that our hash functions are not related to the
well known cryptographic hash function, which are generally deterministic functions (not
indexed), and which have features we are not interested in: we are not concerned by
preimage resistance or collision resistance of the single hash functions of our classes.
On the contrary, most of our hash functions exhibit a very simple structure.

General properties of authentication codes Let (m, t) be a valid couple formed by a
message and its tag. When an attacker intercepts (m, t), it’s easy to get the set of all the
possible hash functions of the class F that could have generated t from m:

F(m, t) ≜ {h ∈ F : h(m) = t}
1In all this work, the word difficult, when referred to an attack, means that the probability of success

is extremely low, and is not related either to the difficulty of calculations or to the space and time taken by
the computation.



12 Unconditionally secure authentication

Since all the hash functions are injective, it’s easy to prove that, for a given message m
taken from the message set M, the sets F(m, t) form a partition of F .

Now we can write explicitly the probability of impersonation, under the hypothesis
that the hash functions are uniformly distributed:

PI = max
m∈M
t∈T

P [(m, t) is valid] = max
m∈M
t∈T

|F(m, t)|
|F|

(2.9)

There exist one or more couples (m, t) that maximise the right term which are the weak-
est couples of the code, that is, the couples that have exactly probability PI of being
valid.

The probability of substitution becomes:

PS = max
m̸̂=m∈M

t̂,t∈T

P [(m̂, t̂) is valid|(m, t) has been observed] =

= max
m̸̂=m∈M

t̂,t∈T

P [F(m̂, t̂) ∩ F(m, t)]

P [F(m, t)]
=

= max
m̸̂=m∈M

t̂,t∈T

|{h ∈ F : h(m) = t ∧ h(m̂) = t̂}|
|{h ∈ F : h(m) = t}|

(2.10)

In this case there is no determined couple that attains the maximum PS , but one (or
more) pair of couples ((m̂, t̂), (m, t)) that gives PS . In general, for each legitimate couple
(m, t) observed by the opponent, there are one or more couples that maximise the prob-
ability of being valid, but in any case this probability will be bounded by PS .

2.2 Universal hashing
The concept of Universal hash functions was introduced in 1977 by Carter and Wegman
in [CW77].

Definition 2.1. Let F be a class of hash functions from a set of messages M to a set of
tags T .

Let F = |F| and N = |T | .
A family of hash functions is ε-Almost Universal (or ε-AU2) if

|{h ∈ F : h(m1) = h(m2)}| ≤ εF ∀m1,m2 ∈ M, m1 ̸= m2

If ε = 1
N

, F is simply called Universal (or U2).

If we define a collision as the case where a certain hash function gives the same tag
for two different messages, a U2 class of hash function guarantees that the number of
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collisions generated by a single function is bounded from above.2 Moreover, if we as-
sume to take the keys k uniformly over K, ε is the collision probability between the hash
values of two different messages.

It’s important to notice that a U2 class alone is not sufficient to give a valid authenti-
cation code.

Consider the following example:
Example 2.1. LetM = T = {0, 1}a, K = {0, 1, . . . , a−1} and letF be the class of functions:

hk(m) = (t(1), . . . , t(a)), t(i) = m((i+ k) mod a) ∀ i = 1, . . . , a

It’s easy to see that such a class is U2, in fact two messages collide under the same
hash function only if they are equal.

The number of collisions for each couple of different messages is 0, but forging a
tag for a fake message is very easy. If the original message m is not periodic, it suffices
intercepting the couple (m, t) to recover the secret key k. Now we can forge a valid
couple (m̂, t̂) that will be accepted as a valid message by the receiver. This attack is
possible because ε-AU2 hash functions do not require any feature that allow to limit the
probability of substitution PS or the probability of impersonation PI .

2.3 Strongly universal hashing
In [WC81], Wegman and Carter introduce a new kind of hash function class: 3

Definition 2.2. Let F be a class of hash functions from a set of messages M to a set of
tags T . Let ε ∈ (0, 1).

Let F = |F| and N = |T | .
A family of hash functions is ε-Almost Strongly Universal (or ε-ASU2) if

1. |{h ∈ F : h(m) = t}| = F
N

∀m ∈ M, ∀ t ∈ T

2. |{h ∈ F : h(m1) = t1, h(m2) = t2}| ≤ ε F
N

∀m1 ̸= m2 ∈ M, ∀ t1, t2 ∈ T

If ε = 1/N the class is simply called SU2.

These properties are crucial for our goal: let’s suppose an opponent has observed a
valid (m, t) couple. Now the attacker is able to identify the subset F ′ of hash functions
that could have generated our t. Property 1 gives us the exact cardinality of this subset,
so that (if F ≥ 2N ) it will be impossible to identify the right function with certainty. But

2The upper bound given by the definition is not the lowest possible: in [Sar80] an optimally universal
(OU) class of hash functions is defined as a ε-AU2-class with a collision number bounded by M−N

mn−N .
3In [WC81] Wegman and Carter define only SU2 classes, but they describe the concept of ε-ASU2

(calling it “almost strongly universal2”) without formalising it.
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there could exist a “lucky” message m̂(̸= m) that is mapped to a single value t̂ by each
hash function h ∈ F ′. If this was the case, we would not need to find out the exact hash
function, but we could be able to forge a valid couple (m̂, t̂) that would not be detected
as a fake one.

Property 2 is what addresses the issue noted above. It states that, for every subset F ′

identified by a legitimate couple (m, t), the number of hash functions in F ′ which map
a given message m̂ ̸= m into the same tag t̂ is upper bounded to be a fraction ε of |F ′|. If
ε is much smaller than 1, the success probability PS of a substitution attack is very low,
namely:

PS ≤ ε

where the maximum is attained by choosing a couple (m̂, t̂) that maximises |{h ∈ F :
h(m) = t, h(m̂) = t̂}|.

In other words, the two properties of ε-ASU2 hash function classes allow to give an
upper bound on the two probabilities PI and PS (see eqs. (2.9) and (2.10)).

The concept of SU2 can be generalised to prevent substitution attacks based on the
observation of up to l − 1 valid couples (m, t).

Definition 2.3. [WC81] Let F be a class of hash functions from a set of messages M to a
set of tags T . Let ε ∈ (0, 1).

Let F = |F| and N = |T | .
A family of hash functions is Strongly Universall (or SUl) if, for every choice of l

different values m1, . . . ,ml ∈ M and l (not necessarily different) values t1, . . . , tl ∈ T ,
there are exactly F/N l functions which map mi into ti for each i = 1, . . . , l.

Orthogonal arrays and SU2 class
One method to get a strict SU2 class is to build an orthogonal array.

Definition 2.4. [Bie96] An orthogonal array with parameters OAλ(l,M,N) is a multiset
F of mappings from a M -set M into a N -set T such that for every choice of l distinct
elements m1,m2, . . . ,ml ∈ M and l (not necessarily distinct) elements t1, t2, . . . , tl ∈ T
there are exactly λ elements h ∈ F affording the operation h(mi) = ti∀i = 1, . . . , l.

F can be visualised as a matrix where every row i corresponds to the message mi,
and every column j to a different mapping hj . The elements of the matrix are the values
hj(mi).

It is easy to see that an OAλ(l,M,N) can be used as an authentication code for the set
of messages M and the set of tags T . More exactly, this is a SUl class of hash functions.

If we put l = 2, our OAλ(2,M,N) is described by a matrix with M rows and λN2

columns [Sti88]. A lower bound for the value λ can be found in [PB45] and is given by

λ ≥ M(N − 1) + 1

N2
(2.11)
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Moreover, in [Sti94a] Stinson shows that a SU2 class F of hash functions from M to T
reaches its minimum size4 |F| = 1+M(N − 1) if and only if there exists a OAλ(2,M,N)

with λ = M(N−1)+1
N2 .

With the help of this parallel, we can see that, keeping the sameN to leave unchanged
the probabilities of success of the opponent’s attacks, the number of messages that can
be authenticated by a SU2 hash function class grows only linearly with the size of the
class of hash functions. In fact we can derive by equation (2.11) that λN2 ≥ M(N−1)+1.
Recalling that in our optimal SU2 construction |F| = λN2, we obtain the bound

|F| ≥ λN2

Wegman and Carter in [WC81] note that if we don’t require the probability of success
PS to be the theoretical minimum 1

N
, but we let it reach 1

N
+ δ, the size of the message set

M grows exponentially.

2.4 ∆-universal hashing
∆-universal families of hash functions (ε-∆U) are a generalisation of Xor-universal fam-
ilies (which will be described subsequently) and their definition is due to Stinson in
[Sti96].

Definition 2.5. Let F be a class of hash functions from a set of messages M to a set of
tags T which is an additive abelian group. Let ε ∈ (0, 1).

Let F = |F|.
A family of hash functions is ε-∆ Universal (or ε-∆U) if

|{h ∈ F : h(m1)− h(m2) = t}| ≤ εF ∀m1 ̸= m2 ∈ M, ∀ t ∈ T

Xor-universal hashing
This kind of hash functions have been first described by Krawczyk in [Kra94] who called
them ε-otp-secure hash functions. Rogaway renamed them ε-Xor-universal in [Rog95].

A family of hash functions is defined Xor-universal if it is ∆-universal and F = (Z2)
l

for some l.
In this case, the addition operation of the abelian group is the bitwise exclusive-or.
4see theorem 2.13 with ε = 1/N
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2.5 Authentication and channel coding
The similarities between Authentication codes and forward error correcting codes have
been noticed independently by Bierbrauer in [Bie97a] and by Johansson, Kabatianskii
and Smeets in [JKS93]. The goal of a well designed authentication code is to have the
minimum number of collisions among tags of different messages, generated by all the
possible hash functions. The key observation is that such a requirement is the same as
getting a high minimum distance between the words of a forward error correction code.

Let’s formalise this observation. Suppose that we have a family of keyed hash func-
tions (e.g. an ε-AU2). We can index every hash function with the index j ∈ [1, F ], and
every possible message with the index i ∈ [1,M ]. The codomain of our hash function
is {0, 1}n. We can think of the different tags as the symbols of our code, so we have an
alphabet with cardinality 2n. If, for each message m, we concatenate all the hash values
generated by all the hash functions applied to m, ordered by index, we obtain the word
that will code for the message m. Namely, if we call C the coding function:

C(m) = (h1(m), h2(m), . . . , hF−1(m), hF (m))

Every codeword is formed by 2n · F bits, but we will not be required to ever generate
the whole bit string.

Now we can choose two different messages m1 and m2 and see how many collisions
there are between their hash values: it is sufficient to compare every symbol with the
same index in their codewords. If they have the same symbol (that is, the same hash
value) in the same position, we found a collision. So the number of symbols that do not
get to a collision is the distance between the two codewords.

The minimum distance of a code is defined as

d = min
m1 ̸=m2

dH(C(m1), C(m2))

where dH is the Hamming distance.5 Usually the relative distance is defined as d/n,
where n is the number of symbols in one codeword, so in our case it is in fact d/F .

Therefore, calling ε the ratio between the number of collisions and the total number
of functions, we can state that:

ε = 1− d

F

so an ε-AU2 hash function family with cardinality F identifies a code with minimum
distance F (1− ε).

On the contrary, if we have a FEC code C with minimum distance d and block length
F , we can use it, for the set of messages accepted by C, just as if it were an ε-AU2 class. To
generate the hash value for the message m, we choose a secret index k and take the k-th
symbol as the hash value for m. For what we have just seen, this way of generating hash

5Note that the code symbols are not the single bits, but the hash values.
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values forms exactly an ε-AU2 hash function family, because it complies with definition
2.1.

