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Abstract

This work ia a theoretical study of the Mirror Energy Differences (MED) between analogue
levels of the T = 1

2
doublet 43

21Sc and 43
22T i, of positive and negative parity.

First, we will study the two nuclei in the shell model framework, and then find a good predic-
tion for MED, modelling all the different contributions one by one.
Once the electromagnetic contributions to the MED have been estimated, it is possible to
investigate the Charge Symmetry property of the nuclear interaction. It will be seen that an
Isospin Non-Conserving (INC) contribution is needed and that it can be accounted for using
a phenomenological model.
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1 Introduction
The exchange symmetry between protons and neutrons has always been one of the pillars of nu-
clear physics. Such charge symmetry, along with the charge indipendence property of the nuclear
interaction, led to the introduction of the so-called Isospin Symmetry Principle.
For a long time, it was thought that the only Isospin breaking interaction was the Coulomb one,
which was expected to entirely account for the MED, the energy differences between analogue
levels of mirror nuclei.
Nonetheless, it was found that, even estimating the finest electromagnetic contributions, theoret-
ical predictions for MED were dramatically far from reproducing experimental values. This led
researchers to think that such gap between theory and experiment could be filled introducing a
nuclear Isospin Non-Conserving (INC) effect. In the last twenty years, many phenomeno-
logical models for such effect have been developed. Those models on which we will be focusing
in this work, were first specific for the f 7

2
shell and then extended to the entire pf and sd shells.

Some examples can be found in [1],[2] and [3].
Furthermore, in 2001 experimental data on nucleon-nucleon scattering clearly showed that the
charge symmetry of the free nucleon-nucleon interaction is broken [4]. Nevertheless, the
impact that such evidence has on nuclear structure is still being discussed and there is no clear idea
of how to include it in nuclear effective interactions. Not even the connection with the previously
mentioned phenomenological models is clear.
Apart from being a powerful tool for investigating Isospin Symmetry breaking effects, Mirror En-
ergy Differences are interesting for many other reasons. They act as a magnifing glass on the
physics behind excited states and reveal many subtle nuclear structure phenomena, such as
correlations of pairs of particles, changes in the mechanism thorugh which the nucleus generates
angular momentum, changes in radius and so on.
It is for those reasons that we drew our attention to the mirror nuclei 4321Sc and 43

22Ti and attempted
to build a good theoretical description of their MED.
First, in section 2, a general overview of shell model, the theoretical framework in which the two
nuclei will be studied, is provided. Then, in section 3, the physical meaning of Mirror Energy Differ-
ences and their connection to Isospin Symmetry are clarified. Rigorous procedures for calculating
the various contributions to the MED are shown as well. Finally, in section 4, all the theoretical
results obtained in our study of 43

21Sc and 43
22Ti are discussed and compared to experimental data.
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2 An Overview of Shell Model
A general overview of shell model will be provided, based on references [5], [6] and [7].

In principle, nuclear structure constitutes an A-body problem interacting via the effective
nuclear force, which is different from the free nucleon-nucleon one. The hamiltonian of such
problem, would be:

H =

A∑
i=1

Ti +
1

2

A∑
i,j=1

Vi,j (1)

where Ti is the kinetic energy of the nucleon and Vi,j is the nucleon-nucleon potential. It is
clearly evident that the complexity of such problem increases dramatically with A and makes it
almost unsolvable even for a small number of particles. For such reason, in order to study nuclear
structure, we need to use approximate models. One of those is the so-called shell model.
The main assumption behind shell model is the following:

To first order, each nucleon is moving in an indipendent way,
in a central average field

Hence, the hamiltonian of the A-body problem, can be read as the sum of two different terms:

H = H0 +Hresidual (2)

where H0 is the leading term containing only central potentials and Hresidual is the remaining part
of the hamiltonian, which can be treated as a perturbation to H0 and contains nuclear two-body
potentials:

H0 =

A∑
i=1

Ti +

A∑
i=1

Ui Hresidual =
1

2

A∑
i,j=1

Vi,j −
A∑
i=1

Ui, (3)

where Ui is the central potential associated to each nucleon.

The idea of treating nucleons as indipendent particles in a central mean field is strongly sup-
ported by some experimental evidences, which are collected below:

• There are certain nuclei which are particularly stable. They are characterized by the fact
that they either have a specific number of protons or neutrons:

Z = 2, 8, 20, 28, 50, 82, 126 or N = 2, 8, 20, 28, 50, 82, 126

Such numbers are called magic numbers.

• The proton and neutron separation energies follow a regular plot as function of respec-
tively the number of neutrons and protons. This plot shows clear similarities with that of the
electron ionisation energies in atomic physics. The maxima correspond to magic numbers.

• The deviation of the experimental mass from that predicted with the liquid drop
model, follows a regular pattern as function of the number of protons and as a function of
the number of neutrons. The minima in such pattern correspond to the magic numbers.

• The first excitation energy in doubly even nuclei, follows a regular pattern as function
of neutron (proton) number. The peaks are located at the magic numbers.

Once it had been clear that a shell nuclear structure existed, the problem of finding a suitable
central potential Ui, capable of reproducing experimental data and explaining magic numbers, had
to be faced. The solution was found in 1950 - independently by Mayer and by Haxel, Jensen and
Suess - and had such form:

U(r) = −U0 +
1

2
mω2r2 +D ~l2 − 2

~
α ~l · ~s (4)

where four different terms are summed:
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• The term −U0 represents a negative constant.

