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“Computers are incredibly fast, accurate, and stupid.
Human beings are incredibly slow, inaccurate, and brilliant.

Together they are powerful beyond imagination.”

– Albert Einstein –





Abstract

Teleoperation of manipulator robots with RGB-D sensors is now mainly done
using inverse kinematics techniques. In this work, we developed an intuitive way
to teleoperate a Comau industrial robot by means of a Microsoft Kinect device,
in order to control directly the manipulator joints by retargeting specific human
motion. In this way the human operator has the full control of robot move-
ments with practically no training, because of the intuitivity of this teleoperation
method.
The motion remapping into the robot joints has been done by computing angles
between vectors built from positions of human joints.
The system developed in this work to fullfil the teleoperation task exploits Robot
Operating System (ROS) framework and the Comau C5G Open architecture. In
this way, we obtained a very modular system that allows developers to change ei-
ther the tracking sensor or the robot model with some small changes. Finally, the
developed teleoperation system has been successfully tested on two real Comau
robots, revealing to be fast and strongly reliable.
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Chapter 1
Introduction

Teleoperation is a technique that allows human operator to move and to program
a robot by simply controlling it from a certain distance. This technique is used
to move robots particularly in dangerous environments and tasks, such as bombs
dismantling, exploring human inaccessible sites, maintenance of nuclear facilities,
underwater operations, etc. Moreover, teleoperation can be also used for robot
offline programming, allowing a human operator to save a lot of time.
Teleoperation tasks can use both trivial (e.g. joysticks, keyboards, etc.), but also
more complicated human machine interfaces, such as vision-based interfaces. The
first ones are less intuitive to use with respect to the second ones, in fact they
require some training to the human operator in order to be used properly and
efficiently. The vision-based teleoperation, instead, is generally more intuitive
and easier to use. In fact, it finds applications in particular for the programming
of more complex robots with an high number of degrees of freedom (DoFs), such
as the humanoid robots [3]. Nevertheless, recently, these techniques have been
applied also to industrial manipulator robots, in order to move and program them
more easily and intuitively [4,5]. Vision-based teleoperation can be of two types,
marker-based or markerless: the first is more uncomfortable because it requires
to the operator to wear additional clothes, while the second is more complex to
develop, because human keypoints must be estimated via software.

In this master thesis work, we will present a technique that allows to tele-
operate a manipulator robot with a markerless vision-based system, by using
in particular a RGB-D sensor. The sensor chosen for this work is a Microsoft
Kinect, that is a very cheap and powerful RGB-D sensor, which allows to track
human movements without using any kind of uncomfortable marker. Moreover,
Microsoft Kinect has a large developer community, which implies the existence
of many already implemented software packages to work with.
The implementation of the whole system has been made the more modular as
possible. At this purpose, Robot Operating System (ROS) middleware has been

1



2 Chapter 1. Introduction

Figure 1.1: Comau manipulator robots on a assembly line.

used as framework to connect the developed modules one to each other. The de-
velopment approach adopted allows developers to change almost effortlessly both
the sensor and the robot model used for this work.
ROS middleware is spreading even more in both academic and industrial envi-
ronments. While for the first, ROS has a great potential allowing to test new
algorithms on robot on high level programming; for the second it is seen as a
platform that allows to program industrial manipulator robots in order to create
complex applications for their customers in less time.
This master thesis work has been done in collaboration with Comau Robotics
R&D department, which has provided a wide support about the C5G Open ar-
chitecture used for the teleoperation on real Comau robots. Thanks to this col-
laboration we were able to test the developed system in both virtual and real
environment. Gazebo has been used as simulator through an accurate modeliza-
tion of kinematic and dynamic characteristics of a Comau Smart5 SiX, the robot
mainly used during this work.

Comau S.p.A. is one of the most important manufacturer of manipulator
robots in the world. Its headquarter is located in Grugliasco, near Turin. Comau
produces a wide range of manipulator robots with different characteristics, which
go from robots with a small payload (a few kilograms) to ones with a heavy pay-
load (hundreds of kilograms).

This master thesis work is organized as follows:

• on Chapter 2 we introduce the state of the art for robot teleoperation,
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describing its applications on both humanoid and manipulator robots;

• on Chapter 3 we present all the hardware and the software used in order to
implement a working system which can manage the teleoperation of Comau
manipulator robots;

• on Chapter 4 we describe how the whole system has been designed and how
the teleoperation algorithm works;

• on Chapter 5 are reported conclusions and future works aimed to improve
the system developed so far.
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Chapter 2
State of the Art

In this Chapter we introduce different approaches for robot vision-based teleop-
eration already applied in literature. We start by presenting humanoids teleop-
eration that takes advantage of similarities between human and robot. Then, we
describe most important techniques used so far to teleoperate industrial manip-
ulator robots.

2.1 Robots Teleoperation

Robots teleoperation is an already consolidated technique used to move a robot in
a dynamic or a dangerous environment, which requires human intelligence for the
decision making on how to control the robot. Some examples of its application
are: dismantling bombs, maintenance of nuclear facilities, exploring inaccessible
sites in rescue, mining.
Also the choice of the human-machine interface is important in order to move the
robot in an intuitive and natural way. In fact, some of the most known and used
interfaces are: dials, joysticks, computer mouse and computer GUI. Anyway, all
these interfaces could be not so intuitive to use for human operators, and they
may require some training skills in order to teleoperate the robot efficiently. Nev-
ertheless, exist also vision-based interfaces which are usually more natural and
intuitive for a human operator, allowing to do more complex movements in less
time.
In the next sections, we describe some important results obtained using teleop-
eration techniques for both humanoid and industrial manipulator robots.

5



6 Chapter 2. State of the Art

2.1.1 Teleoperation of Humanoid Robots

Transferring motion from a human demonstrator1 into humanoid robots is a stud-
ied topic since long time. This imitation based learning process aims to simplify
the complex and time consuming manual programming of a humanoid robot, by
simply recording the movements of an expert teacher. One of the most diffi-
cult things to deal with in retargeting algorithms are the differences in topology,
anthropometry, joint limits and degrees of freedom between the human demon-
strator and the robot. Other requests for the retargeting problem with humanoids
are balance constraints and interactivity in dynamically changing environments,
including self collision avoidance.
Nowadays, exist several off-line solutions has been developed using both markers
and markerless techniques. The former methods record information from markers
placed on an human actor performing a task. The latter ones are more complex
and they are able to extract motion directly from video (2D or 3D) data, with
no needs of any type of marker.

In [3], authors presented an online solution considering joints limit, joints
velocity and self-collision constraints in a control theoretic retargeting of the
robot joint motion. The algorithm acquires the motion of a human actor using
only a depth sensor and then it retargets the movements on the Honda ASIMO
humanoid robot2 (Figure 2.1).

Figure 2.1: Two photos of the humanoid robot Honda ASIMO. On the left
image, the robot is going up the stairs, while on the right image it
is opening a bottle.

We now describe more in detail the algorithm pipeline developed in [3]:

1. Data acquisition: the algorithm use as input a depth image stream, ob-
tainable by using active or passive stereo or time of flight3 sensors providing

1it is also called retargeting
2Honda ASIMO (2014 version) is a humanoid robot with 57 degrees of freedom, it is 130

cm tall and it weighs 55 kg. Official website: http://asimo.honda.com/
3A time of flight sensor acquires a depth image by measuring the time that takes an emitted

light signal to return back

http://asimo.honda.com/
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a point cloud of the human actor. In particular, for the image acquisition,
has been used a Swiss Ranger-SR 3000.

2. Key-Point detection: from the depth images, the next step is to detect
the 8 key-points of the upper body of the person, which correspond to 3D
position vectors of: waist joint, 2 shoulder joints, 2 elbow joints, 2 wrist
joints and the head center. (figure 2.2)

Figure 2.2: The 8 Key-Points used for the Dariush et al. retargeting algorithm

The key point detector is based on a Bayesian framework which uses both
spatial context and temporal information to detect limbs and self occlusion
of the body.

3. Scaling, Filtering and Interpolation: Once the key-points are acquired
from the depth image, they are scaled to the robot dimensions, then fil-
tered using a low-pass filter and interpolated. After these operations, it is
obtained a position vector representing a descriptor on the robot model.

4. Retargeting: this phase is a local constrained optimization problem. In
fact, before sending the motion to the robot, the difference between the
Cartesian position of the reference and the descriptors must be minimized,
also taking into account the robot kinematic constraints, such as joint po-
sition and speed limits and self collisions.

Similar approaches have been used also in [6–8] by using different sensors or
robots. In some cases, like [6, 7], the method adopted uses a skeletal tracking
technique starting from RGB-D data. While in [8] the robot stability has also
been involved in the control loop.

