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Preface

This thesis is intended to explain the result proved by Greenberg and Stevens on the
Mazur-Tate-Teitelbaum conjecture. Specially, the objective of the thesis is to develop
all the necessary theory in order to understand Greenberg and Stevens’ paper [GS94] in
detail.

Let E be an elliptic curve over Q. One of the most important problems in modern
number theory is Birch-Swinnerton-Dyer’s conjecture which says that the order of vanish-
ing of L-funtion attached to E at 1 is the rank of E(Q). In 1986, Mazur-Tate-Teitelbaum
IMTT] proposed p-adic analogues of this conjecture. On their work, the case of an ellip-
tic curve with split multiplicative reduction at the prime p is of special interest. In the
so called “exceptional zero” case, the order of vanishing of the p-adic L-function at the
central point seems to be one higher than it is in the classical case. When E has split
mutiplicative reduction at p, Tate proved that F(Q,) = Q,/ <qZ> where ¢ € Q' is the
Tate p-adic period attached to E. Mazur, Tate and Teitelbaum define the L-invariant
L,(E) by

£,(E) = log,(q)
ord,(q)
Here log, : Q) — Z, is the p-adic logarithm on Z; extended to @, by the relation
log,(p) = 0 and ord, : Q; — Z is the normalized valuation. They studied numerically
the relationship between the special value of the first derivative of the p-adic L-function
attached to F and the special value of the classical one. The ratio should conjecturally
relate to the L-invariant £,(E) of E.

This thesis can be divided in five chapters

Chapter 1: We review the construction of p-adic L-function attached to an elliptic curve

in Mazur-Tate-Teitelbaum’s paper [MTT] and state the main result.



Chapter 2: We introduce Hida theory which is the crucial technique in the proof of

Greenberg and Stevens.

Chapter 3: We reinterpret the L-invariant as the derivative of the p-th coefficient of

Hida’s cusp form.

Chapter 4: We introduce measure-valued modular symbols and use them to construct

two-variable p-adic L-functions.

Chapter 5: We prove the main theorem by combining computations on the previous

chapters.

Each chapter contains a little summary and some references at the beginning.



Notation and Terminology

Qp: the p-adic completion of Q.

Z,: the p-adic integers in Q,

GLs: invertible matrices.

SL,: matrices with a determinant 1.

M (') (resp. Sk(I')): modular forms (resp. cusp forms) of weight k on I'.
T,,: the Hecke operator.

‘H: the Hecke algebra.

Ta,: the p-adic Tate module.

m?: the action of o on m.
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CHAPTER 1

Introduction

The classical L-function of a cusp form f is an analytic function which encodes the
Fourier coefficients of f. In this chapter, I will mainly follow the paper of Mazur-Tate-
Teitelbaum [MTT] to present the modular symbol method which can be used to effectively
express the values of the L-function. These symbols are basically line integrals in the
upper half plane satisfying certain arithmetic properties. This chapter will also provide
the construction of the Mazur-Swinnerton-Dyer p-adic L-function of a cusp form using a p-
adic measure. The special values of L-functions twisted by a character can be interpolated
p-adically by the p-adic analog L-function. A mystery factor so called p-adic multiplier
enters into the formula being the discrepancy between the p-adic and classical special
values. Hence, when the p-adic multiplier vanishes, the p-adic L-function is also equal
to zero. In which case, Mazur-Tate-Teitelbaum conjecturally suggested the relationship
between the special value of the first derivative of the p-adic L-function and the special

value of the classical L-function.

1.1 [L-functions

In this section, I will outline the construction of L-functions of modular forms and

elliptic curves and their relation in the sense of Modularity theorem.

1.1.1 L-functions of Modular Forms

Firstly, we recall the Melin transform in complex analysis.
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Proposition 1.1.1. Let g : (0,00) — C be a continuous function such that for some real

numbers a < b we have

lg(t)|<t™ ast — o0
and

lgit)|<t™" ast — oo

Then the integral
o dt
Mys) = [ gt
0

converges absolutely and uniformly on compact subsets of the strip {s € Cla < Re(s) < b}

Proposition 1.1.2. Let I' be a congruence subgroup of SLa(Z), and f € Sp(I') a cusp
form of weight k with q-expansion at the cusp oo given by

f(z) = Zan(f)q”

Then there exists a constant C € R<qg such that for alln € Z~

lan(f)|< Cn*/?

Suppose that f € Sp(I'o(IV)) has the g-expansion
f(Z) _ Zanqn7 a = 2z
n>1

The L-function associated to f is given by
G

L(f,s) = -

n>1

k
for s € C with Re(s) > §+1

Theorem 1.1.3. Let f € Si(T'o(N)). The L-function associated to f has the following

integral representation
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k
which converges uniformly to a holomorphic function on Re(s) > 5 + 1. Moreover, it

extends analytically to a holomorphic function on C, and the normalised L-function

_ S2F(S)
A(.fa'S) - N/ (27)3L<f’s)

satisfies the functional equation

A<f73>:j:A(fak_S)

For the newforms we also get an Euler product

Theorem 1.1.4. Let f € Sp*“(I'g(N)). The L-function attached to f has the Euler
product

L) =1 !

» 1— app—s + 1Npl<:—1p—2s

where 1y is the trivial Dirichlet character of conductor N.

1.1.2 [L-function of Elliptic Curves

Let K be a number field and let E be an elliptic curve over K. The points of £ over
K have an abelian group structure denoted by F(K).

Theorem 1.1.5. (Mordell-Weil) The group E(K) is finitely generated.

The Mordell-Weil theorem gives us the decomposition
E(K)~FE(K)jpys ®Z"

where the torsion subgroup E(K),s is finite and the rank r of F(K) is a nonnegative

integer.

The L-function of an elliptic curve is a generating function that records information
about the reduction of the curve modulo every prime. Consider the Weierstrass equation

of an elliptic curve E over QQ

E: y2+a1xy+a3y = x3+a2x2 + asx + ag, ai,..,ag € Q
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Two integral Weierstrass equations are equivalent if they are related by a general admis-
sible change of variable over Q:

r =ulx +r, =udy +suPd’ +t, u,rs,teQ, u#0
After an admissible change of variable of the form (x,y) = (u?2’,u*y’) we can assume
that the coefficients a;’s are integers. Moreover, if the field characteristic is neither 2 or

3, then its equation can be written as
2 _ .3
y =a2"+AX + B.

In which case, the discriminant is given by A = —16(4A4% + 27B%). For each prime p,
let v,(E) denote the smallest power of p appearing in the discriminant of any integral

Weierstrass equation equivalent to E. That is
vp(E) = min{uv,(A(E")) : E' integral, equivalent to E'}
Define the global mininal discriminant of E to be

Amin(l;) = H pvp(E)
p

This is a finite product since v,(E) = 0 for all p { A(E). One can show that the p-adic
valuation of the discriminant can be minimized to v,(E) simultaneously for all p under
an admissible change of variable. That is, F is isomorphic over Q to an integral model
E" with discriminant A(E") = Apin(F). This is the global minimal Weierstrass equation

E’, the model of E to reduce modulo primes.

One can reduce a global minimal Weierstrass equation E to a Weierstrass equation F
over Z/pZ = F, and this defines an elliptic curve over F, if and only if p { Ayin(£). The

reduction is called

1. good, if E is again an elliptic curve

(a) ordinary, if E[p] = Z/pZ
(b) supersingular, if E[p] = {0}

2. bad if F is not an elliptic curve, in which case it has only one singular point,

(a) multiplicative, if £ has a node

(b) additive, if £ has a cusp
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Define the algebraic conductor of F by Ng = H p» where

p
0 If E has good reduction at p
£ 1 If E has multiplicative reduction at p
’ 2 If E has additive reduction at p and p ¢ {2, 3}
2+, If E has additive reduction at p and p € {2,3}

here d;, < 6 and § < 3. There is also a closed-form formula for f,.

Theorem 1.1.6. Let E be an elliptic curve over Q with conductor Ng. Assume E is in

reduced form. Let p be a prime and let E be the reduction of E modulo p. Then define

a(E) =1
ap(E)=p+1- #E(Fp)

Then there is a newform f € So(To(Ng)) such that for primes p we have
ap(f) = ap(E)
Moreover, the coefficients ay(E) satisfy the same recurrence as the coefficients
ape(f),i.e.,
4y (E) = ay(B)aye 1 (E) = plny (p)aye—=(E) Ve > 2
where 1y, is the trivial character modulo the algebraic conductor Ng of E.

Theorem 1.1.7. (Hasse’s theorem) Let E/F, be an elliptic curve defined over a finite
field. Then

’ap|: !#E(Fp) —p—1I< 2\/}_9

We can reinterpret the Modularity theorem in term of L-functions

Definition 1.1.8. The Hasse-Weil L-function of E is defined by

L(E,s) = i wlB) e

where 1y, is the trivial character modulo the algebraic conductor Ny of E.
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This L-function encodes the solution-counts a,(E).

Theorem 1.1.9. Let E be an elliptic curve over Q with conductor Ng. Then there is a
newform f € S5 (Uo(Ng)) such that for primes p we have

L(f,5) = L(E,s)

Define the normalised L-function

_ s/2 F(S)
A(E,s) = N*/ wL(E, 5)

satisfies the functional equation
A(Ev S) = j:A(f72 - S)

Using the Hasse bound, one can get the functional half-plane convergence of L(E, s) for
Re(s) > 2 and the functional equation that determines L(F,s) for Re(s) < 0. Theorem
[1.1.9]implies that L(E, s) is analytic on all C.

Birch and Swinnerton-Dyer Conjecture: Let E be an elliptic curve defined over
Q. Then the order of vanishing of L(E, s) at s = 1 is the rank of F(Q). That is, if £(Q)

has rank r then

L(E,s) = (s—1)"g(s), g(1)# 0,00

1.2 Modular Integrals

Recall that A € GLy(R) acts on C U oo by the formula

az+0b a
Az) = o d and A(oco) = -

Fix an integer k > 2. Let Sk(I'g(N), x) denote the space of cusp forms of weight k with
Dirichlet character x on I'o(/N). Let

Sk = Se(To(N), x)

denote the space of all cusp forms of weight & which are on I'y(N) for some N. Define
actions of GLy(Q)" on Sy by the formula

det AK/2

(f1A) (2) == CEr f(A(2))
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Let Pr(R) denote the space of polynomials of the degree < k — 2 with coefficient in a
commutative ring R. Define actions of GLy(Q)" on P,(C) by the formula

ot A1-K/2
(PlA) (2) = é;fw P (A(2))

Definition 1.2.1. Let P'(Q) = QU {oo}. Define a map
®: S x Pp(C) x PH(Q) = C

by the formula

o(f, Pr) = QWi/rf(z).p(Z)dz _ 27T/0 flr+it)- P(r+it)dt ifreQ
0

© if r =00

Proposition 1.2.2. The map ® has the following properties

1. For any r € P1(Q), the map ®(f, P,r) is C-bilinear in f and P
2. For any matriz A € GLy(Q)" we have
q)<f|A7 P|A7 T) = (‘I)(f, P, A(T)) - q)(f7 P, A(OO))

It follows that ®(f, P,00) = 0.

Proof. The first property follows from the linearity of the integral. For the latter one, by

definition, note that
(flA)(2) - (P|A)(2)dz = f(A(2)) - P(A(z))d(A(2))

Hence we obtain
A(r)

o(f|A, P|A, 1) = 2m'/ F(2) - P(z)dz
A(o0)
= 2ri / o F(2) - P(2)dz — 2mi / e F(2)P(z)dz
= cb(f,I:A(r)) — &(f, P, A(c0)) )
Applying to A = identity yvields ¢(f, P, 00) = 0. O
Definition 1.2.3. For a,m € Q, m > 0, f € Sx(T'1(N)) and P € P,(C) we define

M f, Pya,m) := ®(f, P(mz + a), —%)
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Remark 1.2.4. By the definition of the action of GLy(R) on Py, we consider the matrix

1 —
A= """ and get P(mz + a) = m*?7'p %) Note that Al = ¢ :
0 1 0 1 0 m

using proposition [1.2.2/2 we obtain the following equivalent formula

A(f, P.a,m) = ®(f, P(mz +a), —)

—m*=1p [ £ opl (™ ) L
0 1 m

— mk/2-1g f‘ (1 —a) PO
0 m

Proposition 1.2.5. The map \(f, P,a,m) is C-bilinear in (f, P). For fized f and P,

this map depends only upon a modulo m.
Proof. The C-bilinearity of A follows from C-bilinearity of ®. Note that
11
A= (0 1) el(N) and fl[A=f
It follows that

Mf, Poa,m) =m*™2-1o(f

o
|
S
~
e
=2

— m D=1 (f

[ -
—_ =
~__—
~—
(e -
|

3 2
~
o
=

0 m

= Af,P,a+m,m)
Il

We can express the special values of the L-function of f in terms of the modular symbol
for f. Recall that

Lf0) = ™ = 05 [ st

n>1
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Proposition 1.2.6. We have

A(f, 2", 0,1) = —2mi /Om F(2)2"dz = i"(znTyLL(f,n +1)

for0<n<k-—2.

We can twist a cusp form by a Dirichlet character y. Assume that f(z) = Z anq"
n>1

with ¢ = €*™, then we define the twisting of f by y by the formula

fuz) =) x(n)ang"

n>1

Suppose that x is a Dirichlet character mod m. The Gauss sums are defined by

T(n,x) = Z x(a) - e2mina/m

a mod m

7(x) == 7(1, x)
Proposition 1.2.7. We have
7(n,x) =X(n) - 7(x)
for all n € Z, if x is primitive mod m, and for (n,m) = 1, if x is any character mod m.

Conversely, if T(n,x) = xX(n) - 7(x) for all n € Z then x is primitive mod m, and in

that case

We can decompose the twisting of f by x in terms of f with change of variable by the

following lemma.

Proposition 1.2.8. (Birch’s lemma) If x is primitive mod m, then

R =5 ¥ xa-f (=4 2)

T(X) a modm

7(n, X)

7(x)
- __Efa n o _ T(n7¢)a n
fr= xmag" = )

n>1 n>1

Proof. Note that 7(x) # 0 and X(n) = we get
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2mina/m 2minz
YP(a)e ane

m

I
M
M

3
V
~
)
g

Q.

(o]

_ 7_(1 ) Z 1/}(@) Z an627rm(z+a/m)

a mod m n>1

-~ X xas (e )

This gives us the twisting rule for modular integral. If x is primitive mod m we get

1 1 a/m
) > Xla)-@ f‘(l ) >,P,r

a mod m

O(fy, Por) =
1 | U\ L
_T(X)a %mx(a) o f,P‘ (1 . ),7”~|—m

Corollary 1.2.9. Suppose x is a primitive Dirichlet character mod m. For the modular

symbol X we have

A (fy, P(mz),b, n) = 7'(1)() Z x(a)A(f, P,mb— na, mn)

a mod m
In particular, putting b =0, n =1 we obtain, for 0 <n <k — 2

1 (—2mi)"
L(fen+1) = nl mntl

T(X) - Z X(@)A(f, 2", a,m)

a mod m

1.3 p-adic Distribution

Definition 1.3.1. Let X be any open compact subset of Q,, a p-adic distribution p on
X is defined to be an additive map from the collection of open compact subsets in X to
Q,. That is

pl O | =D wtn)
k=1 k=1

where n > 1 and {Uy,...,U,} is any finite collection of pairwise disjoint compact open
subsets of X.
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Recall that @, has a topological basis of the form D(a,n) = a + p"Z,, where a € Q,
and n € N. It is remarkable since D(a,n) are open compact sets. Any open compact

subset U of Q, hence can be written as a finite disjoint union of this kind of sets

k

j=1
for some N € N and ay,..,ar € Q,. In particular, every p-adic ball a + p"Z, can be
represented as

p—1

a+p"Z, = U (a+bp" +p""'Z)y)

b=0
This is a disjoint union since these smaller balls intersect if and only if one is contained
in the other.

Now we can interpret the additivity condition into a more precise way called distribu-

tion property.

Proposition 1.3.2. Let X be any open compact subset of Q,. Every map p on open
compact sets of the form a + p"Z, extends to a p-adic distribution if and only if

p—1

pla+p"Zy) =Y pla+bp" +p'Z,)
b=0

More generally, we can consider the "twisting” p-adic space associated to a character
x of conductor M. Precisely, let M > 0 be a fixed integer and prime to p. Set
X = Zya = lm(Z/p" MZ) = Z, x (Z/MZ)

v

X* =17\ = im(Z/p"MZ)* = Zj x (Z/MZ)"

In the same fashion, let denote
D(a,n) :=a+p"MZ, u

with (a,pM) = 1 and n € N. We can view Z; ,, as a p-adic analytic Lie group with a
fundamental system of neighborhoods of the form D(a,n). A function g on open compact
sets of the form a + p"MZ, extends to a p-adic distribution if and only if the additivity
is verified for the disjoint unions a + p"MZ, = Ub + p" M Z,, with the union taken over
the p values of b, 0 < b < p" "' M, for which b = a mod p" M.
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We are now ready to define a distribution attached to a cusp form. Suppose that
f € Sp(To(N), €) is an eigenform for T}, with eigenvalue a,. Suppose that the characteristic

polynomial of Frobenius of f
X% — a, X + e(p)p*!
has a non-zero root. Choose such a root a # 0.
Definition 1.3.3. Let v(m) = ord,(m) be the order of m, we define

e(p)p*?

1
Mf,oz(P7 a, m) = ka,P<aa m) - qu(m)+1 )\f,P<a7 m/p)

for a,m € Z, m > 0.

It is natural to investigate the action of Hecke operators on modular symbols. Recall

that
I 1 u p 0
fIT, = p"* Zf‘ (O p>+6(p)-f‘ (O 1)

Proposition 1.3.4. For f € Si(I'g(N),€) and for any prime number p we have the

formula

3
L

ATy, Pra,m) = Y A(f, Pya—um,im) + x(p)p"~ - A(f, P, a,m/p)

e
I
o

Proof. By definition we have

p—1
1
AN fI|T,, P,a,m) = p**! Z)\ f‘ (0 Z),P,a,m +e(p) - A f' (I(; (1)>,P,a,m
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m

+ (pm)**e(p)® f' (g _ap) ,P,0

p—1
1 _

= "0 (f, Pa— um,pm) + (pm)* () f‘ p 0 ") po

u=0 0 P 0 m/p

G 0 m
:Z(I)(f,P,a—um,pm)+pk/2_le(p)<1> f‘ b ,Pa, —

u=0 O p p

p—1

= )\(f,P,a—um,lm)jLe(p)pk*l'A(f,Pﬂ?m/P)

Applying this formula we have the distribution property for jiy .

