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Preface

This thesis is intended to explain the result proved by Greenberg and Stevens on the

Mazur-Tate-Teitelbaum conjecture. Specially, the objective of the thesis is to develop

all the necessary theory in order to understand Greenberg and Stevens’ paper [GS94] in

detail.

Let E be an elliptic curve over Q. One of the most important problems in modern

number theory is Birch-Swinnerton-Dyer’s conjecture which says that the order of vanish-

ing of L-funtion attached to E at 1 is the rank of E(Q). In 1986, Mazur-Tate-Teitelbaum

[MTT] proposed p-adic analogues of this conjecture. On their work, the case of an ellip-

tic curve with split multiplicative reduction at the prime p is of special interest. In the

so called “exceptional zero” case, the order of vanishing of the p-adic L-function at the

central point seems to be one higher than it is in the classical case. When E has split

mutiplicative reduction at p, Tate proved that E(Qp) ∼= Q×
p /
⟨︂
qZ
⟩︂
where q ∈ Q×

p is the

Tate p-adic period attached to E. Mazur, Tate and Teitelbaum define the L-invariant
Lp(E) by

Lp(E) =
logp(q)

ordp(q)

Here logp : Q×
p → Zp is the p-adic logarithm on Z×

p extended to Q×
p by the relation

logp(p) = 0 and ordp : Q×
p → Z is the normalized valuation. They studied numerically

the relationship between the special value of the first derivative of the p-adic L-function

attached to E and the special value of the classical one. The ratio should conjecturally

relate to the L-invariant Lp(E) of E.

This thesis can be divided in five chapters

Chapter 1: We review the construction of p-adic L-function attached to an elliptic curve

in Mazur-Tate-Teitelbaum’s paper [MTT] and state the main result.
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Chapter 2: We introduce Hida theory which is the crucial technique in the proof of

Greenberg and Stevens.

Chapter 3: We reinterpret the L-invariant as the derivative of the p-th coefficient of

Hida’s cusp form.

Chapter 4: We introduce measure-valued modular symbols and use them to construct

two-variable p-adic L-functions.

Chapter 5: We prove the main theorem by combining computations on the previous

chapters.

Each chapter contains a little summary and some references at the beginning.



Notation and Terminology

Qp: the p-adic completion of Q.

Zp: the p-adic integers in Qp

GL2: invertible matrices.

SL2: matrices with a determinant 1.

Mk(Γ) (resp. Sk(Γ)): modular forms (resp. cusp forms) of weight k on Γ.

Tn: the Hecke operator.

H: the Hecke algebra.

Tap: the p-adic Tate module.

mσ: the action of σ on m.
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CHAPTER 1

Introduction

The classical L-function of a cusp form f is an analytic function which encodes the

Fourier coefficients of f . In this chapter, I will mainly follow the paper of Mazur-Tate-

Teitelbaum [MTT] to present the modular symbol method which can be used to effectively

express the values of the L-function. These symbols are basically line integrals in the

upper half plane satisfying certain arithmetic properties. This chapter will also provide

the construction of the Mazur-Swinnerton-Dyer p-adic L-function of a cusp form using a p-

adic measure. The special values of L-functions twisted by a character can be interpolated

p-adically by the p-adic analog L-function. A mystery factor so called p-adic multiplier

enters into the formula being the discrepancy between the p-adic and classical special

values. Hence, when the p-adic multiplier vanishes, the p-adic L-function is also equal

to zero. In which case, Mazur-Tate-Teitelbaum conjecturally suggested the relationship

between the special value of the first derivative of the p-adic L-function and the special

value of the classical L-function.

1.1 L-functions

In this section, I will outline the construction of L-functions of modular forms and

elliptic curves and their relation in the sense of Modularity theorem.

1.1.1 L-functions of Modular Forms

Firstly, we recall the Melin transform in complex analysis.
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Proposition 1.1.1. Let g : (0,∞)→ C be a continuous function such that for some real

numbers a < b we have

|g(t)|≪ t−a as t→∞

and

|g(t)|≪ t−b as t→∞

Then the integral

Mg(s) =

∫︂ ∞

0

g(t)ts
dt

t

converges absolutely and uniformly on compact subsets of the strip {s ∈ C|a < Re(s) < b}

Proposition 1.1.2. Let Γ be a congruence subgroup of SL2(Z), and f ∈ Sk(Γ) a cusp

form of weight k with q-expansion at the cusp ∞ given by

f(z) =
∞∑︂
n=0

an(f)q
n

Then there exists a constant C ∈ R>0 such that for all n ∈ Z>0

|an(f)|≤ Cnk/2

Suppose that f ∈ Sk(Γ0(N)) has the q-expansion

f(z) =
∑︂
n≥1

anq
n, a = e2πiz

The L-function associated to f is given by

L(f, s) :=
∑︂
n≥1

an
ns

for s ∈ C with Re(s) >
k

2
+ 1

Theorem 1.1.3. Let f ∈ Sk(Γ0(N)). The L-function associated to f has the following

integral representation

L(f, s) =
∑︂
n≥1

ann
−s =

(2π)s

Γ(s)

∫︂ ∞

0

f(it)ts
dt

t
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which converges uniformly to a holomorphic function on Re(s) >
k

2
+ 1. Moreover, it

extends analytically to a holomorphic function on C, and the normalised L-function

Λ(f, s) = N s/2 Γ(s)

(2π)s
L(f, s)

satisfies the functional equation

Λ(f, s) = ±Λ(f, k − s)

For the newforms we also get an Euler product

Theorem 1.1.4. Let f ∈ Snewk (Γ0(N)). The L-function attached to f has the Euler

product

L(f, s) =
∏︂
p

1

1− app−s + 1Npk−1p−2s

where 1N is the trivial Dirichlet character of conductor N .

1.1.2 L-function of Elliptic Curves

Let K be a number field and let E be an elliptic curve over K. The points of E over

K have an abelian group structure denoted by E(K).

Theorem 1.1.5. (Mordell-Weil) The group E(K) is finitely generated.

The Mordell-Weil theorem gives us the decomposition

E(K) ≃ E(K)tors ⊕ Zr

where the torsion subgroup E(K)tors is finite and the rank r of E(K) is a nonnegative

integer.

The L-function of an elliptic curve is a generating function that records information

about the reduction of the curve modulo every prime. Consider the Weierstrass equation

of an elliptic curve E over Q

E : y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6, a1, .., a6 ∈ Q
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Two integral Weierstrass equations are equivalent if they are related by a general admis-

sible change of variable over Q:

x = u2x′ + r, y = u3y′ + su2x′ + t, u, r, s, t ∈ Q, u ̸= 0

After an admissible change of variable of the form (x, y) = (u2x′, u3y′) we can assume

that the coefficients ai’s are integers. Moreover, if the field characteristic is neither 2 or

3, then its equation can be written as

y2 = x3 + AX +B.

In which case, the discriminant is given by ∆ = −16(4A3 + 27B2). For each prime p,

let vp(E) denote the smallest power of p appearing in the discriminant of any integral

Weierstrass equation equivalent to E. That is

vp(E) = min{vp(∆(E ′)) : E ′ integral, equivalent to E}

Define the global mininal discriminant of E to be

∆min(E) =
∏︂
p

pvp(E)

This is a finite product since vp(E) = 0 for all p ∤ ∆(E). One can show that the p-adic

valuation of the discriminant can be minimized to vp(E) simultaneously for all p under

an admissible change of variable. That is, E is isomorphic over Q to an integral model

E ′ with discriminant ∆(E ′) = ∆min(E). This is the global minimal Weierstrass equation

E ′, the model of E to reduce modulo primes.

One can reduce a global minimal Weierstrass equation E to a Weierstrass equation Ẽ

over Z/pZ = Fp and this defines an elliptic curve over Fp if and only if p ∤ ∆min(E). The

reduction is called

1. good, if Ẽ is again an elliptic curve

(a) ordinary, if Ẽ[p] = Z/pZ

(b) supersingular, if Ẽ[p] = {0}

2. bad if Ẽ is not an elliptic curve, in which case it has only one singular point,

(a) multiplicative, if Ẽ has a node

(b) additive, if Ẽ has a cusp
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Define the algebraic conductor of E by NE =
∏︂
p

pfp where

fp =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 If E has good reduction at p

1 If E has multiplicative reduction at p

2 If E has additive reduction at p and p /∈ {2, 3}

2 + δp If E has additive reduction at p and p ∈ {2, 3}

here δ2 ≤ 6 and δ ≤ 3. There is also a closed-form formula for fp.

Theorem 1.1.6. Let E be an elliptic curve over Q with conductor NE. Assume E is in

reduced form. Let p be a prime and let Ẽ be the reduction of E modulo p. Then define

a1(E) = 1

ap(E) = p+ 1−#Ẽ(Fp)

Then there is a newform f ∈ S2(Γ0(NE)) such that for primes p we have

ap(f) = ap(E)

Moreover, the coefficients ape(E) satisfy the same recurrence as the coefficients

ape(f),i.e.,

ape(E) = ap(E)ape−1(E)− p1NE(p)ape−2(E) ∀e ≥ 2

where 1NE is the trivial character modulo the algebraic conductor NE of E.

Theorem 1.1.7. (Hasse’s theorem) Let E/Fp be an elliptic curve defined over a finite

field. Then

|ap|= |#E(Fp)− p− 1|≤ 2
√
p

We can reinterpret the Modularity theorem in term of L-functions

Definition 1.1.8. The Hasse-Weil L-function of E is defined by

L(E, s) =
∞∑︂
n=1

an(E)

ns
, s ∈ C

=
∏︂
p

1

1− ap(E)p−s + 1NE(p)p
1−2s

where 1NE is the trivial character modulo the algebraic conductor NE of E.
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This L-function encodes the solution-counts ap(E).

Theorem 1.1.9. Let E be an elliptic curve over Q with conductor NE. Then there is a

newform f ∈ Snew2 (Γ0(NE)) such that for primes p we have

L(f, s) = L(E, s)

Define the normalised L-function

Λ(E, s) = N s/2 Γ(s)

(2π)s
L(E, s)

satisfies the functional equation

Λ(E, s) = ±Λ(f, 2− s)

Using the Hasse bound, one can get the functional half-plane convergence of L(E, s) for

Re(s) > 2 and the functional equation that determines L(E, s) for Re(s) < 0. Theorem

1.1.9 implies that L(E, s) is analytic on all C.

Birch and Swinnerton-Dyer Conjecture: Let E be an elliptic curve defined over

Q. Then the order of vanishing of L(E, s) at s = 1 is the rank of E(Q). That is, if E(Q)

has rank r then

L(E, s) = (s− 1)rg(s), g(1) ̸= 0,∞

1.2 Modular Integrals

Recall that A ∈ GL2(R) acts on C ∪∞ by the formula

A(z) =
az + b

cz + d
and A(∞) =

a

c

Fix an integer k ≥ 2. Let Sk(Γ0(N), χ) denote the space of cusp forms of weight k with

Dirichlet character χ on Γ0(N). Let

Sk =
∑︂
N,χ

Sk(Γ0(N), χ)

denote the space of all cusp forms of weight k which are on Γ1(N) for some N . Define

actions of GL2(Q)+ on Sk by the formula(︁
f |A

)︁
(z) :=

detAk/2

(cz + d)k
· f
(︁
A(z)

)︁
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Let Pk(R) denote the space of polynomials of the degree ≤ k − 2 with coefficient in a

commutative ring R. Define actions of GL2(Q)+ on Pk(C) by the formula(︁
P |A

)︁
(z) :=

detA1−k/2

(cz + d)2−k
· P
(︁
A(z)

)︁
Definition 1.2.1. Let P1(Q) = Q ∪ {∞}. Define a map

Φ : Sk × Pk(C)× P1(Q)→ C

by the formula

Φ(f, P, r) = 2πi

∫︂ r

∞
f(z) · P (z)dz =

⎧⎪⎨⎪⎩2π

∫︂ ∞

0

f(r + it) · P (r + it)dt if r ∈ Q

0 if r =∞

Proposition 1.2.2. The map Φ has the following properties

1. For any r ∈ P1(Q), the map Φ(f, P, r) is C-bilinear in f and P

2. For any matrix A ∈ GL2(Q)+ we have

Φ(f |A,P |A, r) = Φ(f, P,A(r))− Φ(f, P,A(∞))

It follows that Φ(f, P,∞) = 0.

Proof. The first property follows from the linearity of the integral. For the latter one, by

definition, note that

(f |A)(z) · (P |A)(z)dz = f(A(z)) · P (A(z))d(A(z))

Hence we obtain

ϕ(f |A,P |A, r) = 2πi

∫︂ A(r)

A(∞)

f(z) · P (z)dz

= 2πi

∫︂ A(r)

∞
f(z) · P (z)dz − 2πi

∫︂ A(∞)

∞
f(z)P (z)dz

= ϕ(f, P,A(r))− ϕ(f, P,A(∞))

Applying to A = identity yields ϕ(f, P,∞) = 0.

Definition 1.2.3. For a,m ∈ Q, m > 0, f ∈ Sk(Γ1(N)) and P ∈ Pk(C) we define

λ(f, P, a,m) := Φ(f, P (mz + a),− a

m
)
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Remark 1.2.4. By the definition of the action of GL2(R) on Pk, we consider the matrix

A =

(︄
m a

0 1

)︄
and get P (mz + a) = mk/2−1P

⃓⃓⃓⃓ (︄
m a

0 1

)︄
. Note that A−1 =

(︄
1 −a
0 m

)︄
,

using proposition 1.2.2.2 we obtain the following equivalent formula

λ(f, P, a,m) := Φ(f, P (mz + a),− a

m
)

= m(k/2)−1Φ

⎛⎝f, P ⃓⃓⃓⃓ (︄m a

0 1

)︄
,− a

m

⎞⎠
= m(k/2)−1Φ

⎛⎝f ⃓⃓⃓⃓ (︄1 −a
0 m

)︄
, P, 0

⎞⎠
Proposition 1.2.5. The map λ(f, P, a,m) is C-bilinear in (f, P ). For fixed f and P ,

this map depends only upon a modulo m.

Proof. The C-bilinearity of λ follows from C-bilinearity of Φ. Note that

A =

(︄
1 1

0 1

)︄
∈ Γ1(N) and f |A = f

It follows that

λ(f, P, a,m) = m(k/2)−1Φ(f

⃓⃓⃓⃓ (︄
1 −a
0 m

)︄
, P, 0)

= m(k/2)−1Φ(f

⃓⃓⃓⃓ (︄
1 1

0 1

)︄
·

(︄
1 −a
0 m

)︄
, P, 0)

= m(k/2)−1Φ(f

⃓⃓⃓⃓ (︄
1 −a+m

0 m

)︄
, P, 0)

= λ(f, P, a+m,m)

We can express the special values of the L-function of f in terms of the modular symbol

for f . Recall that

L(f, s) =
∑︂
n≥1

ann
−s =

(2π)s

Γ(s)

∫︂ ∞

0

f(it)ts
dt

t
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Proposition 1.2.6. We have

λ(f, zn, 0, 1) = −2πi
∫︂ i∞

0

f(z)zndz = in
n!

(2π)n
L(f, n+ 1)

for 0 ≤ n ≤ k − 2.

We can twist a cusp form by a Dirichlet character χ. Assume that f(z) =
∑︂
n≥1

anq
n

with q = e2πiz, then we define the twisting of f by χ by the formula

fχ(z) :=
∑︂
n≥1

χ(n)anq
n

Suppose that χ is a Dirichlet character mod m. The Gauss sums are defined by

τ(n, χ) :=
∑︂

a mod m

χ(a) · e2πina/m

τ(χ) := τ(1, χ)

Proposition 1.2.7. We have

τ(n, χ) = χ(n) · τ(χ)

for all n ∈ Z, if χ is primitive mod m, and for (n,m) = 1, if χ is any character mod m.

Conversely, if τ(n, χ) = χ(n) · τ(χ) for all n ∈ Z then χ is primitive mod m, and in

that case

|τ(χ)|2= χ(−1)τ(χ)τ(χ) = m

We can decompose the twisting of f by χ in terms of f with change of variable by the

following lemma.

Proposition 1.2.8. (Birch’s lemma) If χ is primitive mod m, then

fχ(z) =
1

τ(χ)

∑︂
a mod m

χ(a) · f
(︃
z +

a

m

)︃

Proof. Note that τ(χ) ̸= 0 and χ(n) =
τ(n, χ)

τ(χ)
we get

fχ =
∑︂
n≥1

χ(n)anq
n =

∑︂
n≥1

τ(n, ψ)

τ(ψ)
anq

n
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=
1

τ(χ)

∑︂
n≥1

∑︂
a mod m

ψ(a)e2πina/mane
2πinz

=
1

τ(χ)

∑︂
a mod m

ψ(a)
∑︂
n≥1

ane
2πin(z+a/m)

=
1

τ(χ)

∑︂
a mod m

χ(a)f

(︃
z +

a

m

)︃

This gives us the twisting rule for modular integral. If χ is primitive mod m we get

Φ(fχ, P, r) =
1

τ(χ)

∑︂
a mod m

χ(a) · Φ

⎛⎝f ⃓⃓⃓⃓ (︄1 a/m

1 1

)︄
, P, r

⎞⎠
=

1

τ(χ)

∑︂
a mod m

χ(a) · Φ

⎛⎝f, P ⃓⃓⃓⃓ (︄1 −a/m
1 1

)︄
, r +

a

m

⎞⎠
Corollary 1.2.9. Suppose χ is a primitive Dirichlet character mod m. For the modular

symbol λ we have

λ
(︁
fχ, P (mz), b, n

)︁
=

1

τ(χ)

∑︂
a mod m

χ(a)λ(f, P,mb− na,mn)

In particular, putting b = 0, n = 1 we obtain, for 0 ≤ n ≤ k − 2

L(fχ, n+ 1) =
1

n!

(−2πi)n

mn+1
· τ(χ) ·

∑︂
a mod m

χ(a)λ(f, zn, a,m)

1.3 p-adic Distribution

Definition 1.3.1. Let X be any open compact subset of Qp, a p-adic distribution µ on

X is defined to be an additive map from the collection of open compact subsets in X to

Qp. That is

µ

⎛⎝ n⋃︂
k=1

Uk

⎞⎠ =
n∑︂
k=1

µ(Uk)

where n ≥ 1 and {U1, ..., Un} is any finite collection of pairwise disjoint compact open

subsets of X.



1.3. P -ADIC DISTRIBUTION 19

Recall that Qp has a topological basis of the form D(a, n) = a + pnZp, where a ∈ Qp

and n ∈ N. It is remarkable since D(a, n) are open compact sets. Any open compact

subset U of Qp hence can be written as a finite disjoint union of this kind of sets

U =
k⋃︂
j=1

(︂
aj + pNZp

)︂
for some N ∈ N and a1, .., ak ∈ Qp. In particular, every p-adic ball a + pnZp can be

represented as

a+ pnZp =
p−1⋃︂
b=0

(︁
a+ bpn + pn+1Zp

)︁
This is a disjoint union since these smaller balls intersect if and only if one is contained

in the other.

Now we can interpret the additivity condition into a more precise way called distribu-

tion property.

Proposition 1.3.2. Let X be any open compact subset of Qp. Every map µ on open

compact sets of the form a+ pnZp extends to a p-adic distribution if and only if

µ(a+ pnZp) =
p−1∑︂
b=0

µ
(︁
a+ bpn + pn+1Zp

)︁
More generally, we can consider the ”twisting” p-adic space associated to a character

χ of conductor M . Precisely, let M > 0 be a fixed integer and prime to p. Set

X = Zp,M = lim←−
v

(Z/pvMZ) = Zp × (Z/MZ)

X∗ = Z∗
p,M = lim←−

v

(Z/pvMZ)∗ = Z∗
p × (Z/MZ)∗

In the same fashion, let denote

D(a, n) := a+ pnMZp,M

with (a, pM) = 1 and n ∈ N. We can view Z∗
p,M as a p-adic analytic Lie group with a

fundamental system of neighborhoods of the form D(a, n). A function µ on open compact

sets of the form a + pnMZp extends to a p-adic distribution if and only if the additivity

is verified for the disjoint unions a+ pnMZp = ∪b+ pn+1MZp with the union taken over

the p values of b, 0 ≤ b < pN+1M , for which b ≡ a mod pnM .



20 CHAPTER 1. INTRODUCTION

We are now ready to define a distribution attached to a cusp form. Suppose that

f ∈ Sk(Γ0(N), ϵ) is an eigenform for Tp with eigenvalue ap. Suppose that the characteristic

polynomial of Frobenius of f

X2 − apX + ϵ(p)pk−1

has a non-zero root. Choose such a root α ̸= 0.

Definition 1.3.3. Let v(m) = ordp(m) be the order of m, we define

µf,α(P, a,m) =
1

αv(m)
λf,P (a,m)− ϵ(p)pk−2

αv(m)+1
λf,P (a,m/p)

for a,m ∈ Z, m > 0.

It is natural to investigate the action of Hecke operators on modular symbols. Recall

that

f |Tp := pk/2−1

⎛⎝p−1∑︂
u

f

⃓⃓⃓⃓ (︄
1 u

0 p

)︄
+ ϵ(p) · f

⃓⃓⃓⃓ (︄
p 0

0 1

)︄⎞⎠
Proposition 1.3.4. For f ∈ Sk(Γ0(N), ϵ) and for any prime number p we have the

formula

λ(f |Tp, P, a,m) =

p−1∑︂
u=0

λ(f, P, a− um, lm) + χ(p)pk−2 · λ(f, P, a,m/p)

Proof. By definition we have

λ(f |Tp, P, a,m) = pk/2−1

⎛⎜⎝p−1∑︂
u

λ

⎛⎝f ⃓⃓⃓⃓ (︄1 u

0 p

)︄
, P, a,m

⎞⎠+ ϵ(p) · λ

⎛⎝f ⃓⃓⃓⃓ (︄p 0

0 1

)︄
, P, a,m

⎞⎠
⎞⎟⎠

= (pm)k/2−1

p−1∑︂
u=0

Φ

⎛⎝f ⃓⃓⃓⃓ (︄1 u

0 p

)︄(︄
1 −a
0 m

)︄
P, 0

⎞⎠
+ (pm)k/2−1ϵ(p)Φ

⎛⎝f ⃓⃓⃓⃓ (︄p 0

0 1

)︄(︄
1 −a
0 m

)︄
, P, 0

⎞⎠
= (pm)k/2−1

p−1∑︂
u=0

Φ

⎛⎝f ⃓⃓⃓⃓ (︄1 −a+ um

0 mp

)︄
, P, 0

⎞⎠
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+ (pm)k/2−1ϵ(p)Φ

⎛⎝f ⃓⃓⃓⃓ (︄p −ap
0 m

)︄
, P, 0

⎞⎠
=

p−1∑︂
u=0

Φ (f, P, a− um, pm) + (pm)k/2−1ϵ(p)Φ

⎛⎝f ⃓⃓⃓⃓ (︄p 0

0 p

)︄(︄
1 −a
0 m/p

)︄
, P, 0

⎞⎠
=

p−1∑︂
u=0

Φ (f, P, a− um, pm) + pk/2−1ϵ(p)Φ

⎛⎝f ⃓⃓⃓⃓ (︄p 0

0 p

)︄
, P, a,

m

p

⎞⎠
=

p−1∑︂
u=0

λ (f, P, a− um, lm) + ϵ(p)pk−1 · λ
(︁
f, P, a,m/p

)︁

Applying this formula we have the distribution property for µf,α.