In all the described works, the user is able to easily control a single part of
the robot by moving a specific part of his body and this is a very important
characteristic of the system.
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2.1.2 Teleoperation of Manipulator Robots

Some vision-based teleoperation techniques have been applied also to industrial
manipulator robots. The problem of retargeting the joints movements of a hu-
man actor onto the joints of a manipulator is, in a certain way, more difficult than
the retargeting problem applied on humanoids. This is because, while humanoid
robot movements resemble the human ones, the motion of a manipulator robot is
designed for industrial tasks and it has a more limitations due to a lower number
of Degrees of Freedom (DoFs), usually 6, and and it is fixed on a platform on the
ground.
In this Section we describe some techniques developed to retarget movements
from a human operator to a manipulator robot, presented in [4] and [5].

In [4], a marker based vision interface has been proposed, where a stereo cam-
era system tracks three markers disposed on the right hand of a human operator,
respectively on the wrist, on the thumb and on the index finger. The acquired
2D coordinates of these points are then remapped in a 3D environment and then
retargeted in real-time to the end-effector of a 6 DoFs manipulator robot. During
the teleoperation, the human operator has a visual feedback of the robot motion
thanks to a set of cameras pointed on the robot.

Figure 2.3: In the image we can see the human operator hand with 3 white
markers and, nearby, the Cartesian reference frame used to calcu-
late the yaw-pitch-roll angles.

The 4 points used for the retargeting are given by the 3 markers: wrist (W),
thumb (T), the index finger (I), plus the midpoint (M) between thumb and index.
Given these points, the rotation angles yaw, pitch and roll are computed from the
directions of the vectors vWM and wTI , respect to the reference frame (represented
in figure 2.3), in the next way:
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αyaw = arctan

(
M0y

M0x

)
(2.1)

βpitch = arctan

 M0z√
M2

0x +M2
0y

 (2.2)

γroll = arctan

(
I2z − T2z
I2y − T2y

)
(2.3)

where:

• M0x, M0y and M0z are respectively the projection vectors of the point M
on the axes of the initial Cartesian reference system;

• I2y, T2y and I2z, T2z are the projection points of the markers I and T re-
spectively on the y and z axes, both on the reference frame obtained after
applying αyaw and βpitch rotations.

The orientation of the end-effector on the teleoperated robot is computed by ap-
plying the three rotation angles obtained by the orientation of the operator hand
in the above order. Moreover, the translations of the end-effector along the 3 axes
are calculated from the translations of the markers with respect to their starting
position.

In [5], instead, the authors have developed a vision system based on the use
of Microsoft Kinect as a tracking sensor for human arms, in order to teleoperate
the manipulator robot used for the gripping task. The implementation is based
on ROS in order to obtain a modular system and integrate the OpenNI package
to get human joints positions from the Kinect sensor.
In this work, the operator has to use both arms to control position, orientation
of the robot end-effector as well as the opening and closure of the gripper, since
OpenNI tracker cannot achieve any type of information regarding hands orienta-
tion or gesturing.
A ROS node saves the initial position of both operator hands and end-effector
once the teleoperation starts. The difference between the initial and the current
positions of the right hand is used to calculate the position to be sent to the
robot. Instead, the left hand controls the end-effector position and the gripper.
In fact, if the left hand is extended:

• up, the gripper is open;

• down, the gripper is closed;

• left, the end-effector pose controller is used;
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• right, the position controller is used.

If the position controller is activated, the robot can be moved freely by the right
hand of the human operator, who has a visual feedback of the robot movements.
When the pose controller is active, the orientation of the end-effector is a con-
straint and it is forced to point down, while the operator can move only its
position with the right hand. Moreover, the pose controller allows the operator
to move the end-effector more slowly, with finer movements.
Both the position and the pose controllers use inverse kinematics4 in order to
calculate joints speeds θ̇ in the form:

θ̇ = (Jtask)
† u(k) (2.4)

where (Jtask)
† is the damped least squares pseudo-inverse of Jtask, the task jaco-

bian, while u(k) is the signal computed by a discrete PID controller:

u(k) = Kp e(k) +Ki

k∑
j=0

e(j) +Kd
e(k)− e(k − 1)

T
(2.5)

where Kp, Ki, Kd are matrices containing PID gains for the u(k) elements, T
is the sampling period and e(k) = x(k) − xref(k). x(k) and xref(k) are column
vectors representing respectively the actual and the desired positions of the robot
end-effector. In particular, depending on the system state, the meaning of the
components in equations 2.4 and 2.5 is the next:

• if the pose controller is active:

– Jtask = JA, where JA is the analytical jacobian in dual quaternion5
space [9].

– x(k) = x(k) and xref(k) = xref(k), where x(k) and xref(k) are both
dual quaternions

• if the position controller is active:

– Jtask = JGL, where JGL is the linear velocities related part of the
geometrical jacobian [2].

– x(k) = p(k) = (px py pz)
T and xref(k) = pref(k) = (prefx prefy prefz)

T ,
where p(k) and pref(k) are the current and the desired end-effector
positions extracted from the dual quaternion position x(k)

4for a complete description of the inverse kinematics problem, look at [1, 2]
5for a more complete description on techniques and advantages of using dual quaternion

control, we suggest respectively the reading of [9] and [10]



Chapter 3
Hardware and Software

In this Chapter we describe all the hardware used, such as the Comau’s open con-
troller architecture (that includes a B&R industrial PC and a Comau manipulator
robot with its controller) and the Microsoft Kinect motion sensor. Moreover, we
present the adopted software framework, such as ROS and several types of li-
braries.

3.1 Hardware

3.1.1 Comau’s Open Controller Architecture

Such as every industrial manipulator, a Comau working cell consists in a robot
and its control unit. This controller is a cabinet that contains some industrial
PCs that drive and control the robot. To this control unit is connected the Teach
Pendant (TP), that is an I/O device useful to move and program the robot and
also to make some diagnostics.

Figure 3.1: A photo of the fifth version of the Comau Teach Pendant

11



12 Chapter 3. Hardware and Software

As an optional module, Comau sells to its customers an open version of the
robot controller: the name of this architecture is C5G Open. This type of system
allows to control the robot motion, using an external industrial PC connected
directly to the robot controller by a Powerlink Ethernet (these components will be
described in details respectively in sections 3.1.1.1 and 3.1.1.2). This technology
allows to software developers to work with industrial manipulators by using high
level programming languages, such as C or C++. The C5G Open architecture is
essential in order to move Comau robots using external sensors, such as vision or
force sensors.
This type of controller is a sort of bridge between the academic and the industrial
robotics worlds: in fact it allows to develop and test complex algorithm on Comau
manipulator robots with the additional use of external sensors.
The modalities of robot controlling supplied by this architecture are:

• Default modality is the basic communication modality. The switching to
every other modality requires to pass through this one.

– CRCOPEN_LISTEN

• Position modalities allow users to control the robot by assigning respec-
tively absolute, relative or additive position targets.

– CRCOPEN_POS_ABSOLUTE

– CRCOPEN_POS_RELATIVE

– CRCOPEN_POS_ADDITIVE

• Speed modalities allow the user to control the robot using velocity tar-
gets. (Not implemented yet)

• Acceleration modalities allow the user to control the robot using accel-
eration targets. (Not implemented yet)

An interesting feature of the C5G Open system is the simulation mode, with
which we can control the manipulator from the external industrial PC without
moving the real robot, but only the simulated one1. In simulation mode, in fact,
the robot controller works normally, with the exception that it doesn’t send any
current to the motors. This is really useful for testing motion algorithms avoiding
to damage the real manipulator.

1Comau supplies also a visualizer of their robots for testing purposes
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3.1.1.1 The B&R Industrial PC

The computer supplied by Comau for the C5G Open is a B&R’s APC 910 model
(called LPC) with the next technical characteristics2:

• CPU: Intel i7 2.5 GHz with 4 MB of L2 cache

• RAM: 4 GB

• HDD: 500 GB

• I/O: 1 standard Ethernet + 1 Powerlink Ethernet ports (this one must be
connected to the robot controller in order to work in C5G Open modality),
5 USB ports, PCI standard + PCI Express slots, RS232

• OS: Linux Ubuntu 10.04 32bit with PREEMPT real-time kernel, 2.6 version

Figure 3.2: The Comau’s open controller architecture: on the right side we
have the robot with its C5G controller and on the left we have
the B&R industrial PC. This two components are interconnected
between them by a Powerlink Ethernet.

3.1.1.2 The Powerlink Ethernet

Ethernet Powerlink is a deterministic real-time protocol introduced by B&R in
2001 for standard Ethernet. It is an open protocol managed by the Ethernet
Powerlink Standardization Group (EPSG)3.