Proposition 1.3.5. For a,m € Z, m > 0 we have

Z f‘f@(Pa b,pm) = :ufﬂ(P’a?m)

b=a mod m
b mod pm

Proof. By definition we have

Zuﬁa(P, b,pm) = Z pra(P,a—um,pm)

u  mod p
L e(p)p*’
= Z av(pm))\f,p(a—um,pm) - W)\f,p(a—um,m)
u mod p

Since Ay p(a,m) depends only upon a mod m, we have A;p(a —um,m) = Ay p(a,m).

Moreover, by Vieta theorem we get a8 = e(p)p*~'. Hence

e(p)p** 3
> pmrree(a — um,m) = —es g p(a,m)

u  mod p
Using the action formula of the Hecke operator we have

Z Ar.p(a—um,pm) = N(f|T,, P,a,m) — e(p)p* ' A(f, P,a, m/p)

u  mod p

= ap)\(f, P, a, m) - €(p>pk72/\<f7 P7 a, m/p)
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Not that a, — 8 = a, we obtain

1

ay e(p)p*~
> tralPbpm) = tmr Mp(am) = =S Arp(a,m/p) = — s Arp(a,m)
1 e(p)p"?
= s Arplam) = —rhArp(a,m/p)
= ,uf,Oé(P7avm>

For x € Zy, v, we denote by ), the projection of z in Z,.

Definition 1.3.6. Let U C Z,  be an open subset, a function F' : U — C, is called
locally analytic if there is a covering of U by disks D(a,v) such that on each D(a,v), F'

is given by the convergent power series

Assume that v(a) < k—1, Vishik [Vi76] and Amice-Velu [AV75] defined an integration
(U, F) s / Fdpsa €C,
U

for a compact open subset U of Z ), and a locally analytic function F' on U.

Theorem 1.3.7. Fiz an integer h such that 1 < h < k — 1. Suppose the polynomial
X% — a,X + €(p)p"" has a root a € C, such that ord,a < h. Fiz such an o. Then
there exists a unique Cp-valued integral satisfying these azioms, in which v > 1, a € Z

throughout

1. It is Cy-linear in F' and finitely additive in U.

2. For0<j<h
/ xidlufva = :uf,a(zja aava)
D(a,v)

3. For anyn >0
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4. If F(z) = Z cn(z — a)y is convergent on the disk D(a,v), then

n>0

Proof. Refer [MTT] O

Definition 1.3.8. If a is a root of X? —a,X -+ ¢(p)p*~* such that ord, a < k — 1, we call

a an allowable p-root for f.

1.4 Omne Variable p-adic L-function

Definition 1.4.1. A p-adic character is a continuous homomorphism
X2y — C

for some p prime and M € Z~, (p, M) = 1.

If My[M, then Z7,, is a quotient of Z,,, and we can deduce characters of Z,, with
certain characters of Z,,. We say that a character x as above is primitive on Z,, if it

does not factor through Z7,, for any proper divisor M; of M.

For each p-adic character x there is a unique M such that x is primitive on Z; v We

call this M the p’-conductor of y; it is an integer > 1, prime to p.
If p > 2, we have Z; = p, 1 x (1 + pZ,). Hence, every = € Z, we can write, uniquely,
r=w(x)(z)

with w(x) € p,—1 and (z) € 14+pZ,. We have x — w(z) and z — () are p-adic characters

of p’-conductor 1.

Definition 1.4.2. Let f € Si(I'o(IN), €) is an eigenform for 7}, with eigenvalue a,. Suppose
that the characteristic polynomial of the Frobenius of f

X% —a, X + e(p)p*!
has a non-zero root. Suppose that « is an allowable p-root for f. For each p-adic character
x we define
LP(f? «, X) - / Xduf,a

.
Zym
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where M is the p-conductor of y, and where the integral is that defined in the theorem
of Vishik.

Definition 1.4.3. For s € Z,,, define

‘s

(log ()"

VA

xs(x) := (x)° = exp(slogz) = Z

r=0

3

The p-adic L-function associated to a given by

%@%ﬂzé&WIWm

*
P

The p-adic L-function associated to a twisted by 1 is defined to be
Lp(f7 Q, q/}XS—l) = / @ZJ(ZL') . <l'>871 d,Uf’oé
Z;,]W

Definition 1.4.4. Let v be a p-adic character of conductor m = p"M. We define the

p-adic multiplier
() = — (1 - —Wp)e(p)p“) <1 _ M)

a?)
here 1 is the conjugate character to .

Theorem 1.4.5. Let ¢ be a p-adic character of conductor m = p’ M, then

Ly(f, ) = ey, ) - % CL(f3,1)

where f5(z) = Zw(n)ane%im a twisting of f by ¥ and T(¢) = Z Y(a) - ™™ the

n>1 a mod m
Gauss sum associated to 1.

In particular, for the trivial character ¢ = 1, we obtain

%mmn=<vf@ﬁ3>ﬁ—1)Lwn

0% (6]

Proof. Case 1: v >0

1
It follows that p|m, so ¢(p) = 0 and e,(c,¥) = —. By the property of the integral we
av
have

L) = |

Zym

def
Xdpiga = / (@) dpisa
Zp, M
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= Z v(a) - pya(l,a,p’M)

a mod p*M

e(p)p*?

= ) %) %)\(f,l,a,p”M)—W)\(f,l,a,p”_l)

a mod p*M

By the distribution property we have

S A Lapr )= S ST (@) | AL M)

a mod p*M b mod p*~IM | a=b mod p?~'M
a mod p*M

We have the following well-known lemma
Lemma 1.4.6. Let v be a character of conductor m. For n|m we have

> Wa)=0

a mod m
a=b modn

for every b modulo n.

Hence Z ¥(a) =0 and we get

a=b mod p*~ 1M
a mod p*M

Lifew)= o D v@MLLapM) = S LD

a mod p*M

Case 2: v=0
If (a, M) =1, set D(a,0) =Z, ,, N (a + MZjy ). Then we have
D(0)= || D@1

b=a mod M
b#0 mod p
b mod pM

Note that if b = a mod M and b = 0 mod p, then b = pap’ mod pM with pp’ = 1

mod M. Hence we get

/ L D =g =Y g1, M)
D(a,0

b=a mod M
b#0 mod p
b mod pM
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= Y YO)upa(l,bpm)| — b(pap)psa(l, pap’, pm)

b=a mod m
b mod pm

Note that 1(b) = ¥ (a) = 1)(pap’) and by the distribution property we obtain

/D( ) Ydpya = V(@) pya(l, a,m) —(a) e (1, pap’, pm)

k—2

= r‘/}(OJ) ()‘f,l(a7 M) - %)\ﬂl(a’ M/p)

e(p)ph2
Oé2

1
——Aza(pap’,pM) + Ara(pap’, M>>

k—2

— () (Am(a, M)~ P25 )

1 € k—2
—a)\f,l(ap/, M)+ %)\ﬁl(a, M))

Summing up a modulo m we get

Ly(f,00 1) = Z/ Yz

Theorem 1.4.7. Let E be an elliptic curve over Q and let f € S5 (T'o(N)) be a newform
attached to E. Then the p-adic multiplier ey(c, ) of f wvanishes if and only if E has

multiplicative reduction at p, and ¥ (p) = a,
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Proof. Since k = 2, the p-adic multiplier has the form

ep(, X) = ai (1 - W) <1 B @)

Let a and 8 be the roots of Frobenius associated to f
X% —a,X + ¢e(p)p

Then a + 8 = a, and aff = €(p)p. By the definition of e,(a, ), it is vanishes if and only
if a =1 (p) or @ = YP(p)e(p).In cases, we have

Y(p) +Y(pe(p)p if a = Y(p)
V(pelp) + ¥ (p)p  if a = p(p)e(p)

Since a # 0, we see that ¥(p) # 0 and |¢(p)|= 1. If €(p) # 0, it follows that |a,|> p —1
by triangle inequality. On the other hand, by Hasse’s theorem we obtain

p—1< |ap|§ 2y/p

which contradicts the assumption p > 5. Hence e(p) = 0, so a, = ¥(p) or a, = ¢ (p)p.

ap:a+/8:

Again, by Hasse’s theorem, we excludes the latter case. Thus a, = ¢(p) = £1, since ¥ (p)
is a root of unity, and a, is an integer. It follows from a, = £1 that E has multiplicative

reduction modulo p. O

1.5 The Main Theorem

1.5.1 Tate’s p-adic Uniformization

Recall that every elliptic curve E over C has the form
E(C) =C*/q"

with |g|< 1. We also get the analogue result for elliptic curves over p-adic fields due to
J. Tate.

Theorem 1.5.1. (Tate curve) Let K be a p-adic field,i.e., a finite extension K/Q, with
absolute value |-|, let ¢ € K* satisfy |q|< 1, and let

5s3(q) + 7s5(q)
12

(@)=Y L i(q) = ~5s5(a), asla) =

n>11_q
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1. The series as(q) and ag(q) converge in K. Define the Tate curve E, by the equation

E,: v+ ay =25 + as(q)x + ag(q)

2. The Tate curve is an elliptic curve defined over K with discriminant

A=q]J—q")4

n>1

and j-invariant

1
j(Eq):5+744+196884q+---=—+z n)g" € - +Z[[]]
n>0

where c(n)’s are the integers.

3. The series

neEL q”u)
V) = 3 g s 90

converge for allu € K, u & ¢*. They define a surjective homomorphism

o: K — E,(K)
(X(u,q),Y(u,q) ifudq”,
u
@) ifu € ¢”

The kernel of ¢ is ¢~.

4. The map ¢ in (c) is compatible with the action of the Galois group GR/K in the sense
that

Hu) = 0(u)” Vu € K',0 € Gy
In particular, for any algebraic extension L/K, ¢ induces an isomorphism

¢:L*)¢" = E,(L)

Proof. Refer [Sil94], chapter V, theorem 3.1. ]
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Before giving the p-adic uniformization theorem, we describe an invariant v of elliptic

curves.

Lemma 1.5.2. Let E/K be an elliptic curve defined over a field of characteristic not

equal to 2 or 3, and choose a Weierstrass equation
y2 + axy + azy = 3+ a2x2 + a4 + ag

for E/K. Let cy and cg be the usual quantities associated to this equation. Assume that
J(E) #0,1728, we define

NE/K) = —cyfeg € K*/(K*)*

Then v(E/K) is well-defined as an element of K*/(K*)?, independent of the choice of
Weierstrass equation for EJK.

Let E'/K be another elliptic curve with j(E') = j(E) # 0,1728. Then E and E' are

1somorphic over K if and only if

J(E)=j(E") and v(E/K) =~v(E'/K)

Proof. Refer [Sil94], chapter V| lemma 5.2. O

Theorem 1.5.3. (Tate period) Let K be a p-adic field, let E/K be an elliptic curve with
1

l7(E)|= '—' > 1, and let v(E/K) € K*/K** be the invariant defined by lemmall.5.2
q

a There is a unique q € K" with lg|< 1 such that E is isomorphic over K to the Tate

curve E. Further, this value of q lies in K.
b Let q be chosen as in (a). Then the following three conditions are equivalent

(a) E is isomorphic to E, over K.

(b) V(E/K) =1
(c) E has split multiplicative reduction.

Proof. Refer [Sil94], chapter V theorem 5.3. O

Suppose that £/Q, has the split reduction at p, then we have the isomorphism

E@Q)~Q, /d5
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1.5.2 The Mazur-Tate-Teitelbaum Conjecture

Recall the g-expansion of the elliptic modular function j given by
j=q '+ 744 + 196884q + 21493760¢* + --- = ¢ ' + Z Anqg™.
n=0
Inverting the formula we obtain

g=q(j) =Y _ Buj ™"
n=1

Let K be a finite extension of Q,, and let £/K with non-integral j-invariant j(E).
Evaluating ¢(F) = q(j(F)), the multiplicative period of E, we obtain

u(a(E)) = —up(5(E)) > 0
Definition 1.5.4. Let A : K* — @, be a continuous homomorphism. We set

(B
OB = @®)

Definition 1.5.5. Define the p-adic logarithm by the power series

log, (1 +x) = Z(—l)”“%ﬂ

n>1

€ Q,

This series is converges on the set 1 + pZ, = {z € Q,|lx — 1], < 1}. Recall that
Ly ~ pp—1 X (14 pZy,), let log,(§) = 0 for all § € p,1.

One can extend its domain to Q, by defining log,(p) = 0. That is, for any » € Q,,

then x can be uniquely written as the form r = up" with u € Z,, then log(z) := log(u)

We denote by Nk g, the norm map. If A is the composition
N lo
< 8o 2 q,
then we call £,(F) the L-invariant of £ and denote it by £,(E).

The L-invariant £,(F) is an isogeny-invariant of F, and is linear in \. We have the

following conjecture.
Conjecture: If j(E) is algebraic, the £,(E) does not vanish.

The main result of my thesis is the following due to Greenberg and Stevens (refer
[GS94], [GS93]).
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Theorem 1.5.6. Let E be an elliptic curve over Q with split multiplicative reduction at
the prime p > 5. Let Loo(E, z) be the Hasse-Weil L-function of E/Q, and let L,(E,s) be
the associated p-adic L-fucntion. Then

d Loo(E,1)

ELP(EVS) = Lp(E) -

s=1

Here Qg is the Neron period of E.
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Hida’s Theory

The main technique in the proof of Greenberg and Stevens (refer [GS94], [GS93]) is
the theory of Hida which investigates the ordinary part of spaces of modular forms. I will
also provide the basics of A-adic forms which can be seen as families of p-adic modular

forms and their Galois representations.

2.1 Iwasawa’s Algebra

This section provides basic background on Iwasawa’s algebra which is often used

throughout my thesis. The main reference for this topic is the notes of Yi Ouyang [Ou].

Definition 2.1.1. (Completed group ring) Let G be a profinite group. The completed

group ring of G over Z, is
Zp[|G]] := Jim[G/N]
N

where N runs over all finte-index subgroups of G and Z,[G/N] is the usual group ring of
G/N over Z,.

The group ring Z,[[G]] is a topological ring and every continuous group homomorphism

G — @; extends by linearity to a continuous ring homomorphism Z,[[G]] — @; .

Definition 2.1.2. The augmentation ideal I of Z,[G] is

ker (zp[[c;]] LN zp)
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where € is the inverse limit of the Z,-linear maps Z,[G/N| — Z, that takes every group

element to 1.

The map e is surjective, and therefore it induces an isomorphism
Zy||G)| /e = Zy

Definition 2.1.3. We define the Iwasawa algebra to be the ring of formal power series
Z,|[T]] with variable T over Z,. Let v, be the usual p-adic valuation on Z,. For f(T') =

Z a,T" € 7Z,[[T]] define the p-invariant of f to be the least power of p dividing all the
n>0
coeflicients

u(f) = minv,(a,)

n

And the A-invariant of f is the first coefficient at which the minimum occurs

A(f) = min{n 2 vy(an) = p(f)}

Theorem 2.1.4. (Division algorithm for Z,[[T]]). Let f(T) € Z,[[T]] be non-zero with
wu(f) = 0. Let g(T) € Zy[[T]], then there exists unique q(T) € Zy[[T]] and a polynomial
r(T) € Z,[T) of degree < A(f) such that

g=rfo+r

Definition 2.1.5. A polynomial P(T") € Z,[T] is called a distinguished polynomial if it

has the form
P(T)=T"+a, ,T" "+ -+ ag
with a; € pZ,.

Theorem 2.1.6. (p-adic Weierstrass preparation theorem). Let f(T) € Z,[[T]]* be a

non-zero power series. Then, there is a unique factorization
where P(T) is a distinguished polynomial with the degree deg(P) = A(f), and u(T) €
Zp[[T1]"

Let G be a topological group isomorphic to the additive group Z, = MZ/ p"Z. Note

n
that as a profinite group, Z, is compact and procyclic, i.e. Z, is the closure of the cyclic
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subgroup (1). Let v be any generator of G, i.e., G = (v) and G, = (7*") be the unique
closed subgroup of index p" of G. Then G/G,, is cyclic of order p" generated by v + G,,.

One has an isomorphism
Z,(G /G 5 Z,(T)/ (1 + T 1)
v mod G, + (1+T) mod (1+T)" —1

Moreover, if m > n > 0, the natural map G/G,, - G/G,, induces a natural map
Gmm * Lp|G/Gr] — Z,|G/G,], which is compatible with the isomorphism. We hence

obtain
Z,[G) = Im Z,[G/Ga) = im Z,[T]/ (1 +T)"" = 1)

Theorem 2.1.7. Let G be a topological group isomorphic to the additive group Z, and let

v be any its generator. There is an isomorphism of topological rings induce by v— 1+ T

Zp||G] = Z,[[T]]

Proof. For n > 1 let w,(T) = (1 +T)"" — 1. Then w,(T) is a distinguished polynomial.

Furthermore,

Wn41 (T)
wn(T)

= (D) g (LT + 1€ (,T)
s0 wy(T) € (p, T)™** for n > 0.
Hence, for every n > 1 we have a projection

Zy[[TN) = Zp[[T1)/ (wn) — Zp[T]/(wn) — Zp[T'/T]

which is compatible with the transition map. By the universal property of projective

limits, we obtain a continuous homomorphism
e Z,[[T]) > LT, T 7 — 1

On the other hand kere C N,,(w,) C N, (p, T)"*! = 0, thus e is injective. Moreover, Z[T]]
is compact, hence the image is closed, it is also dense since at every level the map is

surjective. It follows that € is surjective. O]

It is noticable that this isomorphism depends on the choice of the topological generator
~v of G.
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Proposition 2.1.8. (Nakayama’s lemma) Let M be a compact A-module. Then the

following are equivalent

1. M 1is finitely generated over A
2. M/TM is a finitely generated Z,-module

3. M/(p,T)M is a finitely dimensional F,-vector space

Proof. (1) = (2) = (3) are straightforward. Assuming (3), let xy,...,2, generate
M/(p, T)M as F,-vector space. Let N = Azg+ -+ + Az,, C M, then

N+ (pT')M

M/N =
/ N

= (p, T)M/N
Thus M/N = (p, T)"M/N for all n > 0.

