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Introduction

One of the key problems in hydrology is to describe and characterize the spatial

and temporal variability of water balance, i.e. the splitting of precipitation into

evapotranspiration and runoff at different time scales (e.g. annual or seasonal). A

proper understanding of the factors that control the components of the annual water

balance provides a basic knowledge of the relations between climatic and hydrologic

variables. In addition, as the use of general circulation models to estimate the effects

of changing climate on precipitation is becoming increasingly widespread, a proper

identification of the factors that affect the annual water balance becomes more urgent

for the prediction of the related impacts on human well-being and ecosystems. A

good understanding of the variables and processed to which the water cyrcle is

most sensitive is the starting point to cope with water management issues such

as hydropower production and irrigation, especially in developing countries, where

problems concerning water supply might have impacts beyond economy.

Of fresh water available on the Globe, just 1 % is readily accessible to humans

(less that the 0,0025% of the total water) being stored in lakes, ponds or rivers.

Therefore, quantifying its availability and variability in time and space is a cum-

bersome and important issue with many ecological and managerial consequences.

Streamflows are particularly important in this context because river flows can be

measured with a certain accuracy compared to other components of the water bal-

ance such as evapotranspiration. Moreover, streamflows are a critical component of

the water balance because of the implied value for human uses and aquatic ecosys-

tems.

There have been numerous studies that have examined the factors driving the

temporal variability of runoff (e.g. Wigmosta & Burges, 1997; Xia et. al, 1997 ) but

fewer studies have examined the factors affecting the underlying spatial variability.

Thorntwaite (1948) and Budyko (1955) used mean annual precipitation and mean

annual potential evapotranspiration to identify moisture regimes at global scales.
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During the same period Langbein (1949) described the physical factors that con-

trol the spatial distribution of annual runoff in the conterminous United States and

found that climate was the dominant control of the spatial variability of annual

runoff. Budyko (1974) showed how the competition between available water and

available energy is a first order driver of long term annual water balance. More

recently, Milly (1994) indicated that precipitation characteristics such as storm in-

tensity and frequency, soil texture, vegetation type and density and geomorphology

are important determinants of the spatial variability of annual runoff. The afore-

mentioned benchmark studies have identified fundamental concepts of the water

balance, stressing the importance of climatic supply (precipitation) and demand

(potential evapotranspiration), seasonality in supply and demand and soil-moisture

storage for hydrologic studies.

A detailed knowledge of the drivers of the water balance makes more reliable

the prediction in areas potentially impacted by climate change. Changes in the

overall rainfall depth, intensity and temporal distribution, jointly with alterations

in evapotranspiration, might lead to variation in runoff inversely proportional to

the buffer capacity of the drainage area, causing shifts in the hydrological regimes,

with direct impacts on anthropogenic activities and the ecosphere (Botter, 2013 ).

Floods protection measures, reservoirs, diversions and other engineering facilities

dimensioned according to specific reference discharges would not be able to face more

severe conditions induced by changing climate. Riparian vegetation and riverine

ecosystem in general, are strongly influenced by the amount and temporal variability

of the discharge (Doulatyari et al., 2014; Ridolfi et al., 2006; Poff et al., 2007 ).

Moreover flow variance is strictly related to flow predictability, on which the mobility

and colonizing ability of living species depend. In particular, frequency and duration

of low discharges determine the amount of carnivores, the amount of physiologically

tolerant species and the variation of mortality through disease.

At global scales, climate change has strong impact on the long term variation

of water balance and river flow regimes. Among the others, Arnell et al. (2010) ,

evaluating the potential effects of climate change on a series of indicators of hydro-

logical regimes across the global domain, concluded that substantial proportions of

the land surface are likely to experience significant changes in hydrological regimes

by 2050. In particular, they estimated an increase of annual runoff across 47% of

the land surface and a decrease across 36%; an increase of the flood peaks across

more than 50% of the land surface and a decrease of drought runoff across 44%;
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significant changes in the amplitude of river flows trough the years across 80% of

land surface and the shift of the month of maximum runoff earlier, across much of

eastern Europe and north America.

The ability to evaluate the magnitude of the shifts of flow regimes not only in

response to climate changes, but also as an effect of regulation, is a fundamental task

to properly manage water resources. The knowledge of the modifications that dam,

diversions, or anthropic infrastructures may produce on downstream flow regimes,

proves fundamental to evaluate of the impact on downstream biomes and ecosystem

services provided by surface fresh water (Poff et al., 2007 ).

The aim of this thesis is to apply and test the performances of a set of well

known water balance models to a selection of catchments belonging to the United

States east of the Rocky Mountain, at seasonal and annual time scales. The 39

study catchments used are spreaded throughout the study area, so they involve

different climate zones and span a range of sizes from about 40 to 2000 Km2. Two

different datasets of potential evapotranspiration (PET) were applied and an overall

ranking of the models was obtained by taking into account their performances and

the number of parameters involved (Akaike, 1974 ).

The availability of reliable models at global/continental scales makes feasible a

robust estimate of the runoff coefficient, potentially for any ungauged catchment

within a given study area, thereby allowing the prediction of the mean discharge

based on precipitation and climate data. The same procedure can virtually be

applied to any part of the Globe where rainfall and PET data are available, upon

calibration of a minimum number of parameters.

Moreover, wherever water balance models are coupled to the stochastic approach

for soil moisture and river flow dynamics developed by Botter et al.(2007a, 2009)

(that links flow-producing rainfall pulses to discharge depending on climate fea-

tures and hydrological processes), a reliable characterization of flow regimes may be

achieved. In particular, the knowledge of the runoff coefficient at seasonal timescale,

coupled with the estimate of other parameters describing rainfall properties and re-

cession dynamics during single events, allows for an analytical expression of the

probability density function of streamflows (which is equivalent to the flow duration

curve). The knowledge of the probability density function (PDF) of the streamflows

along a river network is extremely valuable in decision making processes related to

water management, flood mitigation and riverine ecosystems. Streamflow distribu-

tions provide information about mean daily discharge and its variability, thereby
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defining water availability, discharge fluctuations and frequency of high and low

flows. As such, flow regimes impact riverine ecosystems and anthropic activities

like hydropower production, fishing, navigation, recreation, water supply for civil

and industrial uses and land irrigation. Riverine species and riparian vegetation

are also sensitive to variability in flow regimes. Impacts on the natural variability

of discharges caused by anthropogenic interventions (such as reservoirs and diver-

sions) can be properly assessed only based on the knowledge of pristine flow regimes.

Downstream a dam or a weir, in absence of discharge measurements prior to river

regulation the goal can be achieved only by using hydrological models.

All these issues suggest the importance of modeling tools to provide a reliable

description of the hydrological cycle at catchment scales across global domains, using

a narrow set of inputs such as rainfall records, potential evapotranspiration maps

and digital terrain models, which are widely available in many regions on the Globe.



Chapter 1

Hydroclimatic data and study

catchments

Research conducted in the last century (Budyko,1974; L’vovich, 1979; Milly,

1994; Voepel et al., 2011 ) suggested that the main variables involved in the water

balance can be grouped into two categories: climate and landscape variables.

• Climate variables include variables such as precipitation, potential evapo-

transpiration, incoming solar radiation and seasonality, and their time vari-

ability.

• Landscape variables include latitude, longitude, catchment area, mean el-

evation, mean slope, soil porosity, soil field capacity, wilting point, saturated

hydraulic conductivity, soil water available to plants, rooting depth and soil

composition.

It is worth to mention that this classification is quite general provided that some

variables of one category might depend on others belonging to a different category.

For example soil water available to plants is a function of rooting depth, porosity,

field capacity and wilting point and potential evapotranspiration strongly depends

on the incoming solar radiation (Hargreaves, 1985 ). Indeed, climate is one of the

major long term drivers of landscape and vegetation, and the latter actively interacts

with the landscape, at multiple spatial and temporal scales.

All these variables affect the water balance in a very heterogeneous way. The

well known semi empirical relation of Budyko identifies in the ratio between poten-

tial evapotranspiration (PET) and precipitation a first order driver of the long-term

5
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annual water balance. Afterwards, (Eagleson, 1978 and Milly, 1993 ) showed that

both soil water storage capacity and soil water are pivotal in the partition of precip-

itation into evapotranspiration, deep percolation and surface runoff, thereby poten-

tially explaining the observed departures from the Budyko curve. In these pionering

studies it was also emphasized how seasonality in water supply (precipitation) and

demand (evapotranspiration) and their synchronicity, may provide significant devi-

ations from the behaviour predicted by Budyko’s approach: large shifts occur when

peaks in supply and demand are out of phase (Budyko and Zubenok, 1961 ).

Roughly speaking, the recent literature has summarized the role of climate in

the water balance issue through precipitation and evapotranspiration while, among

all the landscape variables, the soil water storage capacity proved to be the most

influential. Since these variables are considered first order drivers of water balance,

they are input variables in most water balance models considered in this study.

1.1 Rainfall and discharges

The data processed in this work include daily rainfall records provided by the

‘American National Oceanic And Atmospheric Administration’ (NOAA), and daily

discharge records provided by the ‘United States Geological Survey’ (USGS). The

time series of these variable typically span several decades. Even though longer

time series may be sometimes available, they were neglected due to concerns about

the stationarity of the processes involved. Time series shorter than 20 years were

avoided in order to increase the robustness and the representativeness of the results.

For this study a brand new database (db@resQ), implemented on behalf of Prof.

Botter by i4 Consulting S.r.l., an engineering company set in Padova specialized in

hydraulics, hydrology, environment and information technology, has been used. The

aim of the database is to gather all possible hydrological information coming from

external sources (such as the USGS and NOAA ones and virtually many others)

and organize them in a consistent manner, allowing the user to export data in an

easy and friendly way, ready to be processed by numerical codes for hydrological

analysis. A remarkable potential of this tool includes the possibility to couple rainfall

and discharge series and download them at once, so as daily time series of different

hydrologic variables can be automatically synchronized. The procedure is made

easier by the aid of an integrated geographical information system (Google Earth)

where the location of the gauging station as well as river networks and PET maps
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can be simultaneously displayed. Currently, the database is still at an embryonal

stage where most of the data refer to the United States. However its potential

is much higher, since more information as geography, topography and climate can

easily be incorporated in this tool at Global scales.

1.2 Potential evapotranspiration

Evapotranspiration is the sum of evaporation and plant transpiration from Earth’s

land and ocean surface to the atmosphere. Evaporation accounts for the movement

of water to the air from sources such as soil, canopy and waterbodies. Transpiration

accounts for the uptake of water by plants and the subsequent loss as vapor through

stomata in the leaves associated to the photosynthetic process. Evapotranspira-

tion is a key factor in the water cyrcle: jointly with precipitation and discharge it

represents a key ingredient of the water balance at a catchment scales.

Potential evapotranspiration (PET) is a representation of the climatic conditions

and, possibly, of the vegetation cover, of a site. PET is function of the amount of

energy available at ground level (solar radiation), temperature, wind, air moisture

content, and, possibly, soil cover. Many models have been developed in order to

quantify PET, they are characterized by different degrees of accuracy, depending

on the number of input information required about the primitive drivers of the

evapotranspiration process.

Actual evapotranspiration (ET) is the actual amount of water vapour lost by

the land surface and vegetation and accounts for the vegetation characteristics, the

growing stage and the lack of soil water.

Since the PET plays a fundamental role in the water balance modeling, it is

very important to get reliable potential evapotranspiration data for hydrological

analysis. It should be noted that accurate estimates of PET and ET are difficult to

obtain: all the models developed to predict the magnitude of these terms starting

from climate and landscape variables inevitably introduce errors. Hence, in this

study two different global databases have been tested and compared, as detailed in

the following sections.
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1.2.1 MODIS

The ‘MODIS global evapotranspiration Project’ (MOD16) available from the

Montana University (http://www.ntsg.umt.edu) includes a dataset providing PET

at 1 km2 resolution for 1009.03 Million km2 global vegetated land areas at 8-day,

monthly and annual time resolution. The dataset cover the time period from 2000

to 2010 but has been extendet to all the periods for which hyfrologic data were

available. The MOD16ET datasets are estimated using Mu et al.’s improved ET

algorithm over previous Mu et al.’s paper (2007, 2011). The algorithm is based on

the Penman-Monteith equation (Monteith, 1965 ).

Evaporation of water intercepted by the canopy is a very important water flux

for ecosystems characterized by high LAI (Leaf Area Index). Canopy conductance

for plant transpiration is calculated by using LAI to scale stomatal conductance

up to canopy level. The required MODIS data inputs include global land cover

type classification (Friedl et al., 2002 ), LAI classification (Myneni et al., 2002 ) and

albedo (Luchet et al., 2000 ). The input non-satellite data are NASA’s MERRA

GMAO daily meteorological analysis from 2000 to 2010. The data are given in

tenth of millimeter so as to avoid floating numbers: this trick makes the huge high

resolution rasters easier to manage.

1.2.2 CGIAR

The ‘CGIAR-CSI Global-Aridity and Global-PET Database’ (Zomer et al., 2007 )

is a freely available global PET database ( http://www.cgiar-csi.org). The po-

tentialevapotranspiration has been modeled using the data available from the World-

Clim Global Climate Data (Hijmans et al., 2005 ). The WorldClim, based on a high

number of climate observations and SRTM topographical data, is a high-resolution

global geo-database (30 arc seconds or ∼1km at equator) of monthly average data

(1950-2000) of precipitation and minimum and maximum daily temperature. This

set of data is insufficient to fully parametrize physically based models for PET

(e.g. the FAO Penmann-Monteith equation), though can be appropriate for sim-

pler temperature-based PET equations. Authors tested the performances of less

demanding inputs variables models and concluded that Hargreaves method is the

most suitable to model PET globally. This method performed almost as well as

the FAO-PM, but required less parameters, with significantly reduced sensitivity to

error in climatic inputs (Hargreaves and Allen, 2003 ).
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Hargreaves (1985) used mean monthly temperature (Tmean), mean monthly tem-

perature range (TD) and mean monthly extra-terrestrial radiation (RA, radiation

on top of atmosphere) to calculate mean PET as:

PET = 0.0023 ·RA(Tmean + 17.8)TD · 0.5 (1.1)

Average monthly and annual PET (mm) layers at spatial resolution of 30 arc-

seconds for the 1950-2000 period are calculated using the Hargreaves method with

available layers of monthly average temperature parameters from WorldClim database

and extra-terrestrial radiation, computed for specific months using the methodology

described by Allen et al. (1998). It should be noted that temperature range (TD)

is an effective proxy to describe the effect of cloud cover on the quantity of extra-

terrestrial radiation reaching the land surface and, as such, it incorporates the effect

of more complex physical processes by using easily available climate data at high

resolution.