We don’t have, in principle, an actual construction for the generic hash function in-
dexed by k: we could be required to calculate the whole codeword C(m) before being
able to select the only symbol k. To get a viable way of quickly hashing messages, we
must find a code that allows us to limit the computational load by selectively generating
single symbols of the codeword.

2.6 Relationships
It is possible to identify some useful relations among these hash function families.
Theorem 2.1. [Sti96] If F is ε-ASU2,

1. it is ε-AU2.
2. Moreover, if T is an abelian group, F is ε-∆U.

Proof. 1. To show the first result we use property 1 of definition 2.2. Choosing a fixed
value t, if we put t1 = t2 we get that

|{h ∈ F : h(m1) = h(m2) = t}| ≤ ε
F

N

Since we have N different choices of the value t, we find that

|{h ∈ F : h(m1) = h(m2)}| =

=
∑
t∈T

|{h ∈ F : h(m1) = h(m2) = t}| ≤ ε
F

N
= N · εF

N
= εF

2. For a given m1 ̸= m2 ∈ M and t ∈ T we have:

|{h ∈ F : h(m1)− h(m2) = t}| =

=
∑
t̄∈T

|{h ∈ F : h(m1) = t+ t̄ ∧ h(m2) = t̄}| ≤ N · εF
N

= εF

So F is ε-∆U.

Theorem 2.2. [Sti96] If F is ε-∆U, it is ε-AU2.
Proof. If we let t = 0 in the definition of ε-∆U families, we get:

|{h ∈ F : h(m1)− h(m2) = 0}| = |{h ∈ F : h(m1) = h(m2)}| ≤ εF
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Theorem 2.3. [Sti96] If there exists a ε-∆U hash function family G of cardinality G that maps
M into T , with M = M and N = T then there exists a ε-ASU2 hash function family F of
cardinality F = Fn that maps M into T .
Proof. Let h(f,θ) be the function defined by:

h(f,θ)(m) = f(m) + θ

Let F = {h(f,θ) ∀f ∈ G, θ ∈ T }. We must now prove the two properties of definition
2.2. Let |G| = G and |F| = F . We have that F = G ·N .

1. We use the fact that T is an abelian group.

|{h(f,θ) ∈ F : h(f,θ)(m) = t}| = |{(f, θ) : f(m) + θ = t}| =

=
∑
θ∈T

|{f : f(m) = t− θ}| =
∑
t̄∈T

|{f : f(m) = t̄}| = G =
F

N

2. We must prove that |{h(f,θ) ∈ F : h(f,θ)(m1) = t1 ∧ h(f,θ)(m2) = t2}| ≤ ε F
N

|{h(f,θ) ∈ F : h(f,θ)(m1) = t1 ∧ h(f,θ)(m2) = t2}| =
= |{(f, θ) : f(m1) + θ = t1 ∧ f(m2) + θ = t2}| =
= |{(f, θ) : f(m1)− f(m2) = t1 − t2 ∧ f(m1) = t1 − θ}| =

=
∑
θ∈T

|{f ∈ G : f(m1)− f(m2) = t1 − t2 ∧ f(m1) = t1 − θ}| =

=
∑
t̄∈T

|{f ∈ G : f(m1)− f(m2) = t1 − t2 ∧ f(m1) = t̄}| =

= |{f ∈ G : f(m1)− f(m2) = t1 − t2}| ≤ εG = ε
F

N

2.7 Compositions
To build a good authentication function, it is not necessary to study an ε-ASU2 from
scratch. We can instead compose different families of one or more classes of hash func-
tions to obtain a new family with characteristics which are different from the formers.
In this way we can focus our efforts on improving different characteristics of the compo-
nents of a hash function family, and the best hash functions are in fact designed taking
advantage of the following results.
Theorem 2.4. [Sti94b] Let F be an ε-AU2 class of F hash functions from M to T . Then there
exist an ε-AU2 class F i of F i hash functions from Mi to T i.
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Proof. For each h ∈ F , we define:

hi : Mi → T i

(m1, . . . ,mi) 7→ (h(m1), . . . , h(mi))

Let F i = {hi : h ∈ F}.
Theorem 2.5. [Sti94b] Let F1 be an ε1-AU2 class of F1 hash functions from M1 to T1, and let
F2 be an ε2-AU2 class of F2 hash functions from M2 = T1 to T2. Then there exist an ε-AU2

class F of F hash functions from M1 to T2 with

ε = ε1 + ε2 − ε1ε2

and
F = F1F2

Proof. For each couple (hi, hj) ∈ F1 ×F2, we define:

hi,j : M1 → T2

m 7→ hj(hi(m))

Let F = {hi,j : (hi, hj) ∈ F1 ×F2}.
Theorem 2.6. [Sti94b] Let F1 be an ε1-AU2 class of F1 hash functions from M to T1, and let
F2 be an ε2-ASU2 class of F2 hash functions from T1 to T2. Then there exist an ε-ASU2 class F
of F hash functions from M1 to T2 with

ε = ε1 + ε2

and
F = F1F2

Proof. For each couple (hi, hj) ∈ F1 ×F2, we define:

hi,j : M1 → T2

m 7→ hj(hi(m))

Let F = {hi,j : (hi, hj) ∈ F1 ×F2}. Let’s prove the two properties of definition 2.2:
1. For a given couple (m, t):

|{h ∈ F : h(m) = t}| = |{(h1, h2) ∈ F1 ×F2 : h2(h1((m)) = t}| =

=
∑
t̄

|{(h1, h2) ∈ F1 ×F2 : h1(m) = t̄ ∧ h2(t̄) = t}| =

=
∑
t̄

|{h1 ∈ F1 : h1(m) = t̄}| · F2

N
=

F1F2

N
=

F

N
.
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2. We have to prove that |{h ∈ F : h(m1) = t1, h(m2) = t2}| ≤ ε F
N

∀ m1 ̸= m2 ∈
M, ∀ t1, t2 ∈ T . First let’s suppose that t1 = t2 = t:
|{h ∈ F : h(m1) = h(m2) = t}| =
= |{(h1, h2) ∈ F1 ×F2 : h2(h1(m1)) = h2(h1(m2)) = t}| =

=
∑
t̂∈T1

|{(h1, h2) ∈ F1 ×F2 : h1(m1) = h1(m2) = t̂ ∧ h2(t̂) = t}|+

+
∑
t̄1 ̸=t̄2

(
|{h1 ∈ F1 : h1(m1) = t̄1, h1(m2) = t̄2}| · |{h2 ∈ F2 : h2(t̄1) = h2(t̄2) = t}|

)
≤

=
∑
t̂∈T1

(
|{h1 ∈ F1 : h1(m1) = h1(m2) = t̂}| · |{h2 ∈ F2 : h2(t̂) = t}|

)
+

+ F1 · |{h2 ∈ F2 : h2(t̄1) = h2(t̄2)}| ≤

≤ ε1F1 ·
F2

N
+ F1 · ε2

F2

N
= (ε1 + ε2)

F1F2

N
= ε

F

N

The second case is when t1 ̸= t2:
|{h ∈ F : h(m1) = t1, h(m2) = t2}| =
= |{(h1, h2) ∈ F1 ×F2 : h2(h1(m1)) = t1, h2(h1(m2)) = t2}| =

=
∑
t̄1 ̸=t̄2

(
|{h1 ∈ F1 : h1(m1) = t̄1, h1(m2) = t̄2}|·

· |{h2 ∈ F2 : h2(t̄1) = t1, h2(t̄2) = t2}|
)
≤

≤
∑
t̄1 ̸=t̄2

(
|{h1 ∈ F1 : h1(m1) = t̄1, h1(m2) = t̄2}|

)
· ε2

F2

N
≤

≤ F1 · ε2
F2

N
≤ (ε1 + ε2)

F1F2

N
= ε

F

N

2.8 Bounds
To analyse the features of our hash functions, we must introduce some bounds on the
cardinality of specific families.

Bounds for AU2 classes
Theorem 2.7. [Sar80] Let F be an ε-AU2 class of hash functions from M to T . Let M = |M|,
and N = |T |. Then

ε ≥ M −N

N(M − 1)
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Theorem 2.8. [Sti94b] Let F be an ε-AU2 class of hash functions from M to T . Let F = |F|,
M = |M|, and N = |T |. Then

F ≥ M(N − 1)

M(εN − 1) +N2(1− ε)

Theorem 2.9. [NR10] Let F be an ε-AU2 class of hash functions from M to T . Let F = |F|,
M = |M|, and N = |T |. Then

F ≥ 1

ε

⌈ log2M

log2 N
− 1

⌉

Bounds for ∆U2 classes
Theorem 2.10. [Sti96] Let F be an ε-∆U class of hash functions from M to T . Let M = |M|,
and N = |T |. Then

ε ≥ 1

N

Theorem 2.11. [Sti96] Let F be an ε-∆U class of hash functions from M to T . Let F = |F|,
M = |M|, and N = |T |. Then

F ≥ M(N − 1)

N −M +Nε(M − 1)

Theorem 2.12. [NR10] Let F be an ε-∆U2 class of hash functions from M to T . Let F = |F|,
M = |M|, and N = |T |. If

log2 M < log2 N ·

(√
2H

(
1− 1

N

)
− 1

2

)

then
F ≥ 1

ε

⌊ log2M

log2 N

⌋

Bounds for ASU2 classes
Theorem 2.13. [Sti94b] Let F be an ε-ASU2 class of hash functions from M to T . Let F = |F|,
M = |M|, and N = |T |. Then

F ≥ 1 +
M(N − 1)2

Nε(M − 1) +N −M

Theorem 2.14. [GN93] Let F be an ε-ASU2 class of hash functions from M to T . Let F = |F|,
M = |M|, and N = |T |. Then

F ≥ − M

ε2 log ε
(2.12)



22 Unconditionally secure authentication

ε <

(
1 +

log2 N

log2 M − log2 N

)
1

N
ε >

(
1 +

log2 N

log2 M − log2 N

)
1

N

ε-AU M(N − 1)

M(εN − 1) +N2(1− ε)

1

ε

⌈ log2M

log2 N
− 1

⌉

ε-∆U M(N − 1)

N −M +Nε(M − 1)

1

ε

⌊ log2 M

log2N

⌋
if log2 M < log2 N ·

(√
2H
(
1− 1

N

)
− 1

2

)

ε-ASU
1 +

M(N − 1)2

Nε(M − 1) +N −M

N

ε

⌊ log2M

log2 N

⌋
if log2 M < log2 N ·

(√
2 F
N

(
1− 1

N

)
− 1

2

)

− M

ε2 log2 ε

Table 2.1: (Adapted from [NR10]) Lower bounds for the cardinality F of different classes
of hash functions. M = |M|, N = |N |.

Theorem 2.15. [KSJ96] Let F be an ε-ASU2 class of hash functions from M to T . Let F = |F|,
M = |M|, and N = |T |. If

log2M < log2N ·

(√
2
F

N

(
1− 1

N

)
− 1

2

)

then
F ≥ N

ε

⌊ log2 M

log2N

⌋
(2.13)

Nguyen and Roscoe point out in [NR10] that the bounds described in theorems 2.9,
2.12, 2.15, and 2.14 are better than the ones contained in 2.8, 2.10, 2.11, and 2.13 when the
ε is higher than ε̄ =

(
1 +

log2 N

log2 M−log2 N

)
1
N

. The previous results are summarised in table
2.1.
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ε-AU log2

(
1

ε

⌈m
n

− 1
⌉)

ε-∆U
log2

(
1

ε

⌊m
n

⌋)
if m < n ·

(√
2r+1

(
1− 1

2n

)
− 1

2

)

ε-ASU
n+ log2

(
ε−1
⌊m
n

⌋)
if m < n ·

(√
2 F
N

(
1− 1

N

)
− 1

2

)

log2 m+ 2 log2 ε
−1 − log2 log2 ε

−1

Table 2.2: (Adapted from [NR10]) Lower bounds for the logarithm kh of the cardinality
of different classes of hash functions F . kh = log2 |F|, m = log2 |M|, n = log2 |N |.

