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Introduction

Let X be a compact Riemann surface. One may ask if its complex structure can
be recovered from the values of integrals of holomorphic forms; equivalently, does
the period map determine a Riemann surface? This question, already proposed by
Riemann, was given a positive answer by Torelli in 1914, after half of a century of
work. The main tools appearing in a modern formulation of this problem are the
cup product on the middle cohomology H1(X,Z) (an alternating form), marking,
bilinearity and positivity relations.

These are indeed the starting points towards a generalization of Torelli theorem
in higher dimension. Such a task, which looks difficult even for surfaces, turns
out to be possible in the case of K3 surfaces, as we will see in Chapter 2. A
K3 surface X is a (smooth) compact complex surface, whose canonical bundle is
trivial and H1(X,OX) = 0. The singular cohomology group of half dimension
H2(X,Z) comes with a natural symmetric bilinear pairing, the cup product, and a
weight two Hodge structure. The fundamental Global Torelli theorem states that
two K3 surfaces X and Y are isomorphic if and only if there exists a Hodge isometry
H2(X,Z) ' H2(Y,Z).

Now, given a smooth algebraic variety X over a field k, denote as Db(X) the
bounded derived category of coherent sheaves on X. Two algebraic varieties X and
Y over k are said to be D-equivalent if there exists a k-linear exact equivalence
Db(X) ' Db(Y ). The derived category Db(X) contains much geometric information
on the variety X; for instance, if X has ample (anti-)canonical bundle, then it is
uniquely determined by its derived category. However, in general, as in the case of
K3 surfaces, the notion of being D-equivalent is weaker than being isomorphic.

The derived version of Torelli theorem provides us with a cohomological crite-
rion for D-equivalence of K3 surfaces. One can endow the whole integral cohomology
group H̃(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) of a K3 surfaceX with a symmet-
ric bilinear form extending the cup product and with a weight two Hodge structure.
A beautiful result due to Mukai and Orlov states that two K3 surfaces X and Y are
D-equivalent if and only if there exists a Hodge isometry H̃(X,Z) ' H̃(Y,Z).

In proving such a theorem, several interesting tools come into play.

The first, to be introduced in Chapter 1, is Fourier-Mukai transform, which
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establishes a bridge between the derived and cohomological worlds. Consider two
smooth projective varieties X and Y . An object P ∈ Db(X × Y ) induces an exact
functor

ΦP : Db(X)→ Db(Y ),

called Fourier-Mukai transform with kernel P . From a geometric point of view,
we can limit our attention to these functors: by virtue of a celebrated theorem of
Orlov, any equivalence F : Db(X) → Db(Y ) is of Fourier-Mukai type. A Fourier-
Mukai transform ΦP induces a morphism ΦH

P : H∗(X,Q) → H∗(Y,Q) between the
whole rational cohomology groups of X and Y ; the key notion in this passage is the
Mukai vector of a sheaf E on X, defined as v(E) = ch(E).

√
td(X) ∈ H∗(X,Q).

The second is the concept of moduli space. Let us first consider the situation
where the base scheme is a smooth connected projective algebraic curve C and
the problem of classifying vector bundles on it. The set of isomorphism classes
of coherent sheaves of fixed rank and degree (i.e. fixed Hilbert polynomial) on C
cannot be parametrized by an algebraic variety. It is then natural to introduce
the notions of (slope) stability and semistability. Using the Hilbert scheme and
Mumford’s Geometric Invariant Theory (GIT), eventually one constructs a (coarse)
moduli space M(r, d); it is a projective variety whose closed points are in bijection
with S-equivalence classes of semistable vector bundles on C.

When passing to higher dimensional varieties, one has to adjust a bit the con-
struction: vector bundles are replaced by torsion-free (or even pure) sheaves and
the notion of slope (semi)stability by Gieseker (semi)stability. Then, for a projec-
tive variety X, the (coarse) moduli space of semistable sheaves with fixed Hilbert
polynomial still exists.

The case of K3 surfaces is of particular interest. Let (X,H) be a polarized
K3 surface; instead of fixing a Hilbert polynomial, the numerical invariants of the
sheaves we want to parametrize will be encoded in a vector v ∈ H̃(X,Z) of Hodge
type (1, 1). Denote as MH(v) the moduli space of semistable sheaves with fixed
Mukai vector v and as Ms

H(v) the open subscheme corresponding to stable sheaves.
It was Mukai who first studied the geometry of these spaces in the 80’s: Ms

H(v) is
a smooth quasi-projective variety of dimension 〈v, v〉+ 2 and it admits a symplectic
form. If no strictly semistable sheaf exists, then MH(v) = Ms

H(v) is a projective
holomorphically symplectic manifold; otherwise, MH(v) is singular, and one may
look for symplectic resolutions of the singularities. The different situations that can
occur depend essentially on the divisibility of the Mukai vector and on the dimension
of the moduli space.

More precisely, any Mukai vector v can be written as v = mv0, for v0 primitive
and m ∈ N0 a multiplicity. Assume that the multiplicity m = 1, so that v = v0 is
primitive. The low-dimensional cases, that is 〈v0, v0〉 equals −2 or 0, were studied by
Mukai in his seminal paper [21], whose results we present in Chapter 3. He obtains
in particular that, if v = v0 is isotropic and Ms

H(v) is non-empty and compact, then
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Ms
H(v) is a K3 surface, whose period H2(Ms

H(v),Z) can be expressed in terms of v.
Without any assumption on 〈v0, v0〉, but suitably choosing an ample divisor class H,
a cornerstone result by Yoshioka, based on previous work by Beauville, Huybrechts
and O’Grady among others, states that the moduli space Ms

H(v0) is compact and
deformation equivalent to a Hilbert scheme of points; in particular, it is non-empty.

Assume now that m ≥ 2. Then the moduli space MH(v) is singular and one has
the following possibilities.

(1) If 〈v0, v0〉 = −2, then MH(v) consists of a non-reduced point.

(2) If 〈v0, v0〉 = 0, it turns out that any semistable sheaf E with v(E) = mv0

is S-equivalent to a direct sum E1 ⊕ E2 ⊕ · · · ⊕ Em of stable sheaves with
v(Ei) = v0. Therefore MH(v) = Sm(MH(v0)) admits a symplectic resolution
in terms of the Hilbert scheme Hilbm(MH(v0))→MH(v).

(3) If m = 2 and 〈v0, v0〉 = 2, by blowing-up the reduced singular locus, one
obtains a projective symplectic resolution of MH(v). The O’Grady’s examples
fall in this case.

(4) If m ≥ 3 or m = 2 and 〈v0, v0〉 ≥ 4, Kaledin, Sorger and Lehn in [16] proved
that MH(v) is locally factorial, and in particular does not admit a projective
symplectic resolution.

The lack of a projective symplectic resolution in case (4), which will be discussed
in Chapter 4 and will conclude this little work, can be the starting point for further
possible developments in the theory. In particular, one may look for crepant cate-
gorical resolutions of the singularities, which should always exist and be a source of
inspiration for a definition of hyperkähler category.
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Chapter 1

Fourier-Mukai transforms

The first two sections of this chapter, dealing with derived categories and their appli-
cation to Algebraic Geometry, are meant as a reminder. Even if only few basic facts
are presented and proofs are omitted, we have decided to include these topics, as
they provide the natural context for the central notion of Fourier-Mukai transforms.
These are the object of the third section, which is divided into two parts. In the first,
we state the main properties of these transforms and some criteria that decide if
they are fully faithful functors or even equivalences. A celebrated theorem of Orlov,
saying that all equivalences between derived categories of smooth projective varieties
are of Fourier-Mukai type, is stated, but not proven. In the second, we study the
cohomological transform induced by a Fourier-Mukai functor, its compatibilities with
Hodge structures and with the Mukai pairing.

1.1 Derived categories
Let A be an abelian category and let Kom(A) be the category of complexes over A.
Kom(A) is still abelian and admits a shift functor. Moreover, for any integer i, one
has a cohomological functor

H i : Kom(A)→ A.

Its importance is due to this fundamental result in homological algebra: any short
exact sequence of complexes 0→ A• → B• → C• → 0 yields a long exact cohomol-
ogy sequence

· · · → H i(A•)→ H i(B•)→ H i(C•)→ H i+1(A•)→ . . . .

One says that a complex morphism f : A• → B• is a quasi-isomorphism (or, in
short, a qis) if H i(f) : H i(A•)→ H i(B•) is an isomorphism for any i ∈ Z.

In homological algebra, it is common to consider a resolution of an object A ∈ A,
i.e. an exact complex 0 → A → I•. This can be regarded as the datum of a quasi-
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isomorphism
. . . 0 A 0 . . .

. . . 0 I0 I1 . . .

The idea behind the notion of derived category is that an object should be iden-
tified with its resolutions; more generally, every quasi-isomorphism should become
an isomorphism. This motivates the following

Definition 1.1.1. Let A be an abelian category. A derived category of A is a pair
(D(A), Q), where D(A) is a category and Q : Kom(A) → D(A) is a functor such
that:

(i) if f : A• → B• is a quasi-isomorphism, then Q(f) is an isomorphism;

(ii) any functor F : Kom(A)→ B satisfying property (i) factors uniquely through
Q, i.e. there exists a unique functor (up to isomorphism)G : D(A)→ B making
the following diagram commute

Kom(A) D(A)

B.

Q

F G

The uniqueness of the derived category comes from the universal property. As
far as the existence is concerned, one could obtain the derived category D(A) as the
localisation of Kom(A) at the family of quasi-isomorphisms. However, the resulting
description of morphisms is not so handy. To get a better understanding of D(A),
we pass through the homotopy category. Recall that, for any abelian category A, we
can consider the homotopy category K(A), whose objects are just complexes over A
and whose morphisms are morphisms of complexes up to homotopy. The advantage
of the homotopy category is that the family S of quasi-isomorphisms is localizing.
The derived category D(A) is then the localisation of the homotopy category at S.
Let us briefly present what the derived category looks like.

The class of objects of the derived category D(A) consists of complexes over
A. Given two complexes A•, B• ∈ D(A), morphisms from A• to B• in the derived
category are equivalence classes of roofs

C•

A• B•

s f

where C• is a complex, s is a qis and f is a morphism from C• to B• in Kom(A).
Two roofs are equivalent if they can be dominated in K(A) by a third roof, i.e. if
there exists a commutative diagram of the form
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C•

C•1 C•2

A• B•.

u h

s f

t

g

The composition of two roofs

C•1 C•2

A• B• B• C•

s f t g

is given by a commutative diagram of the form

C•0

C•1 C•2

A• B• C•.

u h

s f t g

It is in the definition of the composition of morphisms that the homotopy category
is essential: indeed, by suitable choices of C•0 , of a quasi-isomorphism u and of a
morphism h, the diagram

C•0 C•2

C•1 B•

u

h

t

f

will be commutative in K(A), but not in Kom(A). The choice of C•0 lies on the
existence of the mapping cone C(f) of a morphism f : A• → B•. This is defined as
the complex

C(f)i = Ai+1 ⊕Bi with diC(f) =

(
−di+1

A 0
f i+1 diB

)
.

The mapping cone comes with natural maps

τ : B• → C(f) and π : C(f)→ A•[1]

given by the natural injection and projection respectively. These fit in a short exact
sequence

0→ B• → C(f)→ A•[1]→ 0,
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from which we deduce that f : A• → B• is a quasi-isomorphism if and only if C(f)
is acyclic. The mapping cone construction is of the greatest importance also for
the definition of a triangulated structure on K(A) and on D(A). The shift functor
A• 7→ A•[1] is induced by the shift functor of Kom(A). A triangle in K(A) (resp. in
D(A))

A•1 → A•2 → A•3 → A•1[1]

is distinguished if it is isomorphic in K(A) (resp. in D(A)) to a triangle of the form

A•
f−→ B•

τ−→ C(f)
π−→ A•[1].

Moreover, the cohomological functors H i on Kom(A) descend to the homotopy
category and to the derived category (in the latter case, this comes immediately
from the universal property).

Remark 1.1.2. Performing these constructions, we have considered unbounded
complexes. However, in practice, it is often more convenient to impose boundedness
conditions. We denote Kom+(A), Kom−(A) and Komb(A) the categories of bounded
below, bounded above and bounded complexes respectively. By dividing out first by
homotopy equivalence and then by quasi-isomorphisms one obtains the categories
K∗(A) and D∗(A) with ∗ = +,−, b.

1.1.1 Derived functors

In this section we will briefly explain how to define the right derived functor of a
left exact functor between abelian categories. Analogously, one can construct the
left derived functor of a right exact functor.

Let A and B be abelian categories and let

F : A → B

be a left exact functor. Assume that A has enough injectives; in other words, the full
subcategory IA of A consisting of injective objects is cogenerating. In particular,
this implies the existence of an equivalence ι : K+(IA) → D+(A). The functor F
induces an exact functor K(F ) : K+(A) → K+(B) acting on complexes term by
term. If the functor F were exact, K(F ) would send quasi-isomorphisms of K+(A)
to quasi-isomorphisms of K+(B) and, by the universal property of derived category,
there would exist a functor RF : D+(A) → D+(B) making the following diagram
commute

K+(A) K+(B)

D+(A) D+(B).

QA

K(F )

QB

RF
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If F is just left exact, this is no longer true. The subcategory K+(IA) allows us
to work out the problem: informally speaking, it is “big enough” to represent, up
to quasi-isomorphism, all the complexes in K+(A) and the restriction of K(F ) to
it still behaves well. This happens because any acyclic complex of injective objects
is sent to a complex that is still acyclic; thus quasi-isomorphisms in K+(IA) are
sent to quasi-isomorphisms in K+(B). The situation is represented in the following
diagram.

K+(IA) K+(A) K+(B)

D+(A) D+(B)

ι
QA

K(F )

QB

ι−1

Definition 1.1.3. The right derived functor of F is the functor

RF := QB ◦K(F ) ◦ ι−1 : D+(A)→ D+(B).

Remark 1.1.4. For any bounded below complex A• ∈ D+(A), one sets RiF (A•) =
H i(RF (A•)). This definition agrees with classical higher derived functors RiF : A →
B of homological algebra: this is clear just recalling the link between resolutions and
quasi-isomorphisms.

Example 1.1.5. Assume that A is an abelian category having enough injectives.
Let A ∈ A and consider the left exact covariant functor

Hom(A, ) : A → Ab.

Its higher derived functors are denoted by Exti(A, ) for i ∈ Z. These have a
nice (and extremely useful) interpretation in terms of the derived category. More
precisely, for any B ∈ A, one has

Exti(A,B) ' HomD+(A)(A,B[i]).

Indeed, suppose that 0 → B → I0 → I1 → . . . is an injective resolution of B. By
definition, Exti(A,B) is the i-th cohomology group of the complex

· · · → Hom(A, I i−1)→ Hom(A, I i)→ Hom(A, I i+1)→ . . .

A morphism f ∈ Hom(A, I i) is a cycle if and only if it defines a morphism of
complexes f • : A[−i]→ I•

. . . 0 A 0 . . .

. . . I i−1 I i I i+1 . . .

f
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On the other hand, f is a boundary if and only if f • is homotopically trivial. Hence,

Exti(A,B) ' HomK+(A)(A[−i], I•) ' HomK+(A)(A, I
•[i]).

Recalling that B ' I• in D+(A), we are done if we prove that the natural map

HomK+(A)(A, J
•)→ HomD+(A)(A, J

•)

is bijective whenever J• is a complex of injective objects. Given a roof

C•

A J•,

qis

we have to show that there exists a unique morphism A→ J• making the diagram
commute up to homotopy, or, equivalently, that we have an isomorphism

HomK+(A)(A, J
•)
∼−→ HomK+(A)(C

•, J•).

Complete the qis C• → A to a distinguished triangle C• → A → D• → C•[1] in
K+(A). Looking at the long exact sequence of groups obtained applying the functor
HomK+(A)( , J

•), we can reduce to prove that, for D• acyclic, HomK+(A)(D
•, J•) = 0.

This vanishing is a standard fact in homological algebra.
This interpretation allows us to define, for any triple of objects A,B,C ∈ A, a

natural composition for Ext-groups

Exti(A,B)× Extj(B,C)→ Exti+j(A,C) :

indeed, elements of
Exti(A,B) ' HomD+(A)(A,B[i])

and
Extj(B,C) ' HomD+(A)(B,C[j]) ' HomD+(A)(B[i], C[i+ j])

can be composed to an element of Exti+j(A,C) ' HomD+(A)(A,C[i+ j]).

Remark 1.1.6. Looking carefully at the construction of the derived functor, one
notes that some assumptions can be weakened. First of all, the functor that we want
to derive may be directly given at the homotopy category level F : K+(A)→ K(B),
and not as a functor between the abelian categories A and B. Second, since the
category A does not always have enough injectives, we may need to enlarge the
category IA of injectives to a category of objects adapted to the functor F . Let us
be more precise.

Consider an exact functor

F : K+(A)→ K(B)

A triangulated subcategory KF ⊂ K+(A) is adapted to the functor F if
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(i) for any acyclic object A• ∈ KF , F (A•) is acyclic;

(ii) any A• ∈ K+(A) is quasi-isomorphic to a complex in KF .

Condition (ii) implies that, if S denotes the class of quasi-isomorphisms between
objects of KF , we have an equivalence of categories ι : KF [S−1]→ D+(A). Condition
(i) says that the restriction of the functor F to KF sends quasi-isomorphisms to
quasi-isomorphisms in K(B), hence to isomorphisms inD(B). The universal property
of localisation yields a functor F ′ : KF [S−1] → D(B). The situation is summarized
in the following diagram

KF K+(A) K(B)

KF [S−1] D+(A) D(B)

QA

F

QB

ι

F ′

ι−1

The right derived functor of F is then defined as the composition

RF := F ′ ◦ ι−1 : D+(A)→ D(B).

This general approach applies in particular when we have a left exact functor
F : A → B, but the class of injectives objects IA is not cogenerating. In this
case, one considers a class IF of F -adapted objects, i.e. an additive cogenerating
subcategory of A such that, for any acyclic bounded below complex A• ∈ K+(IF ),
the complex F (A•) is acyclic. A useful F -adapted class is the class of F -acyclic
objects, provided that it is cogenerating.

Such a construction is not just an attempt of reaching the largest possible gen-
erality, but it is really needed in concrete situations, as we will see in section 1.2.

We conclude this section with an important theorem on the composition of de-
rived functors, whose proof can be found in [12, ch. 2].

Theorem 1.1.7. Let F1 : A → B and F2 : B → C be left exact functors of abelian
categories. Assume that A and B have enough injectives, and that F1(IA) is con-
tained in an F2-adapted class IF2 of B.

(i) The right derived functors RF1 : D+(A) → D+(B), RF2 : D+(B) → D+(C),
R(F2 ◦ F1) : D+(A)→ D+(C) exist and there is a natural isomorphism

R(F2 ◦ F1) ' RF2 ◦RF1.

(ii) For any complex A• ∈ D+(A), there exists a spectral sequence

Ep,q
2 = RpF2(RqF1(A•))⇒ Ep+q = Rp+q(F2 ◦ F1)(A•).

11



1.2 Derived functors in Algebraic Geometry
Even if we could describe the theory in a more general setting (i.e. for noetherian
schemes), we will focus our attention on projective varieties.

Definition 1.2.1. Let X be a projective variety over a field k and let Coh(X) be
the abelian category of coherent sheaves on X. We define the derived category of X
as

Db(X) := Db(Coh(X)).

Two projective varieties X and Y are said to be derived equivalent (or D-equivalent)
if there exists a k-linear exact equivalence Db(X) ' Db(Y ).

Usually, the category Coh(X) does not contain non-trivial injective sheaves,
which makes difficult computing (left) derived functors. To work out this problem,
one passes to the category Qcoh(X) of quasi-coherent sheaves on X. Then, to come
back to Db(X), one has to use two facts. The first is that, for noetherian schemes,
Db(X) is equivalent to the full subcategory DbCoh(X)(Qcoh(X)) ⊂ Db(Qcoh(X)) of
complexes of quasi-coherent sheaves with coherent cohomology (see [12] Proposition
3.5: one uses that every quasi-coherent sheaf is limit of its coherent subsheaves).
The second is the following general

Proposition 1.2.2. Let F : K+(A)→ K+(B) be an exact functor admitting a right
derived functor RF : D+(A)→ D+(B) and assume that A has enough injectives.

(i) Suppose that there exist C ⊂ B a thick subcategory and an integer n ∈ Z such
that, for all A ∈ A, RiF (A) ∈ C and RiF (A) = 0 for i < n. Then RF takes
values in the full triangulated subcategory D+

C (B) ⊂ D+(B) of complexes with
cohomology in C.

(ii) If RF (A) ∈ Db(B) for any object A ∈ A, then RF (A•) ∈ Db(B) for any
complex A• ∈ Db(A), i.e. RF descends to an exact functor

RF : Db(A)→ Db(B).

Proof. The assertion follows immediately from the spectral sequence

Ep,q
2 = RpF (Hq(A•))⇒ Ep+q = Rp+q(F )(A•).

We list the main derived functors that we will need, and sketch some of their
properties.

Cohomology Let X be a projective variety over k. The functor of global sections
Γ(X, ) : Qcoh(X)→ Vec(k) is left exact and yields the right derived functor

RΓ: D+(Qcoh(X))→ D+(Vec(k)).

12



Recall that H i(X,F ) = 0 for any quasi-coherent sheaf F on X as soon as i >
dim(X); if, in addition, F is coherent, then H i(X,F ) are all finite dimensional (see
[10, ch. III]). Hence, RΓ descends to a functor

RΓ: Db(Coh(X))→ Db(Vecf (k)).