1.3 Data management

All the former information were included in a geographical information system

(ESRI ArcGis 10.0). The exact location of the discharge gauges was determined

on a detailed map of the river network of the conterminous United States pro-

vided by the NOAA (info: http://www.nws.noaa.gov/geodata/catalog/hydro/

metadata/riversub.htm; download: https://www.ncl.ucar.edu/Applications/

Data/). The drainage network upstream of the gauging discharge station was then

estimated. With the aid of the GIS system embedded in db@resQ, a representative

rainfall station, located as close as possible to the center of mass of the catchment

area and featured by more than about 20 years of measurements was singled out and

associated to each streamflow gauging station selected in the study. The reliability

of the use of just one rainfall gauge for each catchment was supported by some test

which proved that, at least for the sizes of the basins involved (< 2000km2), the

spatial variability of daily rainfall statistics is weak, and the use of a single rainfall

station doesn’t introduce any remarkable bias in the analysis.

Finally, to calculate a representative value of PET for every catchment, a buffer

region of 12km around the main channel of each basin was delineated within which

the average PET was calculated for every PET map. The plots in Figure 1.1 show a
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comparison between the values of PET of the two databases extracted in the former

manner for the 39 study catchments. The plots are interesting in order to highlight

and compare the results of the two models. Figures 1.1 suggest how the MODIS

model gives higher estimates of PET with respect to the CGIAR model, both at

seasonal and annual time scale. The departure is quite constant and doesn’t increase

significantly with increasing values of PET.

1.4 Study Catchments

39 catchments for calibration, as well as 4 catchments for validation, have been

considered in this study. They are spreaded quite evenly throughout the eastern

part of the United States (east the Rocky Mountains). The size of the watersheds

span between 40 and 2000 km2 and include many different climatic regions. All the

study catchments are pristine (unregulated) and not impacted by natural or artificial

storages (lakes, ponds, reservoirs). Artificial and natural storages may have strong

impact on river flow regimes and significantly modify the intra and inter seasonal

flow variability by buffering the effect of input (rainfall) and hiding the natural

linkage between rainfall and streamflows. Table 1.1 summarizes the main features

of the 43 catchments involved in this study. Capital letters are used to identify

the catchments used in the validation phase, while numbers from 1 to 39 mark the

catchments used for the models calibration.

Figure 1.2 shows the spatial distribution of the 43 catchments across the Eastern

US. On the background the CGIR average annual potential evapotranspiration is

shown to represent the underlying heterogeneity of climate regimes.

The northern catchments (marked with a dotted circle) experience relevant snow

precipitations during winter. The presence of snow impacts significantly the water

balance across seasons, in particular by storing water inside the catchment in winter,

(when precipitation occurs) and releasing the stored water in spring, when the snow

melting makes the runoff coefficient to rise dramatically. Therefore, in the following

application of water balance models at the seasonal scale, the results during winter

and spring were disregarded.
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Chapter 2

Methods

2.1 The water balance

P
P

W

U

S

Q

ET

R

Figure 2.1: Water balance scheme

In hydrology water balance equations can be used to describe the flow of water

across a given system. Such a system can be constituted by different types of

15
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hydrological domains, such as a soil column or an entire drainage basins. Since mass

is a conservative quantity in low energy physical processes (not involving nuclear

interactions), a mass balance equation can be easily established for any well defined

control volume. When the control volume is represented by a catchment, the water

balance equation can be written as:

∆W = (〈P 〉 − 〈Q〉 − 〈ET 〉 − 〈R〉)∆T , (2.1)

were ∆W is the difference of water stored inside the system in the time interval ∆T ,

〈P 〉 is the average precipitation during ∆T (the only input of the system) while

〈Q〉 , 〈ET 〉 , 〈R〉, are the time averages of the streamflow at the catchment outlet,

evapotranspiration and recharge (i.e. the system’s outputs over the time interval

∆T ).

Precipitation potentially includes both snowfall and rainfall, even though snow

dynamics are not explicitly taken into account in the water balance models inves-

tigated in this thesis. Discharge through the catchment outlet is the sum of the

subsurface slow flow and the quick response due to the surface runoff (Q = U + S).

The wetting component of precipitation i.e. W = P − S is defined as the fraction

of rainfall infiltrating into the soil. Water infiltrated can be stored for long times in

the soil if it’s matric potential is low enough, thereby becoming prone to be kept by

plant roots and evapotranspired. Since ET is driven by climate and vegetation con-

ditions, vegetation plays a key role in water balance. Alternatively, the infiltrated

water can be released to the drainage network as subsurface runoff (U) or recharge

(R). Figure 2.2 provides a scheme of the water balance partitioning described above.

P

W S

ET U
Q

R
Figure 2.2: Water fluxes

The accumulation term, ∆W , includes water stored in the soil and in surface



2.1. THE WATER BALANCE 17

water bodies. All the models that have been tested in this study explicitly consider

the storage of water as soil moisture. Other factors like lakes, artificial storages and

snow packs may dramatically impact the water balance, especially at the seasonal

time scale. To circumvent this issue, catchments with ponded areas, lakes or artificial

basins, aw well as areas (or seasons) strongly affected by snow dynamics, have not

been considered.

In agreement with most of the recent literature, the models considered in this

thesis assume that all the non-vaporized wetting component W is released as stream-

flow or accumulated as soil moisture. This means that recharge is neglected. Hence,

the analysis should be limited to catchments with a reduced inter-catchment ground-

water exchange.

Under these assumptions, and further assuming that both at annual and seasonal

time scales the intra-seasonal change of storage is negligible with respect to the

underlying input-output flows, Equation (2.1) simplifies into:

〈P 〉 = 〈Q〉+ 〈ET 〉 (2.2)

which is the basis for most physically-based models used in this study.

2.1.1 Rainfall partitioning

The problem of estimating the amount of surface runoff and, hence, the parti-

tioning of rainfall between wetting and surface runoff is a major issue in hydrological

modeling. The presence of surface runoff reduces the amount of water infiltrating

into the soil and, as a consequence, the actual evapotranspiration (ET) and the base

flow (U). The result is a quicker response of a catchment to rainfall and an increase

of the runoff coefficient, as surface flows are directly conveyed to the stream without

being processed by the soil matrix and vegetation.

From a physical perspective the occurrence of surface runoff strongly depends

on topography, geology, soil texture, vegetation, and climate (e.g. frequency and

intensity of rainfall events, evapotranspiration rates etc.). Surface runoff is promoted

by steep saturated slopes or impervious areas without vegetation in response to

prolonged and intense rainfall events.

Some of the models discussed in this work require the prior knowledge of surface

runoff, while in other cases such information is not required because surface runoff

processes are not explicitly modeled. However, empirical partition models to identify
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S from P and Q can be applied to both types of models, so as a water balance

equation analogous to eq. (2.1) can be written in terms of wetting, infiltration

and base flow, while surface runoff volumes are assumed to entirely contribute to

streamflows.

A simple and effective method to perform the partitioning is represented by the

following analytical one parameter recursive filter (Lyne and Hollick, 1979 ):

Uk = aUk−1 + 1−a
2

(Qk +Qk−1)

Uk ≤ Qk

(2.3)

where U and Q are, respectively, the slow component of the streamflow and the

overall streamflow itself (Q = S + U), while the subscript k identifies the k-th step

in the time series(e.g. the k-th day from the beginning of the time series). The

value assigned to a is 0.925, in agreement with the literature (Sivapalan et al., 2011;

Voepel et al. 2011 ).

The filter singles out the base flow U cutting the highest and steepest peaks of

the hydrograph, assuming that the quick response of the catchment caused by sur-

face runoff. This simple model overcomes quite effectively all the difficulties lead by

a proper physically based description of the phenomenon. Though, significant over-

estimation of surface flows may be introduced in presence of fast subsurface flows.

Figure 2.3 shows an example application of the separation model. It should be noted

that this method can not be applied in the absence of streamflow measurements.

2.2 Water balance models: overview

Five existing water balance models were tested and compared by analyzing their

ability to predict observed runoff coefficients in the Eastern United States. The mod-

els considered include empirical, semiempirical and physically-based models. Each

model has a different number of variables and parameters, which were calibrated in

order to maximize model performances. In doing that, physically meaningful bonds

for the model parameters have been imposed. Provided that the outcomes of the
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Figure 2.3: Filter performances in spring (Calfkiller River)

research is a regional-scale prediction of flow regimes, the model parameters were

assumed to be spatially homogeneous within the entire study region, so as the cali-

brated parameters can be potentially exported to any catchment within the Eastern

United States.

Table 2.2 presents the 5 models included in this study and the corresponding

reference papers where they are described:

Table 2.1: Models

Code Relevant references Type Number of

parameters

WB1 Budyko, 1974 Empirical 0

WB2 Porporato et al., 2004 Physically-based 1-4

WB3 P.C.D. Milly, 1994 Physically-based 2

WB4 Sivapalan et al., 2011 Semi-empirical 4

WB5 Trabucco et al., 2010 Physically-based 0
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Model performances have been evaluated by properly taking into account the

different number of parameters of each model (see section 2.9).

In this study the uppercase symbols (Q,P,ET etc.) denote instantaneous values

of hydrological variables, while brackets (〈Q〉 , 〈P 〉 , 〈ET 〉 etc.) are used to denote

their temporal averages on a specific time interval (∆T ), such as a season or a year,

according to the following definition.

〈•〉 :=
1

∆T

∫
∆T

•(t)dt (2.4)

where • is a generic function of time. Since spatial variability within a single catch-

ment was not explicitly taken into account (except in one of the models), the hydro-

logical fluxes are referred to spatial averages within the catchment area, otherwise

mentioned.

The basic concepts and the physical processes described by each model are pre-

sented in the next sections. Some models displays common features and similar

working hypothesis. For example, they all assume that vegetation cover is suffi-

ciently extensive such as direct evaporation from the soil need not be considered;

however they can differ in crucial features of the formulation or even in the model

typology they belong to (e.g. conceptual vs empirical).

2.3 WB1

M. I. Budyko (1920-2001) was a Russian climatologist and one of the founders

of physical climatology. He pioneered studies on global climate and calculated the

Earth temperature through simple physically-based equilibrium model in which the

incoming solar radiation absorbed by the Earth’s system is balanced by the energy

emitted to space as thermal energy. Budyko’s grounbreaking book, ‘Heat balance of

the Earth’s surface’ published in 1956 transformed climatology from a qualitative

into a quantitative physical science. These new methods were quickly adopted by

climatoliogist around the world. For what concerns the water balance, his subse-

quent book ‘Climate and Life’ (1974) played a key role in delineating for the first

time the drivers of annual water balance at catchment scales. In his work he presents

a semi-empirical relation which looks at the ratio between the annual average ac-
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tual evapotranspiration and the annual average rainfall (〈ET 〉 / 〈P 〉) as a non-linear

function of the ‘Dryness Index’ (DI), defined as the ratio between annual average

potential evapotranspiration and the annual average rainfall (〈PET 〉 / 〈P 〉). This

approach, considers the dryness index as the first order driver of the water balance

and is a direct consequence of Budyko’s former works in as much it combines the

energy supply and demand into a single index. The amount of energy supplied is

expressed as the maximum amount of water that can be vaporized under the ob-

served climate conditions, while the demand is the effective availability of moisture

that could potentially be vaporized, which is again a function of the climate.

Budyko estimated the ratio 〈ET 〉 / 〈P 〉 as a function of DI by fitting the former

quantities for hundreds of basins all around the World. The (annual) actual average

evapotranspiration, 〈ET 〉 , was simply computed, based on rainfall and discharge

data, as 〈ET 〉 = 〈P 〉 − 〈Q〉.
These quantities are temporally averaged values throughout the year and the

relation between the ratio 〈ET 〉 / 〈P 〉 and DI is assumed to hold in the long term.

0 2.521.510.5

1

0.8

0.6

0.4

0.2

4.543.53

B

A

D I =<PET/P>

<ET/P>

Figure 2.4: Semiempirical Budyko’s curve

Figure 2.4 displays the semi empirical relation between 〈ET 〉 / 〈P 〉 and DI de-
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veloped by Bydyko, whose equation can be written as:

〈ET 〉
〈P 〉

=

[
DI(1− e−DI ) tanh

(
1

DI

)]0.5

(2.5)

where tanh is the hyperbolic tangent.

The two straight lines A and B show two theoretical end-members:

• The line A represents the ‘Energy limited upper bound’: the actual evap-

otranspiration must be always lower than the potential evapotranspiration

regardless of the crop considered, provided that water is tightly bounded to

dry soils.

• The line B represents the ‘Water limited upper bound’: the vaporized water

can never exceed the supply (precipitation), no matter how large is DI .

The Budyko curve represents a very simple and effective way to estimate the

annual runoff coefficient, based on rainfall and PET data, through the following

relationship:

〈Q〉
〈P 〉

= 1− 〈ET 〉
〈P 〉

= 1−DI

[
DI(1− e−DI ) tanh

(
1

DI

)]0.5

(2.6)

The model was included in this study because it is parameter free and is consid-

ered a sound milestone in the scientific community.

MODEL PARAMETERS: In this model the only variable involved is DI , which

depends on rainfall and potential evapotranspiration. Since rainfall is measured in

climatic stations, while the PET used in this study comes from either the MODIS

or the CGIR datasets, no parameter need to be calibrated.

2.4 WB2

This model follows a physically-based minimalistic approach, where the soil-

plant-atmosphere system is represented by focusing on the temporal fluctuations of

water availability in soil. The water stored within the soil is seen as a stochastic

state variable that governs the water balance at a catchment scale.

The terrestrial hydrologic cycle is a manifold system whose understanding re-

quires a massive amount of observations, simple or detailed models and demanding
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theoretical/numerical analysis: these tools are needed to overcome the inherent

difficulties of dealing with a complex non linear system with essential stochastic

components and feedbacks at multiple timescales.

The awareness in the complexity of developing a model for the water balance

led to a simplified approach where the role of the parameters that control soil mois-

ture dynamics clearly emerges, offering a theoretical framework whose generality

could surpass that of more complicated models that require cumbersome numerical

simulations. The model offers a low dimensional description of key hydrological

processes where the dominant deterministic (and possibly non linear) components

are separated from high-dimensional (i.e. stochastic) environmental forcing.

The aim of this model is to offer a very parsimonious yet realistic representa-

tion of the water balance that captures the essential components: the water holding

capacity of the soil, which is a function of the soil and root characteristics and is

responsible for the threshold-like non linearity that triggers deep infiltration and

surface runoff; the soil-moisture dependence of evapotranspiration and photosyn-

thesis; and the intermittency and unpredictability of rainfall, whose variability in

terms of both frequency and depth of events proves to be crucial.

