
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI

CORSO DI LAUREA TRIENNALE IN INGEGNERIA MECCANICA E MECCATRONICA

TESI DI LAUREA

ROBUST VISION-BASED 3D LOCALIZATION

OF PLANAR OBJECTS FOR

INDUSTRIAL BIN-PICKING SYSTEMS

Relatore: Ch.mo Prof. ENRICO PAGELLO

Correlatore: Dott. Ing. ALBERTO PRETTO

Laureando: NICOLA COVALLERO

Matricola 1023586-IMC

ANNO ACCADEMICO 2013-2014

Abstract

This project presents an algorithm for planar objects detection for Bin-Picking systems
with a single 2D camera. Bin-Picking systems are automated systems that have to hold
and drop objects from a bin where these objects are randomly placed, to, for example,
a conveyor belt, or must simply hold them for other possible manufacturing processes.
These systems allow to automatize the process to grasp objects that come from a certain
manufacturing process and locate them for the next manufacturing process that they have
to undergo.

The present project is a reimplementation of the algorithm presented by Pretto et al.
[1]. In particular, a di�erent approach for the object detection stage has been implemented.

The algorithm presented here is a robust and �exible vision system for a 3D localization
of planar objects. The system of Pretto et al. is able to work with nearly any planar object
randomly placed in a bin or in a conveyor belt. The system has 6 degrees of freedom, is
able to detect and handle planar objects not only placed on an ideal layer but also when
they are sloping.

The important innovation with respect to other Bin-picking systems is the use of a
single 2D camera, di�erently from the majority Bin-Picking systems that use 3D cameras,
or laser triangulation systems, or laser range �nders, that make the price of the systems to
grow up a lot. The presented algorithm can work with any planar objects, with a thickness
from some millimetres up to several centimetres, without handle parameters, since the only
e�ort required is to give as input the CAD model of the object that the user is looking for.
The localization process is based on a two step strategy:

• a candidates selection

• re�nements to get the best matches

In this paper the attention is focused on both points of the procedure, precisely the
candidates selection is quite similar to the one used in [1], while the re�nements have been
made with a di�erent algorithm. Instead of using a Hough Like voting scheme to match
the objects the concept of the chamfer distance [2] has been used.

At the end of the development, the new implementation, that use the standard chamfer
distance to detect objects, showed to be really robust and quite fast, and it could be
considered for a implementation of a real Bin-Picking system. However it is bit slower
than the original one presented by Pretto et al.

iii

Contents

Abstract iii

Contents v

List of Figures vii

1 Introduction 1

2 High Dynamic Range and Tonemapping 3

2.1 Introduction . 3
2.2 Image Aquisition . 4
2.3 Algorithm . 5

2.3.1 Debevec and Tone Mapping . 5
2.3.2 Merge Mertens . 7

2.4 Tests . 8

3 Line Segments Detection 15

3.1 Introduction . 15
3.2 Line-Based Representation . 17
3.3 Line Segment Detector . 18
3.4 LSD - Standard Parameters and Settings . 23
3.5 LSD in OpenCv . 25

4 Object Detection 27

4.1 Introduction . 27
4.2 Camera Calibration . 28
4.3 Generalized Hough Transform For Object Detection 31

4.3.1 The Algorithm in Brief . 31
4.3.2 Use of Generalized Hough Transform in the earlier work of Pretto et

al. 34
4.4 Chamfer Matching For Objects Detection 35

4.4.1 Chamfer Distance . 35
4.4.2 Use of Line-Based Representation in Chamfer Matching 36
4.4.3 Robust the chamfer distance . 37

4.5 Scoring . 38
4.6 Tests . 39

5 Future Improvements 43

Conclusions 47

Thanksgiving 49

Bibliography 51

A Image Gradient 53

v

List of Figures

1.1 Con�guration of a Bin-Picking system with the camera mounted on the
robot arm. (Image taken from [1]) . 1

2.1 Example of an image of a scene with sunlight, the sunlight produces annoy-
ances near windows . 3

2.2 Image aquisition of a Digital Camera (from [3]) 4

2.3 Gamma correction graph with pixels that have values normalized to 1, A
factor equal 1. (Image taken from [4]) . 9

2.4 Series of photographs of a church with di�erent exposure time. 9

2.5 Result of di�erent approaches for HDR images from the memorial in Fig. 2.4 10

2.6 Series of photographs of the scene with di�erent exposure time. 11

2.7 Result of di�erent approaches for HDR images 12

2.8 Application of LSD algorithm on the image showed in Fig. 2.7 12

3.1 Application of Canny and Standard Hough Line Transform to a gray-scale
input image with di�erents values of the threshold. Blue lines are the lines
detected. 16

3.2 Application of Canny and Probabilist Progressive Hough Line Transform
(PPHT) to the gray-scale input image Fig. 3.1(a) with di�erents values of
the threshold . 17

3.3 Line-based representation of input image 3.1(a): (a) Edge map (obteined
with Canny operator with a threshold of 14). The image contains 88,205
points (b) Line-based representation of the edge map. The image contains
1,396 line segments. 18

3.4 Example of the scaling problem: the �rst image and the third one are the
input images while the second one and the fourth one are the output images.
(Image taken from [5]) . 18

3.5 Output images of the input images of Fig. 3.4 scaled by a factor of 0.8 .
(Image taken from [5]) . 19

3.6 Illustration of growing line-support region. (Image taken from the website [6]) 20

3.7 Line support regions in a generic input image. (Image taken from [5]) . . . 20

3.8 Approximation of the line support region in a rectangle. (Image taken from
[5]) . 21

3.9 Candidate line made of an isotropic process. (Image taken from [5]) 21

3.10 Example of a line-support region that needs a re�nement.(Image taken from
[5]) . 23

3.11 Example of a line-support regions containing two lines. (Image taken from
[5]) . 23

3.12 Application of LSD algorithm with the default parameters value 24

3.13 Application of LSD algorithm with the chosen parameters to input image
Fig. 3.12(a). 25

3.14 Some tests of fastness of LSD, with the same parameters setting, using the
implementation of von Gioi et al. [(a),(c),(e)] and the one of OpenCv 3.0.0
[(b),(d),(f)]. 26

4.1 Axes disposition. 28

4.2 Corner selection and pattern de�nition. (Image taken from [7]). 30

vii

viii LIST OF FIGURES

4.3 Reference frame (O,X, Y, Z) attached to the calibration grid gridi. (Image
taken from [7]) . 30

4.4 Simple illustration of the accumulator A in the case of 8x6 image , with no
rotations considered and with a step of 1 pixel. Supposing a threshold of
11 the red square corresponds to the most probable istance of the searched
object, while green squares are other possible istances. 32

4.5 Geometry of an arbitrary shape for Generalized Hough Transform (Image
taken from [8]) . 32

4.6 Construction for visualizing the R-table transformation for a rotation by ∆θ
in a 2D Euclidian space. Point A can be viewed as: (1) on the shape with
the continuos line, or (2) as point B on the shape with the discontinuos one,
rotated by ∆θ. (Image taken from [8]) . 33

4.7 Distance Transform Image - Dark pixels correspond to edges or to points
near edges, while the white ones correspond to point far from edges. 36

4.8 Optimizations and scoring: (a) illustrates the position of the projected tem-
plate (color red) that is tested, and with some optimizations the algorithm
gives as hypothesis (b), that later it is tested with the scoring function: the
match showed in (b) has a score of 0,828277 and it is considered as a valid
one. 38

4.9 Inputs of the �rst test. 39
4.10 Results of the �rst test with the inputs of Fig. 4.9. 40
4.11 Inputs of the second test. 41
4.12 Results of the second test with the inputs of Fig. 4.11. 41

5.1 Oriented chamfer matching: For edgel x1 of the template, the contribution
to the OCM distance is determined by the distance d from x1 to the nearest
edgel x2 in edge map, and the di�erence between the edgel gradients,|φ(x1)−
φ(x2)| . (Image taken from [2]) . 44

5.2 Matching cost for an edge point. (a) OCM. (b) DCM. Whereas in OCM
the location error is augmented with the orientation di�erence from nearest
edge point, DCM jointly minimizes location and orientation errors. (Image
taken from [9]) . 44

A.1 Example of pixels intensity on a 1D image. (Image taken from [10]) 53
A.2 Derivate of the intensity function of an 1D image. (Image taken from [10]) . 54
A.3 Image representing a generic component on the left and the result of Sobel

operator on that image on the rigth. 55

Chapter 1

Introduction

One of the key challenge in automated robot-aided manufacturing is the capability to
automatically identify and locate objects that the robot can grasp and handle in an accurate
way. Generally parts are randomly placed in a bin therefore it is required a sophisticate
system to locate searched objects, this perception task is well-known as the "bin-picking"
problem. It is easy to understand how much this is important for robot manufacturing
and that is why there are a lot of studies about this, hence the interest of the thesis in this
subject.

Basically the algorithm works on a robot aided to handle objects for di�erent purpose,
the main stage of the robot is to grasp and manipulate searched objects. Getting the model
CAD of the searched object, it can locate the objects in a few seconds from a 2D image
taken by a 2D industrial camera, then the robot will grasp the object and handle it for
di�erent purposes. A con�guration of a Bin-Picking system, by Pretto et al. [1], is showed
in �gure Fig. 1.1.

Fig. 1.1: Con�guration of a Bin-Picking system with the camera mounted on the robot
arm. (Image taken from [1])

This system uses a single 2D high resolution camera while the most Bin-Picking sys-
tems use other systems, such as 3D high de�nition camera, laser range �nders or laser
triangulation systems. These systems o�er the big advantage of locating really precisely
objects, which is the main goal, but the use of this systems lead to rise the price of the sin-
gle robot. In fact, the cost of these devices for detection is from 3 to 10 times higher than
a conventional high resolution industrial camera and need to be moved. The devices of
moving are expensive and the detection of thin planar objects, usually disposed in smooth
hills, imposes a high precision in depth estimation that requires very expensive sensors.

In order to present a cheaper Bin-Picking system a 2D approach has been thought
to use. Moreover, since the science of computer vision is quite young, there are a lot
of studies published every year about object detection that can make reliable an object
detection even with a 2D camera. The solution of using a 2D camera provides a reliable,
cost-e�ective and less invasive system to be installed in existing robotic cells, making this
the best choice in some cases, such as the detection of planar objects that have a thickness
starting from 0.5mm up to several centimetres.

1

2 Introduction

The whole work here presented is based on the work of Pretto et al. [1]. My study was
focused on almost the whole process with the main goal to introduce with, Alberto Pretto
himself, an other technique for planar object detection.

Her the procedure of the work of Pretto et al. is presented. First the localization starts
smoothing the noise introduced by sunlight or arti�cial lights using a High Dynamic Range
image (HDR) [3] and then a tonemapping process [11]. Later through a highly engineered
edge-based vision algorithm called LSD [12] (Line Segments Detector) the algorithm locates
edges in the 2D image, what will be applied on a scaled version of the input image in order
to reduce false detections due to the image noise. Later, a list of objects pose hypothesis is
collected. For each hypothesis they extract the rigid body transformation that relates the
object frame with the camera frame. Then, they use the Generalized Hough Transform
to evaluate the match, and for each hypothesis they perform a coarse-to-�ne registration
based on a constrained optimization procedure that exploits speci�c image gradient based
cost-functions. The best match is selected among all registered best matches using a robust
gradient direction-based scoring function. Obviously the whole process is iterated until no
matches are found.

My study focuses on the �rst part of High Dynamic Range and Tonemapping, and
on the second part of the LSD algorithm for edge detection. Moreover, the study focuses
on the Hough Generalized Transform and Chamfer Distance [2] for object detection with
the main goal of replacing the Hough-like voting scheme with a chamfer distance voting
scheme. To evaluate the matches the same scoring function used in [1], based on gradients
direction, has been used. Lastly some improvements that can make the chamfer distance

voting scheme faster and more precise will be commented.
The whole algorithm has been developed using several libraries that will be commented,

but the most used is the open source library OpenCV [10], that o�ers a lot of functions
about computer vision, especially with the last version OpenCV 3.0.0 published in October
2013. The work has been always matched with a lot of tests, the most meaningful of them
will be reported and commented.

All the elapsed times and results commented in this thesis refer to a C++ implemen-
tation in a 2.2 GHz machine with a dual-core processor.

Chapter 2

High Dynamic Range and Tonemapping

2.1 Introduction

Today digital cameras have a limited dynamic range, using 8 bits per channel, which is
lower than one encounters in the real world. This limits the dynamic range of the device
to two orders of magnitude (actually 256 levels), while human eye can adapt to lighting
conditions varying by ten orders of magnitude. In high dynamic range scenes, a picture
will often turn out to be under or over exposed.

High Dynamic Range (HDR) imaging works with images that use more than 8 bits per
channel (usually 32-bit �oat values), allowing much wider dynamic range.

Basically the HDR images let to take o� all annoyances due to presence of sunlight,
or an arti�cial light, or the absence of these ones in the main scene. In this section is
described the whole process of HDR imaging, why there are annoyances due to the lights
and how HDR imaging can take them o�.