Direct image Let f : X → Y be a morphism of projective varieties. Consider the
direct image functor f∗ : Qcoh(X) → Qcoh(Y ). It is left exact and yields the right
derived functor

Rf∗ : D+(Qcoh(X))→ D+(Qcoh(Y )).

Again, Rif∗(F ) = 0 for any quasi-coherent sheaf F on X as soon as i > dim(X); if,
in addition, F is coherent, Rif∗(F ) are all coherent sheaves on Y (see [10, ch. III]).
Hence, Rf∗ descends to an exact functor

Rf∗ : Db(X)→ Db(Y ).

When Rf∗ is composed with other derived functors, it is worth remembering that
the class of flabby sheaves is f∗-adapted.

Local Hom and dual For F ∈ Qcoh(X) a quasi-coherent sheaf, the covariant
functor

Hom(F, ) : Qcoh(X)→ Qcoh(X)

is left exact. If F • ∈ Kom−(Qcoh(X)) is a bounded above complex of sheaves, one
can extend such a functor by setting

Hom•(F •, ) : K+(Qcoh(X))→ K+(Qcoh(X))

Homi(F •, E•) =
∏
j

Hom(F j, Ei+j), d = dE − (−1)idF .

This functor is exact, so that one can consider its right derived functor

RHom•(F •, ) : D+(Qcoh(X))→ D+(Qcoh(X)).

This allows us to define the dual of a complex of sheaves F • as

F • ∨ = RHom•(F •,OX).

Note that, even when F • consists of a sheaf F concentrated in degree zero, its derived
dual does not coincide with Hom(F,OX), unless F is a locally free sheaf.

Tensor product For a coherent sheaf F , one can consider the right exact functor

F ⊗ ( ) : Coh(X)→ Coh(X).

The category Coh(X) does not have enough projectives, but the class of locally free
sheaves is adapted for the tensor product, so that the left derived functor exists. The
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generalization to the case of a complex of sheaves F • passes through the definition
of an exact functor

F • ⊗ ( ) : K−(Coh(X))→ K−(Coh(X))

as follows: for any bounded above complex E•, F • ⊗ E• is the total complex as-
sociated with the double complex Ki,j = F i ⊗ Ej. The triangulated subcategory
of K−(Coh(X)) consisting of complexes of locally free sheaves is adapted to this
functor; we obtain

F • ⊗L ( ) : D−(X)→ D−(X).

If we assume that X is smooth, this derived functor descends to a functor of the
bounded derived categories

F • ⊗L ( ) : Db(X)→ Db(X).

Inverse image Let f : X → Y be a morphism of projective varieties. The inverse
image functor f ∗ is defined as the composition of the exact functor

f−1 : Coh(Y )→ Coh(X)

and the right exact functor

OX ⊗f−1OY
( ) : Coh(X)→ Coh(X).

It is possible to define its left derived functor Lf ∗. In most of our applications,
however, the morphism f will be flat, so that f ∗ is exact and there is no need to
derive it.

We conclude this section listing some compatibility properties that are satisfied
by the aforementioned functors and that we shall need afterwards.
If F • and E• are bounded complexes of sheaves on a projective variety X, then

F • ∨ ⊗L E• ' RHom(F •, E•).

Given f : X → Y a projective morphism, for any F • ∈ Db(X) and E• ∈ Db(Y ) one
has the projection formula

Rf∗(F
•)⊗L E• ∼−→ Rf∗(F

• ⊗L Lf ∗(E•));

moreover, (Lf ∗, Rf∗) is an adjoint pair, i.e. there exist functorial isomorphisms

Hom(Lf ∗F •, E•)
∼−→ Hom(F •, Rf∗E

•).

Duality Let f : X → Y be a morphism of smooth projective varieties. Define the
relative dimension and the relative dualizing bundle as

dim(f) = dim(X)− dim(Y ), ωf = ωX ⊗ f ∗ωY .

14



Theorem 1.2.3 (Grothendieck-Verdier duality). For any F • ∈ Db(X) and E• ∈
Db(Y ) there exist functorial isomorphisms

Rf∗RHom(F •, Lf ∗(E•)⊗ ωf [dim(f)]) ' RHom(Rf∗F
•, E•).

Applying the global sections functor on both sides one gets

RHom(F •, Lf ∗(E•)⊗ ωf [dim(f)]) ' RHom(Rf∗F
•, E•),

and taking cohomology in degree zero gives

Hom(F •, Lf ∗(E•)⊗ ωf [dim(f)]) ' Hom(Rf∗F
•, E•).

Consider the particular case of the structure morphism f : X → Spec(k) of a
smooth variety X. The relative dimension and the relative dualizing bundle are
nothing but dim(X) and ωX respectively. For any E•, F • ∈ Db(X), one has

HomDb(X)(F
•, E• ⊗ ωX [dim(X)])

' HomDb(X)(RHom(E•, F •), ωX [dim(X)])

' HomDb(Spec(k))(RΓ(RHom(E•, F •)), k)

' HomDb(X)(E
•, F •)∨.

or, equivalently,

HomDb(X)(E
•, F •) ' HomDb(X)(F

•, E• ⊗ ωX [dim(X)])∨.

These functorial isomorphisms express Serre duality for derived categories. If F • is
just a (shifted) sheaf F [i], E• = OX and n is the dimension of X, using Example
1.1.5 one recovers classical Serre duality:

H i(X,F ) = Exti(OX , F ) ' HomDb(X)(OX , F [i])

' HomDb(X)(F [i], ωX [n])∨ ' HomDb(X)(F, ωX [n− i])∨ ' Extn−i(F, ωX)∨.

1.3 Fourier-Mukai transforms
Let X and Y be two smooth projective varieties over a field k and denote by

q : X × Y → X and p : X × Y → Y

the two canonical projections.

Definition 1.3.1. Let P ∈ Db(X × Y ). The induced Fourier-Mukai transform is
the functor

ΦP : Db(X)→ Db(Y )

E• 7→ p∗(q
∗E• ⊗ P).

We call the object P the kernel of the Fourier-Mukai transform ΦP .
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Remark 1.3.2. All the functors that appear in the definition of ΦP are intended
as derived functors. In particular, ΦP is an exact functor.

Let us give a list of Fourier-Mukai functors.

Example 1.3.3. (i) The identity id : Db(X)→ Db(X) is naturally isomorphic to
the Fourier-Mukai transform with kernel the structure sheafO∆ of the diagonal
∆ ⊂ X ×X.

(ii) Let f : X → Y be a morphism. Then the push-forward f∗ : Db(X)→ Db(Y ) is
naturally isomorphic to the Fourier-Mukai transform with kernel the structure
sheaf OΓf

of the graph Γf ⊂ X × Y . This kernel yields also a Fourier-Mukai
transform ΦΓf

: Db(Y ) → Db(X) in the opposite direction, naturally isomor-
phic to the pull-back functor f ∗.

(iii) Let L ∈ Pic(X). The autoequivalence of Db(X) given by E• 7→ E• ⊗ L is
isomorphic to the Fourier-Mukai transform with kernel ι∗L, where

ι : X → ∆ ⊂ X ×X

is the diagonal embedding.

(iv) The shift functor T : Db(X) → Db(X) can be regarded as the Fourier-Mukai
transform with kernel O∆[1].

(v) Let P be a coherent sheaf on X ×Y , flat over X. For any closed point x ∈ X,
one has ΦP(κ(x)) = P|{x}×Y .

Fourier-Mukai transforms behave well in many respects: they always admit left and
right adjoint - both of Fourier-Mukai type - and their composition is again a Fourier-
Mukai transform.
Define, for any P ∈ Db(X × Y ), the objects

PL := P∨ ⊗ p∗ωY [dim(Y )] PR := P∨ ⊗ q∗ωX [dim(X)].

Proposition 1.3.4. The Fourier-Mukai transform ΦPL
: Db(Y ) → Db(X) (resp.

ΦPR
: Db(Y ) → Db(X)) is left (resp. right) adjoint to the Fourier-Mukai transform

ΦP : Db(X)→ Db(Y ).

Proof. For any E• ∈ Db(X) and F • ∈ Db(Y ), one has

HomDb(X) (ΦPL
(F •), E•)

= HomDb(X) (q∗(PL ⊗ p∗F •), E•)
' HomDb(X×Y ) (PL ⊗ p∗F •, q∗E• ⊗ p∗ωY [dim(Y )])

(Grothendieck-Verdier duality)
' HomDb(X×Y ) (P∨ ⊗ p∗F •, q∗E•)
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' HomDb(X×Y ) (p∗F •,P ⊗ q∗E•) (properties of the dual)
' HomDb(Y ) (F •, p∗(P ⊗ q∗E•)) ((p∗, p∗) is an adjoint pair)
= HomDb(Y ) (F •,ΦP(E•)) .

An analogous proof shows that ΦPR
is right adjoint to ΦP .

Let X, Y and Z be three smooth projective varieties and denote πXY , πY Z and πXZ
the projections from X × Y × Z to X × Y , Y × Z and X × Z respectively. Given
the objects P ∈ Db(X × Y ) and Q ∈ Db(Y × Z), define

R = πXZ∗ (π∗XYP ⊗ π∗Y ZQ) ∈ Db(X × Z)

Proposition 1.3.5. The Fourier-Mukai transform

ΦR : Db(X)→ Db(Z)

is isomorphic to the composition of the Fourier-Mukai transforms with kernel P and
Q

Db(X)
ΦP−−→ Db(Y )

ΦQ−−→ Db(Z).

Proof. The proof is not hard and it is mainly an application of the projection for-
mula. However, notations for all the possible involved projections cause some prob-
lems. Therefore, we would rather refer to [12] Proposition 5.10.

The relation between arbitrary exact functors and Fourier-Mukai transforms is
explained in the following highly non-trivial and celebrated

Theorem 1.3.6 (Orlov). Let X and Y be smooth projective varieties. Let

F : Db(X)→ Db(Y )

be an exact functor which is fully faithful and admits left and right adjoints. Then
there exists an object P, unique up to isomorphism, such that F ' ΦP . In particular,
any equivalence Db(X)→ Db(Y ) is of Fourier-Mukai type.

We assume from now on that the base field k is algebraically closed. It is im-
portant to have at our disposal criteria to determine when a Fourier-Mukai functor
ΦP : Db(X)→ Db(Y ) is fully faithful or even an equivalence.

Proposition 1.3.7 (Bondal, Orlov). The functor ΦP is fully faithful if and only if,
for any closed points x, y ∈ X, one has

HomDb(Y ) (ΦP(κ(x)),ΦP(κ(y))[i]) =

{
k if x = y and i = 0

0 if x 6= y or i < 0 or i > dim(X).

Proof. See [12] Proposition 7.1.
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Corollary 1.3.8. Let P be a coherent sheaf on X × Y flat over X. Then ΦP is
fully faithful if and only if the following conditions are satisfied:

(i) For any point x ∈ X one has Hom
(
P|{x}×Y ,P|{x}×Y

)
' k;

(ii) If x 6= y, Exti
(
P|{x}×Y ,P|{x}×Y

)
' 0 for all i.

Proof. Under the flatness assumption on the sheaf P , by Example 1.3.3 (v) one has
ΦP(κ(x)) ' P|{x}×Y for any closed point x ∈ X. Then the result easily follows from
the previous proposition.

Proposition 1.3.9. Suppose that the functor ΦP is fully faithful. It is an equivalence
if and only if

(i) dim(X) = dim(Y ) and (ii) P ⊗ q∗ωX ' P ⊗ p∗ωY .

Proof. We shall prove just the “only if” direction, the other implication requiring
some technical facts about triangulated categories (see [12, ch. 1]). By Proposition
1.3.4, ΦP admits left and right adjoints, with kernel PL = P∨ ⊗ p∗ωY [dim(Y )] and
PR = P∨ ⊗ q∗ωX [dim(X)] respectively. Since ΦP is an equivalence, a quasi-inverse
is both left and right adjoint to ΦP . By uniqueness of the Fourier-Mukai kernel in
Orlov’s theorem, P∨ ⊗ p∗ωY [dim(Y )] ' P∨ ⊗ q∗ωX [dim(X)], whence

P∨ ' P∨ ⊗ q∗ωX ⊗ p∗ω∨Y [dim(X)− dim(Y )]

Let us prove (i). Assume that equality does not hold, say dim X > dim Y . Let
m be the maximal integer such that Hm(P∨) is non-zero. Then, as tensoring with
invertible sheaves commutes with cohomology, we get

Hm(P∨⊗q∗ωX⊗p∗ω∨Y [dim(X)−dim(Y )]) = Hm+dim(X)−dim(Y )(P∨)⊗q∗ωX⊗p∗ω∨Y = 0

a contradiction. Hence dim(X) = dim(Y ). Therefore P∨⊗ p∗ωY ' P∨⊗ q∗ωX and,
dualizing this relation, we obtain

P ⊗ q∗ωX ' P ⊗ p∗ωY ,

which is (ii).

Corollary 1.3.10. If X and Y are smooth projective varieties of the same dimen-
sion and with trivial canonical bundles ωX and ωY , any fully faithful Fourier-Mukai
transform Db(X)→ Db(Y ) is an equivalence.
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1.3.1 Passage to cohomology

A smooth projective varietyX over the field C of complex numbers can be considered
as a complex manifold. Denote as H∗(X,Q) the cohomology group of the constant
sheaf Q on X. It comes with a natural ring structure, with product α.β, for α, β ∈
H∗(X,Q). For any morphism f : X → Y of smooth projective varieties over C, one
has two homomorphisms in cohomology:

f ∗ : H i(Y,Q)→ H i(X,Q)

f∗ : H
i(X,Q)→ H i+2dim(Y )−2dim(X)(Y,Q)

the second being defined using Poincaré duality as follows: given α ∈ H i(X,Q),
f∗α is the unique element in H i+2dim(Y )−2dim(X)(Y,Q) such that, for every β ∈
H2dim(X)−i(Y,Q) one has ∫

Y

β.f∗α =

∫
X

f ∗β.α.

For any cohomology class α ∈ H∗(X × Y,Q) one introduces a cohomological
Fourier-Mukai transform

ΦH
α : H∗(X,Q)→ H∗(Y,Q)

β 7→ p∗(q
∗β.α).

Let us show how a Fourier-Mukai transform at the derived category level can
induce a cohomological Fourier-Mukai transform. The key notion is introduced in
the following

Definition 1.3.11. Let F • ∈ Db(X) be a bounded complex of sheaves. We define
the Mukai vector of F • as

v(F •) := ch([F •]).
√

td(X).

where [F •] =
∑

(−1)i[F i] in the Grothendieck group K(X) of X, ch denotes the
Chern character and td(X) is the Todd class of the tangent sheaf of X.

Consider ΦP : Db(X) → Db(Y ) the Fourier-Mukai transform with kernel P ∈
Db(X × Y ). Its Mukai vector v(P) defines a cohomological transform

ΦH
v(P) : H∗(X,Q)→ H∗(Y,Q).

It turns out that

v(ΦP(F •)) = ΦH
v(P)(v(F •)) for all F • ∈ Db(X),

or, in other words, the following diagram commutes

Db(X) Db(Y )

H∗(X,Q) H∗(Y,Q).

ΦP

v v

ΦH
v(P)
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To simplify notation, in the following we will denote as ΦH
P the cohomological

Fourier-Mukai transform induced by ΦP .
Let us consider again some of the examples of the previous section. We would

like to understand what the cohomological morphisms they induce look like.

Example 1.3.12. (i) ΦH
O∆

= id. To prove this, consider the diagonal embedding
ι : X → ∆ ⊂ X×X. As higher direct images of the structure sheaf OX vanish,
by the Grothendieck-Riemann-Roch formula one has

ch(O∆).td(X ×X) = ch(ι!OX).td(X ×X) = ι∗(ch(OX).td(X)) = ι∗(td(X)).

Dividing by
√

td(X ×X) and recalling that

ι∗
√

td(X ×X) = ι∗(p∗
√

td(X).q∗
√

td(X)) = td(X),

one gets

v(O∆) = ch(O∆).
√

td(X ×X) = ι∗(td(X)).
√

td(X ×X)
−1

= ι∗(td(X).ι∗
√

td(X ×X)
−1

) = ι∗(td(X).td(X)−1) = ι∗(1).

Finally, for any α ∈ H∗(X,Q), one has

ΦH
O∆

(α) = p∗(q
∗α.v(O∆)) = p∗(q

∗α.ι∗(1)) = p∗ι∗(ι
∗q∗α) = α

as p ◦ ι = q ◦ ι = idX .

(ii) If L ∈ Pic(X), the cohomological Fourier-Mukai transform induced by the
autoequivalence E• 7→ E• ⊗ L is the multiplication by ch(L) = exp(c1(L)).
In particular, it will not preserve the cohomological degree as soon as c1(L) is
non-zero. To prove this, reasoning exactly as before, one finds

v(L) = ch(ι∗L).
√

td(X ×X) = ι∗(ch(L)).

Hence, for any α ∈ H∗(X,Q),

ΦH
ι∗L(α) = p∗(q

∗α.v(ι∗L)) = p∗(q
∗α.ι∗(ch(L))) = p∗ι∗(ι

∗q∗(α.ch(L))) = α.ch(L).

(iii) The shift functor T : Db(X) → Db(X) induces in cohomology the multiplica-
tion by −1. Indeed, v(O∆[1]) = v(−O∆) = −v(O∆) implies ΦH

O∆[1] = −ΦH
O∆

=
−id.

We would like to better understand the relations between ΦP and ΦH
P . The

main difficulty is that the map v : Db(X) → H∗(X,Q) is not surjective. However,
surprisingly, we have the following
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Proposition 1.3.13. If P ∈ Db(X × Y ) defines an equivalence

ΦP : Db(X)
∼−→ Db(Y ),

then the induced cohomological Fourier-Mukai transform

ΦH
P : H∗(X,Q)→ H∗(Y,Q)

is an isomorphism of rational vector spaces.

Proof. It is not difficult to prove that, if ΦP ◦ ΦQ ' ΦR, then ΦH
P ◦ ΦH

Q ' ΦH
R.

Assume that ΦP is an equivalence. Its quasi-inverse, which is left and right
adjoint to ΦP , is still a Fourier-Mukai transform, whose kernel PR is unique up to
isomorphism by Orlov’s theorem. One has

ΦP ◦ ΦPR
' id ' ΦO∆

ΦPR
◦ ΦP ' id ' ΦO∆

Together with Example 1.3.12 (i), this implies that

ΦH
P ◦ ΦH

PR
' ΦH

O∆
' id ΦH

PR
◦ ΦH

P ' ΦH
O∆
' id,

so that ΦH
P and ΦH

PR
are inverse to each other.

Hodge struture For any complex projective manifold X, which is in particular a
Kähler manifold, given an integer n we have a natural weight n Hodge structure on
Hn(X,Q), i.e. we can write

Hn(X,Q)⊗ C = Hn(X,C) =
⊕
r+s=n

Hr,s(X),

with Hr,s(X) = Hs,r(X). Moreover, one has Hr,s(X) ' Hs(X,Ωr). As the Chern
classes are of type (r, r), the Mukai vector of a sheaf is in

⊕
rH

r,r(X)∩H2r(X,Q).

Proposition 1.3.14. If ΦP : Db(X)
∼−→ Db(Y ) is an equivalence, then the cohomo-

logical Fourier-Mukai transform ΦH
P : H∗(X,Q)→ H∗(Y,Q) yields isomorphisms⊕

r−s=i

Hr,s(X) '
⊕
r−s=i

Hr,s(Y )

for i = −dim X, . . . , 0, . . . , dim X.

Proof. By Proposition 1.3.13, it suffices to show that the C-linear extension of ΦH
P

satisfies
ΦH
P (Hr,s(X)) ⊂

⊕
t−u=r−s

H t,u(Y ).

Using Künneth decomposition, we can write v(P) =
∑
αr
′,s′ � βt,u, for αr′,s′ ∈

Hr′,s′(X) and βt,u ∈ H t,u(Y ). The class of v(P) is algebraic, so, in the above
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decomposition, only terms with r′ + t = s′ + u will contribute. Let α ∈ Hr,s(X).
One has

ΦH
P (α) = p∗ (v(P).q∗α) =

∑
p∗

(
q∗(αr

′,s′ .α)
)
.βt,u.

Let us focus on p∗q∗
(
αr
′,s′ .α

)
∈ Hr+r′+s+s′−2dim(X)(Y,C). Note that αr′,s′ .α is non-

zero only if r+r′ ≤ dim(X) and s+s′ ≤ dim(X). On the other hand, p∗q∗
(
αr
′,s′ .α

)
is non-zero only if r + r′ + s + s′ ≥ 2 dim(X). We deduce that only terms with
(r + r′, s + s′) = (dim(X), dim(X)) will contribute and that p∗

(
q∗
(
αr
′,s′ .α

))
∈

H0(Y,C) ' C is a complex scalar.
Hence,

ΦH
P (α) =

∑
p∗

(
q∗(αr

′,s′ .α)
)
βt,u ∈

⊕
H t,u(Y )

with t− u = s′ − r′ = dim(X)− s− dim(X) + r = r − s.

The Mukai pairing We conclude this section giving the definition of the Mukai
pairing on H∗(X,Q). We will show that it is compatible with the cohomological
Fourier-Mukai transform induced by a derived equivalence.

Given v =
∑

i vi ∈ ⊕iH2i(X,Q) = Hev(X,Q), we define its dual to be

v∨ =
∑
i

(−1)ivi ∈
⊕
i

H2i(X,Q).

We summarize the main properties of the dual in the following

Lemma 1.3.15. (i) For any v and w in Hev(X,Q), (v.w)∨ = v∨.w∨.