• The term 1
2mω

2r2 represents a harmonic oscillator potential. Considering the potential
U(r) = −U0 + 1

2mω
2r2, we may solve the eigenvalue problem with two different strategies:

1. Decomposing the three dimensional harmonic oscillator, in three one dimensional har-
monic oscillators. In this case, we find these eigenvalues:,

EN = ~ω
(
N +

3

2

)
for N = 0,1,2... (5)

where N is the principal quantum number.
2. Solving the central problem. In this case, the eigenvalues are:

En,l = (2 (n− 1) + l) ~ω +
3

2
~ω − U0, (6)

where l is the orbital angular momentum quantum number and n is the number of
nodes in the wavefunction.

Since N = (2 (n− 1) + l), we could use N to identify the shells and (n,l) to find the shell
degeneracy, which can be computed considering all the possible couples of integers (n,l), such
that l is compatible with Pauli exclusion principle, and associating to each of those couples,
2(2l + 1) particles. However, even in this case we fail at predicting magic numbers higher
than 20.

• The term ∗ D~l2 describes an effect due to the angular momentum. It splits the degeneracy
of EN according to the various values for orbital angular momentum quantum number allowed
by Pauli exclusion principle (l = N,N − 2, ...):

En,l = (2 (n− 1) + l) ~ω +
3

2
~ω − U0 +D l(l + 1) (7)

Now, inside the shells identifed by the quantum number N , we find sublevels, which are
labelled by the couple of quantum numbers (n,l). Still we are not able to predict magic
numbers.

• The term − 2
~α

~l ·~s is the so-called spin-orbit potential. The spin orbit term partially lifts
the degeneracy of the eigenvalues found in equation (7) in this way:

En,l,j =

N︷ ︸︸ ︷
(2 (n− 1) + l) ~ω +

3

2
~ω − U0︸ ︷︷ ︸

Negative Constant + Harmonic Oscillator

+Dl (l + 1)︸ ︷︷ ︸
D~l2 Effect

+α

{
−l for j = l + 1

2

l + 1 for j = l − 1
2︸ ︷︷ ︸

Spin−Orbit
(8)

The reason why the spin-orbit term gives the right prediction for the magic numbers is that
it lowers the energy of the orbit with the highest j value in a main shell.

To conclude, with the central potential U(r) in equation (4), we are able to theoretically obtain
the nuclear shell structure and give a satisfactory explanation for magic numbers.
Shells are identified by the principal quantum number N . Each shell contains in itself several
orbits, which correspond to different energy levels and are identified by the triplet of quantum
numbers (n,l,j). Every orbit has a degeneracy equal to 2j + 1.

Given that, protons and neutrons are fermions, in an indipendent particle view, they should be
simply placed in the lowest possible orbits, compatible with the Pauli Exclusion Principle. Then,
the total ground state energy will be the sum of the energies associated to each particle, and the
total wave function will be the Slater determinant of all the single-particle wavefunctions.

The shell model structure of nuclei, in the indipendent particle view, is shown in figure 1.
∗The Kinetic Energies in spherical coordinates already contain a term that is proportional to ~l2. Therefore some

references do not include D ~l2 in the potential [5] [6], others do [7].
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Figure 1: Shell Model. The Indipendent Particle View.

2.1 Interacting Shell Model
The indipendent particle shell model allows us to predict the magic numbers and the ground state
energy of many nuclei, which has an order of magnitude of ∼ 103 MeV. However, if we wish to
describe fine details, such as the excitation energies, whose order of magnitude is ∼ 1 MeV, the
indipendent particle shell model generally fails.
On the one hand, the residual interactions among nucleons have to be considered, on the other, the
computational complexity of finding the eigenvalues of the full hamiltonian dramatically increases
with the number of nucleons.
It is for this reason that we should restrict our attention to a small portion of the entire Hilbert
space H - the so-called Model SpaceM - and try to define the eigenvalue problem inM in a way
which is mathematically equivalent but computationally easier. Hence, we can define the Model
Wavefunction ψ′, as the projection of the wavefuction in the full Hilbert Space ψ on the Model
Space: ψ′ = P̂ψ. We now look for an Effective Interaction, requiring that it has on the Model
Wavefunction, the same effect that the Residual Interactions have on the True Wavefunction.
To summarize, we are going to make the following steps:

Fulll Hilbert Space H =⇒ Model SpaceM
True Wave Function ψ =⇒ Model Wave Function ψ′

Hamiltonian H =⇒ Effective Hamiltonian Heff

Residual Interactions Potential V =⇒ Effective Potential Veff

9



To be more specific, the full Hilbert space hamiltonian reads:

H = H0︸︷︷︸
Indipendent Particle Hamiltonian

+ V︸︷︷︸
Residual Interactions

, (9)

where H0 is the unperturbed hamiltonian, and admits a set of unperturbed eigenvectors in the full
Hilbert Space H:

H0ψ
(0)
i = E0

i ψ
(0)
i i = 1,2 · · ·A (10)

We ask for the existence of an Effective Hamiltonian Heff , such that:

〈ψ|H|ψ〉 ⇐⇒ 〈ψ′|Heff |ψ′〉 (11)

Given P̂ , projector onM, and Q̂, projector on H/M, it can be proved that [5, page 303]:

(H0 + V︸ ︷︷ ︸
H

−E)ψ = 0 ⇐⇒ P̂ (H0 + Veff︸ ︷︷ ︸
Heff

−E)ψ′ = 0, (12)

where Veff is the Effective Potential and has this form:

Veff = V + V
Q̂

E −H0
V + V

Q̂

E −H0
V

Q̂

E −H0
V + · · · (13)

Once proved that the definiton of an effective potential is theoretically admitted, we should
face the problem of practically finding it. According to [6], three strategies have been explored up
to now:

1. Finding directly Two-Body Matrix Elements for Veff , starting from experimental data.
In this case, no attempt is made to find the shape of the nuclear two-body potential V (1,2).
Instead, the single-particle energies and the effective potential (Veff ) matrix elements are
taken as free parameters. Then, starting from some random initial parameters, the iterative
least square method is performed until there is good agreement with experimental data. Such
procedure is the most feasible one. For this reason, effective matrix elements will be used to
reconstruct the level scheme of 43Sc and 43Ti in section 4.