This type of Ethernet is based on a broadcast protocol, in which there is
a Master node that gives a rigid temporization, avoiding collisions and ensur-
ing a hard real-time communication. In this protocol we can distinguish three
communication phases:

1. Start Signal, during this phase, the Managing Node (MN) sends a syn-
chronization message Start of Cycle (SoC) to all Controlled Nodes (CN)

2http://www.br-automation.com/it/prodotti/pc-industriali/automation-pc-910/
3http://www.ethernet-powerlink.org/en/powerlink/technology/

http://www.br-automation.com/it/prodotti/pc-industriali/automation-pc-910/
http://www.ethernet-powerlink.org/en/powerlink/technology/


14 Chapter 3. Hardware and Software

2. Isochronous Phase, the Managing Node calls each node to transfer time-
critical data for process or motion control by sending (always in broadcast)
the Poll Request frame (PReq). Then, only the addressed node answers
with the Poll Response frame (PRes).

3. Asynchronous Phase: the Managing Node grants the right to one partic-
ular node for sending ad-hoc data by sending out the Start of Asynchronous
frame (SoA). The addressed node will answer with Async Data. Standard
IP-based protocols and addressing can be used during this phase.

A Powerlink network is used within the robot controller, between:

• the computer4 (called APC) that manages the trajectory generation, the
dynamic model calculation, the position, speed, current loop, etc.;

• the servo drivers.

Moreover, in the C5G Open architecture, another Powerlink communication is
used to exchange packets between the APC and the LPC every 400 µs during the
Isochronous phase.

In both Powerlink networks, independent each other, the Managing node is
always the APC inside the robot controller.

Figure 3.3: Diagram of a cycle of the Powerlink protocol

4This computer is a B&R APC model 820



3.1 Hardware 15

3.1.1.3 The Comau Smart5-SiX Robot

The industrial manipulator robot Comau Smart5-SiX has been used in this work,
that is actually the smallest robot manufactured by Comau5. This industrial
manipulator belongs to the Comau Smart family, which robots are particularly
suitable for all operations that require fast movements and a high degree of re-
peatability. These kind of manipulators can perform many small load tasks, such
as: arc welding, assembling, handling, packaging, sealing and polishing.

Figure 3.4: Photo of the Comau Smart5-Six manipulator robot

Comau Smart5-Six robot has the next technical characteristics and performance:

Characteristic
Type Anthropomorphous
Number of axes 6
Weight 160 kg
Repeatability (ISO 9283)6 0.05 mm
Load at wrist 6 kg
Max horizontal reach 1.4 m

In the next table, we report the main robot kinematic characteristics7:
5http://www.comau.com/eng/offering_competence/robotics_automation/products/

small_payload_robots/Pages/smart_5_six.aspx
6Repeatability is the ability of a manipulator robot to return exactly to a previously reached

position. Formally, repeatability is the standard deviation of the same position reached by a
robot at maximum speed and at maximum payload. This ability is important when performing
repetitive industrial tasks.

7The stroke limits and the speeds are of public domain on the Comau’s website, while the
axes accelerations have been privately supplied by Comau

http://www.comau.com/eng/offering_competence/robotics_automation/products/small_payload_robots/Pages/smart_5_six.aspx
http://www.comau.com/eng/offering_competence/robotics_automation/products/small_payload_robots/Pages/smart_5_six.aspx
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Axis Min limit Max limit Speed Acceleration
1 −170◦ +170◦ 140◦/s 280◦/s2

2 −85◦ +155◦ 160◦/s 320◦/s2

3 −170◦ 0◦ 170◦/s 340◦/s2

4 −210◦ +210◦ 450◦/s 700◦/s2

5 −130◦ +130◦ 375◦/s 750◦/s2

6 −2700◦ +2700◦ 550◦/s 1100◦/s2

Figure 3.5: This plot shows the dimensions of the axes of the Comau Smart5-
Six. We can see the robot working area delimited by the red line,
that represents the furthest positions reachable by the robot end-
effector.
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Figure 3.6: This plot shows the axes of the Comau Smart5-Six forearm.

3.1.2 The Microsoft Kinect Sensor

The Microsoft Kinect sensor, originally known as Project Natal, released the 4th
of November 2010 for Microsoft Xbox 360 gaming console. It was developed by
Microsoft and Primesense, which is an Israeli company that originally designed
this device. This input sensor allows to a user in front of it to control and play
with Xbox without holding or wearing anything.

The Microsoft Kinect potential was noticed not only by gamers, but also
by the developers community, especially for academic research purposes. In fact
many unofficial drivers for Windows and for Linux, such as OpenNI, were realized
and published after the launch. In the middle of 2011, Microsoft released the
official SDK and drivers only for Microsoft Windows for the next languages: C#,
C++ and Visual Basic 2010.

Figure 3.7: Photo of the Microsoft Kinect sensor

3.1.2.1 Technical Details

The Microsoft Kinect is a RGB-D device composed by many types of sensors8,
positioned according to the figure 3.8:

8http://msdn.microsoft.com/en-us/library/jj131033.aspx

http://msdn.microsoft.com/en-us/library/jj131033.aspx
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1. IR Emitter and Receiver: the emitter emits infrared light beams while
the receiver, an IR camera, captures the IR beams that are reflected back.
In this way, it is possible to get distance informations of every object in
front of the Kinect, generating a depth map at 30 fps with a maximum
resolution of 640 × 480 (see section 3.1.2.2 for a formal explanation). The
viewing angles are: 43◦ for the vertical and 57◦ for the horizontal. The
typical working range is from 0.8 m to 4 m9.

2. Color sensor: it is an RBG camera that acquires scene images at a max-
imum frame rate of 30 with a resolution of 640 × 480. It can also work at
the maximum resolution of 1280× 960.

3. Microphone array: with this array of 4 microphones is possible to record
audio and also to find the location of the sound source and the direction of
the audio waves.

Figure 3.8: Disposition of the various sensors within the Microsoft Kinect

3.1.2.2 Mathematical Model

In this Section, we describe how Microsoft Kinect builds a depth image using the
IR emitter and the IR depth camera [15].

Given:

• the Kinect Z axis, orthogonal to the image plane towards the object;

• the X axis, parallel to the baseline b, which connects the IR camera to the
IR emitter;

• the Y axis points downward, from the depth camera to the ground, following
the right hand rule.
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Figure 3.9: In this image are drawn the lines and the triangles representing
the relationships between IR beam emitted from the emitter and
reflected back from an object to the depth camera.

From figure 3.9 we can take a specific point of an object, at a known reference
distance Zo from the sensor. We consider now the same object closer to Kinect,
at distance Zk. In this way the IR beam will be shorter and it will result shifted
along the X axis of a distance D. Using the similarity of triangles we obtain the
next proportions:

D

b
=
Zo − Zk
Zo

(3.1)

d

f
=
D

Zk
(3.2)

where:

• Zo and Zo are the depth values of the same point of the considered object;

• D is the shift value along the X axis of the IR beam in object space;

• d is the disparity value of the object in the image space.

Now, substituting D from equation 3.2 to equation 3.1, we obtain the value of
variable Zk:

9http://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges

http://msdn.microsoft.com/en-us/library/hh973078.aspx#Depth_Ranges


20 Chapter 3. Hardware and Software

Zk =
Zo

1 + Zo

f ·bd
(3.3)

With the equation 3.3, it is possible to calculate the depth map starting from
the disparity map acquired from the IR camera of Microsoft Kinect.

Starting from the depth image data, the skeleton tracker10 will then search
for human silhouttes in order to start tracking human movements.

Figure 3.10: This image shows the various steps of skeleton tracking in a Mi-
crosoft Kinect sensor: on the left the scene viewed from the RGB
sensor, on the center the image from the depth sensor and on the
right the identified human links.

10in our case the skeleton tracker used is NiTE
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3.2 Software

In this Section we describe every software used in this work, from the ROS mid-
dleware to the libraries used for the communication with the robot controller and
the movement interpolation.

3.2.1 ROS

The Robot Operating System (ROS)11 is an open source middleware for robotics.
It is a collection of libraries and softwares useful to simplify the design and the
implementation of the code that will be used for moving robots and get data from
the sensors. One of the main point of interest of ROS is the abstraction layer
given by the APIs, that supplies to developers a common interface for robots and
sensors, which guarantees a high software modularity. The last stable version of
ROS at the time of writing is Indigo Igloo.

The fundamental ROS bricks are the nodes, which are independent system
processes working on top of the ROS layer. They can be implemented in several
languages, such as C++ and Python. These nodes can communicate between
them using a publisher-subscriber communication protocol. In this protocol, a
node publish a type of message on a topic12 and all the other nodes that are sub-
scribed to the same topic can receive and read the message sent by the publisher.
Each node is unaware of the existence of the other nodes which are publishing or
are subscribed to the same topic.