Soil moisture dynamics are interpreted and modeled at daily time scales, by con-

ceptualizing the soil as a reservoir with a finite storage capacity intermittently filled

by rainfall events in the form of random pulses featured by random depth. Water

losses occur via evapotranspiration, deep infiltration and surface runoff. Vertical

gradients of soil moisture are neglected, assuming that the propagation of the wet-

ting front and the soil moisture redistribution over rooting zone are negligible at the

daily timescale employed by the formulation.

The water balance equation is recasted here in terms of the relative soil moisture

s (dimensionless) vertically averaged over the rooting depth Zr [L]. Accordingly,

the total volume of soil water per unit ground area at a give time t is s(t)nZr [L],

where n is the vertically averaged soil porosity (volume of voids/total volume). The

model assumes that when s exceeds a given threshold s1, the rainfall in excess is lost

by vertical drainage. The empirical parameter s1 depends on the type of soil and is

typically comprised between the so-called field capacity (i.e. the soil moisture level

below which drainage is negligible) and complete saturation (s = 1). In practice,

s1 defines the soil holding capacity. As all the incoming precipitation is assumed

to infiltrate within the soil up to saturation, the present approach is effective when

the Dunne or saturation-from-below mechanism of runoff formation is dominant
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compared to the Hortonian runoff (rainfall intensity exceeding the soil saturated

hydraulic conductivity); this is often the case for vegetated surfaces with negligible

topography and absence of soil crusting.

Evapotranspiration, ET [L/T ] is assumed to decrease linearly from a maximum

value (potential evapotranspiration PET) under well watered conditions (s = s1)

to 0 at the wilting point (s = sw). The reduction of evapotranspiration with de-

creasing soil moisture is a well-established fact that can be ascribed to increased

resistance to soil water transport within the soil-plant-atmosphere continuum when

soil water potential is reduced. While a marked non-linearity characterizes the

evapotranspiration-soil moisture relationship pointwise, at larger scales the temporal

variability and spatial heterogeneity of hydrological processes tends to significantly

linearize such relation (Wetzel and Chang, 1987; Crow and Wood, 2002 )

Rainfall input, P (t) [L/T ], is modeled as a marked Poisson process with fre-

quency λp [T−1]. Each rain event carries a random depth of rainfall, exponentially

distributed with mean α [L]. Such a model has been shown to provide a simple yet

realistic representation of rainfall at the daily timescale for different hydroclimatic

regimes (Milly, 1993; Rodriguez-Iturbe et al., 1999 ). According to this model, the

cumulated rainfall amount during a time interval ∆T is λPα∆T .

Accordingly to the modeling sheme described above, the soil moisture balance

equation can thus be written as:

nZr
ds

dt
= P (t)− ET [s(t)]− L[s(t), t] (2.7)

Because of the forcing term P (t), Equation (2.7) is a stochastic differential equa-

tion that requires a solution in probabilistic terms.

If x = (s−sw)/(s1−sw) is the normalized soil moisture and w0 = (s1−sw)nZr the

maximum soil water storage available to plants, the governing quantities of the pro-

cess are w0, α, λp and PET . According to dimensional analysis, these quantities can

be grouped into two dimensionless numbers: γ = w0/α and λP/η = (λpw0)/ 〈PET 〉
(or DI = (γη)/λp = 〈PET 〉 / 〈P 〉), being DI the Budyko’s dryness index, η the

normalized evapotranspiration loss under well watered conditions (η = 〈PET 〉 /w0)

and 〈P 〉 the mean rainfall rate (〈P 〉 = αλp). From a physical perspective, this

implies that the terrestrial water balance is governed by three factors: i) the ratio

between the soil storage capacity and the mean rainfall input per event γ; ii) the

ratio between the maximum evapotranspiration and the mean rainfall rate (i.e. the
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dryness index DI) and iii) the ratio between the rate of occurrence of rainfall events

and the maximum evapotranspiration rate λp/η. Such dimensionless groups define

the interaction of the most important climate, soil, and vegetation parameters in

controlling soil moisture dynamics.

Following Rodriguez-Iturbe et al.(1999), the master equation of the probability

density function (PDF) of x can solved analytically for steady-state conditions. The

result is a truncated Gamma distribution:

p(x) =
N

η
x

(
λp
η
−1

)
e−γx (2.8)

Where N is the normalization constant whose analytical expression is:

N =
ηγ

λp
η

Γ(λp/η)− Γ(λp/η, γ)
(2.9)

Being Γ(·) and Γ(·, ·) the complete and incomplete Gamma functions (Abramowitz

and Stegun, 1964 ). The mean effective relative soil moisture is expressed as:

〈x〉 =
λp −Ne−γ

ηγ
(2.10)

Therefore, the normalized water balance can be written as

1 =
〈ET 〉
〈P 〉

+
〈L〉
〈P 〉

= DI 〈x〉+
〈L〉
〈P 〉

(2.11)

where 〈ET 〉 = 〈x〉 〈PET 〉

Equations (2.11) and (2.10), describe the partitioning of the rainfall input into

evapotranspiration and deep infiltration plus runoff as a function of the governing

climate, soil and vegetation parameters. While initially conceived at a point spatial

scale, this model can be also interpreted at catchment scale (Settin et al., 2007 ).

Under the assumption that all the water accounted in the loss term L crosses

the control section as discharge Q, the mean runoff coefficient can be written as:

〈Q〉
〈P 〉

=
ηγ

λp
η e−γ

λp (1− Γ(λp/η, γ))
=

DIγ
γ
DI e−γ

γ (1− Γ(γ/DI , γ))
(2.12)
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where DI is the dryness index.

The plot represented in Figure 2.5 compares the theoretical solution of the water

balance model described above for different values of the parameter γ = w0/α.

γ = 0.5

γ = 1

γ = 2

γ = 5.5

γ = 20

γ = 1000

DI

ET/P

DI

 <ET/P>

Figure 2.5: Fraction of total rainfall lost by evapotranspiration as a function of Budyko’s

dryness index for different values of the parameter γ

MODEL PARAMETERS: The key variable of the model is DI , that is a function

of the measured average rainfall characteristics (embodied in λp and α), and of

the potential evapotranspiration, whose value is provided by one of the two PET

datasets (i.e. CGIR or MODIS). Being γ = w0/α, the only parameter of the model

is w0 = (s1 − sw)nZr. In this study the calibration was performed on Zr, assuming

fixed values for s1, sw and n (s1=0.5, sw=0.2, n=0.35 ).

2.5 WB3

Model WB3 is based on the hypothesis that the long-term water balance is de-

termined by the local interaction of fluctuating water supply (precipitation) and de-

mand (potential evapotranspiration), mediated by water storage in the soil. Hence,

the approach is similar to that underlying WB2. Peculiarity of the model is the

adoption of an idealized representation of time and space variability of the most

relevant hydrologic variables, providing a simple water balance equation for a given
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area under spatially uniform climate and vegetation conditions. The partitioning

of average annual precipitation into evapotranspiration and runoff is assumed to

depend on seven dimensionless factors:

• The ratio of spatially-averaged annual potential evapotranspiration to average

annual precipitation (dryness index DI);

• The mean numbers of precipitation events per year < N > (which is a fre-

quency factor analogous to λP in WB2);

• The ratio of spatially averaged plant-available water holding capacity, w0, of

the soil to the annual average precipitation, α < N >;

• The shape parameter of the Gamma distribution describing spatial variability

of storage capacity, k;

• Simple measures of seasonality of mean precipitation intensity, storm arrival

rate and potential evapotranspiration.

The model focuses on the following aspects of the water balance: in humid

areas (dryness index < 1) the dominant factor producing runoff is the excess of

annual precipitation over annual potential evapotranspiration, even though runoff

caused by variability of supply and demand over time may be also significant; in arid

regions (dryness index > 1), instead, most of runoff is caused by forcing variability

over time. The model represents the first attempt to provide a physically-based

explanation of the departure of Budyko’s curve from the two theoretical asymptotes,

and understand the reason of the considerable scatter of observations around that

curve. From a physical basis, the most likely reason underlying the observed gap

from the horizontal asymptote, (i.e. the runoff coefficient), has to be sought in

two related characteristics of land surface: its finite water storage capacity and its

finite permeability. For example, if the water storage capacity of soil is too small,

temporary excesses of water supply will be lost as surface runoff, leading to an

increase of the runoff coefficient even though the dryness index of the area exceeds 1.

Finite-permeability effects are involved in two different ways,both of which increase

runoff at the expense of evapotranspiration: i) if precipitation rates exceed the

rates at which water can infiltrate the soil, the runoff will occur regardless of the

underlying long-term water and energy supplies; ii) if potential evapotranspiration

rates exceed the rates at which water within the root zone can travel the short
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distances to plant roots (or to the surface of bare soil), then evapotranspiration may

fall below its water and energy supply limits.

The working hypothesis is that water balance can be described as the simple

interaction of water supply, demand, and finite soil water storage. Variabilities in

time associated to both seasonality and storminess are included in the formulation,

as well as spatial variability of storage capacity. Conversely, finite permeability

effects are ignored.

By explicitly resolving intraseasonal, interseasonal and spatial variabilities, the

approach avoids the introduction of empirical parameters. The conceptual simplicity

of the approach allows the development of analytic solutions for particular cases and

provides a dimensionless formulation of the problem even in its most general case.

The model is here presented in its general formulation, which doesn’t have a

close analytical solution and can be solved by means of cumbersome Monte Carlo

simulations. However, once additional assumptions about the time variability of the

forcing factor are introduced, it is possible to get analytical solutions, which are easy

to be implemented and included in a computer code.

The starting point for the analysis is a local storage model for the water balance

of the root zone. The average water balance is then obtained by integration of a

continuous water balance equation with respect to time. This integration recognizes

both the deterministic seasonal variability and the random, intraseasonal variability

of atmospheric forcing of the surface. The areal mean of the long-term balance is

finally achieved by integration in space. The latter is performed using a distribution

function to describe spatial variability of surface characteristics but ignoring spatial

variability of climate.

The uppercase symbols P, PET,Q denote the instantaneous specific (per unit

of area) water fluxes associated to precipitation, potential evapotranspiration, and

root zone drainage (discharge). These variables fluctuate at daily (and shorter) time

scales because of the random nature of atmospheric processes, but also display clear

seasonal cycles. Angle brackets (e.g. 〈P 〉) are used to denote temporal averages.

In agreement with WB2, the reference control volume is bounded above by the

soil-atmosphere interface and has sufficient vertical extent to contain essentially all

of the water readily available to vegetation uptake and transpiration. The vertical

extent corresponds approximately to the average depth of rooting of the predominant

plants, which is typically around 1m. The horizontal extent of the control volume is

sufficiently large to reflect the effect of horizontal root zone water fluxes, induced by
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soil heterogeneity and topographic curvature. The mass balance of water for such a

control volume, expressed in terms of equivalent liquid water depth and volumetric

flux rates, is:

dw

dt
= P − ET −Q (2.13)

Where w = Zrn s(t) is the depth of water stored and P is the rate of infiltration

of liquid precipitation, which is assumed to be equal to precipitation itself, implying

that the presence of frozen precipitation, snowmelt and snowpack are implicitly

ignored. The following assumptions are then introduced:

1. The soil is sufficiently permeable to allow all liquid precipitation and snowmelt

to infiltrate;

2. All soil soil water stored at potentials greater than the permanent wilting point

is readily depleted at the potential evapotranspiration rate;

3. All water stored in excess of a well-defined field capacity is rapidly removed

from the control volume by drainage;

4. No drainage occurs when the average soil moisture content falls below the field

capacity.

For a well-developed vegetation cover the storage capacity w0 may be interpreted

as a depth integral over the root zone of the difference between the volumetric

moisture contents of the soil at field capacity (ns1) and at the wilting point (nsw),

being n the average porosity of the soil within the root zone. Let r(z) denote the

fraction of area at depth z that is affected by the root system of the vegetation; in

principle, this fraction depends in a complicated way on rooting density, hydraulic

properties of the soil and timescale (i.e., seasonal versus storm/inter-storm) of the

uptake process. Typically, it is assumed that r(z) steps down from 1 to 0 at some

well-defined rooting depth Zr, in which case the water holding capacity w0 is

w0 = nZr(s1 − sw) (2.14)

which is the parameter that controls the water balance in this formulation.
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Variability over time The dominant mechanism that controls the seasonality of

climate is the periodicity of the solar irradiance normal to the top of the atmosphere.

At extratropical locations, this produces a strong signal with a dominant period of

1 year in most climatic regions. Therefore is assumed that:

P (t) = 〈P 〉 (1 + δp sinωt) + ξp(t) (2.15)

ET (t) = 〈ET 〉 (1 + δet sinωt) (2.16)

Where δp and δet are the ratios of the amplitudes of the annual harmonics to

the annual averages of P and PET and ξp(t) is the random component of the signal

due to the natural stochasticity of the rainfall events. Conversely, the random

component of the evapotranspiration is disregarded. With 2π/ω equal to one year,

these expressions capture the essential features of the annual land surface hydrologic

forcing outside the tropics. Concerning the random component of the rainfall signal,

it is assumed that precipitation arrives in discrete events that we shall call storms,

that the arrival of these storms in time is a Poisson process, and that the amount

of precipitation in any storm is governed by the exponential distribution. The

mean storm arrival rate is allowed to vary seasonally with only the annual harmonic

retained:

N(t) = 〈N〉 (1 + δN sinωt) (2.17)

Where 〈N〉 = 365λp (being λp the rainfall frequency in day−1) represents the

average number of rainy days per year. The expected value of storm depth at any

time of the year is simply 〈P 〉 / 〈N〉.

Variability over space To characterize the catchment water balance, it is de-

sirable to integrate Equation (2.13) in space. In doing that, spatial variability of

both climatic and soil factors must be considered. In this analysis, however, the

variability over space of the statistics of point atmospheric forcing is ignored, thus

the local values of P, PET,N are everywhere equal to their areal means. It is well

known, however, that the soil hydraulic characteristics vary greatly at relatively

small scales. The nonlinear dependence of water balance on w0 suggests the need



2.5. WB3 31

for explicit consideration of spatial variability of w0. It is assumed that the distri-

bution of water-holding capacity within a given area, fw(w0), is given by a Gamma

distribution. This distribution is very flexible and analytically tractable:

fw(w0) =
λ(λw0)k−1e−λw0

Γ(k)
(2.18)

According to eq. (2.18) , the mean of w0 is k/λ and its coefficient of variation

is k−0.5. The spatial mean of any function of w, Z(w) (such as evapotranspiration

and runoff) are assumed to be spatially averaged over the density function (2.18).

