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Abstract 

 

Wind power is becoming day after day an important source of energy, especially once converted into 

electrical power. Monitoring wind turbines conditions and predicting possible problems is important, 

not only during their working time. A massive production of wind turbine blades entails the presence 

of a fast and inexpensive way of manufacturing and testing. Being potentially exposed to strong wind 

currents, the blades must be harmless when in action (even when they are cut out), to preserve their and 

their surrounding safety.  

Several parameters must be fixed to have a performant and safe blade model. Mechanical properties are 

important; therefore it is essential to take precise measurements of strain, when the component is under 

stress. Several instruments can measure it, but features and results are different.  

This thesis is focussed on sensing of wind turbine blade, especially on optical fibre sensing (OFSs), 

above all distributed optical fibre sensing (DOFSs). There are different kinds of OFSs based on different 

kinds of physical processes (for example Brillouin, Raman, Rayleigh scattering, depending on the 

sensor used). The field of DOFSs has born from just a theoretical concept in the beginning of the 1980s 

and has reached an extensive usage in these years. The research is very active and promising. 
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Sommario 

 

La tesi è stata svolta presso l’Università di Guangzhou, Cina, in collaborazione con l’azienda Zhuzhou 

Times New Material Technology Co., Ltd. (株洲时代新材料科技股份有限公司), che ha messo a 

disposizione per i test la pala eolica. 

Vista l’importanza che sta acquistando oggi l’energia eolica, in particolare in stati come la Cina, che 

investe molto per migliorare la qualità dell’aria del paese e che comunque ha vaste zone offshore ed 

interne adatte all’installazione di impianti eolici, è molto importante che la produzione dei componenti, 

che aumenta in quantità molto rapidamente, sia di ottima qualità. 

Focalizzando l’attenzione sulla pala eolica, è essenziale che essa sia resistente all’esposizione a forti 

correnti d’aria durante il funzionamento o comunque a possibili situazioni anomale. I parametri 

meccanici sono sorvegliati speciali e devono rientrare entro determinate soglie. Per questo motivo la 

pala è sottoposta a vari test iniziali (prove di fatica di varia durata e con differenti metodologie) che 

possono provare il suo corretto funzionamento (o meno). Per ottenere statistiche e dati si possono usare 

sensori di varie famiglie: elettrici o in fibra ottica, ad esempio. 

La tesi si occupa inizialmente di introdurre quali sono i parametri meccanici da essere controllati e quali 

possono essere le cause di rottura della pala eolica (in base anche al materiale di cui è costituita). In un 

secondo momento, confronta le varie tecnologie esistenti per la misurazione dei parametri. Quindi si 

introduce il metodo di misurazione basato sulle fibre ottiche. 

I sensori in fibra ottica oggi sono principalmente usati nel settore idrogeologico e di monitoraggio 

strutturale, tuttavia esistono molteplici applicazioni di altro tipo. Infatti, viste le caratteristiche fisiche 

che permettono ai sensori di essere posizionati anche nei luoghi più critici, l’OFS (Optical Fibre Sensing) 

risulta un buon compromesso. 

Anche i sensori in fibra ottica si possono suddividere in diverse categorie e l'ottenimento delle 

misurazioni avviene analizzando diversi tipi di processi fisici (ad esempio Brillouin, Raman, Rayleigh 

scattering, a seconda del sensore utilizzato). Per quanto riguarda questo elaborato si sono usati sensori 

distribuiti (DOFS) e FBG.  

Le fibre ottiche, conosciute dalla maggior parte della popolazione d’oggi come strumenti di 

telecomunicazione, hanno assunto negli ultimi 25 anni un ruolo sempre più importante nel campo di 

applicazione della sensoristica. La ricerca è molto attiva e promettente. 
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Chapter 1 

1 - Introduction 

 

WTs (Wind turbines) are becoming more and more frequent in the lands all over the world, offering an 

additional and clean source of electric power. Increased presence of wind power supplies renewable 

energy and reduces dependence on fossil fuels. Countries are sponsoring the construction of wind on-

shore and offshore power plants and the cost is becoming competitive when compared to other power 

plants (especially if we think that the cost of fuel for a WT is null).  

 

Figure 1.1: Total Installed Capacity of Wind Power Plants 2013-2017, World Wind Energy 

Association (preliminary data) [1]. 

 

As consequence, WTs have become larger, and the forces acting on the blades have increased, leading 

to stronger mechanical stresses and higher possibility of fatigue failures such as broken WT blades or 

tower strikes. This leads the industry to have a higher focus on creating an efficient and resistant model 

of WTs components and on Structural Health Monitoring (SHM), to prevent failure and reduce 

maintenance costs.  

The technology has led to several instruments that can help to create suitable components of WT. 

Instruments that can measure strain, temperature and many other physical relevant quantities. They are 

for example electrical gauges, acoustic emission sensors, optical fibre sensors, wireless strain sensors. 

The instrument, as usually happens in engineering, will be chosen according to economic factors and 

specific requirements.  
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In the WT blade study case (on which the thesis is focussing), the aim of this elaborate is proving that 

OFSs (Optical Fibre Sensors) are a good choice, and especially that the BOTDA (Brillouin Optical 

Time Domain Analysis) OFS is the best compromise. A longer dissertation will be treated in other 

sections of the thesis. 

 

1.1 - Wind turbine blade: main features 

 

The perspectives of application and development of wind energy technology depend also on the 

trustworthiness and lifetime of WTs.  

WT blade is one of the basic components in WTs, as it is the only member able to receive and transform 

wind energy in mechanical energy, and has primary influence on WT operation stability. WT blades are 

usually made of fiberglass material, to be cost effective, but they can be damaged by moisture absorption, 

fatigue, wind gusts or lightning strikes [2].  

It is fundamental to detect the damage before the blade fails irreparably, as it could destroy the entire 

WT system. As said, as the size of modern blades comes bigger, their monitoring and maintenance 

conditions increases in importance, and strain detection is one of the most effective methods to do it.  

Degradation processes in WT blades are controlled by microscale processes in the materials [3]. It is 

important to understand the degradation mechanisms of wind blades as a function of the blade’s 

structure, and so forecast their life expectancy and service characteristics. Then, a possible way could 

be estimating the loads on the wind blades. 

 

 

Figure 1.2: Example of blade’s damage due to wind gusts. 
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1.2 - Motivation and objectives of this elaborate 

 

During my exchange programme at Guangzhou University - Guangdong - China, Professor Zhu Pingyu 

and her team have first proposed me to write a thesis with topic OFS. Finally, the proposal evolved to 

OFS applied to a WT blade. The project has been conducted with the collaboration of Zhuzhou Times 

New Material Technology Co., Ltd. (株洲时代新材料科技股份有限公司), who provided us the WT 

blade and welcomed us for the measurements.  

The motivation of the thesis is giving a solution, in terms of mechanical characteristics, for the right 

modelling of the blade. Is then important to find the right way to measure quantities like strain, when 

the blade is operating in working conditions (or, like in our case, in simulated working conditions).  

The objective is to find the right measuring instrument and right way to do the measurements. More 

sensors will be considered and appropriate explanations are given. The thesis focusses on BOTDA 

system, which is predicted to be the most suitable. Finally, a complete description about the experiment 

and some clarifications about the results are reported. 
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   Chapter 2 

2 - Wind turbine blade’s mechanical characteristics 

 

There are several studies estimating the loads on WT blades (aerodynamic, physical loads…). However, 

in this work, I follow a simple model-based method introduced in the complex materials model as a 

boundary condition [4]. The aim of this chapter, is not giving a complete mock-up of the subject matter 

of the research (blade), but just let the reader understand the importance of mechanical quantities like 

stress, load distribution, stiffness, weight distribution, for the modelling of a blade. 

 

2.1 - Blade model 

 

A wind turbine blade consists of two faces (on the suction side and the pressure side), joined together, 

and stiffened either by one or several integral (shear) webs, linking the upper and lower parts of the 

blade shell or by a box beam (box spar with shell fairings), like in figure 2.1 [5].  

 

 

Figure 2.1: Section of a generic WT blade. 

 

About the loads on the component’s materials, one of the laminates (in the pressure side) in the main 

spar is vulnerable to cyclic tension-tension loads, whereas the other one (in the suction side) is 

vulnerable to cyclic compression-compression loads. The aeroshells, which are made of sandwich 

structures (honeycomb structure), are originally created to resist to the elastic buckling. The different 

cyclic loading conditions that are present at the various places at the blades indicate that it could be 

convenient to use different materials for different components and parts of the blade (see figure 2.1). 

As said before, the subject matter of this research (blade) is provided by Zhuzhou Times New Material 

Technology Co., Ltd. (株洲时代新材料科技股份有限公司). The blade, as reported by the company, 

is long around 60 m (the data is not precise according to the agreement made with the company) and 

presents a special structure, made of wood, copper honeycomb, GFRP (Glass Fibre Reinforced 

Polymer), and CFRP (Carbon Fibre Reinforced Polymer). The wood is the main element: it is used 
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because of its lightness and its cost benefit. On the other hand, the disadvantages are the quality 

variations, high moisture uptake and low thermal stability of the raw fibers [5]. For this reason, the 

structure is combined with a copper honeycomb. The composite (honeycomb) technology has high 

strength and low weight, and is a way to lighten the blade framework and absorb impact energy. The 

combined structure covers the blade in all its extension. GFRP is employed to cover two restricted areas 

along the blade: the trailing edge and the leading edge. It is used because of its physical characteristics 

(it is stiff and strong in tension and compression). The two spar caps present in the blade and a part of 

the main beam are made of CFRP. CFRP is characterized by high strength-to-weight ratio and rigidity. 

The increasing sizes of the WTs entails to a cheaper price of the electrical energy but harder engineering 

challenges. For example, a bigger size means a bigger weight of the blade; gravitational loads become 

then an essential point for the design. On the same time, a longer blade will deflect more: is then 

important focussing on its stiffness. Last, the life cycle of the turbine is expected to be longer and longer 

(lately, 20-25 years). It is then important planning a good sandwich/composite structure to deal with the 

high-cycle fatigue. 

 

2.2 - Loads on the blade 

 

A WT blade is a long, narrow structure, where the dominating loads are affected by aerodynamics 

factors and the gravity. From a macroscopic point of view, a WT blade could be seen as a simple beam 

structure with a crisp load profile and boundary conditions. Quantities like deflections, loads and 

stresses could be evaluated by using a (simplified) beam model. The results depend on the material of 

the blade, as GFRP (glass fibre reinforced polymers), aluminium alloy or CFRP (carbon fibre reinforced 

polymers), and on the length of the blade (a long blade, once exposed to a wind flow, will be more 

deflected than a short one). Moreover, the conception of the blade’s model is function of different 

physical characteristics: for example, for a GFRP blade is important the deflection, because the blade 

could strike the tower once the turbine is in action. Is important to notice that the GFRP is today the 

most used, since it is a matured material, while CFRP is still too expensive and aluminium alloy is only 

used for small turbines.  

The beam theory (as blade describing method) can be made at different levels of complexity, depending 

on the way it is used. In a simplified 1D (1-dimension) momentum theory, the maximum aerodynamic 

load on a blade, in the flapwise direction, can be simplified as a linear varying distributed load with 

vanishing load intensity at the root to a load intensity [6]. In figure 2.2, is possible to see how the wind’s 

flow is evolving from the upstream, or ()𝑢 region, to the downstream, or ()𝑑  region, crossing in the 

middle the WT disc region, called also ()𝑡 region. The speed of the wind 𝑢𝑖 is decreasing from the 

upstream value 𝑢𝑢 to the downstream value 𝑢𝑑. Consequence of this is an increase of the respective 

area 𝐴𝑖 (𝐴𝑑 >  𝐴𝑢). On the other hand the pressure 𝑝𝑖 , is constant (and equal to ambient pressure, 𝑝∞) 

in the upstream and downstream region, while in the WT region changes from 𝑝1 to 𝑝2, because of the 

rotation of the WT (and its “absorption” of work). 

 



7 

 

Figure 2.2: Scheme of fluid flow through a disk-shaped actuator (in this case a WT). 

Considering the previous points (especially the ones who say that the pressure in the far upstream and 

in the far downstream is equal to the ambient pressure and the speed and pressure crossing the WT disc 

change continuously) and that in the far upstream 𝑢𝑢 could be considerate equal to 𝑢∞, is possible to 

write down the formulas (2.1), (2.2): 

 

Considering then the Bernoulli Principle, we can relate the upstream, turbine rotor and downstream area 

by the relations (2.3), (2.4): 

 

Operating “(2.3) – (2.4)” we obtain: 

 
∆𝑝𝑡 =

𝜌𝑎𝑖𝑟(𝑢∞
2 − 𝑢𝑑

2)

2
 (2.5) 

 

𝑄𝑡, the thrust force working on the WT rotor, is defined as 𝑄𝑡 = ∆𝑝𝑡𝐴𝑡. 

Defining 𝑃𝑡 , the power taken by the WT (from wind’s power), it’s possible to make the following 

considerations.  

As function of time, 𝑃𝑡 is equal to the difference of the kinetic energy of the upstream and downstream 

area. The mass flow through the turbine is �̇�,  

 �̇� = 𝜌𝑎𝑖𝑟𝐴𝑡𝑢𝑡 (2.6) 

 

The parameter 𝑎 is: 

 
𝑢𝑡 =

𝑢∞ + 𝑢𝑑

2
 (2.1) 

 ∆𝑝𝑡 = 𝑝1 − 𝑝2 (2.2) 

 
𝑝∞ +

𝜌𝑎𝑖𝑟𝑢∞
2

2
=  𝑝1 +

𝜌𝑎𝑖𝑟𝑢𝑡
2

2
  (2.3) 

 
𝑝∞ +

𝜌𝑎𝑖𝑟𝑢𝑑
2

2
= 𝑝2 +

𝜌𝑎𝑖𝑟𝑢𝑡
2

2
 (2.4) 
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 𝑎 =
𝑢∞ − 𝑢𝑡

𝑢∞

 (2.7) 

 

𝑃𝑡 is defined as:  

 
𝑃𝑡 = 𝑄𝑡𝑢𝑡 =

𝜌𝑎𝑖𝑟𝐴𝑡𝑢𝑡(𝑢∞
2 − 𝑢𝑑

2)

2
=

𝜌𝑎𝑖𝑟𝐴𝑡𝑢∞
3 4𝑎(1 − 𝑎)2

2
 (2.8) 

 

When 𝑎 = 1/3, that is the Betz limit, 𝑃𝑡 reaches its maximum value, in other words the 60% of the 

upstream wind power. Nowadays is possible to modify the position of the blades of the WTs, in 

according to the value of 𝑢𝑡 (to reach the Betz limit).  