Proposition 1.3.5. For a,m ∈ Z, m > 0 we have∑︂
b≡a mod m
b mod pm

µf,α(P, b, pm) = µf,α(P, a,m)

Proof. By definition we have∑︂
µf,α(P, b, pm) =

∑︂
u mod p

µf,α(P, a− um, pm)

=
∑︂

u mod p

[︄
1

αv(pm)
λf,P (a− um, pm)− ϵ(p)pk−2

αv(pm)+1
λf,P (a− um,m)

]︄

Since λf,P (a,m) depends only upon a mod m, we have λf,P (a − um,m) = λf,P (a,m).

Moreover, by Vieta theorem we get αβ = ϵ(p)pk−1. Hence∑︂
u mod p

ϵ(p)pk−2

αv(pm)+1
λf,P (a− um,m) =

β

αv(m)+1
λf,P (a,m)

Using the action formula of the Hecke operator we have∑︂
u mod p

λf,P (a− um, pm) = λ(f |Tp, P, a,m)− ϵ(p)pk−1λ(f, P, a,m/p)

= apλ(f, P, a,m)− ϵ(p)pk−2λ(f, P, a,m/p)
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Not that ap − β = α, we obtain

∑︂
µf,α(P, b, pm) =

ap
αv(m)+1

λf,P (a,m)− ϵ(p)pk−1

αv(m)+1
λf,P (a,m/p)−

β

αv(m)+1
λf,P (a,m)

=
1

αv(m)
λf,P (a,m)− ϵ(p)pk−2

αv(m)+1
λf,P (a,m/p)

= µf,α(P, a,m)

For x ∈ Zp,M , we denote by xp the projection of x in Zp.

Definition 1.3.6. Let U ⊂ Zp,M be an open subset, a function F : U → Cp is called

locally analytic if there is a covering of U by disks D(a, v) such that on each D(a, v), F

is given by the convergent power series

F (x) =
∑︂
n≥0

cn(x− a)np

Assume that v(a) < k−1, Vishik [Vi76] and Amice-Velu [AV75] defined an integration

(U, F ) ↦→
∫︂
U

Fdµf,α ∈ Cp

for a compact open subset U of Z×
p,M and a locally analytic function F on U .

Theorem 1.3.7. Fix an integer h such that 1 ≤ h ≤ k − 1. Suppose the polynomial

X2 − apX + ϵ(p)pk−1 has a root α ∈ Cp such that ordp α < h. Fix such an α. Then

there exists a unique Cp-valued integral satisfying these axioms, in which v ≥ 1, a ∈ Z
throughout

1. It is Cp-linear in F and finitely additive in U .

2. For 0 ≤ j < h ∫︂
D(a,v)

xjpdµf,α = µf,α(z
j, a, pvM)

3. For any n ≥ 0 ∫︂
D(a,v)

(x− a)npdµf,α ∈
(︃
pn

α

)︃v
α−1Ωf
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4. If F (x) =
∑︂
n≥0

cn(x− a)np is convergent on the disk D(a, v), then

∫︂
D(a,v)

F =
∑︂
n≥0

cn

∫︂
D(a,v)

(x− a)npdµf,α

Proof. Refer [MTT]

Definition 1.3.8. If α is a root of X2− apX + ϵ(p)pk−1 such that ordp α < k− 1, we call

α an allowable p-root for f .

1.4 One Variable p-adic L-function

Definition 1.4.1. A p-adic character is a continuous homomorphism

χ : Z∗
p,M → C∗

p

for some p prime and M ∈ Z>0, (p,M) = 1.

If M1|M , then Z×
p,M1

is a quotient of Z×
p,M , and we can deduce characters of Z×

p,M1
with

certain characters of Z×
p,M . We say that a character χ as above is primitive on Z×

p,M if it

does not factor through Z×
p,M1

for any proper divisor M1 of M .

For each p-adic character χ there is a unique M such that χ is primitive on Z×
p,M . We

call this M the p′-conductor of χ; it is an integer ≥ 1, prime to p.

If p > 2, we have Z∗
p = µp−1 × (1 + pZp). Hence, every x ∈ Z∗

p we can write, uniquely,

x = ω(x) ⟨x⟩

with ω(x) ∈ µp−1 and ⟨x⟩ ∈ 1+pZp. We have x ↦→ ω(x) and x ↦→ ⟨x⟩ are p-adic characters
of p′-conductor 1.

Definition 1.4.2. Let f ∈ Sk(Γ0(N), ϵ) is an eigenform for Tp with eigenvalue ap. Suppose

that the characteristic polynomial of the Frobenius of f

X2 − apX + ϵ(p)pk−1

has a non-zero root. Suppose that α is an allowable p-root for f . For each p-adic character

χ we define

Lp(f, α, χ) =

∫︂
Z∗
p,M

χdµf,α
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where M is the p-conductor of χ, and where the integral is that defined in the theorem

of Vishik.

Definition 1.4.3. For s ∈ Zp, define

χs(x) := ⟨x⟩s = exp(s log x) =
∞∑︂
r=0

sr

r!
(log ⟨x⟩)r

The p-adic L-function associated to α given by

Lp(f, α, s) =

∫︂
Z∗
p

⟨x⟩s−1 dµf,α

The p-adic L-function associated to α twisted by ψ is defined to be

Lp(f, α, ψχs−1) =

∫︂
Z×
p,M

ψ(x) · ⟨x⟩s−1 dµf,α

Definition 1.4.4. Let ψ be a p-adic character of conductor m = pvM . We define the

p-adic multiplier

ep(α, ψ) :=
1

αv

(︄
1− ψ̄(p)ϵ(p)pk−2

α

)︄(︃
1− ψ(p)

α

)︃
here ψ is the conjugate character to ψ.

Theorem 1.4.5. Let ψ be a p-adic character of conductor m = pvM , then

Lp(f, α, ψ) = ep(α, ψ) ·
m

τ(ψ̄)
· L(fψ̄, 1)

where fψ(z) =
∑︂
n≥1

ψ(n)ane
2πinz a twisting of f by ψ and τ(ψ) =

∑︂
a mod m

ψ(a) · e2πia/m the

Gauss sum associated to ψ.

In particular, for the trivial character ψ = 1, we obtain

Lp(f, α,1) =

(︄
1− ϵ(p)pk−2

α

)︄(︃
1− 1

α

)︃
· L(f, 1)

Proof. Case 1: v > 0

It follows that p|m, so ψ(p) = 0 and ep(α, ψ) =
1

αv
. By the property of the integral we

have

Lp(f, α, ψ) =

∫︂
Z×
p,M

χdµf,α
def
=

∫︂
Zp,M

ψ(x)dµf,α
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=
∑︂

a mod pvM

ψ(a) · µf,α(1, a, pvM)

=
∑︂

a mod pvM

ψ(a)

[︄
1

αv
λ(f, 1, a, pvM)− ϵ(p)pk−2

αv+1
λ(f, 1, a, pv−1)

]︄

By the distribution property we have

∑︂
a mod pvM

ψ(a)λ(f, 1, a, pv−1) =
∑︂

b mod pv−1M

⎛⎜⎜⎜⎝ ∑︂
a≡b mod pv−1M
a mod pvM

ψ(a)

⎞⎟⎟⎟⎠λ(f, 1, b, pv−1M)

We have the following well-known lemma

Lemma 1.4.6. Let ψ be a character of conductor m. For n|m we have∑︂
a mod m
a≡b mod n

ψ(a) = 0

for every b modulo n.

Hence
∑︂

a≡b mod pv−1M
a mod pvM

ψ(a) = 0 and we get

Lp(f, α, ψ) =
1

αv

∑︂
a mod pvM

ψ(a)λ(f, 1, a, pvM) =
1

αv
m

τ(ψ̄)
· L(fψ̄, 1)

Case 2: v = 0

If (a,M) = 1, set D(a, 0) = Z×
p,M ∩ (a+MZp,M). Then we have

D(a, 0) =
⨆︂

b≡a mod M
b ̸=0 mod p
b mod pM

D(b, 1)

Note that if b ≡ a mod M and b ≡ 0 mod p, then b ≡ pap′ mod pM with pp′ ≡ 1

mod M . Hence we get∫︂
D(a,0)

ψdµf,α = ψdµf,α =
∑︂

b≡a mod M
b̸=0 mod p
b mod pM

ψ(b)µf,α(1, b, pM)
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=

⎡⎢⎢⎣ ∑︂
b≡a mod m
b mod pm

ψ(b)µf,α(1, b, pm)

⎤⎥⎥⎦− ψ(pap′)µf,α(1, pap′, pm)

Note that ψ(b) = ψ(a) = ψ(pap′) and by the distribution property we obtain∫︂
D(a,0)

ψdµf,α = ψ(a)µf,α(1, a,m)− ψ(a)µf,α(1, pap′, pm)

= ψ(a)

(︄
λf,1(a,M)− ϵ(p)pk−2

α
λf,1(a,M/p)

− 1

α
λf,1(pap

′, pM) +
ϵ(p)pk−2

α2
λf,1(pap

′,M)

)︄

= ψ(a)

(︄
λf,1(a,M)− ϵ(p)pk−2

α
λf,1(pa,M)

− 1

α
λf,1(ap

′,M) +
ϵ(p)pk−2

α2
λf,1(a,M)

)︄

Summing up a modulo m we get

Lp(f, α, ψ) =
∑︂

a mod m

∫︂
D(a,0)

ψdµf,α

=
∑︂

a mod m

ψ(a)

(︄
λf,1(a,M)− ϵ(p)pk−2

α
λf,1(pa,M)

− 1

α
λf,1(ap

′,M) +
ϵ(p)pk−2

α2
λf,1(a,M)

)︄

=
m

τ(χ)
L(fψ, 1)

(︄
1− ψ(p)ϵ(p)pk−2

α
− ψ(p)

α
+
ϵ(p)pk−2

α2

)︄

=

(︄
1− ψ̄(p)ϵ(p)pk−2

α

)︄(︃
1− ψ(p)

α

)︃
m

τ(χ)
L(fψ, 1)

Theorem 1.4.7. Let E be an elliptic curve over Q and let f ∈ Snew2 (Γ0(N)) be a newform

attached to E. Then the p-adic multiplier ep(α, ψ) of f vanishes if and only if E has

multiplicative reduction at p, and ψ(p) = ap
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Proof. Since k = 2, the p-adic multiplier has the form

ep(α, χ) :=
1

αv

(︄
1− ψ̄(p)ϵ(p)

α

)︄(︃
1− ψ(p)

α

)︃
Let α and β be the roots of Frobenius associated to f

X2 − apX + ϵ(p)p

Then α + β = ap and αβ = ϵ(p)p. By the definition of ep(α, ψ), it is vanishes if and only

if α = ψ(p) or α = ψ(p)ϵ(p).In cases, we have

ap = α + β =

⎧⎨⎩ψ(p) + ψ(p)ϵ(p)p if α = ψ(p)

ψ(p)ϵ(p) + ψ(p)p if α = ψ(p)ϵ(p)

Since α ̸= 0, we see that ψ(p) ̸= 0 and |ψ(p)|= 1. If ϵ(p) ̸= 0, it follows that |ap|≥ p− 1

by triangle inequality. On the other hand, by Hasse’s theorem we obtain

p− 1 ≤ |ap|≤ 2
√
p

which contradicts the assumption p ≥ 5. Hence ϵ(p) = 0, so ap = ψ(p) or ap = ψ(p)p.

Again, by Hasse’s theorem, we excludes the latter case. Thus ap = ψ(p) = ±1, since ψ(p)
is a root of unity, and ap is an integer. It follows from ap = ±1 that E has multiplicative

reduction modulo p.

1.5 The Main Theorem

1.5.1 Tate’s p-adic Uniformization

Recall that every elliptic curve E over C has the form

E(C) ≃ C×/qZ

with |q|< 1. We also get the analogue result for elliptic curves over p-adic fields due to

J.Tate.

Theorem 1.5.1. (Tate curve) Let K be a p-adic field,i.e., a finite extension K/Qp with

absolute value |·|, let q ∈ K∗ satisfy |q|< 1, and let

sk(q) =
∑︂
n≥1

nkqn

1− qn
, a4(q) = −5s3(q), a6(q) = −

5s3(q) + 7s5(q)

12
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1. The series a4(q) and a6(q) converge in K. Define the Tate curve Eq by the equation

Eq : y
2 + xy = x3 + a4(q)x+ a6(q)

2. The Tate curve is an elliptic curve defined over K with discriminant

∆ = q
∏︂
n≥1

(1− qn)24

and j-invariant

j(Eq) =
1

q
+ 744 + 196884q + · · · = 1

q
+
∑︂
n≥0

c(n)qn ∈ 1

q
+ Z[[q]]

where c(n)’s are the integers.

3. The series

X(u, q) =
∑︂
n∈Z

qnu

(1− qnu)2
− 2s1(q),

Y (u, q) =
∑︂
n∈Z

(qnu)2

(1− qnu)3
+ s1(q)

converge for all u ∈ K, u /∈ qZ. They define a surjective homomorphism

ϕ : K
∗ → Eq(K)

u ↦→

⎧⎨⎩(X(u, q), Y (u, q)) if u /∈ qZ,

O if u ∈ qZ

The kernel of ϕ is qZ.

4. The map ϕ in (c) is compatible with the action of the Galois group GK/K in the sense

that

ϕ(uσ) = ϕ(u)σ ∀u ∈ K∗
, σ ∈ GK/K

In particular, for any algebraic extension L/K, ϕ induces an isomorphism

ϕ : L∗/qZ
∼→ Eq(L)

Proof. Refer [Sil94], chapter V, theorem 3.1.
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Before giving the p-adic uniformization theorem, we describe an invariant γ of elliptic

curves.

Lemma 1.5.2. Let E/K be an elliptic curve defined over a field of characteristic not

equal to 2 or 3, and choose a Weierstrass equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6

for E/K. Let c4 and c6 be the usual quantities associated to this equation. Assume that

j(E) ̸= 0, 1728, we define

γ(E/K) = −c4/c6 ∈ K×/(K×)2

Then γ(E/K) is well-defined as an element of K×/(K×)2, independent of the choice of

Weierstrass equation for E/K.

Let E ′/K be another elliptic curve with j(E ′) = j(E) ̸= 0, 1728. Then E and E ′ are

isomorphic over K if and only if

j(E) = j(E ′) and γ(E/K) = γ(E ′/K)

Proof. Refer [Sil94], chapter V, lemma 5.2.

Theorem 1.5.3. (Tate period) Let K be a p-adic field, let E/K be an elliptic curve with

|j(E)|=
⃓⃓⃓⃓
1

q

⃓⃓⃓⃓
> 1, and let γ(E/K) ∈ K∗/K∗2 be the invariant defined by lemma 1.5.2

a There is a unique q ∈ K∗
with |q|< 1 such that E is isomorphic over K to the Tate

curve E. Further, this value of q lies in K.

b Let q be chosen as in (a). Then the following three conditions are equivalent

(a) E is isomorphic to Eq over K.

(b) γ(E/K) = 1

(c) E has split multiplicative reduction.

Proof. Refer [Sil94], chapter V theorem 5.3.

Suppose that E/Qp has the split reduction at p, then we have the isomorphism

E(Qp) ≃ Qp
×
/qZE
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1.5.2 The Mazur-Tate-Teitelbaum Conjecture

Recall the q-expansion of the elliptic modular function j given by

j = q−1 + 744 + 196884q + 21493760q2 + · · · = q−1 +
∞∑︂
n=0

Anq
n.

Inverting the formula we obtain

q = q(j) =
∞∑︂
n=1

Bnj
−n.

Let K be a finite extension of Qp, and let E/K with non-integral j-invariant j(E).

Evaluating q(E) = q(j(E)), the multiplicative period of E, we obtain

vp(q(E)) = −vp(j(E)) > 0

Definition 1.5.4. Let λ : K∗ → Qp be a continuous homomorphism. We set

Lλ(E) :=
λ(q(E))

vp(q(E))
∈ Qp

Definition 1.5.5. Define the p-adic logarithm by the power series

logp(1 + x) =
∑︂
n≥1

(−1)n+1x
n

n

This series is converges on the set 1 + pZp = {x ∈ Qp||x − 1|p < 1}. Recall that

Z×
p ≃ µp−1 × (1 + pZp), let logp(ξ) = 0 for all ξ ∈ µp−1.

One can extend its domain to Q×
p by defining logp(p) = 0. That is, for any x ∈ Q×

p ,

then x can be uniquely written as the form x = upn with u ∈ Z×
p , then log(x) := log(u)

We denote by NK/Qp the norm map. If λ is the composition

K× NK/Qp−→ Q×
p

logp−→ Qp

then we call Lλ(E) the L-invariant of E and denote it by Lp(E).

The L-invariant Lλ(E) is an isogeny-invariant of E, and is linear in λ. We have the

following conjecture.

Conjecture: If j(E) is algebraic, the Lp(E) does not vanish.

The main result of my thesis is the following due to Greenberg and Stevens (refer

[GS94], [GS93]).
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Theorem 1.5.6. Let E be an elliptic curve over Q with split multiplicative reduction at

the prime p ≥ 5. Let L∞(E, z) be the Hasse-Weil L-function of E/Q, and let Lp(E, s) be

the associated p-adic L-fucntion. Then

d

ds
Lp(E, s)

⃓⃓⃓⃓
s=1

= Lp(E) ·
L∞(E, 1)

ΩE

Here ΩE is the Neron period of E.



CHAPTER 2

Hida’s Theory

The main technique in the proof of Greenberg and Stevens (refer [GS94], [GS93]) is

the theory of Hida which investigates the ordinary part of spaces of modular forms. I will

also provide the basics of Λ-adic forms which can be seen as families of p-adic modular

forms and their Galois representations.

2.1 Iwasawa’s Algebra

This section provides basic background on Iwasawa’s algebra which is often used

throughout my thesis. The main reference for this topic is the notes of Yi Ouyang [Ou].

Definition 2.1.1. (Completed group ring) Let G be a profinite group. The completed

group ring of G over Zp is

Zp[[G]] := lim←−
N

[G/N ]

where N runs over all finte-index subgroups of G and Zp[G/N ] is the usual group ring of

G/N over Zp.

The group ring Zp[[G]] is a topological ring and every continuous group homomorphism

G→ Q×
p extends by linearity to a continuous ring homomorphism Zp[[G]]→ Q×

p .

Definition 2.1.2. The augmentation ideal IG of Zp[G] is

ker
(︂
Zp[[G]]

ϵ→ Zp
)︂
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where ϵ is the inverse limit of the Zp-linear maps Zp[G/N ] → Zp that takes every group

element to 1.

The map ϵ is surjective, and therefore it induces an isomorphism

Zp[[G]]/IG ≃ Zp

Definition 2.1.3. We define the Iwasawa algebra to be the ring of formal power series

Zp[[T ]] with variable T over Zp. Let vp be the usual p-adic valuation on Zp. For f(T ) =∑︂
n≥0

anT
n ∈ Zp[[T ]] define the µ-invariant of f to be the least power of p dividing all the

coefficients

µ(f) := min
n
vp(an)

And the λ-invariant of f is the first coefficient at which the minimum occurs

λ(f) := min{n : vp(an) = µ(f)}

Theorem 2.1.4. (Division algorithm for Zp[[T ]]). Let f(T ) ∈ Zp[[T ]] be non-zero with

µ(f) = 0. Let g(T ) ∈ Zp[[T ]], then there exists unique q(T ) ∈ Zp[[T ]] and a polynomial

r(T ) ∈ Zp[T ] of degree < λ(f) such that

g = fq + r

Definition 2.1.5. A polynomial P (T ) ∈ Zp[T ] is called a distinguished polynomial if it

has the form

P (T ) = T n + an−1T
n−1 + · · ·+ a0

with ai ∈ pZp.

Theorem 2.1.6. (p-adic Weierstrass preparation theorem). Let f(T ) ∈ Zp[[T ]]× be a

non-zero power series. Then, there is a unique factorization

f(T ) = pµ(f)P (T )u(T )

where P (T ) is a distinguished polynomial with the degree deg(P ) = λ(f), and u(T ) ∈
Zp[[T ]]×.

Let G be a topological group isomorphic to the additive group Zp = lim←−
n

Z/pnZ. Note

that as a profinite group, Zp is compact and procyclic, i.e. Zp is the closure of the cyclic
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subgroup ⟨1⟩. Let γ be any generator of G, i.e., G = ⟨γ⟩ and Gn = ⟨γpn⟩ be the unique

closed subgroup of index pn of G. Then G/Gn is cyclic of order pn generated by γ +Gn.

One has an isomorphism

Zp[G/Gn]
∼→ Zp[T ]/

(︂
(1 + T )p

n − 1
)︂

γ mod Gn ↦→ (1 + T ) mod (1 + T )p
n − 1

Moreover, if m ≥ n ≥ 0, the natural map G/Gm → G/Gn induces a natural map

ϕm,n : Zp[G/Gm] → Zp[G/Gn], which is compatible with the isomorphism. We hence

obtain

Zp[G] = lim←−
n

Zp[G/Gn] = lim←−
n

Zp[T ]/
(︂
(1 + T )p

n − 1
)︂

Theorem 2.1.7. Let G be a topological group isomorphic to the additive group Zp and let

γ be any its generator. There is an isomorphism of topological rings induce by γ− 1 ↦→ T

Zp[[G]] ≃ Zp[[T ]]

Proof. For n ≥ 1 let ωn(T ) = (1 + T )p
n − 1. Then ωn(T ) is a distinguished polynomial.

