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Introduction

The Magnetic Particle Imaging (MPI) is an emerging medical imaging technology which
attracted the interest of different research groups in the last years [14]. The technique of
the MPI is based on the detection of a tracer which consists of superparamagnetic iron
oxide nanoparticles through the superimposition of different magnetic fields.

When the particles are excited by oscillating magnetic fields, an electromagnetic induction
phenomenon is induced and measured. The acquisition of the signal which comes from the
particles is performed moving a field free point along suitable sampling trajectories, using
appropriate magnetic gradient fields.

A possible choice is to move along Lissajous curves [13], but the problem of selecting the
set of sampling points to take along the curve is not trivial. The first time in which the
Lissajous curves have been considered in polynomial interpolation and approximation topic
is the debut of the Padua points.

Let n be a positive integer. The Padua points are the set of points (2, yx) € [—1,1]?
defined as
2k — 2
cos 7( ) if m is odd ,
(m—1)m n+1 1)
Ty = cO8| ————— =
" n Yk <(2k:—1)7r) e
cos| —— | if miseven,
n+1

where l<m<n+1land1<k<n/2+1.

They can be seen as a modified version of Morrow-Patterson points and they are equis-
paced with respect to the Dubiner metric [§].

They were first presented in 2005 in |7] and they turned out to be the best nodes for poly-
nomial interpolation on the square. Indeed, if App, is the Lebesgue constant in [—1,1]?
related to the set of Padua points, then we have the very good result App, = O(log?(n))
and it is well known that the Lebesgue constant gives information about how suitable a
set is for global polynomial interpolation on a certain domain.

In the light of these considerations, efforts have been made in order to understand more
about this particular set of points and different definitions for this set were presented.
First of all, the Padua points PD,, are related to the Chebyshev-Lobatto points given by

C, = {z,? = cos<k:> ,neN, k::(),...,n} . (2)

We can decompose C), in the disjoint union
Ce={z}, k=0,...,n, jeven},
Co={z, k=0,...,n, jodd},

getting
PDy = (G x Cri) U (G X Criyq) - (4)

1l
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Figure 1: Padua points with n = 6. They are the union of an even grid (red) and an odd

one (blue)

We observe that #PD,, = ("Héﬂ which is the cardinality of the space of bivariate
polynomials of degree < n.
For the next fundamental definition for the Padua points we consider the following para-

metric curves:

where 0 <t <m, n>1.

YL (t) = (—cos(n + 1)t, — cosnt) ,
Y2(t) = (— cosnt, —cos(n + 1)t) ,
v3(t) = (cos(n + 1)t,cosnt) ,

Y4 (t) = (cosnt,cos(n + 1)t) ,
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Figure 2: Padua points in Figure 1 are generated by the curve +¢(¢) and they belong to

the first family



CONTENTS v

The curves are contained in the square [—1,1]? and they are particular Lissajous
curves. We can define four different families of Padua points writing, for i =1, ..., 4,

PD = {y; <n(nk+1)”> E=0,.n(n+ 1)} . (6)

Hence, each family of Padua points is the union of the self-intersection points of 7/, and
the points where the curve touches the boundary of the square [§].

The four families have the same properties and they differ just for a rotation with respect
to the center of the axis. Moreover, exactly two points of the set are always lying in two
consecutive vertices of the square.

This relation between Lissajous curves and Padua points stimulated interest in such a class
of curves for polynomial interpolation issues.

In the first chapter we introduce a more general setting, which allows us to define the
Lissajous node points. Lissajous nodes are provided with the similar excellent properties
of Padua points about stability and can be divided in two classes: nodes given by degener-
ated Lissajous curves and nodes extracted from non-degenerated Lissajous curves. We see
that Padua points are Lissajous nodes given by a particular degenerated Lissajous curve.
After a general introduction, we focus our attention on the non-degenerate case. The main
reason for this choice is that non-degenerate curves are more suitable for applications in
MPI, since it’s preferable to take the centre of the square as Lissajous node in order to
calibrate the scanner.

L
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Figure 3: A non-degenerate Lissajous curve.

We state some important results about interpolation on Lissajous nodes, using pecu-
liar quadrature rules for such a set of nodes. Almost every result which we state for the
non-degenerate case is valid, fixing some parameters, for the degenerate case also.

For this chapter we mainly refer to [10], where both cases are discussed.

In the second chapter we move to the cube [—1,1]3, considering three-dimensional de-
generate Lissajous curves [3] [4].

Recent results have been reached in this topic, providing algebraic cubature formulas on
particular sets of points lying on these curves. Using conjectured optimal parameters,
we can perform the hyperinterpolation polynomial approximation, which considers a dis-
cretized expansion of a function in series of chosen orthogonal polynomial up to a fixed
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total-degree.

The hyperinterpolation coefficients can be computed by a single one-dimensional discrete
Chebyshev transform. Moreover, the hyperinterpolation operator norm has the minimal
growth property.

In applications, we typically deal with objects represented by underlying discontinuous
functions. This causes the arise of the Gibbs phenomenon and as a consequence a distor-
tion in the image reconstruction given by the Lissajous sampling. The connection between
Chebyshev and Fourier series let us to consider the polynomial (hyper)interpolant as a
Fourier series.

In Chapter 3 we recall some well known facts about Fourier theory and we define a proper
set, of functions for our applications, showing that the Gibbs phenomenon is caused by the
slow decreasing of the Fourier coefficients related to discontinuous functions. We present
the topic first in one dimension and then in a general multidimensional case.

Figure 4: An example of the appearance of the Gibbs phenomenon.

In the fourth chapter we start to discuss about how we can dimish this distortion phe-
nomenon and recover precision, looking for a fast and as efficient as possible solution.
A classic method is the application of Fourier spectral filters on the coefficients of the poly-
nomial (hyper)interpolant (see [12] [15] for possible applications). We define what we mean
with filter functions and we present some common used one-dimensional filters. Then, we
extend the filtering process to a multidimensional setting through a tensor product struc-
ture.
The spectral filtering dimishes the Gibbs phenomenon but it also causes a general smooth-
ing in the image with a loss of definition and precision. In order to get a better result,
we introduce the concept of adaptivity, considering a filter function whose level parameter
depends on the physical position of every point in the domain. In particular, considering
an adaptive parameter which changes with respect to the distance between each point and
its correspondent closest discontinuity we prove that we can get an asymptotic exponential
reduction of the error away from the discontinuities, assuming some hypothesis about the
regularity of the underlying function.

In Chapter 5 we do some numerical experiments applying the results of the previous chap-
ters. First we introduce the reconstruction problem and the parameter which we use to
evaluate the images, the SSIM, justifying this choice among other possible solutions. After
that, we describe the setting of our two-dimensional experiments and we describe all the
steps needed to reach the final results. The complete Matlab codes are avaiable in the
inclosed CD.

Applying the adaptive filtering process, we notice that the tensor product structure com-
bined with the separation of the distances in one-dimensional ones causes the appearance
of a distortion phenomenon which affects the final result. In order to get rid of such a prob-
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lem, we conjecture an efficient solution modifying the definition of the adaptive parameter
of the filter.