(ii) If p : X × Y → Y is the second projection, then, for any v ∈ Hev(X × Y,Q),

p∗(v)∨ = (−1)dim(X)p∗(v
∨).

(iii) For any complex E• ∈ Db(X),

v(E• ∨) = v(E•)∨. exp

(
c1(X)

2

)
.

Proof. (i) Writing v =
∑
vi and w =

∑
wj, it suffices to note that the k-

th component of v.w is
∑
vi.wk−i, while the k-th component of v∨.w∨ is∑

(−1)ivi.(−1)k−iwk−i = (−1)k
∑
vi.wk−i.

(ii) If we write v =
∑
vi with vi ∈ H2i(X × Y,Q), then p∗v =

∑
p∗vi, with

p∗vi ∈ H2(i−dim(X))(Y,Q). Then

p∗(v
∨) = p∗

(∑
(−1)ivi

)
=
∑

(−1)ip∗vi

= (−1)dim(X)
∑

(−1)i−dim(X)p∗vi = (−1)dim(X)(p∗v)∨.
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(iii) As ck(E∨) = (−1)kck(E) for any locally free sheaf E, we have ch(E•∨) =
ch(E•)∨. Hence

v(E•∨) = ch(E•)∨.
√

td(X) = v(E•)∨.

√
td(X)√
td(X)

∨ .

To conclude, it is enough to prove that
√

td(X) =
√

td(X)
∨
. exp(c1(X)/2)

or, equivalently, td(X) = td(X)∨. exp(c1(X)). By splitting principle, write

td(X) =
∏
i

ai
1− exp(−ai)

.

Then one has

td(X)∨. exp(c1(X)) =
∏
i

−ai
1− exp(ai)

∏
exp(ai) =

∏
i

−ai
exp(−ai)− 1

= td(X).

Definition 1.3.16. The Mukai pairing is the bilinear form defined as

〈v, v′〉 := −
∫
X

exp

(
c1(X)

2

)
.v∨.v′ for any v, v′ ∈ Hev(X,Q).

Recall that, for complexes E• and F • in Db(X), we can define

χ(E•, F •) =
∑
i

(−1)idim Exti(E•, F •).

This generalizes the well-known notion of Euler characteristic of a coherent sheaf F
on X: indeed, χ(OX , F ) = χ(F ), as Exti(OX , F ) = H i(X,F ).

Proposition 1.3.17. Let E•, F • ∈ Db(X). Then

χ(E•, F •) = −〈v(E•), v(F •)〉.

Proof. It suffices a little calculation, which involves the Hirzebruch-Riemann-Roch
theorem:

−〈v(E•), v(F •)〉 =

∫
X

exp

(
c1(X)

2

)
.v(E•)∨.v(F •)

=

∫
X

v(E• ∨).v(F •) =

∫
X

ch(E•∨).
√

td(X).ch(F •).
√

td(X)

=

∫
X

ch(E•∨ ⊗ F •).td(X) = χ(E•∨ ⊗ F •) = χ(E•, F •).

23



Proposition 1.3.18. Let ΦP : Db(X)
∼−→ Db(Y ) be an equivalence. Then the induced

cohomological Fourier-Mukai transform

ΦH
P : H∗(X,Q)→ H∗(Y,Q)

is an isometry with respect to the Mukai pairing.

Proof. We need to check that, for any v, v′ ∈ H∗(X,Q),

〈v, v′〉X = 〈ΦH
P (v),ΦH

P (v′)〉Y .

As ΦH
P is an isomorphism by Proposition 1.3.13, it suffices to show that, for any

v ∈ H∗(X,Q) and w ∈ H∗(Y,Q), one has

〈ΦH
P (v), w〉Y = 〈v,

(
ΦH
P
)−1

(w)〉X .

Recalling that
(
ΦH
P
)−1

= ΦH
PR , let us perform the computations.

〈ΦH
P (v), w〉Y = −

∫
Y

exp

(
c1(Y )

2

)
.p∗(q

∗v.v(P))∨.w

= (−1)dim(X)+1

∫
X×Y

p∗ exp

(
c1(Y )

2

)
.(q∗v.v(P))∨.p∗w

= (−1)dim(X)+1

∫
X×Y

p∗ exp

(
c1(Y )

2

)
.q∗v∨.v(P)∨.p∗w

= (−1)dim(X)+1

∫
X×Y

p∗ exp

(
c1(Y )

2

)
.q∗v∨.v(P∨). exp

(
c1(X × Y )

2

)−1

.p∗w

= (−1)dim(X)+1

∫
X×Y

p∗ exp

(
c1(Y )

2

)
.q∗v∨.v(P∨).q∗ exp

(
c1(X)

2

)−1

.

.p∗ exp

(
c1(Y )

2

)−1

.p∗w

= (−1)dim(X)+1

∫
X×Y

q∗v∨.v(P∨).q∗ exp

(
c1(X)

2

)−1

.p∗w

= (−1)dim(X)+1

∫
X×Y

q∗v∨.v(P∨ ⊗ q∗ωX).q∗ exp

(
c1(X)

2

)
.p∗w

= −
∫
X×Y

q∗ exp

(
c1(X)

2

)
.q∗v∨.v(PR).p∗w

= −
∫
X

exp

(
c1(X)

2

)
.v∨.q∗(v(PR).p∗w)

= 〈v,
(
ΦH
P
)−1

(w)〉X .
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Chapter 2

Torelli theorems

This chapter, devoted to Torelli theorems, is divided into two parts. The first is
meant to be a sketchy introduction to K3 surfaces: we collect some basic facts on
their singular cohomology groups, Hodge decomposition, ample and Kähler cone and
period map, which allow us to state the Global Torelli theorem. This discussion
motivates the second part, which deals with the Derived version of Torelli theorem. In
the proof of this beautiful result, due to Mukai and Orlov, Fourier-Mukai transforms
play a crucial role, as well as moduli spaces of stable sheaves, that we will introduce
in the next chapter.

2.1 K3 surfaces
Definition 2.1.1. A K3 surface is a smooth compact connected complex surface
X such that

ωX ' OX and H1(X,OX) = 0.

Remark 2.1.2. The condition on the triviality of the canonical bundle means that
there exists a (unique up to scalars) holomorphic differential 2-form that never
vanishes on X. This form, which is closed and defines a non-degenerate alternating
form on the tangent space TxX to X at every point x, is then a symplectic form.

Remark 2.1.3. It is easy to determine the Euler characteristic χ(X,OX) of the
structure sheaf. Indeed, by definition, one has h1(X,OX) = 0. By Serre duality,
h2(X,OX) = h0(X,ωX) = h0(X,OX) = 1. Therefore,

χ(X,OX) = h0(X,OX)− h1(X,OX) + h2(X,OX) = 2.

Remark 2.1.4. Most of the K3 surfaces are not projective. However, they are
always Kähler manifolds, but this is difficult to prove (see [3] Theorem 3).
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Let us list some remarkable examples.

Example 2.1.5. Let us look for K3 surfaces among the smooth complete intersec-
tions X of degree d1, d2, . . . , dn in the projective space Pn+2

C . We may assume that
2 ≤ d1 ≤ d2 ≤ · · · ≤ dn (if d1 = 1, we are just considering complete intersections of
degree d2, d3, . . . , dn in Pn+1

C ). By adjunction formula, the canonical bundle of X is

ωX = O(−n− 3 + d1 + d2 + · · ·+ dn)|X .

If we want it to be trivial, we need that −n−3+d1 +d2 + · · ·+dn = 0; in particular,
n+ 3 ≥ 2n, i.e. n ≤ 3. We have the following possibilities:

(i) if n = 1, then d = 4: we are looking for smooth quartics in P3;

(ii) if n = 2, then d1 = 2, d2 = 3: we are looking for smooth complete intersections
of a quadric and a cubic in P4;

(iii) if n = 3, then d1 = d2 = d3 = 2: we are looking for smooth complete
intersections of three quadrics in P5.

It remains to show that H1(X,OX) = 0. Let us do explicit calculations in case (ii).
One has an exact sequence

0→ O(−2− 3)→ O(−2)⊕O(−3)→ OP4 → OX → 0,

which can be split into the two short exact sequences

0→ O(−2− 3)→ O(−2)⊕O(−3)→ I → 0

0→ I → OP4 → OX → 0.

Consider the two induced long exact cohomology sequences. In the latter, since
H1(P4,OP4) and H2(P4,OP4) vanish, we deduce that H1(X,OX) ' H2(P4, I). In
the former, we have H2(P4,O(−2)⊕O(−3)) = H2(P4,O(−2))⊕H2(P4,O(−3)) =
0 = H3(P4,O(−5)), hence H2(P4, I) = 0.

Example 2.1.6. Let A be a two-dimensional complex torus. The involution
ι : A → A has 16 fixed points. Let ε : Ã → A be the blow-up at these points and
denote as E1, E2, . . . E16 the exceptional divisors. The involution ι extends to an
involution ι̃ : Ã → Ã: it fixes pointwise the exceptional divisors and, on the other
points, it acts as ι. Hence, the fixed points locus is a smooth divisor. Consider X
the quotient surface of Ã by ι̃. π : Ã → X is a degree-two ramified cover, whose
branch locus consists of 16 irreducible rational curves C1, C2, . . . , C16. This implies
that the sum of the Ci’s is divisible by 2 in Pic(X). The surface X we have obtained
is called Kummer surface associated with A.

Conversely, assume that X is a K3 surface containing 16 disjoint smooth rational
curves Ci whose sum is divisible by 2 in Pic(X) (actually, by a result of Nikulin, the
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last condition is always satisfied). We claim that X is a Kummer surface. Indeed,
one can construct the double cover π : Ã→ X ramified along the curves Ci. Then,
contracting the 16 exceptional curves π−1(Ci), we obtain a smooth surface A. As
the canonical bundle is trivial and χ(OA) = 0, by the classification of surfaces A is
a complex torus. Hence, X is the Kummer surface associated with A.

2.1.1 Picard group and singular cohomology

LetX be a K3 surface. Several interesting facts can be deduced from the exponential
sequence

0→ Z ·2πi−−→ OX
exp−−→ O×X → 0

and from the following part of the induced long exact cohomology sequence

0→ H1(X,Z)→ H1(X,OX)→ H1(X,O×X)
c1−→ H2(X,Z)→ . . . (2.1)

First of all, 2.1 sheds light on the Picard group of X. Recalling that H1(X,OX) = 0
by definition of K3 surface and that the Picard group Pic(X) can be identified with
H1(X,O×X), we have an injection

Pic(X)
c1
↪−→ H2(X,Z).

The image of c1, isomorphic to Pic(X) in our case, is called the Néron-Severi group
of X and it is denoted by NS(X). It is a finitely generated abelian group, whose
rank, denoted by ρ(X), is called the Picard number of X. For any L,M ∈ Pic(X),
we can define their intersection product as

L.M = c1(L) ∪ c1(M).

Remark 2.1.7. For the intersection product of L and M , we will use also the
notation (L.M) and, when L = M , (L2).

Because of the triviality of the canonical bundle, the Riemann-Roch formula has
a particularly simple expression:

χ(X,L) =
(L2)

2
+ χ(X,OX) =

(L2)

2
+ 2.

This immediately implies that the intersection product is even, but also that the
Picard group is torsion-free: if L were a torsion element, we would have χ(X,L) = 2;
hence at least one of h0(X,L) or h2(X,L) = h0(X,L∨) would be non-zero, i.e. there
would exist a non-zero section s of L or L∨. As s⊗±m never vanishes (L⊗±m ' OX),
so does s; therefore L would be trivial.
Something more can be said when the K3 surface X is projective.

Proposition 2.1.8. Let X be a projective K3 surface. The intersection product on
Pic(X)⊗ R is non-degenerate and of signature (1, ρ(X)− 1).
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Proof. As X is projective, there exists an ample line bundle H on X. Assume for
a contradiction that there exists a non-trivial line bundle L ∈ Pic(X) such that
(L.M) = 0 for any M ∈ Pic(X). In particular, (L.H) = 0. Then, neither L nor L∨
can be effective. By Serre duality and Riemann-Roch formula, (L2) = 2χ(L)− 4 =
−h1(X,L)−4 < 0, a contradiction. Hence the intersection pairing is non-degenerate.
The statement on the signature is Hodge index theorem (see [10, ch. V] Theorem
1.9).

Secondly, 2.1 allows us to determine the singular cohomology groups of a K3
surface. Indeed, on the one hand, it immediately implies that H1(X,Z) = 0. On
the other, as Pic(X) and H2(X,OX) ' C are torsion-free, so is H2(X,Z). By uni-
versal coefficients theorems, which identify the torsion subgroups of Hq(X,Z) and
Hq−1(X,Z), we get that H1(X,Z) is torsion-free, hence zero; we deduce, thanks to
Poincaré duality, that H3(X,Z) = 0. Connectedness of X (with Poincaré duality
once more) implies H0(X,Z) ' H4(X,Z) ' Z. To have a complete picture of the
situation, it remains to determine the rank of the free abelian group H2(X,Z). To
this aim, we use Noether formula, which establishes a relation between the holomor-
phic and topological Euler characteristic of X. In our case it reads as

12χ(X,OX) = ω2
X + χtop(X) = χtop(X).

We deduce that χtop(X) = 24. Now, the previous discussion, in terms of Betti
numbers, yields b0(X) = b4(X) = 1, b1(X) = b3(X) = 0. Therefore,

b2(X) = χtop(X)− b0(X) + b1(X) + b3(X)− b4(X) = 24− 2 = 22.

Let us focus now on the cup product

∪ : H2(X,Z)×H2(X,Z)→ Z.

Poincaré duality says that this bilinear form is unimodular. The Wu formula, which
states that, for any α ∈ H2(X,Z), α ∪ α ≡ α ∪ c1(ωX) (mod 2), implies that the
cup product is even. To determine the signature (b2(X)+, b2(X)−) of its R-bilinear
extension to H2(X,R), recall that

b2(X)+ − b2(X)− =
1

3
(ω2

X − 2χtop(X)) =
1

3
(−2 · 24) = −16.

Thus (b2(X)+, b2(X)−) = (3, 19). By the classification of unimodular lattices,
(H2(X,Z),∪) is isomorphic to the lattice

Λ := U⊕3 ⊕ E8(−1)⊕2,

where U is the hyperbolic plane and E8 is the unique positive definite even unimod-
ular lattice of rank 8. Λ is called K3 lattice.
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2.1.2 Ample cone and Kähler cone

Let X be a K3 surface and assume that it is projective. Its Picard number n = ρ(X)
is then ≥ 1. Moreover, the intersection product on Pic(X) is symmetric and non-
degenerate and its R-bilinear extension to V = Pic(X)⊗R is of signature (1, n− 1)
by Proposition 2.1.8. In a suitable basis of V , this bilinear form can be written as
x2 = x2

0 − x2
1 − · · · − x2

n. The cone{
x ∈ V

∣∣ x2 > 0
}

has two opposite connected components P+ and P−, corresponding to the two pos-
sible signs of x0.

Remark 2.1.9. If x ∈ P+ and y ∈ P+ \ {0}, one has x.y > 0: imdeed, choosing
an orthonormal basis whose first vector is e0 = x/

√
x2, we get x.y = x2y0 > 0.

Consequently, x.y < 0 if y ∈ P− \ {0}. Therefore, if we pick x and y of strictly
positive square, they are in the same connected component if and only if x.y > 0.

Define the positive cone of X to be

Pos(X) :=
{
x ∈ Pic(X)⊗ R

∣∣ x2 > 0, x.H > 0
}

for some ample line bundle H and the ample cone of X to be

Amp(X) :=

{∑
i

λiLi

∣∣∣∣∣ λi ∈ R>0, Li ample for all i

}
.

By Nakai-Moishezon criterion ([10, ch. V] Theorem 1.10), Amp(X) ⊂ Pos(X);
more precisely, a divisor class L ∈ Pos(X) is ample if and only if (L.C) > 0 for any
irreducible curve C on X. We shall show that we can simplify this condition. Let
C ⊂ X be an integral curve and g(C) = h1(C,OC). Serre duality and the exact
sequence

0→ OX(−C)→ OX → OC → 0

imply that

χ(OX(C)) = χ(OX(−C)) = χ(OX)− χ(OC) = 2− (1− g(C)) = g(C) + 1.

On the other hand, Riemann-Roch formula yields

χ(OX(C)) =
(C2)

2
+ 2.

We deduce that
g(C) =

1

2
(C2) + 1.
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Hence, (C2) ≥ −2 and (C2) = −2 if and only if C is a smooth rational curve. Define

∆ :=
{
M ∈ Pic(X)

∣∣M2 = −2
}

∆+ :=
{
M ∈ ∆

∣∣ H0(X,M) 6= 0
}
.

Note that any smooth rational curve lies in ∆+, but there may be other classes: if
we take for example C1 and C2 smooth rational curves meeting transversally at a
single point, then C1 + C2 ∈ ∆+.

Proposition 2.1.10. For a projective K3 surface X,

Amp(X) =
{
x ∈ Pos(X)

∣∣ x.M > 0 for any M ∈ ∆+
}

= { x ∈ Pos(X) | x.C > 0 for any C smooth rational curve } .

Proof. Clearly, we have inclusions

Amp(X) ⊂
{
x ∈ Pos(X)

∣∣ x.M > 0 for any M ∈ ∆+
}

⊂ { x ∈ Pos(X) | x.C > 0 for any C smooth rational curve } .

As the points of Pic(X) ⊗ Q are dense in all these sets, it suffices to prove that,
if x ∈ Pos(X) ∩ (Pic(X) ⊗ Q) has strictly positive intersection with all smooth
rational curves, it belongs to Amp(X). Up to multiplication with an integer, we
may assume that x is a divisor class L. We will use the Nakai-Moishezon criterion
to prove that L is ample. Let C ⊂ X be an irreducible curve. If (C2) ≥ 0, then
C ∈ Pos(X)\{0} and L.C > 0 by 2.1.9. If (C2) = −2, C is a smooth rational curve,
and by assumption we conclude that L.C > 0.

As we have already said, most of K3 surfaces are not projective and, hence,
do not have any ample divisor class. However, they are always Kähler manifolds.
Recall that a Kähler class is the class in H2(X,R) of a non-degenerate positive
real differential 2-forms of type (1, 1). We can perform a construction similar to
the one of the ample cone. On the real vector space H2(X,R) ∩ H1,1(X), the cup
product has signature (1, 19). The set of classes of strictly positive square has two
connected components; the component containing the Kähler classes is still called
positive cone Pos(X) of X. Let ∆+ ⊂ H2(X,Z) denote the set of classes of effective
divisors with square −2. As δ runs over the elements of ∆+, the hyperplanes δ⊥
determine a paving of Pos(X). The connected components of Pos(X) \ ∪δ⊥ are
called the chambers. The Kähler cone is the chamber

Kah(X) =
{
x ∈ Pos(X)

∣∣ x.δ > 0 for any δ ∈ ∆+
}
.

2.1.3 Hodge structure and period map

From the general theory of compact Kähler manifolds, we deduce that the singular
cohomology group H2(X,Z) of a K3 surface X has a natural weight two Hodge
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structure

H2(X,Z)⊗Z C ' H2(X,C) ' H2,0(X)⊕H1,1(X)⊕H0,2(X).

One may think at the Hodge decomposition in these terms. Via the de Rham
isomorphism, the singular cohomology group H2(X,C) with complex coefficients
can be identified with the de Rham cohomology group H2

dR(X,C) of classes of closed
C-valued differential 2-forms modulo exact forms. Let Hp,q(X) ⊂ H2

dR(X,C) be the
subspace generated by classes of closed forms of type (p, q), p + q = 2. Then the
above decomposition says that any closed differential 2-form can be written as a
sum of closed differential forms of type (p, q) up to an exact form.

We have already seen the importance of the cup product on H2(X,Z). Its C-
bilinear extension toH2(X,C) corresponds to the wedge product of differential forms
followed by integration on X. According to the above description, H2,0(X) = C[ω],
where ω is the symplectic form up to scalar. It clearly satisfies the relations∫

X

[ω] ∧ [ω] = 0 and
∫
X

[ω] ∧ [ω̄] > 0. (2.2)

Remark 2.1.11. Actually, if we start from the lattice (H2(X,Z),∪), the datum of a
differential form ω ∈ H2

dR(X,C) satysfying 2.2 determines the Hodge decomposition:

H2,0 = C[ω] H0,2(X) = C[ω̄] H1,1(X) = (H2,0(X)⊕H0,2(X))⊥.

Next, we define the period of a K3 surface. The Hodge decomposition plays a
crucial role, but one has also to choose a suitable Z-basis of H2(X,Z).
Definition 2.1.12. A marked K3 surface is a pair (X, σ), where X is a K3 surface
and σ : H2(X,Z)→ Λ is an isometry.

The C-linear extension of σ sends H2,0(X) to a one-dimensional subspace of
Λ⊗C, which is identified to a point P of the projective space P(Λ⊗C). P is called
the period of (X, σ). As ω satisfies the relations 2.2 so does σC(ω). Therefore the
period P belongs to the subset

Ω = { x ∈ P(Λ⊗ C) | x.x = 0, x.x̄ > 0 } ,
which is called the period domain.

Consider now f : X → U a smooth family of K3 surfaces. A marking of f is
an isometric isomorphism σ of the locally constant system R2f∗Z to the constant
system ΛU . This means that, for any u ∈ U , the induced map σu : H2(Xu,Z) → Λ
is an isometry. We define the period map associated with (f, σ) as

℘ : U → Ω ⊂ P(Λ⊗ C)

u 7→ ℘(u) = σu(H
2,0(Xu)).