Furthermore,

ωn+1(T )

ωn(T )
= (1 + T )p

n(p−1) + · · ·+ (1 + T )p
n

+ 1 ∈ (p, T )

so ωn(T ) ∈ (p, T )n+1 for n ≥ 0.

Hence, for every n ≥ 1 we have a projection

Zp[[T ]]→ Zp[[T ]]/(ωn)
∼−→ Zp[T ]/(ωn)

∼−→ Zp[Γ/Γn]

which is compatible with the transition map. By the universal property of projective

limits, we obtain a continuous homomorphism

ϵ : Zp[[T ]]→ Zp[[Γ]], T ↦→ γ − 1

On the other hand ker ϵ ⊂ ∩n(ωn) ⊂ ∩n(p, T )n+1 = 0, thus ϵ is injective. Moreover, Z[[T ]]

is compact, hence the image is closed, it is also dense since at every level the map is

surjective. It follows that ϵ is surjective.

It is noticable that this isomorphism depends on the choice of the topological generator

γ of G.
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Proposition 2.1.8. (Nakayama’s lemma) Let M be a compact Λ-module. Then the

following are equivalent

1. M is finitely generated over Λ

2. M/TM is a finitely generated Zp-module

3. M/(p, T )M is a finitely dimensional Fp-vector space

Proof. (1) ⇒ (2) ⇒ (3) are straightforward. Assuming (3), let x1, ..., xn generate

M/(p, T )M as Fp-vector space. Let N = Λx0 + · · ·+ Λxn ⊆M , then

M/N =
N + (pT )M

N
= (p, T )M/N

Thus M/N = (p, T )nM/N for all n > 0.

Consider a small neighborhood U of 0 in M/N . Since (p, T )n → 0 in Λ, for any

z ∈ M/N , there exists a neighborhood Uz of z and some nz such that (p, T )nzUz ⊆ U .

ButM/N is compact, then (p, T )nM/N ⊆ U for n large, henceM/N = ∩(p, T )nM/N = 0

and M = N is finitely generated over Λ.

2.2 Ordinary Subspace

Hida defined an idempotent of the Hecke algebra that projects spaces of modular forms

to their ordinary parts [Hi93], which are maximal submodules on which Up acts invertibly.

Recall that

Un
p =

pn−1∑︂
b=0

(︄
1 b

0 pn

)︄
Definition 2.2.1. The element eord attached to Up is given by

eord = lim
n→∞

Un!
p

is an idempotent of Hecke algebra H(Γ0(N),Zp).

Lemma 2.2.2. Suppose a ∈ Q̄p is an algebraic integer. In Cp we have

lim
n→∞

an! =

⎧⎨⎩1 if a ∈ Q̄×
p

0 otherwise
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Proof. If a is not a unit of Qp, then it has positive p-adic valuation; thus the limit of an!

is 0. Suppose a is a unit contained in the ring of integers OK of a finite extension K of

Qp. Take a prime ideal p ⊂ OK above pZp. As a is a unit, we have

a|OK/p
k|−1 ≡ 1 mod pk

For n large enough, |OK/pk|−1 divides n!, so taking limit n→∞ we have lim
n→∞

an! = 1.

Remark 2.2.3. An eigenform of Γ0(N) is called ordinary at p if its Up-eigenvalue is a

p-adic unit, by the lemma we see that an eigenform f is preserved by eord if it is precisely

ordinary, and otherwise eord maps f to 0.

Definition 2.2.4. The ordinary submodule of Sk(Γ0(N)) is

Sordk (Γ0(N)) := eordSk(Γ0(N))

Remark 2.2.5. If p ∤ d, then the diamond operators ⟨d⟩ and Up commute on S(Γ0(N))

for any positive integer N . Hence eord commutes with ⟨d⟩ for p ∤ d. Also, ⟨d⟩Up acts as

pk−1 on S(Γ0(N)).

Theorem 2.2.6. We have the basis for Sk(Γ0(N))

{f |⟨d⟩ : f ∈ Snewk (Γ0(N
′)), dN ′|N}

The following property gives us the action of eord on the elements of this basis

Proposition 2.2.7. Suppose that d and N ′ are positive integers such that dN ′|N , and

suppose f is a newform of level N ′. If ap(f) is not a p-adic unit, then

eord(f |⟨d⟩) = 0

If ap(f) is a p-adic unit, let α, β be the roots of Frobenius of f , that is, the root of the

equation

x2 − ap(f)x+ χN ′(p)pk−1 = 0

Assume that the roots are ordered so that α is a unit and β is a non-unit. Then

eord(f |⟨d⟩) =
α

α− β
(f |⟨d⟩ − βp1−k · f |⟨pd⟩)

for (p, d) = 1, and

eord(f |⟨d⟩) =
pk−1

α− β
(f |
⟨︁
d/p
⟩︁
− βp1−k · f |⟨d⟩)

for p|d.
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Proof. Without loss of generality, we can assume that d = 1 or d = p. Since f is a

newform at level N ′, we have

f |
(︁
Up + χN ′(p) ⟨p⟩

)︁
= apf

⇔f |Up = apf − χN ′(p)f |⟨p⟩

Note that ⟨d⟩Up acts as pk−1, we obtain

(︂
f f |⟨p⟩

)︂ ⃓⃓⃓⃓
Up =

(︂
f f |⟨p⟩

)︂(︄ ap pk−1

−χN ′(p) 0

)︄

Let A =

(︄
ap pk−1

−χN ′(p) 0

)︄
.

Case 1: ap is non-unit. Then all entries of A2 has positive p-adic valuation. It follows

that (︂
f f |⟨p⟩

)︂ ⃓⃓⃓⃓
Un!
p =

(︂
f f |⟨p⟩

)︂ ⃓⃓⃓⃓
An!

Taking limit we have eord(⟨d⟩ f) = 0.

Case 2: ap is a unit. By diagonalizing A, we obtain

pk−1(α− β)f = α(pk−1f − βf |⟨p⟩)− β(pk−1f − αf |⟨p⟩)

Set fα := pk−1f − βf |⟨p⟩ and fβ := pk−1f − αf |⟨p⟩. We see that they are eigenvectors

of Up with eigenvalues α and β, respectively. Lemma implies that eord(fα) = fα and

eord(fβ) = 0. Hence, by applying Hida’s projector to equation , we get

eord(f) =
α

pk−1(α− β)
(pk−1f − βf |⟨p⟩) = α

α− β
(f − βp1−kf |⟨p⟩)

Similarly, we have

(α− β)f |⟨p⟩ = (pk−1f − βf |⟨p⟩)− (pk−1f − αf |⟨p⟩)

Thus

eord(⟨d⟩ f) =
pk−1

α− β
(
⟨︁
d/p
⟩︁
f − βp1−k ⟨d⟩ f)
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Definition 2.2.8. Suppose f ∈ Sk(Γ0(N)) is a p-ordinary cusp form which is an eigenform

of Tp, and let β denote by its non-unit root of the Frobenius. The p-stabilized cusp form

g corresponding to f is given by

g := f − βp1−k ⟨p⟩ f

which satisfies

g(z) = f(z)− βf(pz)

Note that g ∈ Sk(Γ0(Np)) and if p|N , the β = 0, so f is already p-stabilized.

Corollary 2.2.9. The space Sordk (Γ0(N)) has basis

{f(dz)− βf(pdz) : f ∈ Sk(Γ0(N
′))newp− ordinary, (p, d) = 1, dN ′|N}

where β denotes the non-unit root of the Frobenius of f at p.

2.3 Λ-adic families

Thoughout this section, p is a prime number ≥ 5 and Λ := Zp[[T ]] is the Iwasawa’s

algebra. Given a cusp form f of weight 2, we will construct a family which p-adically

”converges” to f . I mainly follow Hida’s blue book [Hi93] and the lecture notes [Laf],

[BNG].

2.3.1 Λ-adic modular forms

We will explore the modular forms in families. Let p be a prime number p ≥ 5 and N

an integer prime to p. Recall that the group Z×
p of p-adic units is cannonically equal to

the product of the group of principal units 1 + pZp and the group µp−1 of (p− 1)th roots

of unity

Z×
p = µ×

p−1 × (1 + pZp)

x = ω(x) · ⟨a⟩

We denote the projection to principal units by ⟨·⟩ and the projection to roots of unity by

the Teichmuller character ω.
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Let χ : (Z/NZ)× → C× be an arbitrary Dirichlet character for some positive integer

N , and let dχ denote its conductor. We know that either (dχ, p) = 1 or p|dχ, so

dχ =M or dχ =Mpr+1

for some positive integer M coprime to p and some integer r ≥ 0. Now we have

(Z/Mpr+1Z)× ≃ (Z/MpZ)× × (1 + pZ)/(1 + pr+1Z)

α mod Mpr+1 ↦→ (α mod Mp,α mod (1 + pr+1Z)

Hence we obtain χ = χFχS, where

χF : (Z/MpZ)× → Q×
and χS : (1 + pZ)/(1 + pr+1Z)→ Q×

are characters of conductor Mp and pr+1 respectively. Note that for any character χ :

(Z/prZ)× → C×, the image of χF is contained in Zp, while the image of χS has p-power

order.

Definition 2.3.1. For any character χ : (Z/NprZ)× → C× and integer k > 1, we have

χ = χFχS given as above. Let u = 1 + p, we define the specialization

νk,χ : Λ→ Qp

T ↦→ ξχu
k − 1, ξχ = χS(u)

Since ξχ is a p-power root of unity and u
k = (1+p)k ≡ 1 mod p, we see that |ξχuk−1|p<

1 for all integer k > 1. Hence, the evaluation of any element of Λ at ξχu
k − 1 results in a

power series converges p-adically.

We denote by A(χ,Λ) the set of all specializations T ↦→ ξχu
k−1 associated to character

χ : (Z/NprZ) → C× running over all k ∈ N. Since Λ has no zero divisors, the kernel

of the specialization map νk,χ is a prime ideal of Λ. Hence, the specialization map νk,χ

can be seen as an embedding of Λ/ker(νk,χ) into Qp. We can view A(χ,Λ) as the set of

Zp-algebra homomorphisms from Λ to Qp.

Definition 2.3.2. Let N be a positive interger coprime to p. For any character χ :

(Z/NprZ)× → Q×
, where r ≥ 0, a Λ-adic modular form F of character χ and level Npr

is a formal q-expansion

F (T ) =
∑︂
n≥0

an(F )(T )q
n ∈ Λ[[q]] = Zp[[T, q]]
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such that for all but finitely many integer k > 1 we have

νk(F ) =
∑︂
n≥0

νk
(︁
an(F )(T )

)︁
qn ∈Mk(Np

r, χω−k)

for all νk ∈ A(χ,Λ). Here ω is the Teichmuller character.

Similarly, if νk(F ) ∈ Sk(Npr, χω−k) (resp. M ord
k (Npr, χω−k), Sordk (Npr, χω−k) for all

but finitely many positive integers k, we say F is a Λ-adic cusp form (resp. ordinary

Λ-adic form, ordinary Λ-adic cusp form) .

Thus a Λ-adic form is a family of classical forms of varying weights with identical

residual q-expansions. The family νk(F ) can be view as the evaluation of F at T = ξχu
k−1

for k ∈ N.

Let M(Npr, χ,Λ) (resp. S(Npr, χ,Λ)) be the Λ-module of all Λ-adic modular forms

(resp. Λ-adic cusp forms) associated to χ.

Let M(Npr,Λ) :=
⨁︂
χ

M(Npr, χ,Λ) be the Λ-module of all Λ-adic forms. We also

have the corresponding decomposition S(Npr,Λ) :=
⨁︂
χ

S(Npr,Λ)

2.3.2 Hecke Operators on Λ-adic cusp forms

Proposition 2.3.3. Consider the following character

κ : 1 + pZp → Λ×

us ↦→ κ(us) : (X ↦→ (1 +X)s)

Then κ is a continuous character with respect to the m-adic topology on Λ, where m is the

maximal ideal of Λ.

Proof. For the proof, we need two following lemmas.

Lemma 2.3.4. If z ∈ 1 + pZp, then z = us(z) where s(z) =
logp(z)

logp(u)
∈ Zp

Proof. Let expp(z) =
∑︂
n≥0

zn

n!
denote the p-adic exponential, which converges on |z|p<
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p−1/p−1. Then

us(z) = expp(s(z) logp(u)) = z

The following lemma is a consequent of the previous one.

Lemma 2.3.5. If s ∈ Zp, then
(︃
s

m

)︃
∈ Zp for any integer m ≥ 0.

Proof. We see that

(︃
s

m

)︃
is a polynomial in Qp with variable s, so it is a continuous map

from Zp to Qp. This map takes Z to Z, and since Z is dense in Zp, it induces a continuous

map from Zp to Zp. Thus for s ∈ Zp, we have

(︃
s

m

)︃
∈ Zp.

It follows that

(1 +X)s =
s∑︂

m=0

(︃
s

m

)︃
Xm ∈ Λ×

One can view κ as a Galois character via the natural restriction map Gal(Q/Q) →
Gal(Q∞/Q) = 1 + pZp where Q∞ is the cyclotomic Zp-extension of Q.

Note that for integers n prime to p

κ(⟨n⟩)(uk − 1) = κ(us(n))(uk − 1) = uks(n) = ω−k(n)nk

where we write ⟨n⟩ = ω(n)−1n = us(n) with s(n) =
log(⟨n⟩)
log(u)

. Consider the group homo-

morphism

φ : Zp → 1 + pZp
s ↦→ us u := 1 + p

It is a group isomorphism with the inverse given by

s ↦→
logp(s)

logp(u)
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here logp is the p-adic logarithm. Thus we have s = uφ
−1(s) for all s ∈ 1 + pZp.

For a given positive integer n and divisor b of n with b ≡ 1 mod p, we have(︂
1 + (ξχu

k − 1)
)︂φ−1(d)

=
(︂
ξχu

k
)︂φ−1(d)

= χS(u)
φ−1(d) ·

(︂
uφ

−1(d)
)︂k

= χS(d)d
k = ω(d)−kχS(d)d

k

with the last equality following from the fact that ω(d) = 1.

Definition 2.3.6. Then we define for each Λ-adic form F ∈M(χ,Λ) a formal q-expansion

F |Tn by

am
(︁
F |Tn

)︁
(T ) =

∑︂
b|(m,n)
(b,p)=1

(T + 1)φ
−1(⟨d⟩(χF (b)b

−1amn/b2(F )(T )

where b runs over all common divisors prime to p of m and n.

We evaluate this formal power series F |Tn at ξχu
k − 1 we see that F (ξχu

k − 1, q) =

fk ∈Mk(Np
r, χω−k). Moreover

am
(︁
F |Tn

)︁
(ξχu

k − 1) =
∑︂
b|(m,n)
(b,p)=1

(ξχu
k − 1)φ

−1(⟨d⟩χ(b)b−1amn/b2(F )(ξχu
k − 1)

=
∑︂
b|(m,n)
(b,p)=1

χ(b)ω(b)−kdk−1amn/b2(fk) = am(fkTn)

This shows that F |Tn(ξχuk − 1) = F (ξχu
k − 1)|Tn ∈ Mk(Np

r, χω−k). Therefore, F

is again a Λ-adic form. Thus the operator Tn is well-defined and commutes with the

specialization map X ↦→ ξχu
k − 1. So we have Hecke operators Tn acting on M and S.

Proposition 2.3.7. There exists a unique idempotent eord : M(χ,Λ) →Mord(χ,Λ) sat-

isfying

(F |e)(ξχuk − 1) = F (ξχu
k − 1)|e

for all F ∈M(χ,Λ) and all integer k > 0 for which F (ξχu
k − 1) ∈Mk(Np

r, χω−k)

Theorem 2.3.8. (A.Wiles). The space of ordinary Λ-adic modular forms (ordinary Λ-

adic cusp forms) of character χ is free of finite rank over Λ.
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2.4 Constructing Λ-adic forms

2.4.1 Λ-adic Eisenstein Series

Recall that if k is an even integer greater than or equal to 4, then the Eisenstein series

of weight k, level 1 and trivial character has q-expansion given by

Ek =
ζ(1− k)

2
+

∞∑︂
n=1

σk−1(n)q
n

where σk−1(n) =
∑︂
d|n

dk−1 is the usual arithmetic function, and ζ(s) is the Riemann zeta

function.

let p be a prime, we consider the p-stabilized form

E
(p)
k = Ek(z)− pk−1Ek(pz)

is a modular form of level p. More generally, for any k ≥ 1 and character χ mod Npr,

with χ having the same parity as k, we define the Eisenstein series of weight k, level equal

to the conductor of χ, and character χ, given by

Ek,χ =
L(1− k, χ)

2
+

∞∑︂
n=1

σk−1,χ(n)q
n

where σk−1,χ(n) =
∑︂
d|n

χ(d)dk−1 and L(s, χ) is the Dirichlet L-series attached to χ. Again,

if χ has level N (i.e., it has trivial p-part), then Ek,χ has level N , which is not divisible

by Np. We consider its p-stabilization, namely

E
(p)
k,χ = Ek,χ(z)− χ(p)pk−1Ek,χ(pz)

which has q-expansion

E
(p)
k,χ =

L(p)(1− k, χ)
2

+
∞∑︂
n=1

σ
(p)
k−1,χ(n)q

n

where σ
(p)
k−1,χ(n) =

∑︂
d|n,(d,p)=1

χ(d)dk−1 and L(p)(s, χ) = (1 − χ(p)p−s)L(s, χ) the Dirichlet

L-series attached to χ derived of the Euler factor at p, has level divisible by Np.

Now we are ready to begin interpolating p-stabilized Eisenstein series.
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Proposition 2.4.1. Let χ = χFχS be the character of level Npr. For each k > 1 and

ξ ∈ µpr−1 with r ≥ 1. Let Zp[χF ][[T ]] for χF ̸= 1, then there is a Λ-adic form

EχF (T ) =
∞∑︂
n=0

an,χF (E)(T )qn ∈ Zp[χF ][[T ]]

which specializes to Ek,ψ under the homomorphism of Zp[χF ][[T ]] induced by νk,χF .

Let f ∈ S1(Np, ψ) be a fixed cusp form of weight 1. Recall that

Eχ(ξuk−1 − 1) = E
(p)
k−1,ψ ∈Mk−1(Np

r, ψ)

where ψ = χω1−k. Hence,

f1 · E(p)
k−1,ψ ∈ Sk(Np

r, χ′ω−k)

with χ′ := ψχ. We show f1 · E(p)
k−1,ψ are the specializations at T = ξuk − 1 of a cuspidal

Λ-adic form F of level N and character χ′ for k > 1 and ξ as above.

Assume that the q-expansions of f1 and ψ are both Zp[χF ]-rational (otherwise extend

scalars). Then we may formally multiply the q-expansions in Zp[χF ][[T ]] of f1 and Eχ.

Say the resulting q-expansion is f1 · Eχ =
∞∑︂
n=0

an(T )q
n, for some an(T ) ∈ Zp[χ][[T ]]. Now

define

F :=
∞∑︂
n=0

an(u
−1T + u−1 − 1)qn

noting that the substitution made above is an automorphism of Zp[χF ][[T ]]. Then on

substituting T = ξuk − 1 we obtain

F (ξuk − 1) =
∞∑︂
n=0

an(ξu
k−1 − 1)qn = f1 · Eχ(ξuk−1 − 1) = f1 · E(p)

k−1,χω1−k

Thus F is the desired cuspidal family.

2.4.2 Hida Families

In this section, I will follow [BD07] parallel with [GS94].

Consider the weight spaceW = Hom(Z×
p ,Z×

p ). Since p is odd, we have the identification

W = Hom(Z×
p ,Z×

p ) ≃ Z/(p− 1)Z× Zp
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We will define analytic functions on the weight space. If U ⊂ W is an open subset, let AU
denote the collection of analytic functions α : U → Zp, more precisely, the collection of

functions that are power series on each intersection U ∩ ({a} × Zp). Assume further that

U is contained in the residue disk of 2, and then AU is simply the ring of power series

that converge on an open subset of Zp. A Hida family is a formal q-expansion

F =
∞∑︂
n=1

anq
n

such that there exists a neighborhood U of 2 in W such that an ∈ AU for all n and such

that if k ∈ U ∩ Z≥2, the weight k specialization

fk :=
∞∑︂
n=1

an(k)q
n

is a normalized ordinary eigenform of weight k on Γ(Np). Weights in Z≥2 ⊂ W are called

classical.

Let Λ̃ := Zp[[Z×
p ]] and Λ̃

′
:= Zp[[1 + pZp]]. They are also called Iwasawa’s algebras,

and Λ̃
′ ≃ Λ = Zp[[T ]] as we have seen in the section 1. Furthermore, Λ̃ can be viewed as

functions on the space of continuous Zp-algebra homomorphism as denoted above by W .

From now, we identify Λ with Zp[[1 + pZp]]. For each k ∈ Zp the character

1 + pZp → Z×
p

a ↦→ ak−2

can be extended to a continuous homomorphism σk−2 : Λ = Zp[[1 + pZp]]→ Zp

For each α ∈ Λ we define the Iwasawa functions on Zp

α(k) := σk−2(α)

The map α ↦→ α(k) endows AU with a natural structure as Λ-module for every disk U in

Zp.

Definition 2.4.2. We define the abstract Λ-adic Hecke algebra of tame conductor N to

be the free polynomial algebra

H = Zp[[Z×
p ]][Tn(n ∈ Z+)]

generated over Zp[[Z×
p ]] by Tn (n ∈ Z+).
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We have the following theorem due to Hida which is crucial in the theory.

Theorem 2.4.3. There is an integral domain RE finite and flat over Λ and a surjective

Λ-homomorphism hE : H → RE with the following properties.

1. RE is unramified over the augmentation ideal P0 in Λ.

2. The homomorphism λE : H → Zp factors through hE, i.e., there is a homomorphism

λE : H → Zp such that

λE = πE ◦ hE

We use this theorem to describe Hida’s families as follows. The homomorphism λE :

H → Zp gives us weight k specialization fk. For each n ∈ N, let αn := hE(Tn) ∈ RE and

define F :=
∞∑︂
n=1

αnq
n ∈ RE[[q]] a Λ-adic form.