The ROS architecture can be graphically viewed as a directed graph, where
the nodes are the vertices and the topics are the directed edges. The source codes
of nodes and the messages are stored in project folder called packages.
To better understand the potentiality of the ROS architecture, we can use a
practical example. Given a system composed by two ROS nodes, one for data
acquisition from a sensor which also sends this data (through a message on a
topic) to the other node that manages the movements of a mobile robot, so that
it can plan a safe motion based on the information received from the sensor node.
The most important thing to highlight on this toy example is that we can change
the sensor device or the robot model: this will change the source code that allows
the respective devices to work, but it will not change the ROS nodes architecture
and behavior.

3.2.1.1 TF - Transform Frames

TF is a ROS package which main function is to keep track of multiple coordinate
frames of the robot links over time. These frames are stored in a tree structure

11ROS official website: http://www.ros.org/
12A topic is a word that identifies the communication channel

http://www.ros.org/
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buffered in time, to allow users to do all the desired operations between the
coordinate frames.

3.2.1.2 PCL - Point Cloud Library

Point Cloud Library (PCL)13 is a powerful tool for the point clouds processing.
This cross platform library supplies a lot of state of the art algorithms for feature
estimation, surface reconstruction, registration, model fitting and segmentation.
PCL is a library included in ROS, and it is used for computer vision tasks (e.g.
world exploration, object recognition, people tracking), which are essential for
robots moving within dynamic environments.

3.2.1.3 OpenNI and NiTE

OpenNI, which is the acronym for Open Natural Interaction, is an open source
framework containing softwares, drivers and libraries useful for developing appli-
cations which use RGB-D sensors, such as Microsoft Kinect. The human detection
and tracking functionalities of OpenNI are contained in a package called NiTE,
which provides all the APIs and algorithms useful to estimate the positions of
human joints (see figure 3.11) from a depth image (as seen on figure 3.10). NiTE
skeletal tracker works at 30 Hz and gives the best results when the user distance
from the sensor is in the range included between 1.2 and 3.5 meters. Moreover,
when the NiTE tracker is initialized, it requires that the person starts moving in
front of the RGB-D sensor in order to detect and start tracking him.

3.2.1.4 Gazebo

Gazebo14 is a multi-robot simulator. It can simulate the interaction between
several objects, sensors and obviously the robots movements inside a three-
dimensional world with physics. Gazebo has been a ROS package, until the
Groovy version of ROS. Starting from ROS Hydro version, Gazebo has become a
standalone robot simulator though it has kept a good degree of integration with
it.
An important Gazebo’s feature is the possibility for developers to create plugins.
These plugins allow to bring into Gazebo new robot models and new sensors in
order to make them working in a simulated environment.

13PCL official website: http://www.pointclouds.org/
14Gazebo official website: http://gazebosim.org/

http://www.pointclouds.org/
http://gazebosim.org/
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Figure 3.11: Positions and names of the 15 human joints estimated by NiTE
skeletal tracker

3.2.2 External Libraries

3.2.2.1 eORL

The Enhanced Open Realistic Robot Library (eORL) is a library supplied by
Comau, that allows programmers to develop applications for working on Comau
robots, exploiting the potentiality of the C5G Open architecture. This library
allows to do the next kind of operations using a real Comau robot (or a virtual
one) inside the user application:

• the initialization of a virtual Comau robot on Linux (complete Comau robot
family), starting from a configuration file (*.c5g)

• the computation of Direct and Inverse Kinematics

• the calculation of Comau’s robot trajectory, using the eORL interpolator

• the computation of the Dynamic Model and of the Jacobian

eORL supplies a simple interface for developers, in fact this library hides
all the real time functions needed in order to communicate with the real robot,
delegating this part to a callback that is automatically called by eORL library
every 400µs (or 2, 4, 8, 16 ms). The user has the freedom to fill this callback
to do what he wants in order to use the Comau manipulator robot with external
sensors, using one of the C5G open modalities described in section 3.1.1. The
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library is installed by default inside the B&R LPC, but it can be installed also
into other Linux PCs.

3.2.2.2 Reflexxes

Reflexxes15 is a German engineering company specialized in motion generation
software for robots and servo drive controllers. It has been founded in 2010 as a
spin-off of the Robotics Institute at TU Braunschweig (Germany), where a team
of researchers including Torsten Kroeger developed an algorithm for computing
robot motion trajectories from arbitrary initial states on-the-fly.
The company offers both commercial and free software implementation of their
online trajectory generation algorithms. It also recently joined Google.

The type II version of the Reflexxes motion libraries has a LGPL software
license and it can be freely downloaded from the official website16. Its strength
is the capability to generate instantaneously new targets obtained from data
acquired with external sensors. This library has a C++ API and it allows to
generate both position and velocity based trajectory.

Figure 3.12: Input and output values of the Reflexxes position-based online
trajectory generation algorithm

15Reflexxes official website: http://www.reflexxes.com/
16http://www.reflexxes.com/products/overview-and-download

http://www.reflexxes.com/
http://www.reflexxes.com/products/overview-and-download


Chapter 4
Implementation

In this Chapter we describe in detail the architecture and the retargeting algo-
rithm implemented in this master thesis work. At the beginning we introduce
the physical system, how it is composed and how it works. After that, we present
the algorithm pipeline, examining in detail the functioning of each block.

4.1 System Architecture

The architecture developed in this work to manage the vision-based teleoperation
system can be partitioned in two macro-blocks (see figure 4.1 for a complete
overview of the architecture):

1. The acquisition and retargeting subsystem consists in a Microsoft
Kinect sensor connected to a computer with ROS, which contains all the
ROS packages needed for the retargeting of the robot joints, starting from
some human operator movements.

2. The C5G Open subsystem composed by a B&R LPC, which is a com-
ponent of the C5G Open architecture, that allows to teleoperate the real
Comau Smart5-Six robot.

The described parts of the system can communicate one with each other by using
a standard Ethernet network, as we can see in figure 4.1.
It has not been possible to use a unique computer, because ROS cannot be in-
stalled on the industrial B&R LPC, responsible of the real robot teleoperation via
Powerlink Ethernet. This is because this computer has been tested to work with
a real-time kernel and the Powerlink Ethernet only with Linux Ubuntu 10.04,
while ROS Hydro1 requires at least Ubuntu 12.04 installed on the PC.
Nevertheless, also installing on the LPC a newer version of Ubuntu, compliant

1ROS Hydro is the lowest ROS version on which the implemented ROS nodes can run.

25
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with ROS Hydro, would not have solved the problem. In fact the Powerlink Eth-
ernet drivers do not work reliably on Ubuntu 12.04 running the same real-time
2.6 PREEMPT kernel used for Ubuntu 10.04. So, while Comau engineers will
not find a solution to this problem, the simplest way was to implement both the
human tracking and the joints remapping into a separate PC with Ubuntu 12.04
and ROS Hydro installed. This computer will then communicate the calculated
targets to the B&R LPC via a standard Ethernet network, that will forward these
targets to the robot via the Powerlink Ethernet.

4.2 Algorithm Pipeline

This Section presents how the whole algorithm works within the architecture
discussed in section 4.1, explaining the implemented software on both PCs. We
describe the various ROS nodes, all implemented in C++, from the tracking of
the human joints to the retargeting of human motion into the robot joints. After
that, we give an overview of the software developed on the B&R LPC, responsible
of the motion of the real Comau robot. In particular, we describe in detail also
how works the communication between the two computers.

Figure 4.2: The yellow blocks represent the steps of the algorithm pipeline: the
first two blocks work within ROS framework on the Standard PC,
while the last block runs on the B&R LPC.
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4.2.1 Skeleton Tracking

The ROS package responsible of the skeleton tracking of a user in front of the
Kinect sensor is nite2tf. This package contains the node that must be launched in
order to start tracking the human joints. This ROS node publishes the position
and the orientation of these joints as TFs, disposed as in figure 4.3. All the
frames of the human model are computed from the reference coordinate frame
called camera_rgb_optical_frame, located on the RGB camera of the Kinect
sensor.

Figure 4.3: On this image are represented the joints and the links of the hu-
man model tracked by Kinect during a frontal acquisition with the
nite2tf tracker. Notice that this model is flipped horizontally, in
fact the TFs of the left side of the body are on the right and vice
versa.