When 𝑃𝑡 reaches the value of 𝑃𝑔, the generator power, the blades position will be chosen in order to let 

𝑃𝑡 not overcome 𝑃𝑔. Then 𝑢𝑟, the rated wind speed, is set as design parameter of the blade, so that: 

 

𝑓(𝑃𝑔;  𝑢∞) is characterized by: 

 

From the relations (2.9), (2.10) and the definition of 𝑄𝑡, 𝑄𝑡 can be seen as 𝑄𝑡(𝑢∞), function of 𝑢∞. The 

maximum value of 𝑄𝑡 is reached when 𝑢∞ = 𝑢𝑟 . 

Is true that (being 𝐿 the blade length): 

 𝑄𝑡𝑚𝑎𝑥 =
4𝜌𝑎𝑖𝑟𝑢𝑟

2𝜋𝐿2

9
 (2.11) 

 

This load will be distributed (for example) to three blades, with 1/3 to each one. Along the individual 

blade, the load intensity (load per unit length), 𝑞𝑥
𝑓𝑤1

, can be approximated by linear varying 

distribution from a vanishing value at the root to the maximum value at the blade tip given by [6]: 

 

On the other hand, should be considered also the edgewise direction load, due to the gravity. Calling 

𝜌𝑏𝑙2, the density of the material of the blade and 𝑔 the gravity acceleration, is true that: 

 𝑞𝑥
𝑒𝑤3

= 𝜌𝑏𝑙𝐴𝑏𝑙𝑔 (2.13) 

                                                           
1 fw = flapwise. 
2 bl = blade. 
3 ew = edgewise. 

 𝑎 = {

1

3
,                         𝑢∞ ≤  𝑢𝑟

𝑓(𝑃𝑔;  𝑢∞), 𝑢∞  >  𝑢𝑟

 (2.9) 

 𝑎(1 − 𝑎)2 =
𝑃𝑔

2𝜌𝑎𝑖𝑟𝑢∞
3 𝐴𝑡

 (2.10) 

 𝑞𝑥
𝑓𝑤

=
8

27
𝜌𝑎𝑖𝑟𝑢𝑅

2 𝜋𝑥 (2.12) 
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2.3 - Stresses of the blade 

 

In figure 2.3 is represented a simplification of a WT blade structure when exposed to a wind current. 

The part (a) represents the stressed parts of the blade, respectively because of the flapwise bending 

(vertical direction4) and edgewise bending (horizontal direction5). The part marked with green is the 

load carrying part contributing to the overall stiffness of the blade [6].  

The part (b) is a simplified representation of the blade section, useful for the calculation of the stresses 

on the blade. 

 

Figure 2.3: Typical wind turbine cross section and simplified cross-section [5]. 

 

Flapwise and edgewise moment can be found as: 

 

The stress (flapwise and edgewise) can be found, using (2.14) and (2.15) and taking into account that 

𝐴𝑏𝑙 = 2(𝐴𝑓𝑤 + 𝐴𝑒𝑤), as: 

 

In order to achieve a constant stress level, 𝜎𝑥
𝑓𝑤

=  𝜎𝑥
𝑒𝑤 = 𝜎0 in the blade material, it can be seen from 

(2.16) and (2.17) that the blade height, ℎ𝑥
𝑓𝑤

, and blade width, ℎ𝑥
𝑒𝑤, should vary in the following way [6]:  

                                                           
4 The flapwise bending follows the vertical direction because of the wind vector (see figure 2.3). 
5 The edgewise bending follows the horizontal direction because the gravity factors influences the 

blade’s mechanical parameters, especially when the turbine is rotating (see figure 2.3). 

 𝑀𝑥
𝑓𝑤

= 𝑞𝑥
𝑓𝑤(𝐿 − 𝑥)

𝐿 − 𝑥

2
+

𝑞𝐿
𝑓𝑤

− 𝑞𝑥
𝑓𝑤

2
(𝐿 − 𝑥)

2(𝐿 − 𝑥)

3
 (2.14) 

 𝑀𝑥
𝑒𝑤 = 𝜌𝑏𝑙𝐴𝑏𝑙𝑔(𝐿 − 𝑥)

𝐿 − 𝑥

2
 (2.15) 

 𝜎𝑥
𝑓𝑤

=
8𝜌𝑎𝑖𝑟𝑢𝑟

2𝜋𝐿3

81𝐴𝑓𝑤ℎ𝑥
𝑓𝑤

(1 + 𝑥/2𝐿)(1 − 𝑥/𝐿)2 (2.16) 

 𝜎𝑥
𝑒𝑤 =

𝜌𝑏𝑙𝐴𝑏𝑙𝑔𝐿2

2𝐴𝑒𝑤ℎ𝑥
𝑒𝑤

(1 − 𝑥/𝐿)2 (2.17) 

 
ℎ𝑥

𝑓𝑤

ℎ0
𝑓𝑤

= (1 +
𝑥

2𝐿
) (1 −

𝑥

𝐿
)

2

 (2.18) 
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(2.18) and (2.19) give a simplified mathematical model (based on the material strength) for modelling 

a blade. By the way, to achieve the final characterization of a WT blade there are more requisites (like 

aerodynamic); this make the evaluations more difficult and quite different to the one we are examining 

in this chapter. 𝐿 is always known, as length of the blade, while ℎ0
𝑓𝑤

 and ℎ0
𝑒𝑤 , the biggest value points 

who represent the characteristic shape of the blade, can be found, comparing more (blade) geometries 

by the following linear function of the length 𝐿 [6]:  

 

From (2.18), (2.19), (2.20), (2.21), we can get the graphs of figure 2.4.  

 

Figure 2.4: Typical blade geometries and the blade model the thesis will focus in compared with the 

respective strength-determined geometries [6]. 

 

It is important to observe that there are different data. They are from general WT blades geometries 

(marked with black), the experiment WT blade (marked with blue), and the results got from 

mathematical evaluations (in accordance with (2.18), (2.19), (2.20), (2.21)). The experiment blade data 

comes from Zhuzhou Times New Material Technology Co., Ltd. (株洲时代新材料科技股份有限公

司) and is related to the blade model the thesis will focus on. The purpose of figure 2.4 is to show, 

                                  
ℎ𝑥

𝑒𝑤

ℎ0
𝑒𝑤 = (1 −

𝑥

𝐿
)

2

 (2.19) 

 ℎ𝑜
𝑓𝑤

= 0.066𝐿 − 0.369𝑚 (2.20) 

 ℎ0
𝑒𝑤 = 0.130𝐿 + 0.082𝑚 (2.21) 
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basing on stresses parameters on a WT blade, how the measures of ℎ𝑥
𝑓𝑤

 and ℎ𝑥
𝑒𝑤  should be (according 

to the mathematical evaluations) and what they actually are (according to real features). As said before, 

the aim of this study is only letting the reader understand that measuring quantities like strain are 

essential to get a functional blade’s model but are not enough to get it. In this case ℎ𝑥
𝑓𝑤

 and ℎ𝑥
𝑒𝑤  are just 

simple parameters that will give a useless blade model if used alone; but are essential to get the result. 

To have a clearer idea of what flapwise and edgewise mean, when represented on a WT blade, figure 

2.5 could be illuminating. Moreover, as said in the previous pages, the flapwise deflection exists when 

a wind current (we are talking about a WT blade) hits a blade. The direction of the deflection will be 

the same (and exactly the opposite of the wind, once the blade turns back with its movement) of the 

current. The edgewise deflection is due to the gravity force. The deflection exists because of the rotation 

of the turbine: the faster the rotation is the more intense the deflection will be. 

 

Figure 2.5: Representation of flapwise and edgewise direction of a WT blade. 

 

2.4 - Stiffness of the blade 

 

Stiffness is the rigidity of an object - the extent to which it resists deformation in response to an applied 

force [7]. To avoiding tower strikes by the WT blades, is important to analyse the blade’s stiffness. The 

distance between the turbine and the tower should be enough long to prevent accidents. By using 

Bernoulli-Euler equations we can determine the transverse deflection, 𝑤: 

 

𝑀𝑥  is the moment of the beam at the general location 𝑥 , 𝐸  the material stiffness (known, as 

characteristic of the material), 𝐼 moment of inertia. Solving (2.22) and (2.23), dividing the blade model 

into 𝑛 parts, and considering 𝜃0 =  𝑤0 = 0, we can get the following equations: 

 
𝑑2𝑤

𝜕𝑥2
=

𝑀𝑥

𝐸𝐼𝑥

 (2.22) 

 𝐼𝑥 =
𝐴𝑓𝑤(ℎ𝑥

𝑓𝑤
)2

2
 (2.23) 

 𝜃𝑖 = 𝜃𝑖−1 +
1

2
(

𝑀𝑖

𝐸𝐼𝑖

+
𝑀𝑖−1

𝐸𝐼𝑖−1

) (𝑥𝑖 − 𝑥𝑖−1);     𝑖 = 1, … , 𝑛  (2.24) 

 𝑤𝑖 = 𝑤𝑖−1 +
𝜃𝑖 + 𝜃𝑖−1

2
(𝑥𝑖 − 𝑥𝑖−1);              𝑖 = 1, … , 𝑛 (2.25) 
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Is then important to notice that 𝐸, the material stiffness, is relevant for the deflection calculation. If its 

value is high, the deflection should be shorter (actually the final value of the deflection depends on the 

product 𝐸𝐼). Then, for an almost totally wood composed blade, the maximum accepted deflection would 

assume high values since the stiffness is usually low for wood; the highest value, 24.27 GPa, for 

“Massaranduba” wood, if compared to the value of a not so rigid material, like GFRP (whose stiffness 

is of 44 GPa), classifies wood as a not rigid material. Wood is present on the world with thousands 

typologies and surely their characteristics are different. However, the composition of wood is usually 

not uniform, that means a more precise study shall be done, but this is not the aim of this thesis.  

Figure 2.6 represents the maximum deflection for blades made by different material (GFRP, CFRP, 

aluminium) as a function of the length and of the kind of design (fatigue or deflection). 

 

Figure 2.6: Deflection analysis as function of length and design of the blade [6]. 

 

2.5 - Weight distribution and deflection of the blade 

 

The structure of the blade on which the thesis is focussing is special since wood, GFRP and an 

aluminium honeycomb core compose it. The aim of the thesis is describing different measuring 

instruments, which could measure strain on a WT blade. Since the structure of this blade is more 

complex than a normal GFRP one (for example), I will not examine it in depth. However, is important 

to have some blade weight predictions since we want to know how the blade is generally working. These 

evaluations will be useful for the development of the thesis. 

GFRP, CFRP and aluminium will be considered as materials. Their physical characteristics are reported 

in table 2.1. 
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The weight predictions are function of the blade’s length. Figure 2.7 represents a graph where the 

calculations have been done supposing the material has been loaded with the fatigue strength 𝜎0.  

 

Figure 2.7: Weight predictions as function of the length of the blade [6]. 

 

 

 

 

 

 

Material Density, [𝑘𝑔/𝑚3] Elastic modulus, [𝐺𝑃𝑎] Fatigue strength, [𝑀𝑃𝑎] 

GFRP 𝜌 = 1900 𝐸 = 44 𝜎0 = 160 

CFRP 𝜌 = 1600 𝐸 = 120 𝜎0 = 300 

Aluminium 𝜌 = 2700 𝐸 = 70 𝜎0 = 100 

 

Table 2.1: Mechanical parameters of the materials [6]. 
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Chapter 3 

3 - Measuring instruments of mechanical parameters 

 

Mechanical parameters are important factors in the field of the engineering (in the field of WT blades 

too). Measuring them before and during the mechanical component’s life is essential to avoid eventual 

accidents (for example the wreckage of a blade). The responsibility is very high since the risk could 

bring to irreparable damages to the machine and to the safety of people. 

The first strain measuring instruments were anaolg: they were objects like springs and levers. Originally 

not so much accurate, thanks to the help of Arnold Huggenberger, they have developed in accurancy 

and sensitivity. However, this kind of instrument has been overpassed by strain gauges since the results 

were more precise (even if the system was originally too expensive). Nowadays, resistive (strain) gauges 

are sensitive, accurate, easy to produce and they don’t need big amount of material since it is used metal 

foil for the production. However, foil can only elongate so far, and this type of strain gauge does not 

work well for ductile materials. Conductive material can be added to elastomers for a stretchier gauge 

[8]. The result is a capacitive elastomer sensor. However, the strain gauges are not always a good 

compromise, particularly when the result must be an accurate and complete profile of a big mechanical 

component (like a plane or WT blade). In this case a big amount of gauges should be used (hundreds 

devices and hundreds wires). NASA introduced so FBG (Fiber Bragg Gratings). Fiber optic sensing is 

nowadays a well-known measuring system owing to its long lifecycle, wide operating temperature range, 

variety of measurable parameters; distributed sensing are preferable when compared to the strain 

gauge’s ones. Moreover, the price of a common fiber optic sensor is becoming more and more 

competitive.  

The instruments before cited are the most used. However, there are many other devices that can work 

and measure in this field. They are for example nanoparticle-based strain gauges (in this case the active 

area is made by conductive nanoparticles like gold or carbon), MEMS (microelectromechanical systems, 

that measure strains such as those induced by force, acceleration, pressure or sound), and vibrating wires 

(the wire is vibrating and the strain is measured by analysing the resonant frequency of the wire) [9]. 

 

3.1 – Strain: the basics 

 

Strain is a measurement of deformation representing the displacement of particles in the body of a 

general object, relative to a reference length (the original length of the body).  

 

Figure 3.1: Strain definition. 

 

Referring to what is represented in figure 3.1, the strain is defined as: 
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When the material is tense, the strain is positive; when the material is compressed the strain is negative. 

The strain is usually small, particularly when we are measuring a mechanical component’s stress. It’s 

usually measured in 𝜇휀, microstrain.  

Is important then to introduce 𝜈 = Poisson’s Ratio, that is a coefficient related to the Poisson Strain, an 

event that causes the enlargement or restriction of the girth of a bar, once it’s strained with an uniaxial 

force. Is true that: 

  𝜈 = −휀𝑡/휀 (3.2) 

 

휀𝑡 is the strain in the perpendicular direction. 