Fix a neighborhood of 2 in W on which an converge. If k ∈ U ∩ Z≥2, the weight k

specialization is a normalised eigenform of weight k on Γ0(Np), which is new at the primes

dividing N . In particular, if k ∈ U ∩Z≥2, fk arises from a normalized eigenform on Γ0(N)

that we denote by f ∗
k . Consider

1− a(f ∗
k )p

−s + pk−1−2s = (1− αp(k)p−s)(1− βp(k)p−s)

we can order the roots αp(k) and βp(k) in such a way that αp(k) = ap(fk) and βp(k) =

pk−1ap(fk)
−1. Hence we obtain a p-stabilized newform

fk(z) = f ∗
k (z)− βp(k)f ∗

k (pz)

Remark 2.4.4. For the ordinary eigenform f , the Euler factor at p of the L-function of

f has a factorization (1− αp−s)(1− βp−s) where α is a p-adic unit and β is divisible by

p. We call α the unit root of Frobenius and β the non-unit root of Frobenius. Note that

if r > 0 then β = 0.

Theorem 2.4.5. Let E be an elliptic curve curve over Q of tame conductor N with

good ordinary or multiplicative reduction at the prime p ≥ 5. Then there is an open disk

U ⊂ Zp about 2, a formal q-expansion

f =
∞∑︂
n=1

αnq
n ∈ AU [[q]]
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such that for each integer k ≥ 2 in U , the power series

fk :=
∞∑︂
n=1

αn(k)q
n ∈ Zp[[q]]

is the q-expansion of a non-zero p-stabilized ordinary newform of tame conductor N ,

weight k and character ω2−k. Moreover, f2 = fE.

Proof. Refer [Hi86a] and [Hi86b].

For a modular elliptic curve E with good ordinary or multiplicative reduction at p we

let fE be the p-stabilized ordinary newform associated to the newform attached E. Note

that for the associated complex L-functions we have the identity

(1− βp−s)L(E, s) = L(fE, s)

2.5 Galois Representation Theory

Let K be a field. We denote by GK := Gal(KS/K) the absolute Galois group of K,

i.e., the Galois group of a separable closure KS of K.

Definition 2.5.1. Let k be a topological field. An n-dimensional representation of GK

is a continuous homomorphism of groups

ρ : GK → GLn(k)

with the topology on GK the Krull topology and the topology on GLn(k) the one induced

by the inclusion GLn(k) ↪→ Kn2

.

We also have an equivalent definition as follows.

Definition 2.5.2. Let k be a topological field. An n-dimensional Galois representation

of GK is an k[GK ]-module V which is n-dimensional as a k-vector space such that the

action

GK × V → V

(σ, v) ↦→ vσ

is continuous.
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Two representations V and V ′ are said to be equivalent if there exists a continuous

k[GK ]-modules isomorphism V → V ′.

Let W ⊆ V be subspace of V . We say that W is invariant or stable under GK if it is

preserved under the inducded action of GK on W , i.e., for all w ∈ W we have wσ ∈ W
for all σ ∈ G.

Definition 2.5.3. Let V be an n-dimensional Galois representation. We say that V is

irreducible or simple if V has only 0 and V as invariant subspaces. If V is isomorphic to

a direct sum of irreducible Galois representation, then we say V is semi-simple.

Let L/K be a finite Galois extension of number fields and let B/p be primes ideals in

these fields. The decomposition group of B is defined as

D(B/p) = {σ ∈ Gal(L/K)|σ(B) = B}

It is isomorphic to the local Galois group

D(B/p) ∼= Gal(LB/Kp)

We consider the reduction modulo B

π(LB/Kp) = π(B/p) : Gal(LB/Kp)→ Gal(F(B)/F(p))

This map is surjective. The group Gal
(︁
F(B)/F(p)

)︁
is canonically generated by the Frobe-

nius endomorphism Frob(B/p) which is given by x ↦→ xq with q = #F(p). The kernel of

the reduction map is called the inertia group I(B/p). Hence we have the exact sequence

0→ I(B/p)→ Gal(LB/Kp)→ Gal(F(B)/F(p))

The field extension LB/Kp is unramified if and only if I(B/p) is trivial, i.e., the reduction

map π(B/p) is an isomorphism.

We can pass to infinite Galois extensions. Let Kp ⊂ LB ⊂M˜︁B be finite subfield of Qp.

We obtain a projective system of short exact sequences

0 I(M˜︁B/Kp) Gal(M˜︁B/Kp) Gal(F(˜︁B)/F(p)) 0

0 I(LB/Kp) Gal(LB/Kp) Gal(F(B)/F(p)) 0
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Taking projective limit over compact sets is exact, hence, we obtain the exact sequence

0→ IKp → GKp

πp−→ GF(p) → 0

where GalKp = Gal(Kp/Kp) and IKp is the projective limit over iniertia groups.

Definition 2.5.4. Let Kp be a finite extension of Qp and let k be any topological field.

Consider a local Galois representation ρ : GKp → GLn(k). We call it unramified if

ρ(IKp) = 0

We call IKp := Ip the inertia group of Kp

Definition 2.5.5. Let K be a number field, and k any topological field. Consider the

Galois representation ρ : GK → GLn(k). Let p be a prime of K corresponding to an

embedding ιp : K ↪→ Qp. Choose any embedding ι : Q ↪→ Qp extending ιp, giving rise to

an embedding of GKp into GK . The Galois representation ρ is called unramified at p if

the restriction of ρ to GKp is unramified.

The cyclotomic character

Let K be a field of characteristic 0 and K an algebraic closure. Let

µm(K) = K
×
[m] = ker

(︂
K

× x ↦→xm−→ K
×
)︂

be the m-torsion points of K
×
, i.e. the m-th roots of unity. By choosing a compatible

system of roots of unity ξℓn we obtain the isomorphism of projective systems

Z/ℓnZ µℓn(K)

Z/ℓn−1Z µℓn−1(K)

giving rise to an isomorphism as groups

Zℓ ≃ lim←−
n

µℓn(K
×
)

The object on the right is called the ℓ-adic Tate module of K
×
denoted by Tℓ(K

×
) or

Zℓ(1) with the emphasised Galois action.

Hence we have a Galois representation so called ℓ-adic cyclotomic character over K.

χ0 : GK
σ ↦→(x ↦→σ(x))−→ Aut(Zℓ(1)) ≃ Z×

ℓ = GL1(Zℓ) ↪→ GL1(Qℓ)



50 CHAPTER 2. HIDA’S THEORY

Proposition 2.5.6. Let χ0 be the cyclotomic character over Q. Then χ0 is a 1-

dimensional global Galois representation, which is unramified at all prime p ̸= ℓ and

χ0(Frobp) = p

Moreover, χ0 is an odd representation.

The Tate module of an elliptic curve

Let E be an elliptic curve over a field K of characteristic 0. For every prime p, we

denote the subgroup of the pn-torsion points over K by E(K)[pn]. The group GK acts on

E(K)[pn]; moreover, for all n we have a group homomorphism

E(K)[pn+1]→ E(K)[pn]

given by the multiplication by p. It turns out that {E(K)[pn]}n∈N is a projective system.

Since the action of GK is compatible with the transition maps, we obtain by the universal

property of the inverse limit a continuous action of GK over lim←−E(K)[pn] := Tap(E),

which is called the p-adic Tate module of E.

Note that E(K)[pn] ≃ (Z/pnZ)2, we have that Tap(E) ≃ Z2
p. By this way we get a

2-dimensional p-adic Galois representation associated to E.

Proposition 2.5.7. Let k be a finite extension of Qℓ for some prime ℓ and let ρ : GQ →
GLn(k) be a Galois representation. Then ρ is equivalent to a Galois representation ρ′ :

GQ → GLn(Ok), where Ok is the valuation ring of k.

Proof. Refer [DS05]

Definition 2.5.8. Let c ∈ GQ be a complex conjugate. A Galois representation ρ : GQ →
GLn(C) is said to be odd if det(ρ(c)) = −1 for all c.

The following is a celebrated result in ℓ-adic Galois representation due to Deligne.

Theorem 2.5.9. Let k ≥ 2, N ≥ 1, and ℓ a prime not dividing N . Let ϵ : (Z/NZ)× →
C× a Dirichlet character. Then for any normalised eigenform f ∈ Sk(Γ0(N), ϵ) with

f =
∑︂
n≥1

anq
n one can attach a Galois representation

ρf : GQ → GL2(Qp)

such that
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1. ρf is irreducible

2. ρf is odd

3. for all primes p ∤ Nℓ the representation ρf is unramified at p and the characteristic

polynomial of Frobenius of ρ has the form

X2 − ap(f)X + ϵ(p)pk−1

Proof. Refer [DS05].

We have the corresponding Galois representation for Hida’s family.

Theorem 2.5.10. Let E be an elliptic curve over Q of tame conductor N with good

ordinary or multiplicative reduction at the prime p ≥ 5. Then there is an open disk

U ⊂ Zp about 2, a formal q-expansion f =
∞∑︂
n=1

αnq
n ∈ AU [[q]] and a Galois representation

ρ : GQ → GL2(AU) satisfying the following properties

1. For each integer k ≥ 2 in U , the Galois representation ρk : GQ → GL2(Zp), obtained
by composing ρ with the specialization map α ↦→ α(k), is equivalent to Deligne’s

representation associated to fk.

In particular, ρ2 is equivalent to the Galois representation attached to the p-adic Tate

module of E.

2. For all k ∈ Zp the local Galois representation ρk|GQp
: GQp → GL2(Zp) has the form

ρ|GQp
=

(︄
χ0 ⟨χ0⟩k−2 φ−1

k ∗
0 φk

)︄

where φk is the unramified character sending a Frobenius element to αp(k) and

⟨χ0⟩ : GQp → Z×
p is the local Galois character obtained by composing the cyclotomic

character χ0 with projection to the principal units.

Proof. Refer [Wi88].
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2.6 Ordinary Tate Modules

We define the modular curve X0(N) as a compact Riemann surface

X0(N) := Γ0(N) \H∗

This modular curve admits the structure of a smooth projective variety over Q.

Theorem 2.6.1. There exists a smooth projective curve C/Q and a bihilomorphic map-

ping ϕ : X0(N)→ C(Q) such that

ϕ∗(C(C)) = C(X0(N)) = C(j, jN)

and

ϕ∗(Q(C)) = Q(j, jN)

The curve C/Q is unique up to isomorphism over Q, and ϕ is uniquely determined by the

isomorphism of Q(C) with Q(j, jN)

We refer to (ϕ,C) as a model for X0(N) over Q. We identify C(Q) with X0(N) and

refer to X0(N)/Q as a Q-structure on X0(N).

Definition 2.6.2. Let Γ be a congruence subgroup of SL2(Z). The Jacobian of the

corresponding modular curve X(Γ) is

J(X(Γ)) = S2(Γ)
∗/H1(X(Γ),Z)

where ∗ denotes the dual space.

The double coset operator induces a pullback on dual spaces, hence it descends to a

map on Jacobians

[Γ1αΓ2] : J(X2)→ J(X1)

ψ ↦→ [ψ ◦ [Γ1αΓ2]]

where the bracket denote equivalence class modulo homology.

Definition 2.6.3. For each integer r > 0, let Xr/Q be the complete modular curve

associated to Γ0(N)∩Γ1(p
r) and endowed with canonical Q-structure in which the 0-cusp

is rational.

Let Jr/Q be the Jacobian of Xr and let Tap(Jr) be the p-adic Tate module of Jr.
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Remark 2.6.4. the Hecke algebra H acts on Jr, and hence also on Tap(Jr), by letting Z×
p

act via the Nebentype operators and Tn act via the nth (covariant) Hecke correspondence.

For each pair of integers r1 ≥ r2 > 0, the natural projection X1(Np
r1) → X1(Np

r2)

induces a Galois equivariant map of Tate modules Tap(Jr1)→ Tap(Jr2) which commutes

with the action ofH, hence we may form the projective limit and obtain anH[GQ]-module

Tap(J∞) := lim←−
r

Tp(Jr)

Proposition 2.6.5. There is a canonical decomposition into H[GQ]-modules

Tap(J∞) = Tap(J∞)0 ⊕ Tap(J∞)nil

such that the Hecke operator Tp acts invertibly on Tap(J∞)0 and topologically nilpotently

on Tap(J∞)nil.

Moreover, Tap(J∞)0 is a free Λ-module of finite rank.

If we set t = [1+ p]− 1 ∈ Λ or any other generator of the augmentation ideal then the

following sequence is exact

0→ Tap(J∞)0
t−→ Tap(J∞)0 → Tap(J1)

0 → 0

Suppose that E is a modular elliptic curve of tame conductor N with either good

ordinary or multiplicative reduction at the prime p and let fE =
∞∑︂
n=1

anq
n be the associated

p-stabilized ordinary newform, normalized so that a1 = 1. Now define λE : H → Zp by

mapping Z×
p to 1 and each Hecke operator Tn to an. Let H act on the Tate module

Tap(E) via λE. Fix a modular parametrization X1 → E and let Tap(J1)
0 → Tap(E) be

the induced homomorphism on Tate modules. This map commutes with the action of GQ

as well as with the action just defined for H.

The following theorem due to Hida says that Tap(E) can be lifted to an H-eigenspace
in Tap(J∞)0.

Theorem 2.6.6. There is an integral domain RE finite and flat over Λ and a surjective

Λ-homomorphism hE : H → RE as in the theorem 2.4.3. Let TE ⊂ Tap(J∞)0 ⊗Λ RE be

the RE-submodule consisting of elements on which H acts via hE. Then TE has rank 2

as an RE-module (i.e. if KE is the fraction field of RE, then TE ⊗RE
KE has dimension

2 over KE).



CHAPTER 3

L-invariant

Let E be a modular elliptic curve with split multiplicative reduction at the prime

p ≥ 5. Let f =
∞∑︂
n=1

αn(k)q
n ∈ AU [[q]] be the analytic family of q-expansions given by

Hida’s theorem deforming the modular form fE of weight 2 associated to E. In this

chapter we prove the result establishing a connection between the pth coefficient of f and

the L-invariant of E, using local deformation theory.

3.1 Galois Cohomology

We recall the basics of Galois Cohomology without proof which are used frequently in

this chapter and the next one. The main references for this topic are [Ser97] and [Neu08]

Let G be a profinite group and A a topological G-module, i.e., a topological abelian

group with a continuous action of G, compatible with the abelian group structure. Let

B be another G-module, then a map f : A → B is called a morphism of G-modules if f

is both a countinuous group homomorphism and G-equivariant, i.e.,

f(a+ a′) = f(a) + f(a′), ∀a, a′ ∈ A

f(aσ) = f(a)σ, ∀σ ∈ G, a ∈ A

For every n ∈ N, define Cn = Cn(G,A) to be the set of continuous maps from Gn to

A, where G0 is the trivial group, so C0 = A. The elements in Cn are called n-cochains.

Let

dn : Cn → Cn+1
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be given by

dn(f)(σ1, ..., σn+1) = σ1f(σ2, .., σn+1)+

+
n∑︂
i=1

(−1)if(σ1, ..., σiσi+1, ..., σn+1)

+ (−1)n+1f(σ1, ..., σn)

for all n ≥ 1, we have dn ◦ dn−1 = 0, therefore Im(dn) ⊆ ker(dn+1), that is, we get a

complex C•(G,A).

Definition 3.1.1. For n ∈ N, the n-th continuous cohomology group ofG with coefficients

in A is the quotient group

Hn(G,A) = ker(dn)/Im(dn−1)

where we set Im(d−1) = 0. Elements in ker(dn) are called continuous cocycles, while

elements of Im(dn−1) are called continuous coboundaries.

We can give explicit description for Hn(G,A) with n = 0, 1.

H0(G,A) = AG = {a ∈ A|σa = a, ∀σ ∈ G}

H1(G,A) =
{f : G→ A continuous|f(στ) = f(σ) + f(τ)σ, ∀σ, τ ∈ G}

{f : G→ A|f(σ) = σa− a for a fixed a ∈ A}

Remark 3.1.2. When the action of G on A is trivial, i.e., σa = a for all σ ∈ G and

a ∈ A, then H0(G,A) = A and H1(G,A) = Hom(G,A), where the homomorphisms

between topological groups are always assumed to be continuous.

Theorem 3.1.3. Let 0 → A → B → C → 0 be a short exact sequence topological of

G-modules, split as sequence of topological abelian groups. Then we have a long exact

sequence of cohomology groups

0→AG → BG → CG → H1(G,A)→ · · ·

· · · → Hn(G,B)→ Hn(G,C)→ Hn+1(G,A)→ · · ·

Suppose that H is a subgroup of G, then any G-module is an H-module. Moreover, if

ξ : G→ A is a 1-cochain, then by restricting the domain of ξ to H, we obtain an H-to-A

cochain. In this way we obtain a restriction homomorphism

res : H1(G,A)→ H1(H,A)
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We will define a homomorphism H i(H,A)→ H i(G,A) in the opposite direction of the

restriction, which is a kind of norm map and is called the corestriction. It arises from

the standard resolution A→ X• = X•(G,A) of the G-module A, which is also an acyclic

resolution of A as an H-module,i.e

Hn(H,A) = Hn((X•)H)

For n ≥ 0, we have for the G-module Xn the norm map

NG/H : (Xn)H → (Xn)G

It commutes with d, hence we have a morphism of complexes

NG/H : (X•)H → (X•)G

Taking cohomology groups of these complexes, we obtain canonical homomorphisms

cores : Hn(H,A)→ Hn(G,A)

Assume further that H is a normal subgroup of G. Then the submodule AH of A

consisting of elements fixed by H has a natural structure as a G/H-module. Let ξ :

G/H → AH be a 1-cochain, one compose this with the projection G → G/H and with

the inclusion AH ⊂ A give a G-to-A cochain

G→ G/H
ξ→ AH ⊂ A

In this way we have an inflation homomorphism

inf : H1(G/H,AH)→ H1(G,A)

Theorem 3.1.4. Let A be a G-module and let H be a normal subgroup of G. Then the

following sequence is exact

0→ H1(G/H,AH)
inf−→ H1(G,M)

res−→ H1(H,M)

Definition 3.1.5. Let H be a closed subgroup of G. For every H-module A, define the

G-module IndHG (A) consisting of all continuous maps f : G→ A such that f(τσ) = τf(σ)

for all τ ∈ H. The action of ρ ∈ G on IndHG (A) is given by

f(σ) ↦→ (ρf)(σ) = f(σρ)
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We have a canonical projection

π : IndHG (A)→ A

f ↦→ f(1)

This is a homomorphism of H-modules, which maps the H-submodule

A′ = {f : G→ A|f(τ) = 0]; ∀τ /∈ H} ≃ A

If A is a G-module, then IndHG (A) is canonically isomorphic to the G-module

Map(G/H,A) of all continuous functions g : G/H → A. The isomorphism

IndHG (A) ≃Map(G/H,A)

We have the following well-known result due to Shapiro

Theorem 3.1.6. (Shapiro’s Lemma) Let H be a closed subgroup of G and let A be an

H-module . Then for all i ≥ 0 we have a canonical isomorphism

H i(G, IndHG (A)) ≃ H1(H,A)

Proposition 3.1.7. Let K be a local field and G = Gal(KS/K). If A is a G-module

which is finite (resp. finitely generated over Zp), then Hn(G,A) is finite (resp. finitely

generated over Zp).

Theorem 3.1.8. Let G be a profinite group and A a G-module. Suppose that A = lim←−A,
where each Ai is a finite (discrete) G-module. If Hn−1(G,Ai) is finite for every i, then

there is an isomorphism

Hn(G,A) ≃ lim←−H
n(G,Ai)

Definition 3.1.9. Given G-modules A,A′ and B, a map

A× A′ ϕ→ B

is a G-pairing if it is bilinear and it respects the action of G:

ϕ(aσ, a
′σ) = ϕ(a, a′)σ

for all σ ∈ G, a ∈ A, a′ ∈ A′.
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If A and A′ are two G-modules, then A⊗ZA
′ is also a G-module by σ(a⊗b) = σa⊗σb.

The bilinear map A× A′ → A⊗Z A
′ is a G-paring. Note that by the universal property

of tensor products, any bilinear paring of G-modules A×A′ → B factors through A⊗A′.

Such a pairing induces a map

∪ : Cr(G,A)× Cs(G,A′)→ Cr+s(G,B)

as follows: given f ∈ Cr(G,A) and f ′ ∈ Cr(G,A′), the cochain f ∪ f ′ ∈ Cr+s(G,A) is

defined by

(f ∪ f ′)(σ1, ..., σr+s) = ϕ
(︁
f(σ1, .., σr), f

′(σr+1, ..., σr+s)
)︁

We see that

dr+s(f ∪ f ′) = dr(f) ∪ f ′ + (−1)rf ∪ ds(f ′)

hence it yields a bilinear cup product, again denoted by ∪

∪ : Hr(G,A)×Hs(G,A′)→ Hr+s(G,B)

Proposition 3.1.10. For two homomorphisms A → B and A′ → B′ of G-modules, we

have the commutative diagram

Hr(G,A) × Hs(G,A′) Hr+s(G,A⊗ A′)

Hr(G,B) × Hs(G,B′) Hr+s(G,B ⊗B′)

∪

∪

Proposition 3.1.11. Let 0→ A′ → A→ A′′ → 0 and 0→ B′ → B → B′′ → 0 be exact

sequences of G-modules. Suppose that we are given a pairing

φ : A×B → C

into a G-module C such that φ(A′ × B′) = 0. Then we have the following commutative

diagram

Hr(G,A′′) × Hs(G,B′) Hr+s(G,C)

Hr+1(G,A′) × Hs−1(G,B′′) Hr+s(G,C)

δ

∪

(−1)r+1δ

∪

where δ is the connecting homomorphism.



3.2. MAIN CORRESPONDENCE 59

3.2 Main Correspondence

Definition 3.2.1. A Qp-vector space W is called a Qp[GQp ]-module if GQp acts continu-

ously on W .

Theorem 3.2.2. For any Qp[GQp ]-module W , there is a one-to-one correspondence{︁
non-trivial continuous extensions of Qp by W

}︁
↔
{︁
one-dimensional subspaces of H1(W )

}︁
where Hn(−) denotes cohomology with respect to the group GQp.