20 40 80 80 100 120 140 180 180 200 20 40 80 80 100 120 140 160 180 200

Figure 5: A reconstruction (right) of a test function (left) using the modified adaptive
parameter.

We extend the procedure doing some experiments in three dimensions also.

In the last chapter we write some conclusions and considerations about this work and
about the obtained results.
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Chapter 1

Lissajous node points in the square

1.1 Lissajous curves and nodes

Let n = (n1,m2) € N2, s = (s1,82) € R? and u = (ug,us) € {—1,1}2.
We call a two-dimensional Lissajous curve the closed curve vg,, defined as

A 10,2] 5 [S1 12 APu(t) = ( oot~ o) ) (1.1)

From now on we assume that the numbers ny and ng are relative prime. This condition
implies that 27 is the minimal period of vg,,.

The Lissajous curve g, is called degenerate if s;—s1 € 27 and non-degenerate otherwise.
With some manipulations of the parameters we get a very useful rewrite of the definition
of Lissajous curve.

Proposition 1. There ezist ' € R, n € [0,2) and v’ € {—1,1}? such that

Pygfu(t - t/> = Vg),n),u/ (t) : (12)

where t € [0, 27].
Moreover, v, is degenerate if and only if n = 0. Finally, if s € 72 then n € {0,1}.

Proof. Surely we can find a ¢” such that vg,,(t — ") =3 ,(t) with s} = 0.

Let a € Z be the unique integer such that 0 < a + s,/2 < 1. As nj and ngy are relatively
prime we can find i,j € Z such that a = iny + jna. Let ' =" + im/ny and n = 2a + $b.
Then

ni(t —t') — som/(2ng) = s1(t — im/ng) — sym/(2n2) = nat — nn/(2n2) + jm
na(t —t') — sym/(2n1) = nat — im

and we obtain |(1.2)| for v} = (=1)%uq, uh = (—1)7us.

The curve v, is degenerate if and only if 7('(‘) ) is degenerate. By definition n € 2Z if

and only if 7 = 0. In order to complete the proof, we note that s € Z? implies sj € Z and
then n € {0,1}. O

From now on s € Z2, as many Lissajous curves which are important in applications
have this property.
This allows us to restrict our considerations to the curves

A [0,20] = [~ LA AR () =2 () = ( cos(nyt _CC()i(fo))w/(an)) ) 3

with € € {1,2} and where we fix the reflection parameter 1 = (1, 1).
Up to a shift ¢ and up to a reflection with respect to the coordinate axis, all degenerate
curves can be written in the form +{* and all non-degenerate curves can be written as v3'.

1



2 CHAPTER 1. LISSAJOUS NODE POINTS IN THE SQUARE

Observation 1. The Lissajous curve generating the Padua points (see [5]) can be written

in the form ’y§n’n+1) or ’y£n+1’n) up to o reflection.

We are interested in the sets of points generated by Lissajous curves, in the sense given
by the following definition.

Definition 1. Let 4 be a Lissajous curve with € € {1,2} and let

k
i = 6;;1”2 , k=0,..,2eniny— 1. (1.4)

The set
LS = {72 (t;") : k=0,...,2en1ng — 1} (1.5)

is the set of Lissajous node points related to .

(a) The degenerate curve 'y§5’6) (b) The non-degenerate curve 755’6)

I —— — 1

(5,7)

(c) The degenerate curve -y, (d) The non-degenerate curve 75577)

Figure 1.1: Some examples of Lissajous curves and nodes. Notice that (a) is the same as
in Figure 3 in the Introduction and in (b) the center of the square is a node.

We define also for € € {1,2} the following index set associated to Lissajous nodes

ren = {(z’,j) eN? mzl + 6'772 < 1} U{(0,enz)} . (1.6)

The set I'*™ plays an important role for bivariate interpolation.

1.1.1 The non-degenerate case

Let v3 be a non-degenerate Lissajous curve. The set LS} contains all self-intersection
points LS, , of 3. Indeed, a necessary condition for 723 (t) = 3 (') with ¢ # t' is

wnt,
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(see [2))

:<Z+]>7T,t’:<—z+j>7r, iJjEL, (1.7)
ny ng ny n2

. . 1 . . 1
t:<l+‘7— >7r, 'z(l—j— >7T, i,j€ZL. (1.8)

ni no 2n1n2 ni ny 2n1n2
We only show that if ¢ is as in then 42 (t) € LST, the other cases can be investigated

with similar calculations.
If we expand the definition of LS3, we get

# (o)~ (ol oy )+ E=0tmmate 0

or

On the other hand,
7;<(i+ j )W): ( cos(m[2(ing + jn1)]/(2n1)) ) ez (1.10)

ni | ng cos(m[2(ing + jn1) — 1]/(2n2))
The previous equations gives us
k=2(ing +jn1), i,jE€Z, (1.11)

which allows us to conclude the proof observing that the condition holds, since ny
and ny are relative prime (see 1] for further details).

We can decompose the set LS5 in the two disjoint sets
LSgy = {5 (t3™) : k=0, ...,2n1ny — 1} , LSy = (Ve ) ik =1,...,2n1n9} . (1.12)

In view of 1 1.7§ ¢ generates a self-intersection point in LSZ, if and only if ¢ ¢ n17Z, therefore
we have 2ny elements in LS, that are not in LSj, , and that lie on the boundary of

[~1,1]2. The same reasoning tells us that 2n; elements of LS3, are on the boundary of
[—1,1]%. It is then natural to define the subset LS™

out,
of LST which lie on the boundary of [~1,1]2. Hence we can write

o consisting in the 211 + 2ny elements

dning — 2n1 — 2n9
#L Z;’mt,Q = 5 =2nin2 — N1 —Na . (1.13)

In particular,
#LS? = #LSZ;LLt,Q + #LS?MQ =2ni1no +n1 +no9 . (1.14)

Lissajous node points are related to the C'hebyshev-Lobatto points defined on the interval
[—1,1]. We recall the definition:

k
zp = cos(Tr> , mneN,k=0,...,n. (1.15)
n
Using this notation, we can write
LSY = {(22™,22"2) . r=0,...2n1, s=0,...,2ny, r+s=1 mod 2} . (1.16)

Further, we can see LS3 as disjoint union of two rectangular grids given as

LSTy = {(22m 22m2) © r=0,..,2n1, s=0,..,2ny, 7=0 mod2, s=1 mod 2},
LSgy = {(z2m,222) © r=0,..,2n1, s=0,...,2n, 7=1 mod2, s=0 mod 2} .

We point out that
(2711 + 1)(2712 + 1) -

2
We end this section with the following geometric observation.

#I2m = L_ #LST . (1.17)

Observation 2. The set LS3 is symmetric with respect to reflections at the coordinate
azis. Moreover, there are no points of LST on the vertices of the square [—1,1]2.
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1.2 Quadrature formulae

We state some results about quadrature rules for Lissajous nodes. We will not enter in
details, since we are more interested in interpolation issues. Nevertheless, interpolation
results are consequences of quadrature formulas.