  

3.2 - Strain gauges 

 

Strain gauges are electrical measuring sensors. Their peculiar characteristic is that their electrical 

resistance changes when the strain of the material where they are located varies. The most used strain 

gauge is the bonded metallic gauge.  

The gauge is usually composed by a grid pattern. In this way, the quantity of metallic material is 

arranged on the best shape in order to endorse the measurement of the strain and reduce the effect of 

the Poisson Strain that could threaten the results (to avoid the conditioning of the results by the shear 

strain and Poisson strain the cross area of the grid is minimized). In figure 3.2 is represented an example. 

 

Figure 3.2: Bonded metallic strain gauge structure. 

 

An important parameter is GF (gauge factor). It is defined as: 

 휀 = ∆𝐿/𝐿 (3.1) 
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 𝐺𝐹 =
∆𝑅/𝑅

휀
 (3.3) 

 

𝑅 is the gauge electrical resistance. ∆𝑅/𝑅 is then defined as fractional change in electrical resistance. 

The gauge is not only sensitive to strain, but also to the temperature. Once the temperature has changed, 

there will be a material expansion or contraction (is obvious that this will bother the gauge during its 

job). The manufacturer tend to solve the problem compensating the gauge, but the sensitivity cannot be 

entirely deleted.  

Being usually true that 𝐺𝐹 = 2, and that the strain usually assumes small values (rarely larger than few 

𝑚휀) the fractional change in electrical resistance will be really small. This makes the measurement hard 

to take. To measure such small changes in resistance, and to compensate for the temperature sensitivity 

(as discussed in the previous section), strain gauges are usually used in a bridge configuration with a 

voltage or current excitation source [10]. This is the case of the Wheatstone bridge, as it can be seen in 

figure 3.3. 

 

Figure 3.3: Wheatstone Bridge scheme. 

 

In this case, 𝑉𝐸𝑋 is the excitation voltage. Applying then some electrical engineering principles: 

 

From (3.4), is evident that when 
𝑅1

𝑅2
=  

𝑅4

𝑅3
, 𝑉0 = 0. Under these conditions, the bridge is said to be 

balanced.  

Replacing, for example, 𝑅4 with 𝑅𝐺 +  ∆𝑅, where 𝑅𝐺  is the strain gauge resistance, and assuming that 

𝑅1 =  𝑅2  and 𝑅𝐺 =  𝑅3, is true that: 

 
𝑉0

𝑉𝐸𝑋

= −
𝐺𝐹휀

4
( 

1

1 + 𝐺𝐹휀/2
) (3.5) 

 

The presence of 𝐺𝐹 in (3.5) entails a non-linearity of the system (respect to the strain), but the strain 휀 

can be found. In this case, 𝑅4 has been replaced by an active strain gauge; this means that any changes 

of the strain on the material (and then on the gauge) will cause a variation on the resistance and so the 

output voltage will never be null.  

 𝑉0 = 𝑉𝐸𝑋 (
𝑅3

𝑅3 +  𝑅4

+
𝑅2

𝑅2 + 𝑅1

) (3.4) 
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The sensitivity to the temperature can be minimized by using two strain gauges. One of them is active, 

while the other one (placed perpendicularly to the other one) is “dummy” (it can only measure the 

temperature, because the strain has negligible effect). In figure 3.4, is represented their disposition. 

Since the temperature measured by the two gauges is the same, the sensitivity to the temperature is 

minimized. 

 

Figure 3.4: Eliminating temperature effects by using two gauges. 

 

To achieve better accuracy results, two active gauges should be used, but in different directions. When 

a gauge is in tension its electrical characteristic is 𝑅𝐺 + ∆𝑅, when in compression it will be 𝑅𝐺 −  ∆𝑅. 

The half-bridge configuration is exactly obtained using two active gauges: the main advantage is that 

the measurement will be more accurate since the precision is doubled.  

By the way, the most complex but effective configuration is the full-bridge configuration (figure 3.5). 

The precision is maximized even though the number of gauges is bigger (there is a gauge in every arm 

of the circuit). The cost will be higher then. 

 

Figure 3.5: Full-bridge configuration. 

 

The electrical output characteristic is described, for half-bridge and full-bridge configuration, as in (3.6) 

and (3.7). Is evident that the precision of the full-bridge configuration is double of the half-bridge’s one. 

 
𝑉0

𝑉𝐸𝑋

= −
𝐺𝐹휀

2
 (3.6) 
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In theory, the voltage output should be null as long as there is no strain in the component. However, 

resistances tolerances and strain induced by the application of the gauge cause an initial offset. There 

are two ways to correct it:  

- Using a balancing circuit that can adjust the Wheatstone bridge and rebalance the total circuit, 

reaching a null initial offset. 

- Compensating the initial offset with a software.  

Strain gauges have discrete characteristics of sensitivity, accuracy, installation, and price. However, 

when compared to other technologies, they present some problems: 

- Electromagnetic interference (EMC). 

- Sensibility for the high explosive atmospheres. 

- Possible mechanical failure of the material when exposed to high-level vibration loads. 

- Requirement of big quantity of wires, since every sensor needs a cable (this comports also to 

a not negligible weight and high price). 

 

3.3 - Optical fibre sensors 

 

A major analysis of OFSs (optical fibre sensors) will be conducted later, since it is the base of the thesis. 

In this paragraph, some general features will be reported so that a comparison with the strain gauges 

and wireless sensors could be made.  

The invention of laser inspired the research on fiber optics for communications, sensing, and other fields. 

This is because laser systems are able to send a big amount of data when compared to microwave or 

other electrical systems. The possibility to carry big amounts of data at fast speed, increased the attention 

on optical fibers. The development of optical fiber systems led to the production of several structures. 

An example is combining some products of fiber optic telecommunications field with optoelectronic 

devices field: the result is OFSs. Soon it was discovered that, with material loss almost disappearing, 

and the sensitivity for detection of the losses increasing, one could sense changes in phase, intensity, 

and wavelength from outside perturbations on the fiber itself. Hence, fiber optic sensing was born [11].  

OFSs are nowadays spreadly used for measurement of physical properties such as strain (static and 

dynamic), displacement, temperature, pressure and SHM (Structural Health Monitoring). For example, 

the technology is used for: 

- WT and plane’s blades: flapwise and edgewise mechanical stress, pressure on blade’s surfaces. 

- Buildings, bridges: concrete/crack/prestressing/longterm deformation (creep and shrinkage) 

monitoring, spatial displacement measurement, concrete-steel interaction, and post-seismic 

damage evaluation [12]. 

- Tunnels: joints and convergence detection, prefabricated vaults evaluation. 

- Dams: foundation/joint expansion/temperature monitoring, special displacement measurement. 

- Mechanical components (cars, alternators…): temperature/stress/strain monitoring. 

- Heritage structures: displacement/restoration monitoring, crack opening analysis, post-seismic 

damage evaluation [12]. 

OFSs reached a good position on the sensors market. The price is becoming more and cheaper and they 

have suitable characteristics: 

 
𝑉0

𝑉𝐸𝑋

= −𝐺𝐹휀 (3.7) 
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- Small size and easy integration. 

- Incapability of conducting electrical currents. 

- Immunity to radio frequency/electromagnetic interference. 

- Lightweight. 

- Capability of sensing more quantities, like strain, pressure, temperature, acoustic signals. 

- Ability to form sensing networks. 

 

3.4 - Wireless sensors for wind turbine structural health monitoring 

 

Being the main topic of this thesis the measurement of strain for a WT blade, it is opportune to introduce, 

as last example, the technology of wireless sensors. An increasing method to obtain a WT blade 

monitoring is using NDT (Non Destructive Technique). The monitoring of mechanical parameters of 

the blade takes place before and during the functioning of the blade (SHM). The technology of wireless 

sensors is retained one of the most useful for this kind of application. The last years have brought 

different wireless technologies that can be used for structural damage detection, including RFID (radio-

frequency identification), that has been proposed for a wireless damage detection platform in civil 

engineering application. RFID tag sensors provide identification data and monitor of physical 

parameters of tagged objects without having an active sensor in the tag circuitry [13].  

As in figure 3.6, the system of a RFID wireless sensor could be composed by a RFID reader (an active 

read out device), and a RFID passive tag (which include the sensor and the integrate circuit) that are 

used with wireless identification with another tag attached.  

 

 

Figure 3.6: Wireless RFID sensor possible structure. 

 

The structure has features so that a changing on dielectric property leads to a change in the resonance 

frequency displacement. The resonance frequency displacement varies in a linear way as long as the 

effort is small (typical for mechanical structures, including a WT blade). Two antennas are present, one 

for the reader (so for the sensor structure), one for the attached tag. Their working (interrogation) 

frequency is the same, so that it can be obtained a perfect matching between the antenna tag and the IC 

chip. A microcontroller then elaborates the information. The interrogation range is an important 

parameter for the sensor. The smallest power to activate the attached tag is obtained when the reader is 

working with the resonance power (necessarily).  

The RFID typology of wireless sensor is not the only one. PWNS (Piezoceramic-based wireless sensor 

network system) was developed for automated real-time health monitoring of wind turbine blades in the 

work “Wind turbine blade health monitoring with piezoceramic-based wireless sensor network” [14]. 
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As in the RFID technology, there are several advantages. For example, while the optical fibre sensor 

can only measure the strain in the place where it is located, the PWNS can measure it in a wider area 

and in real time (ideal situation for SHM). The proposed automated real-time piezoceramic-based WSN 

in [14] is composed by an embedded piezoceramic sensor and a wireless communication system. The 

embedded piezoceramic patch is utilized to create some guides to cover the whole blade. The waves are 

detected then from other sensors. The monitoring locations of the blade were chosen based on the 

physics of the blade (some parts are more stressed than others). The signals detected from the sensors 

are then transmitted by wireless to elaborators that will analyse the data. A scheme is represented in 

figure 3.7. 

 

 

Figure 3.7: Block diagram of the wireless network [14]. 

 

WNS (wireless network system) is not only a strain and mechanical stress measuring system, but can 

measure other environmental parameters, like pollution index, temperature, sound, wind. WNS is a 

system composed by more sensors arranged in different places of the measuring environment; these 

devices are recording some specific physical conditions and sending by wireless connection to a data 

centre where the information will be collected and analysed.  

The wireless sensors could be preferred to other sensors because: 

- They can be used in hostile places, where wired systems (especially strain gauges, because 

they need big amounts of material, since the wires will be too many and too long, and the 

working conditions could be unbearable for them) could not be applied. 

- They are scalable; in SHM, WNSs are then frequently used, since the information should be 

detailed, so more sensors should be used (using strain gauges will entail a large quantity of 

wires). 

- They are easy to install. 

On the other hand, they present some disadvantages. They have limited potentialities of communication, 

computation, battery power, storage. 
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Chapter 4 

4 - Distributed optical fibre sensing technology 

 

OFSs are devices using the light to transmit the information they are sensing. The typical structure of 

an OFS is illustrated in figure 4.1. 

 

Figure 4.1: Typical arrangement of an OFS. 

 

A power supply will provide the light excitation source that will probe the sensor. The optical fibre 

works as transit cable, conveying the light to the sensor and transmitting the modulated light to the 

optical transducer (in fact a patch panel) and interrogator then.  This last one will convert the returned 

light into an electrical signal, in other words the output of the system.  

 

4.1 - Distributed optical fibre sensors: a background 

 

The DOFSs (Distributed optical fibre sensor) define the spatial distribution of a measurand6 along the 

fibre. One of the advantages of the DOFSs is that the physical parameter will not be measured only in 

one location. 

As for OFSs, the measurement is obtained by valuating parameters of the light like intensity, 

polarisation, phase, propagation time, optical spectrum and coherence [15].  

The OFSs are separated into intrinsic and extrinsic category. In the first kind of sensors, the light stays 

within the fibre for all the length of the sensor. The modulation could happen by micro-bending, 

elongation (for example). In the second kind, there is an interruption along the fibre where a bulk-optic 

device will work as sensor. The second part of the fibre will collect the light emitted by the device, once 

the device itself has absorbed the light from the first part of the fibre and given off it with a different 

wavelength. Figure 4.2 could give a clearer view.  

                                                           
6 The term “measurand” will be used in this thesis with the meaning of input of a sensor that will be 

converted into electrical or optical signal. 
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Figure 4.2: Representation of extrinsic and intrinsic OFSs. 

 

Since the cost of technology has always been of primary importance in the engineering field, to achieve 

a good compromise in terms of cost-effective applications, multiplexed sensors have assumed a discrete 

prestige among OFSs. The technology consists of multiplexing several sensors onto a single fibre cable 

[16] and sharing the interrogator in different points. These devices gained acceptance, but they require 

complete and mapped spatial profile of the measurand, needing then a silly amount of sensing points 

(to complete the profile) or a prior knowledge of the distribution. This makes DOFSs the most effective 

multiplexed sensors, since they can measure a continuous spatial profile of the measurand along the 

entire sensing fibre. DOFSs are defined as intrinsic sensors able to define the spatial distribution of one 

or more measurands at each point along a sensing fibre [15]. 

The first DOFS was a temperature sensor, in 1982. It was demonstrated that a liquid-core fibre was 

sensitive to temperature when interrogated by OTDR (optical time domain reflectometry). However, 

the liquid-core fibre was difficulty deployable; the research brought to different technologies until when 

inelastic scattering made DOFSs available [15].  

 

4.2 - Elastic and inelastic scattering 

 

When the medium (the optical fibre) is inhomogeneous, scattering occurs. Scattering may be elastic or 

inelastic on the basis of 𝐸𝑝ℎ, the energy of the photons. If the energy is maintained, the scattering is 

elastic, if not, the scattering is inelastic. Three kinds of scattering will be considered: Rayleigh, Raman, 

and Brillouin. Rayleigh scattering occurs when the frequency of the scattered wave is the same of the 

incident wave (the scattering is elastic). The small-scale fluctuations of the refractive index that cause 

Rayleigh scattering are frozen in the glass and the elastic process does not involve their motion [15]. 