Proof. Suppose that we have an extension X of Qp by W , i.e, a short exact sequence of

GQp-modules

0→ W → X → Qp → 0 (3.2.1)

Note that QGQp
p = Qp, taking Galois cohomology we obtain

0→ WGQp
ϕ→ XGQp

ψ→ Qp
d→ H1(GQp ,W )→ · · · (3.2.2)

⇒ Suppose that we have a non-split extension X of Qp byW . If d ̸= 0, then the image

of d is an one-dimensional subspace in H1(GQp ,W ). Assume that d = 0, we have the

following exact sequence

0→ WGQp → XGQp → Qp → 0

It follows that there exits x ∈ XGQp such that ψ(x) = 1 ∈ Qp, so we can define s : Qp → X

by s(q) = qx. We see that s is GQp-homomorphism: for all σ ∈ GQp we have

s(qσ) = qσx = qσxσ = (qx)σ = s(q)σ

and ψ ◦ s = IdQp : for all qQp we have

ψ ◦ s(q) = ψ(qx) = qψ(x) = q · 1 = q

Hence the exact sequence 3.2.1 is split.

⇐ Suppose that ξ : GQp → W be a non-zero 1-cocycle, i.e., a continuous mapGQp → W

satisfying ξ(στ) = ξ(σ) + ξ(τ)σ for all σ, τ ∈ G(Qp). We define X = W ⊕ Qp together

with the action of GQp given by

(w, q)σ = (wσ + qξ(σ), q)
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We see that this is indeed an act of GQp on X: note that ξ(Id) = 0 by the equation

determined the 1-cocycle

(w, q)Id = (wId + qξ(Id), q) = (w, q)

and for all σ1, σ2 ∈ GQp we have(︁
(w, q)σ1

)︁σ2 = (︁(wσ1 + qξ(σ1), q)
)︁σ2

=
(︁
(wσ1 + qξ(σ1))

σ2 + qξ(σ2), q
)︁

=
(︁
wσ1σ2 + qσ2ξ(σ1)

σ2 + qξ(σ2), q
)︁

=
(︁
wσ1σ2 + qξ(σ1)

σ2 + qξ(σ2), q
)︁

=
(︁
wσ1σ2 + qξ(σ1σ2), q

)︁
= (w, q)σ1σ2

We define the GQp-homomorphisms ϕ : W → X by w ↦→ (w, 0) and ψ : X → Qp by

(w, q) ↦→ q. Then we have an exact sequence of GQp-modules

0→ W → X → Qp → 0

Assume that the class [ξ] of ξ in H1(GQp ,W ) is nonzero. If the exact sequence is

non-split then we are done. Otherwise, suppose that the sequence is split, then there is a

section s : Qp → X such that ψ ◦ s = IdQp as GQp-homomorphism. Let s(1) = (w, q) ∈ X
we have 1 = ψ ◦ s(1) = ψ(w, q) = q. Moreover,

(w, 1) = s(1) = s(1σ) = s(1)σ = (w, 1)σ = (wσ + ξ(σ), 1)

Hence ξ(σ) = w − wσ implies [ξ] = 0 a contradiction.

We have constructed two maps between non-trivial extensions of Qp by W and one-

dimensional subspaces of H1(W ). We claim that they are inverse of each other.

Suppose that we have a non-split exact sequence

0→ W → X → Qp → 0

we obtain a one-dimensional subspace ofH1(GQp ,W ) given by the image of the connecting

homomorphism d : Qp → H1(GQp ,W ). Let ξ : GQp → W be the 1-cocycle generating this

line in H1(GQp ,W ). Then we can construct the non-split exact sequence of GQp-modules

by ξ

0→ W → W ⊕Qp → Qp → 0
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with the action on W ⊕ Qp given by (wσ + qξ(σ), q). We claim that this exact sequence

is isomorphic to the given one. That is the following diagram is commutative as GQp-

homomorphism

0 W X Qp 0

0 W W ⊕Qp Qp 0

Id f Id

and f : X → W ⊕ Qp defined by f(x) =
(︁
ϕ−1(x), ψ(x)

)︁
is an isomorphism as GQp-

homomorphism. Indeed, for all w ∈ W we have

f ◦ ϕ(w) =
(︁
ϕ−1(ϕ(w))σ, ψ(ϕ(w))

)︁
=
(︁
wσ, 0) = ϕ′ ◦ Id(w)

)︁
Also, we see that f(xσ) =

(︁
ϕ−1(xσ), ψ(xσ)

)︁
and f(x)σ =

(︁
ϕ−1(x)σ + ψ(x)ξ(σ), ψ(x)

)︁
.

Note that

ϕ
(︁
ϕ−1(x)σ + ψ(x)ξ(σ)

)︁
= ϕ(ϕ−1(x)σ) + ϕ(ψ(x)ξ(σ)) = xσ + ψ(x)ϕ(ξ(σ)) = xσ

as ϕ(ξ(σ)) = 0. Hence f is a GQp-homomorphism. Moreover, it follows the injectivity of

ϕ and surjectivity of ψ we obtain that f is a bijection.

Conversely, suppose that we have a non-zero 1-cocycle ξ : GQp → W representing a

non-zero class in H1(GQp ,W ). We can construct a non-split exact sequence

0→ W → X → Qp → 0

where X = W ⊕Qp with the action defined above. Then we have a connecting homomor-

phism d : Qp → H1(GQp ,W ) defines one-dimensional subspace of H1(GQp ,W ). Since the

exact sequence 0→ W → X → Qp → 0 is non-split, by the claim of the previous part we

have seen that there is no w ∈ W such that ξ(σ) = wσ − w, i.e., 0 ̸= ξ ∈ Im d. Thus the

subspace determined by ξ and the subspace given by d are the same.

3.3 Kummer Theory

3.3.1 Kummer Classes

Theorem 3.3.1. (Hilbert 90) Let L/K be a Galois extension with Galois group Gal(L/K)

and L× be the multiplicative group of L. Then

H1(Gal(L/K), L×) = {1}
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Proof. Refer [Bir67]

Consider the map ψ : (Qp)
× → (Qp)

× given by q ↦→ qp
n

. The kernel of this map is

the group of the pn-th roots of unity µpn . Here we have the action of GQp on µpn given

by ϵσ = σ(ϵ) for ϵ ∈ µpn and σ ∈ GQp . Hence we have the following exact sequence of

GQp-modules

1→ µpn → (Qp)
× pn

→ (Qp)
× → 1

Using Hilbert 90 theorem and observing that µ
GQp
pn = {1}, we obtain the following exact

sequence

1→ Q×
p

pn

→ Q×
p → H1(GQp , µpn)→ 1

Hence the connecting homomorphism d : Q×
p → H1(GQp , µpn) induces an isomorphism

Q×
p /
(︂
Q×
p

)︂pn
≃ H1(GQp , µpn).

Hence for every q ∈ Q×
p we can define a class in H1(GQp , µpn) via this isomorphism. More

precisely choosing a compatible sequence (q1/p
n

)n of p-power root of q, by the definition

of connecting map, we have ξn : GQp → µpn given by σ ↦→ (q1/p
n

)σ−1
n .

Proposition 3.3.2. We have Q×
p ≃ Z× Z×

p ≃ Z× µp−1 × (1 + pZp)

Proof. Refer [Ser79]

It follows that (Q×
p )

pn ≃ pnZ× µp−1 × (1 + pnZp). Note that 1 + pnZp ≃ pnZp, hence

Q×
p /(Q×

p )
pn ≃ Z/pnZ× Z/pn−1Z

Taking projective limit we obtain

H1(GQp , lim←−µpn) ≃ lim←−H
1(GQp , µpn) ≃ lim←−Q×

p /(Q×
p )

pn ≃ Zp × Zp

Remark 3.3.3. We have µpn ≃ Z/pnZ as abelian groups but with different actions of

GQp (GQp acts trivially on Z/pnZ). Hence lim←−µpn ≃ Zp as abelian group and we denote

lim←−µpn by Zp(1) with the defined action.
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Tensoring with Qp and denoting Zp(1) ⊗Zp Qp := Qp(1) we obtain the following iso-

morphism

H1(GQp ,Qp(1)) ≃ (Zp × Zp)⊗Zp Qp

Thus each q ∈ Q×
p determines a cohomology class γq ∈ H1(Qp(1)) by taking projective

limit of ξn, i.e.,

γq(σ) = lim←− ξn(σ)

We call the class γq the Kummer class associated to q ∈ Q×
p .

3.3.2 Tate Module

Definition 3.3.4. Let E an elliptic curve and E[pn] be the kernel of [pn] : E → E. We

define the Tate module of E is the inverse limit Tap(E) := lim←−E[p
n].

We denote by V (E) := Tap(E)⊗Zp Qp.

Suppose that E/Qp has the split reduction at p, then we have the isomorphism

E(Qp) ≃ Qp
×
/qZE

Since 1 = q0E ∈ qZE, by this isomorphism we see that µpn ⊂ E[pn]. On the other hand, if

z ∈ E[pn] then zpn ∈ qZE. That is there is c ∈ Z such that zp
n

= qcE. We associate to z

the image of c mod Z/pnZ. Note that zp
n

1 · z
pn

2 = qc1E · q
c2
E = qc1+c2E . Furthermore, for all

c ∈ Z/pnZ, let c ∈ Z be its representative. By the isomorphism E(Qp
×
) ≃ Qp

×
/qZE, we

see that qcE = 1 in E(Qp). Hence, there exits z ∈ E[pn] such that zp
n

= (qcE). Thus, we

have the following exact sequence

1→ µpn → E[pn]→ Z/pnZ→ 0

Note that {µpn}n∈N is a surjective system, taking projective limit we have

1→ Zp(1)→ Tap(E)→ Zp → 0

Tensoring with Qp, since Qp is a flat Zp-module we obtain the following exact sequence

1→ Qp(1)→ V (E)→ Qp → 0



64 CHAPTER 3. L-INVARIANT

Theorem 3.3.5. Let E be an elliptic curve over Qp. Suppose that E has a split muti-

plicative reduction at p. Let q ∈ Q×
p be any nontrivial element of the group qZE of Tate

period. Then the Kummer class γq associated to q spans the line in H1(Qp(1)) associated

to the extension

1→ Qp(1)→ V (E)→ Qp → 0

Proof. Recall that for all q ∈ qZE, we have the 1-cocycle associated to q given by

q = qcE ↦→(ξn : GQp → µpn)

σ ↦→
(︂
((qcE)

1/pn)n

)︂σ−1

The Kummer class, by definition, is γq = lim←− ξn.

On the other hands, the line in H1(GQp , µpn) corresponding to the exact sequence

1→ µpn → E[pn]→ Z/pnZ→ 0

is given as follows: for all c ∈ Z/pnZ, let c be its representative. Then there exist

z = (qcE)
1/pn ∈ E[pn] such that zp

n

= qcE. The class in H1(GQp , µpn) associated to this

extension is hence given by

ψc :GQp → µpn

σ ↦→ zσ−1 =
(︂
(qcE)

1/pn
)︂σ−1

Thus we see that Kummer class γq associated to q spans the line in H1(Qp(1)) associated

to the extension

1→ Qp(1)→ V (E)→ Qp → 0

3.4 Infinitesimal Deformations

Let ˜︁Q := Qp[t]/t
2 be the ring of polyomials over Qp modulo t2. We see that

˜︁Qp = {a+ bt+ (t2)|a, b ∈ Qp}
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The valuation on Q̃p is induced by the valuation vp on Qp

v˜︁Qp : ˜︁Qp → Z ∪ {∞}

v˜︁Qp(a+ bt) = min(vp(a), vp(b))

Definition 3.4.1. Let V be a finite dimensional Qp-vector space with continuous GQp :=

Gal(Qp/Qp) action. We will say that a ˜︂Qp-module, ˜︁V , with GQp action is an infinitesimal

deformation of V if ˜︁V is free as a ˜︂Qp-module and ˜︁V /t˜︁V ≃ V as a GQp-module.

It follows that ˜︁V is a ˜︁Qp-flat module. Using the flatness of ˜︁V , we will show that t˜︁V is

isomorphic to V .

Theorem 3.4.2. Let A be a commutative ring and let M be an A-module. Then M is

flat over A if and only if I ⊗A M → A ⊗A M is an injective homomorphism for every

finitely generated ideal I of A.

Proof. Refer [Ei95], theorem 6.1.

Corollary 3.4.3. Let k be a field and let R := k[t]/(t2) be the quotient ring of polynomials

over k modulo (t2). Let M be an R-module, then M is flat over R if and only if the map

M/tM ≃ tM , m+ tM ↦→ tm is isomorphism.

Proof. The only non-trivial ideal of A is (t), which is isomorphic as an R-module to R/(t).

Indeed, consider the R-homomorphism

f : R/(t)→ tR

r ↦→ rt

Since (t2) = 0 in R, f is well-defined. Let a+bt+(t2) ∈ R and assume that (a+bt+(t2))t =

0 then at = 0 ∈ R as t2 = 0 in R. It follows that a ∈ (t), i.e., f is injective and hence

bijective. Thus, by the above theorem, M is flat over R if and only if

M/tM ≃ R/(t)⊗RM ≃ (t)⊗RM → R⊗RM =M

is injective, hence isomorphic.

Proposition 3.4.4. If ˜︁V is an infinitesimal deformation of V , then ˜︁V /t˜︁V and t˜︁V are

isomorphic to V . Hence ˜︁V is an extension of V by V .
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Proof. By definition ˜︁V /t˜︁V ≃ V . Since Ṽ is free over ˜︁Qp, ˜︁V is a ˜︁Qp-flat module, hence

V ≃ ˜︁V /t˜︁V ≃ t˜︁V
So we have an exact sequence of GQp-modules

0→ V → ˜︁V → V → 0

Lemma 3.4.5. Let k be a field. Then f(x) = a0 + a1x+ · · ·+ an−1x
n−1 + (xn) is an unit

of the quotient k[x]/(xn) if and only if a0 ̸= 0.

Proof. If a0 = 0 then f(x) ∈ (x), so f(x) is not a unit in k[x]/(xn). Conversely, suppose

f(x) = a0 + a1x+ · · ·+ an−1x
n−1 , a0 ̸= 0

so gcd(xn, f(x)) = 1. Thus there exist p(x), q(x) ∈ k[x] with p(x)xn + q(x)f(x) = 1 ,

and then

(f(x) + (xn))(q(x) + (xn)) = 1 + (xn)

Thus f(x) is a unit in k[x]/(xn).

It follows that ˜︁Q×
p = {a+ bt+ (t2)|a, b ∈ Qp, a ̸= 0} = Q×

p · (1 + tQp).

Definition 3.4.6. Let ψ : GQp → ˜︂Qp

×
be a nontrivial continuous Galois character. We

denote by ˜︂Qp(ψ) the vector space ˜︂Qp with the action via ψ. That is

(a+ bt)σ := ψ(σ) · (a+ bt)

We will emphasis a nontrivial continuous Galois character ψ : GQp → ˜︁Q×
p satisfying

the congruence ψ(σ) ≡ 1 mod t for every σ ∈ GQp . That is the image of ψ lies inside

1 + tQp.

ψ(GQp) ⊆ 1 + tQp

It follows that ψ(σ) · (a + bt) ≡ 1 · a = a mod t. Note that the multiplicative group

(1 + tQp, ·) is isomorphic to the additive group (Qp,+) as topological groups.
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Define the projection

π :˜︁Qp(ψ)→ Qp

a+ bt ↦→ a

We claim that π is a GQp-homomorphism. Indeed, we have

π((a+ bt)σ) = π(ψ(σ) · (a+ bt)) = a

On the other hand,

π(a+ bt)σ = aσ = a

π is obviously surjective and its kernel is tQp. Note that GQp acts trivially on tQp because

(tx)σ = ψ(σ) · (tx) = tx

It follows that tQp ≃ Qp as GQp-modules via tx ↦→ x. Thus, we have an exact sequence

as GQp- modules

0→ tQp ≃ Qp −→ ˜︂Qp(ψ)
π−→ Qp → 0

x ↦→ tx

We obtain ˜︁Qp(ψ) is an infinitesimal deformation of Qp.

Proposition 3.4.7. If ψ : GQp → ˜︂Qp

×
is a nontrivial continuous Galois character satis-

fying the congruence ψ(σ) ≡ 1 mod t for every σ ∈ GQp then ˜︂Qp(ψ) is an infinitesimal

deformation of Qp. In particular, ˜︂Qp(ψ) is a nonsplit extension of Qp by Qp.

Proof. We claim that the extension

0→ Qp −→ ˜︂Qp(ψ)
π−→ Qp → 0

is non-split. Otherwise, let s : Qp → ˜︂Qp(ψ) be the section of π, i.e., a GQp-homomorphism

satisfying π ◦ s = IdQp . Let s(1) ≡ a+ bt then

1 = π(s(1)) = π(a+ bt) = a

Moreover, since s is GQp-equivariant we obtain

1 + bt = s(1) = s(1σ) = s(1)σ = ψ(σ) · (1 + bt), ∀σ ∈ GQp

As 1+ bt ∈ ˜︂Qp

×
we see that ψ(σ) = 1 for all σ ∈ GQp , a contradiction with the nontrivial

property of ψ. Thus this extension is nonsplit as GQp-modules.
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This extension hence determines a line in H1(Qp). Note that ψ(σ) · (a+ bt) = (a+ bt)

for all σ ∈ GQp if only if a = 0. It follows that˜︂Qp(ψ)
GQp = tQp

Thus we obtain the following long exact sequence

0→ Qp → ˜︂Qp(ψ)
GQp = tQp → Qp

d−→ H1(GQp ,Qp)→ · · ·

Note that the GQp-homomorphism x ↦→ tx gives us Qp ≃ tQp, so we have an inclusion

d : Qp ↪→ H1(GQp ,Qp) in which we obtain a 1-dimensional subspace in H1(Qp).

Differentiation with respect to t induces a continuous isomorphism

d

dt
: 1 + tQp → Qp

1 + bt ↦→ b

from the multiplicative subgroup 1+tQp ⊆ ˜︂Qp to the additive group Qp. The composition

of ψ with
d

dt
is an nonzero additive character

dψ

dt
: GQp → Qp

σ ↦→ d

dt
(ψ(σ)) =

d

dt
(1 + bt) = b

Since GQp acts trivially on Qp, we have H1(GQp ,Qp) = Hom(GQp ,Qp). Hence we may

consider
dψ

dt
as a cohomology class in H1(GQp ,Qp).

Proposition 3.4.8. The line Qp
dψ

dt
⊆ H1(GQp ,Qp) corresponds to the nontrivial exten-

sion

0→ tQp → ˜︂Qp(ψ)→ Qp → 0

Proof. We describe the image of the inclusion d : Qp ↪→ H1(GQp ,Qp). Consider 1 ∈ Qp,

then choose 1 + bt ∈ ˜︂Qp, then the image of 1 in H1(GQp ,Qp) is given by

d(1) : GQp → tQp

σ ↦→ (1 + bt)σ − (1 + bt)

Let ψ(σ) = 1 + b′t ∈ 1 + tQp we have

(1 + bt)σ − (1 + bt) ≡ (1 + b′t)(1 + bt)− (1 + bt) ≡ b′t =
d

dt
(ψ(σ)) · t

Thus the line d(Qp) is generated by
dψ

dt
.
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Theorem 3.4.9. The correspondence ˜︂Qp(ψ)↔ Qp
dψ

dt
induces a one-one correspondence

{︁
Nontrivial infinitesimal deformations of Qp

}︁
{︁
One-dimensional subspaces of H1(Qp)

}︁
Proof. We have seen that every nontrivial infinitesimal deformation of Qp induces a 1-

dimensional subspace of H1(GQp ,Qp) via the connecting homomorphism.

Suppose we have a 1-dimensional Qp vector space in H1(GQp ,Qp) generated by 0 ̸=
[γ] ∈ H1(GQp ,Qp). Let γ denote the 1-cocycle representive of [γ], then γ : GQp →
Qp is a continuous group homomorphism since GQp act trivially on Qp. Compose this

homomorphism with the continuous group isomorphism (Qp,+) ≃ (1 + tQp, ·) we obtain

a character

ψ : GQp
γ−→ Qp

≃−→ 1 + tQp

It gives rise an infinitesimal deformation ˜︂Qp(ψ) of Qp

0→ Qp → ˜︂Qp(ψ)→ Qp → 0

Let X be a nontrivial infinitesimal deformation of Qp. Then we have the following

extension

0→ Qp→X→Qp → 0

Then X is isomorphic to ˜︂Qp(ψ) in the sense that we have the following commutative

diagram

0 Qp X Qp 0

0 Qp Q̃p(ψ) Qp 0

Id ≃ Id
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3.5 Tate Duality

3.5.1 The Brauer Group

Before we state Tate’s local duality, we study the Brauer group following [Ser67].

Definition 3.5.1. Let k be a field with absolute Galois group Gk = Gal(k/k). The

Brauer group of k is the cohomology group H2(Gk, k
×
). We denote it by Br(k)

Thus Br(k) is the inductive limit of the groups Br(L/k) := H2(Gal(L/k), L×) for L/k

a finite Galois extension. Note that if K is an extension of k, we have a homomorphism

Br(k)→ Br(K), induced by the natural morphism GK → Gk and the inclusion k
× → K

×
.

Recall the Kummer exact sequence

1→ µn → k
× .n−→ k

× → 1

Using Hilber90 theorem we obtain

Proposition 3.5.2. Let n be an integer which is invertible in k. Then

H2(k, µn) = (Br k)[n]

where (Br k)[n] := ker
(︂
H2(Gk, k

×
)

.n−→ ker(H2(Gk, k
×
)︂

Let K be a local field and Knr be its maximal unramified extension. The Galois group

Gnr := Gal(Knr/K) is isomorphic to ˆ︁Z = lim←−Z/nZ which is topologically generated

by the Frobenius. We can identify the Brauer group of K with the cohomology group

H2(Gnr, K
×
nr).

Theorem 3.5.3. Let K be a local field. Then we have an isomorphism

Br(K) ≃ H2(Gnr, K
×
nr)

Theorem 3.5.4. The valuation map v : K×
nr → Z defines an isomorphism

H2(Gnr, K
×
nr) ≃ H2(ˆ︁Z,Z)

Now consider the exact sequence of G-modules

0→ Z→ Q→ Q/Z→ 0
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The module Q has trivial cohomology since it is uniquely divisible (i.e., Z-injective).
Hence the coboundary δ : H1(Q/Z)→ H2(Z) yields an isomorphism

Hom(G,Q/Z) ≃ H1(Q/Z) ≃ H2(G,Z)

Let ϕ ∈ Hom(ˆ︁Z,Q/Z) and define a map

γ : Hom(ˆ︁Z,Q/Z)→ Q/Z

ϕ ↦→ ϕ(1)

Thus we have isomorphisms

H2(Gnr, K
×
nr)

v−→ H2(ˆ︁Z,Z) δ−1

−→ Hom(ˆ︁Z,Q/Z) γ−→ Q/Z

The map invK : H2(Gnr, K
×
nr)→ Q/Z is defined by invK = γ ◦ δ−1 ◦ v.