Let
Y := span{T;(z)T;(y) : i +j < N} (1.18)
be a polynomial space in [—1,1]%, where
T;(x) = cos(iarccos(x)) (1.19)

is the i-th Chebyshev polynomial of the first kind.
It is well-known that {T}(x)T;(y) : i+ j < N} forms an orthogonal basis of the space I
with respect to the inner product

1 1
(fig) = 732/1 /1 f(z,y)9(z, y)w(z,y)dazdy (1.20)

with the weight function w defined as
(2,1) 1 1
w(z,y) = .
Y V1—22 /1 -2

We can also formulate the corresponding normalized basis as {T}(x)T;(y) : i +j < N}

where
. 1 if1 =0,
L) = {ﬁTi(m) iti#0. (1-22)

(1.21)

Our purpose is to find an appropriate polynomial space for interpolation and quadrature
related to Lissajous nodes given by a non-degenerate curve. The following results can be
easily extended to the degenerate case |10] [1].

We recall the set I'>™ defined in and we define the following polynomial space

1*" = span{T;(x)T;(y) : (i,j) € T?"}. (1.23)
We state this fundamental lemma.

Lemma 1. For all bivariate polynomials P satisfying (P, Topn, Tokn,) = 0, k € N, the
following holds:

1 1 1 1 27
2 /_1 /_1 Plz, y)w(w,y)dedy = Qﬂ/o P(y3(t))dt (1.24)
Proof. See [10). .

From now on, we use the notation A = (z.4,y4) for points in LSH.
We introduce then the following weights for A € LS3":

1 2 if Ae LSP,,,
1 if A€ LST,,

— 1.25
WA= (1.25)

We get the following quadrature rule.
Theorem 3. For all polynomials P € TI*™ with (P, Ty,,(y)) = 0 the quadrature formula

1 1 1
ﬁ/_l/_lp(x’y)“(:”’y)dxdy: > waP(A) (1.26)

AeLSy

is ezact. Moreover, for the polynomial P(x,y) = (Thn,(y))? we have

1

1o .
L @Pete i =) Y walfor=1. (27
™ J-1J-1

AELSY
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Proof. The proof is mainly based on the previous lemma and on the fact that for all
trigonometric 2w-perodic polynomials g of degree less than 4njns the following quadrature
rule is exact:

1 2w 1 4dning
= t)dt = ).
or a0 = g 3
See again [10] for further details. O

1.3 Interpolation on Lissajous nodes

In this section we consider the bivariate interpolation problem on Lissajous node points in
the non-degenerate case.

Taking then A € LS as node points with given data values f(A) € R, our aim is to find
an unique interpolating polynomial £™f in [—1,1]? which satisfies

L"f(A) = f(A) for all A€ LSF . (1.28)

In the bivariate case it is a priori not clear which polynomial space we should consider to
obtain a solution for this problem.
We observe that from|(1.17)H(1.23)| we got

dim IT1?™ = #I?" = #LST . (1.29)
Hence, the space II?™ is a natural candidate as interpolation space for the set LS%.

We introduce the reproducing kernel X" : R? x R? — R related to the space II>" as

K™ @,y )= > Ti@) D)) () - (1.30)
(i,j)er2n

Let A= (z.4,y4) € LS, we define the polynomial L4 € TI?™ as

La(z,y) = wa </c2 (@3 2484) ~ 3T >Tzn2<y,4>) | (131)

We are ready for the following theorem.

Theorem 4. The interpolation problem |(1.28)| has the unique solution

Lrfx,y) = > fALa(x,y) (1.32)

AeLS$

in the polynomial space TI*™.
Moreover, the coefficients c¢;j = (L™ f,Ti(x)T;(y)) of L™ with respect to the orthonormal
basis {T;(x)T;(y) : (i,7) € I?™} of II*™ can be compuled as

Y waf(ATi(ea)Tj(ya) if (i,7) € T2\ (0,2n2)
AeLSH
Cij = 1 (1.33)

5 O waAf(A)Ti(ea) Do (5a) if (i.4) = (0,2n2) -

AeLSy

Proof. Let RS2 be the vector space of real functions on the set LS%. We can define the
inner product

(90w =D wag(Ah(A), g,heR"T, (1.34)
AELSY



6 CHAPTER 1. LISSAJOUS NODE POINTS IN THE SQUARE

then we consider the functions e € REFSE given by e(%9)(A) = T;(x.4)Tj(y.4)-

We want to show that the set £ = {e(®) : (i,5) € T?"} is an orthogonal basis of the
vector space RZ with respect to the discrete inner product (-, -).,.

First of all we recall that #I'*™ = #LST.

For the basis polynomials e (z,y)el" ) (x,y) = Ti(x)T;(y)Ty(x)Ty(y) € ™ with
(i,j) # (7,5') we have the inequality i/ni + j/no + ' /n1 + j'/ny < 4 (see [(L.6))), that
implies e(™7) (z, y)e(i/’j/)(a:, y) € II*™. Then we can apply the quadrature formula of Theo-
rem 3 and we get for (i,7) # (i, j)

>
>

A~

(), e, = 3 waTi(wa) Ty (y.) T ()T (ya) = (L) Ty (y), To (@) Ty () = 0.

AeLSy

<.

Moreover, if (i,7) = (i, j') then

[eCDNE = (9, ey = Y7 wa(Ti(wa)T(ya))® =

{1 if (i, §) € T\ (0,2n2) ,
A€ELSH

2 if (i,§) = (0,2ns) .

Hence we proved that £ is an orthogonal basis of the vector space RYS2 with respect to
the discrete inner product (-, ).
For all A, A’ € I'>™ we have

L) =wy S D) ()l 4) (1.35)

(i,j)ern leGE,
Then, for all (,7) € '™ we can write
(L, ey, = w e (A') = (540, 0D),, (1.36)

where 0 4 denotes the Kronecker delta function on LS% corresponding to A’. Therefore,
since € is a basis of RL92 we have La(A) = 64 (A) for all A, A" € T2, that implies
(1.28)} The vector space homomorphism f — £™f from R to II?™ is not only injective
but also bijective, because the dimensions of the spaces agree. Hence, L™ f € II?™ is also
uniquely determined.

Finally, the definition of La(z,y) implies L™ f(z,y) = > (; jjeren ci;Ti(x)Ty(y) for the
values in [(1.33) O

1.3.1 Fast computation for the coefficients of the interpolant

We can derive a fast scheme for the computation of the coefficients ¢;; defined in (1.33),
using the characterization (1.16) of the points LS%.

The first step is to store all relevant information in data matrices. We define a matrix
c?n — (Cij) c R(2n1+1)Xx(2n2+1) as

o= {<.c“f,ﬁ<x>T}<y>> if (i) € I° 1.37)

0 otherwise ,
with i € {0,...,2n1} and j € {0, ..., 2ns}.

The weights w4 and the data values f(.A) are stored in a matrix G = (g;;) € R(Zm+1)x(2n2+1)
defined as

Lo (1.38)

[waf(A) if A= (:2M, 222 € LSy
%o it A¢ LS.