One has the following
Theorem 2.1.13 (Local Torelli). Let 0 ∈ U and X → U be a local universal
deformation of X0. The period map ℘ : U → Ω is a local isomorphism at 0.
Proof. See [5] Theorem 6.6.
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2.1.4 Global Torelli theorem

Let X and Y be K3 surfaces and ϕ : H2(X,Z) → H2(Y,Z) an isomorphism. We
say that ϕ is a Hodge isometry if it preserves the cup product and the Hodge
decomposition (i.e. the C-linear extension of ϕmapsH2,0(X) toH2,0(Y )). Moreover,
we say that ϕ is effective if ϕ(Kah(X)) = Kah(Y ).

Theorem 2.1.14 (Global Torelli - Piatetski-Shapiro, Shafarevich). Two K3 surfaces
X and Y are isomorphic if and only if there exists a Hodge isometry

ϕ : H2(X,Z)→ H2(Y,Z).

If, moreover, ϕ is effective, there exists a unique isomorphism u : Y
∼−→ X such that

ϕ = u∗.

One direction is easy: if u : Y
∼−→ X is an isomorphism, then the pull-back

u∗ : H2(Y,Z)→ H2(X,Z) is an effective Hodge isometry.
For the converse, we need the following three propositions, whose proof can be

found in [3].

Proposition 2.1.15. Torelli theorem holds when X is a Kummer surface.

Proposition 2.1.16. The set of periods of marked Kummer surfaces is dense in Ω.

Proposition 2.1.17. Let f : X → U and g : Y → U be two smooth families of K3
surfaces over the analytic variety U and Φ: R2f∗Z→ R2g∗Z an isomorphism of local
systems such that, for any u ∈ U , Φu : H2(Xu,Z)→ H2(Yu,Z) is a Hodge isometry.
Let T ⊂ U and 0 ∈ U an accumulation point of T . Assume that, for any t ∈ T ,
there exists an isomorphism ut : Yt → Xt such that u∗t = ϕt. Then

(i) X0 and Y0 are isomorphic;

(ii) if, in addition, Φ0 is effective, then there exists an isomorphism u0 : Y0 → X0

such that u∗0 = ϕ0.

Proof of Theorem 2.1.14. Let f : X → U and g : Y → V be two local universal
families for X and Y , so that X = X0 for 0 ∈ U and Y = Y0′ for 0′ ∈ V . Up to
restricting U (resp. V ) to a simply connected neighbourhood of 0 (resp. 0′), we may
assume that the local system R2f∗Z on U (resp. R2g∗Z on V ) is isomorphic to the
constant sheaf associated with the K3 lattice Λ. Choose trivializations σ : R2f∗Z→
ΛU and τ : R2g∗Z→ ΛV so that σ0 = τ0 ◦ ϕ. The induced period maps ℘U : U → Ω
and ℘V : V → Ω satisfy ℘U(0) = ℘V (0′). The local Torelli theorem 2.1.13 allows us
to identify (U, 0) and (V, 0′) in such a way that the families (f, σ) and (g, τ) have the
same period map. This means that the isomorphism Φ = τ−1 ◦ σ : R2f∗Z→ R2g∗Z
induces a Hodge isometry at each point of U . By Proposition 2.1.16, there exists
T a dense subset of U such that Xt is a Kummer surface. As Φ0 is effective, so is
Φt for t in a neighbourhood of 0. By Proposition 2.1.15, we deduce isomorphisms
ut : Yt → Xt such that u∗t = Φt for any t ∈ T . Proposition 2.1.17 implies the
existence of u : Y → X such that u∗ = Φ0 = ϕ.
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2.2 Derived equivalence of K3 surfaces
The aim of this section is to state and prove a derived version of Torelli theorem,
i.e. a cohomological criterion that decides when two K3 surfaces have equivalent
derived categories. In section 1.2 we have introduced the bounded derived category
only for projective varieties. Therefore, all the involved K3 surfaces will be supposed
projective.

Fix a K3 surface X and consider its whole cohomology group

H∗(X,Z) = H0(X,Z)⊕H2(X,Z)⊕H4(X,Z) ⊂ Hev(X,Q).

The Mukai pairing introduced in section 1.3.1 induces on H∗(X,Z) a symmetric
bilinear pairing

〈α, β〉 = −
∫
X

α∨.β for all α, β ∈ H∗(X,Z).

If α = (α0, α1, α2) and β = (β0, β1, β2) for αi, βi ∈ H2i(X,Z), the Mukai pairing is
more explicitly given by

〈α, β〉 = α2.β2 − α0.β4 − α4.β0 ∈ H4(X,Z) ' Z.

As usual, we have identified H4(X,Z) and Z via the fundamental cocycle of X.
The group H∗(X,Z) with the Mukai pairing is called the Mukai lattice and we
will denote it by H̃(X,Z). Moreover, H̃(X,Z) has the following weight two Hodge
decomposition:

H̃2,0(X,C) = H2,0(X),

H̃1,1(X,C) = H0(X,C)⊕H1,1(X)⊕H4(X,C),

H̃0,2(X,C) = H0,2(X).

Since c1(X) = 0 and td2(X) = χ(X,OX) = 2, the Todd class td(X) of X is equal
to (1, 0, 2); thus, its positive square root

√
td(X) equals (1, 0, 1). For a coherent

sheaf E on X, ch(E) ∈ H̃(X,Z), because the intersection product on X is even.
Recalling the Definition 1.3.11 of Mukai vector, we have

v(E) = ch(E).
√

td(X) = (r(E), c1(E), ch2(E)).(1, 0, 1)

= (r(E), c1(E), χ(E)− r(E)) ∈ H̃1,1(X,Z) ⊂ H̃(X,Z).

Actually, also the Chern character of a sheaf on the product of two K3 surfaces
X and Y lies in the integral cohomology group of X ×Y , as shown by the following

Lemma 2.2.1. Let X and Y be two K3 surfaces. Then, the Mukai vector of any
object E• ∈ Db(X × Y ) is an integral cohomology class v(E•) ∈ H∗(X × Y,Z).
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Proof. We may assume that E• is a sheaf E. It suffices to show ch(E) is integral:
indeed√

td(X × Y ) = q∗
√

td(X).p∗
√

td(Y ) = q∗(1, 0, 1).p∗(1, 0, 1) ∈ H∗(X × Y,Z).

Write
ch(E) = (r(E), c1(E),

1

2
(c2

1(E)− 2c2(E)), ch3(E), ch4(E)).

It is clear that r(E) and c1(E) are integral. Moreover, using the Künneth decompo-
sition H2(X × Y,Z) = H2(X,Z)⊕H2(Y,Z), we can write c1(E) = q∗α + p∗β with
α ∈ H2(X,Z), β ∈ H2(Y,Z). Therefore, c2

1(E) = q∗α2 + 2q∗α.p∗β + p∗β2, which is
divisible by two, as the intersection pairing on X and Y is even. To conclude, it
suffices to show that ch3(E) and ch4(E) are integral. We will use the Grothendieck-
Riemann-Roch formula

ch(p!E) = p∗(ch(E).q∗td(X))

and the integrality of Chern characters on K3 surfaces. Using once more Künneth
decomposition, we can write

ch(E) = (e0,0, e2,0 + e0,2, e4,0 + e2,2 + e0,4, e4,2 + e2,4, e4,4)

for er,s ∈ Hr(X,Q)⊗Hs(Y,Q). We have already proven that e0,0, e2,0, e0,2, e4,0, e2,2, e0,4

are integral.

c1(p!E) = p∗(e
4,2 + e2,4 + 2e2,0 + 2e0,2) =

∫
X

e4,2 + 2e0,2 ∈ H2(Y,Z)

implies that e4,2 is integral. Analogously, using Grothendieck-Riemann-Roch for-
mula with respect to the projection q, one obtains that e2,4 is integral. Hence,
ch3(E) ∈ H6(X × Y,Z). In the same way,

ch2(p!E) = p∗(e
4,4 + 2e4,0 + 2e2,2 + 2e0,4) =

∫
X

e4,4 + 2e0,4 ∈ H4(Y,Z)

implies that ch4(E) = e4,4 is integral.

Proposition 2.2.2. If ΦE• : Db(X)→ Db(Y ) is an equivalence between the derived
categories of two K3 surfaces, then the induced map in cohomology defines a Hodge
isometry

ΦH
E• : H̃(X,Z)→ H̃(Y,Z).

Proof. At a cohomological level, ΦH
E•(α) = p∗(q

∗α.v(E•)). If α ∈ H̃(X,Z), by
Lemma 2.2.1 also ΦH

E•(α) is integral, i.e.

ΦH
E•(H̃(X,Z)) ⊂ H̃(Y,Z).
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Now, the inverse of ΦE• is again a Fourier-Mukai equivalence and we can therefore
apply the same argument. We eventually deduce ΦH

E• : H̃(X,Z)
∼−→ H̃(Y,Z).

The fact that ΦH
E• respects the Mukai pairing and, when tensored with C, maps

H2,0(X) to H2,0(Y ) comes from the more general Propositions 1.3.18 and 1.3.14,
respectively.

Let us discuss now some autoequivalences of the derived category Db(X) of a K3
surface X.

Example 2.2.3. (i) Every line bundle L on X defines an autoequivalence

L⊗ ( ) : Db(X)→ Db(X).

As shown in Example 1.3.3, it is a Fourier-Mukai transform inducing in coho-
mology the multiplication with the Chern character ch(L).

(ii) The structure sheaf OX induces an autoequivalence of Db(X) as follows. The
mapping cone of the natural map OX×X → O∆ is an object P in Db(X ×X).
To keep track of the structure sheaf, we denote the Fourier-Mukai transform
with kernel P as

TOX
: Db(X)→ Db(X).

It turns out that TOX
is an equivalence (this is a general fact: for a K3 surface

X, OX is a spherical object and TOX
is the associated spherical twist, see

[12, ch. 8]). Note that v(P) = v(OX×X [1] ⊕ O∆) = v(O∆) − v(OX×X).
Therefore, in cohomology, THOX

= ΦH
O∆
−ΦH

OX×X
= id−ΦH

OX×X
. Now, the Mukai

vector v(OX×X) =
√

td(X ×X) = p∗
√

td(X).q∗
√

td(X), hence ΦH
OX×X

(α) =

−〈α,
√

td(X)〉
√

td(X). Thus,

THOX
(α) = α + 〈α,

√
td(X)〉

√
td(X).

Notice that, in particular, THOX
acts as the identity on H2(X,Z), and inter-

changes, up to a sign, H0(X,Z) and H4(X,Z).

Theorem 2.2.4 (Derived Torelli - Mukai, Orlov). Two K3 surfaces X and Y are
derived equivalent if and only if there exists a Hodge isometry H̃(X,Z) ' H̃(Y,Z).

Proof. We have already shown the “only if ” direction in Proposition 2.2.2. Let us
prove the converse.

(i) Assume that there exists a Hodge isometry ϕ : H̃(X,Z)
∼−→ H̃(Y,Z) with

ϕ(0, 0, 1) = ±(0, 0, 1). As the shift functor induces multiplication with −1
in cohomology, we may assume that ϕ(0, 0, 1) = (0, 0, 1). Let v = (r, `, s) =
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ϕ(1, 0, 0). Notice that v ∈ H̃1,1(Y,Z) and in particular ` ∈ NS(Y ), i.e ` = c1(L)
for some line bundle L on Y .

− 1 = 〈(1, 0, 0), (0, 0, 1)〉 = 〈v, (0, 0, 1)〉 = −r

0 = 〈(1, 0, 0), (1, 0, 0)〉 = 〈v, v〉 = `2 − 2rs = `2 − 2s⇒ s =
`2

2
.

Hence
ϕ(1, 0, 0) =

(
1, `,

`2

2

)
.

Up to composition with the cohomological transform induced by tensoring
with L∨, we may suppose that ϕ(1, 0, 0) = (1, 0, 0) and ϕ(0, 0, 1) = (0, 0, 1).
Therefore, for any α ∈ H2(X,Z), ϕ(0, α, 0) = (r′, `′, s′) will satisfy

0 = 〈(1, 0, 0), (0, α, 0)〉 = 〈(1, 0, 0), (r′, `′, s′)〉 = −s′

0 = 〈(0, 0, 1), (0, α, 0)〉 = 〈(0, 0, 1), (r′, `′, s′)〉 = −r′.

Hence, ϕ induces a Hodge isometry H2(X,Z) ' H2(Y,Z). By Torelli theorem
2.1.15, X ' Y , and in particular Db(X) ' Db(Y ).

(ii) Now, let us assume that ϕ(0, 0, 1) = (r, `, s) = v, with r 6= 0. Up to compo-
sition with the shift functor, we may assume that r > 0. One has 〈v, v〉 = 0.
Moreover, for v′ := ϕ(−1, 0, 0), 〈v, v′〉 = 1. By the general theory of moduli
spaces of stable sheaves on K3 surfaces, to be introduced in the next chap-
ter (but there are no circularities), there exist M a K3 surface and E a sheaf
on Y ×M such that ΦE∨ : Db(Y ) → Db(M) is an equivalence. Consider the
composition

ψ : H̃(X,Z)
ϕ−→ H̃(Y,Z)

ΦH
E∨−−→ H̃(M,Z).

ψ(0, 0, 1) = ΦH
E∨(v) = (0, 0, 1) (this calculation will be done in Theorem 3.3.19).

Then, by part (i), Db(X) ' Db(M), hence, composing with the inverse of ΦE∨ ,
Db(X) ' Db(Y ).

(iii) Finally, assume that ϕ(0, 0, 1) = (0, `, s) = v, with ` 6= 0. To reduce to case
(ii), the aim is to use the spherical twist. However, as THOY

(v) = (0, `, s) +
〈(0, `, s), (1, 0, 1)〉(1, 0, 1) = (0, `, s) + (−s)(1, 0, 1) = (−s, `, 0), we should en-
sure that s 6= 0. If s 6= 0, we are done. If this is not the case, consider a
line bundle L ∈ Pic(Y ) and the cohomological transform induced by tensoring
with L. One has

ch(L).(0, `, 0) =

(
1, c1(L),

c1(L)2

2

)
.(0, `, 0) = (0, `, c1(L).`).

As the intersection pairing is non-degenerate, c1(L).` 6= 0 for some L ∈ Pic(Y ),
which concludes the proof.
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Chapter 3

Mukai theory of moduli spaces

Roughly speaking, moduli spaces are geometric spaces whose points parametrize al-
gebraic objects up to a certain equivalence relation. Given a projective variety X,
the set coherent sheaves on X with fixed Hilbert polynomial cannot be parametrized
by an algebraic variety. To get around this problem, one introduces the notion of
(semi)stability, which is presented in the first section. In the second, we outline the
construction of the moduli space of semistable sheaves on X with fixed Hilbert poly-
nomial. In particular, as it plays a prominent role, we introduce the Hilbert scheme,
but, for space reasons, we have to take Mumford’s Geometric Invariant Theory for
granted. The third section is devoted to the theory of moduli spaces of semistable
sheaves on a polarized K3 surface X. After introducing general machinery, we study
in some detail the low dimensional cases (rigid and semirigid sheaves) and, just to
be sure that we are not working on the empty set, we conclude with an existence
result due to Mukai.

3.1 (Semi)stability
Let X be a projective scheme over C with a very ample invertible sheaf O(1);
denote H = c1(O(1)) its first Chern class. For any coherent sheaf E on X, set
E(n) = E⊗O(n). Let d = d(E) be the dimension of the support of E and r = r(E)
its rank (computed on its support). Then there exists a polynomial with rational
coefficients

PE(n) := χ(E(n)) = r
nd

d!
+ . . . ,

called the Hilbert polynomial of E. We define the slope and the reduced Hilbert
polynomial of E as

µ(E) =
(c1(E).Hd−1)

r
and pE =

PE
r

=
χ(E(n))

r

A coherent sheaf E is said to be pure of dimension d if, for all non-zero coherent
subsheaves F of E, we have d(F ) = d. For a sheaf E of maximal dimension, purity
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is equivalent to torsion-freeness.

Definition 3.1.1. A coherent sheaf E is said to be stable (resp. semistable) if it is
pure and, for any non-zero coherent subsheaf F of E, there exists N such that

pF (n) < pE(n) (resp. pF (n) ≤ pE(n))

for n ≥ N ; equivalently, if pF < pE (resp. pF ≤ pE) when polynomials are ordered
lexicographically starting from the highest term. A semistable sheaf that is not
stable is called strictly semistable. A polystable sheaf is a direct sum of stable
sheaves with the same reduced Hilbert polynomial.

A coherent sheaf E is said to be µ-stable (resp. µ-semistable) if it is pure and,
for any non-trivial coherent subsheaf F of E, one has

µ(F ) < µ(E) (resp. µ(F ) ≤ µ(E)) .

For E and F semistable sheaves, Hom(E,F ) 6= 0 implies pE ≤ pF : if ϕ : E → F
is a non-zero morphism of image I, then pE ≤ pI ≤ pF .

The category of semistable sheaves with fixed reduced Hilbert polynomial p0 is
clearly abelian. It is also artinian: descending filtrations are stationary as the rank
must decrease.

Every stable sheaf E is simple, meaning that the ring of endomorphisms End(E)
equals C: given a non-zero endomorphism ϕ : E → E, Ker ϕ = 0 (resp. Coker ϕ = 0)
as it is a proper subsheaf (resp. quotient sheaf) of E with the same reduced Hilbert
polynomial; then End(E) is a finite division algebra over C, hence it is C.

For any semistable sheaf E with reduced Hilbert polynomial p, there exists a
filtration

0 = E0 ⊂ E1 ⊂ E2 ⊂ · · · ⊂ En = E

whose successive quotients Ei/Ei−1 are stable with reduced Hilbert polynomial p for
i = 1, 2, . . . , n. Indeed, if E is stable, we are done. Otherwise, there exists a proper
non-trivial subsheaf with the same reduced Hilbert polynomial p. If even this is not
stable, we continue in the same way; as the category is artinian, we finally find a
stable subsheaf E1 with pE1 = p. Then apply the same procedure to E/E1. This
filtration, called Jordan-Hölder filtration, is not unique, but the polystable sheaf
gr(E) =

⊕
(Ei/Ei−1) is unique. To semistable sheaves E and E ′ are S-equivalent if

gr(E) ' gr(E ′).
Let us conclude this section spelling out what stability means for sheaves on a

smooth projective complex surface X. Fix O(1) an ample sheaf on X with first
Chern class c1(O(1)) = H and consider a coherent sheaf E on X.

(0) If E is zero-dimensional, namely it is supported on a finite number of closed
points, it is obviously pure. Its Hilbert polynomial PE = dim H0(X,E) = r
is constant and then pE = 1. Hence, E is always semistable, and it is stable if
and only if it is the structure sheaf of a reduced point.
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(1) If E is supported on a smooth connected curve C, then the notion of (semi)stability
of E on X coincide with the notion of µ-(semi)stability on C.

(2) Assume that E is two-dimensional of rank r = r(E). E is pure if and only if it
is torsion free. By Hirzebruch-Riemann-Roch formula, the Hilbert polynomial
of E can be computed as follows:

PE(n) = χ(E(n)) =

∫
X

ch(E(n)).td(X) =

∫
X

ch(E).ch(O(n)).td(X)

=

∫
X

(r, c1(E), ch2(E)) .

(
1, nH,

n2

2
(H2)

)
.td(X)

=
r(H2)

2
n2 +

(
(c1(E).H) +

r

2
(c1(X).H)

)
n+ χ(E).

Therefore, the reduced Hilbert polynomial of E is

pE(n) =
(H2)

2
n2 +

(
(c1(E).H)

r
+

(c1(X).H)

2

)
n+

χ(E)

r
,

while its slope is

µE =
(c1(E).H)

r
.

Hence, E is stable (resp. semistable) if and only if, for any non-zero coherent
subsheaf F , either µF < µE (resp. ≤) or, in case of equality,

χ(F )

r(F )
<
χ(E)

r(E)
(resp. ≤).

It is clear in this concrete example the chain of implications (valid in general)

µ-stable ⇒ stable ⇒ semistable ⇒ µ-semistable.

3.2 The moduli space MH(P )

Definition 3.2.1. Let M be a functor from the category of schemes of finite type
over C to the category of sets. A coarse moduli space for M consists of a scheme
M of finite type over C and a morphism of functors f : M→ Hom( ,M) satisfying
the following universal property: for any morphism of functors g : M→ Hom( , N),
there exists a unique morphism ϕ : M → N making this diagram commute:

M Hom( ,M)

Hom( , N).

f

g

M is a fine moduli space if it represents the functor M, i.e. M ' Hom( ,M).
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Let X be a projective scheme over C and let H be the first Chern class of a fixed
very ample invertible sheaf O(1). Let P be a polynomial with rational coefficients.
A family of semistable sheaves on X parametrized by an algebraic variety S is a
coherent sheaf F on X × S, flat over S, such that, for any closed point s ∈ S, the
sheaf F (s) on X is semistable. By flatness assumption, the Hilbert polynomial PF (s)

is locally constant.
Consider the functor MH(P ) associating with any algebraic variety S the set

MH(P )(S) of isomorphism classes of families of semistable sheaves parametrized by
S and with Hilbert polynomial P . We have the following

Theorem 3.2.2. The functor MH(P ) admits a coarse moduli space MH(P ) satis-
fying the following properties:

(i) MH(P ) is a projective variety;

(ii) closed points of MH(P ) are in 1 - 1 correspondence with S-equivalence classes
of semistable sheaves with Hilbert polynomial P ;

(iii) under this correspondence, the set of stable sheaves is identified to an open
subset Ms

H(P ) of MH(P ).