The need to use a HDR image is due to the fact that when we take a photo of a scene
with some lights, for example sunlight or arti�cial lights, there are some parts of the scene
that are exposed to a stronger irradiance than the others that camera can not recognize;
the result is an image with some parts saturated, that are brighter than other ones. A
typical example is a scene with a window, such as the one in Fig. 2.1, where ,at a certain
exposure time, zones of the scene that are far from the windows have an irradiance value
quite corresponding to the real one but the ones near the windows have values much higher
than the real ones, since they are saturated.

Fig. 2.1: Example of an image of a scene with sunlight, the sunlight produces annoyances
near windows

A bracketed exposure sequence allows to acquire the full dynamic range, and can be
turned into a single high dynamic range image. In this chapter will be presented a method
to use these photographs to get a HDR image. Upon display, the intensities need to

3

4 High Dynamic Range and Tonemapping

be remapped to match the typically low dynamic range of the display device, through a
process called tone mapping.

HDR images �nd usefulness in some modern applications such as: image-based mod-
elling and rendering, image processing, image compositing. In the particular the most
image processing operations, such as blurring, edge detection, color correction, and image
correspondence, expect pixel values to be proportional to the scene radiance. Because
of non-linear image response, especially at the point of saturation, these operations can
produce incorrect results for conventional images. Hence makes the use of HDR image
fundamental in this project.

2.2 Image Aquisition

To understand because sometimes working with LDR images leads to have noise in the im-
age is important to understand how the whole process of taking a photo works, a summary
of the process is explained in the paper [3].

When we photograph a scene, either with �lm or an electronic imaging array, and
digitize the photograph to obtain a two dimensional array of "brightness" values, these
values are rarely true measurements of relative radiance in the scene. For example, if one
pixel has twice the value of another, it is unlikely that it observed twice the radiance.
Instead, there is usually an unknown, non-linear mapping that determines how radiance
in the scene becomes pixel values in the image.

This non-linear mapping is hard to know beforehand because it is actually the com-
position of several non-linear mappings that occur in the photographic process. In a
conventional camera (Fig. 2.2), the �lm is �rst exposed to light to form a latent image.
The �lm is then developed to change this latent image into variations in transparency, or
density, on the �lm.

The �lm can then be digitized using a �lm scanner, which projects light through the
�lm onto an electronic light-sensitive array, converting the image to electrical voltages.
These voltages are digitized, and then manipulated before �nally being written to the
storage medium.

Fig. 2.2: Image aquisition of a Digital Camera (from [3])

In the �rst stage of the process, the �lm responses to variations in exposure X (the
quantity of light reaching the �lm, which is E∆t, the product of the irradiance E that
the �lm receives and the exposure time ∆t), that is a non-linear function, called the
"characteristic curve" of the �lm. Noteworthy in the typical characteristic curve is the
presence of a small response with no exposure and saturation at high exposures.

The development, scanning and digitization processes usually introduce their own non-
linearities which compose to give the aggregate non-linear relationship between the image
pixel exposures X and their digitized values Z. Digital cameras, which use charge coupled
device (CCD) arrays to image the scene, are prone to the same di�culties. Although the
charge collected by a CCD element is proportional to its irradiance, most digital cameras
apply a non-linear mapping to the CCD outputs before they are written to the storage
medium.

2.3 Algorithm 5

This non-linear mapping is used in various ways to mimic the response characteristics
of �lm, anticipate non-linear responses in the display device, and often to convert 12 bit
output from the CCD's analog-to-digital converters to 8-bit values commonly used to store
images. As with �lm, the most signi�cant non-linearity in the response curve is at its
saturation point, where any pixel with a radiance above a certain level is mapped to the
same maximum image value.

The obvious di�culty is of limited dynamic range one has to choose the range of
radiance values that are of interest and determine the exposure time suitably. Sunlight
scenes, and scenes with shiny materials and arti�cial light sources, often have extreme
di�erences in radiance values that are impossible to capture without either under-exposing
or saturating the �lm.

2.3 Algorithm

As said before, the High Dynamic Range image of a certain scene can be constructed
starting from a series of photographs with di�erent exposure times, but how can we combine
them into a composite radiance map?

In this project has been seen two ways to get an HDR with two di�erent algorithms:

• Debevec [3]

• Exposure Fusion, so called Merge Mertens [13]

The next step, since a HDR image uses more than 8 bits per channel, the HDR image
obtained has to be handled in order to display and treat it as a normal image, so called
Low Dynamic Range image (LDR), through a tone mapping process.

Merge Mertens method actually does not create a HDR image but directly creates a
LDR image with the same result of a tone-mapped HDR image, that is to say it takes
light annoyances o�. But obviously the two methods presented do not give the same LDR
image in output.

2.3.1 Debevec and Tone Mapping

Since the camera response is the non-linear function that produces the non-linear mapping
of the scene, it has to be found, trough an algorithm explained brie�y in this section, in
order to allow to reconstruct the image of the scene with a linear �lm response. Once the
�lm response is known constructing the High Dynamic Range Radiance map is easy.

Camera Response Once a photo has been taken with a known exposure time ∆t, its
development gives us a value Z for each pixel of the image and the value Z is a non-linear
function of the original exposure X of the pixel, de�ned as the product E∆t . Let's call
this non-linear function f which is the composition of the characteristics curve of the �lm
as well as all the non-linearities introduced by the later processing steps.

Knowing the function f it is possible to compute the original exposure X of each pixel
simply using the inverse function f−1 :

X = f−1(Z)

Debevec et al. make the assumption that the function f is monotonically increasing,
so its inverse is well de�ned. Now that are known the exposure time ∆t and the exposure
X the irradiance E is given simply by:

E =
X

∆t

6 High Dynamic Range and Tonemapping

It is important to highlight that this irradiance value should be weighted with the
spectral response at the sensor site, this because the sensor weights the exposure value
according to its spectral response. Therefore the irradiance E can be taken as proportional
to radiance L of the scene.

They make the assumption that the scene is static and that this process is completed
quickly enough that lighting changes can be safely ignored. Then it can be assumed that
the �lm irradiance values Ei for each pixel i are constant. As input of the algorithm there
are a number of digitized photographs with an exposure time ∆tij . The subscript i refers
to pixels while the subscript j refers to exposure time ∆tj . So the �lm reciprocity equation
is:

Zij = f(X) = f(Eij∆tj)

Since has been made the assumption that f is monotonic it is invertible, therefore:

f−1(Zij) = Eij∆tj

and taking the natural logarithm to both sides:

log f−1(Zij) = logEij + log ∆tj (2.3.1)

The unknowns terms are the irradiance E and the inverse function f−1. Is possible
to recover the function f−1 and the irradiance E of the equation 2.3.1 in a least-squared
error sense. Recovering g, where g = log f−1, only requires recovering the �nite number of
values that g(Z) can take, since the domain of Z, pixel brightness values, is �nite. Letting
Zmin and Zmax be the least and greatest pixel values (integers), N be the number of pixel
locations and P be the number of photographs, they formulate the problem as one of
�nding the (Zmax − Zmin + 1) values of g(Z) and the N values of lnEi that minimize a
quadratic objective function (for more details refer to [3]).

Constructing the High Dynamic Range Radiance Map Once the response
function is calculated, from the equation 2.3.1 is possible to know the true value of the
irradiance in the pixel i with the exposure time j:

lnEij = g(Zij)− ln ∆tj

To robust the algorithm Debevec et al. consider all the exposure times and weight the
irradiance values taken from di�erent exposure times with a weighting function.

Combining the multiple exposures has the e�ect of reducing noise in the recovered
radiance values and reduces the e�ects of imaging artefacts such as �lm grain.

Tone Mapping Tone mapping is a strong technique for the display of high-dynamic-
range images, which reduces the contrast while preserving detail. It is based on a two-scale
decomposition of the image into a base layer, encoding large-scale variations, and a detail
layer. Only the base layer has its contrast reduced, thereby preserving detail. The base
layer is obtained using an edge-preserving and noise-reducing �lter called the bilateral �lter.
This is a non-linear �lter, where the weight of each pixel is computed using a Gaussian
in the spatial domain multiplied by an in�uence function in the intensity domain that
decreases the weight of pixels with large intensity di�erences. For more details about tone
mapping refer to [11].

2.3 Algorithm 7

2.3.2 Merge Mertens

The method of Mertens et al. [13] consists of skipping the step of computing a high dynamic
range image, and immediately merges the multiple exposures image into a high-quality low
dynamic range image, ready for display (like a tone-mapped picture). This avoids camera
response curve calibration and it is computationally e�cient.

The idea behind this approach is the computing of perceptual quality measures for
each pixel in the multi-exposure sequence, which encode desirable qualities, like saturation
and contrast. Guided by these quality measures, "good" pixels will be selected from the
sequence and combined into the �nal result. As the Debevec acquisition approach, is
assumed that the images are perfectly aligned.

Merge Mertens approach has several advantages, �rst of all, the acquisition pipeline is
simpli�ed, no in-between HDR image needs to be computed, and the result obtained is a
well detailed image. On the downside, this cannot extend the dynamic range of the original
pictures, but instead it directly produces a well-exposed image for display purposes.

Quality Measures Many images in the stack contain �at, colorless regions due to
under and overexposure. Such regions should receive less weight, while interesting areas
containing bright colors and details should be preserved.

They use the following measures:

• Contrast: indicated by C. Using a Laplacian �lter to the gray-scale version of the
input image and taking the absolute value of the �lter response. It tends to assign
high values to important elements such as edges.

• Saturation: indicated by S. When a photo is taken with a long exposure time,
the resulting colors become desaturated and eventually clipped. Saturated colors are
desirable and make the image look vivid.

• Well-exposedness: indicated by E. Looking at just the raw intensities within a
channel, reveals how well a pixel is exposed. We want to keep intensities that are not
near zero (underexposed) or one (overexposed). So each intensity is weighted basing

on how close it is to 0.5 using a Gauss curve: e−(i−0.5

2σ2
) where σ is equal a 0.2 in their

implementation and in the ours.

For each pixel, they combine the information from the di�erent measures into a scalar
weight map using multiplication. Similar to weighted terms of a linear combination, is
possible to control the in�uence of each measure using a power function:

Wij,k = (Cij,k)
ωC × (Sij,k)

ωS × (Eij,k)
ωE

where C, S and E, are the contrast, saturation and well-exposedness indices, and
ωC , ωS and ωE are weighting exponents, usually setted to 0. The subscript ij, k refer to
pixel(i, j) in the k-th image. The �nal pixel weight Wij,k will be used to guide the fusion
process.

Fusion The fusion step consists of computing a weighted average along each pixel to
fuse the N images, using weights computed from the early gained quality measures. To
obtain a consistent result, the values of the N weight maps will be normalized such that
they sum to one at each pixel (i, j):

Ŵij,k =
[N∑
k′=1

Wij,k′
]−1

Wij,k

8 High Dynamic Range and Tonemapping

Where normalization, in image processing, is a process that changes the range of pixel
intensity values. The resulting image R can then be obtained by a weighted blending of
the input images:

Rij =

N∑
k=1

Ŵij,kIij,k (2.3.2)

with Ik the k-th input image in the sequence. Unfortunately, just applying eq. 2.3.2
produces an unsatisfactory result. Wherever weights vary quickly, disturbing seams will
appear. This happens because the images we are combining, contain di�erent absolute
intensities due to their di�erent exposure times.

To avoid this problem they use another technique. First, the input images are decom-
posed into a Laplacian pyramid. A Laplacian pyramid is very similar to the Gaussian
pyramid with the alteration that it uses a Laplacian transform instead of a Gaussian one.
Where Gaussian pyramid is a technique that involves creating a series of images which
are weighted down using a Gaussian average (Gaussian blur) and scaled down. When this
technique is used multiple times, it creates a stack of successively smaller images, with
each pixel containing a local average that corresponds to a pixel neighbourhood on a lower
level of the pyramid.

Blending is then carried out for each level separately. Let the l-th level in a Laplacian
pyramid decomposition of an image A be de�ned as L{A}l, and G{B}l for a Gaussian
pyramid of image B. Then, we blend the coe�cients (pixel intensities in the di�erent
pyramid levels) in a similar fashion to 2.3.2:

L{R}lij =
N∑
k=1

G{Ŵ}lij,kL{I}lij,k

Each level l of the resulting Laplacian pyramid is computed as a weighted average of
the original Laplacian decompositions for level l, with the l-th level of Gaussian pyramid of
the weight map serving as the weights. Finally, the pyramid L{R}l is collapsed to obtain
R. For more details about Laplacian and Gaussian pyramids refer to [14].

2.4 Tests

Both techniques have been tested in order to choose the best one for the object detection
purpose, based on reliableness and fastness. The OpenCV 3.0.0 has implemented both
techniques but the prof. Pretto has given available another implementation of them, so
both has been tested with the functions of OpenCv 3.0.0 and the implementation given
available by prof. Pretto.