2. Bulding up Veff from Realistic Potentials for V (1,2)
This strategy starts from the free nucleon-nucleon interaction in order to obtain the so-called
realistic potentials for the nuclear two-body interaction V (1,2). Such realistic potentials have
an analytic structure which is determined by general invariance principles, and contain some
free parameters, which have to be found by fitting to the free nucleon-nucleon scattering
observables. Such process is generally complicate.

3. Bulding up Veff from Schematic Interactions for V (1,2).
Instead of bringing the features of the free nucleon-nucleon interaction into the nuclear two-
body interaction, some very simple radial shapes are taken for the nuclear two-body inter-
action V (1,2) and the free parameters are determined in order to reproduce the measured
energies for the excited states of the nuclei belonging to the mass region we wish to study.
Some of the most common radial shapes are the Yukawa potentials ( e

−µr

µr ), the Gaussian
potentials (e−µr

2

) and the Dirac potentials (δ(r)).

Once the two-body matrix elements for Veff have been determined, the solution to the eigenvalue
problem in the Model Space can be found with a straightforward procedure.
First, we should find a basis for the Model Space: the most common and feasible choice is given by
the eigenvectors of the single-particle part of the effective hamiltonian (ψ

(0)
i )i=1,2, ... dimM. Then

we can write the eigenvalue problem and find a suitable programme, such as the Antoine Code
for Shell Model [8], to solve it:

ε1 +
〈
ψ
(0)
1

∣∣∣Veff ∣∣∣ψ(0)
1

〉
· · ·

〈
ψ
(0)
1

∣∣∣Veff ∣∣∣ψ(0)
dimM

〉
...

. . .
...〈

ψ
(0)
dimM

∣∣∣Veff ∣∣∣ψ(0)
1

〉
· · · εdimM +

〈
ψ
(0)
dimM

∣∣∣Veff ∣∣∣ψ(0)
dimM

〉



a1
...

adimM

 = λ


a1
...

adimM

 ,
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where εi are the single-particle energies in the model space, ψ(0)
i are the eigenvectors of the unper-

turbed problem and ai are the coefficients of the linear combinations of the unperturbed eigenvec-
tors representing the new eigenvector ψλ:

ψλ =

dimM∑
i=1

aiψ
(0)
i , (14)

Since the new eigenstate wavefunctions are linear combinations of the unperturbed single-particle
eigenfunctions, in the new eigenstate particles will not occupy well defined orbits, but there will be
a quantum superposition of single-particle states. Hence, orbits will have fractional occupation
numbers.

2.2 Antoine: The Shell Model Code
The Antoine Code for Shell Model Calculations was developed by E.Caurier and F.Nowacki [8]. It
works in the m-scheme, which means that the many body basis, which is constructed in order to
diagonalize the Hamiltonian Matrix, has a fixed M, the quantum number associated to the total
angular momentum projection along the z-axis .

The diagonalisation of the effective hamiltonian matrix is performed using the Lanczos method
[7, section 3.A]. This method writes the hamiltonian matrix in a such a basis that it becomes tridi-
agonal.
To be more specific, taken a random pivot state |1〉, |a1〉 = H |1〉 is computed and is seen to be
equal to:

|a1〉 = H11 |1〉+ |2′〉 with 〈1|2′〉 = 0 =⇒ H11 = 〈1|a1〉 = 〈1|H |1〉 (15)

Then two other matrix elements are easily calculated:

|2〉 =
|2′〉√
〈2′|2′〉

=⇒ H12 = 〈1|H |2〉 , H22 = 〈1|H |2〉 . (16)

We can iterate such method k times and and obtain the vector:

|ak〉 = H |k〉 = Hk,k−1 |k − 1〉+Hkk |k〉+ |k + 1′〉 , (17)

and have the hamiltonian matrix in such form:
H11 H12 0 0 · · · 0
H21 H22 H23 0 · · · 0

0 H32 H33 H34 · · · 0
...

...
...

...
. . .

...
0 0 0 0 Hk,k−1 Hkk


The reason why such algorithm is adopted, is that in shell model calculations, few states of low

energy are required and hamiltonian matrixes are really sparse. In fact the number of iterations
required by the Lanczos algorithm, depends little on the matrix dimension but varies linearly with
the number of non-zero elements of the initial matrix. It also depends on the number of converged
states needed and on the choice of the initial pivot [7, section 3.A]. For those reasons, Lanczos
algorithm, perfectly suits shell model calculations.
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3 Mirror Nuclei and Mirror Energy Differences

3.1 Isospin symmetry
Two of the most relevant aspects of the nuclear two-body interaction are:

• Charge Symmetry, which implies that the proton-proton two-body interaction is equal to
the neutron-neutron interaction:

Vpp = Vnn; (18)

• Charge Independence, which implies that the neutron-proton two-body interaction is the
average between the proton-proton and the neutron-neutron interaction:

Vnp =
Vpp + Vnn

2
. (19)

Such evidence led to the idea that proton and neutron could be considered as two different
states of the same particle: the so-called nucleon. In order to distinguish protons from neutrons,
the Isospin vector was introduced. It has the same algebra of the spin, and has a projection on
the z-axis defined as follows:

tneutronz =
1

2
tprotonz = −1

2
. (20)

For a nucleus made of N neutrons and Z protons, its Isospin vector is defined as the vectorial
sum of the isospin vectors related to each nucleon. The projection along the z-axis is:

Tz =
N − Z

2
, (21)

The module of the isospin vector, T , is not an observable but can be deduced from Tz, using the rule
that T ≥ |Tz|. For nuclei with the same number of particles, states with the same value of isospin
module T , total angular momentum J and the same parity but different values of Tz, are called
Isobaric Analogue States (IAS) and are completely degenerate in energy, if we consider only
the nuclear two-body interaction and assume that it is charge-simmetric and charge-independent.
This statement is known as the Isospin Symmetry Principle.
At the beginning of Nuclear Physics, it was believed that the only Isospin violating contribution
to the nucleon-nucleon potential, was due to the Coulomb interaction between protons. However,
models where the Coulomb interaction is the only responsible for Isospin Symmetry breaking
effects, have not always succeeded in explaining them. Furthermore, it was found that the free
nucleon-nucleon interaction is just approximately charge-independent and charge-symmetric ( [9,
section 2.2.1] and references there in). The scattering lengths of the free proton-proton and neutron-
neutron interaction were measured and corrected in such a way that electromagnetic effects were
not considered [4]. The obtained values are:

Lνν = −18.9± 0.4 fm Lππ = −17.3± 0.4 fm. (22)

This provides clear evidence that the charge-symmetry of the free nucleon-nucleon interaction is
slightly broken. However, how to take such experimental evidence into consideration in the nuclear
effective interaction, remains an open question.

3.2 Energy Differences along Isobaric Multiplets
In order to study binding energy variations along an isobaric multiplet, we should consider the
Isobaric Multiplet Mass Equation (IMME), which is deduced - following the procedure used
in [9, section 2.2] - under the two following assumptions:

• The charge-violating part of the Hamiltonian (HCV ) can be seen as a perturbation of the
charge-conserving one (HCI);

H = HCI +HCV ; (23)
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• HCV is only due to the two-body interactions between nucleons, which means that it can
be written as the sum of three tensors of rank, respectively, zero (isoscalar component), one
(isovector component) and two (isotensor component):

HCV = H0
CV +H1

CV +H2
CV . (24)

Hence, it can be shown that the perturbation to the binding energy due to HCV ,

∆BE(T, Tz) = 〈αTTz|HCV |αTTz〉 (25)

is equal to:
∆BE(T,Tz) = a+ bTz + cT 2

z (26)

where a, b and c are coefficients that depend on T and HCV . More precisely, a depends on
the isoscalar and the isotensor component of HCV , b on the isovector component, and c on the
isotensor one. Therefore, it yelds that b and c separately hold information respectively on the
charge symmetry and on the charge independence of the nucleon-nucleon interaction.

3.3 Mirror Energy Differences
When studing an isobaric multiplet, one of the most important parameters is the Mirror Energy
Difference (MED), defined as the difference between the excitation energies related to the ground
state, of analogue levels in two mirror nuclei of the same isobaric multiplet:

MEDJ,T = E∗J,T,Tz=−|Tz| − E
∗
J,T,Tz=|Tz|. (27)

It should be stressed that the energies of the two levels are normalised to the absolute binding
energy of the ground states. This allows to cancel the bulk of the energy differences due to the
Coulomb interaction and to study fine variations, that otherwise it would have been really difficult
to appreciate.
An explicit expression for the MED can be obtained using the IMME formula. For example, in
the T = 1

2 pair, the MED can be written - see [9, section 2.2] - as follows:

MEDJ,T= 1
2

= −∆bJ , (28)

where ∆bJ is the variation of the coefficient b as a function of the spin J, with respect to the value
at the ground state.
As a consequence, not only does the MED shed light on fine variations of the energy differences as
a function of the spin, but it enables us to study the charge symmetry violation separately from
charge independence.
Hence, if we are able to predict all the possible contributions to the MED due to the electromagnetic
interaction, then we can look at the difference between the predicted and the experimental value
and estimate the impact of unknown charge-symmetry violating effects, such as the one due
to the nucleon-nucleon interaction. Moreover, the MED provides information on the evolution of
nuclear structure properties as a function of the total angular momentum.
To summarize, the MED works as a magnifing glass on the physics behind the excited states of
mirror nuclei, improving our understanding of both charge-symmetry violating effects and nuclear
structure phenomena as a function of the total angular momentum.

3.4 Origin of the energy differences between Mirror Nuclei
The main contribution to the MED is due to the Coulomb interaction, whose hamiltonian can be
divided in two components: the monopole term, which takes into account single-particle and bulk
effects due to the spherical field and the multipole term, which is related to all the other effects, in
particular the correlation between valence nucleons. Isospin Non-Conserving Nuclear contributions
to the MED might be included as well.
Therefore in our model for the MED, following [9, section 4], four different effects will be considered:

• The Multipole Coulomb field contribution;
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• The Monopole Coulomb field contribution;

• The contribution due to some fine Corrections to Single-Particle Energies;

• The Isospin Non-Conserving Nuclear Interaction contribution.