As we will see, in the construction of such a moduli space, the Hilbert scheme
plays an essential role. In the following section, we shall briefly recall its definition
and the main properties it satisfies.

3.2.1 Hilbert scheme

Fix H a locally free sheaf on X. For any algebraic variety S, define on X × S the
sheaf HS = H � OS. Consider the functor HilbP (H) whose sections over S are
coherent quotient sheaves

HS → E → 0

flat over S, such that the Hilbert polynomial of E(s) is P for any closed point s ∈ S.
With any morphism f : S ′ → S of algebraic varieties, we associate the map

HilbP (H)(S)→ HilbP (H)(S ′)

E 7→ (id× f)∗(E).

An important theorem of Grothendieck states that the functor HilbP (H) is repre-
sentable by a projective algebraic variety, which we denote as HilbP (H). In par-
ticular, C-rational points of HilbP (H) correspond bijectively to coherent quotient
sheaf H → E → 0 on X, with Hilbert polynomial P . We shall often write a closed
point as [q : H → E]. It is useful to fix notations also for the corresponding short
exact sequence

0→ G
j−→ H q−→ E → 0.
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Lemma 3.2.3. Let [q : H → E] be a C-rational point of the Hilbert schemeHilbP (H).
The Zariski tangent space T[q]HilbP (H) to the Hilbert scheme at the point [q] is iso-
morphic to Hom(G,E).

Proof. Let D = Spec(C[ε]/(ε2)) be the affine scheme associated with the algebra of
dual numbers. The closed embedding ι : Spec(C)→ D corresponds to the surjective
homomorphism of algebras C[ε]/(ε2) → C. By [10, ch. II] Exercise 2.8, a tangent
vector at a point [q] is a morphism in Hom(D,HilbP (H)), whose composition with
ι is [q]. Equivalently, by the commutativity of the diagram

HilbP (H)(D) Hom(D,HilbP (H))

HilbP (H)(Spec(C)) Hom(Spec(C),HilbP (H)),

∼

(id×ι)∗ ( )◦ι

∼

it is a coherent quotient sheaf E of HD, flat over D and such that (id× ι)∗(E) = E.
Now, let E = HD/G be such a sheaf. We show that this gives a homomorphism
G→ E. Applying the bifunctor ⊗C[ε]/(ε2) to the short exact sequences

0→ C ·ε−→ C[ε]/(ε2)→ C→ 0 and
0→ G → HD → E → 0,

thanks to flatness of E , one obtains a commuting diagram of short exact sequences
(see [11] for more details)

0 0 0

0 G G G 0

0 H HD H 0

0 E E E 0

0 0 0 .

The homomorphism we are looking for goes from the right top corner G to the left
bottom corner E. We do diagram chasing. Let x ∈ G and lift it to an element of G.
Since HD ' H⊕ εH, we can write the lifting as x+ εt ∈ G, for t ∈ H. Two liftings
differ by something of the form εz, z ∈ G. Thus, t is not uniquely determined, but
its image t̄ ∈ E is. Sending x to t̄ defines a morphism ϕ ∈ Hom(G,E).
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We remark that the zero morphism is obtained when E = E ⊕ εE and the
quotient morphism HD → E is given by the matrix(

q 0
0 q

)
.

Now, consider the functor Aut(H) whose sections over an algebrac variety S are
the automorphisms of HS. It is represented by the algebraic variety Aut(H). We
have a natural morphism of functors

σ : HilbP (H)× Aut(H)→ HilbP (H) :

for any algebraic variety S, σS is given by the action from the right

σS : HilbP (H)(S)× Aut(H)(S)→ HilbP (H)(S)

([q : HS → E], g ) 7→ [q ◦ g : HS → E].

Lemma 3.2.4. Let us fix [q : H → E] a closed point of the Hilbert scheme and
consider the orbit map

Aut(H)→ HilbP (H)

g 7→ [q ◦ g].

The tangent map at the identity is given by

End(H)→ Hom(G,E) (3.1)
ϕ 7→ −q ◦ ϕ ◦ j.

Proof. Keep the notations introduced in the proof of Lemma 3.2.3. The tangent
space to Aut(H) at the identity consists of automorphisms of HD that are sent to
the identity by the map Hom(D,Aut(H)) → Hom(Spec(C),Aut(H)). It can be
identified to End(H) via the map

End(H)
∼−→ Aut(HD)

ϕ 7→ id + εϕ.

We want to determine the image of any ϕ ∈ End(H) under the composition

Aut(HD)
0×id−−→ HilbP (H)(D)× Aut(HD)

σD−→ HilbP (H)(D).

The automorphism id + εϕ sends the zero tangent vector to the vector

H⊕ εH

 q 0
qϕ q


−−−−−−→ E ⊕ εE.

We compute the homomorphism G→ E corresponding to this D-point as we have
done in the proof of Lemma 3.2.3. Let x ∈ G and consider a lifting x+ εt ∈ G. One
has that qϕ(x) + q(t) = 0, that is ϕ(x) + t ∈ G. Hence the class of t in E equals the
class of −ϕ(x). The required homomorphism is then q ◦ (−ϕ) ◦ j.
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3.2.2 Construction of MH(P )

Let us briefly see how to use the Hilbert scheme to construct the moduli space
MH(P ). For a thorough presentation of this construction, consult [14, ch. 4].
Consider the family of semistable sheaves on X with fixed Hilbert polynomial P . It
can be shown that, form big enough, any semistable sheaf E with Hilbert polynomial
P satisfies the following conditions:

(i) E(m) is generated by its global sections;

(ii) the cohomology groups H i(X,E(m)) vanish for every i > 0.

Set N = P (m). Consider V an N -dimensional complex vector space and de-
fine on X the locally free sheaf H := V ⊗ OX(−m). Condition (ii) implies that
dim H0(X,E(m)) = χ(E(m)) = N . Condition (i) yields a surjective morphism

H q−→ E → 0

obtained composing the canonical evaluation map H0(X,E(m)) ⊗ OX(−m) → E
with an isomorphism V → H0(X,E(m)). This defines a closed point

[q : H → E] ∈ HilbP (H).

Such a point, in fact, belongs to the subset R ⊂ HilbP (H) of all those quotients
[q : H → E], where E is semistable and the induced map

V = H0(H(m))→ H0(E(m))

is an isomorphism. Hence, R parametrizes all semistable sheaves with Hilbert poly-
nomial P , but with a certain ambiguity due to the choice of a basis of H0(X,E(m)).
In order to identify them, we will consider the action of a linearly reductive algebraic
group on HilbP (H). The tools of Geometric Invariant Theory (GIT) will allow us
to construct the moduli space we are looking for.

As we have already seen, the group of automorphisms of H, which is isomorphic
to GL(V ), acts on HilbP (H) from the right:

HilbP (H)×GL(V )→ HilbP (H)

([q], g) 7→ [q].g = [q ◦ g].

Lemma 3.2.5. The stabilizer subgroup GL(V )[q] of a point [q] is isomorphic to the
group Aut(E) of automorphisms of E.

Proof. Pick ϕ ∈ Aut(E) and consider the diagram

V ⊗OX E(m)

V ⊗OX E(m).

g⊗id

q(m)

ϕ(m)

q(m)
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Taking global sections, we obtain g = H0(q(m))−1 ◦H0(ϕ(m))◦H0(q(m)) ∈ GL(V ).
Thus, we have built a group homomorphism

Aut(E)→ GL(V )

ϕ 7→ H0(q(m))−1 ◦H0(ϕ(m)) ◦H0(q(m)).

This morphism is injective as E(m) is globally generated. Its image is the sta-
bilizer subgroup GL(V )[q]: indeed g ∈ GL(V )[q] if and only if there exists an auto-
morphism ϕ of E such that q ◦ g = ϕ ◦ q.

As the centre of GL(V ) is contained in the stabilizer of any point [q] ∈ R, the
action of GL(V ) descends to an action of PGL(V ). Let Rss (resp. Rs) be the set of
semistable (resp. stable) points for the action of PGL(V ).

Proposition 3.2.6. Let [q : H → E] be a closed point of R. The following are
equivalent:

(i) the sheaf E is semistable (resp. stable) and the morphism

H0(q(m)) : V → H0(X,E(m))

is an isomorphism;

(ii) the point [q] is semistable (resp. stable) for the action of PGL(V ).

We have all the needed machinery to prove Theorem 3.2.2.

Proof. Define MH(P ) as the GIT-quotient Rss // PGL(V ). By construction, it is a
projective variety, which proves (i). The quotient map π : Rss →MH(P ) is a good
quotient. Again by geometric invariant theory (see [17, ch. 6, §1]), the subset Rs is
open in Rss, and it is the inverse image of an open subset Ms

H(P ) of MH(P ). The
restriction π : Rs →Ms

H(P ) is a geometric quotient. In particular, we have proven
(iii). It remains to prove that we have a bijection between S-equivalence classes of
semistable sheaves and C-rational points ofMH(P ). First, we show that a semistable
sheaf E and gr(E) define the same point in MH(P ). It suffices to show that, for E1 a
subsheaf of E with the same reduced Hilbert polynomial, E and E1⊕E/E1 define the
same point in MH(P ). In the vector space Ext1(E/E1, E1) consider the line (Et)t∈C
spanned by (the class of) the short exact sequence 0→ E1 → E → E/E1 → 0. We
get a morphism

A1 →MH(P )

t 7→ π(Et).

As Et ' E for t 6= 0, this map is constant on A1 \ {0}. By separatedness of MH(P )
the map must be constant. Hence, E and E0 ' E1⊕E/E1 define the same point in
MH(P ).
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It remains to prove that two distinct polystable sheaves define distinct points of
MH(P ). To this aim, it suffices to show that the orbit of a point [q : H → E] is
closed for E polystable. Write

E =
⊕
i

E⊕ni
i

with Ei stable. Let [q′ : H → E ′] be a point in the closure of the orbit of [q]. If
we prove that E ′ ' E, we are done. By GIT, we can find a 1-parameter subgroup
λ : C× → PGL(V ) such that limt→0 λ(t).q = q′. This corresponds to a family E of
semistable sheaves flat over A1 such that

Et ' E for t 6= 0 and E0 ' E ′.

For any i, consider the map t 7→ dim Hom(Ei, Et). It is upper semicontinuous by
flatness of E . For any t 6= 0, dim Hom(Ei, Et) = dim Hom(Ei, E) = ni. Hence, n′i =
dim Hom(Ei, E

′) ≥ ni. As Ei is stable, the evaluation map Ei ⊗Hom(Ei, E
′)→ E ′

is injective. We deduce that ⊕
i

E
⊕n′i
i ⊂ E ′.

As E and E ′ have the same rank, ni = n′i and E ' E ′.

Proposition 3.2.7. Let [q : H → E] ∈ Rs be a stable point for the action of
PGL(V ). We have a canonical isomorphism

T[E]M
s
H(P ) ' Ext1(E,E).

Proof. The stabilizer of any point in Rs under the GL(V ) action is C×; therefore,
the action of PGL(V ) on Rs is free. Hence, by GIT (see [17, ch. 8, §3]), the tangent
space

T[E]M
s
H(P )

is isomorphic to the normal space of the orbit of [q] at [q]. This is identified with
the cokernel of the linear map 3.1, which we compute as follows.

Applying the functor Hom( , E) to the short exact sequence

0→ G
j−→ H q−→ E → 0.

we get in cohomology

Hom(H, E)
j∗−→ Hom(G,E)→ Ext1(E,E)→ Ext1(H, E).

Note that the natural map

Hom(H,H)
q∗−→ Hom(H, E)
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is an isomorphism, since H0(X,H) → H0(X,E) is an isomorphism. Moreover, by
our choice of m,

Ext1(H, E) = Ext1(OX(−m)⊕N , E) ' H1(X,E(m))⊕N = 0.

We conclude that Ext1(E,E) is the cokernel of the composition

Hom(H,H)
q∗−→ Hom(H, E)

j∗−→ Hom(G,E),

which is exactly, up to a sign, the linear map 3.1.

3.3 Mukai theory of moduli spaces
Throughout this section, X will be an algebraic complex K3 surface. Following
the seminal article [21] by Mukai, we will introduce the tools that are needed for
the study of moduli spaces of sheaves on X with fixed numerical invariants. In
particular, we will understand the moduli spaces of stable sheaves with primitive
Mukai vector v of square −2 or 0.

3.3.1 Generalities

Consider an ample divisor class on X; it can be identified with its first Chern class
H. The construction of the moduli space would require the choice of a Hilbert
polynomial. In the case of K3 surfaces, in order to fix the numerical invariants of
the sheaves we want to parametrize, it turns out that the choice of a Mukai vector
in H̃(X,Z) is more convenient. In section 2.2 we have already computed the Mukai
vector of a coherent sheaf E on X

v(E) = ch(E).
√

td(X) = (r(E), c1(E), χ(E)− r(E)) ∈ H̃1,1(X,Z) ⊂ H̃(X,Z),

and in Proposition 1.3.17 we have proven that, for any E and F coherent sheaves
on X, one has

χ(E,F ) = dim Hom(E,F )− dim Ext1(E,F ) + dim Ext2(E,F ) = −〈v(E), v(F )〉.

Therefore, the Hilbert polynomial of a sheaf E with Mukai vector v will be

PE(n) = χ(E(n)) = χ(O(−n), E) = −〈v(O(−n)), v(E)〉 = −〈v(O(−n)), v〉.

We shall use the notation MH(v) for the moduli space of sheaves on X whose Mukai
vector is v and that are semistable with respect to H. We will denote as Ms

H(v) the
open subset of MH(v) parametrizing stable sheaves only.
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Due to the triviality of the canonical bundle of a K3 surface, Serre duality is not
only particularly simple in form, but provides us with an effective tool of study. It
says that, for any E and F coherent sheaves on X,

Hom(E,F ) ' Ext2(F,E)∨ and Ext1(E,F ) ' Ext1(F,E)∨.

If E = F , the latter relation states the existence of a non-degenerate bilinear form

ω[E] : Ext1(E,E)× Ext1(E,E)→ C,

given as follows: to α ∈ Ext1(E,E) ' HomDb(X)(E,E[1]) and β ∈ Ext1(E,E) '
HomDb(X)(E[1], E[2]), we associate tr(β ◦ α) ∈ H2(X,OX) ' C. Whenever E is a
stable sheaf, Mukai showed that the form ω[E] is alternating and glues to a symplectic
form ω on Ms

H(v).
From the above discussion we deduce the following

Corollary 3.3.1. (i) For any E,F coherent sheaves on X,

〈v(E), v(F )〉 = dim Ext1(E,F )− dim Hom(E,F )− dim Hom(F,E).

(ii) For any coherent sheaf E on X,

dim Ext1(E,E) = 〈v(E)2〉+ 2 dim End(E).

Thus, dim Ext1(E,E) is an even integer. Furthermore, if E is simple,
dim Ext1(E,E) = 〈v(E)2〉+ 2 and then 〈v(E)2〉 ≥ −2.

Recall that, by Lemma 3.2.4, the tangent space to Ms
H(v) at a stable point [E]

is isomorphic to Ext1(E,E). Hence, as Ms
H(v) is smooth at [E] and E is simple,

Corollary 3.3.1 says that the dimension of the moduli space at [E] is 〈v(E)2〉 + 2.
The following lemma is handy for having estimates on the dimension of this tangent
space.

Lemma 3.3.2. Consider 0 → G → E → F → 0 a short exact sequence of sheaves
on X.

(i) If Hom(G,F ) = 0, then dim Ext1(F, F ) + dim Ext1(G,G) ≤ dim Ext1(E,E).

(ii) If Ext1(F,E) = 0, then dim Ext1(F, F ) + dim Ext1(E,E) ≤ dim Ext1(G,G).

Proof. The proof is rather technical, see [21] Propositions 2.7 and 2.10.

Let E be a coherent sheaf on X and denote Ẽ = Hom(Hom(E,OX),OX) its
double dual, which is always a locally free sheaf. Assume that E is torsion-free.
Then the natural map E → Ẽ is injective, and has cokernel M of finite length.
As Ẽ is locally free, Ext1(M, Ẽ) ' Ext1(Ẽ,M)∨ ' H1(X,M)∨ = 0. Moreover,
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dim Ext1(M,M) = 2 dim End(M), because the vector v(M) = (0, 0, a) is isotropic.
From Lemma 3.3.2 (ii) and the fact that length(End(M)) ≥ length(M) ([21]Lemma
2.13) we deduce the inequalities

dim Ext1(Ẽ, Ẽ) + 2 length(M) (3.2)

≤ dim Ext1(Ẽ, Ẽ) + 2 dim End(M) ≤ dim Ext1(E,E).

Proposition 3.3.3. Let 0→ G→ E → F → 0 be an exact sequence of torsion-free
sheaves on X. Then

〈v(G)2〉
r(G)

+
〈v(F )2〉
r(F )

− 〈v(E)2〉
r(E)

=
r(F )r(G)

r(E)

(
c1(F )

r(F )
− c1(G)

r(G)

)2

. (3.3)

Proof. The additivity of Mukai vector and of rank yields

〈v(G)2〉
r(G)

+
〈v(F )2〉
r(F )

− 〈v(E)2〉
r(E)

=
〈v(G)2〉
r(G)

+
〈v(F )2〉
r(F )

−
(
〈v(G)2〉+ 〈v(F )2〉+ 2〈v(G), v(F )〉

r(E)

)
=

r(F )

r(E)r(G)
〈v(G)2〉+

r(G)

r(E)r(F )
〈v(F )2〉 − 2〈v(G), v(F )〉

r(E)

=
r(F )r(G)

r(E)

〈v(G)2〉
r(G)2

+
r(F )r(G)

r(E)

〈v(F )2〉
r(F )2

− r(F )r(G)

r(E)

2〈v(G), v(F )〉
r(F )r(G)

=
r(F )r(G)

r(E)
〈
(
v(F )

r(F )
− v(G)

r(G)

)2

〉.

We conclude by observing that

v(F )

r(F )
− v(G)

r(G)
=

(
0,
c1(F )

r(F )
− c1(G)

r(G)
,
s(F )

r(F )
− s(G)

r(G)

)
.

Corollary 3.3.4. Keep the notations of the previous proposition. If X is algebraic
with Picard number ρ(X) = 1, we have

〈v(G)2〉
r(G)

+
〈v(F )2〉
r(F )

≥ 〈v(E)2〉
r(E)

and equality holds if and only if c1(F )/r(F ) = c1(G)/r(G).

Proof. By assumption, Pic(X) is generated by a line bundle on X of positive square.
The right handside of the equation 3.3 is then non-negative, and it vanishes if and
only if c1(F )/r(F ) = c1(G)/r(G).
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Corollary 3.3.5. Keep the notations of Proposition 3.3.3. Assume that G and F
have the same slope with respect to an ample line bundle H. Then

〈v(G)2〉
r(G)

+
〈v(F )2〉
r(F )

≤ 〈v(E)2〉
r(E)

and equality holds if and only if c1(F )/r(F ) = c1(G)/r(G).

Proof. Look at 3.3. By the Hodge index theorem(
H.
c1(F )

r(F )
− c1(G)

r(G)

)
= 0⇒

(
c1(F )

r(F )
− c1(G)

r(G)

)2

≤ 0

and equality holds if and only if c1(F )/r(F ) = c1(G)/r(G).

Proposition 3.3.6. Let E be a semistable sheaf and

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E

a Jordan-Hölder filtration of E. Denote by Fi = Ei/Ei−1 the successive stable quo-
tients. Then

n∑
i=1

〈v(Fi)
2〉

r(Fi)
≤ 〈v(E)2〉

r(E)
(3.4)

and equality holds if and only if c1(Fi)/r(Fi) = c1(E)/r(E) for every i = 1, 2, . . . , n.

Proof. Having the same reduced Hilbert polynomial of E, the stable sheaves Fi have
also the same slope µ(E). By induction, also the Ei’s have the same slope. Applying
repeatedly Corollary 3.3.5 to the short exact sequences 0 → Ei−1 → Ei → Fi → 0,
we get the result.

3.3.2 Rigid and semirigid sheaves

The aim of this section is the study of low dimensional moduli spaces Ms
H(v). The

case of a primitive Mukai vector v will be particularly important. A vector v ∈
H̃(X,Z) is called primitive if H̃(X,Z)/Zv is a free abelian group.

Definition 3.3.7. A sheaf E on X is called rigid if Ext1(E,E) = 0.

Assume that E is a simple sheaf. By Corollary 3.3.1, we have obvious equivalences

E is rigid⇔ 〈v(E), v(E)〉 = −2⇔ 〈v(E), v(E)〉 < 0 (3.5)

Proposition 3.3.8. If a sheaf E is rigid and torsion free, then E is locally free.

Proof. The result follows immediately by using the inequality 3.2.
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Corollary 3.3.9. Let E be a rigid stable bundle. If F is a semistable sheaf and
v(F ) = v(E), then F is isomorphic to E.

Proof. As E is rigid, χ(E,E) = 2 dim End(E) > 0; since χ(F,E) = −〈v(F ), v(E)〉 =
−〈v(E), v(E)〉 = χ(E,E), χ(F,E) > 0, so that Hom(E,F ) and Hom(F,E) cannot
both vanish. In particular, there exists a non-zero morphism between E and F .

Suppose that f : E → F is such a morphism. The condition v(F ) = v(E) implies
that E and F have the same reduced Hilbert polynomial. By stability of E, f is
injective. Moreover, E and F also have the same Hilbert polynomial, and then
Cokerf = 0. This proves that f is an isomorphism.

The case f : F → E goes analogously, first showing the surjectivity of f .