Theorem 3.5.5. Let K be a local field. Then we have an isomorphism

invK : BrK → Q/Z

Recall the Kummer sequence in local case

1→ µpn → Qp
× pn−→ Q×

p → 1

Note that theGQp is of strict cohomological dimension 2, soH i(GQp ,Qp
×
) = 1 for all i ≥ 2.

By Hilbert90, we have H1(GQp ,Q
×
p ) = {1} and have already proved that H1(GQp , µpn) =

Q×
p /(Q×

p )
n. Taking cohomology we obtain the following exact sequence

1→ Q×
p → Q×

p → H1(GQp , µpn)→ H1(GQp ,Qp)→ H1(GQp ,Qp)→ H2(GQp , µpn)→ 1

Now we can use the Brauer group to compute H2(GQp , µpn).

Proposition 3.5.6. We have H2(GQp , µn) = Z/nZ and hence H2(GQp ,Qp(1)) = Qp.

Proof. It follows that

H2(GQp , µpn) = (BrQp)[p
n] ≃ Z/nZ

Taking projective limit we obtain H2(Qp(1)) = Qp
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3.5.2 Tate Duality

Theorem 3.5.7. (Tate local duality) The cup product induces a pairing

⟨, ⟩ : H2−i(GQp ,Qp(1))×H i(, GQpQp(1)
∗)→ H2(GQp ,Qp(1)) = Qp

where Qp(1)
∗ = Hom(Qp(1),Qp(1)).

The multiplication induces a perfect pairing

Qp(1)×Qp → Qp(1)

(a, b) ↦→ a · b

It follows that Tate duality gives us a perfect pairing

⟨, ⟩ : H2−i(GQp ,Qp(1))×H i(GQp ,Qp)→ H2(GQp ,Qp(1)) = Qp

Hence a line in either one of the cohomology groups H1(Qp(1)), H
1(Qp) determines a

line in the other one- namely, its orthogonal complement.

{︂
Nontrivial infinitesimal deformations

Qp(ψ) of Qp

}︂ {︂
One-dimensional subspaces

of H1(Qp)

}︂
{︂

Nontrivial extensions of
Qp by Qp(1)

}︂ {︂
One-dimensional subspaces

of H1(Qp(1))

}︂
The main result in local class field theory is the following theorem.

Definition 3.5.8. Let L/K be a finite Galois extension of degree n. We call fundamental

class of the extension L/K the unique element uL/K of Br(L/K) = H2(Gal(L/K), L∗)

such that invK(uL/K) = 1/n ∈ Q/Z.

Theorem 3.5.9. Let L be a finite Galois extension of a local field K. Then the cup

product with uL/K defines an isomorphism

θL/K : Gab → K×/NL/K(L
×)

where G := Gal(L/K). The isomorphism

ωL/K := θ−1
L/K : K×/NL/K(L

×)→ Gab

is called the reciprocity map associated to the extension L/K.
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The map σL/K : K× → K×/NL/K(L
×) → Gab given by α ↦→ α ↦→ ωL/K(α) is called

local Artin symbol associated to the extension L/K. We start with an α ∈ K× and will

seek the image σL/K(α) ∈ Gab.

Let G be a finite group. The norm element of Z[G] is NG :=
∑︂
g∈G

g. Let A be a G-

module and let NG : A → A be the G-module endomorphism a ↦→ NGa. We then have

IGA ⊂ kerNG where IG is the augmentation ideal of Z[G]. Moreover, imNG ⊆ AG, thus

NG induces a morphism of trivial G-modules

ˆ︁NG : AG := A/IGA→ AG

Set H0(G,A) = AG, the functor A ↦→ H0(G,A) is covariant and right exact. We define

the homology groups Hi(G,A) as its left derived functor.

Definition 3.5.10. Let A be a G-module. For n ≥ 0 the Tate cohomology and homology

are defined by

ˆ︁Hn(G,A) :=

⎧⎨⎩coker ˆ︁NG for n = 0

Hn(G,A) for n > 0
ˆ︁Hn(G,A) :=

⎧⎨⎩ker ˆ︁NG for n = 0

Hn(G,A) for n > 0

and ˆ︁H−n(G,A) := ˆ︁Hn−1(G,A), ˆ︁H−n(G,A) := ˆ︁Hn−1(G,A)

By definition ˆ︁H−2(G,Z) = H1(G,Z). Moreover, it is remarkable thatˆ︁H0(Gal(L/K), L×) = K×/NL/KL
× and the homology group H1(G,Z) is the abeliani-

sation Gab = G/[G,G] of G.

Proposition 3.5.11. Let χ ∈ Hom(G,Q/Z) = H2(G,Z) be a character of degree 1 of

G and let δχ ∈ H2(G,Z) be the image of χ by the coboundary map δ : H1(G,Q/Z) →
H2(G,Z). Let

α ∈ K×/NL/K(L
×) = ˆ︁H0(G,L×)

be the image of α. The cup product α ∪ δχ is an element of H2(G,L×) ⊂ Br(K). We

have the formula

χ(σL/K(α)) = invK(α ∪ δχ)

Proof. By definition

σL/K(α) ∪ uL/K = α ∈ Ĥ
0
(G,L×)
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here σL/K(α) is identified with an element of H−2(G,Z). Using the associativity of the

cup product, this gives us

α ∪ δχ = uL/K ∪ σL/K(α) ∪ δχ = uL/K ∪ (δ(σL/K(α) ∪ χ)

with σL/K(α) ∪ χ ∈ Ĥ
−1
(G,Q/Z). Now

Ĥ
−1
(G,Q/Z) δ−→ Ĥ

0
(G,Z) = Z/nZ

and we identify Ĥ
−1
(G,Q/Z) with Z/nZ. Moreover, the identification betweenH−2(G,Z)

and Gab ensure that σL/K(α) ∪ χ = χ(σL/Kα). Now write σL/K(α) ∪ χ = r/n, r ∈ Z.
Then δ(r/n) ∈ Ĥ

0
(G,Z) and δ(r/n) = r. Hence

uL/K ∪ (σL/K ∪ δχ) = r ∪ uL/K

and the invariant of this cohomology class is just r/n = χ(xα).

Now consider a tower of Galois extensions K ⊂ L′ ⊂ L with G = Gal(L/K) and

H = G(L/L′). Then, if χ′ is a character of (G/H)ab and χ is the corresponding character

of Gab, and if α ∈ K× induces σL/K(α) ∈ Gab and σ′
L′/K(α) ∈ (G/H)ab under the natural

map Gab → (G/H)ab. It follows from the proposition and the inflation map transforms

χ′ (resp. δχ′) into χ (resp. δχ), we have χ(σL/K(α)) = χ′(σ′
L′/K(α)). This compatibility

allows us to define σα for any abelian extension; in particular, taking L = Kab, the

maximal abelian extension of K, we get a homomorphism

σK : K× → Gal(Kab/K)

Note that H1(GQp ,Qp) = Homcont(G
ab
Qp ,Qp) as every group homomorphism factors

through its abelization. We can reinterpret the Tate local duality as follows.

Theorem 3.5.12. Let Gab
Qp be the abelianized Galois group and let σ : Q×

p → Gab
Qp be a

local Artin symbol, normalized so that σp is the inverse of a Frobenius element. Then the

Tate pairing

⟨, ⟩ : H1(Qp(1))×H1(Qp)→ Qp

is explicitly given by the formula ⟨︁
γq, ξ

⟩︁
= ξ(σq)

for arbitrary q ∈ Q×
p and ξ ∈ H1(Qp), where γq ∈ H1(Qp(1)) is the Kummer class of q.
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Recall that the cyclotomic character ξ0 : GQp → Z×
p is characterized by ξσpn = ξ

ξ0(σ)
pn for

all σ ∈ G and ξpn ∈ µpn . Note that ξ0 is alternatively obtained by lifting IQp → IabQp ≃ Z×
p

to GQp . Hence ξ0 is given by ξ0(σu) = u for u ∈ Z×
p .

Theorem 3.5.13. Let E/Qp be an elliptic curve with split multiplicative reduction with

Tate p-adic period qE and let ψ : GQp → ˜︁Q×
p be a nontrivial character which is ≡ 1 modulo

t. Then the following statements are equivalent:

1.
dψ

dt
(σqE) = 0 with σ : Q×

p → Gab
Qp the local Artin symbol.

2. Tate’s module V (E) corresponds to ˜︁Qp(ψ) under{︁
Nontrivial infinitesimal deformations Qp(ψ) of Qp

}︁
{︁
Nontrivial extensions of Qp by Qp(1)

}︁
3. There is an indinitesimal deformation ˜︁V of Tate’s module V (E) and a commutative

diagram

0 ˜︁Qp(1) ˜︁V ˜︁Qp(ψ) 0

0 Qp(1) V (E) Qp 0

in which the top row is an exact sequence of ˜︁Qp[GQp ]-modules and the vertical maps

are reduction modulo t.

Proof. (1) ⇔ (2) By the Tate’s local duality formula
⟨︁
γq, ξ

⟩︁
= ξ(σq), we see that

dψ

dt
(σqE) = 0 if and only if

⟨︃
γqE ,

dψ

dt

⟩︃
= 0, i.e., γqE is orthogonal to

dψ

dt
with respect to

the Tate pairing. On the other hand, the Kummer class γqE spans the line in H1(Qp(1))

determined by V (E) and
dψ

dt
spans the line in H1(Qp) determined by the infinitesimal

deformation ˜︂Qp(ψ).

(2) ⇒ (3) Suppose that the Tate module V (E) corresponds to ˜︂Qp(ψ). Then we can

provide an explicit construction of ˜︁V as follows. Let γ denote a cocycle representing the

cohomology class of γqE . Then the function

ζ : GQp ×GQp → Qp(1)
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(g1, g2) ↦→ γ(g1) ·
dψ

dt
(g2)

is a 2-cocycle representing the cup product of γqE and
dψ

dt
.

Since this cup product vanishes by Tate duality, there is a 1-cochain ξ : GQp → Qp(1)

whose coboundary is the ζ. Hence, for all (g1, g2) ∈ GQp ×GQp , we have

ξ(g1g2)− ξ0(g1)ξ(g2)− ξ(g1) = γ(g1)
dψ

dt
(g2)

Now define for each g ∈ G

ρ(g) =

(︄
ξ0(g) γ(g) + tξ(g)

0 ψ(g)

)︄
∈ GL2(Qp)

We can check that ρ : GQp → GL2(Qp) is a group homomorphism. Let ˜︁V =: ˜︂Qp

2
equipped

with the Galois action induced by ρ, i.e., for all (q1, q2) ∈ ˜︂Qp

2
and g ∈ G

(q1, q2)
g = (ξ0(g)q1, ψ(g)q2)

Define

Ψ : ˜︁V →˜︂Qp(ψ)

(q1, q2) ↦→ q2

We see that Ψ is GQp-equivariant

Ψ((q1, q2)
g) = Ψ((ξ0(g)q1, ψ(g)q2)) = ψ(g)q2 = qg2 = Ψ(q)g

Moreover, its kernel is ˜︂Qp(ξ0) = ˜︂Qp(1). Reduce modulo t we obtain the maps θ1 :˜︂Qp(1)→ Qp(1) and θ2 : ˜︂Qp(ψ)→ Qp. Now define θ = (θ1, θ2) : ˜︁V → V (E) we obtain

0 ˜︁Qp(1) ˜︁V ˜︁Qp(ψ) 0

0 Qp(1) V (E) Qp 0

0 0 0
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By Snake lemma we get the diagram in 3.

(3) ⇒ (2) Suppose that we have a commutative diagram as in (c). We show that γE

is orthogonal to
dψ

dt
with respect to the Tate pairing. From the diagram in c we obtain a

commutative diagram

0 0 0

0 Qp(1) V (E) Qp 0

0 ˜︁Qp(1) ˜︁V ˜︁Qp(ψ) 0

0 Qp(1) V (E) Qp 0

0 0 0

in which the rows and columns are exact. We see there exits a section Qp(1)→ ˜︂Qp(1), the

leftmost vertical row splits, the connecting homomorphism H1(Qp(1))→ H2(Qp(1)) van-

ishes (the galois cohomology functor is additive). On the other hand, let δψ : H0(Qp)→
H1(Qp) be the connecting homomorphism of degree 0 attached to the rightmost vertical

row, and let δi : H
1(Qp) → H i+1(Qp(1)) (i = 0, 1) be the connecting homomorphism of

degree i associated to the bottom row, we obtain a commutative diagram

H0(Qp) = Qp H1(Qp(1))

H1(Qp) H2(Qp(1))

δ0

δψ =0

δ1

Since δ1(
dψ

dt
) = δ1 ◦ ψ(1) = 0 ◦ δ0(1) = 0,

dψ

dt
∈ Ker δ1. On the other hand, the Kummer

class γqE is in the image of δ0. We will show that the kernel of δ1 is orthogonal to the

image of δ0.

The multiplication induces a perfect pairing

P : Qp(1)×Qp → Qp(1)

(q1, q2) ↦→ q1q2
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Indeed, Qp → Hom(Qp(1),Qp(1)), q2 ↦→ P (−, q2). Moreover, the Weil pairing

V (E)× V (E)→ Qp(1)

with respect to which the homomorphisms i : Qp(1) → V (E) and π : V (E) → Qp are

transpose of each other. It follow that

0 Qp(1) V (E) Qp 0

0 Qp(1)
∗ = Qp V (E)∗ = V (E) Q∗

p = Qp(1) 0

Hence the fundamental exact sequence

0→ Qp(1)→ V (E)→ Qp → 0

is self dual with respect to these pairings. By duality, the connecting homomorphisms

δ0 : H0(Qp) → H1(Qp(1)) and δ1 : H1(Qp) → H2(Qp(1)) are transposes under the Tate

pairing. In particular, the image of δ0 is orthogonal to the kernel of δ1

3.6 L-invariant

Theorem 3.6.1. Let αp(k) be the p-adic analytic function attached to the p-th coefficient

of Hida’s Λ-adic modular form. Then

α′
p(2) = −

1

2
Lp(E)

Proof. Let f =
∞∑︂
n=1

αn(k)q
n ∈ AU [[q]] be the formal q-expansion given by Hida’s theorem,

where U is a suitable p-adic neighborhood of 2. Consider the representation ρ : GQp →
GL2(AU) given in the theorem 2.5.10.Then we obtain a commutative diagram

0 AU(χ0 ⟨χ0⟩k−2 φ−1
k ) A2

U AU(φk) 0

0 Qp(1) V (E) Qp 0



3.6. L-INVARIANT 79

of GQp-representations where φk : GQp → A×
U is the unramified character with

φk(Frobp) = αp(k), the bottom row is the fundamental sequence associated to E, and

the vertical arrows are given by specialization to k = 2.

Twisting each term of the above diagram by φk ⟨χ0⟩2−k so that the leftmost term is

AU(χ0). Since this character specializes to the trivial character at k = 2, we obtain a

commutative diagram

0 AU(χ0) A2
U(φ ⟨χ0⟩2−k) AU(φ2

k ⟨χ0⟩2−k) 0

0 Qp(1) V (E) Qp 0

Let t := k − 2 ∈ AU we have AU/(t2) ≃ ˜︁Qp. Hence, reducing the terms modulo t2 and

setting ˜︁V := ˜︁Q2
p(φk ⟨χ0⟩2−k) we obtain a diagram

0 Q̄p(1) V̄ Q̄p(ψ) 0

0 Qp(1) V (E) Qp 0

where ψ = φ2
k ⟨χ0⟩2−k considered modulo t2. It follows that

dψ

dk
(σpE) = 0

Writing qE = pnu where n = ordp(qE) and u ∈ Z×
p and noting that φk(σp) = φ(Frobp)

−1

and φk(Frobp) = αp(k) we obtain

ψ(σqE) = αp(k)
−2n ⟨u⟩2−k

Differentiate this with respect to k and set k = 2. Note that αp(2) = 1 since E has split

multiplicative reduction at p, we have the equality

α′
p(2) = −

1

2

logp(qE)

ordp(qE)



CHAPTER 4

Two-variable p-adic L-function

In this chapter, we will construct the Mazur-Kitagawa p-adic L-function following

Greenberg and Stevens [GS94] by conceptual study the measure -valued modular symbols.

In chaoter 1, we have seen that classical modular symbol encodes special values of L-

function. It is well-known that the classical modular symbols can be interpreted in the

sense of cohomology. One of the remarkable things is that the measure-valued module of

modular symbols has the structure of a Λ-module, to which we can apply Hida’s theory.

Given an elliptic curve E over Q, we constructed the p-adic L-function attached to E in

chapter 1. It will turn out that we can lift a classical modular symbol to a measure-valued

modular symbol which can be viewed as a family of p-adic L-functions whose weight 2

specialization agrees with the p-adic L-function attached to E.

4.1 Modular Symbols

4.1.1 Modular Symbols

Definition 4.1.1. LetD := Div(P1(Q)) be the group of divisors supported on the rational

cusps P1(Q) = Q ∪ {∞} of the upper half plane H. Denote

D0 :=
{︁
{c1} − {c2}|where {c1}, {c2} ∈ P1(Q)

}︁
⊂ D

the subgroup of divisors of degree zero.

The group GL2(Q) acts by fractional linear transformations on D and also on D0, i.e,
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for all z ∈ D (︄
a b

c d

)︄
z =

az + b

cz + d

Also, we define the action of the multiplicative semigroupM2(Z) of 2×2 integral matrices

on D and D0.

Definition 4.1.2. If
∑︂

is a subsemigroup of the multiplicative semigroup M2(Z) and

if A is a right Z
[︂∑︂]︂

-module, then we define a right action of
∑︂

on HomZ(D0, A) by

Φ ↦→ Φ|σ, for σ ∈
∑︂

, where

(Φ|σ)(D) = Φ(σD)|σ

for all D ∈ D.

Note that the action on the right hand side is the module action on A. Also, we see

that if σ1 =

(︄
a1 b1

c1 d1

)︄
, σ2 =

(︄
a2 b2

c2 d2

)︄
∈
∑︂

then

(︁
Φ|σ1

)︁
|σ2(D) =

(︁
(Φ|σ1)(σ2D)

)︁
|σ2=

(︁
Φ(σ1σ2D)

)︁
|σ2σ1= (Φ)|σ1σ2(D)

Hence the action defined is indeed a right action of
∑︂

on HomZ(D0, A).

Definition 4.1.3. An element Φ ∈ HomZ(D0, A) is called an A-valued modular symbol

if the stabilizer of Φ in
∑︂

contains a congruence subgroup of SL2(Z). That is, there is

a congruence subgroup Γ ⊂ SL2(Z) sucht that

Γ ⊆ {σ ∈
∑︂
|Φσ = Φ}

We say that Φ is a modular symbol over Γ.

Notation: The module of all A-valued modular symbols is denoted Symb(A). The

module of modular symbols over Γ is denoted SymbΓ(A) ⊂ Symb(A)

Definition 4.1.4. We denote Lk(R) the R-module of homogeneous polynomials of degree

k − 2 in two variables X, Y with coefficients in a commutative ring R.
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We let
∑︂

act on Lk(R) by the following formula

(F |g)(X, Y ) = F ((X, Y )g∗)

where g ∈
∑︂

and F ∈ Lk(R) and ∗ is the main involution

(︄
a b

c d

)︄
↦→

(︄
d −c
−b a

)︄

Claim: Let g1 =

(︄
a1 b1

c1 d1

)︄
and g2 =

(︄
a2 b2

c2 d2

)︄
we have

g1g2 =

(︄
a1a2 + b1c2 a1b2 + b1d2

c1a2 + d1c2 c1b2 + d1d2

)︄

and (︄
d1 −c1
−b1 a1

)︄(︄
d2 −c2
−b2 a2

)︄
=

(︄
d1d2 + c1b2 −d1c2 − c1a2
−b1d2 − a1b2 b1c2 + a1a2

)︄

Definition 4.1.5. Fix an integer k ≥ 2 and a commutative ring R. Then Symb(Lk(R))

is called the module of modular symbols of weight k over R.

The main modular symbol I use throughout my thesis is due to Eicher-Shimura. Let

Sk(Q) be the space of weight k cusp forms of all levels having algebraic q-expansions and

let GL+
2 (Q) act on Sk(Q) via the standard weight k action: for any σ ∈ GL+

2 (Q) and z in

the upper half-plane we define

(f |σ)(z) :=
det(σ)k−1

(cz + d)k
f(σz)

Definition 4.1.6. For each f ∈ Sk(Q) we associate the unique Z-linear function ψf :

D0 → Lk(C) whose value on divisors of the form {c2} − {c1} ∈ D0, with c1, c2 ∈ P1(Q) is

given by

ψf
(︁
{c2} − {c1}

)︁
= 2πi

∫︂ c2

c1

f(z)(zX + Y )k−2dz (4.1.1)

Remark 4.1.7. For any σ ∈ GL+
2 (Q) we have

(ψf |σ)
(︁
{c2} − {c1}

)︁
= 2πi

∫︂ σc2

σc1

f(z)(zX + Y )k−2dz = 2πi

∫︂ c2

c1

f(σz)((σz)X + Y )k−2d(σz)
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We have

(︁
σ(z)X + Y

)︁k−2
=

(︃
az + b

cz + d
X + Y

)︃k−2

=
(︁
(az + b)X + (cz + d)Y

)︁k−2
(cz + d)2−k

And

d

dz
(σz) =

d

dz
(
az + b

cz + d
) =

ad− bc
(cz + d)2

Hence

(ψf |σ)
(︁
{c2} − {c1}

)︁
= 2πi

∫︂ c2

c1

(ad− bc)k−1

(cz + d)k
f(σz)(zX + Y )k−2dz

4.1.2 Modular Symbols and Hecke Operators

We define operators via the action of double cosets.

Definition 4.1.8. Let Γ and Γ′ be two congruence subgroups and let ∆ ⊂ GL+
2 (Q) be a

semigroup. We denote by H(Γ,Γ′,∆) the free Z-module generated by double cosets ΓαΓ′

with α ∈ ∆

H(Γ,Γ′,∆) = {
∑︂
α∈∆

aαΓαΓ
′|aα ∈ Z, aα = 0 except for finitly many α}

We define multiplication of elements ofH(Γ,∆) := H(Γ,Γ,∆) so thatH(Γ,∆) becomes

an algebra.