On the other hand, when the frequency of the scattered wave is not the same of the incident wave the 

scattering is inelastic. The heat in the material (fibre) is controlled by molecular and lattice vibrations, 

carried by phonons. When the vibration frequency is high (~10 THz) it is Raman scattering; when the 

frequency is lower (~10-30 GHz) it is Brillouin scattering. In both cases, there is exchange of energy 

(from the medium to the light or vice versa). When the scattered light has lower frequency than the 

incident light, it means energy has gone, through phonons, from the light to the medium; the new 

spectral features are called Stokes lines. Vice versa, if the energy has gone from the medium to the light, 

the resulting light will emerge at higher frequency and will have features of anti-Stokes line. In Raman 

scattering phonons energy is related with unit thermal energy (𝑘𝑏𝑇, where the Boltzmann constant is 

𝑘𝑏), therefore the anti-Stokes Raman process could give information about temperature. By the way, 

even if a longer discussion will take place in the next pages, Brillouin scattering is also sensitive to 

temperature (and strain). To get a clear view, figure 4.3 could be helpful. 
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Figure 4.3: Raman and Brillouin spectra as function of anti-Stokes, and Stokes in standard optical 

fibres. 

 

4.3 - Performance criteria in DOFSs 

 

There are different parameters characterizing a DOFS; five criteria are going to be analysed in the 

following section.  

The measurand resolution is the capability of the device to characterize tiny changes in the value of the 

measured quantity. For DOFSs, the measurand resolution is usually function of the position, since the 

light is more lessened when the distance from the starting point of the fibre is increasing. 

The range is the maximum length that can be measured as sensing fibre (it is then important for 

determining the maximum pulse repetition rate, since the interrogator can launch the second pulse only 

once the first one has come back). The range is usually connected to the loss on the fibre since there is 

an acceptable limit of losses per unit of fibre. If the fibre is too long, the limit could be overpassed.  

The spatial resolution is an important parameter that defines the ability of a DOFS to take measurements 

in closely spaced locations [15]. The spatial resolution is strictly connected to the measurand resolution. 

For example, even if the features of measurand resolution are finer than the spatial resolution’s ones, 

being the result the convolution of the two factors, the measurand distribution will result attenuated.  

The sampling resolution is the fibre distance between the samples that are present in the series of values 

given as output of the DOFS. The sampling resolution is related to the characteristics of speed of the 

light in the optical fibre and of sampling of the system. It should be finer than the spatial resolution in 

order to obtain a clear result (usually the sampling resolution is at least two times finer than the spatial 

resolution). 

The measurement time is the time the system uses to get the results for all the points along the fibre, 

according to the requisites of measurand resolution.  

Even if the criteria are concerning different quantities, they are all strictly connected by the signal-to-

noise ratio. Being the signal in a DOFS usually small, the ratio will be small too; this limits the quality 

of the result. Then, to obtain a valid measurand resolution, a right way of cooperation between the 

parameters should be found.  
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4.4 - Propagation in optical fibres: physical concepts 

 

An optical fibre is usually a long and cylindrical structure that guides the light. It is generally made by 

high-purity silicate glass. The structure contains a core, with refractive index 𝑛1 , a cladding, with 

refractive index 𝑛2 (𝑛1 is usually higher than 𝑛2, to let the light be trapped in the guide), and a polymer 

coating layer in order to protect the fibre. Introduced the Snell-Descartes law, (4.1), where 𝑛1 is the 

refractive index of the medium from where the light is coming, 𝜃1 the angle from normal incidence, 𝑛2 

the index of the material of the medium where the light is going and 𝜃2 the respective angle, is true that: 

 

An illustration can be found in figure 4.4.  

 

Figure 4.4: Representation of Snell-Descartes law of refraction. 

 

If 𝜃2 = 𝜋/2  , the ray is refracted parallel to the interface; the critical angle is defined as 𝜃𝑐 =

sin−1(𝑛2 /𝑛1). Beyond this angle the light is completely reflected back; this condition is called “total 

internal reflection”. Referring to the axis of the fibre, if the light is propagating at angles minor than 

𝜃𝑓 = 𝜋/2 −  𝜃𝑐, it keeps staying within the waveguide. 𝑁𝐴 (numerical aperture) is a term defining if a 

ray will be guided by the fibre or not.  

𝑁𝐴 is defined as: 

 𝑁𝐴 = √𝑛1
2 − 𝑛2

2 (4.2) 

 

Since the topic is optical fibres, describing only a ray of light is too reductive. A plane wave with a 

specific wavelength and phase (spatially periodic) should be introduced. According to the electro-

magnetic wave propagation, the wave can be described in terms of modes (this analysis would be more 

appropriate, according to the physics). Is then important introducing the factor 𝑉 , the normalised 

frequency, defined as: 

 𝑛1 sin 𝜃1 = 𝑛2 sin 𝜃2  (4.1) 
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 𝑉 =
2𝜋𝑎𝑁𝐴

𝜆
 (4.3) 

 

𝑎 is defined as core radius, 𝜆 as wavelength. Fiber with a short radius and a small numerical aperture 

will then conduct only few modes (especially if the wavelength is high). Generally, in critical conditions 

(of radius and numerical aperture) the fibre will guide two modes, polarised orthogonally each other 

[15].  

It is possible to distinguish some types of optical fibre. 

The step-index multimode fibre is a fibre where the core diameter and numerical aperture are enough 

large to guide many modes. The boundary of the refractive index (between core and cladding) is marked 

(see figure 4.5). This limits the working conditions of a DOFS, since the output pulse will have an 

unclear profile. 

The graded-index multimode fibre has been built to resolve the problems presented in the previous kind 

of fibre. In this case the index varies gradually from the core to the cladding (in this way in the area 

between core and cladding the refraction is attenuated). The radius is usually smaller than in a step-

index multimode fibre. However, the properties of modes vary in a not predicted way in this case. Being 

the modes responsible of the transfer of power and so of the measurement result, this kind of fibre is 

still not completely satisfying. 

The single-mode optical fibre has usually smaller core radius and numerical aperture than the previous 

ones, in according to let only the lowest order mode propagating. In this case  𝑉 = 2.405 (the first zero 

of the Bessel function); the mode field pattern is a Bessel function (not a Gaussian, like in the previous 

cases, but similar). A representation of the different typologies of fibres is shown in figure 4.5. 

 

 

Figure 4.5: Representation of cross section, index profile, input-output pulse index of step-index 

multimode fibre, graded-index multimode fibre, and single-mode optical fibre (examples). 
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The losses in an optical fibre could occur mainly because of the absorption and of the scattering.  

Modern optical fibres have already reached a good quality of manufacturing since the quantity of light 

they lose is small (a good fibre will only lose around the 20% of light in 5 km of length) [15]. The main 

loss parameters are: 

- Silicate glasses present a low-loss transmission (related to electronic absorption) at short 

wavelengths (around 100 nm, the UV (ultraviolet) bands). For longer wavelengths (around 10 

μm, the mid-infrared bands), the loss occurs by molecular absorption. 

- Impurities like metallic ions and OH bonds are agent of absorption. 

- Hydrogen can absorb light at high temperatures. 

Scattering is a process where small amounts of physical quantities, such as light, sound, or moving 

particles, are deviating from their original trajectory by interactions with localized non-uniformities of 

the medium through which they are passing. The main agents of scattering, in the case of the OFSs, are:  

- Rayleigh scattering, that occurs because of the thermodynamically carried fluctuations that 

happen on the medium. It is caused by inhomogeneities in the medium that are small compared 

with the wavelength of the light.  

- Polarisation of the molecules through which the electrical field is passing (since the light is 

travelling through a dielectric medium). The effect of the polarisation is a phase delay. 

- Mie scattering, an effect that occurs when the dimensions of the inhomogeneities are not small 

when compared to the wavelength.  

In conclusion of this paragraph, is introduced the concept of bandwidth of an optical fibre. The 

bandwidth expresses the capability of an optical fibre to conduct information. The number of pulses 

that can be launched into an optical fibre is limited, since they become wider along the way. To define 

the pulse broadening the term “dispersion” is used. The bandwidth is inversely proportional to the length 

of the fibre; it is usually expressed as function of the distance. The term dispersion is broadly categorised 

as intermodal (i.e. differences of propagation time between modes) and intramodal (broadening specific 

to each mode) [17].  

 

4.5 - Main components of a distributed sensing system 

 

In a DOFS, more components are present to generate, guide, operate, and detect the light.  

Lasers are important instruments for DOFSs, since they can generate a high power level light onto the 

optical fibre. Long fibres often characterize the DOFSs; the light has to be enough powerful to reach 

the end of the sensing system. A laser is composed by a gain medium (that amplifies the light) and a 

feedback that processes the light in order to obtain a stronger and more precise wave. More typologies 

of lasers exist:  

- Broad contact semiconductor laser, composed by a semiconductor gain region (p-n junction) 

and a feedback part composed by faceting of a laser chip. This kind of laser is characterized 

by a high peak power and a poor quality spectral purity. 

- Fabry-Pérot single-mode laser diodes launch a single transverse mode, but with lower power 

(to obtain a finer wave the facets of the feedback can support less power than the ones of a 

Broad contact semiconductor laser). 

- Semiconductor distributed feedback lasers, which use the technique of Bragg reflectors 

creating some ridges in the gain region and obtaining a restricted band wave that will then be 

provided to the feedback. 
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Optical amplifiers are used before the sensing fibres and the detector (respectively when the signal is 

going to be launched and returning from the sensor point) to amplify the signal. Their characterisation 

is based on the gain and power they can supply. However, during the operation they always need to 

affront an obstacle; ASEs (amplified spontaneous emissions) and a noise background that accompany 

the gain signal provided.  

Fused-taper couplers are used for connecting or splitting signals; the procedure consists on warming 

and stretching a number major or equal to two fibres touching each other. The result is a “mode sharing” 

by the new structure.  

Isolators, circulators, Faraday rotation mirrors, are devices that respectively: 

- Transmit light effectively on one direction, but block it when it comes from the opposite side. 

- Transmit light from a first port to a second port and then transfer it to a third port (the light 

cannot go back to the first port once it has been transferred to the second port). 

- Demodulate the light returning from the sensing fibre [18].   

Modulators are useful devices that allow the frequency, intensity and direction of a laser beam to be 

modulated [19]. The existing technologies are AOM (acousto-optic modulators) and EOM (electro-

optic modulators). The operation of an AOM is based on the interaction between an acoustic wave and 

the light wave (both travelling on the medium). On the other hand, EOM technology is also used for 

polarisation modulating. 

Fibre switches are devices used to connect (in a discriminating way) a fibre to one of the possible output 

sets; if the system is complex (composed by many fibres), this operation is of fundamental importance. 

Fibre switches usually are MEMSs (micro-electro mechanical systems) if the switching time limitations 

are not too strict. They are transparent to the optical system. 

Connectors and splices are instruments used to connect different sections of fibre, since for DOFSs 

usually the distances are long. There are different typologies of splices; it is preferable to use the fusion 

splice since the result will be more accurate, but if the condition does not let it possible, mechanical 

splice is available (easier application but less precise). On the other hand, connectors are used when the 

connection will not be stable (the sections will be more time connected and disconnected). 

Detectors are used to transform the optical signal in electrical signal. Most frequently, an optical detector 

is composed by semiconductor photodiodes (PDs), which create an electron hole pair absorbing energy 

from the photons of light. The result is an electrical potential between the two parts of the device 

(electrical output).  

 

4.6 - Optical Time-Domain Reflectometry 

 

The technology of OTDR assumes a basic role in the field of the DOFSs. The OTDR technology was 

originally used for controlling the fibres in optical telecommunications (homogeneity, uniformity and 

attenuation of the light profile). A short pulse is launched in the fibre (with the help of an optical 

directional coupler); during the travel inside the fibre, the pulse loses a part of light because of the 

different phenomena discussed in previous sections (Rayleigh scattering is one of those). The scattered 

light is travelling in all the directions; then a part of it will fall within the angle of acceptance of the 

fibre in the opposite direction. The result is a return signal that also loses power during the travel. The 

return light is sent to a detector and elaborated. OTDR provides information on the continuity of a fibre; 

i.e. it informs the user of the existence and location of any break or high point-loss [15]. The reasons 

might be more: poor splice, bending of the fibre, connector broken, and fibre damaged. OTDR is a 
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helpful practice for DOFSs, since they usually use a long fibre. A scheme of an OTDR is represented 

in figure 4.6. 

 

Figure 4.6: Schematic composition of OTDR. 
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Chapter 5 

5 - Brillouin based distributed temperature and strain sensing  

 

Brillouin scattering is a process that exists for optical fibres. As Raman scattering, which will not be 

deeply discussed in this thesis since it does not cover a primary position for it, Brillouin scattering is an 

inelastic scattering. It occurs with two supplementary frequencies on either side of the incident light. 

The frequency shift is ~10 GHz (while Raman’s shift is ~13 THz) and the natural linewidth is ~30 

MHz (while Raman’s linewidth is ~6 THz) [15]. Is clear that in the field of measurements the 

quantitative characteristics of Brillouin scattering are preferable to the ones of Raman scattering (more 

explanations are going to be given).  

The following considerations will focus also on Raman scattering even if the theory has not been 

discussed during the thesis. The aim is comparing it with Brillouin scattering.  

While Raman “strain-dependent” frequency shift is only detected in crystalline (for example) [19], in 

Brillouin scattering the glasses themselves are responsive to strain and temperature in frequency and 

intensity. For Raman scattering, the natural linewidth is too large and is then not possible decoding the 

information brought by the crystalline part of the fibre. The same is not for Brillouin scattering, where 

the result is more precise since the whole fibre is bringing the information (in terms of scattering) and 

the linewidth is then briefer. Moreover, being the natural linewidth of Brillouin scattering not wide, 

techniques to improve the signal quality could be actuated (optical amplification…). The same cannot 

be said for Raman scattering, where the process is not working since the linewidth is too large. 

In Brillouin scattering, the result is due to the cooperation of two counter-propagating waves: it is 

possible to let them interact in short distances having then spatial resolutions in the millimetre range 

[20].  

Lastly, the spontaneous Brillouin backscatter signal is stronger than the Raman anti-Stokes backscatter. 

 

5.1 - Spontaneous Brillouin scattering 

 

SpBS (Spontaneous Brillouin Scattering) is an inelastic scattering that origins from the relation of the 

probe wave and the thermally driven material-density fluctuations (proceeding at the speed of the sound). 

During these interactions, a continuous exchange of phonons at different and many frequencies occurs 

between the wave and the material; this process changes constantly the refractive index through the 

stress-optical effect. The acoustic wave of the phonons produces a travelling fluctuation of the refractive 

index [21, 22]. On the other hand, Raman scattering occurs by movement of molecular vibrations; in 

the Brillouin case, the agents of the scattering are acoustic phonons, whereas in Raman case the agents 

are optical phonons.  