In order to acquire the precise orientation of the user’s hands, requested for
a precise remapping of human hands motion onto the robot wrist2. The package
nite2tf has been extended, by adding two more TFs to each arm: wrist and
fingertips. This is because the standard information of nite2tf package was not
enough to acquire a precise orientation of the hand, so it has been necessary to
add other custom TFs to the already existing left_hand and right_hand, which
positions correspond to the centroid of the respective hands.
In order to do this, we had to work with the human point cloud given by OpenNI,
which is built from depth informations acquired by Microsoft Kinect.
Once acquired the human point cloud, the first thing to do is to segment the point

2see section 4.2.3.1 for a detailed discussion on this topic



4.2 Algorithm Pipeline 29

clouds of each hand, from fingertips to wrist. This segmentation is computed after
estimating the positions of both hands centroids, allowing to obtain two clusters
of points representing the two human hands.
Now, in order to extrapolate the orientation of both hands, we exploit some
results taken from Principal Component Analysis (PCA). Given a set of points
distributed in a three dimensional space, using PCA theory, we can find principal
directions of the points cluster, which consists in finding the vectors3 along which
the variance of the points cluster is maximum. (see figure 4.4)

Figure 4.4: This is a graphical example of a bi-dimensional Principal Compo-
nent Analysis, in which it has been computed the principal compo-
nents, u and v, of the blue points cluster on the XY plane.

Formally, let X = {x1,x2, . . . ,xn} be a set of points xi ∈ R3 representing the
hand point cloud. The first step to do is to calculate the normalized covariance
matrix Σ:

Σ =

σxx σxy σxz
σyx σyy σyz
σzx σzy σzz

 (4.1)

where

• Σij = Σji =
1

n− 1

n∑
k=1

(xki − µi)(xkj − µj)
T

• µ =
1

n

n∑
k=1

xk, instead, is the mean point in R3 of the X vector, i.e. the

centroid of the hand point cloud.

The next step is to compute the 3 eigenvectors of the Σ matrix. These vectors
will be the principal components of our hand point cloud, allowing us to obtain all
the information needed in order to achieve the hand orientation. So, computing
roots of the characteristic equation:

det(Σ− λI) = 0 (4.2)
3also called principal components
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we obtain the three eigenvalues λ. Once obtained also the three associated eigen-
vectors, we take the one associated with the greatest eigenvalue. This eigenvector
will be the component vector vWF going from wrist to fingertips.
Now, before publishing our new TFs, we must first compute their origin position
and orientation. Taking the direction given by vWF we add and subtract half of
the hand length from the hand centroid, obtaining the positions respectively of
the hand wrist and the middle fingertip.
For the TF orientation, instead, we calculate the needed quaternion by using the
angle between the Microsoft Kinect z axis and the vWF vector.

In synthesis, the algorithm for the generation of custom TFs is the next:

1. Segment the hand point cloud starting from the user point cloud

2. Compute the hand point cloud centroid µ = 1
n

∑n
k=1 xk

3. Calculate the normalized covariance matrix Σ of the hand point cloud,
given its centroid µ

4. Compute eigenvalues and eigenvectors of matrix Σ and get the eigenvector
associated with the greatest eigenvalue. It will be called vWF and it is a
vector going from wrist to fingertip

5. Take the centroid µ and add and subtract half the hand length along the
direction given by vector vWF, obtaining the origin position of custom TFs

6. Get TFs quaternions by taking the angle between the z axis and vWF vector.

After applying this procedure for both left and right hands point clouds, we
can publish our new custom TFs, which names are respectively: left_wrist and
left_fingertip for the right hand, and right_wrist and right_fingertip for the left
hand. The new human model obtained with the modified skeleton tracker can be
seen on figure 4.5.

Applying these changes to the skeleton tracking node contained in nite2tf
ROS package, allow us to easily remap human movements on the wrist joints of
the manipulator robot. Before considering joints remapping, we explain basic
concepts about the virtual robot model used within ROS and Gazebo, in order
to better understand the implemented remapping functions.
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Figure 4.5: This image represents the new human model (in a frontal view)
published by the modified skeleton tracker. Respect to the original
tracker, the total number of published TFs is now increased by four
(two new TFs for each hand).

4.2.2 Robot Model

A ROS package, namely comau_model, has been created to represent the Comau
Smart5 SiX through a virtual model compliant with ROS. This package contains
the meshes4 and all the kinematic and dynamic data5 of the robot, useful to
simulate it within Gazebo. So, in this package we can find:

• a .urdf 6 file containing kinematic and dynamic data and other informations
on the robot links and joints. Its syntax is similar to a XML file;

• the files containing the meshes of the robot links with .dae extension.

In a URDF file, are declared both links, which describe the rigid bodies which
compose the robot, and joints, which are the components that connect links to
each other creating a hierarchy. This file describes formally the virtual robot and
it must contain the next informations:

4Downloadable freely on Comau website: http://www.comau.com/eng/offering_
competence/robotics_automation/products/low_medium_robots/Pages/smart_5_six.
aspx

5Part of this data, such as joints limits and velocities, is freely accessible from the page of
Comau website. Other informations as the accelerations and the inertia matrices of robot links
have been privately supplied by Comau.

6acronym of Unified Robot Description File

http://www.comau.com/eng/offering_competence/robotics_automation/products/low_medium_robots/Pages/smart_5_six.aspx
http://www.comau.com/eng/offering_competence/robotics_automation/products/low_medium_robots/Pages/smart_5_six.aspx
http://www.comau.com/eng/offering_competence/robotics_automation/products/low_medium_robots/Pages/smart_5_six.aspx
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1. Links7, declared through tags <link>, containing the next tags:

• <visual>, which contains the graphic informations of the link that can
be either a URDF primitive(e.g. parallelepiped, sphere , cylinder, etc.)
or a mesh in stl or dae format. This tag must have also the origin point
and the RPY angles of the inserted visual element.

• <geometry>, which describes collision bounds of the model link by
inserting its geometry. It must also contain an origin and a RPY
angle, like <visual> tag

• <inertial>, in which must be present the mass, the inertia matrix and
origin and angles of the link.

2. Joints8, declared through tags <joint>, containing the next tags:

• <type> which can be one of the next typologies:

– revolute: describes a hinge joint that rotate along a specified axis
with upper and lower limits

– continuous : analogous to revolute but without upper and lower
limits

– prismatic: that is a sliding joint along a specified axis with a
limited range

– fixed is a joint with no degrees of freedom, so it cannot move
– floating : is a joint with 6 DoFs
– planar : allows motion in a plane perpendicular to the axis

• <origin>: specifies the origin point and the angles of the joint, the
same as links. The joint is located on the origin of the child link

• <parent> indicates the name of the parent link

• <child> indicates the name of child links

• <axis> indicates the rotational axis for revolute joints, translation axis
for prismatic joints or the normal of a plane for a planar joint

• <limit> specifies upper and lower values for joints

7further informations on links can be found on http://wiki.ros.org/urdf/XML/link
8further informations on joints can be found on http://wiki.ros.org/urdf/XML/joint

http://wiki.ros.org/urdf/XML/link
http://wiki.ros.org/urdf/XML/joint
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Figure 4.6: Graphical link and joint representations used in the URDF file.

In particular for the modeling of Comau Smart5 Six robot, its URDF file
present in comau_model package is composed by 8 links:

1. world
2. base_comau
3. axes_1
4. axes_2
5. axes_3
6. axes_4
7. axes_5
8. axes_6

where the first is a dummy link representing the environment and the other 7 are
links of the robot, each one with its mesh. These links are connected between
them by 7 joints: 1 fixed joint connecting the world link with the base_comau
link, in order to fix the robot model on the ground, and 6 revolute joints that
give to robot the degrees of freedom which compose it. On table 4.2.2 we can
see how links are interconnected by joints and what is the Cartesian axis along
which they rotate.

Joint Name Parent Link Child Link Rot. Axis Direction
joint_1 base_comau axes_1 Z CW
joint_2 axes_1 axes_2 Y CCW
joint_3 axes_2 axes_3 Y CW
joint_4 axes_3 axes_4 X CW
joint_5 axes_4 axes_5 Y CCW
joint_6 axes_5 axes_6 X CW



34 Chapter 4. Implementation

The resulting virtual robot model obtained with the URDF file implemented
for the Comau Smart5-Six robot can be seen on figure 4.7b.

world

base_comau

Broadcaster: /robot_state_publisher

Average rate: 50.209 Hz

Most recent transform: 1381309715.770 

Bu er length: 4.979 sec

axes_1

Broadcaster: /robot_state_publisher

Average rate: 10.203 Hz

Most recent transform: 1381309715.217 

Bu er length: 4.900 sec

axes_2

Broadcaster: /robot_state_publisher

Average rate: 10.203 Hz

Most recent transform: 1381309715.217 

Bu er length: 4.900 sec

axes_3

Broadcaster: /robot_state_publisher

Average rate: 10.203 Hz

Most recent transform: 1381309715.217 

Bu er length: 4.900 sec

axes_4

Broadcaster: /robot_state_publisher

Average rate: 10.203 Hz

Most recent transform: 1381309715.217 

Bu er length: 4.900 sec

axes_5

Broadcaster: /robot_state_publisher

Average rate: 10.203 Hz

Most recent transform: 1381309715.217 

Bu er length: 4.900 sec

axes_6

Broadcaster: /robot_state_publisher

Average rate: 10.203 Hz

Most recent transform: 1381309715.217 

Bu er length: 4.900 sec

(a) (b)

Figure 4.7: (a) Represents the TFs tree of the robot model viewed using
view_frames ROS command.
(b) Shows the TFs position on the URDF robot model implemented
within comau_model package.