3.4.1 Multipole Component of the Coulomb Field

The multipole Coulomb term is the one obtained considering the Coulomb contribution to the
two-body effective interaction among nucleons of the valence space. The variation of this term
with the angular momentum J outlines the alignment of the spins of pairs of nucleons with
a rotational angular momentum.
To give an example, for the pair of mirror nuclei 49Mg/49Cr, it was noted that the multipole
contribution to the MED was really small for low spin states and had a rapid increase, when
Jπ = 17

2

+ [9, section 4.1.1]. This enhancemnt of the MED was interpreted in terms of the alignment
of nucleons along the rotational bands. In fact, it is known that two protons coupled in time
reversed orbits have a stronger interaction than that of protons coupled in any other way. The
intensity of the Coulomb interaction between aligned protons reaches its minimum when they are
aligned at the maximum value (2j - 1) in a single j-shell. When, in a certain nucleus, a couple of
protons gets aligned at the maximum value of spin, the excitation energy of the level decreases
because the Coulomb interaction between protons is repulsive. But, in the corresponding mirror
nucleus, two neutrons get aligned and there is no such effect: the result is a rapid increase or
decrease in the MED, as it occurs at Jπ = 17

2

+ for the nuclei 49Mg/49Cr.

3.4.2 Monopole Component of the Coulomb Field

The monopole contribution of the Coulomb Field to the MED takes into consideration the effect
of the Coulomb spherical field obtained considering the nucleus as a charged sphere. It gives two
contributions to the MED, which are related to:

• The change of radius along the rotational band, which is treated below;

• The shift in proton single-particle energies, caused by the interaction of the core, seen
as a charged sphere, with valence protons, which will be described in section 3.4.3.

Thinking the nucleus as a charged sphere of radius RC , its potential Coulombian energy is:

EC =
3

5

Z(Z − 1)e2

RC
. (29)

If we have two mirror nuclei, whose atomic numbers are Z> and Z<, such that Z> = Z< +n, then
the Coulomb energy difference of the ground states is:

∆EC = EC(Z>)− EC(Z<) ' 3

5

n(2Z> − n)e2

RC
. (30)

However, in the hypotesis that the nuclear radius does not change in the excited states, such effect
vanishes when calculating the MED. Instead, if we consider the radius variations as function of the
spin, RC(J) = RC(Jgs) + ∆R(J), then a monopole contribution to the MED will result:

∆M 〈VCr〉 = ∆EC(J)−∆EC(Jgs) = −3

5
n(2Z> − n)e2

∆R(J)

R2
C

(31)

This formula has the advantage of providing us a simple expression to estimate the MED monopole
contribution for every pair of mirror nuclei, but, at the same time, has the downside that it is hard
to find the function R(J).

In the specific case of two mirror nuclei in the pf shell, it happens that the radius changes when
the occupations of the orbits p 3

2
and p 1

2
change as a function of the spin, because the p orbits have
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a larger radius than the f orbits. A phenomenological term for the radial effect on the
MED in pf shell mirror nuclei, can be easily estimated, following [9, section 4.2]:

∆M 〈VCr〉 = nαr

(
mπ(Jg.s) +mν(Jg.s.)

2
− mπ(J) +mν(J)

2

)
, (32)

where n is the difference between proton and neutron numbers in the two nuclei, m is the occupation
number of the p orbits of a certain nucleon type in the state of angular momentum J , and αr is a
parameter, which has been estimated from experimental values. In the pf shell, αr has the following
value:

αr = 200 keV. (33)

3.4.3 Corrections to Single-Particle Energies

The single-particle energies are modified by two different effects:

• The interaction of protons in the valence space with the monopole electromagnetic
field generated by the core,

• The relativistic electromagnetic spin-orbit force.

The first contribution affects only the single particle energies of protons and has been calculated
by Duflo and Zuker [10], who found it to be proportional to the square of the orbital angular
momentum of the protons:

Ell =
−4.5Zclosed shell [2l(l + 1)−N(N + 3)]

A
1
3

(
N + 3

2

) keV, (34)

where N is the principal quantum number and l the orbital angular momentum of the proton shell.
The second contribution is due to the relativistic electromagnetic spin-orbit force (EMSO) which

is related to the Larmor precession of nucleons in the nuclear electric field, and to the Thomas
precession of protons.

The EMSO potential can be written as reported in [9, section 4.1.3]:

Vls = (gs − gl)
1

2m2
nucleonc

2

(
1

r

dVc
dr

)
~l · ~s, (35)

where gs and gl are the gyromagnetic factors, respectively spin and orbital. If the core is
modelled as a uniformly charged sphere, we get a simple expression for the the perturbation to
single particle enrgies due to the EMSO force:

Els ' (gs − gl)
1

2m2
nucleonc

2

(
−Ze

2

R3
C

)
〈~l · ~s〉, (36)

In table 1, there are some approximate formulas for the EMSO single-particle energy shifts.

π j = l + 1
2 π j = l − 1

2 ν j = l + 1
2 ν j = l − 1

2

Els −42ZA l keV 42ZA (l + 1) keV 35ZA l keV −35ZA (l + 1) keV

Table 1: EMSO shifts in single-particle energies
Table taken from [9, section 4.1.3]

It is important to stress out that the EMSO term differs from the nuclear spin-orbit. Nuclear
spin-orbit effect must be always considered in shell model calculations and is of the order of several
MeV, whereas EMSO gives birth to a second order effect, of about two order of magnitude smaller.
When building up the energy level scheme of a nucleus, EMSO has a negligible impact on the
final result. Nevertheless, in MED calculations, the EMSO force might have a significant influence,
since it changes in different ways the proton and the neutron single-particle energies.
As an example, we can consider the shells d 3

2
and f 7

2
and see - using formulas in table 1 - that EMSO
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brings protons ∼ 120 keV nearer, and enlarges by a similar amount the gap between neutrons.
Therefore, in such case, the EMSO effect on MED will be stronger in states that are due to an
only proton (only neutron in the mirror) excitation from d 3

2
to f 7

2
, whereas it can be neglected

when the excitation is due to a proton or a neutron with similar probabilities.