We can observe that, even if the bounds on the left side of table 2.1 can be more
accurate for some values of ε, they become quite useless when we deal with very large
message sets M: in those cases it is impossible to exactly calculate the lower bound for
F (e.g. M could be 2106 as well). Since in our environment we will authenticate messages
as long as a million bits, we will always use the bounds on the right column (see table
2.2 for logarithmic bounds).

2.9 Attacks
While this authentication system looks like perfect, it doesn’t deal with the case when
the opponent has partial information on the one-time pad keys, as in the case of quantum
key distribution. In fact, in QKD, after using all the keys that must be shared before the
starting of the system, Alice and Bob will use keys that have been generated by the key
generation process. As was seen in chapter 1, the opponent could have some residual
information about the exchanged key, and our authentication system can not ignore this
fact.
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Partial knowledge on the key
The main threat to an ε-ASU2 authentication has been proposed by Larsson and Cederlöf
in [CL08].

They study the case where the opponent has partial knowledge on the key. This event
is anything but unlikely, because during the quantum transmission a little amount of
information could have been intercepted by Eve without being noticed, and also because
all the data exchanged over the public channel is, by definition, public. The privacy
amplification step in QKD is designed to make the information that Eve has on the final
key as little as possible, but some small amount of information will still be retained by
the opponent.

Cederlöf and Larsson highlight how Eve is, in principle, able to influence the mes-
sages that are exchanged on the public channel by altering the quantum transmission.
Since she is not trying to extract information by the photons, but only to increase the im-
pact of the information she already has, she is not required to make any kind of measures,
and therefore altering the quantum states and finally being detected.6

When Eve intercepts a valid couple (m, t), where m is the message which could have
been influenced by her, she can partition the family F in the classes

F(m, t) = {h ∈ F : h(m) = t}

Let’s call this partition
Fm

The blocks of Fm correspond to the sets F(m, t) determined by all the values of t ∈ T ,
that is

Fm =
∑
t∈T

F(m, t)

Since Eve has some information on the actual hash function, she can use all her infor-
mation with the purpose of excluding possible hash functions. Influencing the message
m, she has some control on the partition. If she is able to exclude some hash functions by
a single class F(m, t), and if the number of hash functions in it falls under εF/N , it may
be that all the remained functions map another message m̂ into another tag t̂. In this
case, Eve would be sure that the substitute couple (m̂, t̂) would be valid, and therefore
her substitution attack would be successful.

It is important to point out that, with this attack, the opponent knows exactly when
the attack will be successful, and can choose to perform it only in this case.

The best situation the opponent could aim to, is the condition where every block of
functions has either size εF/N or F/N . In fact, when the selected hash function falls
into a block of size εF/N , it could happen that there exist a message m̂ that is mapped
into a single tag t̂.

6For instance, she could in some way just affect the position of the slots in which Bob receives some
photons.



Chapter

3
Constructions of ε-ASU2 classes

In this chapter we will show some fundamental and flexible constructions of ε-ASU2

classes of hash functions. This is not meant to be a comprehensive list of the existing
ε-ASU2 classes.

3.1 Toeplitz matrices
Toeplitz matrices have constant diagonals. A binary Toeplitz matrix A has elements
ai,j ∈ {0, 1} such that

ai,j = ak,l ∀ (i, j, k, l) : k − i = l − j

Such matrices can be completely characterised by expressing only the first row and first
column, as the remaining elements are equal to the first item of the diagonal they belong
to. Since the element in position (1, 1) is shared by the first row and the first column, we
can describe a Toeplitz matrix using only an array of n+m− 1 bits, which is called the
seed of the matrix.

Let’s define a hash function which uses Toeplitz matrices. Let M = {0, 1}m and
T = {0, 1}n. For each pair (A, b) where A is a Toeplitz matrix with n rows and m columns
and b ∈ T is an array, we can define a hash function:

h(A,b) : M → T
x 7→ Ax+ b

Let F be the set of all these functions.

Theorem 3.1. [MNT90] F is 1
n

-ASU2 (that is, SU2).
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Proof. Let’s prove property 2 of the definition 2.2. For each choice of x1 ̸= x2 ∈ M and
y1, y2 ∈ T :

|{(A, b) : Ax1 + b = y1, Ax2 + b = y2}| =
= |{(A, b) : A(x1 + x2) = y1 + y2, Ax1 + b = y1}|

For each matrix A, there is only one array b = y1 − Ax1 such as Ax1 + b = y1, so we can
count only the number of matrices A which satisfies the equality A(x1 + x2) = y1 + y2:

|{(A, b) : Ax1 + b = y1, Ax2 + b = y2}| =
= |{A : A(x1 + x2) = y1 + y2}| = |{(A, b) : Ax = y}|

where we let x = x1 + x2 and y = y1 + y2. Note that x ̸= 0, because x1 ̸= x2 and we
are using the binary sum. If we write the matrix element ai,j by its seed value, that is as
αn−i+j , 1 we can write the expression Ax = y as the following system of linear equations:

∑m
i=1 αixi = yn∑m
i=1 αi+1xi = yn−1

. . .∑m
i=1 αi+n−1xi = y1

Since x ̸= 0, the n equations are linearly independent2, and so the dimension of the
solution space is exactly m − 1. Each set {(A, b) : Ax1 + b = y1, Ax2 + b = y2} has
therefore size 2m−1. The number of all the possible hash functions in F is

|F| = 2n+m−1 · 2n = 22n+m−1

1That is, we write the matrix
a1,1 a1,2 . . . a1,m−1 a1,m
a2,1 a2,2 . . . a2,m−1 a2,m
...

...
...

...
an−1,1 an−1,2 . . . an−1,m−1 an−1,m

an,1 an,2 . . . an,m−1 an,m


as: 

αn αn+1 . . . αn+m−2 αn+m−1

αn−1 αn . . . αn+m−3 αn+m−2

. . .
. . .

. . .
. . .

. . .

α2 α3 . . . αm αm+1

α1 α2 . . . αm−1 αm


2The same system of linear equations obtained by the multiplication of a Toeplitz matrix A by an array

x: 
an an+1 . . . an+m−2 an+m−1

an−1 an . . . an+m−3 an+m−2

. . .
. . .

. . .
. . .

. . .

a2 a3 . . . am am+1

a1 a2 . . . am−1 am

 ·


x1

x2

...
xm−1

xm


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and so
|{(A, b) : Ax1 + b = y1, Ax2 + b = y2}| = 2m−1 =

|F|
22n

We have thus proved property 2. Property 1 can be easily proved using the last part of
the proof of property 2.

Features
Class size The class size is exactly

|F| = 22n+m+1

Indexing We can index every hash function of this class by concatenating the seed3

s ∈ {0, 1}n+m−1 of the Toeplitz matrix and the array b ∈ T . Every hash function is
indexed by the 2n+m− 1 binary array [s, b].

Implementation The implementation is straightforward: one could develop the actual
Toeplitz matrix from the seed and then perform a matrix-array multiplication, otherwise
one could implement the same multiplication in an efficient way taking advantage of the
special structure of the Toeplitz matrices. Tang, Duraiswami, and Gumerov [TDG04],
and Bodrato ([Bod07]) give an example of an efficient algorithm to perform this task.
In this way it is not necessary to explicitly express (and therefore store in memory) the
whole matrix, which in many cases may have as many as hundreds of rows and millions
of columns.

To authenticate messages which are shorter than m bits, it is enough to truncate the
number of columns of the Toeplitz matrix to the actual length of the message, if we are
using the classical authentication, or to shorten the seed accordingly, if we are using an
efficient algorithm which only uses the seed.

The binary addition between arrays adds a negligible complexity to the previous
step.
can be described by:

0 0 . . . 0 x1 x2 . . . . . . xm−1 xm

0 0 . . . x1 x2 x3 . . . . . . xm 0

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

. .
.

0 x1 . . . . . . . . . xm−1 xm . . . 0 0
x1 x2 . . . . . . . . . xm 0 . . . 0 0

 ·


a1
a2
...

an+m−2

an+m−1


Now it becomes evident that, when at least one of the coefficient of x is not null, the equations are inde-
pendent.

3That is, every element ai,j of the Toeplitz matrix is equal to the seed element sn−i+j .
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Remarks This class of hash functions is not suitable to be used only once, in the context
of QKD, because it needs an amount of random data (the key length) that is greater than
the message to be authenticated.

3.2 Binary matrices
A class of SU2 hash functions for messages of length m and hash length n is obtained
by taking a random binary matrix A of size n ×m and an array b of length n. The hash
value for a message x is calculated as Ax + b. This class has the same properties as the
Toeplitz based class, but its size is much larger and its hash computation is slower, so it
is rarely used in practice.

Features
Class size The class size is exactly

|F| = 2(m+1)n

Indexing We can index each hash function by concatenating of the matrix A (either in
row-major or in column-major) and of the array b. Every hash function is indexed by a
binary array of size (m+ 1)n.

3.3 Stinson
In [Sti94b], Stinson refines a construction due to Wegman and Carter in [WC81].

The final ε-ASU2 class is built on a U2 class G1 and a SU2 class G2.
Let p be a prime power, and let M1 = Fp × Fp and T1 = Fp. So |M1| = M1 = p2 and

|T1| = N1 = p. For each x ∈ Fp the function gx is defined as:

gx :M1 = Fp × Fp → T1

(y, z) 7→ xy + z

Let G1 be the set of all the functions gx:

G1 = {gx : x ∈ Fp}

It is straightforward to prove that G1 is a U2 class of hash functions.
Applying theorem 2.4, for each j = 1, . . . , i it is possible to build a 1/p-AU2 class G2j

1

of p hash functions from M2j

1 to T 2j−1

1 . Then it is possible to use theorem 2.5 to combine
all the classes G2j

1 in a single i/p-AU2 class G2i

1 of pi hash functions from M2i

1 to T1, with
|M2i

1 | = p2
i .
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To define G2, let q be a prime power and let s and t be two integers so that s > t. Let
M2 = Fqs and T2 = Fqt . |M2| = M2 = qs and |T2| = N2 = qt. For each x ∈ Fq. Let ϕ
be any surjective linear transformation from M2 to T2. For each (x, y) ∈ M2 × T2 let the
function gxy be defined as:

gxy :M2 → T2

z 7→ ϕ(xz) + y

Let G2 be the set of all the functions gxy:

G2 = {gxy : (x, y) ∈ Fqs × Fqt}

It is possible to prove that G2 is a SU2 class of hash functions (see [Sti94b]).
If the elements in Fqs and Fqt are represented by vectors on Fq, it is possible to define

ϕ(x) as any fixed subset of the coefficients of size t, that is:

ϕ(x) = ϕ ((x1, . . . , xs)) = (xi1 , . . . , xit)

Now we can build the final ε-ASU2 class F of hash functions.
Choosing the class G2i

1 with p = qs, we obtain an i/qs-AU2 class of hash functions
from M2i

1 to T1, with |M2i

1 | = q2
is and |T1| = qs. Then it is possible to compose the i/qs-

AU2 class G2i

1 with the SU2 class G2 using theorem 2.6. The result is the (i/qs+1/qt)-ASU2

class F .
Now we can choose the right parameters: let q = 2, t = n, M = M2i

1 , and T = T2,
with |M| = 2m and |T | = 2n. Let

s = n+ ⌈log2 log2m⌉ (3.1)
i =

⌈
log2

m

s

⌉
(3.2)

It is possible to check that
i

2s
≤ 1

2n

so F is a 1/2n−1-ASU2 class of F hash functions, with

F = 2(i+1)s+n

Features
Class size The class size is exactly

|F| = 2(i+1)s+n

with s = n+ ⌈log2 log2m⌉ and i =
⌈log2

m
s

⌉.
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Indexing We can index every hash function of this class by concatenating i binary ar-
rays of size s, which are the keys for the i steps of universal functions, plus one more
binary array of size s and another one of size n, which are the keys of the strongly uni-
versal function. So every hash function is indexed by a binary array of size (i+ 1)s+ n.