Consider a small neighborhood U of 0 in M/N. Since (p,T)" — 0 in A, for any
z € M/N, there exists a neighborhood U, of z and some n, such that (p,7)"*U, C U.
But M/N is compact, then (p,T)"M/N C U for n large, hence M/N = N(p, T)"M/N =0
and M = N is finitely generated over A. O

2.2 Ordinary Subspace

Hida defined an idempotent of the Hecke algebra that projects spaces of modular forms

to their ordinary parts [Hi93|, which are maximal submodules on which U, acts invertibly.

Recall that
21w
Ur =
=3 (o )

b=0

Definition 2.2.1. The element e,,q attached to U, is given by

. !
€ord = lim U;f'
n—oo

is an idempotent of Hecke algebra H(I'y(N),Z,).

Lemma 2.2.2. Suppose a € (@p s an algebraic integer. In C, we have

lim o™ = L ifac @;

n—o0 0 otherwise
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Proof. 1f a is not a unit of @p, then it has positive p-adic valuation; thus the limit of a™
is 0. Suppose a is a unit contained in the ring of integers Ok of a finite extension K of
Qp. Take a prime ideal p C Ok above pZ,. As a is a unit, we have
al®x /P11 =1 mod p”
For n large enough, |Ox /p*|—1 divides n!, so taking limit n — oo we have lim ¢™ = 1. [
n—oo
Remark 2.2.3. An eigenform of I'g(N) is called ordinary at p if its U,-eigenvalue is a
p-adic unit, by the lemma we see that an eigenform f is preserved by e, if it is precisely

ordinary, and otherwise e,.q maps f to 0.
Definition 2.2.4. The ordinary submodule of Si(T'o(N)) is
SP(To(N)) = €oraSk(To(N))

Remark 2.2.5. If p t d, then the diamond operators (d) and U, commute on S(I'¢(V))
for any positive integer N. Hence e,,q commutes with (d) for p { d. Also, (d) U, acts as
" on S(I'4(N)).

Theorem 2.2.6. We have the basis for Si(I'o(N))
{fi(d) : f € Sp=*(To(N')), dN'|N}

The following property gives us the action of e,.q on the elements of this basis

Proposition 2.2.7. Suppose that d and N' are positive integers such that dN'|N, and

suppose [ is a newform of level N'. If a,(f) is not a p-adic unit, then

eord(de)) =0

If a,(f) is a p-adic unit, let «, B be the roots of Frobenius of f, that is, the root of the

equation

2® = ap(flz+ xn(p)p* " =0

Assume that the roots are ordered so that o is a unit and 3 is a non-unit. Then

CoralF1()) = -5 (F1(d) — B0 11 {p))
for (p,d) =1, and
k—1
Cona( 1)) = =5 (f1(d/p) = B - f1{)

for pld.
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Proof. Without loss of generality, we can assume that d = 1 or d = p. Since f is a

newform at level N’, we have

FI(Up + xn(p) () = apf
< f|Up = apf — xn(p) fI{p)

Note that (d) U, acts as p*~!, we obtain

Up = (f f|<p>> (‘x?vp&p) pkO_l)

(7 f1w))

k—1
Let A= @ p .
—xn(p) 0

Case 1: a, is non-unit. Then all entries of A has positive p-adic valuation. It follows
that

(r nw)|o = (s 1) |a"

Taking limit we have e,.q((d) f) = 0.

Case 2: g, is a unit. By diagonalizing A, we obtain

P = B)f =a@ T f = BfIp) — B — af|(p)

Set fo := p" 1 f — BfI{p) and fz := p"'f — af|(p). We see that they are eigenvectors
of U, with eigenvalues v and f3, respectively. Lemma implies that eyq(fs) = fo and

eora(f3) = 0. Hence, by applying Hida’s projector to equation , we get

(0%

a—f

(" f = BfIp)) = (f = Bp"* f1(p))

eord(f) = k-1 °

pPHa —B)
Similarly, we have
(= B)flp) = ("' f = BfUD)) — B f — af1(p))

Thus

k—1

eont(d) ) = =5 (/) £ = B (d) )
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Definition 2.2.8. Suppose f € Si(I'o(N)) is a p-ordinary cusp form which is an eigenform
of T, and let 8 denote by its non-unit root of the Frobenius. The p-stabilized cusp form

g corresponding to f is given by
g:=f-8p"" ) f
which satisfies

9(z) = f(z) = Bf(p2)

Note that g € Sk(I'o(Np)) and if p|N, the 8 =0, so f is already p-stabilized.
Corollary 2.2.9. The space S™(I'o(N)) has basis
{f(dz) — Bf(pdz) : f € Sp(T'o(N")""p — ordinary, (p,d) = 1,dN'|N}

where B denotes the non-unit root of the Frobenius of f at p.

2.3 A-adic families

Thoughout this section, p is a prime number > 5 and A := Z,[[T]] is the Iwasawa’s
algebra. Given a cusp form f of weight 2, we will construct a family which p-adically
”converges” to f. I mainly follow Hida’s blue book [Hi93] and the lecture notes [Laf],
IBNGJ.

2.3.1 A-adic modular forms

We will explore the modular forms in families. Let p be a prime number p > 5 and N
an integer prime to p. Recall that the group Z, of p-adic units is cannonically equal to
the product of the group of principal units 1+ pZ, and the group p,_1 of (p — 1)th roots

of unity

Ly = piy_y X (14 pZy)

z = w(z)-(a)

We denote the projection to principal units by (-) and the projection to roots of unity by

the Teichmuller character w.
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Let x : (Z/NZ)* — C* be an arbitrary Dirichlet character for some positive integer
N, and let d, denote its conductor. We know that either (d,,p) =1 or p|d,, so

dy=M or d,=Mp*
for some positive integer M coprime to p and some integer » > 0. Now we have

(Z/Mp™2)" ~ (Z/MpZ)* x (1 + pZ)/(1 + p""'Z)
a mod Mp™™ — (& mod Mp,a mod (1+p""'Z)

Hence we obtain xy = xrxs, where

xr: (Z/MpZ)* — Q" and xs: (1+pZ)/(1+p*+'Z) - Q"

are characters of conductor Mp and p" !

respectively. Note that for any character y :
(Z/p"Z)* — C*, the image of xr is contained in Z,, while the image of xg has p-power

order.

Definition 2.3.1. For any character x : (Z/Np"Z)* — C* and integer k > 1, we have

X = XrXs given as above. Let u = 1+ p, we define the specialization

Vi A — @p
T §Xuk -1, & =xs(u)

Since &, is a p-power root of unity and u* = (1+p)¥ =1 mod p, we see that [£,u*—1|,<
1 for all integer k£ > 1. Hence, the evaluation of any element of A at §Xuk — 1 results in a

power series converges p-adically.

We denote by A(x, A) the set of all specializations T" — fxuk —1 associated to character
X : (Z/Np"Z) — C* running over all k£ € N. Since A has no zero divisors, the kernel
of the specialization map v, is a prime ideal of A. Hence, the specialization map v,
can be seen as an embedding of A/ker(vy,) into Q,. We can view A(x,A) as the set of

Z,-algebra homomorphisms from A to @p.

Definition 2.3.2. Let N be a positive interger coprime to p. For any character x :
(Z/Np"7Z)* — Q", where r > 0, a A-adic modular form F of character y and level Np"

is a formal g-expansion

F(T) =Y an(F)(T)q" € Allg]] = Z,[[T, q]]

n>0
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such that for all but finitely many integer k£ > 1 we have

ve(F) =Y v (an(F)(T)) ¢" € My(Np", xw™)

n>0
for all v, € A(x,A). Here w is the Teichmuller character.

Similarly, if vx(F) € Si(Np", xw™) (resp. M (Np", xw™), ST (Np", xw™) for all
but finitely many positive integers k, we say I is a A-adic cusp form (resp. ordinary

A-adic form, ordinary A-adic cusp form) .

Thus a A-adic form is a family of classical forms of varying weights with identical
residual g-expansions. The family v (F") can be view as the evaluation of F' at T = fxuk -1
for £ € N.

Let M(Np", x,A) (resp. S(Np",x,A)) be the A-module of all A-adic modular forms

(resp. A-adic cusp forms) associated to x.

Let M(Np",A) @M Np", x,A) be the A-module of all A-adic forms. We also

have the corresponding decomposatmn S(Np",A) @ S(Np", A)

2.3.2 Hecke Operators on A-adic cusp forms

Proposition 2.3.3. Consider the following character

K1+ pZ, — A"
u = k(u®) (X = (14 X))

Then k is a continuous character with respect to the m-adic topology on A, where m is the

mazimal ideal of A.

Proof. For the proof, we need two following lemmas.

Lemma 2.3.4. If z € 1 + pZ,, then z = u*®) where s(z) =

Zn
Proof. Let exp,(z) = E —; denote the p-adic exponential, which converges on |z],<
n!
n>0
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p /P71 Then

uw'® = exp,(s(z)log,(u)) = z

The following lemma is a consequent of the previous one.

Lemma 2.3.5. If s € Z,,, then (8) € Z, for any integer m > 0.
m

s

Proof. We see that ( ) is a polynomial in @, with variable s, so it is a continuous map
m

from Z, to Q,. This map takes Z to Z, and since Z is dense in Z,, it induces a continuous

map from Z, to Z,. Thus for s € Z,, we have (;) € Zy. O

It follows that

]

One can view k as a Galois character via the natural restriction map Gal(Q/Q) —
Gal(Qx/Q) = 1 + pZ, where Q. is the cyclotomic Z,-extension of Q.

Note that for integers n prime to p
r(())(WF —1) = k(u™)(uF — 1) = u**™ = w=*(n)n*

_ log((n))

where we write (n) = w(n)'n = u*™ with s(n) = Tog(u) Consider the group homo-
og(u
morphism
@ Ly — 1+ ply

s—u® u:=14+p

It is a group isomorphism with the inverse given by

log (s
s g,(s)

log,(u)
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here log, is the p-adic logarithm. Thus we have s = w? @) for all s € 1+ DLy

For a given positive integer n and divisor b of n with b =1 mod p, we have

(o= = ) =t o)
= xs(d)d* = w(d) *xs(d)d*

with the last equality following from the fact that w(d) = 1.

Definition 2.3.6. Then we define for each A-adic form F' € M(y, A) a formal g-expansion
F|T, by

an (FIT) (T) = >~ (T + 17 (¢ (B)™" e (F)(T)
bl(m,n)
(b,p)=1

where b runs over all common divisors prime to p of m and n.

We evaluate this formal power series F|T}, at &u” — 1 we see that F(&uf —1,¢) =
fx € My(Np", xw™"). Moreover

m (F|Tn) (&u —1) = Z (& — 1)¢_1(<d>X(b)bilamn/b2(F)<§Xuk —1)
bl (m,n)
(b;p)=1

= Z X(b)w(b)_kdk_lamn/bQ(fk) = am(fiT})
o

This shows that F|T,(&uf — 1) = F(&u” — 1)|T, € Mu(Np”™, xw™). Therefore, F
is again a A-adic form. Thus the operator T}, is well-defined and commutes with the

specialization map X — fxuk — 1. So we have Hecke operators T}, acting on M and S.

Proposition 2.3.7. There exists a unique idempotent eoq : M(x, A) — M (x, \) sat-
1sfying

(Fle)(gu® —1) = F(&§u" — 1)le
for all F € M(x,A) and all integer k > 0 for which F(&u* —1) € M(Np”, xw™)

Theorem 2.3.8. (A.Wiles). The space of ordinary A-adic modular forms (ordinary A-

adic cusp forms) of character x is free of finite rank over A.
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2.4 Constructing A-adic forms

2.4.1 A-adic Eisenstein Series

Recall that if k is an even integer greater than or equal to 4, then the Eisenstein series

of weight k, level 1 and trivial character has g-expansion given by
((1-Fk) <« "

where o_1(n) = Z d*~! is the usual arithmetic function, and ((s) is the Riemann zeta
dln
function.

let p be a prime, we consider the p-stabilized form
B = E(z) —p Eu(p2)

is a modular form of level p. More generally, for any k£ > 1 and character Y mod Np",
with y having the same parity as k, we define the Eisenstein series of weight k, level equal

to the conductor of x, and character x, given by

L1 —k,x) .
T + Zakfl,x(n)q

n=1

Ek,x =

where 0j,_1,(n) = Z x(d)d*' and L(s, ) is the Dirichlet L-series attached to x. Again,
din
if x has level N (i.e., it has trivial p-part), then Ej, has level N, which is not divisible

by Np. We consider its p-stabilization, namely

EY) = By (2) = x(P)p" " Eiy (p2)
which has g-expansion

L(P)(l — k, X) © .
E,gpi - 92 - Z 0’(:7—)17x(n)q
n=1

where Uéﬁl’x(n) = Z x(d)d*1 and LW (s,x) = (1 — x(p)p~*)L(s, x) the Dirichlet
dln,(d,p)=1
L-series attached to y derived of the Euler factor at p, has level divisible by Np.

Now we are ready to begin interpolating p-stabilized Eisenstein series.
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Proposition 2.4.1. Let x = xrxs be the character of level Np". For each k > 1 and
§ € ppr—1 withr > 1. Let Z,|xp||[T]] for xp # 1, then there is a A-adic form

T) = e (ENT)G" € Zy[xr][[T]]
n=0
which specializes to Ej ., under the homomorphism of Z,[xr][[T]] induced by v -

Let f € S1(Np,1) be a fixed cusp form of weight 1. Recall that
E(uf ™ = 1) = B, € My ((Np', )
where 1) = yw!'™*. Hence,
fi- BY, € Si(Np', X'w™)

with ¥’ := ¢x. We show f, - E k 1  are the specializations at T" = éu* — 1 of a cuspidal
A-adic form F of level N and character y’ for & > 1 and ¢ as above.

Assume that the g-expansions of f; and v are both Z,[yr]-rational (otherwise extend

scalars). Then we may formally multiply the g-expansions in Z,[xr|[[T]] of fi and &,.

Say the resulting g-expansion is f; - £, = Z an(T)q", for some a,(T) € Z,[x][[T]]. Now
n=0

define
F:=> a,u'T+u"' —1)g"

noting that the substitution made above is an automorphism of Z,[xr|[[T]]. Then on

substituting T = éu” — 1 we obtain
Féut —1) = o€ Dg" = fi- & = 1) = fi- B, i
k—1,xw

Thus F' is the desired cuspidal family.

2.4.2 Hida Families

In this section, I will follow [BD07] parallel with [GS94].
Consider the weight space W = Hom(Z,Z,). Since p is odd, we have the identification

W =Hom(Z), Z)) ~ Z(p — 1)Z x Z,
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We will define analytic functions on the weight space. If U C W is an open subset, let Ay
denote the collection of analytic functions o : U — Z,,, more precisely, the collection of
functions that are power series on each intersection U N ({a} x Z,). Assume further that
U is contained in the residue disk of 2, and then Ay is simply the ring of power series

that converge on an open subset of Z,. A Hida family is a formal g-expansion

F= i anq"
n=1

such that there exists a neighborhood U of 2 in W such that a, € Ay for all n and such
that if k € U N Z=?%, the weight k specialization

Ji = Z an(k)q"
n=1
is a normalized ordinary eigenform of weight & on I'(Np). Weights in Z=* C W are called

classical.

Let A = Zp|[Z,]] and A= Zy|[1 + pZ,)]. They are also called Iwasawa’s algebras,
and A" ~ A = Z,([T]] as we have seen in the section 1. Furthermore, A can be viewed as

functions on the space of continuous Z,-algebra homomorphism as denoted above by W.

From now, we identify A with Z,[[1 + pZ,]]. For each k € Z, the character

1+ pZy — 7,

ar— a2

can be extended to a continuous homomorphism oy_s : A = Z,[[1 + pZ,|| — Z,
For each a € A we define the Iwasawa functions on Z,
a(k) == op_o()

The map a — «(k) endows Ay with a natural structure as A-module for every disk U in

Z,.

Definition 2.4.2. We define the abstract A-adic Hecke algebra of tame conductor N to

be the free polynomial algebra
H = Z,[[Z,]|[Tu(n € Z7)]

generated over Z,[[Z)]] by T,, (n € Z7).
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We have the following theorem due to Hida which is crucial in the theory.

Theorem 2.4.3. There is an integral domain R finite and flat over A and a surjective

A-homomorphism hg : H — Rg with the following properties.

1. RE is unramified over the augmentation ideal Py in A.

2. The homomorphism \g : H — Z, factors through hg, i.e., there is a homomorphism
Mg 1 H — Zy, such that

)\E:’]TEOhE

We use this theorem to describe Hida’s families as follows. The homomorphism Ag :
H — Z, gives us weight k specialization fi. For each n € N, let o, := hg(T,) € Rp and
define F' := Z anq" € REl[q]] a A-adic form.

n=1

Fix a neighborhood of 2 in W on which a,, converge. If £ € U N Zx9, the weight k
specialization is a normalised eigenform of weight & on I'o(/Np), which is new at the primes
dividing N. In particular, if £ € UNZss, fx arises from a normalized eigenform on I'g(V)
that we denote by f;. Consider

L—a(fi)p +0""7% = (1= ap(k)p™®)(1 = B,(k)p™)

we can order the roots a,(k) and §,(k) in such a way that o,(k) = a,(fx) and B8,(k) =

p"a,(fr) . Hence we obtain a p-stabilized newform

fe(2) = [ (2) = Bp(k) f (p2)

Remark 2.4.4. For the ordinary eigenform f, the Euler factor at p of the L-function of
f has a factorization (1 — ap™®)(1 — fp~°) where « is a p-adic unit and £ is divisible by
p. We call a the unit root of Frobenius and S the non-unit root of Frobenius. Note that
if > 0 then g = 0.

Theorem 2.4.5. Let E be an elliptic curve curve over Q of tame conductor N with
good ordinary or multiplicative reduction at the prime p > 5. Then there is an open disk

U C Z, about 2, a formal g-expansion

f=> ang" € Ayllq]
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such that for each integer k > 2 in U, the power series

fo=Y aulk)d" € Z,q)

1 the g-expansion of a mon-zero p-stabilized ordinary newform of tame conductor N,

weight k and character w*~*. Moreover, fo = fg.
Proof. Refer [Hi86a] and [Hi86h]. O

For a modular elliptic curve F with good ordinary or multiplicative reduction at p we
let fg be the p-stabilized ordinary newform associated to the newform attached E. Note

that for the associated complex L-functions we have the identity

(1= Bp~°)L(E, s) = L(fE, )

2.5 Galois Representation Theory

Let K be a field. We denote by G := Gal(Kg/K) the absolute Galois group of K,

i.e., the Galois group of a separable closure Kg of K.