3.4.4 Isospin Non-Conserving Nuclear Interactions

In the hypothesis of isospin symmetry, the difference between the MED experimental value and
its theoretical prediction made with all the Coulomb corrections described above, should be really
tiny. However, such condition is not always observed. This leads to the hypothesis that the im-
pact of Isospin Non-Conserving Nuclear interactions (INC) is not negligible. To give an
example, this happens for many mirror nuclei of the pf shell, where, it is almost impossible to give
a theoretical explanation for the MED based only on electromagnetic effects [3].

The most reasonable way to take into consideration the INC contribution would be that of
building up an effective potential which contains also the Isospin Non-Conserving term. However,
this task is very hard to achieve. For this reason, in many cases it seems more feasible to build,
phenomenological models starting from experimental data.
One of such models was developed in 2002 by A.P. Zuker, S.M. Lenzi, G. Martinez-Pinedo and A.
Poves [1] and aims at estimating the INC contribution to the MED for nuclei in the f 7

2
shell. The

first mirror doublet in the f 7
2
shell which has been studied, was formed by 42Ti and 42Ca. It is

clear, from table 2, that the MED predictions realised considering only electromagnetic effects fail
at describing MED experimental values. As we can see, the main INC contribution to the MED
appears at the state Jπ = 2+ and has an order of magnitude of 100 keV.

J = 0 J = 2 J = 4 J = 6

Coulomb Contribution VC ( keV) 81.60 24.60 6.40 -11.40
MED

[
42Ti−42 Ca

]
− VC ( keV) 5.38 92.55 4.57 -47.95

Table 2: Mirror Energy Differences in 42Ti/42Ca from [1]

Given that in the f 7
2
valence shells there are two protons for 42Ti and two neutrons for 42Ca, and

that the excited states are mostly f27
2

states, we infer that the leading term in the INC interaction
is related to the coupling of two f 7

2
protons and two f 7

2
neutrons at J = 2.

Motivated by those reasons, we can construct a simple ansatz for the INC term, considering a
difference of 100 keV for the matrix element of two protons in thef 7

2
shell coupled to J = 2 with

respect to the two-neutron matrix element.
This ansatz has been applied to several other nuclei of the pf shell with masses different from

A = 42, such as A = 47, 49, 50, 51 and gave succesful results.

In 2013, Kaneko, Sun, Mizusaski and Tazaki, proposed a different parametrisation for the INC
term [2]: they considered a difference of - 100 keV for the matrix element of two protons in the f 7

2

shell coupled to J = 0 with respect to the two-neutron matrix element.
In 2015, Bentley, Lenzi, Simpson and Diget [3], studied the Mirror Energy Differences of a huge
vairety of f 7

2
shell nuclei and proved the equivalence of the models developed in [1] and in [2]. Ac-

cording to them, the relevant aspect of the INC matrix elements is the difference of ∼ 100 keV
between the matrix element at J=2 and at J=0 in the f 7

2
shell , rather than the way such

difference is distributed between the two matrix elements.
It was then shown that the INC interaction defined in such way can be extended also to
the other orbits of the pf shell and the sd shell. For example, in [11], the INC interaction
was extended to all the orbits of the sd shell and succesfully used to predict the MED of the mirror
doublet formed by 23Mg and 23Na.
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In [3], the physical origin of the INC term was discussed as well. It might seem that the
INC term is directly connected to the breaking of the charge symmetry of the nucleon-nucleon in-
teraction. Actually, it is possible to predict the matrix elements of the Isospin Non-Conserving part
of such interaction starting from the free proton-proton and neutron-neutron scattering lengths,
whose values were measured in [4] and corrected in such a way that electromagnetic effects are not
considered: Lνν = −18.9 ± 0.4 fm and Lππ = −17.3 ± 0.4 fm. Hence, it was calculated that the
matrix elements of the INC nuclear interaction should be around:

V J=0
B ' 11 keV V J=2,4,6

B = 0 (37)

Such results do not agree, either in sign or value, with the INC matrix elements found in [3],
suggesting that there might be some contribution of electromagnetic nature, which either has not
been well estimated or has been neglected at all.

In section 4 we will apply the models found in literature to the negative (nautral) parity states
and for the first time, for the positive (non-natural) parity states of mirror nuclei 43Ti and 43Sc.
We adopt an isovector −100 keV in every orbit of the pf and sd shell for nucleons coupled to
J = 0.
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4 Study of the Mirror Nuclei 43
22Ti and 43

21Sc

The mirror nuclei 43Ti and 43Sc can be studied consistently within the framework of the interact-
ing shell model. In this work we are interested at the yrast states, which are the states with the
lowest energy for every possible value of the total angular momentum.
Since 43Ti and 43Sc form a T = 1

2 doublet, it is possible to investigate the charge symmetry
property of the nucleon-nucleon effective interaction separately from charge independence, by sim-
ply looking at the Mirror Energy Differences (see section 3.3). Therefore, if we are able to build
a fine theoretical prediction for the electromagnetic contribution to the MED, we can understand,
from the analysis of the gap between theoretical and experimental values, whether Isospin Non-
Conserving nuclear forces have a relevant impact or not.
Since the two nuclei have mass number A = 43, we may try to test on them the phenomenolog-
ical model for the INC contribution which has been developed in [3].
Moreover, the energies of high spin positive parity yrast states of 43Ti have not been measured.
This work will give a theoretical prediction - which could be useful for future experiments - for the
energies of such levels and the associated Mirror Energy Differences.