Implementation The message is processed in i + 1 rounds. At the beginning of the
first i rounds, the input is padded with zeros up to a length multiple of 2s. Let kj be the
key for the round j: in the first i rounds the message is repeatedly split in blocks of size
2s and the hash function gkj is applied to each block. The concatenation of the results is
the input for the next round. The final round consists in the application of the strongly
universal hash function gkakb , where ka and kb are the two keys for the G2 function. The
linear transformation can be implemented by simply taking the first (or the last) n bits.

Optimisations A possible improvement could be that of applying the universal
hash functions only for the number of steps that are strictly necessary to reduce the size
of the message to s. Then it is possible to skip to the application of the final strongly
universal hash function.

Remarks The key size is much shorter than m, that is the size of the messages in M.

3.4 Krawczyk
Krawczyk constructions are three different constructions of ε-ASU2 classes introduced
in [Kra94] and [Kra95]. These are all based on ε-AXU classes (see theorem 2.3), formed
by Toeplitz matrices which seed has been obtained from so-called ε-biased distributions
(described by Naor and Naor in [NN90]). The main problem in two out of three of the
constructions is that the key is formed by the description of an irreducible polynomial,
which is not efficiently encoded, so the length of the key is larger than log2 |F|. More-
over, in the third construction (the scalar product construction) it is possible to notice that
different keys produce the same hash function, and this problem worsens as the class
size increases, so the entropy of the key is not completely used. In any case, the Reed-
Solomon class addresses these problems with a smaller size.

3.5 Reed-Solomon
Using the similarities between ε-ASU2 classes shown in paragraph 2.5, we can use Reed-
Solomon codes as a component of an ε-ASU2 hash function class. This construction is
due to Bierbrauer, Johansson, Kabatianskii and Smeets (see [BJKS93]).

Using coding theory notation, a [n, k, d]q-code is a code with minimum distance d that
processes messages of length k on a q-sized alphabet and returns codewords of length
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n on the same alphabet. In general, a (n, k)-code is a code which processes messages of
length k and returns codewords of length k. The Reed-Solomon code is optimal, in the
sense that it is an (n, k)-code that reaches the minimum distance d = n− k + 1.

In Reed-Solomon encoding (see [RS60]), the message is seen as a concatenation of k
coefficients of a polynomial on a finite field Fq. The codeword is obtained by oversam-
pling the polynomial in n > k different points of Fq and concatenating the results. If up
to n− k symbols get lost, the original message is still recoverable.

We choose the Reed-Solomon [n, k, d]q-code with the following parameters:
n = 2r+s

k = 1 + 2s

d = n− k + 1 = 2r+s − 2s

q = 2r+s

Going back to authentication codes notation, this Reed-Solomon code is capable of
encoding binary messages of length up to m = 2(n+s)(1+2s) (from now on, n is the length
of the final tag) and produces a ε1-AU2 class of hash functions with

ε1 = 1− d

n
= 1− 2n+s

2n+s
+

2s

2n+s
=

1

2n

Now it is possible to compose the ε1-AU2 class with the ε2-ASU2 class G2 (see para-
graph 3.3) of the hash functions from F2s to F2n . Therefore, by theorem 2.6, the final class
F of hash functions is ε-ASU2, with

ε = ε1 + ε2 =
1

2n
+

1

2n
=

1

2n−1

Features
Class size The class size is exactly

|F| = 23n+2s

Let m be the maximum message length: s must be chosen to be the smallest integer
such that

m < (n+ s)(1 + 2s) (3.3)
Usually m ≫ n, so it is possible to approximate s ≈ ⌈log2m− log2 n⌉.4

Indexing We can index every hash function of this class by the concatenation of a bi-
nary array of size n+s, which is the key for the universal function, with a binary array of
size n+s and another one of size n, which are the keys of the strongly universal function.
So every hash function is indexed by a binary array of size 3n+ 2s.

4If the requirement of equation (3.3) does not hold, it is sufficient to choose s as the smaller integer
that makes (3.3) feasible.
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Implementation Let k1 ∈ {0, 1}n+s be the key for the universal hash function and ka ∈
{0, 1}n+s and kb ∈ {0, 1}n The message is padded up to a length multiple of n+s and then
is split in i blocks of length n+s. Every block j is multiplied by kj−1

1 for each j = 1, . . . , i,
then all the results are summed. The multiplications and exponentiations are calculated
in F2r+s .

The second phase consists in the application of the strongly universal hash function
gkakb , as in Stinson’s construction.

Remarks The key size is the shortest in all the constructions considered in this work.

3.6 Comparison between class sizes and lower bounds
We can compare the different sizes of these constructions with the lower bounds (2.12)
and (2.13). It is possible to see that Reed-Solomon construction has good performances
versus both m and n.
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4
Reusing the same key

In the previous chapters it has been seen that changing the selected hash function is very
expensive, because many secret bits have to be used to form a key which will define the
new hash function.

In the context of QKD, the rate at which we use secret bits is fundamental to de-
termine the soundness of the whole key generating system. In fact, the random data
used by Alice and Bob as the index for the new hash function are extracted by the same
stream of secret bits generated by the quantum system. Therefore, the overall net key
rate produced by the QKD is given by the rate of secret data stream at the end of privacy
amplification to which the rate of key consumed by the authentication process has to be
subtracted.

If we are able to reduce the rate of the key used by the authentication, all the saved
bits will increase the net key rate, so it is crucial to use as little key as possible for the
authentication purpose.

In QKD, it is necessary to authenticate one or more messages during a single round,
so it is necessary to find a way to use the same hash function as long as possible, without
letting the security of the whole process to diminish under a fixed threshold.

4.1 One-time pad
One-time pad (or OTP), that is a Vernam cypher with a keystream which is random, uni-
formly distributed and is used only once, is an encryption method that attains Shannon’s
perfect secrecy (see [Sha49]). This means that, if m is the message and c is the cyphertext
that codes for m,

H(m) = H(m|c) (4.1)
that is to say that the observation of c gives absolutely no information about the original
message.
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One-time pad encryption is very easy to perform: if the message m is formed by
the concatenation of many symbols (a1, . . . , an), with ai ∈ A, and (A,+) is an algebraic
group, a one-time pad key k must be composed by as many random symbols (of the
same alphabet A) as the message m:

k = (k1, . . . , kn)

The cyphertext c is given by:

c = (c1, . . . , cn)

ci = mi + ki

4.2 Strongly Universal Hashing and One-Time Pad
To answer the need for multiple authentication, Wegman and Carter in [WC81] mention
the possible use of SUl hash function families to reuse a single hash function up to l− 1
times: nevertheless, the number of functions in such a class increases exponentially with
l (see Atici and Stinson in [AS96]). Another method suggested by Wegman and Carter
is to encrypt the tag obtained by a (ε-A)SU2 hash function with one-time pad. Since the
one-time pad changes at every authentication round, it is impossible for the attacker to
ever identify the selected hash function, basically because he has no information about
the hash value generated by the hash function, as shown in equation (4.1).

In [WC81] Wegman and Carter also show that the choice of encoding the tag with
a one-time pad key leads to an authentication code that is asymptotically optimal. Their
proof is reported here for completeness.

Theorem 4.1. [WC81] Let F be a ε-ASU2 class of hash functions from M to the group T .
Let’s choose a hash function h with uniform distribution in F . If we authenticate a sequence of
messages mi by first calculating their hash value with h and then encoding the hash values with a
one-time pad key ki chosen with a uniform distribution in T , so ti = h(mi)+ki, then an attacker
who only sees the couples (mi, ti) has a probability PD of successfully forging a valid tag t̂ for a
message m̂ of his choice that is upper bounded by

PD ≤ ε

Proof. Let m̂ be a generic message chosen by the opponent. Let F(m, t, t̂) = {(h, k) ∈
F × T : h(m) + k = t∧ h(m̂) + k = t̂}. Since F is ε-ASU2, for each value of k there are at
most ε|F| functions that map m into t− k and m̂ into t̂− k, so

|F(m1, t1, t̂1)| ≤ ε
|F|
|T |

· |T | = ε|F|
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Moreover, for each couple (h, k1) ∈ F(m1, t1, t̂1), there is exactly one sequence (k1, . . . , kn)
that satisfies the set of equalities 

h(m1) + k1 = t1
. . .
h(mn) + kn = tn

so the opponent will not be able to gain any additional information on the set of possible
hash functions h. The chances of successfully substituting a valid couple mi, ti with a
valid forged couple (m̂, t̂), therefore, are upper bounded by

PS = max
mi ̸=m̂∈M

ti,t̂∈T

|{(h, k) ∈ F × T : h(mi) + k = ti, h(m̂) + k = t̂}|
|F × T |

≤ ε
|F||T |
|F||T |

= ε

Now let’s consider the case where, for n times, an opponent can choose a message
mi, tries to produce a valid tag t̂i, and then is given the right tag ti.
Theorem 4.2. [WC81] If the opponent’s probability of forging the right tag at round i (t̂i = ti)
is

PD ≤ pi ∀i = 1, . . . , n

then the size of the set of hash functions must be

|F| ≥ 1

p1 · . . . · pn
Proof. Let F0 = F and Fi = {h ∈ F|h(ml) = tl ∀l = 1, . . . , i}. The strategy of the
opponent could be that of choosing, at round i, a random element of the setFi to calculate
t̂i. If PD ≤ pi, then |{h ∈ Fi−1 : h(mi = ti)}| ≤ pi|Fi−1|, so

|Fi| ≤ pi|Fi−1| ∀i = 1, . . . , n

Considering the last round, we obtain
|Fn| ≤ p1 · . . . · pn|F0|

and, therefore,
|F| ≥ 1

p1 · . . . · pn
because F0 = F and |Fn| ≥ 1.
Corollary 4.1. If we require p1 = . . . = pn = p, then we need |F| ≥ 1

pn
and at least −n log2 p

to identify a hash function in F .
If we used a SU2 hash function with OTP encoding for the tag, it would take us

k − n log2 p bits for n rounds, where k is the key size for the SU2 function, we can state
that the key consumption would be asintotically optimal.
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Remarks The secrecy of the OTP key alone is completely unsecure, because, knowing
just the selected hash function, the opponent is able to calculate the hash value of an
intercepted message and then to recover the OTP key, so the substitution attack is trivial.
So it is not enough to have a perfect secrecy on the OTP encoding.

OTP advantages
In [AS96], Atici and Stinson show that it is possible to save some key by not encoding
the first tag with OTP, relying only on the properties of ε-ASU2 classes. In this way,
they expose the authentication code, at least for the first couple (m, t), to the Cederlöf-
Larsson attack (see paragraph 2.9). Encrypting all the hash values, as in Wegman and
Carter original idea, on the other hand, protects the authentication code by this threat,
while, at the same time, the optimal asymptotical behaviour is not affected.