For a general finite set of points x = {zo, ..., T} C [—1, 1] we define

Th(x) = (Ti(x;)) € RUHDX00+D (1.39)
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with i € {0,...,n} and j € {0,...,m}.
Finally, we define a mask M?™ = (m;;) € RZm+1)x(n2+1) a5
1 if (i,5) € T?™\ (0,2n9) ,
mgj == ¢ 1/2 if (i,5) = (0,2n2) , (1.40)
0 if (4,5) ¢ T .
Then, the coefficient matrix C*™ of the interpolating polynomial £™f can be computed as
C*™ = (Ton, (Zon, )G fTony (Zony) ') @ M*™ (1.41)

where @ denotes the pointwise multiplication and Za,,, = {zg”i, ey zgg‘;} ,1=1,2.
For an arbitrary point (z,y) € [—1,1]?, we get

['nf(xv y) =T, (:I;)TC2nT2n2 (y) . (1'42>

The matrices Ty, (Z2n, ), T2n,(Z2n,) have a particular structure and describe discrete
cosine transforms. Hence it is possible to evaluate the matrix-matrix product in |(1.41)
using fast Fourier methods. We obtain indeed

22 s2m ik glm
ey kil S0 1.43
Cij = MijQj ; <kz_0 Gk COS oy > COs My ( )

where ajj = /2 — d0,i\/2 — do,j . Then the use of fast Fourier methods is justified by the
following fact,

2n 2n
! ! _omik

ik
E Gkl cos% = Re g ge A (1.44)
k=0 k=0

with [ =0, ..., 2ns.
An implementation formula in Matlab code can be found in [1].

1.4 Lebesgue constant related to Lissajous nodes

In this section we state and summarize the good stability properties of Lissajous nodes,
which justify the choice of such a set of points for bivariate Lagrange interpolation.

We consider the absolute condition number for the interpolation problem given as
the Lebesgue constant

A™ =  max La(x,y)| . 1.45
2 3 1) (1.45)

We have the following results.
Theorem 5. Let nyin = min{ni,na} and npax = max{ni,na}. Then
Dy log?(nmin) < A™ < Cp log? (amax) (1.46)
where the positive constants Cn and Dy do not dipend on ni,ns.
Corollary 1. For any continuous function f € C([—1,1]?), we have
1 = £ oo (Ca 108 () +2) B () (1.47)

where E,,_. (f) denotes the best approzimation error of f in the polynomial space II"min.
Moreover, if f € C3([—1,1]?) is s-times continuously differentiable and w} denotes the

modulus of continuity of f®), then

2
Hf_['anooS Clog (Sn.max)szc<n1‘ > ‘ (1.48)

For further details about this section see [10].
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Chapter 2

Three-dimensional Lissajous curves

2.1 Admissible and optimal tuples

Given a = (ay,az,a3) € N3, we consider the curve in the cube [—1, 1]® defined as
vYa(t) = (cos(ait), cos(ast), cos(ast)) , (2.1)

where t € [0, 7].

In the view of we can say that 7, is a degenerate tridimensional Lissajous curve.
This setting brings new problems with respect to the bidimensional case. First of all, v4
is not self-intersecting and thus we have to use a different approach in order to find a set
of points interesting for approximation issues.

The first important step is to find an extension of Lemma [I| providing a formula whose
nodes lie on 4.

Fortunately this is possible, but we have to pay more attention as we will see.

Definition 2. Let V = P2 be the space of trivariate polynomials of total degree at most
m and let a = (ay,az,a3) € N3,
We say that a is V-admissible (of order m) if

B0£b ez, (b = [ba] + [bo] + [bs] <, (2.2)

such that
a1by + agby +aszbs = 0. (2.3)

We call A(V') the set of such admissible tuples.

The set A(V) is important for our purposes, as we are able to obtain a quadrature
formula just for tuples belonging to this set. Indeed, we have the following.

Theorem 6. Let V and a be as in Definition[d and let © = (z1, 22, x3),

_ 1
wiE) = Ty e

/ P(z)w(z)dx = 72 /7r P(7q(t))dt (2.4)
[~1,1)3 0

for all polynomials P € V if and only if a € A(V).
Proof. See [4]. O
Restricting a polynomial P(x) to the curve v4(t) we can write

deg(P(va(t)) <m - max a; . (2.5)
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We are interested in determining the admissible tuple a, € A(V') which minimizes deg(P(7y4(t)),
i.e.
a, = min max a; . (2.6)
acA(V)i=1,2,3
In [3] it has been proved that the growth of ay is at least of O(m?).
Through a computer search and calculations the following conjecture has been provided
in [4].

Conjecture 7. Let ay be an admissible and optimal tuple. Then:

1. For m =0(4)

3m? +4m 3m? + 8m 3m2 +12m + 16
)= ——F——,0= ———F", a3 = .
16 16 16
2. For m =1(4)
3mZ+6m+7 3m2Z 4+ 10m + 19 3m2 + 14m + 15
Al = ————— , a2 = , a3 = .
16 16 16
3. For m = 2(4)
3m?2 + 4 3m2+12m —4 3m2 + 12m + 12
a) = ————, a2 = , a3 = .
16 16 16
4. For m =3(4)
3m?+4+2m —1 3m?2 + 14 11
SmiA2mol ) merm At = 3(8)
a = 16 4y = 16
3m2 4+ 6m + 19 ’ 3m2+10m+7 '
T m = T7(8) 16 m = 17(8)

3m?2 + 14m + 27
as — .
3 16

2.2 Quadrature formula and hyperinterpolation

Similarly to the two-dimensional case, we can obtain a quadrature formula which is a
consequence of Theorem [6]

Corollary 2. Let P € V and vq as in[(2.1)] Let

v =m - max{ai,az, a3} . (2.7)
Then
m
|, P@w @ = wPa(6.). (2.9
—hAr s=0
where for
ws =T ws, $=0,..,0, (29)
and

/’L:V+17705:%7 3:0;---;M7

— _ T —
WO—w;L—TH;Ws—
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Proof. The proof follows the idea of the one given for Corollary 1 in [3].
We observe that with the change of variables 7 = cost we have

dr
Vi—rZ’
(2.11)
Observing that P(Tq, (1), T4, (7), Ta, (7)) is a polynomial of degree not exceeding 2v, the
conclusion follows by using the Gauss-Chebyshev-Lobatto univariate quadrature rules, ex-
act up to degree 2v + 1. O

/[—1,1]3 P(a:)w(a:)da; - 7T2 /Oﬂ P(")/a(t))dt = 7T2 /_11 P(Tm (T)aTag (T);Tag (T))

We consider the total-degree orthonormal basis of P2, with respect to the Chebyshev
product measure writing

where Tn() is the normalized Chebyshev polynomial of degree n

T () = g, cos(narccos(-)) , (2.13)

o = /14 sign(n) (2.14)
7r
defining sign(0) = 0.

Using the quadrature formula introduced in Corollary [2| we can approximate a function
f:[-1,1]* = R through a series of orthogonal polynomials up to total-degree m,

Hon f(x) = Z Cijkbijr(e) | (2.15)

0<itj+k<m

with

where the Fourier-like coefficients are

Cijk = Zwsf(')’a(e-S))flgijk(’Ya(HS)) . (2.16)
s=0

The hyperinterpolation coefficients can be computed as follows.