Moreover the tone mapping implemented by prof. Pretto is not the same used by
OpenCV, which refers to [11], but it is based on the gamma correction. This method
consist of an exponential correction, by a factor γ of the input image Iin and can be simply
described with the relation:

Iout = A · Iγin
where A > 0 and 0 < γ < 1. The function maps the luminance Iin in the domain
[0, 1/A1/γ] to the output range [0, 1]. The input image is weighted by the exponent γ, which
regulates the contrast on the image. This tone mapping method increases the exposure
of underexposed parts of the image while at the same time, if A < 1, it can decrease the
exposure of overexposed parts enough to to prevent them from being overexposed. How
Fig. 2.3 shows, pixels are considered with their values normalized to 1, and their value will
change according to the gamma correction function.

2.4 Tests 9

Fig. 2.3: Gamma correction graph with pixels that have values normalized to 1, A factor
equal 1. (Image taken from [4])

In Fig. 2.4 the input images of a scene inside a church are showed, taken with di�erent
exposure times. The resulting images with the two methods, both with the OpenCV 3.0.0
implementation and the Pretto's implementation, are showed in Fig. 2.5.

Fig. 2.4: Series of photographs of a church with di�erent exposure time.

How Fig. 2.5 shows, the merge mertens method can preserve a lot of details more
than debevec method, at the expense of a longer computational time. Since in the object
detection stage it is important to have more possible details, one could think to use merge
mertens in this �rst stage to take annoyances o�.

In a real bin-picking practical case, where shot scenes are "less complex" than the
church, as the one in Fig. 2.6 (note that input images are gray and not coloured images),
di�erent results have been noticed from the previously test of the church, as Fig. 2.7
shows. Note that in the elapsed time indicated is not taken into account the elapsed time
to calculate the camera response, since it is a constant of the camera, so can be computed

10 High Dynamic Range and Tonemapping

(a) Pretto Debevec+Tonemap,
elapsed time: 120 ms

(b) OpenCV Debevec +
OpenCv Tonemap, elapsed
time: 429 ms

(c) Pretto Merge Mertens,
elapsed time: 639 ms

(d) Opencv Merge Mertens,
elapsed time: 799 ms

Fig. 2.5: Result of di�erent approaches for HDR images from the memorial in Fig. 2.4

o�-line without calculating it every time the camera takes a photo of a scene.

Tab. 2.1: Elapsed times with input images ones showed in Fig. 2.7

Algorithm ∆t[s] Line segments detected

Pretto Debevec + Tonemapping 0.357 1381

OpenCV Debevec + Tonemapping 3.8829 1169

Pretto Merge Mertens 3.041 1417

OpenCV Merge Mertens 3.278 1263

The results have been evaluated in terms of execution time and reliableness, where
reliableness has been evaluated using on resulting images the algorithm LSD, explained in
chapter 3, in order to check how many line segments are detected, since for the detection

2.4 Tests 11

(a) 9e− 005s (b) 0.000175s (c) 0.00035s

(d) 0.0007s (e) 0.0014s (f) 0.0028s

(g) 0.0056s (h) 0.0122s (i) 0.0224s

(j) 0.0448s (k) 0.0896s (l) 0.1792s

Fig. 2.6: Series of photographs of the scene with di�erent exposure time.

stage will be used only line segments as representatives of the scene. This �nal step is
important since HDR image has been used only in order to take annoyances o� from the
input image in order to detect reliably line segments over all the image.

The Fig. 2.8 shows well that the methods tested are similar, output images are really
similar and so the number of line segments detected, with a maximum of ≈ 12% of dif-
ference. But it is interesting to notice how the Debevec's method implemented by Prof.
Pretto is faster than the others, as showed in Tab. 2.1.

The implementation of Pretto is faster than the one of OpenCV because he used the API
OpenMP (Open Multi-Processing) [15]. This API supports multi-platform shared memory
multiprocessing in several programming languages, such as C/C++, and basically can run
some parts of the same program simultaneously. This will be traduced in a faster way to
execute the program, depending on the number of CPU's cores.

Moreover let notice that the execution time of the Debevec and tone mapping pro-
cess implemented in OpenCV need more time to be execute than Merge Mertens method
because they are optimized for coloured images (3 channels) and not for gray images (1
channel), such as the tested ones.

Merge Mertens method still preserves more details than Debevec method, but only

12 High Dynamic Range and Tonemapping

(a) Pretto Debevec+Tonemapping (b) Opencv Debevec+Tonemapping

(c) Pretto Exposure Fusion (d) Opencv Exposure Fusion

Fig. 2.7: Result of di�erent approaches for HDR images

(a) Pretto Debevec+Tonemapping (b) Opencv Debevec+Tonemapping

(c) Pretto Exposure Fusion (d) Opencv Exposure Fusion

Fig. 2.8: Application of LSD algorithm on the image showed in Fig. 2.7

2.4 Tests 13

few of them are preserved in real cases wherein the Bin-Picking system has to work, at
the expense of an execution time higher. Since in the Bin-Picking systems fastness is the
second most important thing to consider, after precision, the Debevec method implemented
by Prof. Pretto has been chosen for this �rst stage.

Chapter 3

Line Segments Detection

The next step, after having used HDR and tone mapping to take the annoyances o� from
the image, consists in line segments detection. This part is really important since the
information caught from this step will be used to match the model in order to �nd correct
matches to the input object model in the scene.

3.1 Introduction

Line segments give important information about the geometric contents of images for two
main reasons:

• most human-made objects are made of �at surfaces

• a lot of these objects, but even nature objects, accept an economic description in
terms of straight lines. Therefore line segments can be used to extract low-level
features from images and in particular they can be used for the main problem of
computer vision: the objects detection.

Before proceeding with the reading it is advisable to have some basics knowledge about
the gradient of images; if not so, the theme is brie�y debated in appendix A.

Ideally one would like to have an algorithm that accurately detects line segments pre-
sented in an image, without false detections, and without the need to manually tune
parameters for each image. The line segments detection is an old and recurrent problem in
computer vision, a standard approach is combining the most known and standard method
for edge detection that is the Canny Edge Detector [16] followed by the application of an
Hough Transform [8] extracting all lines that contain a number of edges points exceed-
ing a threshold; these lines are thereafter cut into line segments by using gap and length
thresholds.

The Canny Edge Detector follows 4 mains steps:

• �ltering by a Gaussian Filter to reduce noises

• getting the image gradient

• non-maximum suppression on the image gradient, in order to remove pixels that are
not considered part of an edge

• hysteresis: trough two thresholds, the algorithm allows to establish if a pixel make
part of an edge or not

The Hough Transform is a strong algorithm that can recognize some geometric �gures,
simply by verifying if the pixel of the image, in this case the image resulting from canny
edge detector, matches with the geometric �gure considered, in this case a line.

The main drawback of this standard procedure to detect line segments is due to textured
regions that have a high edge density which can cause many false detections. Moreover this
procedure considers only the magnitude gradient and not the information of the direction,
therefore such algorithm obtains line segments with aberrant directions.

15

16 Line Segments Detection

(a) input gray-scale image (b) Canny operator applicated on image (a)

(c) Standard Hough Line Transform with
threshold setted to 150

(d) Standard Hough Line Transofrm with a
threshold setted to 100

Fig. 3.1: Application of Canny and Standard Hough Line Transform to a gray-scale input
image with di�erents values of the threshold. Blue lines are the lines detected.

Another fundamental problem for all detection methods is the setting of thresholds. In
fact the use of �xed thresholds can lead to a signi�cant number of false positive or false
negative detections. Therefore the thresholds have to be regulated for each image in step
with environment conditions, as illustrated in Fig. 3.1.

Along the years, some good algorithms for line segments detection have been devel-
oped, but all of them have some bene�ts and some disadvantages that make them not
completely satisfactory for the line segments detection problem. One of them has been de-
veloped by Etemadi [17] which is able to detect simultaneously line segments and arcs but
it is not completely satisfactory. Another one has been developed by Burns et al. [18], this
algorithm was quite innovative because it ignores gradient magnitude and actually works
with gradient direction and this one lead to have a good detection but still the problem of
setting every time a threshold remains. A good improvement has been made from Matas
et al. [19] with the Progressive Probabilistic Hough Transform (PPHT) which accelerates
the computing time with the use of gradient direction information and introduces a false
detection control. The Fig.3.2 shows a clear improvement over the Standard Hough Trans-
form Method. Nevertheless, the false detection control used is not completely satisfactory,
because it considers only the whole line and not line segments, and this is a problem since
a lot of lines are not detected as whole lines but as sum of more segments.

The threshold question was thoroughly analysed by Desolneux et al. [20]. Their line
segment detection method succeeds in controlling the number of false positive. The method

3.2 Line-Based Representation 17

(a) PPHT applicated on Fig. 3.1(a)with a
threshold of 150

(b) PPHT applicated on Fig. 3.1(a)with a
threshold of 100

Fig. 3.2: Application of Canny and Probabilist Progressive Hough Line Transform (PPHT)
to the gray-scale input image Fig. 3.1(a) with di�erents values of the threshold

counts the number of aligned points and �nds the line segments as outliers in a non-
structured a contrario model based on the Helmholtz principle.

The main problem was to create an algorithm that did not need a threshold setting,
that could be reliable with the most common environment conditions, and that could
detect reliably line segments. The algorithm discussed in this chapter, and presented in
[12, 5] in 2010, has gone forward this direction, combining improvements of Burns et al.
and Desolneux et al. Actually it just requires setting some parameters, that could be left
to a default setting.

In this chapter will be commented the LSD algorithm, which is really reliable and fast
and it has been the best choice for the phase of line segments detection. This chapter
also comments the LSD parameters setting and a comparison between the implementation
proposed by developers and the one by OpenCV 3.0.0 library.

3.2 Line-Based Representation

The most of standard algorithms to detect objects need a point representation of the scene,
but actually, with the introduction of new reliable algorithms to detect line segments, some
works evidenced that it is better a representation of the scene through line segments.

The edge map of a scene is not an unstructured binary pattern. On the contrary,
the object contours are made with certain continuity constraints that can be retained by
combining line segments of various lengths, orientations, and translations. Based on this
observation an image can be represented as a collection of m line segments. Compared
with a set of points which has cardinality n, its line-based representation is more concise.

Encoding an edge map using the line-based representation requires only O(m) memory
size, where m << n. When the searched object exhibits a curved contour, more segments
are required for good approximation, but the line base representation is still more concise
than the set of edge pixels.

The algorithm LSD presented in this chapter only retains edge points with continuity
and su�cient support, therefore it acts also like a �lter that �lters noise and isolated edges
out. In addition, the directions recovered through line-segments detector are more precise
than ones obtained using local operators. An example of the line-based representation is
given in Fig. 3.3, where a set of 88,205 points is modelled with 1,396 lines segments.

18 Line Segments Detection

(a) (b)

Fig. 3.3: Line-based representation of input image 3.1(a): (a) Edge map (obteined with
Canny operator with a threshold of 14). The image contains 88,205 points (b) Line-based
representation of the edge map. The image contains 1,396 line segments.

Fig. 3.4: Example of the scaling problem: the �rst image and the third one are the input
images while the second one and the fourth one are the output images. (Image taken from
[5])

3.3 Line Segment Detector

LSD is a linear-time Line Segment Detector giving subpixel accurate results since it controls
its own number of false detections: on average, one false detection is allowed per image.
LSD has been designed as an automatic image analysis tool. As such it must work without
requiring any parameter tuning. The algorithm actually depends on several parameters
that determine its behaviour; but their values were carefully devised to work on all images.

The LSD [12, 5] is actually a fusion and improvement of Burns et al. method about
line segments �nding and the Desolneux et al. method about the validation criterion of
the line segments found in the �rst step of the algorithm.

The whole process of this detector can be simpli�ed in three basics steps:

• Looking for line support region

• Approximation of that region in a rectangle

• Validation criterion

In the following will be commented all the phases of the Line Segments Detection.

Image Scaling The result of LSD is di�erent when the image is analysed at di�erent
scales or if the algorithm is applied to a small part of the image, that is why there are
di�erent information about details of the image when scaled.

An example of this di�erent result is illustrated in Fig. 3.4, that shows two discrete
edges at di�erent angles, both presenting the staircase e�ect, and the result of LSD on

3.3 Line Segment Detector 19

Fig. 3.5: Output images of the input images of Fig. 3.4 scaled by a factor of 0.8 . (Image
taken from [5])

those images not scaled. Instead Fig.3.5 shows the result on those image using the 80%
scaling, both edges are detected with the right orientation. In this project the input image
of 2592x1944 pixels is scaled using a 50% scaling factor, in order to reduce image noise.