The comau_model package allows developer to change the manipulator robot
model, by simply changing the robot meshes and the values of the URDF file.
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4.2.3 Motion Remapping

Now we can talk about the ROS nodes implemented in order to remap, in real-
time, the human joints motion into the robot joints. The nodes responsible of
this task are inside the comau_sim package and they manage the remapping
algorithms in order to transform the joints motion coming from the TFs9, re-
ceived from tracker within nite2tf package, into joints angles of the virtual robot
model10.
Two ways has been implemented to remap the human movements into the robot
using a Microsoft Kinect sensor:

1. direct joints remapping: this technique is aimed to remap the motion
of the human body parts into the robot links in the most intuitive way for
the human actor. This is the main remapping technique.

2. theory of inverse kinematics: this technique has been implemented for
comparison purposes with the direct remapping method. The theory of
inverse kinematics allows to calculate the robot joints angles by acquiring
only the hand Cartesian position of the human operator.

4.2.3.1 Direct Joints Remapping

One of the main goals of this work has been to find an intuitive way to move
the Comau manipulator robot by simply acquiring the motion of the person,
which moves its body parts as if they were robot links. In order to accomplish
this objective, it has been created a remapping function for each of the first five
robot joints, i.e. joints 1, 2, 3, 4 and 5. Movements for joint 6 has not been
considered because its remapping would have not been intuitive to implement,
and also because it would have required the acquisition of finer movements by
the sensor, such as complex hands movements, which a Microsoft Kinect sensor
cannot supply.
For the remapping of all the joints we must first consider a change of Carte-
sian coordinate system, because human and robot TFs have different coordinate
frames. So to pass from the ones of figure 4.5 to the others of figure 4.7b, we have
to do the next transformation:

x ←− −z
y ←− x

z ←− −y

From now on, all the coordinates frames of the human skeleton will be considered
already transformed in this way.
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Figure 4.8: On the left the Cartesian coordinate system of the human model
and on the right the coordinate system of the robot model.

Joint 1

Joint 1 allows robot to rotate about its axis z. For moving this joint using the
informations11 acquired by Microsoft Kinect, it has been used the orientation of
the human actor in front of the sensor.
In order to do this, first we must take the TFs positions of the neck wn and of
the left hand urh

12. Formally:

wn = (xn, yn, zn) urh = (xrh, yrh, zrh)

and now from these two points we calculate the vector going from neck to left
hand

v = urh −wn

From this vector we can now get the orientation of v along z axis, by calcu-
lating the angle α between the vector projection on XY plane and the x axis (as
shown in figure 4.9), using the next formula:

α =

arccos
(

xv
ρXY

)
if yv ≥ 0

− arccos
(

xv
ρXY

)
if yv < 0

(4.3)

where xv and yv are respectively the x and y components of the vector v, while
ρXY =

√
x2v + y2v is the length of its projection on the XY plane. α corresponds

to the joint 1 rotational angle.

9showed on figure 4.5
10illustrated on figure 4.7b
11reference frames on figure 4.5
12we remember that on skeleton model the right is flipped with the left side of the body
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Figure 4.9: Graphical representation of angle α, used for the remapping of joint
1.

Joint 2

This joint allows to rotate the robot about the y axis. This type of movement
allows the robot to make a longitudinal advance along the direction of joint 1. The
angle needed for the remapping of joint 2 is obtained from the relative position
of the human demonstrator respect of its initial tracking position.
Before calculating this angle, that we call γ, we have to get the direction of the
person in front of the sensor by using the orientation of the human shoulders. Let

vls = (xls, yls, zls) urs = (xrs, yrs, zrs)

be the vector representing the positions respectively of right and left shoulders.
Now, we can take the vector

w = vls − urs

that represents the initial direction of the person respect to the z axis. In
order to change the coordinate system from the initial to the actual w orientation
about the z axis, we use the next rotation matrix:

Rz =

 β α 0

−α β 0

0 0 1

 (4.4)

where α = xw
||w|| and β = yw

||w|| , with xw and yw x and y components of vector w

and ||w|| its L2 norm.
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Inverting the matrix Rz we get the matrix

R−1z =


β

α2+β2 − α
α2+β2 0

α
α2+β2

β
α2+β2 0

0 0 1

 (4.5)

which can transform the coordinate system given by the vector w, representing
the actual orientation of the shoulders, into the coordinate system of their starting
orientation.
Once known the shoulder orientation, we must compute the shift of the person
respect to its initial position. To do this we take a shift vector s going from the
initial position of the neck to its actual position:

s′ = rn,a − rn,i

where rn,a and rn,i are respectively the actual and the initial position of the neck.
Now, we have to rotate s′ using rotation matrix R−1z obtaining a vector s referred
to the starting coordinate system (as shown in figure 4.10):

s = R−1z s′

To convert this vector into an angle for joint 2, we calculate the arccosine of
the ratio given by the projection of s with the length of axis 2 of Comau Smart5
Six, which is 0.59 meters. To this quantity we have to add a π

2
corrective factor

due to the robot model, giving us the final rotation angle γ:

γ =
π

2
− arccos

(
xs

axis 2 length

)
(4.6)

x

y

s′s

xs

x′

y′

z = z′

Figure 4.10: Graphical representation of vectors s and s′ with their respective
coordinate systems.



4.2 Algorithm Pipeline 39

Joint 3

This joint rotates about axis y and is responsible of moving up and down the robot
forearm. The angle for this joint has been computed looking the direction of the
left arm of human actor respect to his torso. Moreover, because the rotational
axes of joints 2 and 3 are the same we have to consider also the inclination γ for
joint 2, in order to guarantee a correct angle remapping for joint 3.
Let’s take the vector v already used for joint 1:

v = urh −wn

that represents the vector going from neck to left hand.
Calculating the vertical inclination of this vector respect to the XY plane we get
the angle ϕ′ (shown in figure 4.11):

ϕ′ =

arccos
(
ρXY

||v||

)
if zv ≥ 0

− arccos
(
ρXY

||v||

)
if zv < 0

(4.7)

where ρXY is the length of v projection on XY plane, ||v|| is the vector L2 norm
and zv its component along z axis.
Taking into account the previous considerations about the inclination of joint 2,
the final angle will be:

ϕ = γ − π

2
− ϕ′ =

γ −
π
2
− arccos

(
ρXY

||v||

)
if zv ≥ 0

γ − π
2

+ arccos
(
ρXY

||v||

)
if zv < 0

(4.8)

where γ − π
2
is the angle computed for joint 2 without the corrective factor.

x

y

z

v

ρXY

zv

ϕ′

Figure 4.11: Graphical representation of the ϕ′ angle used for the remapping
of joint 3.
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Joint 4

The joint 4 allows to rotate clockwise or counterclockwise the robot forearm.
To rotate this joint like a human forearm, we get the required informations by
tracking the human hand rotation about the axis given by the forearm direction.
To do this, we can exploit the quaternion contained in the TFs of the hand wrist,
but first we have to convert the quaternion to Euler angles, using the Z-Y-X
convention. Given the quaternion q of the left hand wrist13:

q = (qx, qy, qz, qw)

we convert it to Euler angles:
ϕq = arctan2(2(qzqw + qxqy), (q

2
x − q2y − q2z + q2w))

θq = arcsin(−2(qyqw − qxqz))
ψq = arctan2(2(qyqz + qxqw), (q2x + q2y − q2z − q2w))

(4.9)

where −π
2
≤ θq ≤ π

2
.

The final angle θ for joint 4 has been obtained using the next equations:

θ =

{
θq if ψq ≥ 0

−θq if ψq < 0
(4.10)

x

y

z

θq
x′

y′z′

ψq

Figure 4.12: This plot represents the angles used for the remapping of the joint
4. The red arrow represents the rotational axis (arm) about which
the hand can rotate. The blue vector, instead, represents the hand.

13a description on how this quaternion has been computed, look at section 4.2.1
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This two cases are necessary in order to correct the direction of the joint
rotation (clockwise or counterclockwise) respectively when the hand is pointing
up or down.