Definition 2.5.1. Let k be a topological field. An n-dimensional representation of G g

is a continuous homomorphism of groups
with the topology on G the Krull topology and the topology on GL, (k) the one induced
by the inclusion GL, (k) < K™

We also have an equivalent definition as follows.

Definition 2.5.2. Let k be a topological field. An n-dimensional Galois representation
of Gk is an k|G k]-module V which is n-dimensional as a k-vector space such that the

action

GKXV—)V

(o,v) — 07

1s continuous.
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Two representations V' and V' are said to be equivalent if there exists a continuous
k|G k]-modules isomorphism V' — V.

Let W C V be subspace of V. We say that W is invariant or stable under G if it is
preserved under the inducded action of Gx on W, i.e., for all w € W we have w” € W
for all o € G.

Definition 2.5.3. Let V be an n-dimensional Galois representation. We say that V is
irreducible or simple if V' has only 0 and V' as invariant subspaces. If V' is isomorphic to

a direct sum of irreducible Galois representation, then we say V' is semi-simple.

Let L/K be a finite Galois extension of number fields and let ©8/p be primes ideals in
these fields. The decomposition group of B is defined as

D(B/p) = {0 € Gal(L/K)|o(B) = B}
It is isomorphic to the local Galois group
D(B/p) = Gal(Lsg/Ky)
We consider the reduction modulo ‘B
m(Le/Kp) = m(B/p) : Gal(Le/K,) — Gal(F(B)/F(p))

This map is surjective. The group Gal (F(%B)/F(p)) is canonically generated by the Frobe-
nius endomorphism Frob(B/p) which is given by x +— z? with ¢ = #F(p). The kernel of

the reduction map is called the inertia group I(8/p). Hence we have the exact sequence
0—I(B/p) = Gal(Lyg/K,) — Gal(F(8)/F(p))

The field extension Ly /K, is unramified if and only if (B /p) is trivial, i.e., the reduction

map 7(B/p) is an isomorphism.

We can pass to infinite Galois extensions. Let K, C Ly C Mg be finite subfield of @.

We obtain a projective system of short exact sequences

0 — I(Mg/K,) — Gal(Mg/K,) — Gal(IF(%)/]F(p)) — 0

| ! !

0 —— I(Ly/K,) — Gal(Ly/K,) — Gal(F(8)/F(p)) — 0
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Taking projective limit over compact sets is exact, hence, we obtain the exact sequence
O—>IKp _>GKP i>C7VIE‘(p) — 0
where Galy, = Gal(K,/K,) and Ik, is the projective limit over iniertia groups.
Definition 2.5.4. Let K, be a finite extension of @, and let £ be any topological field.
Consider a local Galois representation p : Gk, — GL,(k). We call it unramified if
plk,) =0
We call I, := I, the inertia group of K,

Definition 2.5.5. Let K be a number field, and £ any topological field. Consider the
Galois representation p : Gx — GL, (k). Let p be a prime of K corresponding to an
embedding ¢, : K — Q,. Choose any embedding ¢ : Q — Q,, extending Lp, giving rise to
an embedding of G, into Gk. The Galois representation p is called unramified at p if

the restriction of p to G, is unramified.

The cyclotomic character
Let K be a field of characteristic 0 and K an algebraic closure. Let
pom(K) = K “[m] = ker (FX g KX)

be the m-torsion points of K, i.e. the m-th roots of unity. By choosing a compatible

system of roots of unity &£~ we obtain the isomorphism of projective systems

Z/0"L —— pun(K)

| |

2/ —— pipns (K)

giving rise to an isomorphism as groups

Ly =~ lgl LLgn (?X)
The object on the right is called the -adic Tate module of K denoted by Ty(K ) or
Z(1) with the emphasised Galois action.

Hence we have a Galois representation so called f-adic cyclotomic character over K.

Xo: G "7 Aut(Z,(1)) = ZF = GLi(Ze) — GLy(Qy)
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Proposition 2.5.6. Let y, be the cyclotomic character over Q. Then o is a 1-
dimensional global Galois representation, which is unramified at all prime p # ¢ and

Xo(Frob,) =p

Moreover, xo is an odd representation.

The Tate module of an elliptic curve

Let E be an elliptic curve over a field K of characteristic 0. For every prime p, we
denote the subgroup of the p"-torsion points over K by E(K)[p"]. The group G acts on

E(K)[p"]; moreover, for all n we have a group homomorphism
E(K)[p"""] = E(K)[p"]

given by the multiplication by p. It turns out that {E(K)[p"]}.ey is a projective system.
Since the action of G is compatible with the transition maps, we obtain by the universal
property of the inverse limit a continuous action of G over lim E (K)[p"] == Ta,(E),
which is called the p-adic Tate module of E.

Note that E(K)[p"] ~ (Z/p"Z)?, we have that Ta,(E) ~ Z>. By this way we get a
2-dimensional p-adic Galois representation associated to E.

Proposition 2.5.7. Let k be a finite extension of Q, for some prime £ and let p : Gg —
GL, (k) be a Galois representation. Then p is equivalent to a Galois representation p' :
Go — GL,(Ok), where Oy, is the valuation ring of k.

Proof. Refer [DS05] O

Definition 2.5.8. Let ¢ € Gg be a complex conjugate. A Galois representation p : Gg —
GL,(C) is said to be odd if det(p(c)) = —1 for all c.

The following is a celebrated result in ¢-adic Galois representation due to Deligne.

Theorem 2.5.9. Let k > 2, N > 1, and { a prime not dividing N. Let € : (Z/NZ)* —
C* a Dirichlet character. Then for any normalised eigenform f € Sp(T'o(N),€) with

f= Zanq" one can attach a Galois representation
n>1

ps: Gg — GLy(Q,)

such that
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1. py s wrreducible
2. py is odd

3. for all primes p 4 N the representation py is unramified at p and the characteristic

polynomial of Frobenius of p has the form

X2 —ap(/)X +e(p)p™!
Proof. Refer [DS05]. O

We have the corresponding Galois representation for Hida’s family.

Theorem 2.5.10. Let E be an elliptic curve over Q of tame conductor N with good
ordinary or multiplicative reduction at the prime p > 5. Then there is an open disk
U C Z, about 2, a formal q-expansion f = Zoznq” € Ayllql] and a Galois representation

n=1

p: Go — GLo(Ay) satisfying the following properties

1. For each integer k > 2 in U, the Galois representation py : Gg — GLa(Z,), obtained
by composing p with the specialization map o — a(k), is equivalent to Deligne’s

representation associated to fi.

In particular, ps is equivalent to the Galois representation attached to the p-adic Tate
module of E.

2. For all k € Z, the local Galois representation Pk|G@p3 Go, — GLy(Z,) has the form

Cxo o) et x
p|GQp_ 0 Pk

where @y, is the unramified character sending a Frobenius element to a,(k) and
(xo0) : Gg, = Z; 15 the local Galois character obtained by composing the cyclotomic

character xo with projection to the principal units.

Proof. Refer [Wi8§]. O
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2.6 Ordinary Tate Modules

We define the modular curve X,(N) as a compact Riemann surface
This modular curve admits the structure of a smooth projective variety over Q.

Theorem 2.6.1. There exists a smooth projective curve C/Q and a bihilomorphic map-
ping ¢ : Xo(N) — C(Q) such that

¢"(C(C)) = C(Xo(N)) = C(j, jn)

and

¢"(Q(C)) = Q(J, jn)
The curve C/Q is unique up to isomorphism over Q, and ¢ is uniquely determined by the
isomorphism of Q(C) with Q(J, jn)

We refer to (¢,C) as a model for Xo(N) over Q. We identify C'(Q) with Xo(N) and
refer to Xo(N)/Q as a Q-structure on Xo(N).

Definition 2.6.2. Let I' be a congruence subgroup of SLs(Z). The Jacobian of the

corresponding modular curve X (I') is
J(X(T) = So(T)"/Hy(X(T'), Z)

where % denotes the dual space.

The double coset operator induces a pullback on dual spaces, hence it descends to a

map on Jacobians
[FlaFQ] : J(Xz) — J(Xl)
w — [w o [Fl&rz]]
where the bracket denote equivalence class modulo homology.

Definition 2.6.3. For each integer r > 0, let X, o be the complete modular curve
associated to I'o(IV) NIy (p") and endowed with canonical Q-structure in which the 0-cusp

is rational.

Let J,/q be the Jacobian of X, and let T'ay(J,) be the p-adic Tate module of .J,.
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Remark 2.6.4. the Hecke algebra H acts on J,, and hence also on T'a,(.J;), by letting Z
act via the Nebentype operators and T, act via the nth (covariant) Hecke correspondence.
For each pair of integers r;1 > ry > 0, the natural projection X;(Np™) — X;(Np™)
induces a Galois equivariant map of Tate modules T'a,(J,,) — Ta,(J;,) which commutes

with the action of H, hence we may form the projective limit and obtain an H[Ggl-module
Tay(Jo) = im T,(J,)
Proposition 2.6.5. There is a canonical decomposition into H|[Ggl-modules
Tay(Js) = Tap(J)® & Tay(Joo)™

such that the Hecke operator T, acts invertibly on Tap(JOO)O and topologically nilpotently
on Tay(Js)™.

Moreover, Ta,(Js)° is a free A-module of finite rank.

If we set t = [1+p|] —1 € A or any other generator of the augmentation ideal then the

following sequence is exact

0 = Tay(Jso)? == Tay(J)® = Tay(J1)° = 0

Suppose that E is a modular elliptic curve of tame conductor N with either good

ordinary or multiplicative reduction at the prime p and let fg = Z a,q" be the associated

p-stabilized ordinary newform, normalized so that a; = 1. Novr:/_clleﬁne Mg H — Z, by
mapping Z, to 1 and each Hecke operator T,, to a,. Let H act on the Tate module
Ta,(E) via Ag. Fix a modular parametrization X; — E and let Ta,(J;)° — Ta,(E) be
the induced homomorphism on Tate modules. This map commutes with the action of Gg

as well as with the action just defined for H.

The following theorem due to Hida says that T'a,(E) can be lifted to an H-eigenspace
in Ta,(Jx)’.

Theorem 2.6.6. There is an integral domain Rg finite and flat over A and a surjective
A-homomorphism hg : H — Rpg as in the theorem . Let Ty C Tap(Joo)O Rr RE be
the Rg-submodule consisting of elements on which H acts via hg. Then Tg has rank 2
as an Rg-module (i.e. if Kg is the fraction field of R, then Tg ®%, Kg has dimension
2 over Kg).
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L-invariant

Let E be a modular elliptic curve with split multiplicative reduction at the prime

p > 5. Let f = Zan(k)q” € Ayllg]] be the analytic family of g-expansions given by

n=1
Hida’s theorem deforming the modular form fg of weight 2 associated to E. In this

chapter we prove the result establishing a connection between the pth coefficient of f and

the L-invariant of E, using local deformation theory.

3.1 Galois Cohomology

We recall the basics of Galois Cohomology without proof which are used frequently in

this chapter and the next one. The main references for this topic are [Ser97] and [Neu0§]

Let G be a profinite group and A a topological G-module, i.e., a topological abelian
group with a continuous action of GG, compatible with the abelian group structure. Let
B be another G-module, then a map f : A — B is called a morphism of G-modules if f

is both a countinuous group homomorphism and G-equivariant, i.e.,

fla+d) = f(a)+ f(d), Va,d € A
f(a%) = f(a)?, Yoe G,ae A

For every n € N, define C" = C"(G, A) to be the set of continuous maps from G" to
A, where G is the trivial group, so C° = A. The elements in C™ are called n-cochains.
Let

d: O — o



3.1. GALOIS COHOMOLOGY 55

be given by
d"(f)(o1, s Ong1) = 01f (02, 0, Ony1)+
—|— Z(—l)lf(()'l, ceey gi0i+17 ceey Un+1)
i=1

+ (=) f (o1, ..., 00)

for all n > 1, we have d" o d"' = 0, therefore Im(d") C ker(d"'"), that is, we get a
complex C*(G, A).

Definition 3.1.1. For n € N, the n-th continuous cohomology group of G with coefficients
in A is the quotient group

H™"(G, A) = ker(d")/Im(d")
where we set Im(d~') = 0. Elements in ker(d") are called continuous cocycles, while
elements of Im(d" ') are called continuous coboundaries.
We can give explicit description for H"(G, A) with n =0, 1.

HY(G,A) = A ={a € Aloa=a, Yo € G}
HY(C A) — {f: G — A continuous|f(o7) = f(o) + f(1)°, Vo, € G}
(G, 4) = {f:G— A|f(c) =0a—a for afixeda € A}

Remark 3.1.2. When the action of G on A is trivial, i.e., ca = a for all 0 € G and
a € A, then H(G,A) = A and H'(G, A) = Hom(G, A), where the homomorphisms

between topological groups are always assumed to be continuous.

Theorem 3.1.3. Let 0 - A — B — C — 0 be a short exact sequence topological of
G-modules, split as sequence of topological abelian groups. Then we have a long exact

sequence of cohomology groups

0 —+AY - BY - CY —» HY(G,A) — ---
- — H"(G,B) = H"(G,C) — H"™ (G, A) — - -

Suppose that H is a subgroup of G, then any G-module is an H-module. Moreover, if
¢ : G — Ais a l-cochain, then by restricting the domain of £ to H, we obtain an H-to-A

cochain. In this way we obtain a restriction homomorphism

res : H'(G,A) — H'(H, A)
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We will define a homomorphism H'(H, A) — H'(G, A) in the opposite direction of the
restriction, which is a kind of norm map and is called the corestriction. It arises from
the standard resolution A — X* = X°*(G, A) of the G-module A, which is also an acyclic

resolution of A as an H-module,i.e
H"(H,A) = H"((X*)")
For n > 0, we have for the G-module X" the norm map
Nom - (XMT — (X™)©
It commutes with d, hence we have a morphism of complexes
Neym = (X — (X)¢
Taking cohomology groups of these complexes, we obtain canonical homomorphisms

cores : H"(H,A) — H"(G, A)

Assume further that H is a normal subgroup of G. Then the submodule A" of A
consisting of elements fixed by H has a natural structure as a G/H-module. Let £ :
G/H — A" be a l-cochain, one compose this with the projection G — G/H and with
the inclusion A7 C A give a G-to-A cochain

G—G/HS AT c A
In this way we have an inflation homomorphism
inf : HY(G/H, A") — H'(G, A)

Theorem 3.1.4. Let A be a G-module and let H be a normal subgroup of G. Then the

following sequence is exact
0 — HYG/H, A"y 25 gy (G, M) 2 HY(H, M)

Definition 3.1.5. Let H be a closed subgroup of GG. For every H-module A, define the
G-module IndZ (A) consisting of all continuous maps f : G — A such that f(70) = 7f(o)
for all 7 € H. The action of p € G on IndZ(A) is given by

flo) = (pf)(o) = f(op)
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We have a canonical projection

7 Indg(A) — A
f=r)

This is a homomorphism of H-modules, which maps the H-submodule
A={f:G=Alf(r)=0]; V¢ H} ~ A

If A is a G-module, then IndZ(A) is canonically isomorphic to the G-module
Map(G/H, A) of all continuous functions ¢ : G/H — A. The isomorphism

Indg (A) ~ Map(G/H, A)

We have the following well-known result due to Shapiro

Theorem 3.1.6. (Shapiro’s Lemma) Let H be a closed subgroup of G and let A be an

H-module . Then for all 1 > 0 we have a canonical isomorphism
HY(G,IndZ(A)) ~ H'(H, A)

Proposition 3.1.7. Let K be a local field and G = Gal(Kg/K). If A is a G-module
which is finite (resp. finitely generated over Z,), then H"(G, A) is finite (resp. finitely

generated over Z,).

Theorem 3.1.8. Let G be a profinite group and A a G-module. Suppose that A = l'&lA,
where each A; is a finite (discrete) G-module. If H" (G, A;) is finite for every i, then

there is an isomorphism
H"(G,A) ~ @H”(G,Ai)
Definition 3.1.9. Given G-modules A, A" and B, a map
AxA 4B

is a G-pairing if it is bilinear and it respects the action of G:

/

#(a®,a%) = pla,d’)?

foralloc € Giae A’ € A'.
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If Aand A’ are two G-modules, then A®7 A’ is also a G-module by o(a®b) = ca®ab.
The bilinear map A x A" — A ®z A’ is a G-paring. Note that by the universal property
of tensor products, any bilinear paring of G-modules A x A" — B factors through A® A’

Such a pairing induces a map
U:C"(G,A) x C°(G,A") = C"*(G, B)

as follows: given f € C"(G, A) and f' € C"(G, A), the cochain fU f' € C"*(G, A) is
defined by

(FU L1 s 0r1) = & (f(01,00), (01 004))
We see that
A (fUf) =d (HUf + (=) fudi(f)
hence it yields a bilinear cup product, again denoted by U
U: H(G,A) x H*(G,A") - H"(G, B)

Proposition 3.1.10. For two homomorphisms A — B and A" — B’ of G-modules, we

have the commutative diagram

H" (G, A) X H* (G, A —— H™(G,A® A
H" (G, B) X H*(G,B) —— H™™(G,B® B)

Proposition 3.1.11. Let 0 - A’ - A— A" -0 and 0 - B' — B — B" — 0 be exact

sequences of G-modules. Suppose that we are given a pairing

p:AxB—=C
into a G-module C' such that ¢(A" x B") = 0. Then we have the following commutative
diagram
H" (G, A") X H*(G,B") —=— H"™(G,0)
b 1 oo
H™HG, A N H*YG,B") —— H™(G,C)

where § is the connecting homomorphism.
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3.2 Main Correspondence

Definition 3.2.1. A Q,-vector space W is called a Q,[Gq,]-module if Gg, acts continu-
ously on W.

Theorem 3.2.2. For any Q,[Gg,]-module W, there is a one-to-one correspondence
{non-trivial continuous extensions of Q, by W} > {one—dimensional subspaces ole(W)}

where H"(—) denotes cohomology with respect to the group Gg,.

Proof. Suppose that we have an extension X of Q, by W, i.e, a short exact sequence of

Go,-modules
0O—=-W-=>X-0Q,—0 (3.2.1)
Note that Qg “ = Q,, taking Galois cohomology we obtain

0 — W 4 X% % Q, % H'(Gg,, W) — - (3.2.2)

= Suppose that we have a non-split extension X of Q, by W. If d # 0, then the image
of d is an one-dimensional subspace in H 1(GQP, W). Assume that d = 0, we have the

following exact sequence
0— W% — X% —Q, =0

It follows that there exits z € X“% such that ¢)(z) = 1 € Q,, so we can define s : Q, — X
by s(q) = qr. We see that s is Gg,-homomorphism: for all ¢ € G, we have

ez

s(¢”) = ¢"v = ¢°27 = (qz)” = s(q)
and ¢ o s = Idg,: for all ¢Q, we have

Yos(q) =v(qr) = q(r) =q-1=¢q
Hence the exact sequence is split.