Gradient Pseudo-Ordering LSD is a greedy algorithm and the order in which
pixels are processed has an impact on the result. Pixels with high gradient magnitude
correspond to the more contrasted edges. Normally, in an edge, central pixels have the
highest gradient magnitude, therefore makes sense to start to look for line segments at these
central pixels. To sort these points, a simple pixel pseudo-ordering in linear-time is used.
To this aim, 1024 bins are created corresponding to equal gradient magnitude intervals
between zero and the largest observed value on the image, later pixels are classi�ed into the
bins according to their gradient magnitude value. LSD starts to look for line segments from
the largest magnitude value's bin until having tested all its pixels, then LSD tests pixels
of the bin with the second largest gradient magnitude value and so on until exhaustion of
all bins.

Gradient Threshold Pixels with small gradient magnitude correspond to �at zones
or to an ideal background, and usually present even a higher error in the gradient computa-
tion due to the quantization of their values. The algorithm therefore rejects all pixels that
have a gradient magnitude minor than a certain value p and will not used in the construc-
tion of line-support regions. The threshold p is setting in based on the value of parameter q
that is a bound of the possible error in the gradient angle value due to quantization e�ects.

Line Support Regions Contrary to classic edge detectors, the Burns et al. method
de�nes a line segment as an image region, called "line support region", that is to say
a straight region whose points share roughly the same image gradient angle, such line
segments are roughly oriented along the average level-line direction. The Burns et al.
algorithm extracts line segments in three steps:

• Partition of the image into line-support regions by regrouping connected pixels that
share the same gradient angle up to a certain tolerance

• Find the line segment that best approximates each line-support region

• Validate or not the line of the second step through a validation criterion

The LSD algorithm has caught the principle idea of �rst two steps from Burns et al.
method while the step of validation is based on the Desolnoux et al.

The improvements made by Grompone von Gioi et al [12] on the �rst step of Burns et
al. method is the use of a region growing algorithm as illustrated in Fig. 3.6.

Each region starts with just one pixel and the region angle is setted to the level-
line angle at that pixel, which is orthogonal to the pixel gradient direction. Then pixels
adjacent to the region are tested and the ones with the same level-line orientation of the

20 Line Segments Detection

Fig. 3.6: Illustration of growing line-support region. (Image taken from the website [6])

region angle, up to a certain precision, are added to the region. At each iteration the region
angle is updated to consider the in�uence of new pixels that make part of the region. The
orientation of the region is de�ned as

arctan

(∑
i sin angi∑
i cos angi

)
The process is iterated until no new point can be added to the region. Since pixels

with large gradient magnitude have more in�uence and are more likely to belong to straight
edges, they are tested �rst. Once a point is added to the region the point is marked and
never visited again.

Rectangular Approximation of Regions Prior to the validation step, each line-
support region has to be associated to a line segment, that actually is a rectangle. Therefore
input image is partitioned in some regions like in Fig. 3.7. Normally a line is determined
by its starting and ending points (where starting and ending point here are used to refer
to extreme points), in this case even by its width. Or equivalently, by its center, angle,
length and width. The rectangular approximation includes all these parameters, since has
to take the whole information necessary to describe a line.

Fig. 3.7: Line support regions in a generic input image. (Image taken from [5])

The angle of the line is not taken by simply calculating the angle of an ideal line that
connects the start and end points of the region, because this would lead to a wrong result.
The right procedure has been suggested by Kahn et al. that refers to calculate the center
of mass, which will be used to select the center of the rectangle, and the �rst inertia axis,
to select the rectangle orientation. Where the mass of pixels corresponds to their gradient
magnitude. Then the length and width are chosen in order to cover the line-support region.
The �gure Fig. 3.8 shows the process of rectangle approximation.

Line Segment Validation The two key points of the Desolneux et al. method are
the use of the gradient orientation and a new framework to deal with parameter settings.
From the gradient of the input image only the direction is considered in the validation step.

3.3 Line Segment Detector 21

Fig. 3.8: Approximation of the line support region in a rectangle. (Image taken from [5])

The orientation is used to counts the number of aligned points to the level-line orientation,
up to a certain tolerance τ . All potential line segments are tested and those that satisfy
a threshold criterion based on their length l and their number of aligned points k are kept
as valid segments.

On natural images often the gray-level transition, corresponding to edges, is made of
many pixels. On the algorithm of Desolneux et al. this needed a lot of e�ort to identify
that edge as a line segment, this step has been simpli�ed considering no line segments but
rectangles.

The framework used is based on the concept of white noise. White noise is a term used
to represent an image where gradient angles of its pixels are uniformly distributed over
all angles direction in the whole image. This is an important representation of an image
because, as Desolneux et al. showed, a suitable background model, is just one in which
all gradient angles are independent and uniformly distributed. Also �at zones, that have
no a variable intensity, have gradient angles distributed uniformly. Therefore for the line
segment detection problem an image can be thought like an overlapping of lines above the
background.

Fig. 3.9: Candidate line made of an isotropic process. (Image taken from [5])

It is clear that the zones of the image where there are lines are zones whose pixels
have the same gradient angles, up to a certain tolerance, these zones are called anisotropic

zones. Thus, in practice, a set of pixels will not accepted as a line segment if it could have
been made of an isotropic process. In fact is possible that a candidate line segment is made
of an isotropic process, cause to the rectangle approximation that, in order to cover all the
line support region, is made even of other pixels with an aberrant orientation. The Fig.

22 Line Segments Detection

3.9 illustrates an event of a candidate line made of an isotropic process.
The validation step is based on the a contrario approach and the Helmholtz principle

proposed by Desolneux, Moisan, and Morel [20]. The so-called Helmholtz principle states
that no perception (or detection) should be produced on an image of noise. Accordingly,
the a contrario approach proposes to de�ne a noise on a contrario model H0, equivalent to
a white noise image, where the desired structure is not present. Then, an event is validated
if the expected number of events as good as the observed one is small on the a contrario
model. In other words, structured events are de�ned as being rare in the a contrario model
H0.

The a contrario model used for line segment detection is de�ned as a stochastic model
of the level-line �eld satisfying the following properties:

• LLA(j)j∈Pixels is composed of independent random variables

• LLA(j) is uniformly distributed over [0, 2π]

where LLA(j) is the level-line angle at the pixel j of the image.
In the case of line segments the interest is on aligned points. We consider the event

that a line segment in the a contrario model has as many or more aligned points, as in the
observed line segment. The threshold kr must be �xed in a way that guarantees a control
of expected number of false alarms under H0.

The Number of False Alarms (NFA) associated with the rectangle r corresponds to the
expected number of rectangles which have a su�cient number of aligned points to be as
rare as r under H0. When the NFA associated with an image rectangle is large, this means
that such event is expected on the a contrario model, that is to say the event is common
and thus not a relevant one, in other words it is not a line. On the other hand, when the
NFA value is small, the event is rare and probably a meaningful one. A threshold ε is
selected and when a rectangle r has NFA(r, i) ≤ ε on the image i, the rectangle is called
ε−meaningful rectangle and produces a detection.

Rectangle Improvements Before rejecting a line-support region for being not mean-
ingful (NFA > ε), the algorithm tries some variations of the rectangle's con�guration
initially tested in order to get a valid one. The reason of this rectangle improvement is
due to the fact that width of the line segments is the worst estimated parameter on the
�rst rectangular approximation, but also a very in�uential one. An error that makes the
rectangle one pixel thicker adds a large number of non-aligned points, as many as length
of the line segment. This can increase the NFA value, rising the non-detection risk. Also
the precision p is another very in�uential parameter, de�ned as p = τ

π , since the precision
control the line-support growing process.

The initial precision used, corresponding to the region growing tolerance, is large enough
so only testing smaller values makes sense. If the pixels are well aligned, using a �ner
precision will keep the same number of aligned points, but a smaller p yields a smaller (and
therefore better) NFA. In a similar way, it only makes sense to try to reduce the rectangle's
width because the initial width was tuned to cover the whole line-support region. Often,
reducing by one pixel the width may reduce the number of aligned points by only a few
units while reducing the total number of pixels by a number equal to the length of the
rectangle, see Fig. 3.10. This may decreases signi�cantly the NFA value. If a meaningful
rectangle is found (NFA ≤ ε) the improvement routine will stop. The re�nements simply
works trying to reduce the precision or the width, not the both at the same time.

Aligned Points Density Sometimes the tolerance τ used can lead to wrong inter-
pretation of lines. In fact could be that a rectangle actually includes into itself two lines

3.4 LSD - Standard Parameters and Settings 23

Fig. 3.10: Example of a line-support region that needs a re�nement.(Image taken from [5])

with a di�erent orientation, as showed in the Fig. 3.11. This problem can appear when
two straight edges are present in the image forming an angle between them smaller than
tolerance τ .

Fig. 3.11: Example of a line-support regions containing two lines. (Image taken from [5])

This problem is handled by detecting problematic line-support regions and cutting
them in two, or more, smaller line-support regions. The detection of this angle problem
is based on the density of aligned points, where there is a di�erence in the orientation the
density in that zone has a low value. Therefore the point corresponding to the intersection
of the two researched lines is indicated by the point with the lowest density value of aligned
points.

3.4 LSD - Standard Parameters and Settings

The LSD algorithm actually depends on some parameters, described above, which deter-
mine its behaviour, that are (on the side are written the values suggested by developers):

• Scale factor S: 0.8

• Quantization error for the gradient norm q: 2.0

• Tolerance τ : 22.5 degrees

• Density limit d: 0.7

• The number of false detections admitted, ε: 1

• The number of bins n used to order pixels on their gradient magnitude n: 1024

In [5] all the parameters are well described and there are some tests which justify the
choice of parameters' value of the developers. In our test of detecting line segments we
needed to handle these parameters suggested by the developers in order to get more line
segments. In fact the �gure Fig. 3.12 reports an input image and the result of LSD , with
the default parameters setting, on the input image. Clearly, the lines detected, the purple
ones, are too few to be su�cient for a robust object detection.

Since the phase of object detection needs more possible information about the input
image, and since some line segments, that were clearly edges, were not detected, we have
handled these parameters in order to get more possible line segments. Parameters tuning

24 Line Segments Detection

(a) Input gray-scale image

(b) LSD with default parameter values

Fig. 3.12: Application of LSD algorithm with the default parameters value

has been performed with a trade-o� between precision and number of line segments de-
tected. Handling these parameters is possible to detect more line segments, some of which
are line segments that does not correspond to any real edge. An arising number of line
segments detected leads the next phase of the object detection to make a relevant e�ort in
terms of e�ciency, that is to say it would be too low in computation.

The results of tests lead us to consider the following combination of parameters:

• Scale factor S: 0.5

• Quantization error q: 0.5

• Tolerance τ : 22.5 degrees

• Density limit d: 0.5

• Number of false detection ε: 1

3.5 LSD in OpenCv 25

Fig. 3.13: Application of LSD algorithm with the chosen parameters to input image Fig.
3.12(a).

• Number of bins n: 1024

The result of LSD with this new parameters setting on the input image Fig. 3.12(a),
and reported in Fig. 3.13, is really more satisfying than the original one. A lot of the real
edges are detected at the expense of an increase of line segments that does not represent
edges, leading the next object detection phase more precise but a little bit more slowly.

3.5 LSD in OpenCv

In the version 3.0.0 of OpenCV library the algorithm LSD [12] has been implemented with
some improvements in terms of fastness. The Fig. 3.14 reports some tests and the relative
execution time, with LSD code provided by von Gioi et al. and the equivalent function of
OpenCV 3.0.0 , with the same parameters setting.

Notice the good increase of speed, about 50% (it depends on the number of line-support
regions to validate and the size of the input image), of the algorithm with the function
LSD implemented in OpenCV 3.0.0 at the expense of a lower precision, there are a lot
of line segments detected that do not correspond to any relevant edge, this actually is a
deterioration of input image data. Since the number of line segments detected will a�ect
the speed of the object detection phase, that requires a lot of e�orts and time, we have
chosen to use the original implementation of von Gioi et al., which is more precise than
the one of library OpenCV 3.0.0.

26 Line Segments Detection

(a) 374 x 248 Elapsed time: 108,992 ms (b) 374 x 248 Elapsed time: 45,4814 ms

(c) 256 x 256 Elapsed time: 57,5579 ms (d) 256 x 256 Elapsed time: 32,0993 ms

(e) 1296 x 972 Elapsed time: 438,738 ms (f) 1296 x 972 Elapsed time: 283,647 ms

Fig. 3.14: Some tests of fastness of LSD, with the same parameters setting, using the
implementation of von Gioi et al. [(a),(c),(e)] and the one of OpenCv 3.0.0 [(b),(d),(f)].

Chapter 4

Object Detection

4.1 Introduction

Object detection is the main challenge in computer-vision systems, in fact in recent decades
a considerable amount of work has been done on automating the process of part assembling
through vision systems. These are successful in identifying, inspecting, and locating parts
in carefully engineered manufacturing settings, but it remains a great challenge to extend
their applicability to more general, unconstrained settings.

Several authors have proposed shape representations and similarity measures that aim
to be invariant to object deformations, and that achieve good performance in object recog-
nition. However, they require a clean segmentation of the target object, therefore they
need a good extraction of line segments from the image, and this makes them less suit-
able for dealing with unstructured scenes due to the di�culty in foreground-background
separation.