Corollary 3.3.10. Let v be a vector of H̃1,1(X,Z) with 〈v, v〉 = −2. Then the
moduli space Ms

H(v) is empty or a reduced point.

Proof. Assume that Ms
H(v) is not empty. Then, by Corollary 3.3.9, MH(v) consists

of a single point [E]. The tangent space to MH(v) at [E] is canonically isomorphic
to Ext1(E,E) = 0. Hence MH(v) is reduced.

For a simple sheaf E, dim Ext1(E,E) is an even integer. Thus, after considering
the case of rigid sheaves, we try to describe sheaves such that dim Ext1(E,E) = 2,
which deserve a particular name.

Definition 3.3.11. A sheaf E on X is called semirigid if it is simple and satisfies
one of the following equivalent conditions:

(i) dim Ext1(E,E) = 2;

(ii) v(E) is isotropic for the Mukai pairing.

Example 3.3.12. Let F be a simple rigid vector bundle of rank r. We will construct
semirigid sheaves from it. Pick a closed point x ∈ X. Let V = F (x) be the fibre of
F at x and define

F̃ = F ⊗ V ∨.

It is a rigid vector bundle of rank r2. As soon as r > 1, it is no longer simple, as
End(F̃ ) ' End(F )⊗End(V ∨) ' End(V ∨). Furthermore, one has F̃ (x) = V ⊗V ∨ =
End(V ). Consider the map

f : F̃ → F̃ (x) ' End(V )
tr−→ κ(x),

where tr is the trace map of End(V ). The kernel E of f fits in the short exact
sequence

0→ E
j−→ F̃

f−→ κ(x)→ 0. (3.6)

We claim that E is semirigid.
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To see that E is simple, we proceed as follows. Take ϕ ∈ End(E) an endomor-
phism of E. Applying the functor Hom( , F̃ ) to 3.6, we obtain the exact sequence

Hom(F̃ , F̃ )
j∗−→ Hom(E, F̃ )→ Ext1(κ(x), F̃ ) ' H1(X, κ(x))∨ = 0.

Therefore, there exists ϕ̃ ∈ End(F̃ ) such that j ◦ϕ = ϕ̃◦ j. If we prove that ϕ̃ is the
multiplication with a constant, we are done by injectivity of j. The endomorphism
ϕ̃ ∈ End(V ∨) induces the endomorphisms id ⊗ ϕ̃ of the fibre F̃ (x) ' V ⊗ V ∨ and
λ · id of κ(x) making the diagram

F̃ F̃ (x) ' V ⊗ V ∨ κ(x)

F̃ F̃ (x) ' V ⊗ V ∨ κ(x)

ϕ̃ id⊗ϕ̃

tr

λ·id

tr

commute. Let us spell out what this compatibility means. Let V = { v1, v2, . . . vr }
be a basis of V and V∗ = { v∗1, v∗2, . . . v∗r } its dual basis. We associate with ϕ̃ the
matrix (aij)1≤i,j≤r with respect to V∗. For any i and j, we have on the one hand

λ · tr(vi ⊗ v∗j ) = λ · δij,

and on the other

tr(vi ⊗ ϕ̃(v∗j )) =
r∑
l=1

aljtr(vi ⊗ v∗l ) = aij.

The compatibility condition implies ϕ̃ = λ · id, as desired.
It remains to compute 〈v(E)2〉. As v(E) = v(F̃ )− v(κ(x)),

〈v(E)2〉 = 〈v(F̃ )2〉+ 〈v(κ(x))2〉 − 2〈v(F̃ ), v(κ(x))〉 = −2r2 + 0 + 2r2 = 0.

This shows that E is a semirigid sheaf on X, called the semirigid sheaf associated
to F . Note that E is locally free except at the point x. In particular, Proposition
3.3.8 is no longer true for semirigid sheaves.

Proposition 3.3.13. Let E be a stable semirigid sheaf and F a semistable sheaf
with v(F ) = v(E). If E is not isomorphic to F , then Exti(E,F ) = Exti(F,E) = 0
for i = 0, 1, 2.

Proof. Observe that χ(E,F ) = χ(F,E) = −〈v(E), v(F )〉 = 0; thus, if Hom(E,F ) =
Hom(F,E) = 0, then Ext1(E,F ) = Ext1(F,E) = 0. The same argument used in the
proof of Corollary 3.3.9 shows that every morphism between E and F is either zero or
an isomorphism. Hence, if E is not isomorphic to F , Hom(E,F ) = Hom(F,E) = 0,
whence the conclusion.
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Proposition 3.3.14. Let X be a projective K3 surface with Picard number ρ(X) = 1
and consider a simple torsion-free sheaf E on X. Assume that E is either rigid or
semirigid and that v = v(E) is primitive in the Mukai lattice. Then E is stable.

Proof. Under the hypotheses of the proposition, there are no strictly semistable
sheaves with Mukai vector v. Indeed, if this were not the case, we could pick E ′
a semistable sheaf with v(E ′) = v and choose F a non-zero proper subsheaf with
the same reduced Hilbert polynomial. As ρ(X) = 1, this would imply r(E ′)v(F ) =
r(F )v(E ′), a contradiction with primitivity of v.

Therefore, it suffices to show that E is semistable. Suppose that E is not so.
Then, among the subsheaves of E with maximal reduced Hilbert polynomial, choose
F1 of maximal rank. The quotient F2 = E/F1 is torsion-free and Hom(F1, F2) = 0
by our choice of F1. Hence, by Lemma 3.3.2, one has

dim Ext1(F1, F1) + dim Ext1(F2, F2) ≤ dim Ext1(E,E). (3.7)

The inequality dim Ext1(E,E) = 〈v(E)2〉 + 2 ≤ 2 forces dim Ext1(Fi, Fi) ≤ 2 for
i = 1, 2, whence 〈v(Fi)

2〉 = dim Ext1(Fi, Fi)− 2 dim End(Fi) ≤ 0 for i = 1, 2. Since
r(Fi) < r(E), by Corollary 3.3.4 we have

〈v(E)2〉 ≤ r(E)

(
〈v(F1)2〉
r(F1)

+
〈v(F2)2〉
r(F2)

)
= 〈v(F1)2〉+ 〈v(F2)2〉+

r(F2)

r(F1)
〈v(F1)2〉+

r(F1)

r(F2)
〈v(F2)2〉 ≤ 〈v(F1)2〉+ 〈v(F2)2〉.

We obtain

dim Ext1(F1, F1) + dim Ext1(F2, F2)

= 〈v(F1)2〉+ 2 dim End(F1) + 〈v(F2)2〉+ 2 dim End(F2)

≥ 〈v(E)2〉+ 2 dim End(F1) + 2 dim End(F2)

= dim Ext1(E,E) + 2 dim End(F1) + 2 dim End(F2)− 2

> dim Ext1(E,E),

which contradicts 3.7.

Proposition 3.3.15. Let E be a semirigid sheaf with v(E) = (r, `, s). Assume that
` is ample and E is stable with respect to `. If r divides s and v(E) is primitive,
then E is µ-stable with respect to `.

Proof. Assume for a contradiction that E is not µ-stable. Among the proper quo-
tients of E with slope µ(E), choose E ′ of minimal rank. E ′ is then µ-stable, and in
particular simple. Denote v(E ′) = (r′, `′, s′) its Mukai vector. Since µ(E) = µ(E ′),(

`.`′ − r′

r
`

)
= 0.
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Moreover, `2 = 2rs as E is semirigid. Therefore, we have

〈v(E ′)2〉 = `′2 − 2r′s′ =

((
`′ − r′

r
`

)
+
r′

r
`

)2

− 2r′s′

=

(
`′ − r′

r
`

)2

+

(
r′

r
`

)2

− 2r′s′

=

(
`′ − r′

r
`

)2

+ 2r′
(
r′

r
s− s′

)
.

Since v(E) is primitive and r divides s, r and ` must be coprime. Hence `′− r′`/r is
not zero. As its intersection with the ample sheaf ` is zero, by Hodge index theorem
we deduce (

`′ − r′

r
`

)2

< 0.

On the other hand, the stability of E implies that the integer r′s/r − s′ < 0. We
deduce that 〈v(E ′)2〉 < −2r′ ≤ −2, against the simpleness of E ′.

Proposition 3.3.16. Let v = (r, `, s) ∈ H̃1,1(X,Z) be a primitive isotropic vector
and E a sheaf with Mukai vector v. Suppose that ` is ample and E is strictly
semistable with respect to `. Consider

0 = E0 ⊂ E1 ⊂ · · · ⊂ En = E for n ≥ 2

a Jordan-Hölder filtration of E. Then the successive quotients Fi = Ei/Ei−1 are
rigid for i = 1, 2, . . . , n.

Proof. By Proposition 3.3.6, we have that 〈v(Fi)
2〉 ≤ 0 for all i. Since v is primitive,

equality is not attained for any i. Hence Fi is rigid.

Corollary 3.3.17. Let v = (r, `, s) ∈ H̃1,1(X,Z) be a primitive isotropic vector.
Then the complement of Ms

`(v) in the moduli space M`(v) of semistable sheaves
with Mukai vector v is a zero-dimensional set.

The remaining part of this section is devoted to the proof of two beautiful theo-
rems by Mukai. By the way, at the end, we will have all the needed tools to conclude
the proof of the Derived Torelli theorem 2.2.4.

Theorem 3.3.18. Let v ∈ H̃1,1(X,Z) be a primitive isotropic vector. Suppose that
Ms

H(v) contains a compact connected component M all of whose elements are locally
free sheaves. Then Ms

H(v) is compact and irreducible.

Proof. Since Ms
H(v) is smooth,M is irreducible. We will show that every semistable

sheaf F with Mukai vector v(F ) = v belongs to M : the chain of inclusions M ⊂
Ms

H(v) ⊂MH(v) ⊂M implies the result. We will do the proof assuming that there
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exists a universal family on X ×Ms
H(v). Consider E the restriction of such a family

to X ×M ; it induces a Fourier-Mukai transform

ΦE∨ : Db(X)→ Db(M)

F 7→ p∗(E∨ ⊗ q∗F ),

where, as usual, q (resp. p) denotes the projection from X ×M onto the first (resp.
the second) factor. Denote Φi

E∨(F ) = H i(ΦE∨(F )) for i = 0, 1, 2. The fibre of
Φi
E∨(F ) at a point [E] ∈M is

Φi
E∨(F )⊗ κ([E]) = H i(X, E∨|X×{[E]} ⊗ F ) = H i(X,E∨ ⊗ F ) ' Exti(E,F ).

Hence, if [E] is in the support of Φi
E∨(F ) for some i, then Exti(E,F ) 6= 0 and,

as 〈v(F ), v(E)〉 = 0, we have a non-zero morphism between E and F , which is in
fact an isomorphism. We deduce that Φi

E∨(F ) is supported at most at one point.
One can deduce that Φ0

E∨(F ) = Φ1
E∨(F ) = 0 (see [21] Proposition 2.26). Now, by

Grothendieck-Riemann-Roch theorem, the cohomology class

ch(ΦE∨(F )) = ch(Φ0
E∨(F ))− ch(Φ1

E∨(F )) + ch(Φ2
E∨(F ))

= p∗(ch(E∨ ⊗ q∗F ).td(X ×M)).td(M)−1

= p∗(ch(E∨).q∗ch(F ).q∗td(X).p∗td(M)).td(M)−1

= p∗(ch(E∨).q∗
√

td(X).q∗v(F ))

depends just on the Mukai vector of F , and not on F itself. For a sheaf E ∈ M ,
ch(ΦE∨(E)) 6= 0. Hence, for all sheaves F in MH(v), ch(ΦE∨(F )) 6= 0, which implies
F ' E for some E ∈M .

Theorem 3.3.19. Let v be a primitive isotropic vector. Assume that Ms
H(v) is

compact and let M ⊂Ms
H(v) be a connected component. Then M is a K3 surface.

Moreover, there exists a Hodge isometry

H2(M,Z) ' v⊥/Zv.

Proof. We will do the proof under the assumption that Ms
H(v) is fine. Let E be

the restriction to M × X of the universal family and consider the Fourier-Mukai
transform

ΦE : Db(M)→ Db(X).

E is flat over M and we have

(i) for any [E] ∈M , Hom(ΦE(κ([E])),ΦE(κ([E]))) = Hom(E,E) ' C;

(ii) if [E] 6= [F ], then Exti(ΦE(κ([E])),ΦE(κ([F ]))) = Exti(E,F ) = 0 for i =
0, 1, 2.
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By Corollary 1.3.8, ΦE is fully faithful. As the canonical bundles of X and M are
trivial, by Corollary 1.3.10, ΦE is an equivalence. By Proposition 1.3.14, the induced
cohomological transform ΦH

E yields an isomorphism

H0,1(M)⊕H1,2(M) ' H0,1(X)⊕H1,2(X).

Recalling the Hodge numbers of a K3 surface, the right handside is zero. This
implies in particular the vanishing of H0,1(M) ' H1(M,OM). Hence M is a K3
surface.

By Proposition 2.2.2, ΦE descends to an isometry ΦH
E : H̃(M,Z) → H̃(X,Z).

Let us compute ΦH
E ((0, 0, 1)). Note that (0, 0, 1) is the Mukai vector of a skyscraper

sheaf κ([E]) for some [E] ∈M . Hence,

ΦH
E ((0, 0, 1)) = ΦH

E (v(κ([E]))) = v(ΦE(κ([E]))) = v(E|{[E]}×X) = v(E) = v.

This means that ΦH
E (H4(M,Z)) = Zv. Moreover, (0, 0, 1)⊥ = H2(M,Z)⊕H4(M,Z).

Thus, we have
(0, 0, 1)⊥ v⊥

H2(M,Z) v⊥/Zv,

∼

∼

as desired.

In the proof of the previous theorem, we have seen that, if v = (r, `, s) is a
primitive isotropic vector and a universal family exists on X ×MH(v), then we
have a derived equivalence between X and a connected component M of MH(v).
M is again a K3 surface and the induced cohomological transform sends v to the
fundamental class of M . The following results show that a universal family exists if
we can find v′ ∈ H̃1,1(X,Z) with 〈v, v′〉 = 1. This fills the gap in the proof of the
Derived Torelli theorem 2.2.4.

Proposition 3.3.20. If the g.c.d.(r, `.H, s) = 1, then Ms
H(v) is compact. Moreover,

MH(v) is fine.

Proof. Assume for a contradiction that there exists a strictly semistable sheaf E
with Mukai vector v. Pick a non-zero proper subsheaf F of E, with Mukai vector
v(F ) = (r′, `′, s′) and the same reduced Hilbert polynomial. This implies that

`.H

r
=
`′.H

r′
and

s

r
=
s′

r′

Writing 1 = ar+b(`.H)+cs and multiplying by r′, we get r′ = arr′+b(`.H)r′+csr′ =
arr′+br(`′.H)+crs′ = r(ar′+b(`′.H)+cs′), a contradiction as 0 < r′ < r. Therefore,
the closed points of the moduli space MH(v) are in bijection with isomorphism
classes of stable sheaves on X. For the proof of the existence of a universal family,
we refer to [14], Remark 4.6.8.
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Lemma 3.3.21. Let v = (r, `, s) ∈ H̃1,1(X,Z) and assume that there exists a vec-
tor v′ ∈ H̃1,1(X,Z) with 〈v, v′〉 = 1. Then there exists an ample class H with
g.c.d.(r, `.H, s) = 1.

Proof. Write v = (r′, `′, s′). Suppose that the integer a divides r, (`.`′) and s. Then
it also divides (`.`′) − rs′ − r′s = 〈v, v′〉 = 1. Hence a = ±1. A priori, `′ is not
ample, but adding (nr) ·H ′ for n big enough and H ′ an ample class, we obtain an
ample divisor H with g.c.d.(r, `.H, s) = 1.

3.3.3 An existence result

Let us fix X a K3 surface. In this section, whose reference is [21, §5], we shall prove
the following existence result.

Theorem 3.3.22. Let v = (r, `, s) ∈ H̃1,1(X,Z) be a primitive isotropic vector with
r ≥ 1. For any ample divisor H on X, there exists a simple sheaf E with Mukai
vector v(E) = v that is µ-semistable with respect to H.

This theorem is equivalent to the following stronger version:

Theorem 3.3.23. Fix m a divisor class of X. Then the sheaf E can be chosen in
such a way that, for every torsion-free quotient sheaf F of E with µ(F ) = µ(E), one
has

c1(F ).m

r(F )
≥ c1(E).m

r(E)
.

Indeed, for n big enough, nH + m is ample. By Theorem 3.3.22, there exists
a sequence of simple sheaves En with Mukai vector v(En) = v and µ-semistable
with respect to H + m/n. We deduce the existence of a simple sheaf E which is
µ-semistable for infinitely many H +m/n and for H (see [21] Appendix 1). Hence,
if F is a torsion-free quotient sheaf of E with the same slope with respect to H, we
have

1

n

c1(F ).m

r(F )
+ µ(F ) ≥ 1

n

c1(E).m

r(E)
+ µ(E) =⇒ c1(F ).m

r(F )
≥ c1(E).m

r(E)
.

The proof of Theorems 3.3.22 and 3.3.23 will be done by induction on the rank r.

Base of the induction If r = 1, the isotropic vector v is of the form

v =

(
1, `,

`2

2

)
.

As v ∈ H̃1,1(X,Z), v = ch(O(`)). Now, the ideal sheaf I of a point has Mukai vector
v(I) = (1, 0, 0). If we take E = O(`)⊗ I, then v(E) = ch(O(`)).v(I) = v and E is
clearly µ-stable with respect to any ample line bundle H.
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Now, let us fix v = (r, `, s) and assume that Theorems 3.3.22 and 3.3.23 are true
for any Mukai vector of rank < r.

Step 1 Assume that −r < s < 0 and `.H = 0. Then there exists a simple µ-
semistable sheaf with Mukai vector v(E) = v.

We prove this claim using the following construction. Let F be a coherent sheaf
on X for which

(i) the canonical evaluation map f : H0(X,F )⊗OX → F is injective and

(ii) H2(X,F ) = 0.

We will construct a sheaf E from F such that

r(E) = −s(F ), c1(E) = c1(F ), s(E) = −r(F ).

Such a sheaf E is called the reflection of F .
Consider the short exact sequence

0→ H0(X,F )⊗OX
f−→ F → F̄ → 0.

Because of the vanishing of H1(X,OX) and H2(X,F ), in the induced long exact
sequence we have

0→ H1(X,F )
g−→ H1(X, F̄ )→ H0(X,F )⊗H2(X,OX) ' H0(X,F )∨ → 0.

Moreover, H0(X, F̄ ) = H2(X, F̄ ) = 0. Construct an exact sequence

0→ F̄ → E → H1(X,F )⊗OX → 0

such that the boundary map H1(X,F )⊗H0(X,OX)→ H1(X, F̄ ) is g. The Mukai
vector of E is

v(E) = v(F̄ ) + h1(F )v(OX)

= v(F )− h0(F )v(OX) + h1(F )v(OX)

= v(F )− χ(F )v(OX)

= (r(F ), c1(F ), χ(F )− r(F ))− (χ(F ), 0, χ(F )) = (−s(F ), c1(F ),−r(F )),

as desired.

Lemma 3.3.24. For F and E as above, End(F ) = End(E). In particular, if F is
simple, so is E.

Proof. See [21] Proposition 2.25.
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Proof of Step 1. By induction hypothesis, there exists a simple µ-semistable sheaf
F with isotropic Mukai vector v(F ) = (−s, `,−r). As µ(F ) = 0, the canonical
morphism H0(X,F ) ⊗ OX → F is injective: indeed, any morphism OX → F is
injective by stability of OX . If we put m = −`, by Theorem 3.3.23, we can take F
so that

−(c1(G).`)

r(G)
≥ − (`2)

r(F )

for any torsion-free quotient sheaf G of F with µ(G) = µ(F ). As `2 = 2rs < 0,
c1(G).` < 0. It follows that Hom(F,OX) = 0: if f : F → OX were a non-zero
morphism, by µ-stability of OX it would be surjective, but c1(OX) = 0. By Serre
duality, H2(X,F ) = 0.

Consider E the reflection of F . Then v(E) = (r, `, s) and we have the exact
sequences

0→ H0(X,F )⊗OX → F → F̄ → 0,

0→ F̄ → E → H1(X,F )⊗OX → 0.

From the former we deduce that of F̄ is torsion-free and µ-semistable. The latter
yields then torsion-freeness and µ-semistability of E. Finally, as F is simple, so is
E by Lemma 3.3.24.

For the next steps, we will need this definition. A quasi-polarized K3 surface
(X,H) ismonogonal if there exists a smooth elliptic curve C onX such that (H.C) =
1. If we set g = 1

2
(H2) + 1, we get

(H − gC)2 = (H2) + g2(C2)− 2g(H.C) = (2g − 2) + 0− 2g = −2

(C.H − gC) = (C.H)− g(C2) = 1− 0 = 1.

Hence, there exists an effective divisor D linearly equivalent to H − gC. As
D2 = −2, D is a smooth rational curve in X. If ρ(X) = 2, then Pic(X) is generated
by C and D. A divisor aC + b(C +D) on X is ample if and only if a > b > 0.

Step 2 Suppose that X is monogonal with Picard number ρ(X) = 2. Then there
exists a simple torsion-free sheaf E on X with Mukai vector v(E) = v.

Proof. Write ` = aC + b(C + D) for some a, b ∈ Z. Let b′ be an integer congruent
to b modulo r and |b′| ≤ r/2. Then, take an integer a′ congruent to a modulo r,
with r/2 < |a′| ≤ 3r/2 and a′b′ < 0 if b′ 6= 0, −r < a′ ≤ 0 if b′ = 0. Consider
`′ = a′C + b′(C +D). By construction,

`′ = ` (mod r) and `′2 = 2a′b′ = 2ab = `2 (mod 2r).