<= Suppose that £ : G, — W be a non-zero 1-cocycle, i.e., a continuous map Gg, — W
satisfying {(o1) = &(o) + &(7)7 for all 0,7 € G(Q,). We define X = W & Q,, together
with the action of Gg, given by

(w,q)” = (w” +¢€(0),q)
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We see that this is indeed an act of G, on X: note that {(Id) = 0 by the equation

determined the 1-cocycle

(w,q)™ = (W' + g&(1d), q) = (w,q)

and for all 01,09 € Gg, we have

((w,9)")” = (W™ + q&(01), 0))™

= ((w™ + ¢&(01))”* + ¢€(02), q)
= (W% + q7£(01)7 + ¢€(02), q)
= (w7 + g€(01)”* + ¢€(02), q)
= (W™ + ¢¢(0102),q)

)0’10’2

= (w,q

We define the Gg,-homomorphisms ¢ : W — X by w — (w,0) and ¢ : X — Q, by

(w,q) — g. Then we have an exact sequence of Gg,-modules

0O=-W-=>X—-Q,—0

Assume that the class [¢] of £ in H'(Gg,, W) is nonzero. If the exact sequence is
non-split then we are done. Otherwise, suppose that the sequence is split, then there is a
section s : Q, — X such that 1o s = Idg, as Gg,-homomorphism. Let s(1) = (w,q) € X
we have 1 =1 o s(1) = ¥ (w, q) = q. Moreover,

(w,1) = s(1) = 5(17) = 5(1)” = (w,1)* = (w” +£(0),1)
Hence £(0) = w — w? implies [¢] = 0 a contradiction.

We have constructed two maps between non-trivial extensions of @, by W and one-

dimensional subspaces of H'(W). We claim that they are inverse of each other.

Suppose that we have a non-split exact sequence
0O=-W-—=X-=0Q,—0

we obtain a one-dimensional subspace of H 1(G@p, W) given by the image of the connecting
homomorphism d : Q, = H'(Gg,, W). Let £ : Gg, — W be the 1-cocycle generating this

line in H 1(G@p, W). Then we can construct the non-split exact sequence of Gg,-modules
by &

O—=W-=WwWaeQ,—Q,—0
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with the action on W & Q, given by (w” + ¢€(0),q). We claim that this exact sequence
is isomorphic to the given one. That is the following diagram is commutative as Gg,-

homomorphism

e}

> X > Qp

Wbk

0 >
0 > W > W aQ, > Q, > 0

and f : X — W & Q, defined by f(z) = (¢ '(z),¢(x)) is an isomorphism as Gg,-
homomorphism. Indeed, for all w € W we have
foo(w) = (¢~ (o(w))", ¥(p(w))) = (w’,0) = ¢ o Id(w))

Also, we see that f(z7) = (gb_l(x"),@/)(xg)) and f(x)? = (c;S_l(x)U—l—w(x)f(a),@/J(x)).
Note that

¢ (071 (2)7 + 9 (2)&(0)) = ¢(67'(2)7) + ¢(¥(2)€(0)) = 27 + Y(2)p(E(0)) = 27
as ¢(£(0)) = 0. Hence f is a Gg,-homomorphism. Moreover, it follows the injectivity of
¢ and surjectivity of 1 we obtain that f is a bijection.

Conversely, suppose that we have a non-zero l-cocycle £ : Gg, — W representing a

non-zero class in H I(Gva W). We can construct a non-split exact sequence
0O=-W-=X-0Q,—0

where X = W & Q, with the action defined above. Then we have a connecting homomor-
phism d : Q, — H'(Gq,, W) defines one-dimensional subspace of H'(Gg,, W). Since the
exact sequence 0 - W — X — Q, — 0 is non-split, by the claim of the previous part we
have seen that there is no w € W such that (o) = w? — w, i.e., 0 # £ € Im d. Thus the
subspace determined by & and the subspace given by d are the same. O]

3.3 Kummer Theory

3.3.1 Kummer Classes

Theorem 3.3.1. (Hilbert 90) Let L/ K be a Galois extension with Galois group Gal(L/K)
and L™ be the multiplicative group of L. Then

HY(Gal(L/K), L) = {1}
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Proof. Refer [Bir67] O

Consider the map ¥ : (Q,)* — (Q,)* given by ¢ > ¢*". The kernel of this map is
the group of the p"-th roots of unity p,». Here we have the action of G, on p,« given
by € = o(e) for € € p» and 0 € Gg,. Hence we have the following exact sequence of

G,-modules

1= g — (@) 5 (@)* — 1

Using Hilbert 90 theorem and observing that ,ufn@P = {1}, we obtain the following exact

sequence
1= Q5 QF = H'(Gg,, pin) — 1

Hence the connecting homomorphism d : (@; — H 1(G@p, fpn) induces an isomorphism

n

p
@ /(@) = H' (G tir).
Hence for every ¢ € Q) we can define a class in H 1(GQP, fpn) via this isomorphism. More

precisely choosing a compatible sequence (ql/ P"),, of p-power root of ¢, by the definition

o—1
n -

of connecting map, we have &, : Gg, — p,» given by o (¢M*")

Proposition 3.3.2. We have Q) ~Z X Z; ~ 7 X ji, 1 X (1+ pZ,)
Proof. Refer [Ser79] O

It follows that (Q, )"~ p"Z X i,y x (14 p"Z,). Note that 1+ p"Z, ~ p"Z,, hence
Q /(@) ~Z/p"L x L/p" 'L
Taking projective limit we obtain
H' (G, lim jiyn) = lim H' (G, ) = Iim Q) /(Q))" = Z, x Z,

Remark 3.3.3. We have p,n ~ Z/p"Z as abelian groups but with different actions of
Go, (Gq, acts trivially on Z/p"Z). Hence Wm i =~ 7, as abelian group and we denote
Jm fin by Z,(1) with the defined action.
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Tensoring with @, and denoting Z,(1) ®z, Q, := Q,(1) we obtain the following iso-

morphism

Hl(GQp>@p(1>> ~ (Zp X Zp) ®z, Qp

Thus each ¢ € Q, determines a cohomology class v, € H 1(Q,(1)) by taking projective

limit of &,, i.e.,

74(0) = lm &, (o)

We call the class v, the Kummer class associated to g € @;.

3.3.2 Tate Module

Definition 3.3.4. Let E an elliptic curve and E[p"] be the kernel of [p"] : E — E. We
define the Tate module of F is the inverse limit T'a,(E) := Jm F [p"].
We denote by V(E) := Ta,(E) ®z, Q,.

Suppose that £/Q, has the split reduction at p, then we have the isomorphism
— ——X
EQ,)~Q, /d5

Since 1 = ¢% € ¢%, by this isomorphism we see that p,» C E[p"]. On the other hand, if
z € E[p"] then 27" € ¢%. That is there is ¢ € Z such that 2/" = ¢%. We associate to z

the image of ¢ mod Z/p"Z. Note that 28" - 28" = ¢% - ¢ = ¢2 2. Furthermore, for all

¢ € ZJ/p"Z, let ¢ € Z be its representative. By the isomorphism E(QTPX) ~ @X /4%, we
see that ¢5, = 1 in E(Q,). Hence, there exits z € E[p"] such that 2" = (q%). Thus, we

have the following exact sequence
1= pupm — Ep"] - Z/p"Z — 0
Note that {i,n bnen is a surjective system, taking projective limit we have
1 —2Z,(1) = Tay,(E) - Z, — 0
Tensoring with Q,, since Q, is a flat Z,-module we obtain the following exact sequence

1-Q,(1)—=V(E)—-Q,—0
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Theorem 3.3.5. Let E be an elliptic curve over Q,. Suppose that E has a split muti-
plicative reduction at p. Let ¢ € Q) be any nontrivial element of the group q% of Tate
period. Then the Kummer class 7y, associated to q spans the line in H'(Q,(1)) associated

to the extension

1-Q,(1)—=V(E)—-Q,—0

Proof. Recall that for all ¢ € ¢%, we have the 1-cocycle associated to ¢ given by

¢ = qp — (& Gg, = ppr)
o (@) ,)"
The Kummer class, by definition, is v, = lﬁnfn
On the other hands, the line in H 1(GQP, pn) corresponding to the exact sequence

1=y = EP"] = Z/p"Z — 0

is given as follows: for all ¢ € Z/p"Z, let ¢ be its representative. Then there exist
z = (¢5)"" € E[p"] such that 2" = ¢%. The class in H'(Gq,, ) associated to this

extension is hence given by

Q/Jc :GQP — Hpn

A\ o1
o 27 = ((g5)""")

Thus we see that Kummer class v, associated to ¢ spans the line in H'(Q,(1)) associated

to the extension

1-Q,(1)—=V(E)—-Q,—0

3.4 Infinitesimal Deformations

Let Q := Q,[t]/t* be the ring of polyomials over @, modulo t*. We see that

Q, = {a + bt + (t})]a,b € Q,}
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The valuation on (@p is induced by the valuation v, on Q,

Vg, : @p—>ZU{oo}
g, (a+ bt) = min(u,(a), vy (b))
Definition 3.4.1. Let V' be a finite dimensional Qp vector space with continuous Gg, :

Gal(Q,/Q,) action. We will say that a Qp module, V, with G, action is an infinitesimal
deformation of V if V is free as a Qp—module and V/tV ~V as a G,-module.

It follows that V is a @p-ﬂat module. Using the flatness of 17, we will show that ¢V is

isomorphic to V.

Theorem 3.4.2. Let A be a commutative ring and let M be an A-module. Then M is
flat over A if and only if [ ®4 M — A ®4 M is an injective homomorphism for every
finitely generated ideal I of A.

Proof. Refer [Ei95], theorem 6.1. O

Corollary 3.4.3. Let k be a field and let R := k[t]/(t?) be the quotient ring of polynomials
over k modulo (t*). Let M be an R-module, then M is flat over R if and only if the map
M/tM ~tM, m + tM — tm is isomorphism.

Proof. The only non-trivial ideal of A is (¢), which is isomorphic as an R-module to R/(t).

Indeed, consider the R-homomorphism

fiR/(t) = tR

r—=rt

Since (#*) = 0in R, f is well-defined. Let a+bt+(t*) € R and assume that (a+bt+(t?))t =
0 then at =0 € R as t* = 0 in R. It follows that a € (), i.e., f is injective and hence
bijective. Thus, by the above theorem, M is flat over R if and only if

M/tM ~ R/(t) @ M ~ (t) Qg M - R@r M = M
is injective, hence isomorphic. O

Proposition 3.4.4. If V is an infinitesimal deformation of V', then ‘7/ﬂ~/ and tV are

1somorphic to V. Hence V is an extension of Vby V.
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Proof. By definition \7/ tV ~ V. Since V is free over @p, Visa @p—ﬂat module, hence
Ve VIV ~tV
So we have an exact sequence of Gg,-modules
0V =V V o0

O

Lemma 3.4.5. Let k be a field. Then f(z) = ag+ayx + -+ ap_ 12" ' + (2) is an unit
of the quotient k[z]/(x™) if and only if ag # 0.

Proof. If ay = 0 then f(z) € (x), so f(x) is not a unit in k[z]/(z"). Conversely, suppose
fx)=ao+aw+- - +a, 12", ag#0

so ged(z", f(x)) = 1. Thus there exist p(x), ¢(x) € klx] with p(x)z" + q(x)f(z) =1,
and then

(f(x) + (") (q(x) + (2")) = 1+ («")
Thus f(x) is a unit in klz|/(z"). O
It follows that QX = {a + bt + (t*)]a,b € Qp.a # 0} = Q- (1 +tQ,).

Definition 3.4.6. Let ¢ : Gg, — @vpx be a nontrivial continuous Galois character. We
denote by Q,(1) the vector space Q, with the action via ¢). That is

(a+0bt)7 :=(o) - (a+ bt)
We will emphasis a nontrivial continuous Galois character ¢ : Gg, — @; satisfying

the congruence (o) = 1 mod ¢ for every o € Gg,. That is the image of v lies inside
1 +tQ,.

¥(Gg,) € 1+1Q,

It follows that ¢ (o) - (a +bt) = 1-a = a mod t. Note that the multiplicative group
(14 tQ,,-) is isomorphic to the additive group (Q,,+) as topological groups.
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Define the projection
T :Qp(¥) —» Qp
a+bt—a

We claim that 7 is a Gg,-homomorphism. Indeed, we have
7((a+bt)7) =7(Y(c) - (a+bt)) =a
On the other hand,
m(a+bt)” =a’ =a
7 is obviously surjective and its kernel is tQ,. Note that Gg, acts trivially on ¢Q, because
(tx)” = (o) - (tz) =tz

It follows that tQ, ~ Q, as Gg,-modules via tx + x. Thus, we have an exact sequence

as Gg,- modules

0—tQ, ~Q, — Q,(¢) = Q, =0
xr—tx

We obtain @p(w) is an infinitesimal deformation of Q,,.
Proposition 3.4.7. If ¢ : Go, — @;X 18 a nontrivial continuous Galois character satis-
fying the congruence ¥(0) =1 mod t for every o € Gg, then Qy(1) is an infinitesimal
deformation of Q,. In particular, Q,(1) is a nonsplit extension of Q, by Q,.
Proof. We claim that the extension

0= Qp — Qy¢)) = Q, =0

is non-split. Otherwise, let s : Q, — @(@/}) be the section of 7, i.e., a Gg,-homomorphism
satisfying m o s = Idg,. Let s(1) = a + bt then

I=m(s(1)) =m(a+bt) = a

Moreover, since s is Gg,-equivariant we obtain
L+bt=5(1) =5(17) =5(1)” =¢(o) - (1 +bt), Vo€ Gg,

As 14+ bt € (@vpx we see that ¢(0) = 1 for all o € Gg,, a contradiction with the nontrivial
property of ¢. Thus this extension is nonsplit as Gg,-modules. O]
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This extension hence determines a line in H'(Q,). Note that (o) - (a + bt) = (a + bt)
for all 0 € G, if only if @ = 0. It follows that
Q1) = tQ,

Thus we obtain the following long exact sequence

0— @p - @;(w)GQp = tQp — Qp i> Hl(GvaQp> —

Note that the Gg,-homomorphism z +— tz gives us Q, ~ tQ,, so we have an inclusion
d:Q,—H 1(G@p, Q,) in which we obtain a 1-dimensional subspace in H'(Q,).

Differentiation with respect to ¢ induces a continuous isomorphism
d
% . 1 -+ tQp — Qp

1+bt—0b

from the multiplicative subgroup 1+tQ, C @7 to the additive group Q,. The composition

d
of ¢ with — is an nonzero additive character

dt
d
d—f 1 Gg, = @y
d d
o E(zﬁ(a)) = E(l +bt) =10

Since Gg, acts trivially on Q,, we have H'(Gg,,Q,) = Hom(Gg,,Q,). Hence we may

d
consider d—f as a cohomology class in H 1(GQP’ Qyp)-

. : dy 1 .
Proposition 3.4.8. The line QpE C H (Gg,,Qyp) corresponds to the nontrivial exten-
s10m

0—>t(@p—>@,(w)—>@p—>0

Proof. We describe the image of the inclusion d : Q, — H'(Gg,,Q,). Consider 1 € Q,,
then choose 1 + bt € Q,,, then the image of 1 in Hl(G@p, Q,) is given by

d(l) : GQp — t@p
o= (1+0t)7 — (1+bt)
Let (o) =1+t € 1 +tQ, we have
(1+0t)° — (L+bt) = (L+Vt)(1+bt) — (1+bt) =b't = —(¢(0)) - t

Thus the line d(Q,) is generated by % O



3.4. INFINITESIMAL DEFORMATIONS 69

—~ d
Theorem 3.4.9. The correspondence Q,(¢)) <> de—lf induces a one-one correspondence

{Nontm'm’al infinitesimal deformations of@p}

!

{ One-dimensional subspaces of H' (@p)}

Proof. We have seen that every nontrivial infinitesimal deformation of @Q, induces a 1-

dimensional subspace of H 1(GQP, Q,) via the connecting homomorphism.

Suppose we have a 1-dimensional Q, vector space in H 1(G@p, Q,) generated by 0 #
[v] € H'(Gg,, Q). Let v denote the 1-cocycle representive of [y], then v : Gg, —
Q, is a continuous group homomorphism since Gg, act trivially on Q,. Compose this
homomorphism with the continuous group isomorphism (Q,, +) ~ (1 + tQ,, -) we obtain

a character
¥ :Go, — Q, — 1+1Q,
It gives rise an infinitesimal deformation @,(w) of Q,

0—>Qp—>@3(w)—>@p—>0

Let X be a nontrivial infinitesimal deformation of Q,. Then we have the following

extension

0—Q—X—-Q,—0

Then X is isomorphic to @Dw) in the sense that we have the following commutative

diagram
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3.5 Tate Duality

3.5.1 The Brauer Group

Before we state Tate’s local duality, we study the Brauer group following [Ser67].

Definition 3.5.1. Let k be a field with absolute Galois group Gj = Gal(k/k). The
Brauer group of k is the cohomology group H 2(Gk,EX). We denote it by Br(k)

Thus Br(k) is the inductive limit of the groups Br(L/k) := H?*(Gal(L/k), L*) for L/k
a finite Galois extension. Note that if K is an extension of k, we have a homomorphism
Br(k) — Br(K), induced by the natural morphism Gx — Gy and the inclusion &~ — K .