Proposition 2. Let f:[~1,1]* = R, 74, v, i, 05, ws,ws as in Corollary @ Then we have

2
T -
Cijk = Zgia1§ja2§ka3 (7?0‘1 + Yas + % + %) , (2.17)

a1 gocg §a3 <a4
where
a1 =iay + jag + kas , ag = |iay + jas — kas| ,
a3 = ]ial — jag‘ + kasg , ay = Hia1 — ja2] — k:a3] , (2.18)

N

Yo, = 25:0 ws T, (76) [ (Tay (75), Tay (7s), Ty (75)) 5

with 75 = cos(fs).
Proof. See [3]. O

H.m is a projection operator, since H,, P = P for every P € P3,.
For our purposes, a fundamental property of the H,, operator is
Ho f .
#ll= sup 2 — o105 m)?) (2.19)
10 I flloo
since this implies

[Humf = fllo= O((log m)*Em(f)) , (2.20)
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where E,,(f) denote the best approximation error of f in P

12

17t)).

/X
7 N Aqﬁ‘
RLACEA
QAL
I
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5 QA

e alrs
SEN-
/o w\

Figure 2.1: The curve t — (cos(9t), cos(11t), cos(

371)).

cos(33t), cos(

30t),

(

Figure 2.2: The curve t — (cos



Chapter 3

Fourier series and Gibbs phenomenon

3.1 Trigonometric series for function approximation

Definition 3. A 2xw-periodic trigonometric series in complex form

chem” , z€ER, (3.1)

18 a two-sided series of functions defined in R, where ¢, € C are the complex coefficients
of the series.
If we fir m € N, the m-reduction of the Sem'es s the series

From now on we use the simplifying notation ey (z) = e**<.

Let L1 (R) be the set of functions defined as

™

—Tr

1
L} (R) = {f : f: R — Ris 2r-periodic and o |f(z)|dx < oo} , (3.3)

equipped with the (semi)-norm

1 s
=57 | 1f(@lde. (3.4
From easy direct calculations, we get that if m,n € N then
o [ ente)ent@ir = (35
- _Trem:z:enx T = Omn .

where 6,,, = 1 if m = n and it is equal to zero otherwise.
The next theorem is fundamental for all the theory.

Theorem 8. Let ), chen(x) be a 2m-periodic trigonometric series such that

k=m
n%gnoo"f - k_zm Ckek 1: 0 (3.6)
where f € LY (R). Then for every n € N
1 (7 —
Cn = — f(z)en(x)de . (3.7)
27 J_,

13
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Proof. Let j € Z be fixed. Then

k=m x k=m
e - (kzm“) -/ |f(x)6j(w) - (kz_mckem))ej(x) a
1o k=m
— o | 5w ‘f(w) (X aat)|a
o . k=—m
=5 o ( £ aew)|as
- =—m
== (X )
he—m 1
In particular, we can pass the limit under the integral sign and write
L= L w
W}gnoo o /_7r (k;m ckek(x)>ej(:c)dx = - f(x)ej(x)dz = ¢;(f) .
Moreover,
A= k=m L L k=m
o <kz_:m ckek(a:)>ej(x)d:c = kz_:m Ck <2ﬂ_ /7T ex(z)e; (x)d:z:) = kz_:m CiOkj
which concides with c;. O]

The last theorem gives sense to the following definition.

Definition 4. Let f € L1 (R). We define the Fourier series of f in complex form as

Sf@) = ealfenlr) , zER, (3.8)
nez
where for every n € Z _
alf) =5 [ f@ende. (3.9

—T

Moreover, the m-reduction of Sf is the series

k=m

Smf(x)= > c(flex(z) , z€R. (3.10)

k=—m

The question now is if we are able to reconstruct any function f € Ll (R) from its
Fourier series. This is not always possible, but it is achievable for a large class of functions
of common use, in particular for piecewise differentiable functions.

Definition 5. Let [a,b] be a compact subset of R and let | € Z>o U {oo}. A function
f i la,b] = R is Cl-piecewise differentiable if there exist to = a < t; < ... < b = t,, and
functions fr, € CY([tp—1,t:],R), k = 1,...,m, such that f; concides with f on every open
interval (tp_1,tk).

f:R = R is Cl-piecewise differentiable if so is the restriction of f on every compact subset
of R.

If 1l = 0 then f is piecewise continuous.

We say that f is piecewise differentiable if [ > 1.

We observe that piecewise differentiable functions are locally integrable and they always
admit right and left limits in every point.
We state the following well-known result.
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Theorem 9. Let f : R — R be 2m-periodic and C'-piecewise differentiable. Then the
Fourier series Sf is pointwise convergent to f where f is continuous. If f is not continuous
in & €R, then
_l’_ —
. +

i 5, f(6) - LEDHAE)

m—o00 2
where f(ET), f(€7) are respectively the right and the left limit of f in &.
Moreover, Sf is uniform convergent to f on any compact subinterval of R which does not
contain any leap point ¢ such that |f(ct) — f(c¢7)| > 0.

, (3.11)

Proof. Omitted, see for example [16]. O

The last theorem about convergence of Fourier series is valid in a more general setting
also and can be found in any book about complex analysis and Fourier theory. Neverthe-
less, the version we stated it is enough for our application issues.

3.2 Coefficients decay rate for functions in Fj(R)

We are interested in the behaviour of Fourier coefficients ¢,(f) as n — oco. From the
Riemann-Lebesgue lemma (see for example [16]) we know that if f € L1 (R) then

lim ¢,(f)=0. (3.12)

n—oo

There is a strong connection between the smoothness of the function f and the decay rate
of the coefficients ¢, (f).
We recall the following definition.

Definition 6. The function f is absolutely continuous on the closed interval [, 5] if Ve > 0
30 > 0 such that for each finite collection of disjoint intervals (o, B;) C [a, 5], j =1, ..., 8,

staisfying Y51 (Bj — ;) < & one has 375_; |f(Bj) — flay)| <e.
The function f is locally absolutely continuous on the open set @ C R if it is absolutely
continuous on each closed interval [, B] C Q.

We introduce also the notion of weak derivative for the one-dimensional case, adapted
to our situation.

Definition 7. Let Q C R be an open set, | € N and f,g € L} (R). The function g is a

weak deriative of the function f of order 1 on Q (briefly g = féf)) if there exists a function
h equivalent to f on Q (i.e. f = h a.e. in Q) which has a locally absolutely continuous
(I — 1)-th ordinary derivative RU=Y and such that its ordinary derivative hV is equivalent
to g in €.