An analytical solution of the general water balance problem formulated above

has not been found. However, when the variability over time of atmospheric forcing

is ignored or is limited to either the seasonal or random components alone, analytic

solutions can be derived. The methodology required to obtain the general solution

by Monte Carlo simulation is not included herein and can be found in the related

paper. The trivial analytical solutions in the cases of reduced temporal variability of

the hydrological forcings and large storm arrival rate (δp = δN = δet = 0; 〈N〉 → ∞)

are not presented. The analytical solution presented below and used in this study,

instead, refers to the case where seasonal cycles of climatic variables are neglected.

(δp = δN = δet = 0).

The analytical solution of the water balance equation in the simple case where

spatial variability of soil properties is neglected (k →∞) reads:

〈Q〉
〈P 〉

= 1− e〈PET 〉〈N〉(1−D
−1
I ) − 1

e〈PET 〉〈N〉(1−D
−1
I ) −D−1

I

(2.19)

Where DI is the dryness index. Instead, the more general result in the case

where spatial variability of soil storage capacity is considered (which is the analytical

solution adopted in the following analysis) reads:

DI < 1

〈Q〉
〈P 〉

= 1− (1−DI)
∞∑
j=0

[
1 + jγ(D−1

I − 1)k−1
]−k

DI
j (2.20)

DI > 1
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〈Q〉
〈P 〉

= 1− (1−DI)
∞∑
j=0

[
1 + (j + 1)γ(1−D−1

I )k−1
]−k

DI
−j (2.21)

MODEL PARAMETERS: According to this model, the water balance is ruled by

〈P 〉 = 〈N〉α, 〈PET 〉 , w0 = nZr(s1 − sw) and k, being γ = w0/α. The rainfall data

and PET datasets allow a direct estimate of α, 〈N〉 and PET , while the parameter

that need to be calibrated are Zr and k, assuming s1 = 0.5, sw = 0.2, n = 0.35.

2.6 WB4

This model is based on an annual water balance which is performed through a a

two-stage partitioning: first, annual precipitation is decomposed into quick flow and

soil wetting and, subsequently, the resulting wetting is partitioned into slow flow

and vaporization. The analytical functional relationships are fitted at each stage to

the measured values in order to produce parametric expressions for the components

of the water balance, (namely quick flow, slow flow and vaporization). The end

point is a dimensionless reinterpretation of two former models previously developed

by L’vovich (1979) and Ponce and Shetty (1995a, 1995b).

The L’vovich approach is partly empirical since it is based on empirical analyzes

of rainfall-runoff data for the characterization of the annual water balance. On the

other hand, it goes further than Budyko by explicitly including the partitioning of

annual precipitation into its major components of storage, release by quick flow and

slow flow, and evapotranspiration (combining bare soil evaporation, interception

loss and plant water uptake). Hence, L′vovich approach is suitable to characterize

catchment at the annual time scale and can be defined as a functional approach

(Wagener et al.; 2007 ). About twenty years later, Ponce and Shetty developed an

analytical formulation of the L′vovich approach and provided some mathematical

relations to express the main components of the water balance as a function of four

physically sound parameters. These parameters need to be calibrated on measured

data as will be detailed afterwards.

The rainfall partitioning into quick flow, slow flow and vaporization used by

L’vocich follows the schematization shown in Figure 2.1, assuming that the recharge

is negligible (R = 0). First, precipitation P is partitioned into a quick flow com-

ponent (S) and an infiltration (termed catchment wetting, W ). Then, the result-
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ing wetting is further partitioned into a slow.flow component (U), and an energy-

dependent vaporization component (evaporation plus transpiration, ET ). Both the

quick-flow and slow-flow components need to be combined to yield the total discharge

in the stream (Q = U + S). Mathematically the two-stage hydrologic partitioning

described above can be written as:

P = S +W (2.22)

W = U + ET (2.23)

The combined annual water balance, neglecting carryover of storage between

consecutive years, can then be written as:

〈P 〉 = 〈ET 〉+ 〈Q〉 (2.24)

〈Q〉 = 〈S〉+ 〈U〉 (2.25)

L’vovich implemented this theory in a large number of catchments in many ecore-

gions of the world. This was done by assembling continuous data on precipitation

and streamflow and then applying a base flow separation procedure to partition

total streamflow into a slow-flow (e.g., base flow) component and a quick-flow (e.g.,

surface flow) component. In particular, the Lyne and Hollick (1979) algorithm,

(see Equation (2.3)), was adopted in order to single out the slow component of

streamflow. By aggregating all these quantities to the annual scale, L’vovich was

then able to estimate 〈P 〉 , 〈Q〉 , 〈S〉 and 〈PET 〉 for every year of record, then, by

difference, 〈W 〉 and 〈ET 〉. Based on this partitioning he was able to estimate the

empirical relationships between 〈S〉 and 〈P 〉, 〈W 〉 and 〈P 〉, 〈U〉 and 〈W 〉, as well

as the dependence of 〈ET 〉 on 〈W 〉. He finally presented the results in the form

of normographs and tables and highlighted regional differences in the relationships

between the different ecoregions of the world.

Despite some scattering, the empirical relationships obtained by L’vovich ex-

hibit some common, universal patterns. A general trend of the empirical relations

obtained by L’vovich are schematically shown in Figure 2.6.

As per the partitioning of precipitation into surface runoff and wetting, there

seems to be a threshold value of annual precipitation that must be satisfied before



34 CHAPTER 2. METHODS

ET

<P> <W>

<W><P>

<S
>

<W
>

<E
T>

<U
>

Figure 2.6: Curves illustration typical trends of preipitation partitioning

any quick flow can be observed; all precipitation up to this threshold becomes catch-

ment wetting (of canopy, surface and soil). On the other hand, there appears to be

an upper limit to wetting: with increasing precipitation the wetting approaches this

upper limit, and the quick flow increases accordingly. In the asymptotic limit, quick

flow grows at the same rate as precipitation. Moreover, the empirical analyses of

L′vovich highlighted a similar pattern in the splitting of W into ET and U in the

second stage partitioning of the soil wetting into vaporization and slow flow, as in

Figure 2.6. Once again, there appear to be a threshold value of wetting that must

be satisfied before there is any slow flow; all wetting up to this limit goes into va-

porization. There seems to be an upper limit to the vaporization as well: with

increasing wetting, vaporization approaches this upper limit, and the slow flow in-

creases accordingly. At this limit slow flow grows at the same rate as wetting. This

partitioning suggests that with the increase of annual precipitation, control is trans-

ferred from storage (wetting) to quick flow, and with increase of wetting, control

is transferred from interception and plant water use (vaporization) to subsurface
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drainage (slow flow).

In 1995 Ponce and Shetty gave to the L′vocich empirical approach a sounder

analytical background. Inspired by the similarity of the S versus P and U versus

W relationships to the (event-scale) Q versus P relationship in the widely used ‘Soil

Conservation Service Curve Number’ runoff generation model (Soil Conservation

Service, 1985 ), the two authors suggested a couple of analytical relationships to de-

scribe the water balance partitioning. The partitioning of precipitation into wetting

and quick flow is described as:

if 〈P 〉 < λsWp then 〈S〉 = 0, 〈W 〉 = 〈P 〉 ; (2.26)

if 〈P 〉 > λsWp then 〈S〉 =
(P − λsWp)

2

〈P 〉+ (1− 2λs)Wp

, 〈W 〉 = 〈P 〉− (〈P 〉 − λsWp)
2

〈P 〉+ (1− 2λs)Wp

(2.27)

Hence:

lim
〈P 〉→+∞

〈S〉 = 〈P 〉 −Wp and lim
〈P 〉→+∞

〈W 〉 = Wp . (2.28)

The partitioning of W into 〈ET 〉 and 〈U〉 is instead described by:

if 〈W 〉 < λuPET then 〈U〉 = 0, 〈ET 〉 = 〈W 〉 (2.29)

if 〈W 〉 > λuPET then 〈U〉 =
(〈W 〉 − λuPET )2

〈W 〉+ (1− 2λu)PET
, 〈ET 〉 = 〈W 〉− (〈W 〉 − λuPET )2

〈W 〉+ (1− 2λu)PET
(2.30)

Hence:

lim
W→+∞

〈U〉 = 〈W 〉 − PET, lim
W→+∞

〈ET 〉 = PET . (2.31)

The functional forms suggested in the above equations can be shown to cap-

ture the general trends postulated by L′vovich even if, of course, these are merely

mathematical constructs guided by the empirical data analysis.

In the previous equations the parameters Wp and PET are the upper bounds of

〈W 〉 and 〈ET 〉, which thus represent the potential wetting and the potential evap-

otranspiration of a catchment, respectively. The threshold values of P and W that
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must be exceeded before any flow (quick flow and slow flow) can occur are defined

as λsWp and λuPET , respectively, where λs and λu are empirical dimensionless

coefficients satisfying that λs > 0 and λu < 1.

At this stage the model needs to be calibrated in order to obtain the values

of the four parameters Wp, PET, λs, λs and λu. Wp and λs can be calibrated to

minimize the mean square error (MSE) of the difference between the S extracted

from runoff hydrographs through the filter provided by Equation (2.3) and the one

calculated with the Ponce and Shetty model. This method is repeated for U in the

second partitioning by using the values of W obtained as 〈W 〉calc = 〈P 〉obs − 〈S〉calc
in order to calibrate PET and λu. It is worth mentioning how this model doesn’t

need explicitly as input any estimation of potential evapotranspiration: the fraction

of the precipitation which is vaporized (i.e. the actual evapotranspiration ET),

is obtained from calibration according to the above procedure. This is a major

difference of this model with respect to the other models here presented that need

as input the PET. The above formulation can be also transposed in nondimensional

form. This is motivated by the expectation that the dimensionless formulation will

lead to a more compact formulation of the water balance problem, which may reveal

general functional relationships common to the behavior of all the catchments in

space and in time. Rearranging the terms in equations from (2.26) to (2.31), the

following dimensionless expressions of the four water balance fluxes can be obtained

(Sivapalan et al., 2011 ):

〈S〉∗ =
〈̃P 〉

1 + 〈̃P 〉
〈W 〉∗ =

1

1 + 〈̃P 〉
(2.32)

〈U〉∗ =
W̃

1 + 〈̃W 〉
〈ET 〉∗ =

1

1 + W̃
(2.33)

being

〈̃P 〉 =
〈P 〉 − λsWp

(1− λs)Wp

〈̃W 〉 =
〈PET 〉 − λuPET

(1− λu)PET
〈̃ET 〉 =

PET − λuPET
(1− λs)Wp

(2.34)

Where 〈̃P 〉 is a rescaled annual precipitation and 〈̃W 〉 is a rescaled annual soil

wetting. 〈̃ET 〉 is a rescaled vaporization limit which may be deemed equivalent
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to the concept of normalized potential evapotranspiration. If a new dimensionless

coefficient, K, is introduced as:

K =
λsWp − λuPET

(1− λs)Wp

(2.35)

which is a function of all the four Ponce-Shetty parameters, 〈̃W 〉 can be rewritten

as:

〈̃W 〉 =
K + 〈̃P 〉+K 〈̃P 〉
〈̃ET 〉+ 〈̃P 〉〈̃ET 〉

(2.36)

Even though the nondimensional formulations were derived for the case 〈P 〉 >
λsWp and Wp > λuPET only, they are nevertheless valid for 〈P 〉 < λsWp and

Wp < λuPET as well, in the sense that in the case 〈P 〉 <s Wp, 〈S〉∗ = 0 and

〈W 〉∗ = 1 and similarly in the case 〈W 〉 < λuPET, U
∗ = 0 and 〈ET 〉∗ = 1. Taken

together, these formulations satisfy the following conditions

〈S〉∗ + 〈W 〉∗ = 1 〈U〉∗ + 〈ET 〉∗ = 1 (2.37)

which reflects the notion of a competition between S and W in the first-stage par-

titioning and between U and ET in the second-stage partitioning.

Finally it’s possible to write the runoff coefficient as a function of the dimension-

less terms introduced in equations (2.34) and the coefficient K as:

〈Q〉
〈P 〉

=
K2(1 + 〈̃P 〉) +K 〈̃P 〉(2 + 〈̃P 〉) + 〈̃P 〉

2
(1 + 〈̃ET 〉)

(K + 〈̃P 〉)(K + 〈̃P 〉+K 〈̃P 〉+ Ṽ 〈̃P 〉)
(2.38)

The former equation can be significantly simplified assuming K = 0. Provided

that K is in most cases comprised within the range (-0.04,0.04), this assumption

seems o be justified for practical applications. It this case the runoff-ratio equation

can be expressed as:

〈Q〉
〈P 〉

=
〈̃P 〉(1 + 〈̃ET 〉)

〈̃P 〉+ 〈̃ET 〉+ 〈̃P 〉〈̃ET 〉
=

1 + 〈̃P 〉ϕ
1 + ϕ+ 〈̃P 〉ϕ

(2.39)
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where 〈̃P 〉 is the scaled annual precipitation and ϕ =
〈
ẼT
〉
/〈̃P 〉 is the ratio of

vaporization potential to precipitation, and in this sense it is a counterpart of the

classical dryness index (DI = 〈PET 〉 / 〈P 〉). These two indexes, though, are in turn

a function of the 4 parameters previously identified (PET,Wpλs, λu).

MODEL PARAMETERS: The model is open to be be handled in different

ways. In the original version the authors calibrate all the aforementioned parameters

(λs, λu,Wp, PET ) for every single basin in a pool of catchments located throughout

the US. In the framework of this thesis, such approach would lead to an undesired

increment in the number of parameters (M = 4C where C=39 is the number of

catchments), making the model useless for the prediction in catchments where dis-

charge measurements are lacking. To circumvent this issue, the 4 parameters could

be assumed to be spatially uniform across the study catchments. This procedure

would lead to a model having just 4 parameters. However, all the catchments would

be characterized by the same value of potential evapotranspiration PET , thereby

neglecting the natural spatial variability of climate and, thus, making the approach

less robust. In order to preserve the spatial variability of evapotranspiration it is

possible to include in the model the available esitimate of potential evapotranspi-

ration provided by the MODIS and CGIR datasets. However, to improve model

performances, the dataset’s values need to be multiplied by a calibrated correction

factor ξ. The operation does not impact the number of parameters, provided that

the calibrated (partially uniform) PET would be replaced by the correction factor ξ.

The latter is the version of the model implemented when the filtering of precipitation

is accounted for (4 parameters: λs, lambdau, Wp, ξ).