Recall the Kummer exact sequence
1—>,un—>EXL>EX—>1
Using Hilber90 theorem we obtain
Proposition 3.5.2. Let n be an integer which is invertible in k. Then
H*(k, j1n) = (Brk)|n]

where (Br k)[n] := ker <H2(Gk,EX) N ker(Hz(Gk,EX>

Let K be a local field and K, be its maximal unramified extension. The Galois group
G = Gal(K,,/K) is isomorphic to Z = l'ng/nZ which is topologically generated

by the Frobenius. We can identify the Brauer group of K with the cohomology group
HQ(Gnrv K:;'r)

Theorem 3.5.3. Let K be a local field. Then we have an isomorphism
Br(K) ~ H* (G, KX
Theorem 3.5.4. The valuation map v : K, — Z defines an isomorphism

H* (G, KX) ~ H*(Z,7)

Now consider the exact sequence of G-modules

0-Z—-Q—-Q/Z—-0
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The module Q has trivial cohomology since it is uniquely divisible (i.e., Z-injective).
Hence the coboundary 6 : H'(Q/Z) — H?*(Z) yields an isomorphism

Hom(G,Q/Z) ~ H'(Q/Z) ~ H*(G,Z)

Let ¢ € Hom(i, Q/Z) and define a map

~v: Hom(Z,Q/Z) — Q/Z
¢ ¢(1)

Thus we have isomorphisms

HX(G,y, K2X) -2 HX(Z,Z) =5 Hom(Z,Q/Z) 5 Q/Z
The map invg : H*(G,y, KX) — Q/Z is defined by invg =vo0d *ow.
Theorem 3.5.5. Let K be a local field. Then we have an isomorphism

invg : BrK — Q/Z

Recall the Kummer sequence in local case
1= i — Q) ﬂ@; — 1

Note that the Gg, is of strict cohomological dimension 2, so H'(Gg,, @X) = 1lforalli > 2.
By Hilbert90, we have HI(GQP,@;) = {1} and have already proved that H'(Gg,, ptpn) =

Q; / (Q; )". Taking cohomology we obtain the following exact sequence

1 - Q; — Q; - Hl(GQP’Iupn) - H1<GQP’@> — HI(GQIH(QTP) — Hz(GQpHuP") — 1

Now we can use the Brauer group to compute H 2(Gva fpn )
Proposition 3.5.6. We have H*(Gg,, ttn) = Z/nZ and hence H*(Gg,,Q,(1)) = Q,.
Proof. 1t follows that
H*(Gq, ) = (BrQy)[p"] = Z/nZ

Taking projective limit we obtain H*(Q,(1)) = Q, O
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3.5.2 Tate Duality

Theorem 3.5.7. (Tate local duality) The cup product induces a pairing
() H7(Gq,, Q1)) x H'(,Gq,Qy(1)7) = H*(Gg,, Qp(1)) = Q,
where Q,(1)* = Hom(Q,(1),Q,(1)).

The multiplication induces a perfect pairing

Qp(1) x Qp = Qy(1)
(a,b) —a-b

It follows that Tate duality gives us a perfect pairing

() H*(Go,, Q1) x H'(Gg,, Q) = H*(Go,, Qy(1) = Q,

Hence a line in either one of the cohomology groups H'(Q,(1)), H'(Q,) determines a

line in the other one- namely, its orthogonal complement.

p () of Qp Ole(Qp)

i I
|
|
<
{Nontrivial extensions of One-dimensional subspaces }

Qp by Gp(1) } — { of H!(Qp(1)

{Nontrivial infinitesimal deformations} {One-dimensional subspaces }

The main result in local class field theory is the following theorem.

Definition 3.5.8. Let L/K be a finite Galois extension of degree n. We call fundamental
class of the extension L/K the unique element uz x of Br(L/K) = H*(Gal(L/K),L")
such that invg (ur/x) = 1/n € Q/Z.

Theorem 3.5.9. Let L be a finite Galois extension of a local field K. Then the cup

product with uy i defines an isomorphism
Ok G — K* /Ny (L™)
where G := Gal(L/K). The isomorphism
WL K = 92/11( : K*/Npj(L™) — G

is called the reciprocity map associated to the extension L/K.
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The map op/x : K* = K*/Np/k(L™) — G given by @ — @ — wr k(@) is called
local Artin symbol associated to the extension L/K. We start with an o € K* and will
seck the image o7k (a) € G™.

Let G be a finite group. The norm element of Z[G| is Ng := Zg. Let A be a G-

geG
module and let Ng : A — A be the G-module endomorphism a — Nga. We then have

IgA C ker N where I is the augmentation ideal of Z[G]. Moreover, im Ng € A%, thus

Ng induces a morphism of trivial G-modules
N : Ag = AJIGA — AC

Set Ho(G,A) = Ag, the functor A — Hy(G, A) is covariant and right exact. We define
the homology groups H;(G, A) as its left derived functor.

Definition 3.5.10. Let A be a G-module. For n > 0 the Tate cohomology and homology
are defined by

~ coker ]TTG forn =0 ~ ker NG form=20
H"(G,A) := H,(G,A) =
H"(G,A) forn>0 H,(G,A) forn>0

and H (G, A) := H,_,(G,A), H_,(G, A) := H" (G, A)

By definition H 2(G,7) = H(G,7Z). Moreover, it is remarkable that
H%(Gal(L/K),L*) = K*/Np/k L™ and the homology group H;(G,Z) is the abeliani-
sation G* = G/[G, G] of G.

Proposition 3.5.11. Let Y € Hom(G,Q/Z) = H*(G,Z) be a character of degree 1 of
G and let §, € H*(G,Z) be the image of x by the coboundary map § : H'(G,Q/Z) —
H*(G,7Z). Let

@ e K*/Nyx(L*) = H(G, L")

be the image of a. The cup product @ U §, is an element of H*(G,L”) C Br(K). We

have the formula

X(or/k (@) = invg (@ Ud,)

Proof. By definition

orr(a) Uuy g =a € H' (G, LX)
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here o7k () is identified with an element of H *(G,Z). Using the associativity of the
cup product, this gives us

aUdby =up g Uor/k(a)Udy =urx U (0(or/x(a) Ux)
with o7 /k(a) U x € ﬁil(G,Q/Z). Now
G,z -5 1°(G,2) = Z/nz
and we identify it (G,Q/Z) with Z/nZ. Moreover, the identification between H *(G, Z)

and G ensure that or/k(a) Ux = x(op/ka). Now write op/x(a) U x = r/n, r € Z.
Then §(r/n) € ]:IO(G, Z) and §(r/n) = r. Hence

UL/K U (UL/K @) 5)() =ruy Ur/K

and the invariant of this cohomology class is just r/n = x(z,). O

Now consider a tower of Galois extensions K C L' C L with G = Gal(L/K) and
H = G(L/L'). Then, if X’ is a character of (G/H)* and x is the corresponding character
of G, and if « € K* induces o/ (a) € G* and o x(a) € (G/H)™ under the natural
map G — (G/H)®. Tt follows from the proposition and the inflation map transforms
X' (resp. d,/) into x (resp. dy), we have x(or/x(@)) = x'(07,/x(@)). This compatibility
allows us to define o, for any abelian extension; in particular, taking L = K%, the

maximal abelian extension of K, we get a homomorphism
ox  K* — Gal(K”/K)
Note that H'(Gg,,Q,) = Homwm(Gg;,Qp) as every group homomorphism factors

through its abelization. We can reinterpret the Tate local duality as follows.

Theorem 3.5.12. Let G?Ql; be the abelianized Galois group and let o : Q; — G?Ql; be a
local Artin symbol, normalized so that o, is the inverse of a Frobenius element. Then the

Tate pairing
() HY(Qy(1) x H(Qy) = Q,
1s explicitly given by the formula

<7t17 §> = f(Jq)

for arbitrary ¢ € Q' and £ € HY(Q,), where v, € H'(Q,(1)) is the Kummer class of q.
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Recall that the cyclotomic character &, : Gg, — Z, is characterized by £, = fpﬂ(g) for
all 0 € G and §,» € pyn. Note that & is alternatively obtained by lifting Ig, — I&Z ~ Z;;
to Gg,. Hence & is given by (o) = u for u € Z.

Theorem 3.5.13. Let E/q, be an elliptic curve with split multiplicative reduction with
Tate p-adic period qg and let ¢ : Gg, — Q; be a nontrivial character which is = 1 modulo

t. Then the following statements are equivalent:

dy
dt

2. Tate’s module V(E) corresponds to Q, (1) under

1. —(04;) =0 with o : Q) — Gg; the local Artin symbol.

{ Nontrivial infinitesimal deformations Q,(¢) of Q,}

N
1
1

N2

{ Nontrivial extensions of Q, by Q,(1)}

3. There is an indinitesimal deformation V of Tate’s module V(E) and a commutative

diagram
0 —— @p(l) > 1/ ; @p(@b) — 0
0 — Q1) —— V(E) > Q, > 0

in which the top row is an exact sequence of @p[G@p]-modules and the vertical maps

are reduction modulo t.

Proof. (1) < (2) By the Tate’s local duality formula (v4,&) = &(0,), we see that

dp : . dip
E(OQE) = 0 if and only if <fqu, s

the Tate pairing. On the other hand, the Kummer class ,, spans the line in H'(Q,(1))

d
> = 0, i.e., 4, is orthogonal to d—f with respect to

d
determined by V(F) and d_qf spans the line in H'(Q,) determined by the infinitesimal
deformation @vp(z/;).
(2) = (3) Suppose that the Tate module V(E) corresponds to @(w). Then we can

provide an explicit construction of V as follows. Let v denote a cocycle representing the

cohomology class of 7,,. Then the function

(:Gg, x Gg, = Qp(1)
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dip

(91, 92) = v(91) - E(Qz)

dy
dt
Since this cup product vanishes by Tate duality, there is a 1-cochain £ : Gg, — Q,(1)

is a 2-cocycle representing the cup product of 7,, and

whose coboundary is the ¢. Hence, for all (g1, 92) € G, x Gg,, we have

i (92)

£(g192) — &o(91)€(92) — &(g1) = 7(91)%

Now define for each g € G

o g) = (@ég) 7% Uf(g)) € CLy@)

—2

We can check that p : Gg, = GL2(Q,) is a group homomorphism. Let V' =: Q, equipped
2

with the Galois action induced by p, i.e., for all (¢1,¢2) € Q, and g € G

(01,42)? = ($o(9)q1, v (9)q2)

Define

UV —Q, (1)
(Q17Q2) = Q2

We see that U is Gg,-equivariant

U((q1,92)7) = ¥((€o(9)q1,¥(9)a2)) = ¥(9)a2 = @5 = ¥(q)*

Moreover, its kernel is @;({0) = @;(1). Reduce modulo ¢ we obtain the maps 6 :
Q,(1) = Q,(1) and 6, : Q,(¢) — Q,. Now define 6 = (61,6) : V — V(E) we obtain

0 —— Q,(1) > V > Qp(¢p) —— 0
N

0 —— Q,(1) —— V(£) > Qp > 0
| | |
0 0 0
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By Snake lemma we get the diagram in 3.

(3) = (2) Suppose that we have a commutative diagram as in (¢). We show that vg

is orthogonal to T with respect to the Tate pairing. From the diagram in ¢ we obtain a

commutative diagram

0 0 0
0 —— @;El) — V(]E) b @p > 0
0 —— @]11) b XN/ ; @p\(’w) — 0
0 —— Qz:il) — V(’E) > (@p > 0
0 0 0

in which the rows and columns are exact. We see there exits a section Q,(1) — @7)(1), the
leftmost vertical row splits, the connecting homomorphism H'(Q,(1)) — H?*(Q,(1)) van-
ishes (the galois cohomology functor is additive). On the other hand, let d, : H*(Q,) —
H 1((@p) be the connecting homomorphism of degree 0 attached to the rightmost vertical
row, and let §; : H'(Q,) — H"™(Q,(1)) (i = 0,1) be the connecting homomorphism of

degree i associated to the bottom row, we obtain a commutative diagram

H(Q,) = Q, 2 H'(Q,(1))

Js J-s

HY(Q,) —2— HX(Q,(1))

Since 51(2—1?) =d0Y(1) =006(1) =0, % € Kerd;. On the other hand, the Kummer
class 74, is in the image of dp. We will show that the kernel of ¢; is orthogonal to the

image of 9.
The multiplication induces a perfect pairing

P Qp(l) X Qp — @p(1>
(1, @) = Q1q2
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Indeed, Q, — Hom(Q,(1),Q,(1)), ¢2 — P(—, ¢2). Moreover, the Weil pairing
V(E) x V(E) = Qu(1)

with respect to which the homomorphisms ¢ : Q,(1) — V(F) and 7 : V(E) — Q, are

transpose of each other. It follow that

0 — Q,(1) ———— V(E
| | |

0 — Q1) =Q, — V(E)"

Hence the fundamental exact sequence
0—Q,(1) = V(E)—Q,—0

is self dual with respect to these pairings. By duality, the connecting homomorphisms
&« H°(Q,) — H'(Q,(1)) and 6, : H'(Q,) — H*(Q,(1)) are transposes under the Tate

pairing. In particular, the image of dy is orthogonal to the kernel of &, O

3.6 L-invariant

Theorem 3.6.1. Let a,(k) be the p-adic analytic function attached to the p-th coefficient
of Hida’s A-adic modular form. Then

Proof. Let [ = Z a,(k)q" € Ay[[q]] be the formal g-expansion given by Hida’s theorem,

n=1
where U is a suitable p-adic neighborhood of 2. Consider the representation p : Gg, —
GL2(Ay) given in the theorem [2.5.10, Then we obtain a commutative diagram

k—2

0 — Au(xo (xo) 0 ") > Ap » Au(por) —— 0
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of Gg,-representations where ¢ : Gg, — Aj is the unramified character with
i (Frob,) = a,(k), the bottom row is the fundamental sequence associated to E, and

the vertical arrows are given by specialization to k = 2.

Twisting each term of the above diagram by ¢ <X0>2_k so that the leftmost term is
Ay (xo). Since this character specializes to the trivial character at k = 2, we obtain a
commutative diagram

0 —— Au(xo) — Ab(p (x0)* ") — Au(pi (x0)") —— 0

| | !

0 —— Q1) —— V(B) @

e}

Let t := k —2 € Ay we have Ay /(t?) ~ @p. Hence, reducing the terms modulo #* and
setting V 1= @g(gok (x0)*™") we obtain a diagram

0 —— Q,(1) » V > Q,() —— 0
I
0 — Q,(1) — V(£) > Q, > 0

where ¥ = 7 (xo)* " considered modulo 2. It follows that

dy B
%(UPE) =0

Writing ¢z = p"u where n = ord,(gg) and u € Z and noting that ¢ (0,) = @(Frob,)™!
and ¢ (Frob,) = a, (k) we obtain

V(ogs) = ap(k) 7" (u)*™*

Differentiate this with respect to k and set k = 2. Note that «,(2) = 1 since E has split

multiplicative reduction at p, we have the equality

. 1 logp (qE)

a;(Q) -9 ord,(qg)



CHAPTER 4

Two-variable p-adic L-function

In this chapter, we will construct the Mazur-Kitagawa p-adic L-function following
Greenberg and Stevens [GS94] by conceptual study the measure -valued modular symbols.
In chaoter 1, we have seen that classical modular symbol encodes special values of L-
function. It is well-known that the classical modular symbols can be interpreted in the
sense of cohomology. One of the remarkable things is that the measure-valued module of

modular symbols has the structure of a A-module, to which we can apply Hida’s theory.

Given an elliptic curve E over Q, we constructed the p-adic L-function attached to E in
chapter 1. It will turn out that we can lift a classical modular symbol to a measure-valued
modular symbol which can be viewed as a family of p-adic L-functions whose weight 2

specialization agrees with the p-adic L-function attached to F.

4.1 Modular Symbols

4.1.1 Modular Symbols

Definition 4.1.1. Let D := Div(P*(Q)) be the group of divisors supported on the rational
cusps P'(Q) = QU {oo} of the upper half plane H. Denote

Do := {{c1} — {c2}|where {¢1}, {cx} e P'(Q)} C D

the subgroup of divisors of degree zero.

The group GLy(Q) acts by fractional linear transformations on D and also on Dy, i.e,
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for all z € D

a b az+b
z =
c d cz+d
Also, we define the action of the multiplicative semigroup My(Z) of 2 x 2 integral matrices

on D and Dy.

Definition 4.1.2. If Z is a subsemigroup of the multiplicative semigroup M(Z) and
if A is a right Z [Z] -module, then we define a right action of Z on Homgz(Dy, A) by
¢ — P|,, for o € Z, where

(®])(D) = ®(aD)|,

for all D € D.

Note that the action on the right hand side is the module action on A. Also, we see
. a; by ay by
that if oy = Oy = e th
at 1I 01 (Cl d1> 09 <C2 d2) Z e1

(@’01) ‘Uz(D) = (((I)’m)(U?D)) ’02: ((I)(0102D)) ’0201: ((I))‘moz(D)

Hence the action defined is indeed a right action of Z on Homy(Dy, A).

Definition 4.1.3. An element ® € Homy(Dy, A) is called an A-valued modular symbol
if the stabilizer of ® in Z contains a congruence subgroup of SLy(Z). That is, there is
a congruence subgroup I' C SLy(Z) sucht that

Fc{oe) |0, =2}

We say that ® is a modular symbol over I'.

Notation: The module of all A-valued modular symbols is denoted Symb(A). The
module of modular symbols over T' is denoted Symby.(A) C Symb(A)

Definition 4.1.4. We denote Li(R) the R-module of homogeneous polynomials of degree

k — 2 in two variables X, Y with coefficients in a commutative ring R.
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We let Z act on Ly (R) by the following formula

(Flg)(X,Y) = F((X,Y)g")

b d —
where g € Z and F € Li(R) and x is the main involution ¢ — ¢
d b a

c
b b
Claim: Let g, = @ m and g, = 42 % we have
c1 dp c2 do

a1a2 + blcg albg + bldg
g192 =
c1a9 + dlcg Clbg + d1d2

and

dl —C1 dg —C9 - dldg + C1b2 —d162 — C1Q29
b —by  ay —bidy — aiby  bico + aras
Definition 4.1.5. Fix an integer £ > 2 and a commutative ring R. Then Symb(L(R))

is called the module of modular symbols of weight k over R.

The main modular symbol I use throughout my thesis is due to Eicher-Shimura. Let
S:(Q) be the space of weight k cusp forms of all levels having algebraic ¢g-expansions and
let GLj (Q) act on S(Q) via the standard weight k action: for any o € GL$ (Q) and z in
the upper half-plane we define

 det(o)F!

(flo)(z) = mf(m)

Definition 4.1.6. For each f € S,(Q) we associate the unique Z-linear function vy :
Dy — Li(C) whose value on divisors of the form {c;} — {c1} € Dy, with ¢, ¢, € P*(Q) is
given by

Uy ({e2} —{ar}) = 27rz'/ f(2)(zX +Y)2dz (4.1.1)

C1

Remark 4.1.7. For any o € GL3 (Q) we have

lo) (fea} —{en)) =20 [ X +Y)2de = 2mi [ f(02)((02)X +Y) (o)

Cc1
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We have
E—2 az+b h2 k—2 2k
(c(z)X+Y) "= o dX +Y = ((az+b)X + (cz+d)Y)" " (cz+d)
And
i(oz) B i<az+b B ad — be
dz Cdzcz+d (cz+d)?
Hence

(¢ylo) ({02} — {cl}) = 2mi /62 %f(O’Z)(ZX +Y)R 2z

C1

4.1.2 Modular Symbols and Hecke Operators

We define operators via the action of double cosets.