Brillouin scattering exists with both longitudinal acoustic (LA, pressure waves) and transverse acoustic 

(TA, shear waves) [23]; actually, the LA are the real agents in the case of distributed sensing since the 

backscattered light of the TA is too weak and not able to bring enough information when the distance 

is long.  

Is defined 𝜈𝐵, the Brillouin LA lines frequency: 

 𝜈𝐵 =
2𝑛1𝜈0𝑉𝐴 sin(𝜃/2)

𝑐
 (5.1) 



32 

𝜈0 is the incident optical frequency, 𝑉𝐴 acoustic velocity, 𝜃 the angle between the incident and scattered 

light, and 𝑐 the speed of light in vacuum. Since all the parameters (except the incident optical frequency 

that is decided by the user) are function of the structure of the fibre, is possible to say that the frequency 

shift is also function of the material composition and the design of the fibre [24].  

The spectral width of SpBS is function of the thermal phonons conditions, in terms of how long they 

can travel within the fibre before stopping. These conditions are in turn function of frequency (thermal 

phonons lifetime is strictly related to the frequency of the hypersonic7 wave), and temperature of the 

fibre. 

The Brillouin ∆𝜈𝐵 linewidth is defined as in (5.2): 

 

 

 

 

∆𝜈𝐵(𝑁𝐴) = √∆𝜈𝐵(0)2 + 𝜈𝐵
2

𝑁𝐴4

4𝑛1
4  

 

(5.2) 

 

Generally, for silica, the material that is usually used to build an optical fibre, as the wavelength of the 

probe grows, the corresponding hypersonic frequency decreases. Moreover, the phonons resonance 

occurs in specific temperature conditions (to a certain temperature corresponds a specific energy, 

according to the thermodynamic physics). If the energy conditions let the resonance occurs, a high probe 

wavelength brings then a low hypersonic frequency. Being the absorption coefficient for thermal 

phonons proportional to the square of the hypersonic frequency (see (5.2)) [25], a high probe wavelength 

will bring a brief spectral width. In (5.2) is showed that the Brillouin linewidth is also dependent to the 

geometrical characteristics of the fibre (numerical aperture and reflective index of the core of the fibre). 

As the numerical aperture increases, the possible places (and angles) that the probe can hit are more; 

the scattered light will be stronger and the linewidth broader.  

Even if in (5.2) only optical terms compare, the Brillouin scattering is also function of acoustic 

parameters. SpBS is result of the interaction between an optical wave and acoustic waves resulting from 

the backscattered light. As the optical waves are travelling in optical waveguides, the acoustic waves 

find in the optical fibre itself a contrast in acoustic speed: this means that the optical fibre is also an 

acoustic waveguide. The acoustic modes are important for the definition of the process; even if the 

waveguide is single-mode for the light, usually happens that exist more acoustic modes that define the 

result. 

 

5.1.1 - Sensitivity to Temperature and Strain 

 

As said in the previous sections, the frequency shift and the intensity of the spontaneous Brillouin 

backscatter are sensitive to temperature and strain [15]. The following formulas are expressed as in the 

refs. [26], [27] and [28]. 

 [
∆𝜈𝐵

∆𝐼𝐵
] = [

𝐶𝜈𝐵𝜀 𝐶𝜈𝐵𝑇

𝐶𝐼𝐵𝜀 𝐶𝐼𝐵𝑇
] [

∆휀
∆𝑇

] (5.3) 

 

 [
∆휀
∆𝑇

] =
1

|𝐶𝜈𝐵𝜀𝐶𝐼𝐵𝑇 − 𝐶𝐼𝐵𝜀𝐶𝜈𝐵𝑇|
 [

𝐶𝐼𝐵𝑇 −𝐶𝜈𝐵𝑇

−𝐶𝐼𝐵𝜀 𝐶𝜈𝐵𝜀
] [

∆𝜈𝐵

∆𝐼𝐵
] (5.4) 

                                                           
7 Hypersonic and thermal assume the same meaning. 
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 |𝛿휀| =
|𝐶𝐼𝐵𝑇||𝛿𝜈𝐵| + |𝐶𝜈𝐵𝑇||𝛿𝐼𝐵|

|𝐶𝜈𝐵𝜀𝐶𝐼𝐵𝑇 − 𝐶𝐼𝐵𝜀𝐶𝜈𝐵𝑇|
 (5.5) 

 

 |𝛿𝑇| =
|𝐶𝐼𝐵𝜀||𝛿𝜈𝐵| + |𝐶𝜈𝐵𝜀||𝛿𝐼𝐵|

|𝐶𝜈𝐵𝜀𝐶𝐼𝐵𝑇 − 𝐶𝐼𝐵𝜀𝐶𝜈𝐵𝑇|
 (5.6) 

 

The sensitivity coefficients of frequency shift 𝐶𝜈𝐵𝜀, 𝐶𝜈𝐵𝑇 , and intensity 𝐶𝐼𝐵𝜀, and 𝐶𝐼𝐵𝑇 can be found  by 

experimental way. Is noticeable from (5.4) (the formula is coming from the inversion of the matrix of 

(5.3), since its determinant is non-null) that the variations of strain and temperature (∆휀 and ∆𝑇) are 

function of the frequency shift and intensity (∆𝜈𝐵 and ∆𝐼𝐵). For errors 𝛿𝜈𝐵, 𝛿𝐼𝐵 the results in strain and 

temperature are as in (5.5), (5.6). 

Typical values of the coefficients are as in (5.7), [26], [29]: 

 [
𝐶𝜈𝐵𝜀 𝐶𝜈𝐵𝑇

𝐶𝐼𝐵𝜀 𝐶𝐼𝐵𝑇
] = [

0.046𝑀𝐻𝑧/𝜇휀 1.07𝑀𝐻𝑧/𝐾

−8 ∙ 10−4%/𝜇휀 0.36%/𝐾
] (5.7) 

 

If compared to typical values of Raman scattering, it might be noticed that the responsiveness of 

intensity of temperature is lower for Brillouin scattering (i.e. 𝐶𝐼𝐵𝑇 = 0.36%/𝐾, while 𝐶𝐼
𝑅8𝑇 = 0.8%/𝐾, 

in the case of anti-Stokes line); this is actually a limit for Brillouin-based distributed sensor.  

 

5.1.1.1 - Sensitivity of intensity to temperature and strain, and loss compensation for intensity 

measurements 

 

The previous relations were relating the changes in strain and temperature to the frequency shift and the 

intensity simultaneously. However, it is possible to relate, for example, intensity to temperature and 

intensity to strain (separately). The two equations as in (5.8), (5.9), are from ref. [30].  

 𝐼𝐵
𝑎𝑠9

(𝑇) =
𝐾𝐵

𝜆𝑎𝑠
4

 ( 
1

𝑒
ℎ∙𝜈𝐵
𝑘𝐵∙𝑇 − 1

) (5.8) 

 

 𝐼𝐵
𝑠10

(𝑇) =
𝐾𝐵

11

𝜆𝑠
4

( 
1

𝑒
ℎ∙𝜈𝐵
𝑘𝐵∙𝑇 − 1

+ 1) (5.9) 

 

Is important to notice that as the temperature increases the intensity of Brillouin backscattered light 

tends to assume similar values for Stokes and anti-Stokes lines; this gives a limit to the system. On the 

other hand, for low values of temperature (few K), the result is different.  

                                                           
8 “R” assumes the meaning of “Raman” in this case. 
9 “as” assumes the meaning of “anti-Stokes”. 
10 “s” assumes the meaning of “Stokes”. 
11 "𝐾𝐵" is a term connected to Rayleigh scattering (no more explanations will be reported since this is 

not the aim of the thesis). 



34 

On the other hand, exists also a relation between intensity and strain (since 𝐾𝐵 is function of temperature 

and strain). At temperatures lower than 
𝑘𝐵

ℎ
 ∙  𝜈𝐵 , the Brillouin intensity in one of the two lines 

normalised to the Rayleigh intensity is as in (5.10), from ref. [31]. 

 

𝐼𝐵

𝐼𝑅12

(𝑇, 휀) =
𝑇

𝑇𝑓

1

𝐸𝛾 ∙ 𝐵𝑇 ∙
1 − 𝜈𝑝

(1 + 𝜈𝑝) ∙ (1 − 2𝜈𝑝)
∙ (1 + 5.75휀) − 1

 
(5.10) 

   

(5.10) is a strain-temperature-intensity relation. Is important to define the following terms: 𝐸𝛾, Young’s 

modulus, 𝐵𝑇 , isothermal compressibility, 𝑇𝑓, fictive temperature, and 𝜈𝑝, Poisson’s ratio [31]. 

Another useful parameter for Brillouin intensity measurement is defined as 𝐿𝑃𝑅, that is the ratio of 

Rayleigh to Brillouin lines, in the spectrum of the light coming from the scattering. According to obtain 

an efficient measurement, the backscatter signal needs to be referred to another signal not responsive to 

the temperature. Since the Rayleigh line is near in frequency to the Brillouin line (the attenuation of the 

first one does not present a strong difference when compared to the second one), and it respects the 

previous requirement, the Rayleigh scattering shows up to be a good reference signal. The 𝐿𝑃𝑅 is then 

related to the loss compensation for intensity measurements [15]. It is defined as in (5.11).  

 𝐿𝑃𝑅(𝑇) =
𝐼𝑅

2𝐼𝐵(𝑇)
=

𝑇𝑓

𝑇

𝜌𝑉𝐴
2𝐵𝑇 − 1

2
 (5.11) 

 

For glass, Rayleigh scattering’s temperature is the fictive temperature (the temperature at which the 

inhomogeneities are fixed during the cooling process of the glass), whereas the Brillouin scattering 

temperature is the “real” temperature at which the measurement is occurring. 𝐿𝑃𝑅  is in this case 

function of the temperature. However, for liquid materials the condition is different since the 𝐿𝑃𝑅 does 

not relate to the temperature, but to the characteristics of the medium.  

𝐿𝑃𝑅  finds an extended usage nowadays but has still some limits related to the strong noise of the 

Rayleigh scattered signal. Then, a large signal could be used to remedy the problem of the Rayleigh 

scattering, but on the same time, the signal would not be adapt for the Brillouin interrogation. The use 

of 𝐿𝑃𝑅 as independent measurement technique of strain and temperature is rare, but it is usually used 

in multiplexed structures.  

Since the problem of understanding if the quantity that is measured is strain or temperature has always 

affected the distributed sensors, 𝐿𝑃𝑅 could be used as discriminator. As in (5.11), the definition of 𝐿𝑃𝑅 

is function of the intensity; then, having access to the intensity (and frequency-shift, eventually) data 

can help the user to understand if the measured quantity is strain or temperature (from a quantitative 

point of view, the strain and temperature related intensities assume different order values). 

 

5.1.1.2 - Sensitivity of the frequency shift to temperature and strain 

 

As seen in the previous part, strain and temperature are function of the intensity of the Brillouin 

scattering. The following part will describe the relation between frequency shift and the first two 

physical quantities.  

                                                           
12 “R” in this case assumes the meaning of “Rayleigh”. 
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As in (5.4), temperature and strain changes are function of the coefficients 𝐶𝜈𝐵𝜀, 𝐶𝜈𝐵𝑇: (5.12) is the 

relation between the quantities, as in ref. [32]. 

 𝐶𝜈𝐵𝜀,𝑇 =
1

𝑛𝑒𝑓𝑓
13

𝜕𝑛𝑒𝑓𝑓

𝜕(휀, 𝑇)
+

1

𝑉𝐴

𝜕𝑉𝐴

𝜕(휀, 𝑇)
 (5.12) 

 

The responsiveness of the “total” refractive index 𝑛𝑒𝑓𝑓 to strain is function of the photo-elastic constants 

𝑝11, 𝑝12, as in (5.13), ref. [15]: 

 
1

𝑛𝑒𝑓𝑓

𝜕𝑛𝑒𝑓𝑓

𝜕휀
= −

𝑛𝑒𝑓𝑓
2

2
[𝑝12 − 𝜈𝑝(𝑝11 + 𝑝12)] (5.13) 

 

The main purpose in this case is calculating the coefficients 𝐶𝜈𝐵𝜀, 𝐶𝜈𝐵𝑇  values. The optical fibres are 

only ideally made by pure silica. Actually, the composition varies fibre by fibre; is then hazardous using 

the previous formulas to get directly the values (since they are based on ideal conditions). The usual 

procedure to get the coefficients is taking a sample of optical fibre, strain it and measure its feedback. 

A comparison with the theory-based formulas (5.12) and (5.13) is finally done to prove that the results 

are truthful.  

Is important to notice that all the considerations about the structure of the optical fibre reported in this 

thesis are ideal. However, in the reality the ideal situation is almost never respected. Moreover, the 

physical phenomena are described according to a simplistic theory. 

Actually, the strain and the temperature propagate along the fibre in a complex and sometimes-

unpredictable way. While the temperature and strain behaviour is usually static and predictable in the 

core of the fibre (the heat propagation from the top to bottom of the radius of the fibre core rarely spots 

strange tendencies), for the various coating levels of the fibre external part, it is not the same. 

Mechanical characteristics of the layers like Young’s modulus and thermal expansion coefficient differ 

from the ones of the core of the fibre: this makes the measurement harder and more risky since the 

parameters of the coat vary the sensitivity of the system. 

 

5.2 - Stimulated Brillouin Scattering 

  

For the SpBS, a photon from the probe light is transformed into a scattered photon and a phonon. The 

group of scattered photons creates a backscattered wave. The direction could be towards the direction 

of the launched light or backward: as seen in the previous section the forward has almost null effect so 

the backward backscattered light has predominant importance.  

When the power of the probe light reaches a determined level, the scattering starts to be stimulated; in 

other words, the pump power controls the process. Is important to notice that there are fixed power 

thresholds over which the effect loses its potentiality. The following considerations might be useful for 

a clear explanation of the phenomenon.  