4.3 Partial knowledge on the key, revised
With the OTP encryption of the tag, the Cederlöf-Larsson attack (paragraph) is no longer
possible: since the tag t is encrypted, most of the times the opponent is not able to de-
termine which block F(m, t) of the partition Fm is identified by the intercepted couple
(m, t).

While OTP encryption on the tag allows a single hash function to be used more than
once, though, it also has a new weak point. Since the hash function is used many times,
the opponent can store all the information extracted in a series of observed valid authen-
tication. As a consequence, the more a single hash function is used, the higher are the
opponent’s chances of a successful attack.

Abidin and Larsson study the same problem in [AL11]. They give simplified models
to calculate the probability of success of the opponent’s attacks and describe the results
of simulations of attacks. We will give, instead, an upper bound to the probabilities of
success of the attacks.

Hypothesis
In the QKD, the privacy amplification phase is designed to leave the opponent with not
more than a given amount of information. Let z be a random variable which describes
all the observations made by the opponent on both the quantum and the public channel
during the quantum key generation phase. Let kh the random variable which represents
the key of the ε-ASU2 hash function, and kOTP the random variable which represents a
generic key of the OTP encryption.

We may postulate that Eve has at the most ih bits of information on the selected hash
function and iOTP bits of information on each OTP key used to encrypt the tag, that in
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symbol meaning
iOTP maximum leaked information on each OTP key
ih maximum leaked information on the selected hash function
ℓ information leaked per binary symbol
n tag length
k hash function key length

Table 4.1: List of parameters for the analysis of a new attack to authentication codes
based on ε-ASU2 hash function classes with OTP-encrypted tags.

terms of mutual information means:

I(kh; z) ≤ ih

I(kOTP; z) ≤ iOTP

Since the key length required to select a hash function is larger than the length of the
OTP key, tipically ih > iOTP. We can hypothesise that in the long run the hash function
keys will be taken by the same repository where the OTP keys come from, so that the
opponent has the same average information on them. Namely, if k is the length of kh
and n the tag length, we can assume that:

ih = ℓ · n (4.2)
iOTP = ℓ · k (4.3)

We can assume, like in Larsson-Cederlöf [CL08], that Eve can influence the messages
m exchanged between Alice and Bob on the public channel, but now it is impossible
for the attacker to try to break the authentication code in the same way described by
Cederlöf and Larsson, simply because the hash value v is encrypted into the tag t. As a
consequence, Eve cannot identify the corresponding block F(m, v).

All the attacker could do is trying either an impersonation attack, a collision attack,
or wait until it is possible to recover the exact OTP key used and then trying the original
Cederlöf and Larsson attack.

Let (mj, tj) be a generic intercepted message with its tag. Since the hash value vj of
the message mj is encrypted with a one-time pad key, we can state that

H(kh|mj, tj) ≥ H(kh)− iOTP (4.4)

and therefore:
H(kh|m1, t1, . . . ,mj, tj, z) ≥ H(kh)− (j · iOTP + ih) (4.5)

In other words, if the maximum information possessed by Eve on a single OTP key is
iOTP, this is the exact amount of information that she has on the unencrypted hash value
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of the message m, and therefore she can not obtain, with each observation, more than
iOTP bits of information on the original tag.

It is possible to relate all the possible attacks against an authentication code made of
an OTP encrypted ε-ASU2 hash function class F to the task of identificating a certain
subset F̄ ⊂ F . That is to say that, for each type of attack and for each selected function
hk, the probabilities of success are maximised if the opponent is able to identify a certain
set F̄ which the selected hash function kh belongs to.

Hypothesis for attack description
For a simple description and a rapid estimate of the probability of success of each possi-
ble attack, we can suppose that the opponent uses all the information obtained only to
rule out as many hash functions as possible from the set of all the possible candidates,
so that, if Fe is the set of possible hash functions, each h ∈ Fe has en even probability
1/|Fe| of being the selected function.

When Alice and Bob start using a new hash function, and no couples (m, t) have yet
been transmitted, all the information that Eve has on the hash function is limited to ih
bits, and therefore the entropy of the hash function key kh, that is equal to the entropy
of the hash function, is

H(kh) = k − ih

The entropy of a uniformly distributed random variable x ∈ X is H(x) = log2 |X |, so
the size of the set Fe is upper bounded by 2⌈k−ih⌉.

After having intercepted j authenticated messages, the entropy of kh is at most k −
(j · iOTP + ih) and the size of the set Fe is upper bounded by

|Fe| ≤ 2⌈k−ih−j·iOTP⌉ (4.6)

Hypothesis for upper bounds
In order to give an upper bound to the probabilities of success of each attack, we have
to study Eve’s best way of exploiting her gathered information on hk.

Let F̄ be a subset of F that give the maximum probability of success to the opponent.
Let the size of F̄ be upper bounded by some value X :

|F̄ | ≤ X

We want to know how much information is needed by Eve to have a certain proba-
bility of success P̂ .

Let kh be the random variable that describes the current selected hash function and
let p(·) be its probabilty mass distribution:

p : F → [0, 1]

p(hi) = pi = P [kh = hi] ∀hi ∈ F
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Without loss of generality, let the hash functions h1, . . . , hF be ordered in descending
order by their probability pi, so that

p1 ≥ p2 ≥ . . . ≥ pF

It is straightforward to see that:
P [kh ∈ F̄ ] =

∑
h∈F̄

P [kh = h] ≤ p1 + . . .+ p|F̄ | ≤ p1 + . . .+ pX (4.7)

Let P̄ be the sum of the X highest probabilities pi:
P̄ ≜ p1 + . . .+ pX

The minimum information needed by Eve to have probabilityP [kh ∈ F̄ ] = P̄ is lower
bounded by the difference between the initial entropy H(kh) and the maximum entropy
H̄max of a probability distribution that satisfies P̄ = p1 + . . . + pX . The distribution that
maximises the final entropy is obtained when exactly X hash functions have probability
P̄/X and the remaining ones have probability (1− P̄ )/(F −X).

This can be proved as follows. Let FX be a subset of F of size X , and let’s define two
conditioned p.m.d.:

p′ : F → [0, 1]

p′(hi) = p′i = P [kh = hi|kh ∈ FX ] ∀hi ∈ F

p′′ : F → [0, 1]

p′′(hi) = p′′i = P [kh = hi|kh ̸∈ FX ] ∀hi ∈ F

and let P̄ =
∑

hi∈FX
pi = P [kh ∈ FX ]. Note that pi = p′i · P̄ if hi ∈ FX , and pi = p′′i · (1− P̄ )

if hi ̸∈ FX .
Thus we can write:

H(p) =
∑

hi∈FX

pi log 1
2
pi +

∑
hi ̸∈FX

pi log 1
2
pi =

=
∑

hi∈FX

P̄ p′i log 1
2
P̄ p′i +

∑
hi ̸∈FX

(1− P̄ )p′′i log 1
2
(1− P̄ )p′′i =

= P̄

( ∑
hi∈FX

p′i log 1
2
P̄ +

∑
hi∈FX

p′i log 1
2
p′i

)
+

+ (1− P̄ )

( ∑
hi ̸∈FX

p′′i log 1
2
(1− P̄ ) +

∑
hi ̸∈FX

p′′i log 1
2
p′′i

)
=

= P̄H(p′) + (1− P̄ )H(p′′) + P̄ log 1
2
P̄ + (1− P̄ ) log 1

2
(1− P̄ ) =

= P̄H(p′) + (1− P̄ )H(p′′) + h2(P̄ ) (4.8)



42 Reusing the same key

where h2(P̄ ) is the binary entropy of the random variable P̄ .
Since P̄ is given, the maximum of H(p) is reached only if p′ and p′′ are uniformly

distributions, namely:

maxH(p) = max
p′,p′′

(
P̄H(p′) + (1− P̄ )H(p′′) + h2(P̄ )

)
=

= P̄ log2 X + (1− P̄ ) log2(F −X) + h2(P̄ ) (4.9)
The corresponding p.m.d. is:

p : F → [0, 1]{
p(hi) =

P̄
X

∀hi ∈ FX

p(hi) =
1−P̄
F−X

∀hi ̸∈ FX

Impersonation attack
The probability of success PI of an impersonation attack is limited by the knowledge on
the selected hash function that the opponent has gathered during the previous rounds
of authentication and, much more severely, by the knowlege on the OTP key.

Even if Eve knows the selected hash function, she has only iOTP bits of information
on the OTP key.

In this context, Eve has to guess the right OTP key among all the possible ones. This
means that the “good” subset X is made of only one element. Let k̂OTP be the only
element in X . The p.m.d. that maximises H(kOTP), given that the probability of X is P̄ ,
is: {

P [kOTP = ki] = pS = P̄ ki = k̂OTP
P [kOTP = ki] = pF = 1−P̄

N−1
∀ki ̸= k̂OTP

and consequently the entropy of the random variable kOTP is:
H(kOTP) = pS log 1

2
pS +

∑
h̸=ĥ

pF log 1
2
pF =

= P̄ log 1
2
P̄ + (1− P̄ ) log 1

2

1− P̄

N − 1

The information available on kOTP is upper bounded by iOTP, so the maximum P̄
obtainable is given by the following equation:

iOTP = ∆H(kOTP) = n− P̄ log 1
2
P̄ − (1− P̄ ) log 1

2

1− P̄

N − 1
(4.10)

Threrefore, the probability of success of the impersonation attack is upper bounded
by

PI ≤ P̄ (4.11)
aside from any gathered information on the selected ε-ASU2 hash function.
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Collision attack
Eve could try to find a collision between the intercepted message m and any another
message m̂. In this case it is not necessary to find the exact OTP key, because, since the
hash value of the fake message m̂ is unvaried, so is the tag.

The selected hash function can be viewed as a random variable on the alphabet F .
When the hash functions are uniformly distributed, the entropy of the random variable
is log2 F = k.

Since an ε-ASU2 hash function class is also ε-AU2 (see theorem 2.1), the following
bound is valid:

|{h ∈ F : h(m) = h(m̂)}| ≤ εF

If Eve succeeds in eliminating all the hash functions but εF , she could be able to
substitute a valid message m with another message m̂ being confident that the couple
(m̂, t) is valid.

It is possible to consider the correct hash function as a realisation of a random vari-
able on the alphabet of the εF remaining hash functions. The maximum entropy of this
random variable is log2 εF , and in typical constructions of ε-ASU2 functions ε is equal
to 2−(n−1).

So, when the opponent collects n − 1 bits, the size of the Fe could reach 2k−n+1 and
the attack could be successful.

Probability of success in case of larger sets Fe

Even if the opponent is not able to shrink the set of candidate hash functions Fe to a size
of εF , it is possible to try an attack by substituting the message m with the fake message
m̂ which maximises the probability of success of collision.

When m is intercepted, for each m̂ ̸= m ∈ M the opponent can build the set

F(m, m̂) ≜ {h ∈ Fe : h(m) = h(m̂)}

The maximum probability of success of the attack, if all the functions in F are equiprob-
able, is given by:

PS = max
m̂∈M

|F(m, m̂)|
|Fe|

The strategy that gets to the highest probability of success, therefore, is choosing a
set F(m, m̂) and trying to rule out all the hash functions which do not belong to it. This
gives:

PS =
εF

|Fe|
If ie is the information collected by Eve, the size of Fe is:

|Fe| ∈ [2⌊k−ie⌋, 2⌈k−ie⌉]
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so, if ε = 2−(n−1), we can write

PS ≤ εF

2⌊k−ie⌋
∼ 2ie−n+1

Upper bound on the probability of success
With a different strategy, the opponent could be interested in maximizing the probabil-
ities of success of a substitution attack, without the need of being sure that the attack
will succed, that is, the opponent could not be interested in ruling out completely some
hash functions, but he could just aim at increasing as much as possible the difference of
probability between “good” and “bad” hash functions.