To make the approach applicable for the prediction to ungauged sites, a second

issue should be handled. In fact, the partitioning of rainfall based on the filter

presented in section 2.1.1 would make the model unusable where streamflows are not

measured. Introducing the extra assumption that all precipitation is turned into soil

wetting, without the occurrence of any surface runoff, seems to be a reasonable way

to circumvent this problem. In the latter case, when the MODI and CGIR datasets

are used to account for the observed spatial variability of evapotranspiration in the

study catchments, the number of parameters to be calibrated reduces to just one

(λu), being < W >=< P > and, hence, λs = 1. This is the approach adopted in

cases when the decomposition of precipitation into surface runoff and infiltration is
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disregarded.

2.7 WB5

WB5 is a spatially distributed global-scale soil water balance. It was imple-

mented on the high-resolution WorldClim and CGIAR − CSI − PET climate

dataset (http://www.worldclim.org/) using ArcAML (ESRI) as modeling tool.

The original cells size is 30 arc-second (about 1 Km at equator). However, in this

study, the spatial resolution has been reduced to cells of about 15 Km in order to

reduce the sensitivity towards potential errors in the original dataset and to make

the analysis computationally easier. The model uses spatially distributed values

(temporally average over the period 1950-2000) of monthly average precipitation

(〈P 〉) and monthly potential evapotranspiration (〈PET 〉) and provides estimates of

actual evapotranspiration (ET) and soil water content (w = nsZr) at monthly time

scale. The model is spatially explicit to represent heterogeneity of climate condi-

tions, while vegetation and soil properties are assumed as uniform (characterized by

crop coefficient equal to 1, rain interception coefficient equal to 0.15 and maximum

soil water content w0 = ns1Zr in the rooting zone equal to 350 mm). Rain inter-

ception, which is the process by which precipitation is intercepted by vegetation

canopy and litter and then vaporized, is assumed to be an important process in the

overall water balance since it reduces the amount of precipitation available to plants.

Vegetation interception is a mechanical function of the storage space of vegetation

structure and, hence, strongly dependent on the LAI. The authors simply assumed

the effective precipitation 〈P 〉e as a fraction of the gross precipitation 〈P 〉. The

monthly quantity of rain intercepted is proportional overall rainfall as:

〈P 〉e = 0.85 〈P 〉 (2.40)

The dependance of actual evapotranspiration on available atmospheric energy

(PET), vegetation characteristics, quantity of water available in the soil and soil

hydrological properties is modeled through the following equation:

〈ET 〉 = 〈PET 〉KvegKsoil (2.41)

where
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• Kveg: is a vegetation coefficient dependent on vegetation characteristics and

stage of growth. Values of Kveg used in this model are spatially standardized

and assumed to be equal to that of the reference crop (Kveg = 1) ;

• Ksoil: Is a soil stress coefficient representing a reduction factor resulting from

the limit imposed by the monthly soil water content (0 < Ksoil < 1). The

model uses a linear soil moisture stress function evaluated at monthly timescale.

The maximum amount of soil water available for ET processes within the plant

rooting zone (w0 = 350 mm) is equal to soil water content at field capacity

minus soil water content at wilting point times the rooting depth Zr.

w0 = Zrn(s1 − sw) (2.42)

Ksoil =
s

s1

(2.43)

The dataset used to determine monthly PET globally is the CGIAR−CSI one

(see page 8).

The model provides a global raster of temporally averaged monthly actual evap-

otranspiration values (〈ET 〉) and soil water content (SWC). Based on a spatially

distributed map of monthly precipitation, available at the WorldClim web site

(http://www.worldclim.org/current), the seasonal runoff coefficients can be cal-

culated as:

〈Q〉
〈P 〉

= 1− (∆snZr + 〈ET 〉)
〈P 〉

(2.44)

where ∆snZr is the difference in soil water content between two subsequent

months/periods.

MODEL PARAMETERS: WB5 has not been implemented directly in this thesis

work since its results are already available on line, and no parameters need to be

calibrated. The data provided by the authors include global rasters of actual evapo-

transpiration at annual and monthly time scale as well as global rasters of monthly

soil water stress (defined as the monthly fraction of soil water content available for

evapotranspiration processes as a percentage of w0) . In this thesis work the former
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rasters were processed in GIS environment and 12 global raster of mean monthly

precipitation were added in order to estimate the average seasonal and annual water

balance and runoff coefficients.

2.8 Decomposition of annual water balance

In this thesis, a novel approach has been developed in order to describe the inter-

seasonal variability of the water balance. Many of the models presented in section

2.3 to 2.7 are based on hypotheses that hold only at annual time-scale, or they have

been implemented only at the annual level. Because of this reason they are best

applicable to estimate annual runoff coefficients. To get an estimate of the inter-

seasonal variability of streamflow regimes during the year, the knowledge of seasonal

average runoff coefficients would be instead desirable. The decomposition in season

is a convention and can be established according to the trends of climatic variables

during the year, which is a function of the geographical position and, in particular, of

the latitude. Mid-latitudes areas show marked seasonality with four different season

characterized by specific climatic and meteorological features. Seasonality reduces

in tropical areas, which are typically featured by a wet and a dry season. Because of

the wide range of locations included in the study area, typical subdivision into four

seasons has been adopted, which broadly follows calendar dates, as detailed below:

• SEASON 1 (SPRING): March, April, May;

• SEASON 2 (SUMMER): June, July, August;

• SEASON 3 (AUTUMN): September, October, November;

• SEASON 4 (WINTER): December, January, February;

The general relationship between annual and seasonal runoff coefficients will be

discussed in the following. The (average) annual runoff coefficient is defined as:

φa =
〈Q〉a
〈P 〉a

(2.45)

where 〈Q〉a and 〈P 〉a are the average streamflow and rainfall during one entire year.

The following relation between the annual average and the seasonal averages

holds:
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φa =
〈Q〉a
〈P 〉a

=

∑4
i=1

〈Q〉i
〈P 〉i
〈P 〉i

4 〈P 〉i
=

∑4
i=1 φi 〈P 〉i
4 〈P 〉i

(2.46)

where φi =< Q >i / < P >i is the runoff coefficient during the season i. Equa-

tion (2.8) states that the average annual runoff coefficient is the weighted mean of

the seasonal average runoff coefficients. The approach consists of the estimate of

the annual runoff coefficient and the subsequent calculation of the seasonal runoff

coefficient of a catchment by multiplying the annual average runoff coefficient by a

‘Seasonal Multiplication Coefficient’ ψi = φi/φa:

φi =
〈Q〉i
〈P 〉i

=
〈Q〉a
〈P 〉a

ψi. (2.47)

The values of the seasonal coefficients ψi are obtained through calibration based

on the 39 catchments analyzed in the study. The values of ψi across the study

catchments are presented in the box-plots of Figure 2.7.
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Figure 2.7: Seasonal runoff coefficients

The average values of the seasonal coefficients are:
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ψwinter = 1.44

ψspring = 1.42

ψsummer = 0.56

ψautumn = 0.59

As expected, a strong seasonality in the normalized seasonal runoff coefficient

is observed. Moreover, given the broad range of hydroclimatic conditions featuring

the 39 study catchments, the inter-catchment variability is quite reduced, suggesting

the existence of universal patterns across relatively wide areas. Figure 2.7 shows

that the variability is higher in winter and autumn. These results suggest that the

regionalization procedure of the normalized runoff coefficients described above could

be applicable to ungauged catchments belonging to the study area, assuming that

the annual trend of the normalized runoff coefficients follows the general pattern

exhibited by the set of catchments used for calibration.

2.9 Ranking of the models

The performances of each model have been objectively quantified by means of

the Akaike’s information criterion (Akaike, 1973 ). The method gives a rigorous

way for model selection based on the maximization of the log-likelihood function

between experimental data and model estimates. The goodness of fit of each model

is discounted by accounting for the number of parameters that are fitted to obser-

vations. The Alaike’s information criterion (AIC) quantifies the performance of a

model through a real number: the lower is the value, the better the model performs.

Worth to be mentioned that performances index given by the method doesn’t have

a stand-alone meaning: it’s just a way to rank a set of different models and, hence,

just differences of AIC between models are meaningful.

Given a general model that simulates an output variable y as a function of a set

of predictors (input) I and a set of M model parameters, ξM , the following equation

holds:

y = y(I, ξM) + ε (2.48)

where y is the observed response variable, and ε is the model error (i.e. the

residual). Residuals can be used to evaluate the performance of any set of moldel
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parameters. Assuming normally distributed residuals with standard deviation σ,

the likelihood of the model parameters is

L(ε|ξM , σ) =
exp

(
−ε2i
2σ2

)
√

2πσ2
. (2.49)

Equation (2.49) gives a consistency test for the parameter estimates: if the

observed residual is an unlikely estimate of ε, ξM is an unlikely estimate of the true

parameters. Parameter estimates that maximize the likelihood are the most likely

values for the parameters. Under the assumption that a set of n observations yi
are available, and assuming independent residuals, the total likelihood of all the

residuals is simply the product of the likelihoods of the individual residuals

L(ε) =
n∏
i=1

L(εi|ξM , σ). (2.50)

Accordingly, the log-likelihood can be written as:

log [L(ε)] =
n∑
i=1

log [L(εi |ξM , σ)] , (2.51)

where the residuals are the differences between observations and predictions (εi =

yi− yi). When σ2 is independent on the other parameters, then the estimates of ξM

obtained by minimizing Equation (2.51) is the same as those obtained by minimizing

the mean square error (MSE)

MSE =

n∑
i=1

ε2i

n
. (2.52)

The general definition of AIC can be written as:

AIC := −2log(L) + 2(M + 1) (2.53)

where log(L) is the log-likelihood function of the residuals and M is the number

of parameters of the model under consideration. AIC can be used to compare model
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performances if they are not nested. Under the assumption that the variance of

the residuals are estimated based on the observations available using the maximum

likelihood, the AIC can be computed as:

AIC = 2 nMSE + 2(p+ 1), (2.54)

that is the formula used to rank the different water balance compared in this study.

2.10 Streaflow PDFs and flow regimes

Recent studies (Botter et al. 2007, 2009 ) have provided a simple theoretical

framework to analytically derive the Probability Density Functions (PDF) of stream-

flows in an arbitrary section of a river network based on a simple schematization

of the main processes involved in the transformation of rainfall into runoff. As de-

tailed hereafter, a limited set of parameters tightly related to the physical processes

involved are sufficient to catch the main processes that control transformation of

rainfall into streamflows. The potential of the aforementioned method consist in

its ability to provide an estimate of the streamflow PDF at any arbitrary location

of a river network starting from the primitive information about precipitation and

landscape. This ambitious result can be reached once a reliable framework to es-

timate the parameters involved in the model is identified. The importance of this

thesis work lies in the application of the water balance models identified to provide

estimates of the most relevant parameters involved in the analytical expression for

the streamflow PDF. Two parameters of the above mentioned model, in fact, can

be predicted based on the average runoff coefficient of a catchment. Worth to be

pointed out how a PDF carries the same amount of information of a duration curve,

which is a widespread tool to characterize river flow regimes. Once the soundness

of the procedures used to estimate all the parameters involved have been proved, a

powerful tool to characterize the streamflow regime at any point of a river network

in an arbitrary catchment will be available. A reliable estimate of the average annual

or seasonal runoff coefficient, will allow the estimate of the streamflow PDF without

the need of discharge data. The ability to forecast the statistical distribution of

water availability has remarkable outcomes. From an ecological point of view, the

temporal variability of discharges is important for riparian vegetation and riverine

ecosystems in general (Doulatyari et al.,2014; Ridolfi et al.,2006 ). Moreover, flow
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variance is strictly related to flow predictability on which the mobility and colonizing

ability of living species depend. The knowledge of the probability density function

of discharge within a river or a stream is useful in dimensioning floods protection

measures as levees, diversions, artificial reservoirs for flood control or other struc-

tures, such as bridges, which are in close contact with water bodies since they are

dimensioned according to certain expected magnitudes of streamflows. The ability

to estimate the streamflow distribution in an ungauged reach of a river provides

a tool to make sounder hypothesis about the optimal placement of diversions for

hydropower production or water supply, thereby addressing water resources man-

agement problems. Finally, from a scientific point of view, understanding through

modeling river flow regimes how the climate, the weather and basin morphology con-

trol the storage and release of water within catchments, gives an additional insight

on how climate change may impact the hydrological cycle in future decades.

2.10.1 Streamflow PDF estimation model

One of the main topics in hydrology is the study of how the streamflow variability

in river basins is affected by the intertwined action of geomorphological, climatic,

meteorological and echohydrological processes operation at catchment scales. The

variability in time of streamflows mirrors the stochastic nature of all the underly-

ing forcings and the huge complexity of causal relations, which makes deterministic

frameworks unfeasible, often calls for statistical approaches. The model here pre-

sented (Botter et al. 2007, 2009 ) is able to provide the steady state probability

density function (PDF) of streamflows as a function of few macroscopic rainfall, soil,

vegetation and geomorphological features. The lumped approach developed consid-

ers spatially averaged parameters, whose values need to be estimated via calibration,

simulation or directly from basic geomorphoclimatic data. The model couples a soil

moisture dynamic model (Porporato et al., 2004 ) to a streamflow generation model

which, in its basic version (Botter et al., 2007 ), postulates a linear relation between

soil water storage and discharge (i.e. assuming exponential recession curves). In a

more recent version of the model (Botter et al., 2009 ) this hypothesis is relaxed by

allowing power laws function to describe the process in a more realistic and general

fashion.

The approach moves from the long-term soil water balance in the root zone

(Porporato et al., 2004 ) where the competition between deep percolation and evap-
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otranspiration processes takes place. The relevant ecohydrological processes occur-

ring therein are described through a simplified approach which considers constant

parameters representative of the behavior of a given catchment during a given sea-

son: root zone depth (i.e. the depth of the active soil layer), Zr [L]; porosity n

and maximum evapotranspiration rate PET [L/T ]. These values are assumed to

be spatially and temporally averaged. The temporal evolution of spatially averaged

relative soil moisture in the root zone, s(t) (volume of water divided by volume of

voids), is thus seen as the result of the following three processes:

1. stochastic instantaneous increments due to infiltration from rainfall, which is

modeled at daily timescales as a Poisson process with frequency λp [T−1] and

where daily rainfall depths are assumed to be exponentially distributed with

parameter 1/α, being α [L] the average rainfall depth on rainy days;

2. linear losses due to evapotranspiration, occurring in the range of soil moisture

comprised between the wilting point sw and a suitable soil moisture threshold

s1 comprised between field capacity and saturation;

3. instantaneous deep percolation producing effective rainfall and hence runoff

(above s1).