For k € Z>(, we introduce the following set of functions:
F,(R) = {f e L} _(R) : 3f+1) ¢ C(R) and it is piecewise differentiable} . (3.13)

Let f € Fi(R), using integration by parts we can write

1" | i N T '
o f(x)e " dx = [mf(x:e_mw] x:_ﬂ_% » f(x)e "™ dx o1
= —ﬁ » fl(z)e ™ dg
which gives us the estimate
len ()] < % : (3.15)
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where M = || f’||1.
We can iterate this process until the step

i\"t
Y . (k+1) —mmd . 3.16
wf)= (1) 5 [ e (3.16)
The function f R i piecewise continuous. Let us suppose that £ € R is the unique leap
point of f 1) We can suppose £ € (—m, ) without loss of generality. Let then fi, fo be

+1) t

the restrictions of the function fé,’“

N ¢
en(f) = <_n> ;ﬂ(/ fi(z)e ’mda:—i-/ fa(z mdfﬁ)
-\ k+1 . =T . 13 )
~(-1) 5 (3]t } | ngfi [ @t

— l /ﬂ- fé(l')elndeC)
nJe

N\ k2 ‘ o 3 . ’T <
=<—1) ;T(fz@ﬂemé*—fl(s)e’"f + [ e e+ /5 fé(w)emdx>-

o (—m, &) and (&, ) respectively. We can write

n
(3.17)
Therefore we get
len(f)| < Mn~*+2) (3.18)
where M = 3= (| f2(65) + [£1(€7))) + [, | fi(@)ldz + [T |f5(2)ldz < oo.
Since the previous reasoning can be extended to the general case in which fy, **) has a
finite number of leap points, we obtain
1
len(f)] € O v as n —o0o. (3.19)

It is interesting for applications to consider the case in which a function f € L} _(R) is
not continuous and it is piecewise differentiable. Using the same argument presented for

k+1 in m we get in this case

]cn(f)|e(9<i> a5 m— o0, (3.20)

Observation 10. In the definition of the set Fr(R) in |(3.13) we required fff“) to be
piecewise differentiable. Actually, in order to achieve the final step in the functions
f1, fo can be just absolutely continuous and with piecewise continuous weak derivatives

Flws fou

3.3 The Gibbs phenomenon

In the previous section we saw that the decay rate of Fourier coefficients is determined by
the smoothness of the function which we are considering. We observed that for piecewise
differentiable functions which are discontinuous the decay rate is O(1/n).

We point out that the step between a decay of order O(1/n) and a O(1/n?)-order one is
someway crucial. In order to be more precise, we recall a fundamental result for series

convergence, that is
o0

1

E — <o a>1. (3.21)
n

n=0
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Thus, if f € Fi(R) for some value of & > 1 then the sum of its Fourier coefficients is
convergent, otherwise if we lose the continuity of f then we get the divergence of the
considered sum.

This fact is directly involved in the uniform convergence of the partial sum S, f to f. The
reducted Fourier series Sy, f converges uniformly to f on a compact subinterval of R if we
are able to put an uniform bound to

k=m k=—m—1 k=00
1) = $uf @I = |10 = 3 ale|=| ¥ aa@+ Y aa)|
k=—m k=—0o0 k=m+1
We estimate the previous expression writing
k=—m-—1 k=c0 k=—m-—1 k=00
o alPen@) + > alDe@|< D DI+ D len(h) (3.22)
k=—0c0 k=m+1 k=—0c0 k=m+1
and finally
k=—m-—1 k=00 k=oo
Soodadl+ Y DI < DY e - (3.23)
k=—00 k=m+1 k=—o00

If the Fourier coefficients decay is fast enough, then the right-side member in the inequality
can be made arbitrary small taking m large enough, obtaining an uniform bound
indipendent from z and uniform convergence of the series S, f to f.

The lost of uniform convergence in presence of one or more leap points causes the mani-
festation of the Gibbs phenomenon.

The Gibbs phenomenon is the particular way in which the reducted Fourier series S, f
of a C'-piecewise differentiable and discontinuous function f behaves near leap points,
presenting high oscillations that do not disappear as m becomes larger. Such oscillations
produce an increasing of the maximum of Sy, f near jumps, causing a worse approximation
of the function f.

At a first sight, this behaviour seems to be in contrast with the pointwise convergence of
the series to the considered function. Actually the contrast does not take place, since the
region of the overshoot approaches the discontinuity point and it tends to zero in the limit
of the partial sum.

For m large, the partial sum S,,f overshoots the jump by approximately the 9% of its
length.

m=10

2 T T T T T T T

-8 -6 -4 -2 0 2 4 [ 8
m =100

2 T T T T

| I

-8 -6 -4 -2 0 2 4 [ 8
m =500

2 : : : :

-8 -5 -4 -2 0 2 4 [ 8

Figure 3.1: Fourier series approximation of a square wave function
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3.4 Multi-dimensional Fourier series and coefficients

Let f:R” — R be a real-valued function, v € N, v > 2. We say that f is 2m-periodic if f
is 2m-periodic in every variable.
For 1 < p < oo, x = (21,2, ...,2,), we consider the set

L (RY) = {f . f:RY — R is 2m-periodic and (271’)_”/

(_ﬂﬂﬂy

|f(z)[Pda < oo} . (3.24)

where da is the v-dimensional Lebesgue measure, and the (semi)-norm

1/p
(2r) 7" </ |f(:c)|”daz> if 1< p< oo,
1fllp= (=mm)” (3.25)
(2m)~" sup ()] if p = oo.

The result of Theorem [8{ admits a multi-dimensional generalization, see [19].
Given n = (n1,ng,...,ny) € Z¥, we set en(x) = epn, (1)en, (22)...en, (), With en(x) =

eny (1) ey (22)...0p, (x)).

Definition 8. Let f : RV — R, f € L (RY). The multi-dimensional Fourier series of f
in complex form is defined as

Sf@) = > en(flen(®) , TR, (3.26)
nezv
where for every n € 7V
en(f) = (271)”/( ) f(x)en(x)dx . (3.27)
Moreover, if m € N the m-reduction of Sf is the series
Smf(x)= Y cu(fen(x) , xR, (3.28)
kezv
lelloo <m

where || k|lco= |[(k1, k2, ..., kv)||co= sup {|k1], | k2|, ..., |kv|}-

We state a generalization of Theorem [9] which allows us to consider the reducted
bivariated Fourier series for approximation issues.

Theorem 11. Let 1 <p < oo. If f € L} _(RY) then

lim S, f(x) = f(a) (3.29)

m—0o0

almost everywhere in RY.
Proof. Omitted, see [19]. O

We want to cover the same path of Section 2.2 and find estimates for Fourier coefficients
decay rate considering a sufficient set for our applications.
Let a = (a1, a2, ...,a,) € Z%, oo # 0. We use the notation

8a1+a2+...+ayf

D= —— =
/ 0zt 0xy? dxp”

(3.30)
We denote |a| = a1 + ag + ... + .. Given an open set Q C R”, we call C§°(2) the set of
infinitely continuously differentiable functions which have compactly supported in 2.

We give a more general definition of weak derivative.
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Definition 9. Let Q2 C R” be an open set, o € Z%,, a # 0, and let f, g € L _(RY). The
function g is a weak derivative of the function f of order o on Q (briefly g = DS f) if
Vo € C5°(2) we have

/ f(2)D¥(a)da = (~1)* / 9(@)d(@)da . (3.31)
Q Q

The previous definition and Definition [7] given for the one-dimensional case are related
as one can see in [6).
We consider the set of functions Fj(R") defined as:

Definition 10. Let k € Z>o. Fy(RY) is the set of functions f € L3 _(RY) such that
f € C*(RY) and there exists DEf ¢ C(RY) for every |a| = k + 1.