Consider the case of a collision attack: Eve’s target is to divide a given set F(m1,m2),
that will be the “good” set, from the remaining set F(m1,m2)

C . The maximum size for
F(m1,m2) is εF .

Using the terminology of paragraph 4.3, F(m1,m2) corresponds to the set X .
When Eve has no information about h, the entropy of the random variable kh is k.
After gathering some information, the hash functions in F̄ and those in F̄C will have

different probabilities. Let P̄ = P [kh ∈ F̄ ] be the probability that kh is in the set F̄ . The
p.m.d that gives the maximum entropy for a given P̄ is:{

P [kh = h] = pS = P̄
εF

∀h ∈ F̄
P [kh = h] = pF = 1−P̄

F−εF
∀h ∈ F̄C

and consequently the entropy of the random variable kh is:

H(kh) =
∑
h∈F̄

pS log 1
2
pS +

∑
h∈F̄C

pF log 1
2
pF =

= P̄ log 1
2

P̄

εF
+ (1− P̄ ) log 1

2

1− P̄

F − εF
=

= k + P̄ log 1
2

P̄

ε
+ (1− P̄ ) log 1

2

1− P̄

1− ε

The loss of entropy after i authentications, therefore, is:

∆H = H(kh)−H(kh|m1, t1, . . . ,mi, ti)max = −P̄ log 1
2

P̄

ε
− (1− P̄ ) log 1

2

1− P̄

1− ε
(4.12)

and the corresponding probability of success of a collision attack is upper bounded by

Pcoll ≤ P̄ (4.13)

This probability of success of a collision attack is valid only when the εF hash func-
tions contained in F̄ correspond to some set F(m, m̂). Nevertheless, it is a valid upper
bound to the probability against all collision-based attacks.
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Substitution attack
Another attack that an opponent could try to accomplish is trying to recover the OTP
key used in an intercepted couple (m, t), then trace the unencrypted hash value v and
then perform the original Cederlöf-Larssen attack.

OTP key recovery
To recover the OTP key of an intercepted couple (m, t), the opponent must know the
exact hash value v of the intercepted message m, since kOTP = t⊕ v.

The hash function class is ε-ASU2, so by definition 2.2:

|F(m, v)| = |{h ∈ F : h(m) = v}| = F

N
∀m ∈ M,∀v ∈ T

To reduce the size of Fe to F
N

, which corresponds to a maximum entropy of k−n bits,
Eve has to gain at least n bits of information on the hash function. When this happens, it
may be that all the candidate functions belong to a single block F(m, v) for some v ∈ T .
Then v is determined, and, as a consequence, so is the OTP key kOTP.

Probability of success in case of larger sets Fe We can repeat the procedure of the
collision attack. To study the probability of decryption of the OTP key, we note that it is
upper bounded by the sum of the probabilities of the F

N
most probable hash functions. In

fact, if this set F̄ is equal to one of the sets F(m, v) for some m and some v, the opponent
would have exactly this probability of recovering the OTP key.

If the opponent uses the strategy of using all the information to rule out as many
hash functions as possible and to have a uniform distribution of probability on all the
candidates in Fe, the probability of success of the attack is given by:

PS = max
m∈M
v∈T

|F(m, v)|
|Fe|

=
|F̄ |
|Fe|

=
F

N · |Fe|

If ie is the information collected by Eve, the size of Fe is:

|Fe| ∈ [2⌊k−ie⌋, 2⌈k−ie⌉]

so we can write
PS ≤ F

N · 2⌊k−ie⌋
∼ 2ie−n

Upper bound on the probability of successful recovery of kOTP

As for the collision attack, we can study the case where the opponent just aims at in-
creasing as much as possible the difference of probability between “good” and “bad”
hash functions. In this case the set X of paragraph 4.3 is a given F(m, v).
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Given a certain amount of extracted information, Eve wants to maximise the prob-
abilities of the F

N
most probable functions. If this set F̄ is one of the sets F(m, v) for

some m ∈ M and v ∈ T , than Eve is able to accomplish the substitution attack with a
probability of success that is the sum of all the hash functions contained in F̄ .

Again, we study how much information Eve has to gather in order to have a certain
increase in her probability of success.

The probability that kh is in the set F̄ is given by P̄ = P [kh ∈ F̄ ] =
∑

h∈F̄ P [kh =
h]. The p.m.d that gives the maximum entropy and, at the same time, the maximum
probability P̄ , is: {

P [kh = h] = pS = P̄
F/N

∀h ∈ F̄
P [kh = h] = pF = 1−P̄

F− F
N

∀h ∈ F̄C

and consequently the entropy of the random variable h is:

H(kh) =
∑
h∈F̄

pS log 1
2
pS +

∑
h∈F̄C

pF log 1
2
pF =

= P̄ log 1
2

P̄
F
N

+ (1− P̄ ) log 1
2

1− P̄

F − F
N

=

= k + P̄ log 1
2
NP̄ + (1− P̄ ) log 1

2

1− P̄

1− 1
N

The loss of entropy after i authentications, therefore, is:

∆H = H(kh)−H(kh|m1, t1, . . . ,mi, ti)max = −P̄ log 1
2
NP̄ − (1− P̄ ) log 1

2

1− P̄

1− 1
N

(4.14)

and the corresponding probability of succeeding in recovering the OTP key is upper
bounded by

POTP ≤ P̄ (4.15)
This upper bound gives a limit to the probability of finding out a single key of the

OTP encryption, and therefore the value of a single hash value v. This information alone
does not lead to an effective attack, except for the substitution attack described in the
following paragraph.

Upper bound on the probability of success of Cederlöf-Larsson attack
When the opponent has identified the right OTP key kOTP, it is possible to identify the
right couple (m, v), and therefore deploy the original Cederlöf-Larsson attack. While
their original paper just describe the attack, we use the same procedure of the previous
paragraphs to give an upper bound on the probability of success of the substitution
attack of an ε-ASU2.
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With the hash value v, Eve is able to identify the right partition F(m, v) that contains
the selected hash function, and can find the set of candidate functions calculating the
intersection between the previous set of candidate functions and F(m, v). Let Fe be this
intersection, that is the updated set of all the possible hash functions. If Fe corresponds
to some F(m, m̂) (as defined in paragraph 2.9), Eve would be able to deploy a successful
substitution attack.

Since F(m, m̂) ≤ ε F
N

for definition 2.2, Eve’s best strategy is to maximise the proba-
bilities of the ε F

N
most probable functions in Fe.

Let F̄ be the set of the ε F
N

most probable functions. The probability that the selected
hash function kh is in the set F̄ is given by P̄ = P [kh ∈ F̄ ] =

∑
h∈F̄ P [kh = h]. Let F̄C

be defined as Fe \ F̄ . The p.m.d that gives the maximum entropy and, at the same time,
the maximum probability P̄ is:{

P [kh = h] = pS = P̄
εF/N

∀h ∈ F̄
P [kh = h] = pF = 1−P̄

F
N
−ε F

N

∀h ∈ F̄C

and consequently the entropy of the random variable h is:

H(h) =
∑
h∈F̄

pS log 1
2
pS +

∑
h∈F̄C

pF log 1
2
pF =

= P̄ log 1
2

P̄

ε F
N

+ (1− P̄ ) log 1
2

1− P̄
F
N
− ε F

N

=

= k − n+ P̄ log 1
2

P̄

ε
+ (1− P̄ ) log 1

2

1− P̄

1− ε

Since the initial entropy of the hash function, given the observed couple (m, v) is k−n,
the loss of entropy is:

∆H = H(h)−H(h|m, v) = −P̄ log 1
2

P̄

ε
− (1− P̄ ) log 1

2

1− P̄

1− ε
(4.16)

and the corresponding probability of succeeding in substituting (m, t) with a different
pair (m̂, t̂) is upper bounded by

Pced ≤ P̄ (4.17)
The final probability of success of a combined attack aimed at finding the right OTP

and then perform a Cederlöf -Larsson attack is therefore upper bounded by:

Pcomb = POTP · Pced ≤ P̄OTP · P̄ced (4.18)

where P̄OTP is P̄ as defined in paragraph 4.3 and P̄ced is P̄ as defined in the current para-
graph.
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Upper bound on the probability of success of a substitution attack
The actual probability of success of a substitution attack can be upper bounded by con-
sidering the “good” subset F̄ as a set with ε F

N
elements, which could be all the functions

which belong to a same set F(m, m̂).
In this case, |F̄ | = ε F

N
and |Fe| = F − ε F

N
.

The probability that the selected hash function kh is in the set F̄ is given by P̄ =
P [kh ∈ F̄ ] =

∑
h∈F̄ P [kh = h]. Let F̄C be defined as Fe \ F̄ . The p.m.d that gives the

maximum entropy and, at the same time, the maximum probability P̄ , is:{
P [kh = h] = pS = P̄

εF/N
∀h ∈ F̄

P [kh = h] = pF = 1−P̄
F−ε F

N

∀h ∈ F̄C

and consequently the entropy of the random variable h is:

H(h) =
∑
h∈F̄

pS log 1
2
pS +

∑
h∈F̄C

pF log 1
2
pF =

= P̄ log 1
2

P̄

ε F
N

+ (1− P̄ ) log 1
2

1− P̄

F − ε F
N

=

= k + P̄ log 1
2

P̄
ε
N

+ (1− P̄ ) log 1
2

1− P̄

1− ε
N

Since the initial entropy of the hash function is k, the loss of entropy after i authenti-
cations is:

∆H = H(kh)−H(kh|m1, t1, . . . ,mi, ti)max = −P̄ log 1
2

P̄
ε
N

− (1− P̄ ) log 1
2

1− P̄

1− ε
N

(4.19)

and the corresponding probability of succeeding in substituting (m, t) with a different
pair (m̂, t̂) is upper bounded by

Psub ≤ P̄ (4.20)

Hash function lifetime
Let PD be Eve’s global probability of a successful deception attack. PD is upper bounded
by the sum of the probabilities of success of all the possible attacks, that we can sum-
marise in impersonation, collision, and substitution attacks:

PD ≤ PI + Pcoll + Psub

To get an upper bound to the number of times a single hash function can be used for,
we fix a maximum deception probability Pmax

D that Eve can reach, after which we change
hash function.
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We choose to evenly distribute the maximum probability of deception among the
three attacks. Let Pmax = Pmax

D /3. Then:

PI ≤ Pmax (4.21)
Pcoll ≤ Pmax (4.22)
Psub ≤ Pmax (4.23)

To satisfy equation (4.21), we must have 2−n ≤ Pmax, so a necessary condition to have
feasible solutions is:

Pmax
D ≥ 3 · 2−n (4.24)

The upper bound on PI derived by equation (4.10) on PI does not depend on the
number of observation, so it does not weaken when a new valid authentication is seen.

With the equations (4.12) and (4.19) we can calculate the minimum information that
the opponent must have in order to be able to accomplish an attack with given maximum
probability of success.