Even if the the model follows a lumped approach, additional studies (Botter et

al.,2007 ) have suggested that it can be used to properly predict the PDFs of stream-

flows also in relatively large catchments (A = O(103Km2)).

According to the above scheme, when s exceeds the threshold s1 due to infil-

tration input, the soil moisture content is assumed to instantaneously decrease to

s1 through the release of an effective rainfall pulse which is released as streamflow.

Effective rainfall time series resulting from the soil moisture dynamics described

above may be approximated, at the daily timescale, by a new marked Poisson pro-

cess where the net rainfall depths (i.e., the fraction of the incoming water which

exceeds the limit s1) follow an exponential distribution having, as it can be proved,

the same shape parameter α−1 of the rainfall distribution. The related average

runoff frequency λ may be obtained from crossing properties of the threshold s1 if

discharge measurements are available. This thesis provided an alternative method

to estimate λ, which is one of the most important parameters involved in the for-

mulation, when no discharge data are available. The method takes advantages of

the relation between λ and the average runoff coefficient of a catchment, opening
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the way to the use of a broad set of water balance models, as shown in the previous

sections. Provided that the rainfall series are characterized by an average frequency

λp and average depth α while the effective rainfall is an analogous Poisson process

characterized by a frequency parameter λ and equal distribution of rain depths, the

following relation holds (Porporato et al., 2004):

〈Q〉
〈P 〉

=
αλ

αλp
=

ηγλP ηe−γ

λP (1− Γ(λP/η, β−1))
(2.55)

which exploits the key properties of marked Poisson processes and where η =

PET/(nZr(s1 − sw)) is the normalized maximum evapotranspiration rate and γ =

(nZr(s1 − sw))/α is the ratio between the mean rainfall depth and the soil storage

capacity. λ can thus be estimated based on frequency of daily rainfall, λp, and the

seasonal runoff coefficient < Q > / < P >, as provided by rainfall measurements

and a given water balance model. The effective rainfall pulses are assumed to propa-

gate throughout the catchment and eventually be released to the channel network as

surface/subsurface/groundwater flow. The continuity equation for the excess water

volume stored in the catchment, W , can be written as:

dW (t)

dt
= −ρ(W ) + ε

′

t(λ; γw) , (2.56)

where ρ(W ) represents the deterministic losses due to streamflows (in general a

function of the stored water volume W ) and ε
′
t is the stochastic noise incorporating

the storage increments in correspondence of effective rainfall events:

ε
′

t(λ; γw) =
∑
i;ti<t

∆Wiδ(t− ti) , (2.57)

δ being the Dirac delta function. According to the soil moisture model discussed, the

arrival times of effective rainfall events, ti, are distributed according to a Poisson

process with rate λ, and the storage increments in correspondence of such runoff

events, ∆Wi, are assumed to be instantaneous (at the daily timescale) and follow

an exponential distribution with parameter γw = 1/(α A).

In the original version of the model (Botter et al.,2007 ), residence times in the

catchment are assumed to be described by an exponentially distributed random vari-
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able which is equal to assume the system to behave as a linear reservoir, where Q is

proportional to W (Q = ρ(W ) = kW ). The time constant of the system 1/k can be

also interpreted as the timescale of the hydrologic response of the catchment. How-

ever, both observational evidences and theoretical argument suggest that in many

cases (e.g., in small deep soil-mantled catchment in humid climates) the relation

between Q and W can be nonlinear. In this case, the master equation associated

with Equation (2.10.1) reads (Gardiner, 2004 ):

∂p
′
w(W, t)

∂t
=
∂
[
ρ(W )p

′
w(W, t)

]
∂W

−λp′w(W, t)+λ

W∫
WL

p
′

w(W−ω, t)γwe−γwωdω+λp0(t)γwe
−γwW

(2.58)

where p0(t) is the atom of probability corresponding to the minimum available stor-

age WL (which is the value of W for which ρ(W )→ 0) and p
′
w(W, t) is the continu-

ous part of the time-dependent probability density function of W for W > WL (i.e.,

p
′
w(W, t)dW measures the relative probability of observing a water volume in subsur-

face/groundwater environment in the interval [W,W + dW ]). The master Equation

(2.58) is a partial differential equation that expresses the probability conservation

in a given state for the process under consideration. Following Rodiguez-Iturbe and

Porporato (2004), Rodrigue-Iturbe et al. (1999) and Botter et al. (2009) the general

steady state solution of Equation (2.58), which is obtained for t→∞, reads:

pw(W ) = c

{
1

ρ(W )
e−γWW+λI(W ) +

e−γWWL

λ
eλ limx→WL I(x)δ(W −WL)

}
(2.59)

where I(x) =
∫
ρ−1 is the primitive of the reciprocal of the loss function ρ. If we

assume Q = ρ(W ) a one-to-one function, the relation between W and Q can be

inverted (i.e., W = ρ−1(Q) = r(Q)) and the probability distribution of the runoff Q

can be readily obtained from Equation (2.59) as:

pq(Q) = pw(aQb)

∣∣∣∣dWdQ
∣∣∣∣ = c

r′(Q)

Q
e−γW r(Q)+λI[r(Q)] + p0δ(Q) (2.60)

where r′(q) = d[r(Q)]/dQ and the atom of probability in W = WL, p0 , corresponds

to the same atom of probability in Q = 0.
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Analytical solutions for pq(Q) can be obtained if we assume that the dependance

between storage and discharge is described as a simple power low such as:

Q = ρ(W ) = K(W −W0)h (2.61)

where W0 = WL ≥ 0 and K > 0. Inverting eq. (2.61) leads to:

W = r(Q) = W0 + aQb (2.62)

with a and b positive constant satisfying

b = h−1 (2.63)

a = K−1/h (2.64)

An analytical solution is also available in the case of hyperbolic dependence of

Q on W (Botter et al., 2009). The parameter h in the power low function between

Q and W characterizes the shape of the curve, being it concave when h < 1 and

convex when n > 1.

n>1

n<1

Figure 2.8: Possible storage-runoff functions

Non linear power-law models for base flow recessions have been widely employed

in the literature because of their simplicity and their ability to fit observations under
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a variety of hydro-geological environments. All the three nonlinear relationships

between W and Q mentioned here are compatible with the frequently observed

power law type decay of Q through time between runoff events:

dQ

dt
∝ Qν (2.65)

Note that exponent ν changes depending on h, being ν = 2 − 1/h. At the

moment, an additional model capable to estimate the recession parameters starting

only from the topography of a catchment (DTM) is available. The tool is currently

under testing but encouraging results have already been reached. Such results will

be discussed later on in this thesis.

In conclusion, the analytical solution of Equation (2.60) in the two cases of power

law dependance reads:

pq(Q) = C1

[
1

Q2−b exp

(
−γwaQb +

λab

b− 1
Qb−1

)
+

1

λab
δ(Q)

]
n < 1 (2.66)

pq(Q) =
C2

Q2−b exp

(
−γwaQb − λab

1− b
1

Q1−b

)
n > 1 (2.67)

The Cumulative Density Function (CDF), which is another wide spread way to

depict streamflow regimes, is related to the PDF as it follows in Equation (2.68):

CDF (Q) =

∞∫
Q

p(Q′)dQ′ (2.68)

that is the probability to observe a streamflow magnitude larger that Q.

Figure 2.9 shows, as an explanatory example, the results of a simulation of the

processes described so far in case of linear storage-discharge relationship (n=1).

This simulation is performed by means of the linear relation between runoff

and storage and assumes typical values of the meteorologic and climatic forcings

(λp = 0.3 d−1, α = 0.42 cm, PET = 0.35 cm/d) as well as typical soil, vegetation

and transport parameters (n = 0.55, Zr = 30 cm, sw = 0.18, s1 = 0.6; k = 0.6 d−1).

Panel (a) shows how rainfall is modeled as a marked Poisson process. The result-

ing temporal distribution of rainfall events at daily time is highly heterogeneous,
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Figure 2.9: Streamflow generation simulation

as commented by the frequency parameter λp. The marks are the rainfall depths,

whose distribution is assumed to be exponential with parameter 1/α. Daily rainfall

pulses drive the soil moisture dynamics (b). When the soil moisture level in the

upper soil layer exceeds the critical value s1, the surplus is assumed to be imme-

diately released as subsurface/groundwater flow. For soil moisture content (s) in

the range between s1 and sw the moisture depletion rate via evapotranspiration is

assumed to be proportional to the product between the relative soil moisture and

the potential evapotranspiration, leading to an exponential decrease in time of w.

Effective rainfall pulses, which generates the runoff are, again, characterized by a

marked Poisson process of frequency parameter λ and exponentially distributed in-
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tensities of parameter 1/α (same as the rainfall). Finally, time series (d), shows how

the water stored as W is released at a rate proportional to the water stored itself,

leading to an exponential time decay of each effective rainfall pulse. The knowledge

of the hydrograph (which comes form the convolution in time of the catchment’s re-

sponse to the single pulse), allows to statistically characterize the streamflow regime

by means of its probability density function.
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Chapter 3

Results

This chapter details the results achieved by applying the water valance models

presented in the former sections to the 39 study catchments described in Table 1.1.

All the models, (except than WB5), have been implemented and calibrated in a

MATLAB R2010a environment.

The following notation has been used in order to uniquely identify each model

and the set of possible variants adopted. Each model is labeled by a string which is

composed by three main parts, separated by dots.

*
WB2  .ET1.S (4)

Model Name

Filter
PET Database

Temporal Scale

Number of Parameters

Figure 3.1: Nomenclature

The first three characters of the string refer to the specific water balance model.

A star is then used to indicate whether precipitation is partitioned into surface

runoff and wetting by means of a filtering procedure prior to the water balance

model application. The lack of the star implies that all the incoming precipitation

is assumed to infiltrate and, therefore, takes part to soil moisture dynamics. After

55
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the first dot, there is a code referring to the potential evapotranspiration dataset

used in the model calibration: ET1 refers to the CGIR while ET2 refers to the

MODIS (see subsection 1.2). The character right after the second dot specifies if

the model is applied at seasonal (S) or annual (A) timescales. The flag Sc denotes

instead that the seasonal runoff coefficients have been estimated by applying the

Seasonal Coefficients ψi (Subsection 2.8) to an average annual runoff coefficient

obtained through an annual water balance model. Finally, the number in brackets

specifies, if necessary, the numbers of model parameters that are calibrated based

on the available ET datasets and observed rainfall and discharge time series in the

study catchments. Many of the models under consideration include the average

rooting dept Zr as a key parameter. Zr rules the maximum soil moisture storage

capacity w0 = nZr(s1−sw). Hence, for the sake of convenience and without any loss

of generality, sw, s1 and n are assumed to be constant throughout the all simulations

(and equal to 0.2, 0.5 and 0.35, respectively). The departures of modeled results

from measurements is quantified by means of the Mean Square Error (MSE), defined

by Equation (2.52).

3.1 Annual Water Balance

The results presented in this section refer to the application of the five water

balance models at annual time scale. The tables shown in Figure 3.2 summarize the

parameters involved (with and without the use of a filter to identify surface runoff),

and the calibration values that optimize model performances.

The plots in Figures 3.3 and 3.4 show the performances of the calibrated models

when the use of the filter is avoided. On the y-axis the modeled value of the runoff

coefficient is shown, while the observed value, calculated as the ratio between the

average annual precipitation and runoff (φ = 〈Q〉 / 〈P 〉), is shown on the x-axis.

The table shown in Figure 3.2 shows that all the models perform better if as-

sociated with the ET1 potential evapotranspiration dataset. The difference related

to the use of different potential evapotranspiration datasets is especially striking

for WB1, where the MSE almost doubles if the ET2 dataset is used. As per the

application of the filter, model performances improve when rainfall is partitioned

into surface runoff and wetting, with the exception of WB4. The result is surprising

because WB4 is the only model which was originally conceived to explicitly take into

account for surface runoff. Because of this reason a deeper insight on the physical
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Figure 3.2: Parameters of the annual water balance models
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Figure 3.3: Annual runoff ratio (without filter) (1/2)
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reasons leading to this counter-intuitive outcome would be worth.

If a rainfall filtering is performed, ET1 still provides better results, but the

improvement is less visible. In fact, the presence of surface runoff reduces the amount

of water processed by soil moisture dynamics, which is impacted by PET.

The scatter plots corresponding to the cases where preliminary partitioning of

precipitation is performed, are presented in Figure 3.5 and 3.6. WB5 is excluded

in this case because the model hasn’t been directly implemented in this thesis work

(provided that previous results of the model are available online at the global scale)

and no parameters have been calibrated. Moreover WB5 was implemented based

on the CGIR potential evapotranspiration database. Thus, the MODIS dataset has

not been used in this case.

The scatter plots in Figure 3.5 and 3.6 show that the filter increase the mod-

eled runoff coefficients in the catchments featured by highest values of φ, where the

models without any filter systematically underestimate observed φ. The improve-

ment of performances is particularly evident for WB3. The dispersion around the

45 degree line of the points in WB3* is reduced with respect to WB3 for both the

PET datasets. However, the model WB3 doesn’t seem to catch the inter-catchment

variability of the runoff coefficient properly in none of these cases. For WB4, the

optimal value of the parameter λu is lower when the filter is not applied. The result

is consistent because lower values of λu imply that the catchment is more prone

to release water as subsurface flow. In fact, when the filtering procedure is not

performed, the wetting component equals the entire amount of precipitation, and

evpotranspiration is not able to buffer the strong wetting pulses as efficiently as it

occurs when the application of the filter reduces infiltration.

Despite its good performances when the filter is disregarded, WB4 is not the best

model if the filtering procedure is applied. Concerning the optimal parameters of

WB4*, the calibration procedure leads to extremely high values of potential wetting

(Wp = 27000− 30000mm) and potential evapotranspiration (ξ = 4.9− 5.5). These

values are deemed unrealistic from a physical point of view. In particular, ξ ≈ 5

means that the performances of WB4* are optimized when PET is about five times

larger the one estimated by the MODIS and CGIR datasets.

Figure 3.4 shows how the model WB5 is unable to catch the variance of φ for

the most arid catchments (say, φ < 0.4). Moreover, the runoff coefficient is strongly

underestimated for the most humid catchments. WB1 proves quite effective in

predicting the average runoff coefficient at annual timescale, especially in association
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with ET1 and the filtering procedure. WB2 achieves good performances, given the

reduced number of calibrated parameters. In particular, when WB2 is coupled

with the filter and the potential evapotranspiration dataset ET1, the mean squared

error is very low and the optimal rooting depth Zr is 735 mm, which is physically

meaningful. Overall WB4 seems to be the best model in order to estimate the

average annual water balance in the study area in the absence of the filter, even

though its performances are just slightly better than those of WB1 and WB2, that

have a reduced number of parameters. The systematic underestimation of the runoff

coefficient for humid catchments in the absence of a filter to separate surface runoff

from infiltration may be a consequence of the hypothesis that all the incoming

rainfall infiltrate in the soil and takes part to soil moisture dynamics. In fact, the

highest values of φ might refer to catchments characterized by quite impervious soil,

or by humid climate conditions and high soil moisture values. Both scenarios are

likely to promote surface runoff at the expense of infiltration, thereby increasing the

the observed runoff coefficients.