4.1 Negative Parity States
In order to study the yrast negative parity states, the model space which has been considered, is
that of an inert 40

20Ca core with a valence space, made up of the four orbits of the pf shell :

f 7
2
, p 3

2
, f 5

2
, p 1

2
 pf shell. (38)

4.1.1 Level Scheme Reconstruction

Using the Antoine Code for Shell Model [8], we managed to build the energy level scheme.
We used an effective interaction, called kb3g.a42, whose hamiltonian contains only the nuclear
isospin conserving term [12]. Such interaction has been specifically developed for nuclei whose
valence space is the shell pf. In our calculation, we allowed any possible excitation of the three
valence nucleons within such shell.

43Ti 43Sc43Sc/43Ti

0.00, 7/2−

1.78, 11/2−

2.82, 15/2−

3.02, 19/2−

0.00, 7/2−

1.86, 11/2−

2.95, 15/2−

3.07, 19/2−

0.00, 7/2−

1.83, 11/2−

2.99, 15/2−

3.12, 19/2−

kb3g.a42 for A = 43 Experimental Levels - 43Ti Experimental Levels - 43Sc

Figure 2: Energy levels (MeV )
Negative Parity Yrast States

In figure 2, the theoretical prediction for the level scheme, is compared to experimental data
[13]. There is good agreement, since the theoretical values reproduce the correct level order and
are almost equal to the experimental ones within the order of 100 keV.
It is important to note, that at this point, the prediction for the level schemes is the same for 43Sc
and 43Ti, since we are neglecting all the isospn non-conserving contribution, either of Coulomb or
nuclear nature.
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4.1.2 Mirror Energy Differences

We proceeded to the calculation of Mirror Energy Differences for negative parity yrast states,
considering all the contributions described in section 3.4

The graph in figure 3a compares the MED experimental values to two different theoretical
predictions: one obtained using only Coulomb contributions and the other, adding the INC term
to them. A quick glance tells us that the addition of the INC term to the MED improves
the predictions and gives a better reproduction of the behaviour of experimental values.
In order to quantitavely evaluate how far the two predictions are from experimental data, we
computed the associated root mean square (RMS) deviation.

MED Prediction with Coulomb effects MED Prediction with Coulomb and INC terms

RMS 56 keV 23 keV

Table 3: Root Mean Square Deviation

It is clear that the addition of the INC term makes the RMS consistently smaller. Furthermore
the RMS deviation obtained with the addition of the INC term is, as expected, of the same order
of magnitude of the one obtained in the fit (σtheo ' 23 keV) performed by Bentley and others in
[3].
Figure 3b, instead, shows how every contribution affects the MED theoretical prediction, providing
clear evidence that:

• The main contribution of electromagnetic origin comes form the multipole Coulomb field;

• The monopole Coulomb field and the single particle energy shifts give little corrections to
the MED;

• The contribution of the INC term has a relevant value.
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Figure 3: MED - 43
22Ti and 43

21Sc
Negative Parity yrast States

4.2 Positive Parity States
The positive parity yrast states of mirror nuclei 43

22Ti and 43
21Sc cannot be obtained considering

the pf shell as the valence space. In order to have positive values for parity, we should allow the
excitation of at least one particle from the core. Here we will consider the excitation of
only one nucleon from the highest energy orbit (1d 3

2
) of the sd shell to the pf shell.
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4.2.1 Level Scheme Reconstruction

In order to build a theoretical prediction for the positive parity level scheme, we used an effective
interaction, called sdpf [14], which operates in the orbits of the two main shells:

1d 5
2
, 2s 1

2
,1d 3

2
 sd shell (39)

1f 7
2
, 2p 3

2
,1f 5

2
,2p 1

2
 pf shell (40)

Besides letting the particles free to move within the pf shell, the only permitted excitation in the
sd shell was that of one nucleon from 1d 3

2
to the orbits of the pf shell.

Hence, we calculated the energies of the levels using the sdpf interaction, which contains only the
nuclear isospin conserving hamiltonian.

In figure 4, the predicted level scheme is compared to the known experimental levels [13]. The
experimental energies of 43

22Ti excited states with Jπ > 9
2

+ have not been measured yet.
The agreement between theory and experiment is acceptable but not as good as in the
negative parity case: even if the correct level order has been reproduced, theoretical predictions
differ from experimental values in some cases by 300/400 keV. A possible explanation for this
result, is that the model where only one hole is made in the shell 1d 3

2
is just an approximation,

which is quite good but not completely faithful to the physics behind positive parity states.
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sdpf for A = 43 Experimental Levels - 43Ti Experimental Levels - 43Sc

Figure 4: Energy levels (MeV )
Positive Parity yrast States

Finally, it should be observed that the level energies are not normalised to the ground
states (Jπ = 7

2

−) of the two nuclei but to the lowest energy state (Jπ = 3
2

+) among those of
positive parity. The reason for this choice is of practical nature: we do not have reliable predictions
for the absolute energies of the ground state and of the Jπ = 3

2

+ state, beacause the inert core
assumption made in our model is rather unjustified. Nevertheless, we have good predictions for
the differences between absolute values of the energies - calculated using the same interaction - of
different levels of the same nucleus. Therefore, given that we used different effective interactions
for the negative and positive parity states, we chose to normalise the energies of the positive parity
levels to the Jπ = 3

2

+ state.
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4.2.2 Mirror Energy Differences

We proceeded to calculate the Mirror Energy Differences, following the protocol described in
section 3.3. The results of our calculations can be seen in figures 5a and 6a, where two different
theoretical predictions are shown: one where only electromagnetic contributions to the MED have
been considered and the other where the INC term has been included as well.