Now it is possible to calculate the lifetime of each ε-ASU2 hash function under each
attack: it is sufficient to calculate first the minimum information ∆H needed by the
opponent to accomplish an attack with success probability Pmax, and then the number
of authentication rounds needed to obtain the given amount of information:

Λ =
∆H − ih

iOTP
=

∆H − ℓ · k
ℓ · n

=
∆H

ℓ · n
− k

n
(4.25)

Lifetime for collision attack

∆Hcoll = −Pmax log 1
2

Pmax
ε

− (1− Pmax) log 1
2

1− Pmax
1− ε

(4.26)

Λcoll =
∆Hcoll
ℓ · n

− k

n
(4.27)

Lifetime for substitution attack

∆Hsub = −Pmax log 1
2

Pmax
ε
N

− (1− Pmax) log 1
2

1− Pmax
1− ε

N

(4.28)

Λsub =
∆Hsub
ℓ · n

− k

n
(4.29)

The global lifetime matches the highest between (4.27) and (4.29):

Λ = max{Λcoll,Λsub} (4.30)
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Parameters optimisation
Starting from a required Pmax

D , a set M of messages to be authenticated, and a given class
of hash functions, it is possible to optimise the sizes of both the hash function class and
the tag length n, in order to minimise the rate of the secret key needed for the authenti-
cation.

The key rate R is given by
R =

k

Λ
+ n (4.31)

We note that k can be expressed as a function of n and the size M of the message set,
while Λ is a function of Pmax

D , k, n and ℓ. M and ℓ are parameters given by the specific
QKD system, and Pmax

D is the required maximum probability of deception, so we can
plot the rate R in function of M , ℓ, n and Pmax

D .
The minimum authentication key rate R is obtained with the lowest possible value

of ℓ, which is achieved only with a considerable loss of the privacy amplification output
rate Rpa. The net key rate Rf obtained by the QKD is given by

Rf = Rpa −R (4.32)
and therefore the maximum Rf is attained by maximising the difference between Rpa
and R, both calculated with the same parameter ℓ.

We can express the length of the final key after the privacy amplification as a function
of the target average information leaked to Eve during the QKD process. Using the
results of [BBCM95] it is possible to derive the following result (see [CBC+11]).

Let Nrec be the length of the reconciled key, Nsec the length of secure key obtained af-
ter one round of privacy amplification, Nrev the number of bits revealed during the key
reconciliation phase, and t Eve’s Rényi information on the reconciled key. Let Pmiss rep-
resent the probability that Eve is observing on average more photons than the number
predicted by the estimation made during the previous phases of QKD.

With probability 1−Pmiss, for every possible value of b the following bound is verified
[CBC+11]:

Ileak ≤ Itar(Nsec, b) = NsecP[t > b] +
1

2Nrec−Nrev−Nsec−b ln 2
(4.33)

If we bind Ileak to be smaller than a fixed value δ, the maximum Nsec is obtained by
the following result [CBC+11]:

Nsec = max
{
a : min

b
Itar(a, b) ≤ δ

}
Lifetime and rates for different classes of hash functions
The following figures show the performances of different classes of hash functions de-
signed to authenticate messages long up to 106 bits. The graphs plot lifetime Λ and rate
R against the tag length n for a given Pmax of 2−30.
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It is possible to note that Reed-Solomon based class performs quite as well as the
other classes in terms of rate, and is able to authenticate with the required security target
even with high values of ℓ (figures 4.7 and 4.8).
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Figure 4.1: Lifetime for SU2 hash function class obtained by random binary matrices.
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Figure 4.3: Lifetime for SU2 hash function class obtained by Toeplitz binary matrices.
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Figure 4.5: Lifetime for ε-ASU2 Stinson hash function class.
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Figure 4.7: Lifetime for ε-ASU2 hash function class obtained by Reed-Solomon codes.
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Behaviour with different Pmax
Figures 4.9 and 4.10 show the lifetime and the key rate of Reed-Solomon based classes
for different values pmax.

It is possible to note that all the lifetime lines of figure 4.9 tend to different asymptot-
ical values.

In figure 4.10 it can be seen that, for long tags, the rate grows linearly with the tag
length, while the lowest rate depends on the specific value of Pmax: in some cases (Pmax =
2−10, 220) it coincides with the smallest possible tag length, while sometimes the shortest
tag length has a short timelife that does not allow the cost of renewing kh to be cushioned
(this is the case of the peak for Pmax = 2−30).
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Comparison between different classes of hash functions
The rate R is strongly dependant on the size of the hash function class. Large classes,
as classes based on Toeplitz matrices (see figure 4.11a), have long keys and, therefore, a
higher initial entropy H(kh).

Small classes like Stinson construction (see figure 4.11b) and those based on Reed-
Solomon codes (4.11c) have shorter keys and smaller initial entropy.

One could expect that classes with higher initial entropy would last longer, but, if the
hash function key kh has been generated by the QKD, the attacker knows a fixed rate (ℓ)
of information on it, and this is enough to wipe out all the advantages given by a long
key.

In fact, the rate required by large classes is higher than that of small ones, because
the renewal of the selected hash function is much more expensive, and more frequent.

See figures 4.12 and 4.13 for a comparison between the performances of Toeplitz,
Stinson and Reed-Solomon based classes with the same parameters. Stinson and Reed-
Solomon based classes always perform better than Toeplitz ones (and reach higher val-
ues of ℓ, see paragraph 4.3). In figure 4.13, which shows a closeup of 4.12, it is possible
to appreciate the performance difference between Stinson and Reed-Solomon codes.

Figures 4.14 and 4.15 show that, for smaller values of l, the difference of performances
between Toeplitz and Reed-Solomon classes gradually decrease. The performances of
Stinson construction have not been plotted since would superimpose on Reed-Solomon
ones.
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Figure 4.11: Key length for different classes of hash functions.
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Figure 4.14: Lifetime and rate for different classes of hash functions.
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Net key rate for QuAKE
To evaluate the effects of authentication in a real application, we consider the case of
the QuAKE experiment (see [CBC+11]). During a single round of key processing (that
is the sum of sifting, reconciliation, and privacy amplification) two authentications are
required (one by Alice and one by Bob) and an amount of 20000 bits (Nrec) is processed
on average.1 The data transmitted on the public channel is between 500 kb and 1 Mb in
each way, so we consider the maximum message length to be authenticated as 106 bits.
The chosen reconciliation protocol is Winnow, and the average number of revealed bits
is Nrev = 0.29Nrec.

Quake average values
m 106

Nrec 20000
Nrev 5800

The net key rates for QKD round for probabilities of success of Eve’s attack Pmax
D =

2−50 ≈ 10−15 and Pmax
D = 2−100 ≈ 10−30 have been plotted in figures 4.16 and 4.17 as

functions of Eve’s average information per bit (ℓ). The authentication scheme used is a
Reed-Solomon based ε-ASU2 with one-time pad.

To make a comparison, the Nsec required to leave Eve no more than 1 bit of overall
knowledge on the final key is 9732.

The net key rate as a function of the maximum probability success for Eve’s attack
(Pmax

D ) is drawn in figure 4.18. Note how the probability of success of the attack decreases
exponentially with the rate reduction.

120000 bits correspond to the average length of sifted key for 50 packets, see [CBC+11] for details.
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Chapter

5
The communication protocol

5.1 General description
We studied a network protocol to implement all the communication steps needed to
perform the processing of the keys exchanged through the quantum channel.

We chose to build our model of network interaction as an application layer protocol
on top of UDP in order to keep it as light as possible and to have a high level of control
over each transmitted packet. We decided not to use either TCP or other more complex
transport protocols so as not to be exposed to possible attacks that could exploit pecu-
liar weaknesses of communication-oriented protocols, e.g. those oriented to the sliding
window mechanism, or a TCP reset attack.

Our main goal is to be able to fully process a key that has been transmitted through
the quantum channel and to be reasonably sure that nobody interfered with our mes-
sages. We should keep in mind that we are communicating through a public channel, so
we cannot prevent a possible eavesdropper to sniff all of our packets. Similarly, it would
be naïve to try to forestall all possible DoS attacks, because it only takes cutting the wires
we are using for the processing, or, if we were using a free-air quantum channel, to put
a physical obstacle between Alice and Bob to completely disrupt our transmission.

The structure of the protocol is highly asymmetrical, since the roles of the two com-
municating parties are very focused on the specific and different tasks that Alice and
Bob are expected to perform during the quantum key distribution; therefore it has been
unavoidable to study two different transition models and even different states.

5.2 Our environment
In our setup the raw and the sifted keys are available in the form of indexed files as soon
as they have been successfully sent (by Alice) or received (by Bob).
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Before the first round, Alice and Bob must share a pool of secret keys that have been
previously exchanged through a secret channel (possibly from a previous QKD as well).
These keys will be used to generate the hash functions to authenticate the messages and
to calculate the one-time-pad of the authentication tags.

When the system starts up, both Alice and Bob are in Start state and the hash function
is not set up yet.

We assume that Alice sends the last packet in each round. If this is not the case, it is
sufficient to authenticate the last message of the round sent by Bob and the first message
of the following round sent by Alice.

5.3 Packets
Every message of our application layer protocol can be fragmented among many UDP
packets that will be reassembled by the receiver using the information contained in the
packet headers.

These packets are characterised by a header that describes the content of the remain-
ing data of the datagram, and an optional payload, whose structure depends on the
specific packet type.

Header structure
The structure of the header is described in table 5.1.

0 15
seq_num

16 18 19 21 22 28 29 31
type flags unused l_b_l

flags:
19 20 21

more auth exp_hash
Table 5.1: Packet header

seq_num A 16-bit sequence number.
type Identifies the type of packet. The currently allowed packet types are listed in table

5.2.
more Tells whether the message has been divided into more packets. If it is set to 1 it

means that the next packet carries the continuation of the same message. If the
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message is contained in a single message, or if the packet holds the final part of the
message, it is set to 0.

auth Tells if the current packet contains the authenticating tag, which is appended to
the message.

exp_hash Signals that the sender’s hash function has expired.
unused Unused bits, to make the header length a multiple of 8 bits. They can contain

a random value to increase the header’s entropy.
l_b_l (Last block length) Tells the number of bits in the last byte of the packet that

contain data of the message, because as a rule we could have any length of the
data.

type
START 0
NEWHASH 1
SIFT 2
PROCESS 3
ABORT 7

Table 5.2: Packet types

Packet types
START
The START packet contains its header only. It may signal that the hash function has
expired with the exp_auth flag set to 1.

SIFT
If Bob has any key files to process, he sends an authenticated message with the data
needed to start processing the key. If Bob has not got any key files but during the previ-
ous round a key has been generated, he sends an authenticated SIFT packet containing
only the header and the authenticating tag in the payload. In both cases, the authen-
tication tag is calculated for the concatenation of all the packets Bob sent from the last
authenticated SIFT message, or, if the previous round produced no key, for the current
SIFT message by itself.

If Bob has no key file and no key was generated during the previous round, he sends
an unauthenticated packet containing only the header.
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PROCESS
This packet contains all the data needed to perform the key processing: parameters for
key reconciliation and privacy amplification. The exact format of the data depends on
the specific method chosen to reconciliate the keys. The last PROCESS packet sent by
Alice during a key generation round contains a tag that authenticates all the messages
sent starting from the reception of the authenticated SIFT packet.

ABORT
The name of this packet is self-explaining: it means that something wrong has happened
and it signals that a reset of the connection is needed. Every partial result that has not
been confirmed before is wiped out.

5.4 State transition model
The state transition diagram for the protocol is shown in figure 5.1. Each box represents a
state, while each link represents a transition and is labelled by a description of the events
that are related to it. The events or the received packets that trigger the transition are
written before the slash character, while the messages that are consequently sent follow
it.

In each state, Alice (or Bob) waits for a message of the expected type and with the
expected sequence number. If such a valid message is received, Alice (Bob) moves to
the next state according to the transition labelled with the message type. If an invalid
message is received or after a given amount of time expires and no valid message has
been received, anABORTmessage is sent and theSTARTING state is selected. AllABORT
transitions describe an error event and are not explicitly drawn in figure 5.1.