The increase of rooting depth when the filter is applied is a consequence of the

increased amount of water directly converted into streamflow. In order to comply

with the measured values of φ, the slow streamflow component (due to subsurface

flow) needs to be reduced by increasing the rooting depth, and the soil water holding

capacity, so as to remove an higher amount of water via evapotranspiration. Finally,

it is worth to note how the calibration of the annual models led to reasonable values

of Zr in all cases (500 < Zr < 1000), in agreement with previous studies (Allen et

al., 1998 ).

3.2 Seasonal Water Balance

In this section the performances of the models at seasonal time scale are dis-

cussed. First are shown the results of the models applied at a seasonal time scale,

either in the case where incoming rainfall is partitioned by means of the filter or in

the case where all the precipitation is assumed to infiltrate into the soil. Then, the

results obtained by coupling annual water balance models to the ‘Seasonal coeffi-

cients’ introduced in Section 2.8 are discussed.

The scatterplots shown in Figures 3.9 and 3.10 compare modeled and measured

values of the seasonal runoff coefficients for the 39 study catchments. In this case

each scatter plot contains 134 points (the seasons affected by snow dynamics, namely
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Figure 3.5: Annual runoff ratio (with filter)(1/2)
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Figure 3.6: Annual runoff ratio (with filter)(2/2)

winter and spring, in northern catchments have been neglected). The performances

of WB1 at seasonal scale are less brilliant than those at annual time scale. Even

though the absence of parameters is an appealing feature of this model, WB1 doesn’t

seem to be robust enough to estimate the seasonal water balance in the study catch-

ments. This fact is not surprising since the Budyko model has been designed to

describe just long term average annual water balance and is not able to capture

fluctuations at finer time scales. However, WB1 outperforms WB5, whose perfor-

mances are judged to be unacceptable at seasonal timescale.

Despite some scattering, WB1 and WB2 are not affected by systematic biases,

implying that the models don’t tend to systematically overestimate (or underesti-

mate) the seasonal observed runoff coefficients. Among the models applied at the

seasonal scale WB2 outperforms the others. Its performances further improve by

adding additional parameters to differentiate among the various seasons. The pa-

rameter in this case is the rooting depths Zr, which is assumed to be a function of

the season. A time variant rooting depth implies that the hydrologically active soil

layer changes its depth according to the external meteorologic and climatic forcings.

The model has been tested in three different scenarios:

1. a single value of Zr has been considered as representative of the average rooting
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depth along the entire year;

2. two different values of Zr have been considered, one for spring and summer

and one for winter and autumn;

3. a different value of Zr has been assumed for every season.

In all cases the calibrated rooting depths display, similarly to what happens

at the annual scale, higher values when the rainfall partitioning is performed. In

such a case, to agree with the observed runoff coefficients, the slow flow compo-

nent of the streamflow has to be reduced to compensate the surface runoff that

is directly conveyed to the drainage network thanks to the filtering. In general,

the calibrated rooting depths are lower when the ET2 potential evapotranspiration

dataset (MODIS) is used. In fact, the MODIS dataset tends to provide higher values

of potential evapotranspiration with respect to ET1 (Figure 1.1). Higher values of

PET lead to higher soil moisture depletion rate and, hence, lower values of Zr are

required to buffer the infiltration. Because of the same reason, the shallow rooting

depth displayed in Figure 3.7 during Spring (for both the PET datasets, and both in

the the presence and absence of the filter) is likely to be a consequence of the higher

role of surface runoff during Spring, possibly due to the short and intense rainfall

events that typically characterize this season at latitudes such as those involved in

the study. Moreover, the effect is possibly enhanced by the relatively high values of

< PET > and < P > during this season.

An upper bound has been imposed to Zr (1500 mm) during the calibration

procedure for physical reasons. Figure 3.8 shows, as an example, the MSE as a

function of the rooting depth for every season in the calibration of WB2 at seasonal

scale. The plot evidences that an upper limit for Zr can be hardly detected by

calibration, a feature common to many hydrological models.

The scatterplots of WB2.ET1.S(4) and WB2.ET2.S.(4) shown in Figure 3.10

suggest that WB2 can provide a good estimate of the seasonal water balance across

the study catchments, either coupled with the MODIS or CGIR potential evapo-

transpiration datasets.

The cases in which the filtering procedure is applied prior to the water balance

models are presented in the scatterplots of Figures 3.11 and 3.12.

The filter increases the modeled runoff coefficient, leading to increased perfor-

mances in all the models. Again, WB2 is the best performing model, as it happens
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Figure 3.8: MSE as a function of the season and Zr in the calibration of WB2.ET2.S.(4)

in the case without the rainfall partitioning. Nevertheless, there are some concerns

regarding the use of the rainfall partitioning in this context. The filter adopted

(Section 2.1.1), can’t be used to predict the water balance in ungauged catchments,

as the infiltration is estimated from streamflow time series. Moreover, there are con-

cerns about the amount of the incoming rainfall directly turned into surface runoff

by the filter. Figure 2.3 highlights how, during high discharge events, a relevant part

of rainfall is assumed to bypass the soil system, possibly leading to overestimated

runoff coefficients. Overall, the consistency of the estimate of fast surface runoff

provided by the filter still needs to be assessed (e.g. by using tracer data).

3.2.1 Seasonal decomposition

In order to exploit the improved accuracy of the water balance models at annual

timescale we seek to reproduce the seasonal variability of the average runoff coeffi-

cients by coupling annual water balance models and the ’Seasonal coefficients’ ψi,

as detailed in section 2.8. In this manner, each point of the annual scatterplots is

splitted into four points corresponding to the runoff coefficients during the different

seasons of the year. The Table 3.13 summarizes the results of the method, and the

calibrated values of the model parameters.
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Figure 3.9: Seasonal runoff ratio (without filter) (1/2)
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Figure 3.10: Seasonal runoff ratio (without filter) (2/2)
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Figure 3.11: Seasonal runoff ratio (with filter) (1/2)
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Figure 3.12: Seasonal runoff ratio (with filter) (2/2)
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Figure 3.13: Parameters of the seasonal decomposition of the annual water balance models
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The seasonal coefficients (namely ψsp, ψsu, ψa, ψw) have been obtained directly

from the data of rainfall and discharge as described in Section 2.8. The overall

performances of this method are acceptable and comparable to the performances of

the models WB1 to WB5 directly applied at the seasonal timescale. Despite the

size of the study area and the ensuing heterogeneity of climate conditions, the inter-

catchment variability of the seasonal coefficients ψ is quite small, thereby suggesting

the potential suitability of regionalization approaches where the estimates of these

coefficients could be extended to ungauged networks. Moreover, a clear gap between

the warmer and colder seasons is clearly visible. These evidences seem to support

the soundness of the approach. The emerging pattern of the ratio between average

seasonal runoff coefficient and average annual runoff coefficient in catchments spread

within a vast area, like the Eastern US (Figure 2.7), could represent a good starting

point for further studies. The method based on the seasonal coefficients could be

accused of having the same limits of the models based on the rainfall partitioning

through of the filtering procedure because they both need discharge time series

in order to be applied. However, for the very reason that the dispersion of the

calculated seasonal coefficients is reasonably small even for wide areas such as the

one involved in this study, a regionalization approach seems to be a reliable option

for the application to ungauged sites. In this context, reducing the size of the

domain, and grouping catchments featured by similar climate conditions, will further

reduce the inter-catchment heterogeneity of the seasonal coefficients, increasing the

robustness of the approach.

Figure 3.13 shows that the best performing models where the seasonal decompo-

sition of runoff is adopted are WB2 and WB3, whose performances slightly increase

when the filter is applied. In particular WB2, coupled with ET1, outperform the

other models in both the filtered and unfiltered case. A selection of the scatterplots

that represent the performances of the models based on the seasonal coefficients are

presented in Figure 3.14.

The performances of the models slightly increase when the rainfall partitioning

is preformed prior to the water balance modeling. The first two plots of Figure 3.14

show the performances of WB1 and WB1*. WB3 fails in reproducing the spatial

and inter-seasonal variability of the average seasonal water balance across the study

catchments, while WB5 strongly underestimates the runoff coefficient in most cases,

and its performances are particularly poor in the catchments and seasons featured

by reduced discharge.
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Figure 3.14: Seasonal runoff ration (seasonal coefficients)
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Many plots display a marked discontinuity, especially when in the original an-

nual water balance model the inter-catchment variability is underestimated (i.e.

the model is unable to describe the spatial heterogeneity of the underlying eco-

hydrological process). This is a consequence of the calibrated values of the seasonal

runoff coefficients having very different values (ψsp ≈ ψsu 6= ψa ≈ ψw).

3.3 Ranking of the models

Given the high number of models considered in this study and the number of

different versions and combinations of variants involved, an objective ranking of

models based on their performances and the number of calibrated parameters proves

useful. To this aim, the Akaike Information Criteria (Section 2.9), has been used.

The charts in Figure 3.15 present a ranking of the annual and seasonal models

performed by means of the AIC. ∆AIC represents the difference of AIC between

the model and the best performing one. High values of ∆AIC means that the model

is far from being the best in terms of MSE, given the number of calibrated params.

Figure 3.15 shows that the models involving the filtering procedure are mostly

located in the upper portion of the chart, in particular at the annual timescale. In

fact, the models that postulate the complete infiltration of the incoming rainfall

tend to underestimate the observed runoff coefficients. WB2 occupies most of the

top 10 positions in the ranking, while WB4 and WB1 lie at the bottom of the annual

ranking.

The ET1 potential dataset performs better at annual time scale than ET2, while

at seasonal time scale an opposite trend is the observed. The explanation might lie

in the fact that the algorithm used to estimate PET in the MODIS dataset (ET2)

is more sophisticated than the one adopted in the CGIR dataset (ET1) and thus

it is able to catch intra-annual fluctuation of climate conditions in a more accurate

and robust way. However, the simplicity of the method employed to compute po-

tential evapotranspiration in the CGIR dataset (Section 1.2.2), possibly enhances

the robustness of the model during longer time spans.

The models based on the application of the seasonal coefficients performs poorly

when WB1 and WB4 are used for the annual water balance. Performances increase

for WB2 and WB3. In particular the WB2 variant having the best performances

(WB2*.ET1.Sc) ranks as second in the overall seasonal models chart.

Model performances, and the role of different PET datasets are summarized in
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Rank Model Δ AIC
1 WB2*.ET2.S (4) 0.0
2 WB2*.ET1.Sc(5) 13.1
3 WB2*.ET2.S (2) 22.3
4 WB2.ET2.S (4) 49.3
5 WB2.ET1.S (4) 50.3
6 WB2*.ET1.S (4) 54.3
7 WB1*.ET2.S(0) 55.7
8 WB2*.ET2.S (1) 56.8
9 WB2.ET1.Sc(5) 61.1
10 WB2*.ET1.S (2) 61.5
11 WB2*.ET2.Sc(5) 62.9
12 WB3*.ET1.Sc(5) 64.0
13 WB2.ET1.S (2) 70.9
14 WB3*.ET2.Sc(6) 78.9
15 WB2.ET2.S (2) 83.6
16 WB2*.ET1.S (1) 86.8
17 WB2.ET2.Sc(5) 90.4
18 WB3.ET1.Sc(6) 93.1
19 WB1*.ET1.S(0) 99.3
20   WB2.ET2.S (1) 110.2
21 WB1.ET2.S(0) 112.4
22 WB3.ET2.Sc(6) 115.8
23 WB1.ET1.S(0) 115.9
24  WB2.ET1.S (1) 117.3
25 WB1.ET1.Sc(4) 150.1
26 WB4.ET1.Sc(5) 153.0
27 WB1*.ET1.Sc(4) 155.2
28 WB4.ET2.Sc(5) 159.0
29 WB1*.ET2.Sc(0) 163.2
30 WB4*.ET2.Sc(8) 172.9
31 WB4*.ET1.Sc(8) 173.3
32 WB1.ET2.Sc(4) 184.3
33 WB5.ET1.S(4) 207.9

SEASONAL MODELS CHART

Rank Model Δ AIC
1 WB2*.ET1.A(1) 0.0
2 WB1*.ET1.A(0) 0.3
3 WB4.ET1.A(1) 7.0
4 WB1*.ET2.A(1) 11.0
5 WB2*.ET2.A(1) 12.1
6 WB4.ET2.A(1) 15.0
7 WB1.ET1.A(0) 18.6
8 WB2.ET1.A(1) 23.6
9 WB4*.ET1.A(4) 25.6
10 WB3*.ET1.A(2) 26.6
11 WB4*.ET2.A(4) 27.0
12 WB3*.ET2.A(2) 33.2
13 WB2.ET2.A(1) 33.8
14 WB3.ET1.A(2) 36.8
15 WB1.ET2.A(0) 43.9
16 WB3.ET2.A(2) 45.8
17 WB5.ET1.A(0) 53.1

ANNUAL MODELS CHART

Figure 3.15: Models ranking
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a series of histograms presenting the frequency distribution of ∆AIC for different

groups of models/variants (Figure 3.16) and potential evapotranspiration datasets

(Figure 3.17), both at annual and seasonal time scales.

The performances of every single model, without differentiation between the two

PET datasets and the absence/presence of the filter are shown in Figure 3.16. The

histograms are complemented with the median value of ∆AIC in order to objectively

assess the performances of each approach. The histograms highlight how WB1, WB2

and WB4 exhibit the best performances at annual time scale, having a relevant

number of variants featuring low values of ∆AIC. WB5 shows instead poor results.

Concerning the seasonal models, it can be noted how WB2 largely outperforms the

other models. WB3 displays good performances as well, while the evidence in favor

of models WB1, WB4 and WB5 is quite limited.

Figure 3.17 shows the differences between the two potential evapotranspiration

datasets. The different shape of the frequency distribution of ∆AIC across the mod-

els in the two cases suggest that the CGIR dataset provide more reliable estimates

of the potential evapotranspiration at annual time scale in the study area, while at

seasonal time scale, the MODIS dataset seems to preform slightly better.