As `2 is divisible by 2r, so is `′2; therefore s′ = `′2/2r is an integer. If we show the
existence of a simple torsion-free sheaf E ′ with v(E ′) = (r, `′, s′), then we are done:
the sheaf

E := E ′ ⊗O
(
`− `′

r

)
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is simple, torsion-free and with Mukai vector

v(E) = v(E ′).ch

(
O
(
`− `′

r

))
=

(
r, `′,

`′2

2r

)
.

(
1,
`− `′

r
,
`2 + `′2 − 2``′

2r2

)
= (r, `, s).

We distiguish two cases:
(1) b′ 6= 0. By our choice of a′ and b′, −3r2/4 ≤ a′b′ < 0, whence −3r/4 ≤ s′ <

0. Let us consider the divisor H = a′C − b′(C + D); either H or −H is ample.
Since H.`′ = 0 and −r < s′ < 0, there exists a simple torsion-free sheaf E ′ with
v(E) = (r, `′, s′) by Step 1.

(2) b′ = 0. In this case, s′ = 0. Primitivity of v implies that r and a′ are coprime.
It can be shown that there exists a vector bundle G on the elliptic curve C of rank
−a′ and degree r, which is generated by its global sections and has H1(X,G) = 0
([1] and [21] Lemma 5.3); this vector bundle can be considered as a sheaf on X
supported on C. Let E ′ be the kernel of the natural surjective homomorphism
H0(X,G)⊗OX → G. E ′ is clearly torsion-free. As dim H0(X,G) = dim H0(C,G) =
χ(G) = deg(G) = r, the rank of E ′ equals r. The surjectivity of the natural
morphism C ' End(G)→ End(E ′) comes from H1(X,G) = 0 and shows that E ′ is
simple.

Next, let us consider the situation where H is primitive and ` = kH, for k
an integer. The idea is to regard the K3 surface (X,H) as part of a family of
polarized K3 surfaces of degree d = (H2). Recall that, for any even positive integer
d, there exists a coarse moduli spaceMd for polarized K3 surfaces of degree d. It
is an irreducible quasi-projective scheme whose closed points are in bijection with
isomorphism classes of polarized K3 surfaces of degree d. For any family (X ,L)→ U
of polarized K3 surfaces of degree d = L2

t , there exists a morphism U →Md sending
u to the isomorphism class of the fibre (Xu,Lu).

For any polarized K3 surface (X,H) inMd, we can consider the moduli spaces
Ms

X,H(v), MX,H(v) and SplX(v) of stable, semistable and simple sheaves respec-
tively, with Mukai vector v. The families {Ms

X,H(v)}(X,H)∈Md
and {SplX(v)}(X,H)∈Md

are smooth over an étale covering ofMd. The family {MX,H(v)}(X,H)∈Md
is proper

overMd.

Step 3 There exists an open subset U ofMd such that, for any polarized K3 surface
(X,H) ∈ U , the corresponding moduli space Ms

X,H(v) 6= ∅.

Proof. By Step 2, if (X,H) is monogonal with Picard number ρ(X) = 2, SplX(v) 6=
∅. By smoothness of {SplX(v)}(X,H)∈Md

over an étale covering ofMd, there exists
an open subset V ofMd such that, for any polarized K3 surface (X ′, H ′) ∈ V , there
exists a simple torsion-free sheaf E ′ with Mukai vector v(E ′) = (r, kH ′, s). The set
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of polarized K3 surfaces with Picard number 1 is dense inMd. Hence, we can find
(X ′, H ′) ∈ V with ρ(X) = 1 and a simple semirigid torsion-free sheaf E ′ whose
Mukai vector is primitive. By Proposition 3.3.14, E ′ is stable, i.e. Ms

X′,H′(v) 6= ∅.
By smoothness of {Ms

X,H(v)}(X,H)∈Md
, there exists an open neighbourhood U of

(X ′, H ′) with the required property.

Step 4 The open subset U of Md found in the previous step coincides with Md.
This means that, for any polarized K3 surface (X,H), there exists a sheaf E with
Mukai vector v(E) = v, which is stable with respect to H.

Proof. In Step 3 we have found a dense open subset U of Md such that, for
any (X,H) ∈ U , MX,H(v) is non-empty. By properness of {MX,H(v)}(X,H)∈Md

,
MX,H(v) 6= ∅ for any (X,H) ∈ Md. Fix (X0, H0) ∈ Md; we want to show that
Ms

X0,H0
(v) 6= ∅. As the moduli spaceMd is connected, we can find a curve T joining

(X0, H0) to an element (X1, H1) in U . This corresponds to a family (X ,H) → T
whose fibres over t0 and t1 are (X0, H0) and (X1, H1) respectively. For such a family,
it is possible to construct an algebraic spaceMH(v) smooth and proper over T such
that MH(v)t = MXt,Ht(v) for any t ∈ T . The function t 7→ dim MH(v)t is upper
semicontinuous. Since

dim MH(v)t ≥ dim Ms
Xt,Ht

(v) = 2

for any (Xt,Ht) ∈ U ∩ T , we have dim MH(v)t0 ≥ 2. By Corollary 3.3.17, the
complement of Ms

X0,H0
(v) in MX0,H0(v) is discrete. Hence, Ms

X0,H0
(v) 6= ∅.

Step 5 There exists a simple torsion-free sheaf E with Mukai vector v(E) = (r, `, s)
which is µ-semistable with respect to H.

Proof. Consider the divisor nrH + `. It is ample for n big enough. We claim that,
for any such n, there exists a simple sheaf En with Mukai vector v and µ-semistable
with respect to nrH + `. As tensoring with an invertible sheaf preserves simpleness
and µ-semistability, it is sufficient to find a simple sheaf E ′n, semistable with respect
to nrH + ` and with isotropic Mukai vector

v(E ′n) = v(En ⊗O(nH)) = (r, `, s).

(
1, nH,

n2(H2)

2

)
= (r, rnH + `, s′).

But the existence of E ′n is exactly the content of Step 4. As the sequence of ample
Q-divisors {H + `/rn}n converges to H, there exists a simple sheaf E µ-semistable
with respect to H and with Mukai vector v = (r, `, s).
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Chapter 4

Higher dimensional moduli spaces

This chapter is devoted to the study of higher dimensional moduli spaces. It will be
convenient to write the Mukai vector v = mv0, for m ∈ N0 a multiplicity and v0 a
primitive vector. In the first section, we introduce the technical notion of v-general
ample divisor; it ensures that, if the multiplicity m = 1, no strictly semistable sheaf
exists and hence that the moduli space MH(v) is smooth. In the second, we state a
fundamental existence theorem due to Yoshioka; we do not prove this difficult result,
but we show how to reduce the problem to the important class of elliptic K3 surfaces.
In the last section, based on a beautiful article by Kaledin, Sorger and Lehn, we
study the singular moduli spaces MH(v), for m ≥ 3 and 〈v0, v0〉 ≥ 2 or m = 2
and 〈v0, v0〉 ≥ 4. These are proven to be locally factorial symplectic varieties; in
particular, they do not admit projective symplectic resolutions.

4.1 v-general ample divisors
Fix v = (r, `, s) ∈ H̃1,1(X,Z) a Mukai vector. The aim of this section is to determine
conditions on an ample class H such that the following condition holds:

for any sheaf E with v(E) = v that is semistable with respect to H
and for any non-zero proper coherent subsheaf F of E, (4.1)

if pF = pE, then v(F ) ∈ Qv(E).

An ample divisor satisfying 4.1 is said to be v-general. As an application of this
notion, we have the following

Proposition 4.1.1. If v ∈ H̃1,1(X,Z) is primitive and H is v-general, Ms
H(v) is

compact.

Proof. Assume that there exists a strictly semistable sheaf E with Mukai vector
v(E) = v, and choose F a non-zero proper subsheaf with the same reduced Hilbert
polynomial. Condition 4.1 implies that v(F ) ∈ Qv(E), a contradiction as v is
primitive.
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Let us start from the case of one-dimensional pure sheaves. The fixed Mukai
vector will be of the form v = (0, `, s); we shall assume that s 6= 0 and ` effective. Let
E be a pure one-dimensional sheaf with Mukai vector v(E) = (0, c1(E), χ(E)) = v.
Its Hilbert polynomial with respect to an ample class H is

PE(n) = χ(E(n)) = (H.`)n+ χ(E).

Hence, E is semistable with respect to H if and only if

χ(F )

(H.c1(F ))
≤ χ(E)

(H.c1(E))

for any non-zero proper subsheaf F of E. Choose an ample divisor H that does not
satisfy condition 4.1. This implies that there exist E semistable with respect to H
and F non-zero proper subsheaf of E such that

χ(F )

(H.c1(F ))
=

χ(E)

(H.c1(E))
and

c1(F )

χ(F )
6= c1(E)

χ(E)
.

Set ξE,F = χ(F )c1(E)− χ(E)c1(F ) 6= 0. Associating with any ξ ∈ H2(X,Z) a wall

Wξ := Amp(X) ∩ ξ⊥,

the condition (ξE,F .H) = 0 means that H ∈ WξE,F
. We would like to count the

number of walls WξE,F
that can occur. By the Hodge index theorem

(ξE,F )2 = χ(F )2(c1(E))2 − 2χ(E)χ(F )(c1(F ).c1(E)) + χ(E)2(c1(E))2 < 0. (4.2)

It can be shown (see [25]) that the number of choices for c1(F ) is finite and only
depends on v. Hence, also the number of χ(F ) satisfying the quadratic inequality
4.2 is finite. Eventually, the number of choices for ξE,F is finite and only depends
on v.

In conclusion, if we choose H ∈ Amp(X) out of a finite number of hyperplanes,
then it satisfies condition 4.1.

Next, let us treat the case of torsion-free sheaves. The fixed Mukai vector
will be of the form v = (r, `, s), r > 0. A sheaf E with Mukai vector v(E) =
(r(E), c1(E), χ(E)−r(E)) = v is semistable if and only if, for every non-zero proper
subsheaf F with Mukai vector v(F ) = (r(F ), c1(F ), χ(F )− r(F )),

(c1(F ).H)

r(F )
≤ (c1(E).H)

r(E)
or

(c1(F ).H)

r(F )
=

(c1(E).H)

r(E)
and

χ(F )

r(F )
≤ χ(E)

r(E)
.
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Choose H so that condition 4.1 does not hold. Hence, there exists a semistable sheaf
E with Mukai vector v(E) = v admitting a non-zero proper subsheaf F with the
same reduced Hilbert polynomial. In particular

(c1(F ).H)

r(F )
=

(c1(E).H)

r(E)
and

c1(F )

r(F )
6= c1(E)

r(E)
.

Set ξE,F := r(E)c1(F ) − r(F )c1(E) 6= 0. Since (ξE,F .H) = 0, by the Hodge index
theorem

(ξ2
E,F ) = r(E)2(c1(F )2) + r(F )2(c1(E)2)− 2r(F )r(E)(c1(F ), c1(E)) < 0.

Moreover, thanks to Bogomolov inequality, it can be shown that ξE,F satisfies also
the inequality

(ξ2
E,F ) ≥ −r(E)2

4
(v(E)2 − 2r(E)2)

(see [14] Theorem 4.C.3). As before, define a wall as

Wξ = { L ∈ Amp(X) | (ξ.L) = 0 } .

It can be shown ([14] Lemma 4.C.2) that the union of wallsWξ, with −(r2/4)(〈v2〉−
2r2) ≤ ξ2 < 0, is locally finite. Hence H is v-general as soon as we choose it out of
this locally finite union of hyperplanes.

4.2 Yoshioka’s existence result
As we have already seen in section 3.3.3, the question of non-emptyness of the moduli
space is far from being trivial. A cornerstone result in this sense is the following

Theorem 4.2.1 (Yoshioka). Let (X,H) be a polarized K3 surface and let v =
(r, `, s) ∈ H̃1,1(X,Z) be a primitive Mukai vector. Assume that H is v-general
and suppose that r > 0 or ` is ample. Then Ms

H(v) is deformation equivalent to
Hilb

1
2
〈v,v〉+1(X).

The proof of this theorem in its full generality is rather involved and technical.
For the details, one may consult [25]. The exposition in this thesis owes almost
everything to the notes by I. Vogt for the MIT-NEU graduate seminar on Moduli
of Sheaves on K3 surfaces ([24]). In the argument, a fundamental role is played by
the class of elliptic K3 surfaces.

Definition 4.2.2. A K3 surface X is said to be elliptic if it admits a proper mor-
phism π : X → P1 such that Xy is a smooth curve of genus one for all but finitely
many y ∈ P1. The morphism π is called an elliptic fibration.
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The following lemma allows us to recognize such surfaces by looking at their
Picard lattice.

Lemma 4.2.3. Let X be a K3 surface whose Picard lattice Pic(X) contains a copy
U of the hyperbolic lattice. Then X is an elliptic K3 surface.

Proof. By assumption, there exist two divisor classes D,F ∈ Pic(X) such that
(D2) = (F 2) = 0 and D.F = 1. As (2F + D)2 = 4, we can assume that 2F + D is
ample. The complete linear system |F | yields a rational morphism

ϕF : X 99K P(H0(X,F )∨).

As (−F.2F + D) = −1, by Nakai-Moishezon criterion −F cannot be effective
and so h0(X,OX(−F )) = 0. From Serre duality and the Riemann-Roch theorem

χ(X,F ) = h0(X,OX(F ))− h1(X,OX(F )) + h0(X,OX(−F )) =
(F 2)

2
+ 2 = 2,

we deduce that h0(X,OX(F )) ≥ 2; hence ϕF takes values in a projective space of
dimension at least one.

Let C be a curve in |F |. Note that, by adjunction formula, 2g(C)−2 = (F 2) = 0.
Then C is an elliptic curve. Twisting by OX(F ) the short exact sequence that defines
C, we get

0→ OX → OX(F )→ OC(F ) ' NC/X → 0

and the exact sequence in cohomology

0→ H0(X,OX)→ H0(X,OX(F ))→ H0(X,NC/X)→ H1(X,OX) = 0. (4.3)

We claim that |F | is base point free, so that ϕF is a morphism. Assume that |F |
has a base point. Then the complete linear system corresponding to NC/X has a
base point, too. The triviality of the canonical bundle ωX implies, by adjunction
formula, that ωC ' NC/X . Since the canonical bundle of an elliptic curve is trivial,
ωC is base point free, a contradiction.
Moreover, looking at 4.3, from h0(C, ωC) = 1 we deduce that h0(X,OX(F )) = 2.
We have proven that the morphism

ϕF : X → P1

is an elliptic fibration. Let us conclude by showing that this morphism has a section.
Consider the divisor class D − F , whose square (D − F )2 equals −2. Its opposite
F −D is not effective, as (2F +D.F −D) = −2 + 1 < 0. Hence, by Riemann-Roch
theorem, h0(X,OX(D − F )) ≥ (D − F )2/2 + 2 = 1, so that D − F is effective.
Therefore, in the linear system |D−F | there is a rational curve, which allows us to
define a section of ϕF .
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Remark 4.2.4. LetX be an elliptic K3 surface with an elliptic fibration π : X → P1.
Let σ be the class of a section and f the class of a fibre. Clearly, (σ2) = −2,
(f 2) = 0 and (σ.f) = 1. Then σ + nf has square −2 + 2n. This implies that X has
polarizations of any degree.

We limit ourselves to show that it is enough to prove the Theorem 4.2.1 for an
elliptic K3 surface. More precisely, we will show that the moduli space Ms

X,H(v)
is deformation equivalent to the moduli space Ms

Y,H′(w), where Y is an elliptic K3
surface. We need the following lemma, which sheds light on the construction of
moduli spaces in families.

Lemma 4.2.5. Let π : (X ,L) → T be a smooth family of polarized K3 surfaces
over a smooth connected curve T . Let v = (r, kL, s) ∈ R∗π∗Z be a primitive Mukai
vector. Assume that, for some t0 ∈ T , the Picard number ρ(Xt0) = 1. Then there
exists an algebraic spaceMs

L(v) smooth and proper over T such that, for any t ∈ T ,
Ms
L(v)t = Ms

Xt,Ht
(v), for some Ht a general ample divisor on Xt. Moreover, if we

choose a finite subset T0 of T and, for each t ∈ T0, we fix any ample divisor H ′t
such that MXt,H′t

(v) = Ms
Xt,H′t

(v), then we can construct Ms
L(v) so that Ms

L(v)t =

Ms
Xt,H′t

(v) for any t ∈ T0.

Moduli spaces of sheaves that are fibres of the morphism Ms
L(v) → T of the

lemma are deformation equivalent.

Proposition 4.2.6. Let X1 and X2 be K3 surfaces. Let v1 = (r, `1, s1) ∈ H̃1,1(X1,Z)
and v2 = (r, `2, s2) ∈ H̃1,1(X2,Z) be primitive Mukai vectors such that

(1) r > 0; (2) g.c.d(r, `1) = g.c.d(r, `2) = ξ;
(3) 〈v1, v1〉 = 〈v2, v2〉; (4) s1 ≡ s2 (mod ξ).

For i = 1, 2, let Hi be a vi-general polarization. Then Ms
H1

(v1) and Ms
H2

(v2) are
deformation equivalent.

Proof. Up to tensoring with a sufficiently high power of Hi, which gives an isomor-
phism Ms

Hi
(vi) 'Ms

Hi
(vi.ch(H⊗ni

i )), we may assume that `1 and `2 are ample. As
the moduli space of polarized K3 surfaces of degree d = (`2

1) is connected, there
exists a curve joining (X1, `1) to a polarized elliptic K3 surface (X ′1, `

′
1). Regard

this as a smooth family (X1,L1) → T with fibres (X1, `1) and (X ′1, `
′
1) over t1 and

t′1. We have already fixed H1 a v1-general ample divisor on X1 and we choose H ′1
a v′1-general ample divisor on X ′1. By Lemma 4.2.5, the moduli spaces Ms

X1,H1
(v1)

and Ms
X′1,H

′
1
(v′1) are deformation equivalent. We can apply the same argument to

(X2, `2). Therefore, we may suppose that (X1, `1) and (X2, `2) are elliptic K3 sur-
faces. In fact, as elliptic K3 surfaces admit polarizations of any degree, we may
assume that X1 = X2 = X and σ + nif = `i/ξ, for σ divisor class of a section and
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f divisor class of a fibre. Now, the condition 〈v1, v1〉 = 〈v2, v2〉 implies

`2
1 − 2rs1 = `2

2 − 2rs2

ξ2(σ + n1f)2 − 2rs1 = ξ2(σ + n2f)2 − 2rs2

ξ2(2n1 − 2)− 2rs1 = ξ2(2n2 − 2)− 2rs2

ξ2n1 − rs1 = ξ2n2 − rs2

r(s2 − s1) = ξ2(n2 − n1).

Consider now the difference

v2 − v1 = (0, `2 − `1, s2 − s1)

= (0, ξ(σ + n2f)− ξ(σ + n1f), s2 − s1)

= (0, (n2 − n1)ξf, s2 − s1)

=

(
0,

(s2 − s1)rf

ξ
, s2 − s1

)
= (r, ξ(σ + n1f), a1).

(
0,

(s2 − s1)f

ξ
, 0

)
.

As f 2 = 0, we obtain that

v2 = v1.ch

(
(s2 − s1)f

ξ

)
.

Then, if H1 = H2, we are done. If H1 6= H2, consider a smooth family (X ,L)→ T
of K3 surfaces over a smooth connected curve T such that the fibre (Xt0 ,Lt0) over
t0 has Picard number 1 and (X, `1) is the fibre over t1. Again by Lemma 4.2.5,
the moduli spaces Ms

Xt0 ,Lt0
(v1) and Ms

X,H1
(v1) are deformation equivalent. This

concludes the proof.

Now, we show how to reduce the proof of Theorem 4.2.1 to the case of elliptic
K3 surfaces. Let (X,H) be a polarized K3 surface and let v = (r, `, s) ∈ H̃1,1(X,Z)
be a primitive Mukai vector for which H is v-general. The idea is to produce an
elliptic K3 surface Y and a Mukai vector w ∈ H̃1,1(Y,Z) satisfying the hypotheses
of Proposition 4.2.6. Let ξ = g.c.d.(r, `) and write v = (ξr′, ξ`′, s). Define

n := r′k − `′2

2
b := s− ξr′ − ξk

for k ∈ Z. By choosing k large enough, we may assume that n > 1 and that b and
r are relatively prime (recall that ξ and s are coprime). Let Λ′ be an even rank 3
lattice whose intersection matrix is given by0 1 0

1 0 0
0 0 −2n

 .
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This lattice admits an embedding into the K3 lattice Λ. By surjectivity of the period
map, there exists a K3 surface Y whose Picard lattice is isomorphic to Λ′. Since
Λ′ contains a copy of the hyperbolic lattice U , by Lemma 4.2.3 Y is an elliptic K3
surface. Call σ the class of a section, f the class of a fibre and ζn the last basis class,
with (ζn, σ) = (ζn, f) = 0 and ζ2

n = −2n. As n > 1, all the fibres are irreducible.
Set

w = (ξr′, ξ(f − ζn), b+ ξr′) = (r, ξ(f − ζn), s− ξk).

Then

〈w,w〉 = (ξ(f − ζn))2 − 2r(s− ξk) = −2nξ2 − 2rs+ 2rξk

= (−2r′k + `′2)ξ2 − 2rs+ 2rξk = −2rξk + `2 − 2rs+ 2rξk = 〈v, v〉.