Definition 4.1.8. Let T' and I” be two congruence subgroups and let A C GLJ (Q) be a
semigroup. We denote by H(T', T, A) the free Z-module generated by double cosets T'al”
with a € A

H(D, T A) = {Z aol'al’|ay € Z,a, = 0 except for finitly many o}

a€A

We define multiplication of elements of H(I", A) := H (L', I, A) so that H(I", A) becomes

an algebra.

Let I';,I'3,I's be congruence subgroups. For two elements ['yal's, = U;I'ya; and
I',813 = U;I8;, we define

FlOéFQ : Fgﬁrg = chl—‘l’yf‘;;
v

where ¢, = |[{(7,j)|['1f8; = T'1y}| and the summation is taken over all double cosets
['17I'3 such that v € A. The right hand side is a finite sum because there are only finitely

many ¢’'s and j’s.
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Lemma 4.1.9. The multiplication defined by the equality is independent of the choice of

the representatives oy, B; and .
Proof. Refer [Mi89) O

The Z-algebra H(I', A) is called a Hecke algebra. The unity in Z-algebra H(I', A) is
I

Definition 4.1.10. For an arbitrary congruence subgroup I' C Z, let H(T, Z) be the
double coset algebra over Z associated to the pair (T, Z) The action of H(T, Z) on
A-valued modular symbols over I' is given as follows. If T'(g) € H(T, Z) is the element
associated to the double coset I'gl’, g € Z, then we can write ['gl" as a finite disjoint
union of right cosets, U ['g;. For a modular symbol ® € Symb.(A) we then define

®|T(g) = Y Plg; € Symby(4)

Proposition 4.1.11. Let f € Sp(Q) be a weight k cusp form of any level. Recall the

action of Hecke operaton on f given by

p—1
fIT, = p*/*1 Zf‘ (é Z) +6(P)'f‘ (S ?)

. Then the map f — 1y is Hecke equivariant.

1
Proof. Let 0 = (
0 p

a
) for some prime p, then we have

Vrol{ea} —{e}) =2mi [ fE)- (X + ¥

Cc1

c2 k—1
- 2m/ P pEEh X +v)2de
ea P p

1

Z+a

Substituting y = , 80 y = py — a and dz = ldy we obtain

Upie({c2} = {e1}) = 2mi /02 F) - ((py —a)X +Y)"dy



4.1. MODULAR SYMBOLS 85

Furthermore, we see that

(yX +Y) 2o = (1 — aX)"? <y1 fjiX + Y) o (py —a)X +Y)*

Hence ¢y,({c2} — {c1}) = ¢¥f|lo({c2} — {c1}). The U, operator is a sum of matrices of
this form, we deduce that vy, = 1;|U,. For the T}, operator, it remains to check only

0
the matrix v = (g 1) . Note that P|ly(X,Y) = p"2P((X,Y)/p) we directly verify that

Vpy({e2} — {er}) = 2mi /02 P (p2) (2 X +Y)FPdz

Cc1

co k—2
= 2mi / f(w) [p""‘z (y% + Y)

= Yrh({e2} = {a})

dy

4.1.3 Modular Symbols and Cohomology

Definition 4.1.12. Let I' be a congruence subgroup. We say an element v € I' is
parabolic if v fixes exactly one point in P'(Q) = QU {oo}. Let P denote the set of all

parabolic elements of I'.

Definition 4.1.13. We denote by Cp(TI", M) the R-submodule of C*(I", M) consisting of
elements u with the property that for all v € P there exists some m € M such that

u(y) =(y—1m
Setting

ZH(T, M) = Z,(I', M) N Cp(T", M)
B}%(F,M) = dl(CIID(F7M))

We define the parabolic cohomology groups of I with coefficients in M to be

HY%T,M)=HT,M)=M"
H'(T, M) = Zp(L, M)/ BH(T, M)
Hp(T, M) = Z*(T', M)/ Bp(T", M)
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Let I'y, Ty C SLo(Z) be congruence subgroups. For any a € GLJ (Z), let R(I';, Ty, a*)
denote the semi-group ring generated by I'y, I'y, and a* over R, where a* = det(a)a ™. We
define the action of the double coset operator [[1al's] on H*(T', M) for an R (I';, Ty, a*)-
module M. Let decompose the double coset [I'jal's] = LT ;. For each v € T'y, we have
a;y = 7 for some v; € I'y. Now, for any 1-cocycle w : I'y — M we define

The operator [I'yal's] does not depend on choices of orbit representatives {a;}. Further-
more, if 7,0 € T'y with ;7 = v, and ;6 = d;a5, we have a;70 = v;0;¢;. It follows
that

= Z abu(7:0;) = v (3) + v(7)

Hence, v = u|[l'1als] is a 1-cocycle of T's. Suppose u is a 1-coboundary of T'y with

u(y) = (v — 1)m. Then we have
:Zag(%—l)mzz%v Zozm —1)Za§m
% i 7

which show that v is a 1-coboundary of T's. Thus, the double coset operator [T'yal's] is
a well defined linear operator from H'(I';, M) to H'(T'y, M). Furthermore, one can see
that it maps Hp(T'y, M) to Hp(Ty, M).

We provide the cohomology interpretation of modular symbols due to Ash and Stevens
[AS86]

Definition 4.1.14. A Hecke pair (I'g, Sp) is said to be weakly compatible to a Hecke pair
(I, S) if
1. (Ty, So) C (T, S)
2. the set S’ = S\ 'Sy satisfies SS" C S" and S'Sy C S
3.TNSS; =T
If (T'y, So) C (I, 5) are weakly compatible then there is a canonical algebra homomor-

phism
1 H(F, S) — H(FQ, So)
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Viewing the Hecke algebras as convolution algebras this map is given by the restriction
of functions on S to functions on Sy. The following lemma due to Shapiro allows us to
relate systems of Hecke eigenvalues occurring in the cohomology of I' to those occurring

in Fo.

Proposition 4.1.15. Suppose that (I'y,Sy) C (I, S) are weakly compatible Hecke pairs

1. Let E be a right S-module, F be a right So-module and ¢ : E — F' be an So-morphism.
If Elo C ker(¢) for every o € S\ 'Sy then the composition

H™(T,B)™S H"(Ty, E) % H"(Ty, F)
is Hecke equivariant; i.e. if { € H'(I', E) and h € H(I',S) then

(¢ ores)(E[h) = (. o res(§))li(h)

2. If I is a right So-module then the induced module IndF0 (F) inherits a natural right

S-action. The Shapiro isomorphism
H"(T,Indy, (F)) — H' (Lo, F)
1s Hecke equivariant.

Definition 4.1.16. Let X be a topological space and K be a compact subset of X, define

the compact support cochains

CHX) = UrC'(X, X\ K)
= {p: Ci(X) — R|3 a compact subset K, C X such that ¢ = 0 on chains in X \ K}

For ¢ € C!(X), define the differential
dp(0) = ¢(do)

for all o € C*(X)

Note that if ¢ € CL(X), then dyp is also zero on all chains in X \ K, and so dp €
C'"1(X). Hence we obtain a cochain subcomplex C*(X) of C*(X). We define

Hi(X) = H'(C(X))

the cohomology of X with compact support.
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Theorem 4.1.17. Let R be a commutative ring in which the order of every torsion

element of I is invertible. If E is an R[I']-module then we have
Symbp(E) ~ HX(T, E)
One of the most celebrated result in the subject is the following theorem due to Eicher-

Shimura.

Theorem 4.1.18. There is a Hecke-equivariant isomorphism
Skr2(I', C) @ Sy42(L', C) & E12(I', C) =~ Symbyp(Lx(C)
given by the map

(f, ,9) = ¥ + 5 + 4y

Proof. (Sketch) Firstly we can reinterpret the modular symbols in term of cohomology.

Let Yr :=I"\ H denote the modular curve. We have an isomorphism
Symbr(Li(C)) = He (Yr, Li(C))
There is a cup product pairing
H(Yr, Li(C)) x H' (Yp, Li(C)) — C

Together with the Petersson product on modular forms, one can use these two pairings
to show the injectivity. Using the standard dimension results in the theory of modular

forms and algebraic topology, one can show that both sides have the same dimension. [

Let f be an eigenform. Then for all operator 7" in Hecke algebra H we have

where \;(7T") is the eigenvalue. It gives rise a homomorphism Ay : H — C, T — A ¢(T).
We call A\ is the eigenpacket associated to f.

Definition 4.1.19. Let f € S;75(I',C) be a newform and let Ay : H — C be its eigen-
packet. If M is a space with an action of the Hecke algebra H, then define

M][f] := f-eigenvalue of H in M
={meM:T(m)=X(T)m, VT € H}
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Proposition 4.1.20. We have

dim¢ Symbp(Lg(C)[f] = 2

Proof. The eiegenpacket Ay cannot occur in &E4o(I',C), since the T)-eigenvalue of an
Eisenstein series at a prime p is of size approximately p*, whilst for cusp forms, we have
the estimate a,(f) < CpP?. Tt appears exactly once in both Syyo(I',C) and Sy2(T',C),

and hence the space of modular symbols is of dimensional two. O

1 0
Let + = (0 1) we have the following decomposition.

Proposition 4.1.21. We have a Hecke-stable decomposition
Symbrp (L (C) ~ Symby (L(C) @ Symby (L (C)
into the £1 eigenspaces of the involution t
More generally, we can consider modular symbol with algebraic coefficients. If

multiplication by 2 is invertible on A, then we can decompose any modular symbol

® € Symbr(y)(A) in a unique way as a sum
b=t + O
where ®*|, = +0F. Let
Symbr, vy (A) = Symbry(4)" & Symby, ) (4)”
be the corresponding decomposition of the space of modular symbols.

Theorem 4.1.22. (Manin-Shimura) Let f € Si(L'o(M)) be a common eigenform for
the operators T,, p prime, let O(f) be the ring of algebraic integers generated by the
eigenvalues, and let K(f) be the fraction field of O(f). Then for either choice of sign =+,

the Hecke eigen space associated to f in Symbrp, (Lk(K(f)))jE is one dimensional over

K(f).

Moreover, there are ‘periods’ Qf € C* such that the modular symbols
vr = () vy

generates these eigenspaces and are defined over O(f), i.e. take values in Lp(O(f))
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4.2 p-adic Measures

Fix a prime p > 0 and v : Q, = Z U {oo} the p-adic valuation.
Definition 4.2.1. Let E be a Q,-vector space with a valuation w : E — R U {oo} such
that

1. w(zx +y) > min{w(z),w(y)} for all x,y € E

2. w(ax) =v(a) +w(z) for all a € Q,, z € E.
We say E is a Q,-Banach space if E' is complete with respect to the topology defined by
the valuation w.

Proposition 4.2.2. Define

C(Z,,Q,) ={f:Z, — Q| fis continuous}
and w(f) = infyez, v(f(x)) € Z U {oc} (giving rise to the supremum norm). Then
C(Z,,Q,) with the valuation w is a Q,-Banach space.
Proof. Refer [Col] O

Proposition 4.2.3. For k € N, define
LCy :={f : Zp, = Qy|Va € Zy, f|v, ,is constant}

where Ug j, = a—l—kap. Denote LC = U LCYy all locally constant functions on Z,. Then
k>1

LC C C(Z,,Q,) is dense.
Proof. Refer [Col] O

More generally, let X be a profinite abelian group. We denote C(X,Q,) denote the
module of Q,-valued continuous functions on X and LC(X) denote the submodule of

locally constant functions.

We equip C(X,Q,) with the topology induced by the supremum norm and we also
have LC(X) is dense in C(X,Q,).
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Definition 4.2.4. Define the space Meas(X) of Q,-valued measures on X to be the dual
Hom n:(C(X,Q,), Q,) equipped with the strong topology.

MeaS(X) = Homcont (C(X7 Qp)> @p)

If p € C(X,L) and p € Meas(X) the evaluation of p at ¢ will be denoted by

/gb ) or shortly / - du

We say that an element p € Meas(X) is an Z,-valued measure, and write p € Meas(X, Z,),

if ;1 takes values in Z,,.
Proposition 4.2.5. We have
Meas(X,Q,) = Meas(X,Z,) ®z, Q,
Proof. Since Z, is compact and measures are continuous, or equivalently bounded. It

follows that for all 4 € Meas(X,Q,) there is ¢ € Z, such that ¢y € Meas(X,Z,). Thus
we obtain y = cu® ¢!

Remark 4.2.6. We can think of measures as additive functions
o {compact open subsets of X} — Z,

Indeed, let ¢ € C(X,Z,). Assume first that ¢ is locally constant. Then there exists some
open subgroup U of X such that we can view ¢ as a function on X/U. We define the
integral of ¢ against u to be

bou= Y olulal)
If ¢ is continuous, we can write ¢ = lim ¢,,, where each ¢,, is locally constant. Then we
n—oo

/X¢~u:=7}ggo/x¢n‘u

which exists and is independent of the choice of ¢,.

can define

Conversely, if © € Meas(X,Z,) and U C X is and open compact set, one defines

u(0) = [ 1) o)

the value of p on the characteristic function of U.



92 CHAPTER 4. TWO-VARIABLE P-ADIC L-FUNCTION

Proposition 4.2.7. We have an isomorphism

Meas(X, Z,) ~ @ZP[X/U]
U

where the limit is over all open subgroups of X.

Proof. We define the map from Meas(X, Z,) to lm 7, [X /U] as follows. Let u be a measure
U
in Meas(X,Z,), define an element \yy € Z,[X/U] given by

A=Y ulaU)[a]

laleX/U

By the additivity property of u, we see that (A\y) € @ZP[X/U].
U

Conversely, given an element A € lim Z, [X /U], write \y for its image in Z,[X /U] under
U

the natural projection. Then

We define
plat) = cq

Since the Ay is compatible under the projection maps, this defines an additive function

on the open compact subgroups of G. n

In particular, we can determine the structure of Meas(Z,,Z,) explicitly via Dirac

measure.

Definition 4.2.8. For each t € Z, let 0; € Meas(Z,’) be the Dirac measure given by the

integral

| a5 = s

for f € C(Z),Qyp), i.e., §; is the linear functional evaluation at ¢.

Under the indentification of measures with additive functions on open compact subsets

of Z,, we find that this corresponds to the function

S(U)— 1 ifaeU
t 0 ifag¢U



4.2. P-ADIC MEASURES 93

As an element of the inverse limit, we find that at finite level d; corresponds to the the
basis element [a + p"Z,| € Z,[(Z,/p"Z,)"] with a # 0, denoted by [a].

Proposition 4.2.9. The map t + §; defines a continuous map Z, — Meas(Z, , Zy).

Then it can be uniquely extended to a continuous Z,-isomorphism
Zp|[Z)]] — Meas(Z,, Zy)

Let (Z2) denote the set of primitive vectors in ZJ (i.e. vectors which are not divisible

by p) and consider the canonical projection
(Z3) — PH(Qy)

sending (z,y) in affine coordinates to [z, y] in projective coordinates. The fibers of this

map are just the orbits of the scalar action of Z .

Definition 4.2.10. For X a compact open subset of P'(Q,), we set
U(X) = {(z,y) € (Z)|[x,y] € X}
Thus, U(X) is the preimage of X in (Zi)’. Define

D(X) := Meas(U (X))

When X = PY(Q,), we will simply write D.

Remark 4.2.11. For an arbitrary compact open set X C P'(Q,), the scalar action of 7,
on U(X) induces a continuous action of Z; on D. For all A € Z; and p € D

[ famdow = [ o x)du

Hence D(X) is endowed with a natural structure as continuous Z,[[Z, ]]-module

Denote Ms(Z,) the semigroup of 2 x 2 matrices over Z,. Consider the elements of ZZ
as row vectors, let My(Z,) act by matrix multiplication on the right. This induces an
action of Ms(Z,) on Cont(Z2) by the formula

(0f)(v) = f(vo)

for o € My(Z,) and f € Cont(Z2).
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We can endow D with a natural structure as Zy|[[Z]][M»(Z,)]-module as follows. Iden-
tifying Cont((ZIZ))') with the submodule of Cont(Zi) consisting of functions supported on
(Z2)', we have that Cont((Z2)') € Cont(Z2) is preserved by the action of Ms(Z,). We
endow Cont((Z2)") with this action of My(Z,) and endow I with the dual action. Hence,
for p € D, 0 € My(Zy), and f € Cont((Z2)")

[ tauo = [nan

This action commutes with the action of Z,[[Z]]] on D. Hence D is endowed with a
natural structure as Z,[|Z, ||[M2(Z,)]-module.

4.3 p-Ordinary A-adic Modular Symbols

We fix N a positive integer that is not divisible by p.

Definition 4.3.1. For an integer £ > 2 we define the specialization map ¢y, : D — Li(Z,)
by

ps (Y —yX)* 2 dp(z,y)

Lyt XLy
Remark 4.3.2. The specialization homomorphism zy : A — Z,,, [u] = u*~? gives L(Z,)

a A-module structure.

Let I'g(pZ,) denote the set of matrices in GLo(pZ,) that are upper triangular modulo
.

Proposition 4.3.3. The homomorphism ¢y, induces a morphism ¢y, . by the composition

Symbr ) (D) — Symbr ) (Li(Zp))

Proof. The map ¢y, is I'o(pZ,)-equivariant since the matrices used to define the Hecke

operators are upper triangle. That is,
Pra (1Y) = ()Y
for u € Symbp (n) (D) and 7y € To(pZ,).

Hence, for p € Symbp (D) and v € T'o(Np), and P = (Y — yX)"2 we obtain
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o=} (P) = [ Pl e —a)

p

= / Pd (u{yes —yer}) Iy
Zp XLy

= / Plydp{ycs — ver }
(ZPXZ;;)

Note that v(Z, x Z, ) = Z, x Z, if v is upper triangular modulo p. Hence

(x () {e2 — 1} (P) = / . Pldntoes =5}

The proposition follows from I'o(N) N T'y(pZ,) = L'o(Np). O

The space Symbr, x(DD) is an infinite dimensional A-module. We restrict our attention
to the ordinary part we obtain the following exact sequence to get a finite dimensional

subspace.