5.5 State descriptions
STARTING
Description This is the state in which both Alice and Bob are when the system starts.
This state means that there is no active or valid connection to the other entity.

Interaction
Alice Alice periodically sends a START packet to Bob’s IP address. If Alice does not

hold a valid hash function (i.e. at startup there is no shared hash function, or the
current hash function has expired), the exp_hash is set to 1. When Alice receives
Bob’s reply, she switches to LOADING state or, if an expired hash function has been
signalled by one of the two sides, to HASH RENEWAL.
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Figure 5.1: Diagram of state transitions for Alice (a) and Bob (b).
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Bob Bob waits for a START packet from Alice. When a START packet has been received,
he replies with another START packet. If a valid hash function is not available (see
Alice case), the exp_hash is set to 1. Then, Bob switches to SIFTING state or,
if an expired hash function has been signalled by one of the two sides, to HASH
RENEWAL.

HASH RENEWAL
Description This state is reached when one of the two parties has no valid hash func-
tion anymore and has successfully signalled this event in a previous START, PROCESS,
or SIFT packet. In this state Alice chooses the keys that will be used to generate the
hash function and transmits their IDs to Bob.

Interaction

Alice 1. Alice gets the needed seed bits from the key database and generates a new
hash function. Then she sends a NEWHASH packet containing the addresses
of the used keys; the whole packet is authenticated by the new hash function.

2. Alice waits for Bob’s reply. If the reply is a NEWHASH packet with a valid
authentication, then the new hash function has been correctly validated, Alice
switches to LOADING state, otherwise an ABORT packet is sent and proceeds
to STARTING state.

Bob Bob waits for a NEWHASH packet from Alice. When a valid packet has been re-
ceived, he fetches the keys identified by the enclosed IDs from the key database
and generates the new hash function. Bob now checks that the packet has been
correctly authenticated by the new hash function. If this is the case, he sends an
empty validated NEWHASH packet to Alice and then switches to SIFTING state,
otherwise an ABORT packet is sent and proceeds to STARTING state.

SIFTING
Description This state is only used by Bob. In this step, Bob selects a sifted key from
the pool of available sifted key files and starts its processing.

Interaction

Bob Bob selects one of the sifted keys not yet processed and sends an authenticated
SIFT packet containing the file index, the sifting information and, possibly, infor-
mation for the reconciliation and privacy amplification phases. Then Bob switches
to PROCESSING state.
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LOADING
Description This state is only used by Alice. In this step, Alice loads the raw key cor-
responding to the sifted key selected by Bob.

Interaction

Alice Alice receives a SIFT packet from Bob:

Authentication and sifting (Bob has a sifted key to process.) The SIFT packet re-
ceived is authenticated and its payload is not empty. Alice checks the packet
authentication. The final key generated during the previous round, if there
is any, is stored into the key database. The raw keys identified by the in-
dexes contained in the packets are loaded. Alice performs the sifting and,
possibly, some other actions of the reconciliation and privacy amplification
phases. Then Alice sends the first PROCESS packet to Alice; if this is the only
PROCESS packet that will be sent during the current round, we authenticate
the concatenation of the packet and the generated final key1, then Alice stays
in LOADING state. Otherwise, an ABORT packet is sent and Alice proceeds to
STARTING state.

Authentication only (Bob has no sifted key to process but there still is a final key
to acknowledge.) The SIFT packet received is authenticated, but its payload
is empty. Alice checks the packet authentication. The final key generated
during the previous round is stored into the key database. No key index has
been sent, so Bob has not got any sifted key left. Alice stays in LOADING state
and waits for the next SIFT packet. Otherwise, an ABORT packet is sent and
Alice proceeds to STARTING state.

Empty SIFT packet (Bob has no sifted key to process and there is no final key to
acknowledge.) TheSIFT packet received is not authenticated and its payload
is empty. No key index has been sent, so Bob has no sifted key left. Alice stays
in LOADING state and waits for the next SIFT packet.

If no valid packet is received within a timeout, an ABORT packet is sent and Alice
proceeds to STARTING state.

PROCESSING
Description In this state Alice and Bob exchange messages to accomplish the correct
generation of the final key.

1At the last PROCESS packet the current round terminates, so Alice holds all the information needed
to generate the final key.
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Interaction
Alice sends and receives PROCESS packets.

Last packet The last PROCESS packet sent by Alice will be the last packet of the
current round. It contains the last information needed to generate the final
key and the authentication of the concatenation of all the packets sent by Alice
during the PROCESSING state of the current round and the final key. Then Alice
switches to LOADING state. On errors, an ABORT packet is sent and Alice
proceeds to STARTING state.

Bob sends and receives PROCESS packets.
Last packet The last PROCESS packet sent by Alice contains all the necessary in-

formation to generate the final key and must be authenticated as described
above. Bob generates the final key and verifies the authentication of all the
packets received by Bob during the PROCESSING state of the current round and the
final key. If the authentication is valid, Bob stores the final key into the key
database and switches to SIFTING state. On errors, an ABORT packet is sent
and Bob proceeds to STARTING state.

5.6 Security of the protocol
This protocol guarantees that every key that has been generated and confirmed by an
authenticated reply, as explained above, is genuine and that it has not been tampered
with by a third party. In fact we can observe that there is only one way that leads from
the STARTING state to the generation and storing of a final key into the key database:
namely, both Alice and Bob have to go through a series of states that lead to an authen-
ticated reply. This reply contains a tag that authenticates all the outgoing messages that
carried information needed to generate the key. Therefore, we can state that all the paths
that can be chosen, according to the state transition diagrams in figure 5.1, must comply
with one of the cases in figure 5.2.

The hash function used to generate and check the correctness of the authentication
tags is guaranteed to be valid, because, if it had expired, only the HASH RENEWAL state
would have been reachable.

Possible errors
Since it could happen that a mismatch between Alice’s and Bob’s reconciled keys went
undetected, there is some probability for the two final keys to be different after privacy
amplification. This is why Alice is needed to authenticate the final key along with the
sent messages: we are using the authentication function for the further purpose of en-
suring that the reconciliation phase has been successful.
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SIFT 1 / -

LOADING 2

SIFT 2 / -

- / PROCESS 

(processing 

completed)

(a) The Message SIFT 1 authenticates itself
and the PROCESS messages received during
the  previous  round, if  any. The  Message
SIFT 2 authenticates all PROCESS messages
received during the current round.

SIFTING 1

PROCESSING

- / SIFT

PROCESS / -

(processing 

completed)

SIFTING 2

(exchange of 

PROCESS 
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(b) The last PROCESS message authenticates
all  the  messages  received  during  current
round, besides the final key.

Figure 5.2: Possible state transitions that lead to the generation of a final key for Alice
(a) and Bob (b). Transitions marked with thick lines are the authenticated ones. Packets
marked in bold are the ones containing the related authenticating tags.

In our protocol model, if one or more mismatches in the reconciliation phase have
not been corrected, we cannot distinguish this case from the case in which an attacker
has been trying to forge one of the messages.

As an alternative, one could use a protocol in which the messages and the final key
are authenticated separately, at the cost of adding an authentication step and, there-
fore, shortening the number of rounds a single hash function could have been used. We
chose instead to use only one authentication and handle an invalid authentication as a
tampering attempt performed by an attacker.
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Possible attacks
It would be very difficult for a tampering attack to go undetected due to the bounds on
the probability of success imposed by the authentication step (see paragraph 2.1). In the
overwhelming majority of the cases, such an attack could only lead to the failure of the
whole process due to the unsuccessful validation of the forged tag.

The only attack that could be carried out with significant results against this setup
would be to continuously intercept some packet during each round, thus preventing
each partial key from being processed completely. In fart, any lost, or corrupted, packet
would bring to the round being aborted. As every authentication shortens the hash
function lifetime, and uses one-time pad to encrypt the hash value, sooner or later both
Alice and Bob will reach the point where no shared keys are available anymore, and
quantum key distribution is no longer possible.

The same effect could be obtained by sending an uninterrupted sequence of ABORT
and START packets with the exp_hash flag set to 1: this would cause the legitimate
party to spoil every valid key in the attempt of generating new hash functions that would
be continuously replaced by new ones.



Chapter

6
Conclusions

In this work we have considered the problem of providing unconditionally secure au-
thentication for the public transmission in Quantum Key Distribution (QKD). In partic-
ular we have studied specific classes of hash functions, called ε-Almost Strongly Uni-
versal (ε-ASU2), that allow to build authentication codes whose robustness is not based
on the attack computational complexity. These hash functions generate a tag t for each
message x to be authenticated. Even if a valid couple (x, t) is intercepted by an attacker
on the public channel, a ε-ASU2 class ensures that the success probability of both imper-
sonation and substitution attacks are upper bounded by a function of the tag length n
and the total number F of hash functions.

Since the hash functions are used in the context of QKD, it is important to reduce the
rate of key bits consumed by the authentication code, because this rate will be subtracted
from the actual key generation rate. Wegman and Carter proposed to use a single hash
function more than once by encrypting the hash value with a one-time pad, but Ceder-
löf and Larsson pointed out how it is possible to accomplish a successful attack if the
opponent has partial information on the keys used for the one-time pad, as is the case
with QKD.

In this work we have introduced a general upper bound to the probability PD of suc-
cess for the attacker in the case of a Cederlöf-Larsson like attack as a function of both
the number of authentications performed with a same hash function, and the average
information that the opponent has on each key bit. This is, at the best of our knowledge,
the first upper bound on PD for this kind of attack, and it allows to calculate the maxi-
mum number of times a single hash function can be used (see equation (4.30)), and the
minimum key rate needed for unconditionally secure authentication (equation (4.32)).
Optimisation of these parameters is of utmost importance to attain the highest possi-
ble output rate in QKD. In paragraph 4.3 the optimisation of the final key rate for the
QuAKE experiment (a B92 QKD system developed by the QuantumFuture project of
the University of Padova) is described, and it is shown that the probability of success of
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attack decreases exponentially with the rate loss.
Many constructions for ε-ASU2 hash function classes have been reviewed and com-

pared. The best authentication method seen in this work is Reed-Solomon based ε-ASU2

hash function class. Besides being a small class (its size is ∼ 23n+2(log2 m−log2 n), with m
being the maximum message length and n being the tag length), it is also flexible, since
there exists a class for each values of maximum message length m and tag length n.
Even if Reed-Solomon is not always the smallest sized class available1, its cardinality
has a constant ratio <2 with respect to the lower bound (2.12) (see figure 3.1).

Finally, the communication protocol specifically designed for QuAKE has been de-
scribed, with details on the packet structure, on the interaction model of the two parties
and on the different phases of the key processing. The authentication related features
have been particularly stressed.

6.1 Future work
Since during QKD all the transmitted data is continuously authenticated, it is important
to correctly estimate the amount of time that it takes to initialise a new hash function,
as, during this time, no data can be authenticated. It is important, hence, to choose
the combination of tag length, privacy amplification parameters and, as a consequence,
maximum lifetime of a single hash function, which allows to attain the maximum output
key rate.

It could be appropriate to generate final keys with adjustable ℓ (that is Eve’s average
information per bit on final keys), because the requirements on ℓ for authentication keys
could be far stricter than those of different applications. In this case it would be sufficient
to decide beforehand the purpose of the keys produced during each round and then set
the privacy amplification parameter consequently.

1See, for example, authentication codes based on geometrical codes like those described in [Bie97a],
which have the drawback of existing only for some values of m and n.
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