A lot of improvements have been proposed with excellence results in shape matching,
even in cluttered images, but at the expense of a high computational complexity that
makes them unsuitable for time-critical applications, as Bin-Picking.

A great solutions was to improve an old algorithm proposed decades ago, that is to say
the Chamfer Matching algorithm [21], that is a good method when speed and accuracy are
required.

An evolution of Chamfer Matching is the Generalized Hough Transform [8], but recently
in 2012 there has been some improvements of Chamfer Matching by Liu et al. and Shotton
et al. [9, 2] that lead us to prefer this one to the modi�ed Generalized Hough Transform,
originally used in [1].

In this thesis the standard Chamfer Matching algorithm for the detection stage has
been implemented, with the idea to implement the improvements mentioned in the future
starting from this work.

In this phase of object detection the line segments, extracted from the initial image
and the CAD model of the searched object, are given as inputs. The CAD model will be
rasterized with a pitch of some millimetres (the pitch will a�ect speed as well as precision
of the detection) and will be used for the shape matching. In order to make the chamfer
distance more robust, a phase of optimizations has been used in order to improve the
precision and another phase to score the matched object.

Note that to get the correct position of the object it is necessary to do a calibration of
the camera before proceeding with matchings. This calibration is really important since it
leads the algorithm to understand how far the objects are in the bin from the camera lens
and where they are located in the scene.

In this chapter all the procedures of this detection phase will be discussed, with a
mention to camera calibration, with a study of the Hough Generalized Transform [8] and
Chamfer Matching, and the results will be discussed. In the next chapter the improvements
on Chamfer Matching suggested by Liu et al. and Shotton et al. will be discussed.

Axis Disposition In order to make the explanation more understandable let's com-
ment the axis disposition. The axis to consider are:

• x axis: it corresponds to the horizontal axis of the shot plane. Rotations around this
axis are called "roll" rotations.

27

28 Object Detection

• y axis: it corresponds to the vertical axis of the shot plane. Rotations around this
axis are called "pitch" rotations.

• z axis: it corresponds to the camera axis, normal to the bin plane. Rotations around
this axis are called "yaw" rotations.

and are well showed in Fig. 4.1.

Fig. 4.1: Axes disposition.

Note that, thanks to the camera calibration, all coordinates are stated respect to the
camera frame.

4.2 Camera Calibration

Camera calibration is a necessary step in 3D computer vision in order to extract metric
information from 2D images. In this section we only limit to hint at this process phase.

Unfortunately the camera is a�ected to a signi�cant distortion, that depends on the
fact that camera projects 3D world points onto the 2D image plane. The calibration of
the camera �nds the quantities internal to the camera that a�ect this imaging process.

Furthermore, with calibration you may also determine the relation between the camera's
natural units (pixels) and the real world units. Since this algorithm is for a Bin-Picking
system it is obvious that actually the main goal of the algorithm is not to detect objects
in an image but to detect objects in the bin, in the real world, and since the camera is
the device that realizes the connection between digitized world and real world, it has to be
calibrated.

According to the calibration method, Zhang et al. [22] classify calibration techniques
roughly into 2 categories:

• Photogrammetric calibration. Camera calibration is performed by observing a
calibration object whose geometry in 3D space is known with very good precision.
Calibration can be done very e�ciently. The calibration object usually consists of two
or three planes orthogonal to each other. Sometimes, a plane undergoing a precisely
known translation is also used. These approaches require an expensive calibration
apparatus, and an elaborate setup.

• Self-calibration. Techniques in this category do not use any calibration object. Just
by moving a camera in a static scene, the rigidity of the scene provides in general
two constraints on the camera's internal parameters from one camera displacement
by using image information alone. Therefore, if images are taken by the same camera
with �xed internal parameters, correspondences between three images are su�cient
to recover both the internal and external parameters which allow to reconstruct 3-D

4.2 Camera Calibration 29

structure. While this approach is very �exible, it is not yet mature. Because there
are many parameters to estimate, and is not always possible to obtain reliable results.

The algorithm used to calibrate the camera is the one presented in the a toolbox for
Matlab [7], based on the paper [22]. This approach lies between the photogrammetric cali-
bration and self-calibration, because it uses 2D metric information rather than 3D or purely
implicit one. It is a �exible technique that does not require any knowledge in computer
vision in order to work with it and, overall, does not require expensive equipments. In
order to calibrate the camera it just requires the camera to observe a planar pattern shown
at a few di�erent orientations (at least two, more di�erent orientations are tested more the
calibration is robust). This pattern can be easily printed and attached to a planar surface.
To take photos of the planar pattern the camera can move or, otherwise, the pattern can
be moved, and the motions need not be known. Compared with self-calibration, it gains
considerable degree of robustness.

This calibration method is the same used in [1] and has not been implemented in this
project, prof. Pretto just gave available the camera intrinsic matrix.

The Algorithm in Brief

Intrinsic Parameters Considering a 2D point denoted by m = [u, v]T , a 3D point
denoted by M = [X,Y, Z]T , and their augmented vector by adding 1 as the last element
denoted by m̃ = [u, v, 1]T and M̃ = [X,Y, Z, 1]T . A camera is modelled by its pinhole, the
relationship between a 3D point M and its projection m in the photo, that is given by:

sm̃ = A[R t]M̃, (4.2.1)

where s is an arbitrary scale factor, [R t], called the extrinsic parameters, are the
rotation and translation which relate the world coordinate system to the camera coordinate
system, and A, called the camera intrinsic matrix, is given by:

A =

α γ u0

0 β v0

0 0 1

 (4.2.2)

with (u0, v0) the coordinates of the principal point, which would be ideally in the
centre of the image, α and β the scale factors in image u and v axes, and γ the parameter
describing the angle between the two image axes.

The algorithm detects the feature points in the images, estimates the �ve intrinsic
parameters that construct 4.2.2, estimates the coe�cients of the radial distortion, that
a�ects the point projection, by solving a linear least-squares problem and �nally it re�nes
the parameters by minimizing an objective function.

In order to tell to computer what is the pattern used for the calibration, the user has
to click manually on one of the images shot the four corners of the pattern, as showed in
image 4.2(a). Later the algorithm automatically will recognize the squares that compose
it, and from the images with di�erent orientations will be able to extract the intrinsic
parameters by minimizing the mentioned objective function.

Extrinsic Parameters Extrinsic parameters are the ones which denote the coordi-
nate system transformations from 3D world coordinates to 3D camera coordinates, that is
to say it consists in �nding [R t] for each point. Considering a set of n 3×3 rotation matri-
ces Ri and a set of n 3×1 translation vector Ti where i = 1, 2, . . . , n and n is the number of
images taken with the camera. Let consider the calibration grid gridi attached to the i-th
image, and to make more simple the explanation let consider the image 1 → i = 1. Let P

30 Object Detection

(a) (b)

Fig. 4.2: Corner selection and pattern de�nition. (Image taken from [7]).

be a point space of coordinate vector [XP , YP , ZP] in the grid reference frame showed in
Fig. 4.3. Let C = [XC , YC , ZC] be the coordinate vector of P in the camera frame. Then
P and C are related to each other through the following rigid motion equation:

C = R1 · P + T1

Fig. 4.3: Reference frame (O,X, Y, Z) attached to the calibration grid gridi. (Image taken
from [7])

In particular, the translation vector T1 is the coordinate vector of the origin of the grid
pattern (O) in the camera frame, and the third column of the rotation matrix R1 is the
surface normal vector of the plane containing the planar grid in the camera reference frame.
The same relations can be found for the images i = 2, 3, . . . , n. Once the coordinates of a
point are expressed in the camera reference frame, it may be projected on the image plane
using the intrinsic camera parameters.

The points used for the calibration are the corners of the small squares composing the
pattern, ones marked with a red cross in Fig. 4.2(b).

Implementation and Its Uses To implement this calibration some functions de-
veloped for this calibration, and provided by OpenCV library, have been used.

The calibration has to be made for every camera, does not depend on the model or
something else, but the distortion e�ects are due to camera lens that has some imperfec-
tions, therefore they are unique for each camera.

4.3 Generalized Hough Transform For Object Detection 31

The calibration has to be made once in a while, in order to correct some physical
changes that has su�ered the camera in its working life, and obviously it is computed
o�-line.

4.3 Generalized Hough Transform For Object Detection

This method consists of a generalization of the Standard Hough Transform, the method
has been extended in order to detect whatever shape. Through an accumulator and some
tests, that will modify the accumulator, the algorithm is able to evaluate if a point can be
considered as the centre point of the shape, if the accumulator in that point has a higher
value than a �xed threshold.

This algorithm has been used as starting point for almost all recent studies about
pattern recognition.

4.3.1 The Algorithm in Brief

To generalize the Hough algorithm three parameters are used to describe in a detailed way
a generic shape

a = (y, s, θ)

where y = (xr, yr) is a reference origin for the shape, θ is its orientation and s = (sx, sy)
describes two orthogonal scale factor along x and y axis.

The reference origin location y is described in terms of a table of possible edge pixel
orientations. The computation of the parameters s and θ is then accomplished by straight-
forward transformations to this table.

An initial attempt to generalize the Hough Transform consisted of considering that
each shape has a speci�c reference point, then only the boundary points are considered.
An analytic description is used to describe these boundary points relative to the reference
point of the shape. Moreover, also a two-dimensional accumulator array A(a) is used and
initialized to zero. On the input image a gradient operator is applied and then the image
will be binarized through a simple binarization function:

B(x) =

{
1 if x is an edge pixel

0 otherwise

Then the algorithm tests each pixel of the binarized image, considering it as a possible
reference point, and for each one looks for boundary points xB, corresponding to pixels
with a value of 1, looking in a perimeter that corresponds to its edges. For every pixel
tested is saved in the accumulator the number of pixels that correspond to boundary points
relative to reference point tested x.

Last the algorithm looks for local maximas in A(a) which correspond to instances of
the searched shape in the image. A simplify illustration of the accumulator is given by
Fig. 4.4.

This approach is actually impractical for real image data, in fact an image with a
multitude of edge pixels leads to several false instance detections due to coincidence pixel
arrangements. Anyway suggests the manner to approach shape detection problem.

The key for the generalization to arbitrary shapes is the use of directional information,
that even makes the algorithm faster and more accurate. For example, suppose to have to
detect a circle, every signi�cant group of edge points that lies on a circle will be detected
as a circle, even if those points do not represent a circle. This happen if we do not use
directional information. Considering the case of the circular boundary detector with a

32 Object Detection

Fig. 4.4: Simple illustration of the accumulator A in the case of 8x6 image , with no
rotations considered and with a step of 1 pixel. Supposing a threshold of 11 the red square
corresponds to the most probable istance of the searched object, while green squares are
other possible istances.

�xed radius r0, for each gradient point x with a direction φ the reference point a is due
from a = x+ r0.

Extending the idea of the circle detector with a �xed radius to the case of an arbitrary
object, for each point x on the boundary with gradient direction φ, the accumulator is
incremented in the point a = x+ r. The di�erence of the circle case is that now r = a− x
will vary in magnitude and direction depending on boundary points, as illustrate Fig. 4.5.

Fig. 4.5: Geometry of an arbitrary shape for Generalized Hough Transform (Image taken
from [8])

The fact that r varies in an arbitrary way means that Generalized Hough Transform
for an arbitrary shape is best represented by a table called R-table, such as Tab. 4.1.

The construction of R-table is made as �rst step, as soon as the algorithm receives as
input the shape model to detect. Its construction is easily constructed by examining the
boundary points of that object.

First the algorithm for the construction of R-table chooses a reference point y in an
arbitrary way, for each boundary point computes the gradient direction φ(x) and r = y−x
and stores r as function of φ . Generally an index φ can have many values of the radius,
think about a ring that can be thought as a composition of two circles.

To detect the shape in the image each pixel x in the image increments all the corre-
sponding points x+ r in the accumulator array A, where r is a table entry indexed by φ.
The maxima in A correspond to possible instances of the searched object.

The next step is adapting the algorithm developed until now to shapes with di�erent
orientations θ and scale s of the model shape given as input. Therefore the accumulator
array now has to consider the reference point, scale and rotation, so it consists of three
dimension: A(y, s, θ).

4.3 Generalized Hough Transform For Object Detection 33

Tab. 4.1: Diagrammatically form of the R-table.

i φi Rφi

0 0 r|a− r = x, x in B,φ(x) = 0

1 ∆φ r|a− r = x, x in B,φ(x) = ∆φ

2 2∆φ r|a− r = x, x in B,φ(x) = 2∆φ

.

The R-table can also be used to increment this larger dimensional shape, since dif-
ferent orientations and scales correspond to easily-computed transformations of the table.
Therefore a R-table of a shape S with a orientation θ and a scale factor s can be seen as
a multiply-vector-valued function and it can be denoted as: R(S, θ, s).