Definition 4.3.4. Let e,q = hm U, " he the Hida’s projector and I' be a congruence
subgroup. The ordinary Subspace of Symbp(X) is given by

Symb (X)) := egrq Symbp(X)

Definition 4.3.5. Let x € X := Hom(Z,[[ZX]],Q,), we say that a function ¢ : (Z2)" —
@, is homogeneuous of degree x if p(tx) = k(t)p(x) for every ¢ € Z? and every x € (Z2)'".

Let v € Z; be a topological generator of 1 + pZ, and let [y] € Z,[[Z;]] be the
corresponding element of the completed group ring. For each integer £ > 2, consider
=y -2 e Z pl[Z)]]. Every element in Zy[[Z;]] can be viewed as a character on

k—2

Zy|[Z,]] as obvious way [a] — «a

k—2

Lemma 4.3.6. Lety € Z; be a topological generator of 1+pZ, and let m, := [y] ="~ €

Zp|[Z;]]. Define
P, ={ac Zp[[Z;]H?Tk -a =0}

be the prime ideal associated to m,. A measure pp € D lies in P, D if and only z'f/ wdp =0

for every continuous function ¢ on (Zf,)’ which s homogeneous of degree my,.
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Proof. = Assume that p € P, D, then p = Z a;it; with I is finite and a; € Py, , p; € D.
iel
Note that Z,[[Z]] acts as scalar on the integral, it follows that

/s@du = Z/wd (aspi) = ZM (k- aipi) =0

for all continuous function ¢ which is homogeneous of degree .

Conversely, consider the multiplication by 7, on the ring of continuous functions on
(Z2)" with values on @,
C((zy)) == C((Zy)).

We compute the kernel of this map. Let f € C ((Zi)' ) be a continuous on Z;, we have
T f (%) = (V] =" F (%) = fyx) =7 (%)

It follows that f € ker(my) precisely when f(yx) = 7*"2f(x). Hence for all n € Z we have
f(7"x) = (y")*2f(x). As v is the generator of 1 + pZ, and f is continuous, we obtain

for every a € 1 + pZ,, we have

flax) = a" 2 f(x)

By definition f is a homogeneous polynomial of degree 7. By definitions, the measure
D is a dual of C((Z;)",Q,), and Pr,D is the dual of homogeneous space of D. Thus, if

wdp = 0 for every continuous function ¢ on (ZIQ))' which is homogeneous of degree 7,

then p € P, D. O

For each integer m > 0 let gogrf) be the continuous function on (Zz)’ given by

- mr-a ifb=0 modp™
<p7('('k ) (a’ b) = .
0 otherwise

Lemma 4.3.7. Let ® € W = Symby, y(D) C Hom(Dy, D) be a A-adic modular symbol.

Then the following are equivalent

1. deP, W

2. /gpdCI)(D) =0 for all D € Dy and all continuous functions ¢ homogeneous of degree

Tk
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3. /go(ﬂm)dq)(D) =0 for all D € Dy and all m >0

Proof. 1 < 2 Since Py, is a principal ideal, we have P;, W = Symbp (P, D). Hence, we
have that ® € P, W if and only if ®(D) € P, D for all D € Dy. So the equivalence

follows from the previous lemma.

2 < 3 The implication follows a priori. Now assume that 3 is true. Then for every
v € To(N)

/ Y™ (D) = / @™ de(yD) =0

So 2 follows from the fact that every continuous function ¢ is homogeneous of degree 7y

is the uniform limit of a sequence of linear combinations of the functions 'y<p7($). m

Proposition 4.3.8. The group W° = Symbr (D)° of ordinary A-adic modular sym-
bols is a free A-module of finite rank. Then for ® € W°, let &, = ¢) () €
SymeO(Np)(Lk(Zp))o. Then we have ®,, = 0 if and only if ® € P, W".

Proof. We first prove that ker( 2*) = P, W°. Recall that for ® € W the specialization
®), is the element of Symby(Lg(Z,)) whose value on a divisor D € A is given by

3.(D) = / @Y = yX) (D)

Since the integral is homogeneous of degree 7, the inclusion P, W C ker( 2*) follows

from the implication (1) = (2) of the previous lemma.

Conversely, suppose ® € W and that ®,, . We will show that ® ¢ PMVV0 by using
3 = 1 from lemma . Fix m > 0 and D € D,. Since ® is ordinary, there is a ¥ € W°
such that W|T" = ®. The action of the operator T), and its power 7. on W can be
described precisely as follows. Consider the reduction map (Z?))' — PY(Z/p™Z). For each
x € PY(Z/p™Z) the preimage of x in (Z2)' is a compact open set which we denote by
U(x,p™). Choose a matrix gx = with determinant p™ for which U(x, p™) C ((2121)/ ) G pm -
1 a
0 p™
mod p™. The coset I'gx ,m is independent of the choice of gx ,m with this property. Then

If x =[1,a] with a € Z,/p"Z, = Z/p™7Z, we can choose an element gy ,m =

we have the identity
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[ewarm)= 3 [ gompDaio
xePY(Z/p™mZ)
a sum of modular symbols which are supported on the disjoint compact open sets U(x, p™).

But gx,pmwgz) = 0 unless x = [1,0]. Hence the above integral is equal to
/ 900,50 A (g1 0y - D) = / AW (g opm - D)
L X Lp

But this vanishes since it is the coefficient of Y" in QS%*(QD)(Q[LOLW - D). Therefore
ker( 2*) = P, W". Tt follows from this and the compact Nakayama’s lemma that W is

a free A-module of finite rank. O

The following theorem allow us to lift an ordinary symbol from Symbr, ) (Lx(Zp)) to
SymeO(N) (]D)) Via ¢k7*.

Theorem 4.3.9. Fiz a topological generator v € Z,; and let [y] € Z,[[Z,]] be the corre-

sponding element of the completed group ring. For each integer k > 2, let m), := [y]—7* "% €

Zp||Z,]). Then the sequence

(0]
0 — Symby, vy (D)° 5 Symbp, v (D)° Ly Symbr ) (Li(Z,)° — 0

1s an exact sequence of H-modules.

Proof. By the previous proposition we see that Symbp, (D) is a torsion-free A-module,
so the multiplication by 7 is injective. Furthermore, every polynomial is continuous,
we obtain the inclusion Li(Z,) C D and taking duality we get the surjective map
Symbrp, vy (D) — Symbrn,) (Lx(Zp)). Again, by the previous lemma we get

Symbr, () (B (i - Symbr, ) (B°) = Symbr, ) (Lx(Zy))

For each 7 > 1, let I', :=To(N) NIy (p") (r > 1). Also, we define

D = {n: (Z/p'Z)) — Zp}

the module of Z,-valued functions on the set of primitive elements of ((Z / pTZ)2)/ equipped
with the natural action of I'y(IV).
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Lemma 4.3.10. The Z,[[Z,]|[To(N)]-module D is isomorphic to the projective limit
l‘&n]D)r.

Proof. Consider the map

LA\To(N) = ((Z/p'Z)
(a b) — (¢,d) mod p"

is a bijective. Hence, it induces an isomorphism
D, ~ Ind*(Z,)
It follows that we can define the projective system {D,.} by

]D)rJrl — Dr

M1 7 oy 2 X Z Mr-&-l(y)

y=x mod p”

Taking the projective limit we have D ~ @DT. [

Proposition 4.3.11. Let H, denote either Hl, HY or H'  we have

c’ par

H}(Ty(N),D) = lim H, (T, Z,)

Proof. By Sharipo’s lemma we have H}(To(N),D,y;) ~ H!(T',11,7Z,). Hence, we get the

commutative diagram

H:<FO(N)7 ]D)rJrl) - Hi(FO(N)a ]D)r)

s J

Hi(rr—l—lv Zp) — H: (Frv Zp)

Taking the projective limit and by the previous proposition we obtain the isomorphism

H(To(N). D) = lim HI(T,, Z,)
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Theorem 4.3.12. There is an isomorphism of covariant Hecke modules

Hp,, Ty, Zy) = Tay(J,)

par

for each r > 1. Hence we obtain an isomorphism of covariant Hecke modules

Hapor(To(N), D) = Tay(Jo)

par

Proof. For each r > 1, there is an isomorphism of Hecke modules due to Shimura [Shil

H! (T,,Z,) =~ Ta,(J,)

par

Recall that @Tap(Jr) ~ Ta,(J) by Hida’s theory, we obtain

H;ar L par L Tap ( ) Tap ( JOO )

]

Theorem 4.3.13. Let E be a modular elliptic curve of tame conductor N with either good
ordinary or multiplicative reduction at the prime p > 5. Assume that Hida’s deformation
ring Rg satisfies Rg = A. Let hg : H — A be the homomorphism given by Hida’s
theorem. Then for either choice of sign +, the submodule Symbr, y, (D)%% on which H

acts via hg has rank one as a A-module.

Let ¢p € Symbr, (x,)(C) be the modular symbol associated to the p-stabilized newform
fe and fix a choice of period Q5 € C* as in theorem [] so that the modular symbols

+
o = % are defined over Z,, i.e. 0t € SymeO(Np)(Zg’i. Then there is a Hecke

E
eigensymbol ®F € Symbr (D)%% such that

1 ¢9, % = o3

2. the Hecke operators act on CI% via hg.

Proof. Applying Hida’s theorem to the isomorphism H' (To(N),D) 2 Ta,(Js) We obtain

par
that for either choice of sign +, the hg-eigensubmodule of H,,.(I'o(N),D)”* has rank one.
Since Symbr, (D) = H(o(N), D), we have a surjective map

p[l?"
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whose kernel is Eisenstein, hence the kernel has no nontrivial hg-eigenvectors. It follows
that the above map induces an injective homomorphism
Symbr vy (D)ny = Hpyp(To(N), D)

par E

on the hg-eigensubmodules and moreover that the cokernel of this map is a torsion A-

module whose annihilator is not contained in the augmentation ideal. O

4.4 'Two Variable p-adic L-functions

4.4.1 p-adic L-functions

We revisit one variable p-adic L-functions. Now suppose that M = Np where p |/N,
and let f € Si(I'o(Np)) be a p-ordinary eigenform. For simplicity we assume that the
Fourier coefficients of f are rational integers, hence the eigenvalues of the operators T,

are also integral. If a, € Z, is the eigenvalue of T, on f, the p-ordinary means a, is not

1
divisible by p. Now choose a real period Q}“ so that the modular symbol 90;5 = ﬁzb? is
f

defined over Z.

Definition 4.4.1. Define a measure vy € Meas(Z, ) by
m L . (,a ,
vi(a+p"Zy) = ——pi | {—-} — {ico} ) [x=0,y=1
a, P

for each a € Z prime to p, and each m > 0.

It follows from the fact that f is an eigenform for 7}, with eigenvalue a, that this defines
a finitely additive function on the compact open subset of Z. Since a, is a p-adic unit,

the values of vy are p-adic integer, hence vy € Meas(Z;).

Definition 4.4.2. The p-adic L-function associated to f and the fixed choice of a real
period 0 is defined by

L,(f,s) = Ly(vys,s) := / <t)871 dv(t), s€Z,

z
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4.4.2 Constructing two-variables p-adic L-function

Let E be a elliptic curve defined over QQ having conductor M and either good ordinary
or multiplicative reduction at p. Choose a real period Qg for E so that the normalized

modular symbol

op =0 Y € symeO(Np)(Zp)O

takes p-integral values and let L,(E,s) be the associated p-adic L-function defined as
in definition @4.4.2] Assume, for simplicity, that Rg = A and let hg : H — A be the
homomorphism of theorem [2.4.3

Let fg be the p-stabilized ordinary newform associated to E and let N be the tame
conductor of fg. The relationship between M and N is given by

M N if E has good reduction at p

Np if E has multiplicative reduction at p

The Atkin-Lehner operators Wy, Wy, act as involution on Sy(I'g(Np)) and preserve

the eigenspace spanned by fgr. Hence we have

fE|WN = waE and fE|WM = waE

where wy = £1 and wy; = £1. We have the functional equation of

Aoo(Ev 2— 8) = _WMAOO(E7S)
A(E,2—5)=—wnA,(E,s)

Hence €5, = —wy and €, = —wpn. The relationship between e, and ¢, described in theo-
rem follows easily from this description of €, and €,. Indeed, if £ has good reduction at p,
then M = N, hence wy; = wy. We know by Deligne-Rapoport that E has multiplicative
reduction at p if and only if a, = +1 and in that case a standard result of Atkin and
Lehner tells us wy = —aywy. Combining these two cases we see that wy; = —wy if and
only if a, = 1, which is equivalent to saying that £ has split multiplicative reduction at

p following Deligne-Rapoport.

Theorem 4.4.3. Let o, = hg(T,) € A and let a,(k), k € Z,, be the Iwasawa function
associated to cy,. Then there are functions Ly(k,s) with k,s € Z, and Ly(k,1), k € Z,,
which are Iwasawa functions in each of the p-adic variables k and s, and which satisfy

the following properties
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1. L,(2,s) = L,(E,s) for all s € Z,

k
2. Ly(k,s) =, (N2 - L(k, k — s)
3. Ly(k,1) = (1 — (k) ") L3(K, 1)

g) Loo(E,1)
p Qp

4o L52,1) = (1 -

Proof. Let vy € Meas(Z,) be the p-adic measure associated to the pair (F,Qp) as in

theorem [£.1.22] Let & = @}, € Symbp, (D))" be a A-adic modular symbol satisfying
the conclusion of theorem [£.3.13]

Let p = pp = ®p({0} — {icc}) € D and let v € Meas(Z, ) be the measure determined
by the integration formulas

[ v = / L wnGy)

for f € Cont(Z,). Now we define the functions L,(k, s) and Ly (k, 1) by
L,(k,s) = Ly(p, k,s) =
and

Lk, 1) = L.k, 1)

1. We claim that v = vg. So fix a € Z; and n > 0. We have

v(a+p"Zy) = pe(Ula+p"Zy))

1 x
On the other hand, for each x € P'(Q,), we choose a matrix B(x,p") = <O n)
p

mod p" one of whose rows is in U(z,p") and whose determinant is p". Now let

fapn = ®|B(z, p") ({0} — {icc}) €D

It follows from the definitions that p, ,» is supported on U(x,p"™). Hence we have

= Z [tz pn- Therefore, we obtain
ze€P!(Z/p"Z)

awvla+p'Z,) = a - u(U(a+p"Zy))
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= (o) (U(a + p"Zy))
= papn(Ula +p"Zy))

. We first claim that ,u' (0

But g pr = @ ({ 21- {z'oo}) U(Z,)) = s ({ a1 {z'oo}) Thus

v(a+p"Zy) = a," @ ({1%} - {7?00}> = vp(a+p"Zy)

-1
N 0

O = ¢|[-N] = [(N)]®

) =€ [(N)l/ﬂ . Indeed, since

we have ®[Wy = +wy[(N)/?®. Applying ¢, and using the fact that ¢p|Wy =

wy@E, we obtain

®Wy = wy[(N)/]®

Now evaluate both sides of this identity on the divisor {0} — {ico} € Dy. Since

0 -1
0
-1
0

the action of Wy on ® is given by the action of

interchange the cusps 0 and <00, the identity u‘

from the equality €, = —wy

. Recall the identity

= Z Ha,pn

z€PL(Z/p"Z)

Setting n = 1 gives us

Qppt = Z Ha.p

nePY(Z/pZ)

A simple calculation shows that

and since this matrix

= ep[<N)1/2]u follows

ap(k) - Ly(k,s) = z_:/ b2 <y/a:> duap z,y)
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k) L) = 3 [0 /)" gt

Hence, a,(k) - (L;(k,l) - Lp(k,1)> = /(x)kQ dpop(z,y). But pg, = ,u‘ (1 0)

0 p
) k2 ) 10
and the function (x,y) — ()"~ on U(Z,) is fixed by . It follows that the

0 p
last integral is equal to

Li(k,1) = /U(Z | (@) dp(z, y)

Thus
a, (k) (L;;(k;, 1) — L,(k, 1)) = L3(k, 1)
4. We have
L5(2,1) = W(E} % Ty) = dap = ({0}  fioo)) = =022
Hence L (2,1) = %571) and 4 follows from the equality

(1 - Bpis) : LOO(Ea 5) = LOO(fEa 3)



CHAPTER 5

Proof of Main Result

Theorem 5.0.1. Let E be an elliptic curve over Q with split multiplicative reduction at
the prime p > 5. Let Qg be the Neron period of E and let L,(E,s) be the associated
p-adic L-function. Then

d Lo (E,1)
LB )= £,(B) -
Proof. We will give the proof only under the simplifying assumption that Rp = A. Let
€x = 1 denote the sign in the functional equation for L. (F,z). Since E has split
multiplicative reduction at p, the p-adic L-function of E has the following functional

equation
Ly(E,2—5)=¢, (N " L,(E,s)

where €, = —¢4,, N is the conductor of E and (N) = Nw™'(N) where w is the Teichmuller

character.

In case €, = 1, the p-adic L-function has an even order zero at s = 1 and the complex
L-function has an odd order zero at s = 1. Hence, in this case, the theorem is true, since

both sides of the desired equality vanish.

Now assume that €, = —1. Let L,(k, s) be a two variable p-adic L-function satisfying

the properties

1. L,(2,s) = L,(E,s) for all s € Z,
k
2

2. Ly(k,s) =¢,- (N) - Ly(k, k — s)
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3. Ly(k,1) = (1 — oy (k) ") Ly (k, 1)

4 Li2,1) = (1 _ g) %ﬁ”

From the functional equation (2) it follows that L,(k, k/2) = 0 identically for k € Z,. In
particular, the linear terms in the Taylor expansion of L,(k, s) around the point (k,s) =

(2,1) must vanish along the line s = k/2. Hence, there is a constant ¢ € Z,, such that

Ly(k,s) ~c- ((s 1) - %(k - 2))

where f(k,s) ~ g(k,s) means that the Taylor expansions of f and g at (k,s) = (2,1)

agree modulo terms of order > 2. The theorem will follow by computing ¢ in two ways.

Setting k = 2 and applying the equality (1) we obtain L,(E,s) ~ ¢(s — 1), hence
d
¢ = LB, 5)|m
On the other hand, setting s = 1 and using (3) we obtain

(1~ (k) ) L3k, 1) ~ = el —2)

Differentiating this with respect to k at k = 2 and note that «,(2) = 1, we obtain

1 *
—5¢= ()L (2, 1)

1
We also have o (2) = —§£p(E), and by (4) we have

P
Lo (E,1)
L (2.1) = —~
p( ? ) QE‘
Hence

1 1 Lo (E,1
——c=—=L,(F) é )

E
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