The electric field along the fibre might be seen as interaction of the optical waves traveling within the 

fibre. In the specific case of study, the modulated electric field moves at the same speed of the acoustic 

compressional wave (see figure 5.1). The main agent of SBS (Stimulated Brillouin Scattering) is the 

physical process of electrostriction, which provokes a change of some physical characteristics of the 

                                                           
13 𝑛𝑒𝑓𝑓 is used since the wave can travel in the covering and core of the fibre. 
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dielectric material when putted through an electric field. A change on the medium is also related to a 

change of the reflective index. The presence of a modulated electric field along the fibre finds an 

equivalent distribution of the reflective index: the result is a moving grating. Increasing the probe power 

influences the backscatter that in turn (according to the electric field principle described before) 

intensifies the reflection index. With an enough big gap between the power that is used and the threshold 

power, when the light power level is such that the relation between acoustic modes and reflection index 

withstands the scattering, the process is called SBS. A cycle has then taken shape: probe power-

scattering-reflection index. An increasing probe power brings to an increasing scattering that in turn 

brings to a higher reflection index (see figure 5.1).  

 

Figure 5.1: Different behaviours for SpBS and SBS. 

 

It is important to take some remarks about the previous physical principle: 

- In the previous considerations, it has been considered a single beam mode fibre. 

- Acoustic modes assume fundamental importance for the SBS, and generally for the Brillouin 

scattering, since they amply  the concept of optical fibre, which is in this case not only an 

optical waveguide but an acoustic waveguide too.   

- As in figure 5.1, the acoustic wave (and so electrostriction) is the main responsible of SBS. 

In the following equations (5.14) are reported the relations between the pump field 𝐸𝑝, the Stokes field 

𝐸𝑠 of the scattered or amplified wave, and the acoustic wave field 𝐸𝑎, as reported in ref. [33]. 
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𝜕𝐸𝑝

𝜕𝑧
−

𝑛1

𝑐

𝜕𝐸𝑝

𝜕𝑡
= 𝐸𝑎𝐸𝑠    

 
𝜕𝐸𝑠

𝜕𝑧
+

𝑛1

𝑐

𝜕𝐸𝑠

𝜕𝑡
= 𝐸𝑎

∗𝐸𝑝 (5.14) 

 
𝜕𝐸𝑎

𝜕𝑧
+ 𝛤𝑑𝐸𝑎 = 0.5𝛤𝑔𝐵𝐸𝑝𝐸𝑎

∗  

 

𝛤𝑑  is defined damping factor; it is function of the phonons lifetime (1/𝛤𝐵) and detuning factor 𝛿𝜈𝐵 (the 

difference between the Brillouin shift and the actual value of the  frequency difference between Stokes 

and pump wave). It is defined as 𝛤𝑑 = 𝛤𝐵 + 𝑖2𝜋𝛿𝜈𝐵 [15]. On the other hand, 𝑔𝐵 is defined Brillouin 

gain. The Brillouin gain might be seen as function (complex) of the angular frequency 𝜔𝑠: 

 𝑔𝐵(𝜔𝑠) =  
𝑔𝐵(0)

1 − 𝑗2(𝜔𝑝 − 𝜔𝑠 − 2𝜋∆𝜈𝐵)
 (5.15) 

 

The real part of the function stands for the signal gain, the imaginary part for the variation of the 

reflective index. 𝜔𝑠 and 𝜔𝑝 are defined as angular frequency (variable), and pump angular frequency.  

Finally, as in [34], might be interesting introducing the gain part 𝐺𝑆𝐵𝑆(𝛿𝑓) (useful for a general sensor 

that uses SBS) of the transfer function 𝐻𝑆𝐵𝑆(𝛿𝑓) of the Brillouin gain, considering the detuning factor 

𝛿𝑓 =  
𝜔𝑝−𝜔𝑠

2𝜋
. Is then introduced (5.16). 

 

𝐻𝑆𝐵𝑆(𝛿𝑓) = exp(𝑔𝐵(𝛿𝑓)) = exp (𝐺𝑆𝐵𝑆(𝛿𝑓) + 𝑗𝜙𝑆𝐵𝑆(𝛿𝑓)) 

𝐺𝑆𝐵𝑆(𝛿𝑓) =
𝑔𝐵(0) ∙ ∆𝜈𝐵

2

∆𝜈𝐵
2 + 4𝛿𝑓2

 
(5.16) 
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Chapter 6 

6 - Description of the optical fibre sensing systems that will be used 

during the experiment 

 

A more detailed description of the total sensing system will be found at Chapter 7. The measurement of 

the strain on the wind blade has been done using more sensing systems: FBG, BOTDA, and strain 

gauges. While the strain gauge operation has already been discussed, the aim of the following 

paragraphs is illustrating how the other optical fibre sensing systems are working.  

 

6.1 - FBG 

 

FBGs (Fiber Bragg Grating) are optical devices that present a periodic perturbation of the reflective 

index along the fibre stretch (fig. 6.1) [35].  

The pattern is obtained by exposing the fibre core to an intense laser that modifies the properties of the 

fibre (when it is applied for a defined time). Hill et al. have demonstrated in 1978 at the Canadian 

Communications Research Centre (CRC), Ottawa, Ont., Canada, [36], [37], that putting a Germanium-

doped fibre core through an Argon-ion laser will increase the reflection index until when the light is 

totally reflected. The increase of reflected light is related to the concept of “photosensitivity”. The 

phenomenon consists of a coherent light travelling within the fibre, and meeting on the way a part of 

the reflected light. Interfering, they create a grating; the physical process occurs because the material is 

“photosensitive”. If the agent of this is ultraviolet light, the grating is permanent. The magnitude of the 

index change (𝛿𝑛0) is function of wavelength, intensity and duration of irradiation of the light.  

 

 

Figure 6.1: FBG physical structure, modal index profile, spectral description (input, transmission, 

and reflection). 
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Actually, the gratings might be seen as components of an optical filter since there is a part of light that 

is always reflected. The characteristics of the reflected light, especially its wavelength (𝜆𝐵, the Bragg 

wavelength), are function of the physical characteristics of the grating itself (see (6.1)). 

 𝜆𝐵 = 2𝑛3𝛬 (6.1) 

 

As in fig. 6.1, 𝑛3 is the modal index and 𝛬 the grating period. All of the reflections are in phase. Since 

the changing of temperature and/or strain conditions causes a variation of the modal index and/or the 

grating period, FBG might be used also as fibre sensor (the Bragg wavelength will change too). 

The grating features along the fibre might be seen as in (6.2). 

 𝛿𝑛(𝑧) = 𝛿𝑛0(𝑧)[1 + 𝑚 cos(2𝜋𝑧/𝛬 + 𝜙)] (6.2) 

 

The bandwidth is defined as in (6.3). 

 ∆𝜆 =
2𝛿𝑛0𝜂𝜆𝐵

𝜋
 (6.3) 

 

𝛿𝑛0 is defined as variation of mode index along the fibre (referring to fig 6.1, 𝛿𝑛0 = 𝑛3 − 𝑛2), and 𝜂 is 

the part of power in the core. 

The reflected power-peak is defined as in (6.4). 

 𝑃𝐵(𝜆𝐵) = tanh(𝑁 𝜂(𝑉)𝛿𝑛0/𝑛)2 (6.4) 

 

𝑁 is the number of periodic gratings. ∆𝜆, 𝑃𝐵(𝜆𝐵) have been introduced since they result useful for 

having a clearer idea about fig. 6.2. 

 

Figure 6.2: Graph of Reflected power/Wavelength. 
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FBGs find more applications in the field of the engineering. They are used for optical communications, 

as band-stop filter, in multiplexers and demultiplexers, since they can reflect with a narrow stop-band. 

They are used for optical sensing, since the Bragg wavelength is temperature and strain-sensitive. The 

changes in strain and/or temperature cause a Bragg wavelength shift (∆𝜆𝐵), as in (6.5), (6.6). 

 
∆𝜆𝐵

𝜆𝐵

= 𝐶𝑆휀 + 𝐶𝑇∆𝑇 (6.5) 

 
∆𝜆𝐵

𝜆𝐵

= (1 − 𝑝𝑒)휀 + (𝛼𝛬 + 𝛼𝑛)∆𝑇 (6.6) 

 

𝐶𝑆 is the coefficient of strain, which is function of the strain optic coefficient 𝑝𝑒 (comparing (6.5) and 

(6.6), is clear the relation). 𝐶𝑇 is the coefficient of temperature, which is made up of the thermal 

expansion coefficient of the optical fiber, 𝛼𝛬 , and the thermo-optic coefficient, 𝛼𝑛  [38]. FBGs find 

application in seismology, pressure sensing (especially when the environment where they are going to 

be applied is extreme), and aerospace engineering. FBGs are also used as components of high power 

lasers, as high reflectors (HR) and output couplers (OC). They bring benefits since they eliminate the 

realignment during the life of the system. Finally, FBGs are used in double-clad fibers for matching 

active and passive parts. 

 

6.2 - BOTDA  

 

BOTDA (Brillouin Optical-Time Domain Analysis) is a system based on SBS. BOTDA uses two lights; 

they are emitted from two opposite ends of a single optical fibre. One of them is continuous, the other 

one is pulsed. As in ref. [15], on this elaborate the CW (continuous wave) will be called probe, while 

the pulsed wave will be called pump. A basic BOTDA arrangement is showed in fig. 6.3. 

 

 

Figure 6.3: BOTDA standard arrangement. 

 

The original function of BOTDA is defining the fibre attenuation, improving the technical capability of 

OTDR. The pump and probe signal are frequency-outdistanced of the Brillouin shift. Their interaction 

at the detecting unit-coupler is made up of a DC component that origins from the CW and is independent 

of position along the fibre, and a not DC component that is dependent of the position and comes from 

the interaction of probe and pump. (6.7) represents the not DC power value [39]. 

 𝑃𝑏
±(𝑧) =

𝑔𝐵𝑣𝑔

2𝐴𝑒𝑓𝑓

𝐸𝑝(0) exp(−𝛼𝑝𝑧) 𝑃𝑐𝑤(𝐿)exp (−𝛼𝑐𝑤𝐿) ∙ (6.7) 
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𝑒𝑥𝑝 [±
−𝑔𝐵

𝐴𝑒𝑓𝑓

𝑃𝑐𝑤(𝐿)exp (−𝛼𝑐𝑤𝐿)
exp(𝛼𝑐𝑤𝑧) − 1

𝛼𝑐𝑤

] 

 

±  is used because of the system characteristics; the probe is subject to the Brillouin scattering. 

Consequence is that the light will be amplified or attenuated. Then, the source applies directly to the 

probe an initial frequency of 𝑓𝑐𝑤 = 𝑓0 − 𝑣𝐵 , when there is amplification and 𝑓𝑐𝑤 = 𝑓0 + 𝑣𝐵, when there 

is attenuation. ± is directly related to the formulas that have just been mentioned (“+” when there is 

attenuation, and “− “ when there is amplification). 𝐿 is the length of the fibre, 𝛼𝑝  and 𝛼𝑐𝑤  are the 

attenuation coefficients of the pulse and CW, 𝐴𝑒𝑓𝑓 is the effective area where the light is propagating, 

𝐸𝑝 the probe energy, and 𝑔𝐵 the gain factor. The second part of (6.7), in other words the multiplicative 

component, might be omitted since it refers to the defects of the probe, which usually have not a strong 

impact with the final value (especially if the power is not high). Therefore, it can be noticed that the 

local variation power is only function of the pump, since the effect of the CW light is extended to all 

the fibre (all its length).  

An interesting and basilar comparison with BOTDR might be done. The main difference between the 

two systems is that BOTDR is based on SpBS, while BOTDA is based on SBS. Actually, they are both 

working on the same interrogation domain, the time domain, but the presence of the CW light in 

BOTDA makes the biggest difference (easily predictably). It increases the signal level (depending on 

the value that the Brillouin shift assumes locally).  

The relation between strain/temperature and Brillouin shift makes BOTDA a sensing system. Moreover, 

being the Brillouin shift function of the position (along the fiber length), BOTDA results a powerful 

measuring method that is able to output a detailed strain/temperature profile in function of the fibre 

length. However, the presence of CW entails the presence of a higher shot noise, but by using special 

techniques, good results may be reached. Moreover, as in BOTDR, it is required an enough big range 

that contains the Brillouin shift frequency, during all the measurement process. The conditions are 

function of the measurand and the fibre type.  

Is important to take a note about the optical arrangements for BOTDA. One more difference between 

BOTDR and BOTDA is that for BOTDA the polarisation conditions of probe and pump affect the result 

in terms of loss or gain. In general is true that the Brillouin interaction is polarisation dependent; is then 

important adjusting the system in terms of operation. A rotatable half-wave plate is used to adjust the 

polarisation of the pump; the measurement is repeated with two orthogonal input states and the results 

are averaged [15]. In this way, the problem should be largely deleted.  

 

6.2.1 - Sensitivity and spatial resolution for BOTDA 

 

The concepts of sensitivity and spatial resolution are fundamental for a sensing system, since they are 

some of the main parameters that define its quality.  

The resolution of the peak frequency (when the peak is a Lorentzian peak) is defined as in ref. [40]. 

 𝛿𝑣𝐵 =
∆𝑣𝐵 + ∆𝑣𝐿

√2𝑆𝑁𝑅𝑒
0.25

 (6.8) 

 

Usually, ∆𝑣𝐿 , the laser linewidth, is negligible when compared to ∆𝑣𝐵 . 𝑆𝑁𝑅𝑒  is the ratio between 

electrical signal power and noise power. The modern technologies (that did not exist when the work of 
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ref. [40] has been written) brought developments to the quality of the laser. As result, the influence of 

∆𝑣𝐿 vanishes in (6.9), as in ref [41]. 

 
𝛿𝑣𝐵(𝑧) =

1

𝑆𝑁𝑅(𝑧) √

3𝛿𝑓𝑠∆𝑣𝐵

8√2 (1 −
𝛿𝑓𝑠𝑢

𝛿𝑓𝑠
)

1.5
 

(6.9) 

 

In (6.9) 𝛿𝑓𝑠𝑢 and 𝛿𝑓𝑠 are the number of frequency steps sampling the Brillouin spectrum and the subset 

of those that are used in the fit [15]. Moreover, 𝑆𝑁𝑅(𝑧) is not related to the electrical signal. Therefore, 

in (6.9) the resolution is function of the position (since 𝑆𝑁𝑅(𝑧) is too).  

As usually happens in engineering, the aim is finding the best trade-off among more parameters that 

characterize a technology. In the case of sensing, especially optical sensing, it is object of study finding 

the best compromise between the active (measuring) length of the fibre, the spatial resolution, the 

sensitivity of the system, and the measuring time.  