Joint 5

Joint 5 is the one that moves the wrist of the robot. It can rotate about the y axis
and its motion is really similar to the one of human wrist. For the calculation of
the angle for this joint, in fact, we will use the inclination of the hand respect to
the wrist.
Formally we take:

trs = (xrs, yrs, zrs) uls = (xls, yls, zls)

vrw = (xrw, yrw, zrw) wrf = (xrf , yrf , zrf )

which are respectively the vectors of the left and right shoulder, the left wrist
and the left fingertips. From these we calculate:

a = urw − trs s = trs − uls h = wrf − vrw

where a, s and h are vectors representing respectively the directions of the left
arm (from shoulder to wrist), the shoulders (from the left to the right) and the
left hand (from fingertips to wrist).
In order to obtain the orientation of the hand respect to the arm, we have to
calculate the angle ψ′ between the two respective vectors in the next way:

ψ′ = arccos

(
a · h
||a|| ||h||

)
(4.11)

where · is the dot product, and ||a|| and ||h|| are the L2 norms of the respective
vectors.
Now we have to get the direction for ψ′ angle, in order to remap it to the joint 5.
For this purpose, we take the vector obtained from the cross product between a
and s. This vector, in fact, is pointing to the side of the plane given from a and
s, in which the angle ψ′ should be negative. In order to add the information of
the direction, we do:

ψ =

{
ψ′ if h · (a× s) ≥ 0

−ψ′ if h · (a× s) < 0
(4.12)

where × is the vector product. In other words, equation 4.12 correct the sign of
ψ′ angle, by looking if the hand vector h has the same direction of vectors given
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by a × s. If their direction are the same (the dot product is positive), the joint
angle ψ is positive, otherwise it is negative.
Now the final angle ψ can be sent to the robot.

x

y

z

a

s

a× s

h

ψ′

Figure 4.13: This plot represents the angles used for the remapping of joint 5.
We can see the vectors a, h and s representing respectively the
arm, the hand and the shoulders.

Before sending these 5 angles on topic joint_states, we have first to filter the
output values in order to smooth them and to eliminate all the noise coming from
the human tracker and from tremors of human movements. In section 4.2.3.2 we
will describe the technique adopted for values filtering.

4.2.3.2 Values filtering

In order to eliminate the noise coming from the tracker and from natural tremors
of human movements, a smoothing filter has been developed. This filter takes the
angles calculated with the direct joints remapping method, computing the arith-
metic mean of their last n values. Formally, the equation used in the implemented
smoothing filter is the next:

ξ̄k =
1

n

n−1∑
i=0

ξi,k (4.13)

where

• n is the number of values of a single joint angle to be smoothed by the filter;

• k is the number representing the remapped joint index (from 1 to 5)
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Using the output values ξ̄k of this filter instead of using directly the remapped
angle values, we can notice a smoother and a less noisy motion on the real robot.
the best value of n has been found experimentally by testing different values, in
the final version of the code we fixed the value to n = 20. This value revealed to
be an optimal compromise between a well smoothed remapped motion and a less
responsive robot control.
Now, the smoothed joints angles ξ̄k obtained from this filter can be sent on topic
joint_states.

4.2.3.3 Inverse Kinematics Remapping

The package comau_sim allows the human demonstrator also to move the ma-
nipulator robot using a retargeting mode based on Inverse Kinematics. This kind
of retargeting does not allow to control directly each joint, while it moves the
manipulator arm by simply remapping the human hand position into the robot
end-effector position. The Inverse Kinematics theory, in fact, can compute the
angle of each joint, knowing only the Cartesian position (XYZ coordinates plus
Euler angles) of the robot end-effector.
Formally, we take the position of the left human hand from the respective TF:

vrh = (xrh, yrh, zrh)

Now, in order to convert this position into the robot end effector position, we must
first change the coordinate system with the canonical transformation already seen
in Joint Remapping section (4.2.3.1):

xrh ←− −zrh
yrh ←− xrh

zrh ←− −yrh

and then we have to scale and translate them in the following way:

xend-effector = xrh × 1000 + 2000

yend-effector = −yrh × 1000

zend-effector = zrh × 1000 + 1200

φend-effector = 0◦

θend-effector = 135◦

ψend-effector = 0◦

(4.14)

where the three coordinate x, y and z have been scaled from meters to millimeters
and all the three Euler angles has been fixed. Moreover the two offset values of
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2000 and 1200, set respectively on x and z axes, shift onward and upward the
coordinate system in order to translate the base frame of the robot in front of
the Kinect sensor. This ensures that the robot end-effector will move inside the
working area, in front of the robot, avoiding the singularities near the robot base
frame.

After these transformations, the 6 values of the equation 4.14 are sent on
topic endEffectorPosition. Every node that will be subscribed to this topic, will
have to calculate the inverse kinematics of these values, in order to get the joints
angles of the robot.

4.2.3.4 Comparison between Direct Joints and Inverse Kinematics
Remapping techniques

Once implemented these two remapping techniques, we have done some experi-
ments on usability of these two retargeting methods. The main differences noticed
during the usage of both retargeting methods are the next:

• the inverse kinematics has more limited movements respect to the direct
joints remapping method, because its working area must be bounded in
order to avoid singularities;

• with the direct joint remapping method, sometimes it can be difficult to
control the end effector position with a certain accuracy;

• with the direct joint remapping method, the human operator can control
the angle of each robot joint in a natural and intuitive way: this freedom
of control can be particularly useful in crowded industrial environments;

• with the inverse kinematics method, the human operator can control only
the end-effector position. This could be a problem in some crowded indus-
trial environments.

4.2.3.5 TCP Server

This ROS node is responsible of forwarding the target values, sent by the nodes
within the comau_sim package, by creating a TCP server in order to communi-
cate the new target positions via a TCP/IP communication channel to the B&R
LPC.
Whenever a message containing the new retargeting values arrives from one of the
ROS topics joint_states or endEffectorPosition, the server creates a TCP packet
(57 bytes long) composed in the next way:

• 1 field of 8 bytes (1 unsigned long) for the sequential number of the packet;
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• 6 fields of 8 bytes (6 doubles) for the joints values in case of direct joints
remapping, or the Cartesian positions in case of the inverse kinematics
remapping;

• 1 field of 1 byte (1 char) which indicates the type of remapping chosen.
This field will contain the character:

– j for direct joints remapping;

– i for inverse kinematics remapping.

This packet will then be sent by this TCP server node, where it will be received
by a TCP client running on the B&R LPC, which is responsible of actuating the
robot movements based on the new targets.

4.2.3.6 ROS simulated environment

In this Section, we describe the ROS package created for testing both the remap-
ping methods within a simulated environment. This ROS package has been
called comau_gazebo_plugin and it includes the code needed to simulate, within
Gazebo, the movements of the virtual robot contained in the comau_model pack-
age.
The comau_gazebo_plugin package implementation is modular. In fact, it in-
cludes a ComauGazeboPlugin class which implements the methods Load and
OnUpdate which are respectively needed for loading and moving the virtual robot
inside Gazebo. Moreover, an abstract class has been implemented to expose an
interface enabling developers to create and use their own controller for moving the
simulated robot inside Gazebo. This interface is called RobotMovementInterface,
and it contains the next virtual methods:

1. setMove: this method is for setting a new desired target movement on the
simulated robot;

2. getNextInterpolationAngles: it calculates the interpolation steps for
each joint of the virtual robot, from a starting position to a final posi-
tion, in order to simulate the robot motion. This method is called once for
each interpolation period (e.g. 2 ms);

3. getNextInterpolationVelocities: this method has been created in order
to compute the interpolated velocities of each joint, from a starting position
to a final position. This method has not been used, but it has been created
for future works that will require a velocity controller.

The comau_gazebo_plugin package already contains two implemented controller
classes which extend the RobotMovementInterface abstract class (see figure 4.14):
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• RobotMovementPID : this class computes the interpolated angles using a
PID controller;

• RobotMovementComauLib: this computes the interpolated angles using the
Comau eORL library.

Figure 4.14: Inheritance of the RobotMovementInterface abstract class

These controllers are mutually exclusive. In fact during compiling phase,
the system checks if the eORL library is installed: if it is installed it will use
RobotMovementComauLib class to simulate the robot movements within Gazebo,
otherwise it will use a simple PID controller included in RobotMovementPID. This
double controller has been created in order to allow also who has not a license of
eORL library to use the remapping methods previously described in a simulated
environment.

Figure 4.15: Screenshot of Comau Smart5 Six robot simulated within Gazebo.
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4.2.3.7 ROS Node Graph

Now we show graphically the various ROS nodes implemented and how they are
interconnected between them with topics. We remember that all these nodes
have been implemented in C++ and they all work on the same computer, as it
was illustrated in Figure 4.2.