To appreciate better the transformation of the R-table refer to Fig. 4.6. In the �gure,
an edge pixel with orientation φ may be considered as corresponding to the boundary point
xA, in which case the reference point is yA. Alternatively, the edge pixel can be considered
as xB on a rotated instance of the shape, in which case the reference point is at yB which
can be speci�ed by translating rA to xB and rotating it through +∆θ.

Considering a 3D rotation the R-table can be constructed simply applying the rotation
matrix of the considered rotation to the R-table.

Fig. 4.6: Construction for visualizing the R-table transformation for a rotation by ∆θ in a
2D Euclidian space. Point A can be viewed as: (1) on the shape with the continuos line,
or (2) as point B on the shape with the discontinuos one, rotated by ∆θ. (Image taken
from [8])

This Generalized Hough Transform, thanks to R-table system, allows to detect also
composed objects that are composed of more shapes using the R-tables of the basic shapes
of which is composed.

Therefore this object detection method has the following main properties:

• Scale changes, rotations and reference point translation of the shape S can be ac-
counted for by modi�cations to the R-table, that can be computed o�-line.

• Given the boundary of S its R-table can be easily constructed and requires a number
of operations proportional to the number of boundary points.

• Its accuracy depends on the rotation step ∆θ used to construct R-table and to the
translation step.

34 Object Detection

The concept described above is the basic concept of the Generalized Hough Transform
and the paper [8] explains some optimizations and incrementation strategies.

4.3.2 Use of Generalized Hough Transform in the earlier work of Pretto

et al.

For the sake of e�ciency, they limit the parameters space to scale and rotations around
z axis (so-called yaw), and 2D translations along the x (pitch) and y (roll) axis. This is
like assume that all objects are disposed on ideal planes, perpendicular to the camera axis,
since this assumption is constantly violated in a real world scenario, they take into account
rotations around x and y axes along the voting procedure, rotation anyway limited up to
±40◦ due to robot arm movement limitations.

Starting from the CAD model of searched object, they make a rasterization of the
template, a set of m points o1, . . . , om ∈ <3 in the object reference frame, along the related
discretized direction dir(oi),i = 1, . . . ,m.

Assuming that the possible minimum and maximum heights, distance from the cam-
era lens, are given as input parameters, from these are de�ned discretized distances that
represent the �rst dimension in the parameter space. For each height they de�ne a set of
t discretized rotations de�ned in the space of all the possible rotations around the camera
optical axis (object yaw). For each h distance and k rotation (that corresponds to a rota-
tion in the 3D Euclidean space), they de�ne a bi-dimensional accumulator A(p), p ∈ <2,
representing the 2D discretized translations along x, and y axis of the de�ned parameter
space. The scale, indicated by the h height considered, and the k rotation, can be rep-
resented as a rigid body transformation from the object frame to the camera frame, this
consist in the rotation transformation of the R-table of searched object.

The shape's raster boundary, rotated and scaled, will be projected on the image plane,
note that now instead to use binarized points of the image like in [8] they use edgelets
(straight segments that can be part of a longer, possibly, curved, line) given by the LSD.
These will be used to vote in the reduce parameters space represented by the accumulator
A(p). For each edgelet given by LSD they collect a set of n edgels {e1, . . . , en} ∈ <2 that
represent the edgelets pixels, expressed in normalized image coordinates, along with the
related edgelet discretized directions dir(ei) =, i, . . . , n. This is the main modi�cation they
made on the original Generalized Hough Transform and that leads the algorithm to be
faster in the detection stage.

For each ôh,ki , they select the subset:

Eh,ki :=
{
ej |dir(ei) = dir(ôh,ki)

}
where ôh,ki is a raster point that corresponds to the shape's boundary point at the h

height and rotated by a k 3D rotation, projected on the camera frame. The subset selected
corresponds to the edgelet with the direction alike to ôh,ki .

For each ej ∈ Eh,ki , the accumulator will be increased by an unity at the point:

p =
ej − ôh,ki
step

where ej is an edgel of the subset Eh,ki , and step is the translation de�ned for the
accumulator A and will a�ect the accuracy of the object phase detection.

In other words, if a raster point oi is projected on the image plane we obtain a point
where the image coordinates represent that displacement from the origin of the object.
Only the edgels ej with the same direction of ôh,ki can be matched with this point, so they

vote for an object 2D translation given by ej − ôh,ki . To improve the e�ciency all the
possible sets of rasterization (R-table) are computed o�-line.

4.4 Chamfer Matching For Objects Detection 35

In order to make more robust the algorithm they have employed an optimization pro-
cedure that estimates the position in the 3D space of searched object, by minimizing an
image-based cost function in a similar way to the one employed in this project and com-
mented in subsection 4.4.3.

4.4 Chamfer Matching For Objects Detection

Present section explains Standard Chamfer Matching [21] and its use in this project.

4.4.1 Chamfer Distance

Standard Chamfer Matching is a popular technique to �nd the best alignment between a
model rasterized and a query of edge map. Let U =

{
uj
}
, where i = 1, 2, . . . , |U |, be the

set of raster points of the object model, and let V = {vj}, where j = 1, 2, . . . , |V |, be the
set of edge pixels from the input image in which an edge operator has been applied. The
chamfer distance between the object model U and the template edge map V , originated by
the edge operator, is de�ned as the average over all pixels ui ∈ U of the distance between
ui and its nearest pixel in V :

dCM (U, V) =
1

n

∑
ui∈U

min
vj∈V
||ui − vj || (4.4.1)

where n is the number of template edge pixels, n =|U |.
Let W be a warping function de�ned on the image plane that projects the template

onto the camera frame and that is parametrized by s. For instance, ifW is a 2D Euclidean
transformation, then s ∈ SE(2) can be written as s = (θ, tx, ty), where tx and ty are
translations parallel to the x and y axes, respectively, and θ is the in-plane rotation angle.
Its action on each image point x ∈ <2 is given via the transformation

W (x; s) =

(
cos θ − sin θ
sin θ cos θ

)
x+

(
tx
ty

)
(4.4.2)

In other words, the object model is subjected to a transformation, through rotation and
translation matrices, that projects it onto the camera frame, later the algorithm computes
the chamfer distance in order to establish how well the projected object match the shape
in the image. Note that this step is applied in a binarized image, later to have su�ered the
edge operator.

The chamfer matching cost can be computed e�ciently using the distance transform

image

DTV (x) = min
vj∈V
||x− vj || (4.4.3)

which speci�es the distance from each pixel x in the distance transform image to the
nearest edge pixel in V . In Fig. 4.7 is illustrated the distance transform image of the usual
input image.

It is standard practice to truncate the distance transform to a value τ :

DT τV (x) = min(DTV (x), τ) (4.4.4)

so that missing edgels due to noisy edge detection, or for cluttered object, do not have too
a severe e�ect on chamfer distance calculation.

The distance transform can be computed in two steps over the image using dynamic
programming. Using the distance transform the cost function 4.4.1 can be evaluated in
linear time O(n) through:

36 Object Detection

Fig. 4.7: Distance Transform Image - Dark pixels correspond to edges or to points near
edges, while the white ones correspond to point far from edges.

dCM,τ (U, V) =
1

n

∑
ui∈U

DT τV (ui) (4.4.5)

Chamfer matching provides a fairly smooth measure of �tness and can tolerate small
rotation, misalignments, occlusions, and deformations. However, it becomes less reliable
in the presence of background clutter due to an increase in the proportion of false corre-
spondences. Note that this explanation has no considered rotations around x (pitch) and
y (roll) axis, in other words it supposed to have to detect objects on an ideal plane.

To extend the explanation to the 3D Euclidean space case is su�cient to consider s ∈
SE(3), which can be written as s = (γ, β, α, tx, ty, tz), where tx, ty and tz are translations
parallel to the x, y and z axes respectively, and α,β, γ are the in-space rotation angles
around z,y and x axes respectively. Considering a x̄ = (x0, y0, z0)T point in the 3D space,
the warping function W 4.4.2 can be rewritten as:

W (x; s) = Rx̄+

txty
tz

 (4.4.6)

where R is the 3D rotation matrix de�ned through the yaw, pitch and roll notation:

R = Rz(α)Ry(β)Rx(γ)

Rx(γ) =

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 , Ry(β) =

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

 , Rz(α) =

cosα − sinα 0
sinα cosα 0

0 0 1

4.4.2 Use of Line-Based Representation in Chamfer Matching

Exactly as in the Modi�ed Generalized Hough Transform, explained in subsection 4.3.2,
a line based representation has been used. This because it is a better representation
of the image, since it can take the edge noise o�, that would remain in a point-based
representation.

The rasterized model will be rotated and translated, projecting it on the camera frame,
through the warping function 4.4.6, in order to test all the possible positions that the robot
arm can handle. In the following explanation t = (tx, ty, tz) ∈ T, T = t1, t2, . . . , tmt refers
to a translation in the 3D Euclidean space along a set of possible translations admitted
T , while k = (α, β, γ) ∈ K,K = k1, k2, . . . , kmk refers to a rotation in the 3D Euclidean

4.4 Chamfer Matching For Objects Detection 37

space along a set of possible rotations admitted K. Translations and rotations are taken
into account in the alignment parameter s.

On the edge map V, consisting in edge points that make part of line segments, the
distance transform 4.4.4 is applied, where the eq. 4.4.3 can be written as:

DTV (ôt,ki) = min
ej∈V
||ôt,ki − ej || (4.4.7)

It evaluates the distance between the raster point ôt,ki and êj , the nearest point of the
line segments map V.

Then the chamfer distance can be easily evaluated in the following manner:

dCM,τ (W (U, s), V) =
1

n

∑
ôt,ki ∈U

DT τV (ôt,ki) (4.4.8)

Note that now V is seen as a set of edge points of line segments representing the input
image: V = ej where j = 1, 2, . . . , |V |.

4.4.3 Robust the chamfer distance

A simple use of the chamfer distance is, as it is explained before about Generalized Hough
Transform, using an array that takes into account the chamfer distance between the pro-
jected model and the input image, using the line-based representation, and the best matches
would be evaluated, with the scoring function, in order to understand if they are false pos-
itives or not.

This approach obviously su�ers of imprecision since the result depends widely on the
yaw, pitch and roll rotations steps as well as the translation steps. In order to make
the object detection more robust we �nd the set of variables, that in�uence the object
model rotations and translations, that minimize the cost function chamfer distance. This
is actually the most common way to use chamfer matching and in computer vision is really
common using this approach in order to minimize some objective functions.

Starting from a hypothetical position indicated by the alignment parameter s, that
considers a translation tx,y,z and a rotation ky,p,r, the algorithm looks into, a neighbour-
hood of the considered position, for the combination of translations and rotations, that is
to say alignment parameter ŝ = (γ̂, β̂, α̂, t̂x, t̂y, t̂z), that minimizes the chamfer distance.
Therefore ŝ is given by the argument of the minimum chamfer distance with a certain
rotation and translation:

ŝ = arg min
s∈SE(3)

dCM,τ (W (U, s), V) (4.4.9)

Rmin ≤ s ≤ Rmax

where W (U, s) = W (ui, s), i = i, 2, ..., |U | is the set of points of the object model rotated
by γ, β, α and translated by tx, ty, tz along x, y, z axe respectively, and Rmin and Rmax are
bounds of the trust region in which looking for ŝ.

In the implementation of the algorithm presented in this thesis actually any bound has
not been considered for the trust region, but they should be considered in a possible future
work, in order to be more precise and even faster.

This is a classic problem of non-linear optimization. To performance the algorithm
to minimize the chamfer distance the ceres-solver library [23] has been used. This is
an open source C++ library for modelling and solving large complicated non-linear least
squares problems. It is a feature rich, mature and performant library which has been used
in production since 2010.

38 Object Detection

In ceres library, a lot of di�erent ways to resolve non-linear optimization problems are
available. In this phase the DENSE SCHUR method has been used. This method is quite
fast since has O(p3) time complexity.

The algorithm that minimizes the chamfer distance gives a lot of false positives due to
the fact that sometimes the method does not converge so it must be stopped to a certain
value. Anyway the scoring function evaluates the resulting alignment parameter ŝ so false
detections are easily taken o�.

Fig. 4.8 illustrates a simple example of the optimization result and the use of scoring
function.

(a) (b)

Fig. 4.8: Optimizations and scoring: (a) illustrates the position of the projected template
(color red) that is tested, and with some optimizations the algorithm gives as hypothesis
(b), that later it is tested with the scoring function: the match showed in (b) has a score
of 0,828277 and it is considered as a valid one.

A further optimization, to reduce the execution time of the algorithm, consists of doing
the non-linear optimization only with initial hypothesis that have a chamfer distance below
to a certain threshold, in our tests a value of 8.0 showed to be the best value for this
threshold. It makes no sense making the optimization when the considered hypothesis is
quite far to match a real object.

4.5 Scoring

Since some of the selected hypothesis used as initial guess of the optimization may lead
to false positives, a scoring function has been used to allow discarding the outliers and
selecting the best matches.