Moreover, DS f is piecewise differentiable, i.e. there exists a partition (€;)i=1,.n of
[—7, )", where Q; is a closed set with Lipschitz boundary for every i = 1,...,m, and

differentiable functions f; : Q; — R such that DS f coincides with f; on every open set
Q;

The Riemann-Lebesgue lemma (see for example [16]) tells us that even for the multi-
variate case we have

lim c,(f) =0, (3.32)
n—oo
where with n — oo we mean max {ni,ns,...,n,} — co.
We start to discuss the Fourier coefficient decay rate for functions in Fj(R"). Let then
f € Fx(R"), integrating by parts we can write

enlf) = (2m)~" / f(x)en(@)da
(;ﬂ,ﬂ’)” i of (3.33)
= (2m) [ /(9(71’,71’)” f(x)en(x)vy,do — —

n; niy (77“71-)1/ 81,‘1

(x)en(x)dx| ,

where v, is the -component of the outward unit surface normal to 9(—=, 7)”. The surface
integral in the last equation is equal to zero, due to the periodicity of the function. Then

of

= —(27) ¥ (ny) 7t x)en(x)dx )
eall) =~ )™ [ S en(eld (334
and
len ()] < f\f (3.35)

where M = [| 2L ||;.
Since by hypothesis f € C*(R¥) and admits a weak derivative D f for every |a| = k + 1,
we can iterate the previous integration by parts procedure until the step

enlf) = (—‘)kﬂmw /( DS, (3.36)

where a, is the v-dimensional vector with k£ 4+ 1 in the ¢-th component and zeros in the
others.

We observe that we can obtain different estimates choosing ¢ = 1,2, ..., v. Every estimate
has to be considered as referred to the coefficients decay rate in the i-th direction.
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3.4.1 Separated-variables case

Starting from |(3.36), we suppose v = 2 and

Dp* f(z1,22) = g1(z1)ga(x2) (3.37)

where g1 ¢ C(R) but piecewise differentiable and g2 € Fij(R) for some [ € Z>.

We can easily extend the conclusions of this two-dimensional setting to the general multi-
dimensional case.

Using Fubini-Tonelli theorem we can write

1 - 1 -
2 /(_mr)2 D f(x1, xe)en(x1, x2)da1day = 2 /(_TW)2 91(1)g2(x2)en, (71) en, (x2)dr1da,

1 11 4 - -
= [/ g1(z1)en, (x1)dx | g2(z2)en, (z2)dxs .

27 2
(3.38)
Hence, we can use the estimates given in the Section getting the following two
% ffﬂ' |:217r fjﬂ— g1 (‘Tl)em (xl)d$1:| g2((L‘2)6n2 (l‘g)d.TQ < Mlnl_l s
(3.39)
Er [ JZr g1 (@1)en, (w1)dx1]92(902)6n2(902)d$2 < Myny '
for some 0 < M1, My < 0o, depending on the direction taken.
Choosing i = 1 in we conclude
len(£)] < M(ny) =2, (3.40)
taking ¢ = 2 we get
len(f)] < M (ng)~FH8) (3.41)

The coefficients decaying in the xo direction is then much more faster than in the z1’s one.
As a consequence of such a fact, we will observe in Section [3.4.3|that the Gibbs phenomenon
could arise in just one direction, the other being regular.

The generalization of the considerations of this subsection to the multi-dimensional case
are immediate.

3.4.2 The general case

Let us come back to |(3.36)l Without loss of generality, we can suppose that the partition
described in the Definition [10]is composed of two sets €21 and Qs.
Therefore, integrating by parts we can write

S my D F(@)en (@) da =

le fl ( dm+f92 f2 de:
(3.42)

(fm OB @)entae + J, B2 (@)

fan fi(z ( x)vg,do — faﬂg fa(x (m)vxidc;') ,

We observe that by hypothesis the four integrals in the last line of are well-defined
and finite. Hence finally, putting together the last equation with [(3.36)| and considering
the absolute values as done before we get the “directional” estimate

len(f)] € Oy ) s n oo (3.43)
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Observation 12. Similarly to what observed for the one-dimensional case in the Obser-
vation even in this two-dimensional case one can consider weaker hypothesis on DS f
in Definition [I0. Indeed, it is enough for the functions f; to admit piecewise continuous
weak derivalives .

Observation 13. It is well known that Fourier series theory can be applied to approximate
wntegrable functions which could be non-periodic on o more general bounded interval. In
order to do this and to preserve the possible continuity of the function, symmetrization and
periodic extension are applied both in one-dimensional and multi-dimenstonal case.
Therefore, in the next lines we could consider non-periodic functions and there will be no
ambiguities in our discussions.

3.4.3 Regularity and Gibbs phenomenon

First, we observe that if a function f is piecewise differentiable according to Definition
then we get

len(f) €01 as n— oo (3.44)

We saw in the one-dimensional case that a first order decay rate is slow enough to let the
Gibbs phenomenon appear and this happens in the multi-dimensional case also.

As example, we take the function which takes the value 1 inside the centered circle of
radius 0.75 and the value 0 outside, displayed in Figure [3.2

1.5

Figure 3.2: The considered discontinuous function.

We can see in Figure that a Fourier series approximation of this function carries
global oscillations, in particular near the discontinuities. More precisely, the Gibbs phe-
nomenon appears if there is at least one direction in which the decaying is too slow.

In order to observe this fact, let us consider the function f(x,y) = fi(x)fa(y) where

fi(z) = (3.45)

r if-1/2<2x<1/2,
0 otherwise ,

is discontinuous and fa(y) = 10e7¥" is very regular. We can see in Figure that the oscil-

lations given by the Gibbs phenomenon are directed just in the z-direction, not involving

the other one as observed in Section B.4.11
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15

Figure 3.3: Fourier series approximation showing the Gibbs phenomenon.

Figure 3.4: Plot of function f.