Getting a reduction of pulse duration would increase the spatial resolution. Unfortunately, this technique 

has several disadvantages, since it would entail a reduction of the fibre part where pulse and Brillouin 

interact. The convolution of Brillouin linewidth and pulse linewidth makes up the gain spectrum; a 

decrease of the pulse duration will bring a broadened result (that results in a hard measuring local 

Brillouin frequency shift). In the standard BOTDA structure, the limitation is just below 1m, at an 

operating wavelength of 1550 nm in conventional single-mode fibre [15].  

 

6.2.2 - Composite pulse techniques in BOTDA 

 

The main interest of this paragraph is describing different techniques to achieve a good compromise 

between spatial resolution and system operation. The composite pulse methods for BOTDA are divided 

into single shaped pump interrogation, differential pump interrogation, and simultaneous gain/loss 

interrogation (all the methods that will be discussed in this paragraph are shown in fig. 6.4).  

In the single shaped pump interrogation technique section, might be interesting have a first comparison 

between (a) and (b), fig. 6.4. As seen in 6.3.1, if the pulse duration is intensely lowed, the spectral width 

usually becomes wider. However, what has been observed in ref. [42] was that after having launched a 

series of short pulses, increasing the shortness would bring an unexpected result: the width would not 

broaden, but decrease. The spectral narrowing could be attributed to a poor extinction ratio of the 

modulator used in the experimental results [42]. The imperfect operation of the modulator activates a 

constant CW baseline that is always present, independently to the main pulse (it may be noticed the 

difference between (a) and (b), fig. 6.4). This brings to a constant optical-field that modifies the physical 

properties of the fibre, since the phonons are always ready to be probed by the main pulse. If the process 

works well the creation and the decay of the acoustic-wave do not exist; then the acoustic duration is 

enough long to ensure the not broadening of the Brillouin spectrum. The result is that the process is 

faster and the spatial resolution finer.    
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Figure 6.4: Some of the composite pulse techniques in BOTDA. (a) Single pulse; (b) single pulse with 

pedestal; (c) pump pre-pulse; (d) dark pulse; (e) generalised amplitude and phase coded pulse; (f) 

DPP-BOTDA; (g) negative Brillouin gain; (h) Brillouin echoes; (i) ODPA-BOTDA [15]. 

 

This concept has been used also for other methods. An example is (c), fig. 6.4. The first pulse is used 

to activate the acoustic-wave, while the second, stronger in intensity, assumes the role of the “main” 

pulse, interrogating the set wave. (d), fig. 6.4, represents the “dark-pulse” method: several intense short 

pulses are launched within the fibre. Since there is a strong link between the Brillouin scattering and the 

acoustic-field, the phonons result excited just where the Brillouin shift fits the frequency difference of 

the optical waves. If a dark pulse (a sudden and short break to the pulses) will be applied, the acoustic 

wave will be less affected (the phonons have a “long” life period, since they have been excited until the 

stop). On the other hand, the optical waves result more affected (decreasing and bringing then to a 

higher resolution). More generally, the technique might be used as arrangement of more pulses of 

different periods, as in (e), fig 6.4, or as unification of pre-pulse, dark-pulse and phase shifting, the three 

methods just analysed.  
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In the differential pump interrogation section, are used two pulses somewhat (lightly) different. The 

results are obtained by subtraction of the values of the unconnected acquisitions. As first method, (f), 

fig 6.4, two different duration signals are launched in succession within the fibre; it has been noticed 

that the spatial resolution is in agreement with the pulses duration difference (the smaller is the 

difference, the finer is the resolution). On the other hand, for DPP-BOTDA (differential pulse-width 

pair BOTDA) technique ((f), fig. 6.4), it is usually required a broad signal base; this entails a not accurate 

Brillouin profile acquisition (medium level distortion). The “negative Brillouin gain” technique, as in 

(g), fig. 6.4, is composed by two signals that are in turn composed by two pulses. The only difference 

between the two signals is the phase of the second pulse (is opposite to the phase of the second pulse of 

the first signal). The technique is still based on a first pulse that activate the phonons and a second pulse 

that interrogate them. The second pulse of the second series is not able to match the requirements for 

SBS, and then it interferes with the scattering provoked by the previous pulse; the result is a double 

effect. The “Brillouin echoes” method, (h), fig. 6.4, has the same working operation of “negative 

Brillouin gain” technique. These last two methods have the aim of fixing the distortion problems related 

to DPP-BOTDA. 

In simultaneous gain/loss interrogation section, (i), fig. 6.4, might be an interesting example. Two pulses 

of lightly different duration are launched within the fibre, in the same time. One activates the Brillouin 

gain (anti-Stokes lines), while the other one activates the Brillouin loss (Stokes lines). Summing the two 

signals means operating a subtraction between two concordant signals that only vary lightly on duration. 

The requirements for obtaining a high resolution seem to be respected. The settings of this method are 

strict: the frequency of the two pulses must be symmetrically “distant” from the Brillouin shift frequency. 

Moreover, this has to occur precisely in every single point along the measurement part of the fibre; this 

means that the pulses frequencies requirements are local. A main difference between all the approaches 

that have been discussed in this paragraph is the domain. ODPA-BOTDA (optical-differential 

parametric amplification BOTDA), (i), fig. 6.4, works in the optical domain (instead of digital domain, 

as some of the other techniques previously discussed do). 

Numerous scientists have achieved excellent results using the composite pulse techniques (in terms of 

spatial resolution, within the system operation limits). The techniques are efficient and the literature is 

keeping on working on new methods. However, other ways to improve the system potentialities might 

be followed. 

 

6.2.3 - Pulse compression coding 

 

In recent work of Bin Zan, Tsimuraya, and Horiguchi [43], pulse compression coding has been 

demonstrated as an extension of composite pulse methods. The technique is based on launching within 

the fibre a long pre-pulse and then a short succession of phase-coded pulses (within the phonons 

lifetime). After an enough long period (to permit the decay), another composite pulse is emitted. It is 

possible to define a relation between phonons lifetime and pulse generation: usually when the coded 

pulse duration exceeds the phonons population lifetime the system worsens. On the other hand, a set of 

coded pulses or a single pulse may be launched once the phonons have decayed (the phonons lifetime 

duration should be passed). The operation conditions in these two last cases are completely different 

but both of them are performance-improving criteria.  
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6.2.4 - Performance and limitations 

 

A first limitation of BOTDA might be identified by the phenomenon of slow light. Given its very narrow 

gain spectrum, the gain or loss of Brillouin scattering is associated with a change in the group index 

through the Kramers-Kronig relations [15]. This means that a univocal relation between the spectrum 

and the group index does not exist. Therefore, the group index will change in according to the spectrum 

conditions. The consequences are:  

- The expected location of the Brillouin shift cannot be identified. 

- The time delay is different in the two cases (gain or loss); usually for the loss configuration, it 

assumes higher values (130ns in the worst case of a fibre having uniform loss spectrum along 

its length). 

- The spatial resolution is also unpredictably changeable. 

To overcome this problem a re-map in terms of distance along the axis in function of the slow light 

presence should be carried out. 

A second limitation of BOTDA is the time required to take the measurement. Progresses have been 

done in terms of probe/pulse spectra. The main time-demanding factors are locating and determining 

the frequency offset (between the Brillouin shift and the pulse), and scrambling the polarisation. 

Therefore, repeated captures along the profile of the fibre are required. The strategy is measuring more 

than one frequency of the Brillouin spectrum at a time, with a set of several examining frequencies 

launched together.  

Firstly, might be interesting focussing on the work that has been conducted in ref. [44], where a 

frequency comb replaced the probe. The process is faster since each of the frequencies launched in the 

comb can interact independently and concurrently with the pump. Moreover, it is not necessary 

determining systematically the relation between probe and pump, since the measurement is done in 

parallel by the comb (see fig. 6.5, (a)).  

 

 

Figure 6.5: Parallel (multi-tone) acquisition: (a) Single comb [44], (b) Dual-comb [45]. 
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However, some problems related to the signal processing were present; since the ∆𝑓𝑝 should be enough 

short to have a good reconstruction of the scattering profile, and the signal processing needed to 

elaborate every single relation probe comb frequency-Brillouin scattering, the process resulted much 

time-costly.  

By modifying the spectra of both probe and pulse, a development has been reached. What Voskoboinik 

et al. have done in ref. [45] has been creating two interacting comb series (for probe and pulse) with a 

lightly different comb spacing (∆𝑓𝑝 ≠ ∆𝑓𝑠). As in fig. 6.5, (b), the technique SF-BOTDA (sweep-free 

BOTDA) sees each probe wave interacting with a different part of the Brillouin spectrum of its own 

pump; therefore, each  probe/pump combination addresses one point on the Brillouin spectrum [15]. 

Since every line of the probe/pulse comb has an associated line of the pulse/probe, the system results 

much faster on the acquisition of the data. 

A third limitation for BOTDA (it has already been partially discussed) is the distance. Even if BOTDA 

is usually characterized by a long achievable distance, sometimes it might not be enough. As it follows, 

a general length extension option has been found for optical amplification. For this distributed system, 

the signal should reach adequate power values (for both pump and probe). The power limitation is 

usually respected using more power modulators that in turn amplify (in moderation) the power along 

the fiber (instead of less modulators that inject higher-level power).  

Lastly, the fourth limitation is the power itself. The reason is SPM (Self Phase Modulation): the 

phenomenon brings to a broadening of the spectrum. Moreover, the effect is gradual along the fiber. 

SPM is directly related to the time derivative of intensity; it means that short pulses will have a negative 

effect on the system. A solution is found in ref. [46], it is frequency-diversity, which is launching 

multiple interrogating signals at clear outdistanced frequencies. The non-linear effects are then partially 

deleted; to complete the improvement, a network of FBGs that cancels the time offset between BOTDA 

signals on their return from the fibre has been built up, as in ref. [46]. 
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Chapter 7 

7 - The experiment 

 

The aim of this chapter is to introduce the total sensing system used during the experience and analyse 

the obtained results.  

 

7.1 - The sensing system components 

 

As said in the previous chapters, three sensing systems have been used. The need of three sensing 

systems is due to technical reasons, since the characteristics are different and there is need to compare 

them reciprocally; moreover, the systems can work complementary.  

The used strain gauges are commercial products; their relevant specifications are listed in Table 7.1. 

Reference temperature 23°C (73°F) 

Maximum strain 3% or 30000 μS 

Hysteresis Negligible 

Fatigue (at ±1500 μS) > 10000000 cycles 

Smallest bending radius 3 mm (1/8'') 

Table 7.1: Used strain gauges specifications. 

 

Moreover, a set of FBG sensors has been used. The features in terms of wavelength of the FBG sensors 

are listed in Table 7.2. Except these parameters, which change from sensor to sensor, the other 

characteristics, which are the same for all the FBG sensors, are as it follows: 

- Width: 0.2 nm. 

- Reflection: 10 dB. 

- SMSR: 15 dB. 

- Pigtail: 3.0 m / 3.0 m. 

- Stripping: 15 mm. 

 

FBG set features FBG 1 (CH1) FBG 2 (CH1) FBG 3 (CH1) 

Wavelength (nm) 1.524,37988 1.535,29480 1.542,42228 

 

FBG 4 (CH1) FBG 5 (CH1) FBG 6 (CH1) 

Wavelength (nm) 1.548,30980 1.554,45988 1.555,45756 

 

FBG A (CH2) FBG B (CH3) FBG C (CH4) 

Wavelength (nm) 1.550,31396 1.549,90412 1.549,47043 

 Table 7.2: FBG set features. 
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For these sensors, the Micron Optics Dynamic Optical Sensing Interrogator  (sm130-700) has been used. 

It has four optical channels, a scan frequency of 1 kHz, and a wavelength range of 1510-1590 nm. It is 

then clear why the distribution of the 9 FBGs represented in Table 7.2 has been done using 4 channels 

(FBG 4, FBG A, FBG B, FBG C have similar wavelengths, so it has been preferred to divide them into 

4 different channels).  

Lastly, a teflon-rubber coated standard single mode optical fibre has been used. The coating helped the 

laying of the fibre on the blade, since the required length was high, and a simple (not coated) optical 

fibre was easily breakable. A DiTeSt STA-200 Series (Omnisens®), based on the Brillouin scattering, 

has been used to interrogate the fibre itself. The features and performances of the interrogator are as 

following: 

- Number of channels: two independent and selectable channels (standard). 

- Sensor configuration: two fibers (loop) or single fiber (mirror-ended) configuration. 

- Sensing fiber: standard single mode fibers. 

- Distance range: 50 km. 

- Spatial resolution: 0.5 to 20 m (by increment of 0.1 m), 1 m at 20 km / 2 m at 30 km / 3 m at 

50 km. 

- Distance resolution: 0.25 m. 

- Number of distance points: 100000. 

- Dynamic range: 10 dB (with no effect on performance), up to 20dB for distance up to 6 km, 

with 1 m spatial resolution. 

- Measured variables: Strain, Brillouin Frequency shift, Brillouin gain and width. 

- Acquisition time: > 10 seconds, 1-2 minutes typical, 5-10 minutes for high resolution.  

For Brillouin frequency shift, temperature and strain, the parameters are as in Table 7.3. 

 

 

Brillouin Freq. Shift Temperature Strain 

Resolution 0.1 MHz 0.1°C 2 μS 

Range 10 GHz to 13 GHz from -273°C to 700°C from -3 % compression to 3 % elongation 

Table7.3: DiTeSt STA-R Series working conditions. 

 

7.2 - The object of the measurements 

 

The object of the measurements is a wind turbine blade designed and fabricated by the company 

Zhuzhou Times New Material Technology Co., Ltd. (株洲时代新材料科技股份有限公司) that 

requires to be tested. Figure 7.1 is a representation of it. 
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Figure 7.1: The object of the measurements. 

 

The length of the blade is around 60 m. It is composed by a main structure made of fibreglass (to 

maximize the ratio between resistance and weight). The other parts have to be introduced partially, 

according to the secret policy of the company. 

The main framework is almost totally covered by wood, except the main beam, represented in figure 

7.2.  

 

Figure 7.2: Structure of the main beam of the blade. 

 

There are two lateral parts large 9 cm, and a central part large 20 cm, composed by a reticulated unit 

made of copper and wood (as in figure 7.2 - detail), and two other parts (that are in turn made up by 

other two subunits large 10.5 cm) made of CFRP (Carbon Fibre Reinforced Polymer). LE (Leading 

edge) and TE (Trailing edge) of the blade are made of GFRP (Glass Fibre Reinforced Polymer). The 

wood cover of the blade is composed by two kinds of material (see figure 7.3). 
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Figure 7.3: The border between the two kinds of wood that compose the blade cover. 