3.3.1 Streamflow probability density function

A reliable water balance model allows the estimate of annual or seasonal runoff

coefficients for a catchment not provided with streamflow measurements. Since the

catchments used in this study for the model calibration are quite evenly spread

throughout a vast area, the resulting calibrated parameters can be assumed as ref-

erence values for the eastern US, and thus used to predict streamflow regimes in any

other river in this area. Following the approach described in Section 2.10, the knowl-

edge of average annual/seasonal runoff coefficients allows an estimate of the seasonal

streamflow probability density function (PDF) at any location of a river network,

starting from rainfall data and basic topography information of the drainage basin

(digital terrain models).

The application is conceived as follows. Four validation catchments have been

selected at random within the study area. Catchments have been selected so as to be

pristine (absence of regulation) and with a contributing area smaller that 103 Km2.

In these catchments, the analytical streamflow distribution provided by equations

(2.66) and (2.67), have been compared to the frequency distribution of observed
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Figure 3.16: Annul and Seasonal water balance models histograms
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Figure 3.17: Annual and seasonal PET comparison
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flows. The four parameters of the analytical model have been estimated only based

on rainfall, climate and landscape data. In particular:

• γw has been estimated based on rainfall data as γw = 1/(α A), where α is the

average rainfall depth on rainy days and A is the catchment area;

• a , b have been estimated using a digital terrain map (as detailed in Biswal

and Marani (2010));

• λ is estimated using a water balance model as λ = φ λp, where

φ =< Q > / < P > is the average seasonal runoff coefficient and λp is the

frequency of rainy days in a season.

In this section are presented the results obtained by computing lambda by means

of WB2 (applied at seasonal timescales) coupled with the CGIR potential evapo-

transpiration dataset without the aid of the filter (WB1.ET2.S). The model is chosen

because it is the best performing one among the models without the rainfall parti-

tioning procedure (indeed, the presence of the filter would prevent the framework

to be applied in a predictive manner).

The model WB2.ET1.S applied in the 4 validation catchments during all the

available seasons, provides the following results:
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Figure 3.18: Scatterplot of the seasonal average runoff coefficient and parameter λ for the

4 validation catchments

Performance are remarkably good in almost all cases. In the left hand side

scatterplot of Figure 3.18 it is possible to see two outliers, where the model un-

derestimates the runoff coefficient. It can be noted how the two dots refer to the
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Catchment <Q>/<P> measured <Q>/<P> observedl  measured l observed

Sand Run (Autumn) 0.32 0.26 0.12 0.10
Sand Run (Spring) 0.77 0.38 0.37 0.18

Sand Run (Summer) 0.22 0.19 0.09 0.08
Sand Run (Winter) 0.93 0.70 0.51 0.39

Youghiogheny River (Autumn) 0.37 0.32 0.15 0.12
Youghiogheny River (Spring) 0.92 0.43 0.46 0.22

Youghiogheny River (Summer) 0.32 0.19 0.13 0.08
Youghiogheny River (Winter) 0.97 0.77 0.50 0.40

Daddy's Creek (Autumn) 0.23 0.29 0.07 0.09
Daddy's Creek (Spring) 0.65 0.48 0.26 0.19

Daddy's Creek (Summer) 0.14 0.18 0.05 0.06
Daddy's Creek (Winter) 0.74 0.72 0.31 0.30

Big Piney Creek (Autumn) 0.18 0.44 0.04 0.11
Big Piney Creek (Spring) 0.58 0.54 0.17 0.16

Big Piney Creek (Summer) 0.15 0.13 0.04 0.03
Big Piney Creek (Winter) 0.57 0.63 0.14 0.16

Figure 3.19: Seasonal average runoff coefficient and parameter λ for the 4 validation

catchments
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spring season of two mountain catchments (Sand Run and Youghiogheny river),

very likely affected by snow melting during spring, leading to underestimated runoff

coefficients. As it can be seen on the map in Figure 3.20, despite the relativedly low

latitude, the two catchments under consideration experience intense snowfall during

the year since they are located on the Appalachian Mountains, the second biggest

mountain range in the US.

0 >120 (cm)300.25 9060

Sand Run
Youghiogheny

Figure 3.20: Cumulated average annual snowfall in the Eastern United States (NOAA)

The final result obtained from the application of the streamflow model led to the

results in the plots shown: in Figures 3.21 the seasonal probability density functions

obtained for the Daddy’s Creek are presented, while in Figure 3.22 are shown the

PDFs for a selected season (summer) in the other three catchments. The plots

include the Cumulative Density Function (CDF) as well, which is the integral of the

PDF, namely the probability to observe a streamflow magnitude larger that Q.
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For what concerns the Daddy’s Creek, the modeled PDFs have a strong peak in

correspondence of lowest streamflows especially during the warmest seasons of the

year. The shape of the streamflow PDF is properly reproduced by the analytical

model in all seasons. Though, the model tends to slightly underestimate the high

flows, providing lower probability for large discharges compared to the observations.

In Spring the catchment displays a tendency to behave similarly to catchments

affected by snow dynamics even if it is not affected by snowfalls during cold seasons.

The physical reason could be seek in the ability of catchments to store a larger

amount of water during cold seasons, and to release such water in Spring. The

behavior is a direct consequence of the seasonal streamflow predicted by the water

balance model, which underestimates the observed runoff almost in all seasons for

all the validation catchments (Figure 3.23)

 

 

 

 

 

 

 

Figure 3.21: Streamflow PDFs in all seasons (Daddy’s Creek)

Autumn and Summer are the seasons during which model performances are par-

ticularly high; the modeled streamflow PDF has an almost perfect agreement with



82 CHAPTER 3. RESULTS

 

 

 

 

 

 

Figure 3.22: Streamflow PDFs in summer (Youghiogheny River, Sand Run River, Big

Piney Creek)
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the observation, except for the slight overestimation of the probability associated to

high streamflows in Summer. In winter the model behaves similarly to spring, and

tends to underestimate the probability of occurrence of high discharge events.

The plots of Figure 3.22 show the performances of the model in Summer for the

remaining validation catchments (Youghiogheny River, Sand Run and Big Piney

Creek). The results are in general quite good despite the underestimation of the

average seasonal streamflow. The analytical curves reproduce the observations, im-

plying that the streamflow PDF is properly estimated by the model. However, the

modeled CDFs are slightly shifted downward as a result of the reduced amount of

water available for streamflow generation estimated by the water balance model.

Figure 3.23: Average seasonal runoff in the 4 validation catchments

The ability of the model to catch the shift from erratic to persistent streamflow

regimes across different seasons seems to be particularly valuable. A persistent flow

regime is weakly variable around the mean (low values of the Coefficient of Variation

of daily flows, CV (Q)) and, hence, more predictable. Such a flow regime is likely to

be observed when flow-producing rainffall are frequent enough so that their mean

interarrivals are smaller that the mean duration of the flow pulses. The range of

stramflows observed between two subsequent events is reduced and a persistent

supply of water is guaranteed to the river from the catchment soil. This kind of
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regimes are typically observed during humid, cold seasons (as it is in the study case)

and/or in slow responding catchments.

Conversely, if the main interarrival between flow producing rainfall events is

larger that the mean duration of flow pulses, the range of streamflows observed

between two subsequent rainfall events is larger because the river has enough time

to dry significantly before the arrival of the next pulse. The result is a flow regime

characterized by low discharges with high variance. This kind of regime is defined as

“ erratic” and it is typical of fast responding catchments during season with sporadic

rainfall events or during hot humid seasons, as in the case of all the validation

catchments during Summer.

Erratic flow regimes are characterized by monotonically decreasing PDFs: they

display high probability in the low flows and a long tail for high flows. Instead, per-

sistent regimes are featured by a bell-shaped probability density function, meaning

that intermediate values of streamflows are quite likely to be observed. A graphical

characterization of the two flow regimes is presented in Figure 3.24.

The coefficient of variation of daily flows (CV) is a simple indicator of the hydro-

logic regime of a catchment: high values of CV characterize erratic regimes, while

low values characterize persistent regimes. The coefficient of variation is defined

as the square root or the variance (σ2), normalized with respect to the mean (µ),

namely CV (Q) =
√
σ2(Q)/µ2(Q).

Figure 3.25 shows a comparison between the estimate of CV(Q) provided by

the analytical model and the observed coefficients of variation of daily discharges in

the four validation catchments. The plot proves that the model is able to reproduce

accurately the streamflow variability and its inter-seasonal dynamics across the study

catchments.
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Figure 3.24: Difference between the stramflow PDFs of erratic and persistent regimes
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Figure 3.25: Coefficient of variation of daily discharges in the validation catchments



Chapter 4

Conclusions

Modeling the water balance is a challenging issue because of the variety and

complexity of the underlying physical processes and because of stochasticity of the

hydrological variables involved. It is also one of the most important topics in hy-

drologiy because of the impact of water availability (overall amounts and temporal

variability) on human beings and ecosystems.

The aim of this thesis was to identify among a set of water balance models, the

best performing model in order to provide an estimation of the annual or seasonal

average runoff coefficients in the Eastern United States. The runoff coefficient is

used as a key parameter for an analytical model which is able to estimate the

streamflow PDF in ungauged catchments starting from rainfall time series and basic

topographical information about the contributing catchment.

Five different water balance models (WB1, WB2, WB3, WB4, WB5) were com-

pared, emphasizing their similarities and differences. The models were applied to 39

pristine catchments in the US east of the Rocky Mountains, a vast area featured by

various geological, morphological, ecological and hydroclimatological characteristics.

Because of the heterogeneity of all these forcing physical variables, the catchments

involved in the study can be deemed to be representative of diverse climate regimes.

The importance of evapotranspiration as one of the key fluxes involved in the

water balance was highlighted, and the importance of having a robust model able

to estimate the magnitude of evapotranspiration fluxes was discussed. Unlike the

other terms of the water balance (i.e. precipitation and runoff), that can be easily

measured with sufficient accuracy, evapotranspiration process involve many variables

highly heterogeneous in time and space and is strictly related to ecological feature

difficult to be properly included in a comprehensive approach. Because of these

87
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reasons, two global distributed potential evapotranspiration datasets (CGIR and

MODIS) were used and compared. The CGIR dataset was found to provide better

results at annual time scale, while the MODIS dataset outperforms the CGIR dataset

at seasonal time scales.

In the study it was possible to use and test an embryonal version of a database

which is able to manage and organize a huge amount of hydroclimatological data.

The database displays great potential for research, water management, weather

forecasts and much more, being a versatile instrument to which additional features

and datasets from all around the Globe might be included.

In dealing with the water balance modeling, the surface runoff issue was explic-

itly analyzed. In particular, the estimation of the rainfall fraction that contributes

to the fast response of a catchment is a cumbersome issue because its magnitude

is tightly related to the rainfall regime (intensity, frequency, duration of events),

climatology (dry/wet climate) and to morphological and geological features of the

catchments (slopes, type of soil etc.). Hence, a proper estimation of the surface

runoff would need a massive amount of information about every catchment and de-

manding computations, making the problem intractable within the framework of

this thesis. A simple a-parametric filter was adopted in order to split the stremflow

in its slow and fast components, respectively related to subsurface flow and sur-

face runoff. The filter displayed some limits: because of its simplicity it disregard

the physics of the processes involved in the surface runoff generation since it just

processes the streamflow signal; moreover, the partitioning of rainfall between deep

percolation and surface runoff sometimes provides infiltration rates unrealistically

low. Considering that the use of such a filter would prevent the application to un-

gauged sites, the use of the filter was judged to be unnecessary , and the assumption

that infiltration equals the overall rainfall was made.

The models tested can be empirical or physically based and are characterized by

different degrees of accuracy in the description of the underlying processes. Every

model is characterized by a certain number of parameters that were calibrated in

order to achieve the best performances and, as a final result, a ranking of the models

was made. To every model was assigned a rank by taking into account not only

its departure from the observations, but also the number of calibrated parameters

required. Special attention was given in assessing the reliability of these parameters

from a physical point of view. As expected, all the models perform better at annual

time scale.
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At annual time scale the best performing models are WB1, WB2 and WB4.

WB1 achieves slightly higher values of MSE compared to WB4 (which is the model

having the lowest MSE). However, WB1 has the valuable feature to be parameterless

and, hece, to have a wider applicability. WB3 and WB2 have just one calibrated

parameter and result in comparable and overall satisfactory performances.

Moreover, it was also shown how the runoff coefficient displays a strong season-

ality during the year.

At seasonal time scale WB2 was found to be the best performing model on

the 39 study catchments achieving better performances than other models that

require more demanding calibrations. The model WB2 was then used (in its version

without rainfall partitioning) to predict the streamflow probability density function

in 4 validation catchments (Sand Run, Youghiogheny River, Daddy’s Creek, Big

Piney Creek). The results achieved were encouraging provided that the observed

streamflow regimes were properl captured by the models employed.

The whole method (based on the coupling between a water balance model and

a geomorphic approach to predict the features of recessions) allowed a reliable esti-

mate of the mean annual or seasonal streamflows and of the occurrence probability

of specific discharge ranges. The frequency distribution of streamflows is a valuable

indicator in hydrology, especially if this information can be achieved in an arbitrary

ungauged section of a river. In fact, the probability density function of streamflows

allows the identification of the optimal location of intake facilities for industrial

purposes (e.g. hydropower production, power plant cooling etc.) or civil uses (e.g.

water supply) and provides useful information to properly dimension water infras-

tructures. Moreover, the knowledge of the streamflow PDF supports protection

plans against floods and natural hazards and helps to evaluating the hydraulic risk

in endangered areas. From an ecological perspective, the frequency distribution of

different streamflow magnitudes is a fundamental tool in the study of the dynam-

ics of fishes and biomes characterizing riverine and riparian environments which

are highly sensitive to streamflow availability and variability. Finally, the approach

can be used in the study of stremflow regimes shifts caused by climate change or

anthropogenic interventions (artificial dams or reservoirs).

The modeling approach investigated in this thesis is a valuable tool for a wide

range of practical and scientific applications such as water resources management,

ecological studies and flood risk assessment. The same methodology adopted in this

study can be potentially exported to other areas of the Globe and the number of
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models assessed can vary according to the data availability. In particular, WB1

and WB5 don’t require discharge data to be calibrated and can thus be adopted

to model the water balance in areas provided just with precipitation and potential

evapotranspiration data. Instead, the availability of a good spatial coverage of

streamflow and rainfall gauges allows the use of more sophisticated water balance

models and regionalization approach in order to estimate the streamflow regime of

ungauged rivers. The estimate of the streamflow probability density function at an

arbitrary location of a river based on limited information on climate and landscape

is an attractive endpoint with a wide range of consequences. This study has shown

that this ambitious goal is now at reach of the scientific community.
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