The scoring function is actually the same used in [1] and is based on local image gradient

directions. Given ôt,ki the n raster points projected on the image plane, translated with a
t translation in the 3D Euclidean space and rotated with a k rotation in the 3D Euclidean
space, it is easy to compute their normal directions ndir(ô

t,k
i): in the case of a perfect

match, these normal directions should correspond to the local gradient directions Iθ(ô
t,k
i)

(up to a rotation of π radians), where Iθ is the gradient direction image. The scoring
function used is the following:

Ψ(W (U, s)) =
1

n

n∑
1

|cos(Iθ(ôt,ki)− ndir(ôt,ki))|

4.6 Tests 39

where W is the usual warping function 4.4.6 that projects template points U onto the
camera frame.

If there is not an edge point in the gradient image in the coordinates of ôt,ki , that is
to say that its gradient magnitude and direction is zero, the alignment considered for that
point is τ = 0.6, where alignment is cos(Iθ(ôi)− ndir(ôi)).

The scoring function can take values from 0 to 1, where 1 represents a perfect match.
In experiments made by Pretto et al, and also in the ones made in this project, all good
matches (in-layers) obtain a score greater than 0.8. So all matches with a score minor than
this threshold are discarded, since they could be false positives or real objects partially
occluded. In the case of real objects partially occluded discarding them will not be a
problem since the algorithm will be iterated once all good matches �nd has been grasped
by the robot arm. A simple use of the scoring function is illustrated in Fig. 4.8.

4.6 Tests

Di�erent rotation steps around the camera axis have been tested in order to get the best
rotation step accordingly to the re�nement procedure. In fact, as the reported tests show,
we obtain di�erent results considering di�erent rotation steps. Only the yaw rotation,
around the camera axis, has been considered; in fact, the optimization procedure can
detect even object rotated around x and y axes. Moreover, with planar objects the sloops
that we can encounter are small, and the optimization can �nd them with no problems.
The translation step considered, along x and y axes is equal to 1 centimetre, along the z
axis it is equal to 10 centimetre, and the rasterization step of the CAD model is equal to
2 millimetres.

Two di�erent scenes with two di�erent models have been tested. Moreover, more tests
have been made with di�erent yaw rotation steps in order to show how detection control
changes. Note that some impossible objects are detected, these outliers can be easily
discarded checking pitch and roll rotations.

The algorithm gives as output the best matches, therefore di�erent matches (di�erent
positions) can correspond to the same object. It can be easily resolved considering the
best match in a neighbourhood of each detected match.

Tests The �rsts tests have been made on the input image 4.9(a), looking for the
object 4.9(b).

(a) (b)

Fig. 4.9: Inputs of the �rst test.

The algorithm looks for the objects that are far away from the camera lens, from 1
meter up to 1.2 meters, and it looks for them over all the image with a translation pitch

40 Object Detection

of 10 centimetres along camera axis and with a pitch of 1 centimetre along x and y axes.
We have considered di�erent rotations around the camera axis for each test, considering
only two rotations around y axis, it means that we look for the object with the initial
orientation and later with a rotation of π around y axis. Fig. 4.10 and Tab. 4.2 show the
results (the coloured objects are the good matches), with the commented con�guration
and with di�erent yaw steps considered.

(a) ∆yaw = 2π/12 (b) ∆yaw = 2π/18

(c) ∆yaw = 2π/36

Fig. 4.10: Results of the �rst test with the inputs of Fig. 4.9.

Tab. 4.2: Results of the tests shown in Fig. 4.10.

Image Yaw step Elapsed time Number of matches

a 2π/12 88.53 88
b 2π/18 137.988 121
c 2π/36 279.375 212

Notice that the algorithm detects the best matches, so more matches can correspond
to the same object. In fact, in the test Fig. 4.10(c) 212 matches are detected but actually
these correspond to 9 objects.

More tests have been made in the input image Fig. 4.11 looking for the object 4.11(b),
with the same parameters setting.

In this case we can notice that testing more yaws doesn't lead to improvements about
precision, and it makes the object detection slower.

In order to have a robust and fast object detection, rotations and translation limits have

4.6 Tests 41

(a) (b)

Fig. 4.11: Inputs of the second test.

(a) ∆yaw = 2π/12 (b) ∆yaw = 2π/18

(c) ∆yaw = 2π/36

Fig. 4.12: Results of the second test with the inputs of Fig. 4.11.

Tab. 4.3: Results of the tests shown in Fig. 4.12.

Image Yaw step Elapsed time Number of matches

a 2π/12 11.376 5
b 2π/18 18.38 6
c 2π/36 36.277 6

42 Object Detection

to be tuned accordingly with the environment conditions and with the searched objects.
In particular, the choice of the limits for the translation along camera axis has to be based
on the robot cell in which this algorithm will be used.

It is easy to understand that elapsed times are too long for a practical use because these
elapsed times refer to a dual-core machine. For a practical implementation, a multi-core
processor with more cores will be used. Today a lot of architectures based on multi-core
processors are available with a lot of cores (8-10 cores). These multi-core processors
can run di�erent parts of the same program simultaneously, making the execution faster,
proportionally to the number of cores. Therefore, supposing to use a processor with 10
cores, the elapsed time in the case showed in Fig. 4.10(b) would be ≈ 137.99

5 ≈ 27.6 seconds.

Chapter 5

Future Improvements

The use of the standard chamfer distance actually does not lead improvements compared
to Generalized Hough Transform, used in [1]. But in the work documented in the paper
[9] a new algorithm is explained, it is based on the standard chamfer distance with some
important improvements. Actually at the beginning of this project the main goal was to
perform this algorithm, but for sake of time it could not be possible. Therefore this section
will comment the improvements that should be applied to the standard chamfer matching
in order to get a more robust and faster algorithm for the object detection.

Oriented Chamfer Matching To improve the robustness of chamfer matching,
Shotton et al [2] presented a new method in order to exploit edge orientation information.

In their work chamfer matching is augmented with an additional cost for orientation
mismatch, which is given by the average di�erence in orientations between template edges
ui and their nearest edge point in the query image V . This method is known as oriented
chamfer matching (OCM). The cost for orientation mismatch is given as:

dorient(W (U, s), V) =
2

π|U |
∑
ui∈U
|φ(ui)− φ(ADTV (ui))| (5.0.1)

where the function ADTV (x) computes the argument distance transform (ADT) which
gives the locations of the closest points to x in V , and is de�ned as:

ADTV (x) = arg min
vj∈V

||x− vj ||

The function φ(x) gives the orientation of edgel x, with a modulo π, and |φ(x1)−φ(x2)|
gives the smallest circular di�erence between φ(x1) and φ(x2).

Edgels are taken modulo π because, for edgels on the outline of an object the sign of the
edgel gradient is not a reliable signal since it depends on the intensity of the background.
The normalization by π

2 ensures that dorient(W (U, s), V) ∈ [0, 1]. The OCM distance is
graphically illustrated in Fig. 5.1. The improved matching scheme, called oriented chamfer

matching (OCM), uses a simple linear interpolation between the distance and orientation
terms:

dλ(W (U, s), V) = (1− λ) · dCM,τ (W (U, s), V) + λ · dorient(W (U, s), V) (5.0.2)

with orientation speci�city parameter λ that depends on the contour fragment.

Since each chamfer distance 5.0.1 and 4.4.5 represents an empirical average, one does
not need to perform the sums for all discretized points of boundary but over only a fraction
of the edgels, adjusting the normalization accordingly. This is an approximation that makes
the algorithm quite faster and the precision decreases only a few. With tests Shotton et
al. have showed that even matching only 20% of edgels there is no a decrease in detection
performance. This actually just a�ects the rasterization pitch.

Directional Chamfer Matching In the paper [9] Liu et al. have improved OCM
in order to get an object detection more robust to clutter, missing edges, and small mis-
alignments, proposing a matching cost function, called Directional Chamfer Distance, that

43

44 Future Improvements

Fig. 5.1: Oriented chamfer matching: For edgel x1 of the template, the contribution to
the OCM distance is determined by the distance d from x1 to the nearest edgel x2 in edge
map, and the di�erence between the edgel gradients,|φ(x1) − φ(x2)| . (Image taken from
[2])

is a smooth function of both the translation (tx, ty) and the rotation (θ) of the template
pose.

Each edge pixel x is augmented with a direction term, φ(x), and the directional chamfer
matching score (DCM) is given by

dDCM (W (U, s), V) =
1

n

∑
ui∈U

min
vj∈V

(||ui − vj ||+λ||φ(ui)− φ(vj)||π) (5.0.3)

where the parameter λ, is a weighting factor between the location and orientation terms.
To compute the direction term, they �t line segments to the edge points, as later will be
said, and φ(x) is the orientation of the line segment associated with point x. Note that
the directions are written modulo π: 0 ≤ φ(x) < π, and the orientation error is de�ned as
the minimum circular di�erence between the two directions:

||φ(x1)− φ(x2)||π= min
{
|φ(x1)− φ(x2)|, ||φ(x1)− φ(x2)| − π|

}
(5.0.4)

Fig. 5.2: Matching cost for an edge point. (a) OCM. (b) DCM. Whereas in OCM the
location error is augmented with the orientation di�erence from nearest edge point, DCM
jointly minimizes location and orientation errors. (Image taken from [9])

The working philosophies of method OCM and new method DCM are illustrated in
Fig. 5.2.

The computational complexity of existing chamfer matching algorithms is linear in the
number of template edge points. Although DCM includes an additional direction term it
computes the exact DCM score with sub-linear complexity.

45

Three-Dimensional Distance Transform The matching score given in eq. 5.0.3
requires �nding the minimum matching cost over location and orientation terms for each
template edge point, therefore, its computational e�ort is quadratic in the number of
template and query image edge points. Liu et al. [9] presented a three-dimensional distance
transform representation in order to reduce computing complexity, of the matching cost,
to linear time.

This representation is a three dimensional tensor in which the �rst two dimensions are
the locations in the image plane and the third dimension belongs to a discrete set of edge
orientations. Moreover the edge orientation is quantized into q discrete channels, Φ̂ =
{φ̂i}, i = 1, 2, . . . , q, which divide the range [0, π). Each element x of the object template
encodes the minimum distance to an edge point in the joint location and orientation space:

DT3V (x, φ(x)) = min
vj∈V

(||x− vj ||+ λ||φ̂(x)− φ̂(vj)||π) (5.0.5)

where φ̂(x) is the nearest quantization level in the orientation space Φ̂ to the edge
orientation φ(x). In order to compute the DT3V tensor in O(q) passes, equation 5.0.5 can
be rewritten as:

DT3V (x, φ(x)) = min
φ̂i∈Φ̂

(DT
V {φ̂i} + λ||φ̂(x)− φ̂(i)||π) (5.0.6)

where DT
V {φ̂i} is the two dimensional distance transform of the edge points in V

that have edge orientation φ̂i. First they compute q two-dimensional distance transforms
DT

V {φ̂i}, which requires O(q) passes over the image using the standard distance transform

algorithm [24].

Subsequently, the DT3V 5.0.6 tensor is computed by using a second dynamic program
for each image pixel separately. The tensor is initialized with the two dimensional distance
transform, DT3V (x, φ̂i) = DT

V {φ̂i}(x), and is updated with some recursions.

The values of tensor entries continue to be updated in a circular form until the value
for a tensor entry is not changed. Theses recursion are executed in linear time and their
worst computational time cost is O(q) passes over the image. Using DT3V , the directional
chamfer matching score of the template U can be computed as:

dDCM (W (U, s), V) =
1

n

∑
ui∈U

DT3V (ui, φ̂(ui)) (5.0.7)

where the complexity is linear in n, the number of edge points in U.

Line-Based Representation Using a line-based representation the distance chamfer
matching score 5.0.7 can be rewritten in order to use this representation.

Let l[x1,x2] represents the line segment in the image plane connecting pixel x1 and x2.
Let LU = {l[sj ,ej]}, j = 1, . . . ,m, be the line-based representation of template edge points
U , where sj and ej are the start and end locations of the jth line segment respectively.

Assuming that the line segment directions are restricted to q discrete channels Φ̂, which is
enforced in the line-based representation .

Since the edge points in a line segment all have the same orientation, which is the
orientation φ̂(l[sj ,ej]) of their line segment l[sj ,ej], the directional chamfer matching score
5.0.7 can be rewritten as:

dDCM (W (U, s), V) =
1

n

∑
lj∈LU

∑
ui∈lj

DT3V (ui, φ̂(lj)) (5.0.8)

46 Future Improvements

where lj refers to line segment l[sj ,ej]. In this case V refers to all edge pixels that
make part of a line segment, and the DT3V will consider only segments with the same
orientation of the ui raster point considered.

Distance Transform Tensor Moreover Liu et al. even use the integral image
concept that can be used for fast calculation of regions sums and linear sums, leading the
algorithm to have a complexity linear to the number of line segments. They presented an
integral distance transform representation IDT3V to evaluate the summation of costs over
any line segment in O(1) operations.