Figure 5a shows the behaviour of the MED theoretical predictions for states with low angular
momenta in comparison with experimental values. It can be seen that theoretical predictions
agree well with data and that the MED value is almost entirely determined by the electromagnetic
corrections. In order to quantitavely evaluate how far the two predictions are from experimental
data, we computed the associated root mean square (RMS) deviation:

MED Prediction with Coulomb effects MED Prediction with Coulomb and INC terms

RMS 11 keV 10 keV

Table 4: Root Mean Square Error

It is clear that the INC correction has a very little effect on the final result.
Through figure 5b, it is possible to understand how the different corrections affect the final MED
prediction. The INC correction and the single-particle energy shifts have almost no influence on
the final result and the multipole Coulomb field contribution has a relatively little impact. The
term that dominates over the others and explains the behaviour of experimental MED is the
one due to the change of radius along the rotational band.
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Figure 5: MED - 43
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Positive Parity States from Jπ = 3
2

+ to Jπ = 9
2

+

For the MEDs at higher values of spin, we have no experimental data to be compared with our
predictions. Figure 6a shows the behaviour of the MED theoretical predictions, with and without
the INC correction, along all the positive parity states. It can be seen that the INC correction
has an absolutely negligible impact on the final result and that there is a big decrease for
those states with Jπ > 13

2

+:

MEDJπ> 13
2

+ �MEDJπ= 3
2
+ = 0. (41)

Figure 6b, instead, shows the influence that every contribution to the MED has on the final
result: the two major effects come from the multipole Coulomb field and the single-particle energy
corrections. This suggests that the reason for the big decrease at Jπ = 13

2

+ has to be
sought in the type of nucleon that in each state is excited from the orbit 1d 3

2
to the

pf shell.
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+ to Jπ = 27
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In figure 7, we analyse how the 1d 3
2
hole varies as a function of J: in the states with Jπ < 13

2

+,
the hole is made up of only one type of nucleon, either a proton (4321Sc) or a neutron (4322Ti), whereas
in the higher spin ones the hole is made up of both nucleons, in slightly equal percentages.
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Figure 7: Hole in the orbit 1d 3
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as function of the momentum J

Hence, when we normalise all the states to Jπ = 3
2

+, which is not the ground state of the two
nuclei, we cancel a big positive contribution to the MED, which is related to the fact that the hole
at Jπ = 3

2

+ is a hundred percent made of, one proton for 43Sc and one neutron for 43Ti. Then
at Jπ = 15

2

+, the hole compositon becomes a mixture of protons and neutrons; this should bring
the MED related to the ground state to small values, close to zero. But, in our calculation, the
big positive contribution that had been cancelled when we normalised the MED to their value at
Jπ = 3

2

+, appears as a big negative one when Jπ reaches 15
2

+.
When Jπ = 27

2

+, the two holes return to be a hundred percent formed by only one kind of nucleon.
In fact, we observe a big positive jump of the MED value, such that:

MEDJπ= 27
2

+ �MEDJπ= 3
2
+ = 0. (42)

This can be explained thinking that in low spin states there might be a big negative contribution,
which is neglected when the MEDs are normalised to their value at Jπ = 3

2

+. This contribution,
may disappear at high values of spin if we consider the MED normalised to the ground state,
or equivalently, appear as big positive MED rise at Jπ = 27

2

+, if we consider the Jπ = 3
2

+

normalisation. However this is just a conjecture, that needs to be proved. One way to do it would
be calculating the positive parity MED values related to the ground state. Unfortunately we did
not manage to do this.

23





5 Conclusion and Future Directions
The predictions we obtained for the Mirror Energy Differences of the nuclei 43

21Sc and 43
22Ti, can

be considered reliable, and show good agreement with experimental values, when available.
Such an agreement has undoubtedly been reached thanks to the addition of the INC term to the
predicted MED.
For high spin positive parity Yrast States, there are no MED experimental values: we think that
the theoretical predictions built in this work could be useful for researchers, who will attempt to
measure high spin positive parity levels of 43

22Ti. The importance of seeing whether experiment and
theory match for those states is due to the fact that the MED experimental values related to those
states were excluded from the database which was used in [3] to obtain the INC term estimate.
Hence, in this way the validity of such model for the INC term could be tested, even involving
other orbits of the pf and sd shells different from f 7

2
.

It should be said that we are still far from understanding the physical nature of the INC
term. In [1], it was suggested that it could be related to the Isospin Non-Conserving part of the
nuclear hamiltonian. However, in [3] it was shown that it did not match with the expected values
for the INC term deduced from the free nucleon-nucleon scattering. This put into question the
accuracy of our estimates for Coulomb contributions to the MED.
New approaches are being tried to model Isospin Non-Conserving nuclear interactions: one of those
consists in including them in realistic potentials [11]. We hope that this will shed more light on
the validity of the phenomenological model for the INC term and on its physical origin.
Such evidences clearly show that the debate on the Charge Symmetry of nuclear two-body
interactions still remains open and is far from reaching an end.
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