Figure 4.16: In this graph are represented the ROS nodes that allow to do the
direct joints remapping. The arcs connecting the various nodes
represent the topics on which nodes communicate each other. The
node Gazebo is yellow because it is not necessary in order to make
the system work.
In case of inverse kinematics remapping, the only thing that
changes on this graph is the topic Joint_states that becomes end-
EffectorPosition, but the structure of the graph remains the same.
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4.2.4 Robot Motion

The task of moving the Comau robot is entirely done by an application, written
in C++, that runs on the B&R LPC. As previously said on the TCP server
section, this application works as a TCP client receiving the new joints from the
computer on which is running ROS with the TCP server node.
This software, that we call C5G Open server, uses the eORL library:

• for the real time communication methods of in order to communicate with
the Comau robot;

• to compute the interpolation steps;

• to calculate the inverse kinematics.

This program has a simple structure. It is essentially composed by two meth-
ods: a main and a callback. In the main method are initialized all the variables
needed, and are also established the next two connections:

• one as a TCP client toward the ROS PC;

• one as a real-time Powerlink communication server toward the robot con-
troller.

The callback is a hard real time method called every two milliseconds, that does
the next steps:

1. it checks if a new TCP packet with a new target has arrived. If the type
of the remapping chosen in the packet is j then the new joints values re-
ceived are saved, otherwise (if the remapping mode is i) it computes the
inverse kinematics of the Cartesian position received and then it saves the
calculated joints values.

2. if the controller is in CRCOPEN_POS_ABSOLUTE modality, the new
joint values arrived from the TCP server are saved as a new target.

3. If a new target has arrived, it is assigned as a new movement to the inter-
polator and it is computed the next interpolation step. The new target is
set also if there is an old pending movement.

4. The last interpolation step computed is finally sent to the robot.

In order to make the robot controller go in CRCOPEN_POS_ABSOLUTE modal-
ity, the user must run a PDL2 program that loads this C5G Open modality14 on
the C5G controller, allowing to make the robot work with the implemented sys-
tem.

14described in section 3.1.1
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It is important to guarantee that the computational time of the operations per-
formed during the callback must stay under 2 ms, otherwise the robot controller
will not receive the packet in the established time, generating a timeout error.

During first tests of this architecture, we noticed that sending a new target to
the robot controller automatically aborted the precedent one, causing a very slow
and rough motion. This behavior is due to the interpolator available through
the eORL library. In fact, the robot is required to stay still before eORL can
communicate it a new target. This implies that the robot is continuously slowed
down when a new target is assigned.
Moreover, since the ROS retargeting system previously described publishes a lot
of new target during the human actor movement, this problem is even more
noticeable and the only possible solution is to change the used interpolator.

4.2.4.1 Use of the Reflexxes Library

In order to solve this problem, we exploited interpolation algorithms present
within the Reflexxes library, instead of the one inside eORL. In fact, the main
feature of Reflexxes library is the real-time computation of interpolation steps
during a continuous assigning of new targets.
In order to use the Reflexxes interpolator algorithm, in place of the eORL inter-
polator, we have first to initialize all the variables, the maximum velocities and
the maximum accelerations of the robot axes15, and also to set the interpolation
step period. After, we can finally substitute all the calls of the eORL interpolator
with the equivalent methods present in the Reflexxes library.
Once these changes have been done on the C5G Open server application, we ob-
tain a system that can manage all the new targets coming from the ROS PC,
avoiding any slowing down of the robot motion.

The implemented C5G Open Server application allows to use the described
retargeting techniques with all the Comau robot models. In fact, it is enough to
change the values of maximum velocities and maximum accelerations of the axes
of the robot model in order to use the C5G Open Server with another robot.

15taken from table 4.2.2
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Chapter 5
Conclusions and Future Works

5.1 Conclusions

The programming of Comau industrial robots can be currently done using only
TPs or computer keyboards. Nevertheless this robot programming technique can
take a long time to move a robot in specific positions. For this purpose, the tele-
operation technique presented in this master thesis allows to move an industrial
manipulator robot, controlling directly the joints motion, just using a markerless
based vision sensor that does not constrain the human operator to hold or to
wear any physical devices.

In this work, we have implemented a system which allows to teleoperate, in
real time, a Comau industrial robot in an intuitive way using a RGB-D sen-
sor, which in our case is a Microsoft Kinect sensor. The implemented software
packages exploit the potentialities and the modularity of both ROS and the C5G
Open architecture, allowing to apply the developed retargeting algorithm on each
model of the Comau robots family.
The implemented system revealed to be strongly reliable and fast on a Comau
Smart5 Six model in all the tests performed on real Comau robots. Moreover,
the system has been successfully tested also on a Comau 7-axes prototype robot,
whose tests revealed to be as stable as those performed with the Smart5 Six model.

Thanks to this modular architecture, developer can easily modify for example
the retargeting algorithms or the tracking sensor. In the next Section, in fact, we
will propose and describe some of the future works that could be done in order
to improve the actual retargeting system.
Part of the software developed during this master thesis work has been used as
base in some recently published works [17,18,21].
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5.2 Future Works

In this Section, we present some possible improvements that could be brought to
the system implemented during this master thesis work.

5.2.1 Integration of the C5G Open Server within ROS

An important simplification that could bring to the developed system architecture
is the usage of a single computer for the robot teleoperation (see Figure 5.1). As
hinted on Section 4.1, this can be achieved by porting Powerlink Ethernet drivers
in Ubuntu 14.04 Linux with a PREEMPT real-time kernel. In this way it will be
possible to install ROS Indigo and to import all the ROS packages implemented
for the teleoperation task, in order to run them on the LPC. Once this real-time
communication will work, it will be possible to control the real Comau robot
directly from a ROS node which will implement the C5G Open Server, avoiding
the use of two different computers.
Some tests has already been done, but until now, the Powerlink drivers revealed
not to be reliable yet on Ubuntu 14.04. However, further investigations will be
done in collaboration with Comau in order to solve these real-time communication
problems with the newer Ubuntu distributions.

Figure 5.1: In this image we can see a simplified version of the architecture
described on section 4.1, where ROS nodes and the C5G Open
Server are running on the same B&R LPC.
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5.2.2 Collision Avoidance

An interesting improvement for the implemented retargeting system is its in-
tegration with a collision avoidance system. Comau has developed a real-time
distributed system that allows to modify in real-time the override of their robots
in order to decelerate the axes motion, avoiding collisions between the manipu-
lator and the other environmental components located inside the same working
cell [20].
This system has been developed as a client-server architecture: in this way a PC
connected through TCP/IP to the C5G controller unit can get, at each instant,
the updated position of the robot, allowing to properly perform collision avoid-
ance. At this purpose, V-REP simulator1 has been used in order to calculate
the distances between all complex objects located in the working cell. In fact,
V-REP contains a fast algorithm able to calculate minimum distances between
the various meshes present in the scene. In synthesis, the algorithm works as
follow:

1. update the robot position inside V-REP, according to the real position given
from the C5G controller, via TCP/IP;

2. calculate the minimum distances between the virtual robot and all the other
objects on the scene;

3. compute the override to be sent to the real robot.

The robot velocity override is computed based on the next law:

vk =


vk−1 if d > dmax

vk−1 · d−dmin

dmax−dmin
if dmin < d < dmax

0 if d < dmin

(5.1)

where vk and vk−1 are respectively the override values at times k and k − 1. In
equation 5.1, the override decrements linearly its value if the robot is approaching
to a warning zone2 at distance dmin from an obstacle. If the robot is inside the
warning zone, the robot motion is stopped. While, in case the robot is moving
away from an obstacle, the override is linearly incremented to reach vk = 100.

This collision avoidance module has already been tested on the C5G Open
architecture and would be easily integrable on our system.

1V-REP official website: http://www.coppeliarobotics.com/
2a warning zone is a tridimensional space that encloses an item

http://www.coppeliarobotics.com/
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Figure 5.2: In this photo there is a working cell with a Comau robot moving
near a vertical panel. On the bottom right of the image is repre-
sented the same working cell within V-REP simulator.

5.2.3 Use of Leap Motion Sensor

For the teleoperation of the Comau robot, and in particular for the wrist move-
ments, a Leap Motion sensor could be used instead or along with the Microsoft
Kinect.
Leap Motion sensor is a small and cheap device that allows to track complex hand
gestures. It can manage the movements of all ten human hand fingers simulta-
neously with an accuracy of 0.01 mm and a frame rate of 300 fps. This device is
composed by three IR led emitters disposed in a row, with two IR cameras in the
middle. This characteristics allow to track a surface area of 24 cm2 with a wide
field of view up to 150◦ [19].

Thanks to an already existing ROS package3, it would be easy to integrate
the use of Leap Motion in order to teleoperate Comau robots, by interfacing the
Leap Motion sensor with the already implemented ROS packages. Moreover, such
a small device could be integrated on the Comau Teach Pendant in order to allow
the programming of Comau manipulator robots using this sensor.

3http://wiki.ros.org/leap_motion

http://wiki.ros.org/leap_motion


5.2 Future Works 55

Figure 5.3: The Leap Motion sensor.
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