Let x0 be the intersection of an image boundary with the line that passes through x
and has direction φ̂i. Each entry of the IDT3V tensor is given by

IDT3V (x, φ̂i) =
∑

xj∈l[x0,x]

DT3V (xj , φ̂i)

The IDT3V tensor can be computed in one pass over the DT3V tensor. Using this
representation the directional chamfer matching score of any template U can be compute
in O(m) operations via

dDCM (W (U, s), V) =
1

n

∑
l[sj ,ej]∈LU

IDT3V (ej , φ̂(l[sj ,ej])− IDT3V (sj , φ̂(l[sj ,ej])

Moreover, they presented a search optimization that leads the algorithm to ignore some
hypothesis that wouldn't lead to a detection, and therefore their algorithm has a sub-linear
complexity.

Evidences of the Work of Lieu et al. The results of their work show how the
distance chamfer matching cost function they proposed is a sub-linear function of the
number of template points. Moreover only a part of the template line segments can be
considered for the matching and not all template line segments. Recapitulating, they
present an algorithm that is an evolution of the oriented chamfer matching (OCM), it
is really reliable and precise for object detection and has a sub-linear complexity. These
bene�ts make this path a good improvement to follow to improve the work presented in
this thesis in order to get a more precise and faster Bin-Picking system.

Conclusions

This Project presents an algorithm for the object detection of planar objects for Bin-
Picking systems. The algorithm can recognize objects, even if they are sloping, using only
a 2D industrial camera.

The algorithm takes as inputs the photo of the bin where it has to look for the objects,
and the object's CAD template.

It gives as outputs all the good matches, some of which could correspond to impossible
positions. These impossible matches, given as outputs, can be easily discarded checking
the roll and the pitch. Moreover, since more matches could correspond to the same object,
they can be easily discarded considering the best match in a neighbourhood of the position
of each match.

Therefore, the presented algorithm can robustly localize planar objects. But some
parameters, such as the translation and rotations step and their limits, have to be tuned
accordingly to the robot arm, the searched object and the wanted robustness.

This algorithm is not faster than the algorithm presented by Pretto et al. [1], but any-
way it's a good starting point for the implementation of the new improvements presented
by Shotton et al. [2] and Liu et al. [9]; improvements that are brie�y commented in the
chapter 5, which make the algorithm faster and more robust.

47

Thanksgiving

Desidero ringraziare il prof. Pagello per aver accettato di farmi da relatore, e in partico-
lar modo desidero ringraziare il prof. Alberto Pretto che mi ha proposto la tesi, mi ha
aiutato nella implementazione del codice per tutto il corso del lavoro, risolvendomi dubbi
concettuali e introducendomi nel mondo della computer vision.

Desidero ringraziare i miei genitori che mi hanno seguito nel percorso dei tre anni
aiutandomi e sostenendomi sempre con fermezza e permettendomi di fare esperienze di cui
faró sempre tesoro.

I miei fratelli Gloria e Daniele, i miei nonni, mio zio Onorino, e tutti i miei amici che
mi hanno sempre accompagnato nel mio percorso di studi �no ad oggi.

Quiero también agradecer a todos mis amigos de Ferrol que he conocido en mi instancia
Erasmus, con los cuales viví uno de los meses mas bonitos de mi vida. Y también a mis
companeros de piso en Barcellona que en las ultimas dos semanas tuvieron que aguantar
a mis preocupaciones y ayudarme con mi inglés.

49

Bibliography

[1] A. Pretto, S. Tonello, and E. Menegatti, �Flexible 3d localization of planar objects
for industrial bin-picking with monocamera vision system,� in Proc. of: IEEE Inter-

national Conference on Automation Science and Engineering (CASE), 2013, pp. 168
� 175.

[2] J. Shotton, A. Blake, and R. Cipolla, �Robust detection of lines using the progressive
probabilistic hough transform,� IEEE Trans. Pattern Analysis and Machine Intelli-

gence, 2008.

[3] P. E. Debevec and J. Malik, �Recovering high dynamic range radiance maps from pho-
tographs, university of california at berkeley,� in The 24th International Conference

on Computer Graphics and Interactive Techniques, 1997, pp. 369�378.

[4] Gamma correction, http://en.wikipedia.org/wiki/Gamma_correction, available on
5/09/14.

[5] R. G. von Gioi , J. Jakubowicz, J. M. Morel, and G.Randall, �Lsd: a line segment
detector,� Image Processing On Line, no. 2, pp. 35�55, 2012.

[6] ELSD (Ellipse and Line Segment Detector), http://ubee.enseeiht.fr/vision/ELSD/,
available on 5/09/14.

[7] Camera Calibration Toolbox for Matlab, http://www.vision.caltech.edu/bouguetj/calib_doc,
available on 24/08/14.

[8] D. H. Ballard, �Generalizing the hough transform to detect arbitrary shapes,� Pattern
Recognition, vol. 13, no. 2, pp. 111�122, 1981.

[9] M.-Y. Liu, O. Tuzel, A. Veeraraghavan, Y. Taguchi, T. K. Marks, and R. Chellappa,
�Fast object localization and pose estimation in heavy clutter for robotic bin picking,�
I. J. Robotic Res., pp. 951�973, 2012.

[10] OpenCV, http://opencv.org/, available on 31/08/14.

[11] F. Durand and J. Dorsey, �Fast bilateral �ltering for the display of high-dynamic-range
images,� 2002.

[12] R. G. von Gioi , J. Jakubowicz, J.M. Morel, and G. Randall, �Lsd: A fast line segment
detector with a false detection control,� IEEE Trans. Pattern Analysis and Machine

Intelligence, vol. 32, no. 4, 2010.

[13] T. Mertens, J. Kautz and F. Van Reeth, �Exposure fusion,� Proceedings of the 15th

Paci�c Conference on Computer Graphics and Applications, pp. 382�390, 2007.

[14] P.J. Burt and E. H. Adelson, �The laplacian pyramid as a compact image code,� IEEE
TRANSACTIONS ON COMMUNICATIONS, vol. 78, no. 14, 1983.

[15] OpenMP, http://openmp.org/wp/, available on 24/08/14.

[16] J. Canny, �A computational approach to edge detection,� IEEE Trans. Pattern Anal-

ysis and Machine Intelligence, vol. 8, no. 6, pp. 679�698, 1986.

[17] A. Etemadi, �Extracting straight lines,� IEEE Trans. Pattern Analysis and Machine

Intelligence, 1996.

51

52 BIBLIOGRAPHY

[18] J. B. Burns, A. R. Hanson, and E. M. Riseman, �Robust segmentation of edge data,�
Proc. Int'l Conf. Image Processing and Its Applications, pp. 311�314, 1992.

[19] J. Matas, C. Galambos, and J. Kittler, �Robust detection of lines using the progressive
probabilistic hough transform,� Computer Vision and Image Understanding, vol. 78,
no. 1, pp. 311�314, 2000.

[20] A. Desolneux, L. Moisan, and J.M. Morel, From Gestalt Theory to Image Analysis, A

Probabilistic Approach. Springer, 2008.

[21] H. G. Barrow, J. M. Tenenbaum, R. C. Bolles, and H.C. Wolf, �Parametric corre-
spondence and chamfer matching: Two new techniques for image matching,� SRI

International, Menlo Park, California, 1977.

[22] Z. Zhang, �A �exible new technique for camera calibration,� IEEE Transactions on

Pattern Analysis and Machine Intelligence, pp. 1330�1334, 2000.

[23] Ceres-solver, http://ceres-solver.org/, available on 31/08/14.

[24] P. Felzenszwalb and D. Huttenlocher, �Distance transforms of sampled functions,�
Technical Report TR2004-1963, Cornell Computing and Information Science.

[25] Sobel Edge Detector, http://homepages.inf.ed.ac.uk/rbf/HIPR2/sobel.htm, available
on 24/08/14.

Appendix A

Image Gradient

In mathematics, the gradient is a generalization of the usual concept of derivative to the
functions of several variables. If f(x1, . . . , xn) is a di�erentiable, scalar-valued function of
several variables, its gradient is the vector whose components are the n partial derivatives
of f . It is thus a vector-valued function.

The gradient represents the slope of the tangent of the graph of the function. More
precisely, the gradient points in the direction of the greatest rate of increase of the function
and its magnitude is the slope of the graph in that direction. The components of the
gradient in coordinates are the coe�cients of the variables in the equation of the tangent
space to the graph.

Speaking about 2D images, the function of interest is the discrete function of the
intensity of the 2D image I(x, y) that could take di�erent values on di�erent pixels.

The gradient of an image measures how the image intensity is changing, and has two
types of information:

• the gradient magnitude: measures how quickly the intensity is changing

• the gradient direction: measures the direction of this change

To illustrate this, think of an image as like a terrain, in which at each point given a
height, rather than an intensity. For any point in the terrain, the direction of the gradient
would be the direction uphill. The magnitude of the gradient would means how rapidly
hill height increases.

To �gure out how is possible to calculate the gradient consider a 1D image, when there
is a change of intensity between two pixels, one pixel has another value from the pixel
before considered, for example for the presence of a edge, the case is, on a quality level,
like the �gure Fig. A.1.

Fig. A.1: Example of pixels intensity on a 1D image. (Image taken from [10])

On the edge there is a changing of the intensity, and correspond to the point where the
sloping of the function reaches his maximum value, that is the point where the derivative
of image intensity has a maximum, as showed in the �gure Fig. A.2.

Therefore for 2D images the gradient could be calculated from partial derivatives of
the intensity of pixel along x and y directions. The gradient could be represented by a
vector, his length provides the magnitude while his direction provides gradient direction.
Since the gradient measures how fast the pixels intensity of an image changes along x and

53

54 Image Gradient

Fig. A.2: Derivate of the intensity function of an 1D image. (Image taken from [10])

y coordinates, and since where are working on 2D images, it can be represented using the
derivatives of the pixels values along x and y axis:

∇I = (
δI

δx
,
δI

δy
) (A.0.1)

The partial derivative δI
δx along x directions determines how fast the intensity is chang-

ing along x direction. In the discrete case, we can only take di�erences at one pixel
intervals. So the partial derivative could be calculated with the di�erence between I(x, y)
and the pixel before it, or the one after it, but there are more e�cient methods to cal-
culate partial derivatives in discrete cases, like Sobel derivatives [25], that considers the
in�uence of all pixel nearby the considered one. The Sobel operator performs a 2D spatial
gradient measurement on an image and so emphasizes regions of high spatial frequency
that correspond to edges. Typically it is used to �nd the approximate absolute gradient
magnitude at each point in an input gray-scale image. The operator consists of a pair of
33 convolution kernels, one for each direction, note that the kernel for the y direction is
the same for the x direction but rotated by 90, the convolutions kernels are here reported:

Gx =

−1 0 +1
−2 0 +2
−1 0 +1

Gy =

+1 +2 +1
0 0 0
−1 −2 −1

The kernels can be applied separately to the input image, to produce separate mea-

surements of the gradient component in each orientation. Then these can be combined
together to �nd the absolute magnitude of the gradient at each point and the orientation
of that gradient. The gradient magnitude is given by:

|G| =
√
G2
x +G2

y

Typically, an approximate magnitude is computed using:

|G| = |Gx|+ |Gy|

That is much faster to compute and the approximation is not bad.
The gradient orientation (relative to the pixel grid) is given by:

θ = arctan(
Gy
Gx

)

55

Sobel operator involves a grater computational e�ort than others operators, but has
the great bene�t that its larger convolution kernel smooths the input image to a greater
extent and so makes the operator less sensitive to noise.

This gradient has a fundamental importance on edge detection because, since the most
human-made objects have �at surfaces and on these surfaces pixels intensity does not
change higly.

Image a mono-coloured object for manufacturing, like the one in Fig. A.3, pixels cor-
responding to edges have a high gradient magnitude and the gradient orientation has an
orthogonal orientation in respect to edge, these data can be used to represent a line.

Fig. A.3: Image representing a generic component on the left and the result of Sobel
operator on that image on the rigth.

Gradient magnitude, but overall, gradient orientation are fundamental parameters for
line segment detection as explained in chapter 3.

The presented Sobel operator has only one of the several gradients operators, but one
of the most common, another operator really common that work in a way almost alike
Sobel operator but with more complicated kernels is the Scharr operator.

	Abstract
	Contents
	List of Figures
	Introduction
	High Dynamic Range and Tonemapping
	Introduction
	Image Aquisition
	Algorithm
	Debevec and Tone Mapping
	Merge Mertens

	Tests

	Line Segments Detection
	Introduction
	Line-Based Representation
	Line Segment Detector
	LSD - Standard Parameters and Settings
	LSD in OpenCv

	Object Detection
	Introduction
	Camera Calibration
	Generalized Hough Transform For Object Detection
	The Algorithm in Brief
	Use of Generalized Hough Transform in the earlier work of Pretto et al.

	Chamfer Matching For Objects Detection
	Chamfer Distance
	Use of Line-Based Representation in Chamfer Matching
	Robust the chamfer distance

	Scoring
	Tests

	Future Improvements
	Conclusions
	Thanksgiving
	Bibliography
	Image Gradient