 

The blade’s structure is finally cover with a thin layer of fibreglass. 

 

7.3 - The sensing setup 

 

Strain electrical gauges compose the measuring system adopted by the company, while optical fibres 

(FBG, BOTDA) compose the measuring system adopted by us. The aim of the operation is integrating 

the two schemes to obtain a partial comparison and eventually ulterior values (in the case some sensors 

are not working, the complementary ones might give a value).  

The requirement of the company is measuring determinate locations of the blade that have been 

identified naming them by some points. The electrical gauges setup covers all the points while the 

optical fibres setup covers a part of them. The reason is that the company gave to us a shorter period for 

the installation of the sensors and some limits in terms of possible location for the application.  

In table 7.4 is indicated the distance of the measuring points tested by optical sensor (BOTDA system) 

and electrical sensors along the blade. The distance is calculated in function of the optical sensor, from 

the connecting point of the interrogator (“to sensor”) to every single measuring point along the fibre (on 

the blade). 

Measuring points (#) Distances along the fibre on the blade (m) 

 

56 25 30 101 66 161 

23 28 26 108,5 28 170 

27 38,5 22 118,5 32 180 

31 47 53 128 36 197 

64 48 55 135,5 71 198 

67 49 20 147 37 215 

35 60,5 62 148 33 226 

39 75,5 65 149 29 236 

72 76,5 24 159 25 245 

38 77 63 160 21 256 

34 91     
Table 7.4: Relation between points and distance along the fibre on the blade. 
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Because of restrictions imposed by the company, a precise characterization of the position of the 

measuring points along the blade cannot be revealed. However, a clearer and practical representation of 

the measuring scheme is illustrated in figure 7.4.  

 

Figure 7.4: Visual disposition of the measuring points on the blade. 
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It might be helpful to the reader explaining some technical abbreviations that has not been introduced 

during the development of this chapter. “PS” means pressure side and “SS” means suction side. 

Moreover, it is important to explain why there are couples of perpendicular strain gauges and couples 

of parallel strain gauges along the blade. The reason is because: 

- In the first case, the company wants to measure the strain in both the directions (parallel and 

perpendicular to the direction of developing of the blade). 

- In the second case it is has been considered that the point of interest is of crucial importance 

for the blade so in the case a strain gauge would not work, the other one could cover it and in 

the case they both work there could be a comparison between the values (understanding how 

the strain is locally developing). 

The measuring operation might be divided into two main actions that are comparing some values 

obtained with strain electrical gauges, BOTDA, FBG and achieving measurements by using optical 

fibre, in the locations not reachable by the strain gauges. 

As first, it is important to explain how the optical fibre systems have been carried out. The FBG optical 

sensing system has been completed with the following steps. 

First, after the workers have marked the places where the electrical gauges should be placed, four 

stretching-elements have been assembled on the blade to enable the resistance test (the test has been 

conducted by using metal cables to connect the four stretching-elements to four stretching-organs). A 

representation of the result is as in fig. 7.5. 

 

 

Figure 7.5: LE-edgewise-test setup. 

 

The distance of the stretching-elements from the beginning of the blade are as following: #A - 18.864m, 

#B - 25.867m, #C - 35.883m, #D - 47.947m. 

Before the assembling of the stretching-elements, 3 FBG sensors have been placed between #A, #B, #C 

(see figure 7.5). They are placed at the same distance as the stretching-elements, on the main beam of 

the blade at SS side. 

Moreover, a combination of 6 FBGs (#1, #2, #3, #4, #5, #6) has been placed on the SS side of the blade. 

It has covered points #20, #65, #24, #63, #66, #28 (from FBG #1 covering #20, to FBG #6 covering 
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#28, the sequence is obvious). The 6 FBGs have been connected each other in an single optical 

waveguide, while FBG A, FBG B, and FBG C required each one a single optical waveguide, since the 

wavelength of the three sensors was similar and connecting them by a single optical waveguide might 

bring to a wrong mode of operation.  The total FBG system is represented as in figure 7.6.  

 

 

Figure 7.6: Disposition of the FBG sensing system on the blade. 

 

Secondly, once the stretching-elements have been applied to the blade, the silicone-rubber coated optical 

fibre has been installed as in figure 7.7. 

The BOTDA sensing system has been installed to cover all the points along the main beam of the blade 

and cover some points along the path that connects the SS side’s main beam and PS side’s main beam. 

The dotted line that connects PS side with SS side is only a visual solution, since in the reality the 

disposition of the blade is not as in figure.  

Both the optical fibre-sensing systems have been installed using fibreglass tape for the long sections 

and Glue 502 for the short sections near the electrical gauges measuring points, since the sticking power 

of the glue is higher than the tape’s one (ensuring then a safer and more accurate operation near the 

measuring points). 

Differently from the FBG system, for BOTDA has been used only one fibre, connected in the beginning 

and in the end in one of the two channels of the DiTeSt interrogator.  

 

CH1 

CH2 

 

CH3 

CH4 
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Figure 7.7: Disposition of the BOTDA sensing system on the blade. 

 

7.4 - The test 

 

The thesis will focus on a part of the total test that has been conducted by the company. The total test 

consisted of four experiments: stretching PS side, SS side, LE, and TE. In this elaborate the results will 

regard just the LE and the respective edgewise test. An illustration of the setup of the test is represented 

in figure 7.5.  

The stretching-elements have been connected by metal cables to stretching powered organs that were 

automatically controlled. The loading-time parameters that have been used to control the machines are 

as in table 7.6. 

 

Loading % 40% 60% 80% 100% 

Stretching time (s) 200 100 100 100 

Holding time (s) 30 30 30 10 

Table 7.5: Loading-time parameters used to control the stretching machines. 

 

The loadings are different test by test; for example, for the PS side, the loading will be higher than the 

loading in SS side, according to emulate the working conditions of the blade (PS side works with higher 

loadings since it is directly faced to the wind current).  

 

“TO SENSOR” 

“FROM SENSOR” 
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7.4.1 - BOTDA results 

 

BOTDA has been used to measure the static strain present on the blade during the holding periods. Its 

usage has been then limited during the total testing period. The DiTeSt interrogator parameters have 

been set in order to obtain a measurement that respects the time limits of the testing parameters (holding 

periods). The values of “Averaging cycles” and “Frequency step” of the interrogator have been adjusted 

to fit the limits.  

The test steps are eight (and so the measurements):  

1. Loading until 40% (in 200 s) and holding the load for 30 s. 

2. Loading until 60% (in 100 s) and holding the load for 30 s. 

3. Loading until 80% (in 100 s) and holding the load for 30 s. 

4. Loading until 100% (in 100 s) and holding the load for 10 s. 

5. Releasing until 80% (in 100 s) and holding the load for 30 s. 

6. Releasing until 60% (in 100 s) and holding the load for 30 s. 

7. Releasing until 40% (in 100 s) and holding the load for 30 s. 

8. Releasing until 0% (in 200 s). 

It is evident that the holding periods are all of 30 s (except just one of 10 s). This means that among the 

measurements taken with DiTeSt, seven were of 30 s, and one of 10 s. The beginning of the 

measurement corresponded to the beginning of the holding period and the end of the measurement 

corresponded to the end of the holding period.  

The next eight graphs represent the data obtained with different loading conditions. They compare the 

values obtained by electrical gauges and BOTDA (in terms of strain) as a function of their position 

along the fibre. It is possible to refer to table 7.4 in order to understand the relation between distance 

and relative points.  
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Figure 7.8: Loading of 40%, stretching phase, holding period of 30 s. 

 

 

Figure 7.9: Loading of 60%, stretching phase, holding period of 30 s. 
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Figure 7.10: Loading of 80%, stretching phase, holding period of 30 s. 

 

 

Figure 7.11: Loading of 100%, stretching phase, holding period of 10 s. 
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Figure 7.12: Loading of 80%, releasing phase, holding period of 30 s. 

 

 

Figure 7.13: Loading of 60%, releasing phase, holding period of 30 s. 
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Figure 7.14: Loading of 40%, releasing phase, holding period of 30 s. 

 

 

Figure 7.15: Loading of 0%, blade totally released. 
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The red line confirms that the values obtained with that specific sensor are wrong because of some 

technical or installation problems. According to the graphs, two electrical gauges and two parts of the 

distributed optical fibre gave unexpected (and wrong) results.   

It is evident that for all the other points the difference is generally not high. The maximum difference is 

of 171 μ휀 (that is around the 20% in percentage, referring to the strain measured by the electrical gauge), 

for point #28, with loading of 100%. On the other hand, especially when the strain values are low, the 

electrical gauges and optical fibre sensor values are almost equal. This does not mean that the values 

are surely right, but that there is accordance between the two sensors.  

As discussed in the previous chapters, for optical sensing usually the measurement is not only related 

to the strain variation but also to the temperature variation. This means that the Brillouin frequency shift 

value gives in part information about the strain variation and in part information about the temperature 

variation. Actually, it would be impossible obtaining only one of the two values. The solution to 

overcome this problem is usually isolating a part of the fibre (for example covering it with a Teflon 

tube) in according to let the fibre itself loose inside the tube and unperturbed by the strain variations of 

the element where it is applied. As result, the compensation part should only contain information about 

the temperature. The covered part’s position depends on the point that requires compensation. The 

compensated part should be near the measuring part or precisely reachable on the resulting data. Then 

the value related to the part of the fibre treated with compensation will be subtracted to the equivalent 

value that actually contains information about strain and temperature. Finally, the calculation of the 

strain of the measuring point should be completed. 

During the experiment, the application of Teflon tube for compensation has resulted initially too arduous, 

since a big amount of Teflon pieces should be inserted as cover of the fibre, and be brought in each 

point, but the time was limited. A solution was found to overcome this problem: covering the fibre 

directly in the involved place with a paper cover, to emulate the effects of imperturbation of the Teflon 

tube.   

Anyway, the experiment did not require the usage of this technique. The motivations are: 

- The experiment period has been short (totally, less than twelve minutes). Therefore, the 

temperature variation was tiny. 

- The weather has been cloudy for all the day, and the temperature was the same in each 

measuring point of the blade (if there were sun there could be a big difference between the 

upside and downside surface). 

The measurement, with these working conditions, did not require the compensation, since the 

temperature variations were null. The auto-setup of the sensor has been done just before the beginning 

of the experiment, deleting then the temperature contribution to the obtained results.  

 

7.4.2 - FBG results 

 

The data obtained with FBGs have been dynamical. This means that the measurement describes the 

strain performance in function of the time. The BOTDA sensing system works with one fibre that gives 

a distributed measurement; this means that the measurement will be related to a specific time, but will 

develop in function of the position along the fibre.   

The following graphs describe the trend of the strain from the beginning until the end of the test of the 

tested points. For the reasons discussed above, the measurement name will not be function of the loading, 

but function of the measuring point.  
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Figure 7.16: FBG A/B/C. 

 

 

Figure 7.17: 12 m line. 
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Figure 7.18: 21 m line (except 63#).  

 

 

Figure 7.19: 63#. 

-700

-600

-500

-400

-300

-200

-100

0

100

200

0 200 400 600 800 1000 1200 1400

St
ra

in
 (

μ
𝜀)

Loading time (s)

21m

24# - Electrical gauge 24# - FBG 66# - Electrical gauge 66# - FBG

-500

-400

-300

-200

-100

0

100

200

300

0 200 400 600 800 1000 1200 1400

St
ra

in
 (

μ
𝜀)

Loading time (s)

63#

Electrical gauge FBG



65 

 

Figure 7.20: 28#. 

 

For the stretching-elements A/B/C, the only used sensors were FBGs, as requested from the company. 

It is then not impossible to make a comparison with electrical gauges. According to what said by the 

company’s engineers, the values are reliable.  

The comparison of the other six FBGs with the equivalent electrical gauges gave good results, since the 

highest difference was less than 40 μ휀 (that is around the 7% in percentage, referring to the strain 

measured by the electrical gauge), for 24#, at 100% loading. In general, for low values of strain, the 

values of both FBGs and electrical gauges were equal. The electrical gauge of measuring point 63#, did 

not work well, but the FBG covered its malfunction (see figure 7.19). 

Even if for both BOTDA and FBG interrogator there are some coefficients that interpret the 

measurement giving as output strain or temperature (directly), both the quantities are always affected 

each other. The weather helped the measurement and, as it has been discussed for BOTDA, the 

compensation was not required for FBG either, once the auto-setup has been completed just before the 

beginning of the measurement (deleting the effects of the temperature). 
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Chapter 8 

8 - Conclusion and future work 

 

The aim of the thesis has been introducing and describing the optical fibres as sensing system for 

measuring the strain on a wind turbine blade. Two typologies of OFS have been used, but other options 

were available too. The choice depends on the requisites of the measurement. 

It has been demonstrated that the OFS’s results were comparable with the results obtained using the 

traditional electrical gauges. It is a considerable outcome, since the distances that needed to be covered 

were long, letting the application of the fibre complicated. Moreover, the BOTDA interrogator was 

sensible to big changes in strain along the distributed optical fibre and as result, initially the “Offset 

level” of the measurement was too low. After adjusting the disposition of the fibre along the blade, a 

high enough “Offset level” has been reached, enabling the achievement of a precise measurement.  

The advantage is clear, since the complexity of using electrical gauges, which have to be connected 

electrically one by one with long, many, and heavy electrical cables is high. In the case of BOTDA, a 

single distributed optical fibre that once glued, is able to work and give a complete set of data along all 

the glued part, is expression of convenience. 

After the experiment, the company that welcomed us accepted to have a long-term collaboration with 

the laboratory. The aim of the cooperation is projecting a SHM measuring structure where the optical 

fibres are inside the blade.  

Since the system has to work also when the blade will be assembled on the turbine, in other words, 

when it is rotating with the turbine, the setup would be complex. The solution might be using rotating 

connectors, but it is not aim of the thesis developing this concept. Anyway, the usage of electrical gauges 

in this case might also be possible, but more complex, since there are more and more cables that would 

bother the blade during its moving or be object or breakage. Moreover, the cables would change the 

aerodynamic parameters of the blade, since their weight is not negligible. A last solution could be using 

wireless sensors, but since the measurement should be long in time, there could be some problems with 

power availability.  
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