Let Γ1,Γ2,Γ3 be congruence subgroups. For two elements Γ1αΓ2 = ⊔iΓ1αi and

Γ2βΓ3 = ⊔jΓ2βj, we define

Γ1αΓ2 · Γ2βΓ3 =
∑︂
γ

cγΓ1γΓ3

where cγ = |{(i, j)|Γ1αiβj = Γ1γ}| and the summation is taken over all double cosets

Γ1γΓ3 such that γ ∈ ∆. The right hand side is a finite sum because there are only finitely

many i’s and j’s.
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Lemma 4.1.9. The multiplication defined by the equality is independent of the choice of

the representatives αi, βj and γ.

Proof. Refer [Mi89]

The Z-algebra H(Γ,∆) is called a Hecke algebra. The unity in Z-algebra H(Γ,∆) is

Γ.

Definition 4.1.10. For an arbitrary congruence subgroup Γ ⊂
∑︂

, let H(Γ,
∑︂

) be the

double coset algebra over Z associated to the pair (Γ,
∑︂

). The action of H(Γ,
∑︂

) on

A-valued modular symbols over Γ is given as follows. If T (g) ∈ H(Γ,
∑︂

) is the element

associated to the double coset ΓgΓ, g ∈
∑︂

, then we can write ΓgΓ as a finite disjoint

union of right cosets,
⋃︂
i

Γgi. For a modular symbol Φ ∈ SymbΓ(A) we then define

Φ|T (g) =
∑︂
i

Φ|gi ∈ SymbΓ(A)

Proposition 4.1.11. Let f ∈ Sk(Q) be a weight k cusp form of any level. Recall the

action of Hecke operaton on f given by

f |Tp := pk/2−1

⎛⎝p−1∑︂
u

f

⃓⃓⃓⃓ (︄
1 u

0 p

)︄
+ ϵ(p) · f

⃓⃓⃓⃓ (︄
p 0

0 1

)︄⎞⎠
. Then the map f ↦→ ψf is Hecke equivariant.

Proof. Let σ =

(︄
1 a

0 p

)︄
for some prime p, then we have

ψf |σ({c2} − {c1}) = 2πi

∫︂ c2

c1

f(z)|γ · (zX + Y )k−2dz

= 2πi

∫︂ c2

c1

pk−1

pk
f(
z + a

p
)(zX + Y )k−2dz

Substituting y =
z + a

p
, so y = py − a and dz = ldy we obtain

ψf |σ({c2} − {c1}) = 2πi

∫︂ c2

c1

f(y) · ((py − a)X + Y )k−2dy
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Furthermore, we see that

(yX + Y )k−2|σ = (1− aX)k−2

(︃
y

pX

1− aX
+ Y

)︃k−2

= ((py − a)X + Y )k

Hence ψf |σ({c2} − {c1}) = ψf |σ({c2} − {c1}). The Up operator is a sum of matrices of

this form, we deduce that ψf |Up = ψf |Up. For the Tp operator, it remains to check only

the matrix γ =

(︄
p 0

0 1

)︄
. Note that P |γ(X, Y ) = pk−2P ((X, Y )/p) we directly verify that

ψf |γ({c2} − {c1}) = 2πi

∫︂ c2

c1

pk−1f(pz)(zX + Y )k−2dz

= 2πi

∫︂ c2

c1

f(y)

[︄
pk−2

(︃
y
X

p
+ Y

)︃k−2
]︄
dy

= ψf |γ({c2} − {c1})

4.1.3 Modular Symbols and Cohomology

Definition 4.1.12. Let Γ be a congruence subgroup. We say an element γ ∈ Γ is

parabolic if γ fixes exactly one point in P1(Q) = Q ∪ {∞}. Let P denote the set of all

parabolic elements of Γ.

Definition 4.1.13. We denote by C1
P (Γ,M) the R-submodule of C1(Γ,M) consisting of

elements u with the property that for all γ ∈ P there exists some m ∈M such that

u(γ) = (γ − 1)m

Setting

Z1
P (Γ,M) = Z1(Γ,M) ∩ C1

P (Γ,M)

B2
P (Γ,M) = d1(C1

P (Γ,M))

We define the parabolic cohomology groups of Γ with coefficients in M to be

H0
P (Γ,M) = H0(Γ,M) =MΓ

H1(Γ,M) = Z1
P (Γ,M)/B1

P (Γ,M)

H2
P (Γ,M) = Z2(Γ,M)/B2

P (Γ,M)
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Let Γ1,Γ2 ⊂ SL2(Z) be congruence subgroups. For any α ∈ GL+
2 (Z), let R ⟨Γ1,Γ2, α

ι⟩
denote the semi-group ring generated by Γ1,Γ2, and α

ι over R, where αι = det(α)α−1. We

define the action of the double coset operator [Γ1αΓ2] on H
1(Γ,M) for an R ⟨Γ1,Γ2, α

ι⟩-
module M . Let decompose the double coset [Γ1αΓ2] = ⊔Γ1αi. For each γ ∈ Γ2, we have

αiγ = γiαj for some γi ∈ Γ1. Now, for any 1-cocycle u : Γ1 →M we define

v(γ) := u|[Γ1αΓ2](γ) =
∑︂
i

αιiu(γi)

The operator [Γ1αΓ2] does not depend on choices of orbit representatives {αi}. Further-
more, if γ, δ ∈ Γ2 with αiγ = γiαj and αiδ = δiαj, we have αiγδ = γiδjαj. It follows

that

v(γδ) =
∑︂
i

αιiu(γiδj) = γv(δ) + v(γ)

Hence, v = u|[Γ1αΓ2] is a 1-cocycle of Γ2. Suppose u is a 1-coboundary of Γ1 with

u(γ) = (γ − 1)m. Then we have

v(γ) =
∑︂
i

αιi(γi − 1)m =
∑︂
j

(αjγ)
ιm−

∑︂
i

αιim = (γ − 1)
∑︂
i

αιim

which show that v is a 1-coboundary of Γ2. Thus, the double coset operator [Γ1αΓ2] is

a well defined linear operator from H1(Γ1,M) to H1(Γ2,M). Furthermore, one can see

that it maps H1
P (Γ1,M) to H1

P (Γ2,M).

We provide the cohomology interpretation of modular symbols due to Ash and Stevens

[AS86]

Definition 4.1.14. A Hecke pair (Γ0, S0) is said to be weakly compatible to a Hecke pair

(Γ, S) if

1. (Γ0, S0) ⊆ (Γ, S)

2. the set S ′ = S \ ΓS0 satisfies SS ′ ⊆ S ′ and S ′S0 ⊆ S ′

3. Γ ∩ S0S
−1
0 = Γ0

If (Γ0, S0) ⊆ (Γ, S) are weakly compatible then there is a canonical algebra homomor-

phism

i : H(Γ, S)→ H(Γ0, S0)
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Viewing the Hecke algebras as convolution algebras this map is given by the restriction

of functions on S to functions on S0. The following lemma due to Shapiro allows us to

relate systems of Hecke eigenvalues occurring in the cohomology of Γ to those occurring

in Γ0.

Proposition 4.1.15. Suppose that (Γ0, S0) ⊆ (Γ, S) are weakly compatible Hecke pairs

1. Let E be a right S-module, F be a right S0-module and ϕ : E → F be an S0-morphism.

If E|σ ⊆ ker(ϕ) for every σ ∈ S \ ΓS0 then the composition

Hr(Γ, E)
res→ Hr(Γ0, E)

ϕ∗→ Hr(Γ0, F )

is Hecke equivariant; i.e. if ξ ∈ Hr(Γ, E) and h ∈ H(Γ, S) then

(ϕ∗ ◦ res)(ξ|h) = (ϕ∗ ◦ res(ξ))|i(h)

2. If F is a right S0-module then the induced module IndΓ
Γ0
(F ) inherits a natural right

S-action. The Shapiro isomorphism

Hr(Γ, IndΓ
Γ0
(F ))→ Hr(Γ0, F )

is Hecke equivariant.

Definition 4.1.16. Let X be a topological space and K be a compact subset of X, define

the compact support cochains

Ci
c(X) := ∪KCi(X,X \K)

= {φ : Ci(X)→ R|∃ a compact subset Kφ ⊂ X such that φ = 0 on chains in X \Kφ}

For φ ∈ Ci
c(X), define the differential

dφ(σ) := φ(dσ)

for all σ ∈ Ci(X)

Note that if φ ∈ Ci
c(X), then dφ is also zero on all chains in X \ Kφ and so dφ ∈

Ci+1
c (X). Hence we obtain a cochain subcomplex C∗

c (X) of Ci(X). We define

H i
c(X) := H i(C∗

c (X))

the cohomology of X with compact support.
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Theorem 4.1.17. Let R be a commutative ring in which the order of every torsion

element of Γ is invertible. If E is an R[Γ]-module then we have

SymbΓ(E) ≃ H1
c (Γ, E)

One of the most celebrated result in the subject is the following theorem due to Eicher-

Shimura.

Theorem 4.1.18. There is a Hecke-equivariant isomorphism

Sk+2(Γ,C)⊕ Sk+2(Γ,C)⊕ Ek+2(Γ,C) ≃ SymbΓ(Lk(C)

given by the map

(f, f , g) ↦→ ψf + ψf + ψg

Proof. (Sketch) Firstly we can reinterpret the modular symbols in term of cohomology.

Let YΓ := Γ \H denote the modular curve. We have an isomorphism

SymbΓ(Lk(C)) ≃ H1
c (YΓ, Lk(C))

There is a cup product pairing

H1
c (YΓ, Lk(C))×H1(YΓ, Lk(C))→ C

Together with the Petersson product on modular forms, one can use these two pairings

to show the injectivity. Using the standard dimension results in the theory of modular

forms and algebraic topology, one can show that both sides have the same dimension.

Let f be an eigenform. Then for all operator T in Hecke algebra H we have

T (f) = λf (T )f

where λf (T ) is the eigenvalue. It gives rise a homomorphism λf : H → C, T ↦→ λf (T ).

We call λf is the eigenpacket associated to f .

Definition 4.1.19. Let f ∈ Snewk+2(Γ,C) be a newform and let λf : H → C be its eigen-

packet. If M is a space with an action of the Hecke algebra H, then define

M [f ] := f-eigenvalue of H inM

= {m ∈M : T (m) = λf (T )m, ∀T ∈ H}
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Proposition 4.1.20. We have

dimC SymbΓ(Lk(C)[f ] = 2

Proof. The eiegenpacket λf cannot occur in Ek+2(Γ,C), since the Tp-eigenvalue of an

Eisenstein series at a prime p is of size approximately pk, whilst for cusp forms, we have

the estimate ap(f) ≤ Cpp/2. It appears exactly once in both Sk+2(Γ,C) and Sk+2(Γ,C),
and hence the space of modular symbols is of dimensional two.

Let ι =

(︄
1 0

0 −1

)︄
we have the following decomposition.

Proposition 4.1.21. We have a Hecke-stable decomposition

SymbΓ(Lk(C) ≃ Symb+
Γ (Lk(C)⊕ Symb−

Γ (Lk(C)

into the ±1 eigenspaces of the involution ι

More generally, we can consider modular symbol with algebraic coefficients. If

multiplication by 2 is invertible on A, then we can decompose any modular symbol

Φ ∈ SymbΓ0(N)(A) in a unique way as a sum

Φ = Φ+ + Φ−

where Φ±|ι = ±Φ±. Let

SymbΓ0(N)(A) = SymbΓ(N)(A)
+ ⊕ SymbΓ0(N)(A)

−

be the corresponding decomposition of the space of modular symbols.

Theorem 4.1.22. (Manin-Shimura) Let f ∈ Sk(Γ0(M)) be a common eigenform for

the operators Tp, p prime, let O(f) be the ring of algebraic integers generated by the

eigenvalues, and let K(f) be the fraction field of O(f). Then for either choice of sign ±,
the Hecke eigen space associated to f in SymbΓ0(M)

(︁
Lk(K(f))

)︁±
is one dimensional over

K(f).

Moreover, there are ’periods’ Ω±
f ∈ C× such that the modular symbols

φ±
f = (Ω±

f )
−1ψ±

f

generates these eigenspaces and are defined over O(f), i.e. take values in Lk(O(f))
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4.2 p-adic Measures

Fix a prime p > 0 and v : Qp → Z ∪ {∞} the p-adic valuation.

Definition 4.2.1. Let E be a Qp-vector space with a valuation w : E → R ∪ {∞} such
that

1. w(x+ y) ≥ min{w(x), w(y)} for all x, y ∈ E

2. w(ax) = v(a) + w(x) for all a ∈ Qp, x ∈ E.

We say E is a Qp-Banach space if E is complete with respect to the topology defined by

the valuation w.

Proposition 4.2.2. Define

C(Zp,Qp) := {f : Zp → Qp| f is continuous}

and w(f) := infx∈Zp v(f(x)) ∈ Z ∪ {∞} (giving rise to the supremum norm). Then

C(Zp,Qp) with the valuation w is a Qp-Banach space.

Proof. Refer [Col]

Proposition 4.2.3. For k ∈ Nn≥1 define

LCk := {f : Zp → Qp|∀a ∈ Zp, f |Ua,k is constant}

where Ua,k = a+ pkZp. Denote LC :=
⋃︂
k≥1

LCk all locally constant functions on Zp. Then

LC ⊂ C(Zp,Qp) is dense.

Proof. Refer [Col]

More generally, let X be a profinite abelian group. We denote C(X,Qp) denote the

module of Qp-valued continuous functions on X and LC(X) denote the submodule of

locally constant functions.

We equip C(X,Qp) with the topology induced by the supremum norm and we also

have LC(X) is dense in C(X,Qp).
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Definition 4.2.4. Define the space Meas(X) of Qp-valued measures on X to be the dual

Homcont(C(X,Qp),Qp) equipped with the strong topology.

Meas(X) := Homcont(C(X,Qp),Qp)

If ϕ ∈ C(X,L) and µ ∈ Meas(X) the evaluation of µ at ϕ will be denoted by∫︂
X

ϕ(x) · µ(x) or shortly
∫︂
X

ϕ · dµ

We say that an element µ ∈ Meas(X) is an Zp-valued measure, and write µ ∈ Meas(X,Zp),
if µ takes values in Zp.

Proposition 4.2.5. We have

Meas(X,Qp) = Meas(X,Zp)⊗Zp Qp

Proof. Since Zp is compact and measures are continuous, or equivalently bounded. It

follows that for all µ ∈ Meas(X,Qp) there is c ∈ Zp such that cµ ∈ Meas(X,Zp). Thus

we obtain µ = cµ⊗ c−1

Remark 4.2.6. We can think of measures as additive functions

µ : {compact open subsets of X} → Zp

Indeed, let ϕ ∈ C(X,Zp). Assume first that ϕ is locally constant. Then there exists some

open subgroup U of X such that we can view ϕ as a function on X/U . We define the

integral of ϕ against µ to be ∫︂
X

ϕ · µ :=
∑︂

[a]∈X/U

ϕ(a)µ(aU)

If ϕ is continuous, we can write ϕ = lim
n→∞

ϕn, where each ϕn is locally constant. Then we

can define ∫︂
X

ϕ · µ := lim
n→∞

∫︂
X

ϕn · µ

which exists and is independent of the choice of ϕn.

Conversely, if µ ∈ Meas(X,Zp) and U ⊂ X is and open compact set, one defines

µ(U) :=

∫︂
X

1U(x) · µ(x)

the value of µ on the characteristic function of U .
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Proposition 4.2.7. We have an isomorphism

Meas(X,Zp) ≃ lim←−
U

Zp[X/U ]

where the limit is over all open subgroups of X.

Proof. We define the map from Meas(X,Zp) to lim←−
U

Zp[X/U ] as follows. Let µ be a measure

in Meas(X,Zp), define an element λU ∈ Zp[X/U ] given by

λU =
∑︂

[a]∈X/U

µ(aU)[a]

By the additivity property of µ, we see that (λU) ∈ lim←−
U

Zp[X/U ].

Conversely, given an element λ ∈ lim←−
U

Zp[X/U ], write λU for its image in Zp[X/U ] under

the natural projection. Then

λU =
∑︂

[a]∈X/U

ca[a]

We define

µ(aH) = ca

Since the λU is compatible under the projection maps, this defines an additive function

on the open compact subgroups of G.

In particular, we can determine the structure of Meas(Z×
p ,Zp) explicitly via Dirac

measure.

Definition 4.2.8. For each t ∈ Z×
p , let δt ∈ Meas(Z×

p ) be the Dirac measure given by the

integral ∫︂
fdδt = f(t)

for f ∈ C(Z×
p ,Qp), i.e., δt is the linear functional evaluation at t.

Under the indentification of measures with additive functions on open compact subsets

of Z×
p , we find that this corresponds to the function

δ̃t(U) =

⎧⎨⎩1 if a ∈ U

0 if a /∈ U
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As an element of the inverse limit, we find that at finite level δt corresponds to the the

basis element [a+ pnZp] ∈ Zp[(Zp/pnZp)×] with a ̸= 0, denoted by [a].

Proposition 4.2.9. The map t ↦→ δt defines a continuous map Z×
p → Meas(Z×

p ,Zp).
Then it can be uniquely extended to a continuous Zp-isomorphism

Zp[[Z×
p ]]→ Meas(Z×

p ,Zp)

Let (Z2
p)

′ denote the set of primitive vectors in Z2
p (i.e. vectors which are not divisible

by p) and consider the canonical projection

(Z2
p)

′ → P1(Qp)

sending (x, y) in affine coordinates to [x, y] in projective coordinates. The fibers of this

map are just the orbits of the scalar action of Z×
p .

Definition 4.2.10. For X a compact open subset of P1(Qp), we set

U(X) := {(x, y) ∈ (Z2
p)

′|[x, y] ∈ X}

Thus, U(X) is the preimage of X in (Z2
p)

′. Define

D(X) := Meas(U(X))

When X = P1(Qp), we will simply write D.

Remark 4.2.11. For an arbitrary compact open set X ⊆ P1(Qp), the scalar action of Z×
p

on U(X) induces a continuous action of Z×
p on D. For all λ ∈ Z×

p and µ ∈ D∫︂
f(x, y)d(λµ) :=

∫︂
f(λx, λy)dµ

Hence D(X) is endowed with a natural structure as continuous Zp[[Z×
p ]]-module

Denote M2(Zp) the semigroup of 2× 2 matrices over Zp. Consider the elements of Z2
p

as row vectors, let M2(Zp) act by matrix multiplication on the right. This induces an

action of M2(Zp) on Cont(Z2
p) by the formula

(σf)(v) = f(vσ)

for σ ∈M2(Zp) and f ∈ Cont(Z2
p).
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We can endow D with a natural structure as Zp[[Z×
p ]][M2(Zp)]-module as follows. Iden-

tifying Cont((Z2
p)

′) with the submodule of Cont(Z2
p) consisting of functions supported on

(Z2
p)

′, we have that Cont((Z2
p)

′) ⊆ Cont(Z2
p) is preserved by the action of M2(Zp). We

endow Cont((Z2
p)

′) with this action of M2(Zp) and endow D with the dual action. Hence,

for µ ∈ D, σ ∈M2(Zp), and f ∈ Cont((Z2
p)

′)∫︂
f dµ|σ =

∫︂
(σf) dµ

This action commutes with the action of Zp[[Z×
p ]] on D. Hence D is endowed with a

natural structure as Zp[[Z×
p ]][M2(Zp)]-module.

4.3 p-Ordinary Λ-adic Modular Symbols

We fix N a positive integer that is not divisible by p.

Definition 4.3.1. For an integer k ≥ 2 we define the specialization map ϕk : D→ Lk(Zp)
by

µ ↦→
∫︂
Z×
p ×Zp

(xY − yX)k−2 dµ(x, y)

Remark 4.3.2. The specialization homomorphism xk : Λ→ Zp, [u] ↦→ uk−2 gives Lk(Zp)
a Λ-module structure.

Let Γ0(pZp) denote the set of matrices in GL2(pZp) that are upper triangular modulo

p.

Proposition 4.3.3. The homomorphism ϕk induces a morphism ϕk,∗ by the composition

SymbΓ0(N)(D)→ SymbΓ(Np)(Lk(Zp))

Proof. The map ϕk,∗ is Γ0(pZp)-equivariant since the matrices used to define the Hecke

operators are upper triangle. That is,

ϕk,∗(µ|γ) = ϕk,∗(µ)|γ

for µ ∈ SymbΓ0(N)(D) and γ ∈ Γ0(pZp).

Hence, for µ ∈ SymbΓ0(N)(D) and γ ∈ Γ0(Np), and P = (xY − yX)k−2 we obtain
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ϕk,∗(µ|γ){c2 − c2}(P ) =
∫︂
Zp×Z×

p

Pd(µ|γ){c2 − c1}

=

∫︂
Zp×Z×

p

Pd
(︁
µ{γc2 − γc1}

)︁
|γ

=

∫︂
γ(Zp×Z×

p )

P |γdµ{γc2 − γc1}

Note that γ(Zp × Z×
p ) = Zp × Z×

p if γ is upper triangular modulo p. Hence

(︁
ϕk(µ)|γ

)︁
{c2 − c1}(P ) =

∫︂
Zp×Z×

p

P |γdµ{γc2 − γc1}

The proposition follows from Γ0(N) ∩ Γ0(pZp) = Γ0(Np).

The space SymbΓ0(N)(D) is an infinite dimensional Λ-module. We restrict our attention

to the ordinary part we obtain the following exact sequence to get a finite dimensional

subspace.

Definition 4.3.4. Let eord = lim
n→∞

Un!
p be the Hida’s projector and Γ be a congruence

subgroup. The ordinary subspace of SymbΓ(X) is given by

Symb0
Γ(X) := eord SymbΓ(X)

Definition 4.3.5. Let κ ∈ X0 := Hom(Zp[[Z×
p ]],Qp), we say that a function φ : (Z2

p)
′ →

Qp is homogeneuous of degree κ if φ(tx) = κ(t)φ(x) for every t ∈ Z∗
p and every x ∈ (Z2

p)
′.

Let γ ∈ Z×
p be a topological generator of 1 + pZp and let [γ] ∈ Zp[[Z×

p ]] be the

corresponding element of the completed group ring. For each integer k ≥ 2, consider

πk := [γ] − γk−2 ∈ Zp[[Z×
p ]]. Every element in Zp[[Z×

p ]] can be viewed as a character on

Zp[[Z×
p ]] as obvious way [α] ↦→ αk−2.