It is easy to show that other conditions of Proposition 4.2.6 hold. Hence, choosing
H ′ w-general, one concludes by Proposition 4.2.6 that Ms

X,H(v) and Ms
Y,H′(w) are

deformation equivalent.

4.3 Singular moduli spaces
This section is devoted to present a result of the beautiful paper [16] by Kaledin,
Sorger, Lehn. Let v ∈ H̃(X,Z) and decompose it as v = mv0, where v0 is primitive
and m ∈ N0 is a multiplicity. We shall assume that v0 = (r0, `0, s0) has the following
properties

(∗)


Either r0 > 0 and `0 ∈ NS(X)

or r0 = 0, `0 ∈ NS(X) is effective and s0 6= 0;

〈v0, v0〉 ≥ 2.

Double is the motivation for the assumption (∗). On the one hand, by the discussion
in section 4.1, it guarantees that the set of v-walls is either locally finite or finite,
and hence that v-general ample divisors exist. On the other, by Theorem 4.2.1, (∗)
implies that the moduli space MH(v0) is non-empty, except when r0 = 0 and `0

is not ample. Actually, as reported in [16], Yoshioka, in an unpublished note, has
proven non-emptyness of the moduli space even if r0 = 0 and `0 is not ample.

Given a Mukai vector v satisfying assumptions (∗) and a v-general ample divisor
H, the following situations can occur for the moduli space MH(v).

(A) m = 1: Yoshioka Theorem 4.2.1 states that MH(v0) is a smooth symplectic
variety that is deformation equivalent to Hilb

1
2
〈v0,v0〉+1(X).

(B) m = 2 and 〈v0, v0〉 = 2: the moduli space MH(v) has dimension 10 and its
singular locus has codimension 2. By blowing up the singular locus, we obtain
a projective symplectic resolution of the singularities. The O’Grady examples
fall in this case.
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(C) m ≥ 3 or m = 2 and 〈v0, v0〉 ≥ 4: MH(v) has singular locus of codimension
≥ 4 and does not admit a projective symplectic resolution of the singularities.

Our aim is to give reason for the lack of a projective symplectic resolution in case
(C). Therefore, even if some statements hold in a more general context, from now
on we shall assume that

m and v0 satisfy conditions of case (C).

With respect to the original article [16], under this assumption, results on the local
structure of the moduli space are easier to state (one does not have to take into
account the exceptions, which correspond to case (B)). For this observation, I am
deeply indebted with Y. Lin; to his notes [19], again in the context of the MIT-NEU
graduate student seminar, also our approach to regularity results owes a lot.

4.3.1 Local description of the moduli space

In this section we present some regularity results. We will need conditions Sk of
Serre and regularity Rk in codimension k, which we recall here for the convenience
of the reader.

(Sk): A ring A satisfies condition Sk if, for every prime ideal p ⊂ A,

depth Ap ≥ min {k, ht(p)}.

(Rk): A ring A satisfies condition Rk if, for every prime ideal p ⊂ A of height
ht(p) ≤ k, Ap is regular.

We shall keep the notations introduced in section 3.2. For any closed point
of MH(v), choose as a representative of the corresponding S-equivalence class a
polystable sheaf E ∈ Rss. The orbit of [q : H → E] under the action of PGL(V )
is closed, and the stabilizer subgroup is canonically isomorphic to PAut(E) =
Aut(E)/C×. By Luna’s slice theorem (see [23] Proposition 1.23), there exists a
PAut(E)-invariant subscheme S ⊂ Rss containing [q] such that

(PGL(V )× S) // PAut(E)→ Rss and S // PAut(E)→MH(v)

are étale. The Zariski tangent space T[q]S is isomorphic to Ext1(E,E).
We would like to describe the local structure of S at [q] and of MH(v) at [E]. To

this aim, let C[Ext1(E,E)] be the ring of polynomial functions on the affine space
Ext1(E,E) and consider its completion

A := C[Ext1(E,E)]∧
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at the maximal ideal m of functions vanishing at 0. Let

Ext2(E,E)0 = Ker
(

Ext2(E,E)
tr−→ H2(X,OX)

)
.

The automorphism group Aut(E) acts on Ext1(E,E) and Ext2(E,E)0 by conjuga-
tion; as the action of scalar multiples of the identity is trivial, we have in fact an
action of the projective automorphism group PAut(E). There exists a PAut(E)-
equivariant map, called Kuranishi map,

κ : Ext2(E,E)∨0 → C[Ext1(E,E)]∧

such that, for every linear form ϕ ∈ Ext2(E,E)∨0 and e ∈ Ext1(E,E),

κ(ϕ)(e) =
1

2
ϕ(e ∪ e) + higher order terms in e.

Moreover, letting I be the ideal generated by the image of κ, one has the following
ring isomorphisms

ÔS,[q] ' A/I and ÔMH(v),[E] ' (A/I)PAut(E).

Unfortunately, it is really hard to compute explicitly the Kuranishi map and hence
to study directly ÔS,[q] or ÔMH(v),[E]. The idea is to pass to the tangent cone to S
at [q], where things are easier to describe. This passage corresponds to considering
just the quadratic part of the Kuranishi map

κ2 : Ext2(E,E)∨0 → S2(Ext1(E,E)∨)

ϕ 7→
(
e 7→ 1

2
ϕ(e ∪ e)

)
.

This C-linear map determines a morphism of affine spaces

µ : Ext1(E,E)→ Ext2(E,E)0

e 7→ µ(e) =
1

2
(e ∪ e).

The ideal J generated by the image of κ2 is the ideal of null-fibre F = µ−1(0). One
should think of F = µ−1(0) as the tangent cone to S at [q] and the vector space
Ext2(E,E)0 should be considered as the obstruction space.

Remark 4.3.1. Note that, if E is stable, then Ext2(E,E) is one-dimensional and
the obstruction space automatically vanishes; the tangent cone is then the whole
tangent space, and we obtain smoothness of the moduli space at [E].
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Remark 4.3.2. The way one may think of the obstruction space is explained in
this example. Consider the plane nodal cubic curve V (y2−x2−x3) ⊂ Spec(C[x, y]).
At the origin (0, 0), the tangent cone has equation y2 − x2 = 0 in the tangent space
C2. Hence, a tangent vector belongs to the tangent cone if and only if it lies in the
preimage of 0 under the map

µ : C2 → C
(x, y) 7→ y2 − x2.

In this situation, the obstruction space is the target C.

The relation between the ideals I ⊂ A and J ⊂ C[Ext1(E,E)] introduced before
is as follows. The graded ring gr A =

⊕
im

i/mi+1 is canonically isomorphic to
C[Ext1(E,E)]. With any ideal a ∈ A we can associate the ideal in(a) ⊂ gr A
generated by the initial part in(f) of all the elements f ∈ a. By the expression of κ,

J ⊂ in(I).

Thus, we have the following inequalities:

dim(F ) = dim (gr A)/J

≥ dim (gr A)/in(I) = dim gr(A/I) = dim (A/I) (4.4)
≥ dim Ext1(E,E)− dim Ext2(E,E)0.

The last inequality is due to Krull’s theorem as A is of dimension dim Ext1(E,E)
and I can be generated by dim Ext2(E,E)0 elements.

Proposition 4.3.3. The null-fibre F is an irreducible normal complete intersection
of dimension dim Ext1(E,E)− dim Ext2(E,E)0. Moreover, it satisfies R3.

Proof. This proposition, which is the technical core of [16], holds more generally for
a class of symplectic momentum maps. We cannot enter into details here. We limit
ourselves to explain why our situation falls in this class. The polystable sheaf E can
be written as

E =
s⊕
i=1

Wi ⊗ Ei,

with stable sheaves Ei and vector spaces Wi of dimension ni. If we set

Wij = Hom(Wi,Wj) and Vij = Ext1(Ei, Ej),

we have decompositions

End(E) =
⊕
i

Wii, Ext1(E,E) =
⊕
i,j

Wij ⊗ Vij, Ext2(E,E) =
⊕
i

Wii.
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The automorphism group

Aut(E) =
∏
i

Aut(Wi) '
∏
i

GL(ni).

acts on Ext1(E,E) by conjugation on the first factor in each direct summand. As
scalar multiples of the identity act trivially, we have an action of PAut(E). On
Ext1(E,E) =

⊕
i,jWij⊗Vij Serre duality yields a symplectic form ω. The summands

Wij ⊗Vij and Wab⊗Vab are orthogonal with respect to ω, unless i = b and j = a, in
which case

ω : (Wij ⊗ Vij)⊗ (Wji ⊗ Vji)→ C
(A⊗ e)⊗ (A′ ⊗ e′) 7→ tr(A′A)tr(e′ ∪ e).

Moreover, in this decomposition, the quadratic map µ : Ext1(E,E) → Ext2(E,E)0

is given by

µ

(∑
i,j

∑
k

Akij ⊗ ekij

)
=
∑
i,j

∑
k,l

AkijA
l
jitr(e

k
ij ∪ elji). (4.5)

We can recover the target Ext2(E,E)0 of the map µ as follows: from the exact
sequence

0→ C× →
∏
i

GL(ni)→ PAut(E)→ 0,

one deduces a short exact sequence of associated Lie algebras

0→ C→
⊕
i

gl(ni)→ Lie PAut(E)→ 0.

Dualizing and recalling that gl(ni)∨ ' End(Ei)
∨ ' Ext2(Ei, Ei), one obtains

(Lie PAut(E))∨ = Ker

(⊕
i

gl(ni)
∨ → C

)
= Ker

(
Ext2(E,E)

tr−→ C
)
' Ext2(E,E)0.

In conclusion, on the affine space Ext1(E,E) we have a symplectic form ω which is
invariant for the action of PAut(E). The expression 4.5 says that

µ : Ext1(E,E)→ (Lie PAut(E))∨

is a momentum map.

From the properties of the tangent cone we can deduce various regularity results
on Rss and MH(v).
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Proposition 4.3.4. Let H be a v-general ample divisor and E =
⊕s

i=1E
⊕ni
i a

polystable sheaf. Consider a point [q : H → E] ∈ Rss and a slice S ⊂ Rss to the
orbit of [q]. Then OS,[q] is a normal complete intersection domain of dimension

dim Ext1(E,E)− dim Ext2(E,E)0

that has property R3.

Proof. By Proposition 4.3.3, the null-fibre F = Spec(gr A/J) is an irreducible nor-
mal complete intersection of dimension dim Ext1(E,E)−dim Ext2(E,E)0. Thus, we
have equality at all places of 4.4. Furthermore, since F = Spec(gr A/J) is reduced
and irreducible, the equality of dimensions implies J = in(I). It follows that

gr(ÔS,[q]) = gr(A/I) = grA/in(I) = Γ(F,OF )

is a normal complete intersection. In particular, gr(ÔS,[q]) is Cohen-Macaulay, hence
satisfies condition Sk for all k ∈ N. Moreover it is regular in codimension 3. Observ-
ing that gr(ÔS,[q]) = gr(OS,[q]), we deduce that also gr(OS,[q]) has all these properties.
By Lemma 4.3.5, OS,[q] is a normal complete intersection which satisfies R3.
Lemma 4.3.5. Let (B,m) be a noetherian local ring with maximal ideal m and
residue field B/m ' C. Let gr B denote the graded ring associated to the m-adic
filtration of B. Then dim(B) = dim(gr B) and, if gr B is an integral domain or
normal or a complete intersection, then the same is true for B. Moreover, if gr B
satisfies Rk and Sk+1 for some k ∈ N, then B satisfies Rk.

Proposition 4.3.6. Let H be a v-general ample divisor. Then Rss is normal and
locally a complete intersection of dimension 〈v, v〉+ 1 +N2. It has property R3 and
hence is locally factorial.

Proof. Let [q] ∈ Rss be a point with closed orbit, and let S be a PAut(E)-invariant
slice through [q]. By Proposition 4.3.4, the local ring OS,[q] is a normal complete
intersection with property R3. Being normal or locally a complete intersection or
having property Rk are open properties (EGA IV 19.3.3, 6.12.9). Hence, there exists
an open neighbourhood U of [q] in S that is normal, locally a complete intersection
and has property R3. The natural morphism PGL(V )×S → Rss is smooth. There-
fore, every closed orbit in Rss has an open neighbourhood that is normal, locally
a complete intersection and with property R3. Finally, every PGL(V )-orbit of Rss

meets such an open neighbourhood. It follows that Rss is normal, locally a complete
intersection and regular in codimension 3. The following theorem of Grothendieck
implies that Rss is locally factorial.
Theorem 4.3.7 (Grothendieck, [9], Exp. XI Cor. 3.14). Let B a noetherian local
ring. If B is a complete intersection and regular in codimension ≤ 3, then B is
factorial.

Then, a result of Drezet ([6], Theorem A) implies that
Theorem 4.3.8. Let H be a v-general ample divisor. Then MH(v) is locally facto-
rial.
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4.3.2 Irreducibility

Theorem 4.3.9. Let X be a projective K3 surface with an ample divisor H. Let
v ∈ H̃(X,Z). Suppose that M ⊂ MH(v) is a connected component parametrizing
stable sheaves only. Then MH(v) = M .

Proof. For the complete proof, we have to refer to [16], Theorem 4.1. If a universal
family E exists on X ×M , the same proof of Theorem 3.3.18 yields the result. One
has to slightly modify the functor Φ and consider

Φ: Db(X)→ Db(M)

F 7→ p∗Hom(E , q∗F ).

In this way, it is no longer necessary to assume that elements of M are locally
free.

Theorem 4.3.10. Let H be a v-general ample divisor. Then MH(v) is a normal
irreducible variety of dimension 2 + 〈v, v〉.

Proof. By Proposition 4.3.6, Rss is normal, and so is MH(v) as a GIT-quotient.
Let us prove irreducibility by induction on the multiplicity m. If m = 1, the

moduli space MH(v) = Ms
H(v0), hence it is smooth. By Theorem 4.3.9, Ms

H(v0)
is irreducible. Condition (∗) implies that Ms

H(v0) is non-empty. Suppose that
m ≥ 2 and that the statement of the theorem has been proven for all moduli spaces
MH(m′v0), 1 ≤ m′ < m. For any decomposition m = m′ + m′′ with 1 ≤ m′ ≤ m′′,
consider the morphism

ϕ(m′,m′′) : MH(m′v0)×MH(m′′v0)→MH(mv0)

([E ′], [E ′′]) 7→ [E ′ ⊕ E ′′]

and denote by Y (m′,m′′) its image; it is an irreducible (hence connected) subscheme
of MH(mv0) by induction hypothesis. Let us consider the strictly semistable locus
of MH(mv0), which is covered by the Y (m′,m′′), 1 ≤ m′ ≤ m′′. As all of them
contain a point of the form [E⊕m0 ], for [E0] ∈MH(v0), the strictly semistable locus
is connected. Let C be the connected component of MH(mv0) that contains the
strictly semistable locus; it is irreducible because of normality of MH(mv0). Thus,
if C is the unique connected component, we are done. Assume for a contradiction
that there exists another connected component; then it would parametrize stable
sheaves only. By Theorem 4.3.9, this last component would equal MH(mv0), a
contradiction.

Remark 4.3.11. The proof works without any change also in case (B).
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4.3.3 Singularities

Proposition 4.3.12. The moduli space MH(v) has a non-empty singular locus
MH(v)sing, which equals the strictly semistable locus. The irreducible components
of MH(v)sing correspond to integers m′, 1 ≤ m′ ≤ m/2, and have codimension
2m′(m−m′)〈v0, v0〉 − 2 respectively. In particular, codim MH(v)sing ≥ 4.

Proof. Keep the same notations introduced in the proof of Theorem 4.3.10. The
strictly semistable locus is the union of the varieties Y (m′,m′′), 1 ≤ m′ ≤ m′′,
m′ +m′′ = m. As the maps

ϕ(m′,m′′) : MH(m′v0)×MH(m′′v0)→ Y (m′,m′′) ⊂MH(mv0)

are finite and surjective,

codim(Y (m′,m′′)) = dim(MH(mv0))− dim(Y (m′,m′′))

= dim(MH(mv0))− dim(MH(m′v0))− dim(MH(m′′v0))

= 2 +m2〈v0, v0〉 − (2 +m′2〈v0, v0〉)− (2 +m′′2〈v0, v0〉)
= 2m′m′′〈v0, v0〉 − 2.

Hence, codim(Y (m′,m′′)) ≥ 4.
We know that MH(v) is smooth at the points corresponding to stable sheaves.

Hence, it remains to prove that the points corresponding to strictly semistable
sheaves are singular. Note that, as ϕ(m′,m′′) is dominant, the image V (m′,m′′)
of the open subset U(m′,m′′) = Ms

H(m′v0) ×Ms
H(m′′v0) is dense in Y (m′,m′′). If

we prove that the points belonging to V (m′,m′′) are singular, we are done: indeed,
recalling that the singular locus MH(v)sing is closed in MH(v), we obtain

⋃
m′,m′′

Y (m′,m′′) ⊃MH(v)sing ⊃
⋃

m′,m′′

V (m′,m′′)

=
⋃

m′,m′′

V (m′,m′′) =
⋃

m′,m′′

Y (m′,m′′).

Let [E = E ′ ⊕ E ′′] be a point in Y (m′,m′′), E ′ and E ′′ being stable sheaves with
Mukai vectors v(E ′) = m′v0 and v(E ′′) = m′′v0 respectively. It is clear that

PAut(E) = (Aut(E ′)× Aut(E ′′)) /C× ' C×,

Ext2(E,E)0 = Ker(Ext2(E,E)
tr−→ C) ' C.

Thus, the Kuranishi map is completely described by a PAut(E)-invariant function
f ∈ C[Ext1(E,E)]∧. Therefore,

ÔMH(v),[E] '
(
C[Ext1(E,E)]∧/(f)

)PAut(E) ' (C[Ext1(E,E)]∧)C
×
/(f).
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Now, C× acts on the four summands of

Ext1(E,E) = Ext1(E ′, E ′)⊕ Ext1(E ′, E ′′)⊕ Ext1(E ′′, E ′)⊕ Ext1(E ′′, E ′′)

with weights 0, 1,−1, 0. Therefore,

Ext1(E,E) // C× = Ext1(E ′, E ′)× C × Ext1(E ′′, E ′′),

where C denotes the cone of matrices of rank ≤ 1 in Md×d(C) and

d = dim Ext1(E ′, E ′′)

=
1

2

(
dim Ext1(E,E)− dim Ext1(E ′, E ′)− dim Ext1(E ′′, E ′′)

)
=

1

2

(
2 dim End(E) +m2〈v0, v0〉 − (2 +m′2〈v0, v0〉)− (2 +m′′2〈v0, v0〉)

)
= m′m′′〈v0, v0〉 ≥ 2.

As a consequence, ÔMH(v),[E] is singular, as the quotient of a singular local ring by
a non-zero divisor cannot become regular.

Remark 4.3.13. The same proof holds for case (B). One deduces in particular that
codim MH(v)sing = 2m′m′′〈v0, v0〉 − 2 = 2 · 2− 2 = 2.

4.3.4 Symplectic resolutions

We need to introduce a bit of terminology.

Definition 4.3.14. A complex manifold X is called symplectic if it admits a sym-
plectic form, i.e. a closed holomorphic 2-form ω that is non-degenerate at every
point.

The moduli spaces MH(v) for v = v0 primitive Mukai vector and H v-general
ample divisor provide us with a supply of symplectic manifolds. We would like to
extend this definition to the singular case, so to take into account also the other
moduli spaces we have met. We proceed as follows. Recall that, for an algebraic
variety X, a resolution of the singularities of X is a proper birational morphism
σ : X ′ → X, where X ′ is smooth; if σ is a projective morphism, we say that the
resolution is projective.

Definition 4.3.15. A variety X has a symplectic singularity at a point x if x admits
an open neighbourhood U such that:

(i) U is normal;

(ii) the smooth part Ureg of U admits a symplectic 2-form ω;
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(iii) for any resolution σ : U ′ → U , the pull-back of ω to σ−1(Ureg) extends to a
holomorphic 2-form on U ′.

A symplectic variety X is a normal variety whose smooth part admits a symplectic
form and whose singularities are symplectic.

Note that, if x ∈ X is a symplectic singularity, the extension of σ∗(ω) given
in (iii) may be degenerate at some point out of σ−1(Ureg). In the case it is non-
degenerate at any point of U ′, it is a symplectic form on U ′ and we say that the
resolution σ : U ′ → U of the singularities is symplectic.

Let us go back to case (C).

Theorem 4.3.16. The moduli space MH(v) is a symplectic variety of dimension
2 + 〈v, v〉. The singular locus is non-empty and has codimension at least 4. All
singularities are symplectic, but no open neighbourhood of a singular point admits a
projective symplectic resolution.

Proof. We have already seen that the smooth partMs
H(v) of the moduli space admits

a symplectic form. As the singular locus has codimension ≥ 4, by Flenner’s theorem
on extendability of differential forms ([7]), all the singularities are symplectic. This
proves that MH(v) is a symplectic variety.

Now, let [E] ∈MH(v) be a singular point and U ⊂MH(v) an open neighbour-
hood of [E]. Assume for a contradiction that there exists a projective symplectic
resolution σ : U ′ → U of the singularities of U . Call Z ′ ⊂ U ′ the exceptional locus of
σ so that Z = σ(Z ′) ⊂ U is the singular locus of U . Due to a result of Kaledin ([15]
Lemma 2.11), 2 · codim(Z ′) ≥ codim(Z); the exceptional locus Z ′ has then codi-
mension ≥ 2. On the other hand, since MH(v) is locally factorial, the exceptional
locus should be a divisor, a contradiction.
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