Lemma 4.3.6. Let γ ∈ Z×
p be a topological generator of 1+pZp and let πk := [γ]−γk−2 ∈

Zp[[Z×
p ]]. Define

Pπk = {a ∈ Zp[[Z×
p ]]|πk · a = 0}

be the prime ideal associated to πk. A measure µ ∈ D lies in PπkD if and only if

∫︂
φdµ = 0

for every continuous function φ on (Z2
p)

′ which is homogeneous of degree πk.
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Proof. ⇒ Assume that µ ∈ PπkD, then µ =
∑︂
i∈I

aiµi with I is finite and ai ∈ Pπk , µi ∈ D.

Note that Zp[[Z×
p ]] acts as scalar on the integral, it follows that∫︂

φdµ =
∑︂
i

∫︂
φd (aiµi) =

∑︂
i

µi (πk · aiφi) = 0

for all continuous function φ which is homogeneous of degree πk.

Conversely, consider the multiplication by πk on the ring of continuous functions on

(Z2
p)

′ with values on Qp

C((Z2
p)

′)
·πk−→ C((Z2

p)
′).

We compute the kernel of this map. Let f ∈ C((Z2
p)

′) be a continuous on Z2
p, we have

πkf(x) = ([γ]− γk−2)f(x) = f(γx)− γk−2f(x)

It follows that f ∈ ker(πk) precisely when f(γx) = γk−2f(x). Hence for all n ∈ Z we have

f(γnx) = (γn)k−2f(x). As γ is the generator of 1 + pZp and f is continuous, we obtain

for every α ∈ 1 + pZp, we have

f(αx) = αk−2f(x)

By definition f is a homogeneous polynomial of degree πk. By definitions, the measure

D is a dual of C((Z2
p)

′,Qp), and PπkD is the dual of homogeneous space of D. Thus, if∫︂
φdµ = 0 for every continuous function φ on (Z2

p)
′ which is homogeneous of degree πk

then µ ∈ PπkD.

For each integer m > 0 let φ(m)
πk

be the continuous function on (Z2
p)

′ given by

φ(m)
πk

(a, b) =

⎧⎨⎩πk · a if b ≡ 0 mod pm

0 otherwise

Lemma 4.3.7. Let Φ ∈ W = SymbΓ0(N)(D) ⊂ Hom(D0,D) be a Λ-adic modular symbol.

Then the following are equivalent

1. Φ ∈ PπkW

2.

∫︂
φdΦ(D) = 0 for all D ∈ D0 and all continuous functions φ homogeneous of degree

πk.
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3.

∫︂
φ(m)
κ dΦ(D) = 0 for all D ∈ D0 and all m > 0

Proof. 1 ⇔ 2 Since Pπk is a principal ideal, we have PπkW = SymbΓ(PπkD). Hence, we

have that Φ ∈ PπkW if and only if Φ(D) ∈ PπkD for all D ∈ D0. So the equivalence

follows from the previous lemma.

2 ⇔ 3 The implication follows a priori. Now assume that 3 is true. Then for every

γ ∈ Γ0(N) ∫︂
γφ(m)

πk
dΦ(D) =

∫︂
φ(m)
πk
dΦ(γD) = 0

So 2 follows from the fact that every continuous function φ is homogeneous of degree πk

is the uniform limit of a sequence of linear combinations of the functions γφ(m)
πk

.

Proposition 4.3.8. The group W 0 = SymbΓ0(N)(D)0 of ordinary Λ-adic modular sym-

bols is a free Λ-module of finite rank. Then for Φ ∈ W 0, let Φπk := ϕ0
k,∗(Φ) ∈

SymbΓ0(Np)(Lk(Zp))
0. Then we have Φπk = 0 if and only if Φ ∈ PπkW 0.

Proof. We first prove that ker(ϕ0
k,∗) = PπkW

0. Recall that for Φ ∈ W the specialization

Φk is the element of SymbΓ(Lk(Zp)) whose value on a divisor D ∈ ∆0 is given by

Φk(D) =

∫︂
Z∗
p×Zp

(xY − yX)k−2dΦ(D)

Since the integral is homogeneous of degree πk, the inclusion PπkW ⊆ ker(ϕ0
k,∗) follows

from the implication (1)⇒ (2) of the previous lemma.

Conversely, suppose Φ ∈ W 0 and that Φπk . We will show that Φ ∈ PπkW 0 by using

3 ⇒ 1 from lemma . Fix m > 0 and D ∈ D0. Since Φ is ordinary, there is a Ψ ∈ W 0

such that Ψ|Tmp = Φ. The action of the operator Tp and its power Tmp on W can be

described precisely as follows. Consider the reduction map (Z2
p)

′ → P1(Z/pmZ). For each
x ∈ P1(Z/pmZ) the preimage of x in (Z2

p)
′ is a compact open set which we denote by

U(x, pm). Choose a matrix gx,pm with determinant pm for which U(x, pm) ⊆ ((Z2
p)

′)gx,pm .

If x = [1, a] with a ∈ Zp/pmZp = Z/pmZ, we can choose an element gx,pm =

(︄
1 a

0 pm

)︄
mod pm. The coset Γgx,pm is independent of the choice of gx,pm with this property. Then

we have the identity
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∫︂
φ(m)
πk
dΦ(D) =

∑︂
x∈P1(Z/pmZ)

∫︂
gx,pmφ

(m)
πk
dΨ(gx,pm ·D)

a sum of modular symbols which are supported on the disjoint compact open sets U(x, pm).

But gx,pmφ
(m)
πk

= 0 unless x = [1, 0]. Hence the above integral is equal to∫︂
g[1,0],pmφ

(m)
πk
dΨ(g[1,0],pm ·D) =

∫︂
Z∗
p×Zp

xk−2dΨ(g[1,0],pm ·D)

But this vanishes since it is the coefficient of Y r in ϕ0
k,∗(Φ)(g[1,0],pm · D). Therefore

ker(ϕ0
k,∗) = PπkW

0. It follows from this and the compact Nakayama’s lemma that W 0 is

a free Λ-module of finite rank.

The following theorem allow us to lift an ordinary symbol from SymbΓ0(Np)(Lk(Zp)) to
SymbΓ0(N)(D) via ϕk,∗.

Theorem 4.3.9. Fix a topological generator γ ∈ Z×
p and let [γ] ∈ Zp[[Z×

p ]] be the corre-

sponding element of the completed group ring. For each integer k ≥ 2, let πk := [γ]−γk−2 ∈
Zp[[Z×

p ]]. Then the sequence

0→ SymbΓ0(N)(D)0
πk→ SymbΓ0(N)(D)0

ϕ0k,∗→ SymbΓ0(Np)(Lk(Zp))
0 → 0

is an exact sequence of H-modules.

Proof. By the previous proposition we see that SymbΓ0(N)(D)0 is a torsion-free Λ-module,

so the multiplication by πk is injective. Furthermore, every polynomial is continuous,

we obtain the inclusion Lk(Zp) ⊂ D and taking duality we get the surjective map

SymbΓ0(N)(D)→ SymbΓ0(Np)(Lk(Zp)). Again, by the previous lemma we get

SymbΓ0(N)(D0/
(︂
πk · SymbΓ0(N)(D0

)︂
≃ SymbΓ0(Np)(Lk(Zp))

For each r ≥ 1, let Γr := Γ0(N) ∩ Γ1(p
r) (r ≥ 1). Also, we define

Dr := {µ :
(︁
(Z/prZ)2

)︁′ → Zp}

the module of Zp-valued functions on the set of primitive elements of
(︁
(Z/prZ)2

)︁′
equipped

with the natural action of Γ0(N).
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Lemma 4.3.10. The Zp[[Z×
p ]][Γ0(N)]-module D is isomorphic to the projective limit

lim←−
r

Dr.

Proof. Consider the map

Γr \ Γ0(N)→
(︁
(Z/prZ

)︁′(︄
a b

c d

)︄
↦→ (c, d) mod pr

is a bijective. Hence, it induces an isomorphism

Dr ≃ IndΓ0
Γr
(Zp)

It follows that we can define the projective system {Dr} by

Dr+1 −→ Dr

µr+1 ↦→ µr : x ↦→
∑︂

y≡x mod pr

µr+1(y)

Taking the projective limit we have D ≃ lim←−
r

Dr.

Proposition 4.3.11. Let H∗ denote either H1, H1
c , or H

1
par we have

H1
∗ (Γ0(N),D) ∼= lim←−

r

H1
∗ (Γr,Zp)

Proof. By Sharipo’s lemma we have H1
∗ (Γ0(N),Dr+1) ≃ H1

∗ (Γr+1,Zp). Hence, we get the

commutative diagram

H1
∗ (Γ0(N),Dr+1) H1

∗ (Γ0(N),Dr)

H1
∗ (Γr+1,Zp) H1

∗ (Γr,Zp)

∼

cores

Taking the projective limit and by the previous proposition we obtain the isomorphism

H1
∗ (Γ0(N),D) ∼= lim←−

r

H1
∗ (Γr,Zp)
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Theorem 4.3.12. There is an isomorphism of covariant Hecke modules

H1
par(Γr,Zp) ∼= Tap(Jr)

for each r ≥ 1. Hence we obtain an isomorphism of covariant Hecke modules

H1
par(Γ0(N),D) ∼= Tap(J∞)

Proof. For each r ≥ 1, there is an isomorphism of Hecke modules due to Shimura [Shi]

H1
par(Γr,Zp) ≃ Tap(Jr)

Recall that lim←−
r

Tap(Jr) ≃ Tap(J∞) by Hida’s theory, we obtain

H1
par(Γ0(N),D) = lim←−

r

H1
par(Γr,Zp) ≃ lim←−

r

Tap(Jr) ≃ Tap(J∞)

Theorem 4.3.13. Let E be a modular elliptic curve of tame conductor N with either good

ordinary or multiplicative reduction at the prime p ≥ 5. Assume that Hida’s deformation

ring RE satisfies RE = Λ. Let hE : H → Λ be the homomorphism given by Hida’s

theorem. Then for either choice of sign ±, the submodule SymbΓ0(N)(D)0,± on which H
acts via hE has rank one as a Λ-module.

Let ψE ∈ SymbΓ0(Np)(C) be the modular symbol associated to the p-stabilized newform

fE and fix a choice of period Ω±
E ∈ C× as in theorem [] so that the modular symbols

φ±
E :=

ψ±
E

Ω±
E

are defined over Zp, i.e. φ±
E ∈ SymbΓ0(Np)(Z

0,±
p . Then there is a Hecke

eigensymbol Φ±
E ∈ SymbΓ0(N)(D)0,± such that

1. ϕ2,∗Φ
±
E = φ±

E

2. the Hecke operators act on Φ±
E via hE.

Proof. Applying Hida’s theorem to the isomorphismH1
par(Γ0(N),D) ∼= Tap(J∞) we obtain

that for either choice of sign ±, the hE-eigensubmodule of H1
par(Γ0(N),D)0,± has rank one.

Since SymbΓ0(N)(D) ∼= H1
c (Γ0(N),D), we have a surjective map

SymbΓ0(N)(D)→ H1
par(Γ0(N),D)
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whose kernel is Eisenstein, hence the kernel has no nontrivial hE-eigenvectors. It follows

that the above map induces an injective homomorphism

SymbΓ0(N)(D)hE → H1
par(Γ0(N),D)hE

on the hE-eigensubmodules and moreover that the cokernel of this map is a torsion Λ-

module whose annihilator is not contained in the augmentation ideal.

4.4 Two Variable p-adic L-functions

4.4.1 p-adic L-functions

We revisit one variable p-adic L-functions. Now suppose that M = Np where p ̸| N ,

and let f ∈ Sk(Γ0(Np)) be a p-ordinary eigenform. For simplicity we assume that the

Fourier coefficients of f are rational integers, hence the eigenvalues of the operators Tp

are also integral. If ap ∈ Zp is the eigenvalue of Tp on f , the p-ordinary means ap is not

divisible by p. Now choose a real period Ω+
f so that the modular symbol φ+

f :=
1

Ω+
f

ψ+
f is

defined over Z.

Definition 4.4.1. Define a measure νf ∈ Meas(Z×
p ) by

νf (a+ pmZp) =
1

a−mp
φ+
f

(︃
{ a
pm
} − {i∞}

)︃
|X=0,Y=1

for each a ∈ Z prime to p, and each m > 0.

It follows from the fact that f is an eigenform for Tp with eigenvalue ap that this defines

a finitely additive function on the compact open subset of Z×
p . Since ap is a p-adic unit,

the values of νf are p-adic integer, hence νf ∈ Meas(Z×
p ).

Definition 4.4.2. The p-adic L-function associated to f and the fixed choice of a real

period Ω+
f is defined by

Lp(f, s) = Lp(νf , s) :=

∫︂
Z×
p

⟨t⟩s−1 dν(t), s ∈ Zp
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4.4.2 Constructing two-variables p-adic L-function

Let E be a elliptic curve defined over Q having conductor M and either good ordinary

or multiplicative reduction at p. Choose a real period ΩE for E so that the normalized

modular symbol

φE = Ω−1
E · ψE ∈ SymbΓ0(Np)(Zp)

0

takes p-integral values and let Lp(E, s) be the associated p-adic L-function defined as

in definition 4.4.2. Assume, for simplicity, that RE
∼= Λ and let hE : H → Λ be the

homomorphism of theorem 2.4.3.

Let fE be the p-stabilized ordinary newform associated to E and let N be the tame

conductor of fE. The relationship between M and N is given by

M =

⎧⎨⎩N if E has good reduction at p

Np if E has multiplicative reduction at p

The Atkin-Lehner operators WN ,WM act as involution on Sk(Γ0(Np)) and preserve

the eigenspace spanned by fE. Hence we have

fE|WN = ωNfE and fE|WM = ωMfE

where ωN = ±1 and ωM = ±1. We have the functional equation of E

Λ∞(E, 2− s) = −ωMΛ∞(E, s)

Λp(E, 2− s) = −ωNΛp(E, s)

Hence ϵ∞ = −ωM and ϵp = −ωN . The relationship between ϵ∞ and ϵp described in theo-

rem follows easily from this description of ϵ∞ and ϵp. Indeed, if E has good reduction at p,

then M = N , hence ωM = ωN . We know by Deligne-Rapoport that E has multiplicative

reduction at p if and only if ap = ±1 and in that case a standard result of Atkin and

Lehner tells us ωM = −apωN . Combining these two cases we see that ωM = −ωN if and

only if ap = 1, which is equivalent to saying that E has split multiplicative reduction at

p following Deligne-Rapoport.

Theorem 4.4.3. Let αp = hE(Tp) ∈ Λ and let αp(k), k ∈ Zp, be the Iwasawa function

associated to αp. Then there are functions Lp(k, s) with k, s ∈ Zp and L∗
p(k, 1), k ∈ Zp,

which are Iwasawa functions in each of the p-adic variables k and s, and which satisfy

the following properties
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1. Lp(2, s) = Lp(E, s) for all s ∈ Zp

2. Lp(k, s) = ϵp · ⟨N⟩
k

2
−s
· Lp(k, k − s)

3. Lp(k, 1) = (1− αp(k)−1)L∗
p(k, 1)

4. L∗
p(2, 1) =

(︃
1− β

p

)︃
L∞(E, 1)

ΩE

Proof. Let νE ∈ Meas(Z×
p ) be the p-adic measure associated to the pair (E,ΩE) as in

theorem 4.1.22. Let ΦE = Φ+
E ∈ SymbΓ0(N)(D)0,+ be a Λ-adic modular symbol satisfying

the conclusion of theorem 4.3.13.

Let µ = µE = ΦE({0}−{i∞}) ∈ D and let ν ∈Meas(Z×
p ) be the measure determined

by the integration formulas ∫︂
fdν =

∫︂
Z×
p ×Z×

p

f(y/x)dµ(x, y)

for f ∈ Cont(Z×
p ). Now we define the functions Lp(k, s) and L

∗
p(k, 1) by

Lp(k, s) = Lp(µ, k, s) =

and

L∗
p(k, 1) = L∗

p(µ, k, 1)

1. We claim that ν = νE. So fix a ∈ Z×
p and n > 0. We have

ν(a+ pnZp) = µE(U(a+ pnZp))

On the other hand, for each x ∈ P1(Qp), we choose a matrix β(x, pn) ≡

(︄
1 ∗
0 pn

)︄
mod pn one of whose rows is in U(x, pn) and whose determinant is pn. Now let

µx,pn = Φ|β(x, pn)
(︁
{0} − {i∞}

)︁
∈ D

It follows from the definitions that µx,pn is supported on U(x, pn). Hence we have

αnpµ =
∑︂

x∈P1(Z/pnZ)

µx,pn . Therefore, we obtain

anpν(a+ pnZp) = anp · µ(U(a+ pnZp))
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= (αnpµ)(U(a+ pnZp))

= µa,pn(U(a+ pnZp))

But µa,pn = Φ

(︄{︃
a

pn

}︃
− {i∞}

)︄
(U(Zp)) = φE

(︄{︃
a

pn

}︃
− {i∞}

)︄
. Thus

ν(a+ pnZp) = a−np ϖE

(︄{︃
a

pn

}︃
− {i∞}

)︄
= νE(a+ pnZp)

2. We first claim that µ

⃓⃓⃓⃓ (︄
0 −1
N 0

)︄
= ϵ

[︂
⟨N⟩1/2

]︂
µ. Indeed, since

Φ|W 2
N = Φ|[−N ] = [⟨N⟩]Φ

we have Φ|WN = ±wN [⟨N⟩1/2]Φ. Applying ϕ2,∗ and using the fact that φE|WN =

wNφE, we obtain

Φ|WN = wN [⟨N⟩1/2]Φ

Now evaluate both sides of this identity on the divisor {0} − {i∞} ∈ D0. Since

the action of WN on Φ is given by the action of

(︄
0 −1
N 0

)︄
, and since this matrix

interchange the cusps 0 and i∞, the identity µ

⃓⃓⃓⃓ (︄
0 −1
N 0

)︄
= ϵp[⟨N⟩1/2]µ follows

from the equality ϵp = −wN

3. Recall the identity

αnpµ =
∑︂

x∈P1(Z/pnZ)

µx,pn

Setting n = 1 gives us

αpµ =
∑︂

n∈P1(Z/pZ)

µx,p

A simple calculation shows that

αp(k) · Lp(k, s) =
p−1∑︂
a=1

∫︂
⟨x⟩k−2 ⟨︁y/x⟩︁s−1

dµα,p(x, y)



4.4. TWO VARIABLE P -ADIC L-FUNCTIONS 105

αp(k) · L∗
p(k, s0) =

p−1∑︂
a=0

∫︂
⟨x⟩k−2 ⟨︁y/x⟩︁s0−1

dµa,p(x, y)

Hence, αp(k) ·
(︂
L∗
p(k, 1)− Lp(k, 1)

)︂
=

∫︂
⟨x⟩k−2 dµ0,p(x, y). But µ0,p = µ

⃓⃓⃓⃓ (︄
1 0

0 p

)︄

and the function (x, y) ↦→ ⟨x⟩k−2 on U(Zp) is fixed by

(︄
1 0

0 p

)︄
. It follows that the

last integral is equal to

L∗
p(k, 1) =

∫︂
U(Zp)

⟨x⟩k−2 dµ(x, y)

Thus

αp(k) ·
(︂
L∗
p(k, 1)− Lp(k, 1)

)︂
= L∗

p(k, 1)

4. We have

L∗
p(2, 1) = µ(Z×

p × Zp) = ϕ2µ = φE({0} − {i∞}) =
L∞(fE, 1)

ΩE

Hence L∗
p(2, 1) =

L∞(fE, 1)

ΩE

and 4 follows from the equality

(1− βp−s) · L∞(E, s) = L∞(fE, s)
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Proof of Main Result

Theorem 5.0.1. Let E be an elliptic curve over Q with split multiplicative reduction at

the prime p ≥ 5. Let ΩE be the Neron period of E and let Lp(E, s) be the associated

p-adic L-function. Then

d

ds
Lp(E, s)|s=1= Lp(E) ·

L∞(E, 1)

ΩE

Proof. We will give the proof only under the simplifying assumption that RE = Λ. Let

ϵ∞ = ±1 denote the sign in the functional equation for L∞(E, z). Since E has split

multiplicative reduction at p, the p-adic L-function of E has the following functional

equation

Lp(E, 2− s) = ϵp ⟨N⟩s−1 Lp(E, s)

where ϵp = −ϵ∞, N is the conductor of E and ⟨N⟩ = Nω−1(N) where ω is the Teichmuller

character.

In case ϵp = 1, the p-adic L-function has an even order zero at s = 1 and the complex

L-function has an odd order zero at s = 1. Hence, in this case, the theorem is true, since

both sides of the desired equality vanish.

Now assume that ϵp = −1. Let Lp(k, s) be a two variable p-adic L-function satisfying

the properties

1. Lp(2, s) = Lp(E, s) for all s ∈ Zp

2. Lp(k, s) = ϵp · ⟨N⟩
k

2
−s
· Lp(k, k − s)
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3. Lp(k, 1) = (1− αp(k)−1)L∗
p(k, 1)

4. L∗
p(2, 1) =

(︃
1− β

p

)︃
L∞(E, 1)

ΩE

From the functional equation (2) it follows that Lp(k, k/2) = 0 identically for k ∈ Zp. In
particular, the linear terms in the Taylor expansion of Lp(k, s) around the point (k, s) =

(2, 1) must vanish along the line s = k/2. Hence, there is a constant c ∈ Zp, such that

Lp(k, s) ∼ c ·
(︃
(s− 1)− 1

2
(k − 2)

)︃
where f(k, s) ∼ g(k, s) means that the Taylor expansions of f and g at (k, s) = (2, 1)

agree modulo terms of order ≥ 2. The theorem will follow by computing c in two ways.

Setting k = 2 and applying the equality (1) we obtain Lp(E, s) ∼ c(s− 1), hence

c =
d

ds
Lp(E, s)|s=1

On the other hand, setting s = 1 and using (3) we obtain

(1− αp(k)−1)L∗
p(k, 1) ∼ −

1

2
c(k − 2)

Differentiating this with respect to k at k = 2 and note that αp(2) = 1, we obtain

−1

2
c = α′

p(s)L
∗
p(2, 1)

We also have α′
p(2) = −

1

2
Lp(E), and by (4) we have

L∗
p(2, 1) =

L∞(E, 1)

ΩE

Hence

−1

2
c = −1

2
Lp(E) ·

L∞(E, 1)

ΩE
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