Figure 3.5: Fourier approximation of function f.
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3.5 From Chebyshev to Fourier series

In the first chapter we saw that we can express the interpolating polynomial of a function
f on Lissajous nodes using a two-dimensional Chebyshev series

Lrf(ry) = > epnTy(@)Tr(y) - (3.46)

(4,k)er2n

We want to show the connection between Chebyshev and Fourier series. Let x = cos(t),
y = cos(s). Then

LM f(x,y) = Z cjk cos(j arccos(x)) cos(k arccos(y))
(4,k)eT>n

= ¢k cos(jt) cos(ks)
P (3.47)

> %"f(ej@) +ej(t)) (ex(s) + ex(s)) -

(j,k)erzr

We consider the following symmetric extension of the set I'?" defined in [(1.6)}

= {Ga) ez (il e} (3.48)
Hence, we can write

L) = D D (t) +eyD)(er(s) +enls))

'7]@ 2n
e (3.49)
= > Grej(er(s)
(j,k)ergr
where
1 e .
G = < ClillK if (j,k) # (0,0) but j =0 or k=0, (3.50)

1
7€l for the others (j,k) € F%‘n'

It is useful to give to the coefficients a rectangular shape. In order to achieve this, we
consider the following set of indices related to I'*?,

R .= {(i,j) EN2 : i< 2nandj< 2n2} . (3.51)

We observe that I'*™ C R?™.
Considering then the symmetric extension

ry={g) ez« (il e rnf, (3.52)
we get .
Lrf(ts)= > crej(ther(s) (3.53)
(j,k)eRE™

where
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~ cr if (j, k) e T%,
=~ { 7k (] ) S (354)

Cip =
710 if (. k) € RI\ T2

Observation 14. In Theorem [11] we gave a convergence result for series approaching the
limit in a square shape. The same result is reached considering more general polygons if
the expansion of the chosen polygon involves any direction in the same way. This is a
consequence of the Theorem stated by Fefferman in [11].

Therefore, all the results about spectral filtering of the next chapter are effective for
Chebyshev series and for the applications we are interested in also.
The results of this section are also true for the three-dimensional case, since even in this
setting the hyperinterpolant is expressed as a Chebyshev series.



Chapter 4

Fourier spectral filters

4.1 Filtering process for solving the Gibbs phenomenon

4.1.1 The one-dimensional case

In the previous chapter we saw that if f € L} _(R) is discontinuous but piecewise differen-
tiable then the Fourier coefficients decay rate collapses and Gibbs phenomenon appears.
We point out that Gibbs phenomenon does not involve just the behaviour of the reducted
Fourier series near the discontinuities, it affects its general behaviour in the whole interval
also, providing oscillations and errors. Indeed, the slow decay rate of the coefficients makes
the high frequences play a stronger role in the sum.

A possible solution for this problem is to accelerate the decay rate using appropriate func-
tions.

Definition 11. A real and even function o(n) is called a spectral filter of order p if:
1. 0(0)=1,0W0)=0for1 <I<p-—1.
2. () =0 for |y > 1.
3. o(n) € CP~1, n € (—o0,00).

In the Definition []in the previous chapter we defined the m-partial Fourier series of a
function f € Li_(R) as

k=m

Smf(x) =Y e(flex(x) , zeR. (4.1)

k=—m

We are going to consider the following partial filtered series

k=m
Sqf@) = > 0<:L>Ck(f)ek(x) , z€R. (4.2)

k=—m
Observation 15. Given S7, f, we observe that:

o Due to its definition, the filter does not act on low coefficients and it affects mainly
the high ones.

o [t is essential for the filter to be a smooth function. As known, Gibbs phenomenon
does not disappear just cutting down the high coefficients, so a step function would
be useless as a filter.

o The second condition in Definition |11] allows us to write

o0

sof@) =3 a<Z)Ck<f>ek<x> . zeR. (43)

k=—00

25
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We give some well-known examples of filters [12]:

e The Fejér filter (first order)
o(m)=1-n. (4.4)

= . 4.5
o) = =2 (45)
e The raised cosine filter (second order)
1
o(n) = 5(1 -+ cos(rn)) (46)
e The exponential filter of order p (p even)
o(n) =e " . (4.7)

In this case, since o(1) = e~ does not respect the formal definition of filter, in
applications we set the value of o to the computer’s roundoff error.

We state the following theorem, which shows that using a filtering process we can recover
precision away from discontinuities in presence of Gibbs phenomenon.

Theorem 16. Let f be a CP-piecewise differentiable function with one point of discontinu-
ity £. Let o be a filter of order p and x € [—7, 7|, we denote d(x) = mingey, |x — & + 2kn|.
Let

k
St = Lo (3 ) (Do) (49
kEZ
Then
1/2
) = $%@)| < NP rw () on ([ IroWpar) L @)
R
where
p—1
K(f) = 3 d@! (700 = £96) [ 167l (1.10)
=0
Gi(n) = 0(771)7[_ ! (4.11)
and C' > 0 is a constant.
Proof. The proof is based on some lemmas and results, see [12]. O

4.1.2 A multi-dimensional extension

We want to extend the filtering process introduced in the previous lines.

This could be done in different ways and an intuitive one is to consider a tensor product
structure. This pattern is indeed easy to be constructed and applied and, since we know
the good properties of one-dimensional filters, we can be sure that the tensor product
extension is going to be efficient in our applications.

We recall that for f € L3 (RY), m € N we defined the bivariate partial Fourier series as

Suf@ = Y alfexl®) . wcR”, (4.12)

kez
ll%elloo <m
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where ||k||co= |[(k1, k2, ..., kv )|lco= sup{|ki|, |k2|, ..., |k, }. As in the last subsection, we
consider from now on multivariate piecewise differentiable functions.

Let o be a spectral filter according to the Definition Fixed a number N € N, we can
consider the vector of length 2N + 1

Jk:a<]]$) , - N<E<N (4.13)

and write

S f(@) = ower(fex(x) . (4.14)

keZ

We can construct a tensor product pattern
Ok = Ok, Oky---Ok, , —N <ki ko .k, <N. (4.15)
We can then consider the filtered series
Sf(@) = orcr(fen(x) . (4.16)
kezZv

Observation 17. The choice of the function o(n1,n2,....n) = o(m)o(n2)...o(ny) is well
justified. Indeed, it is easy to see that if o is a filter of order p then:

1 o(0)=1,(D%)(0) =0 for 1 < |a| <p—1.
2. 0-(77177727"'77711) =0 fO’I" ||(771>7727 17711)”00Z 1.

3' 0.(7]177727"')77V) S C’p—l'

It follows that the function o acts on high frequences in a reqular way as o in the univariated
case.

Observation 18. We defined o using a unique one-dimensional filter. Actually, one could
consider a more general definition

O=01"09"...-0y (4.17)

where 01,09, ...,0, are different filters which can be of different orders. Such a definition
could be interesting in the case we know the function which we are handling a priori. For
example, we could decide to apply a strong filter in a direction and a weak one in the other,
or if we know that the Gibbs phenomenon appears in only one direction (see Section m,
let us say x1-direction, we can set oo = 1 deciding to not act on the regular direction.

In fact, in applications we are not given the possibility to know the function which we are
dealing with. Therefore, we prefer a more “neutral” approach.

4.2 Adaptive filtering process

4.2.1 Introduction

Spectral filters act on the Fourier coefficients and do not consider the physical position of
the discontinuities.

It is known that the operation of such filters is equivalent to mollification in the physical
space. Indeed, defining the mollifier

7(y) = % > orer(y) (4.18)
keZ

we can write

Sfa) = Faot) = o [ "8 (y) f(x — y)dy (4.19)

2 J_,
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In order to gain more adaptivity, we slightly modify the filter vector introduced in |(4.13)
considering
k
Uk:0<|> , —N<k<N. (4.20)
N
With the filter vector defined in this way, we have more freedom in choosing the filter

function.
We take then the following function as filter

xp
» exp( 5 1) || <1,
of(z) = s — (4.21)
0 lz[ > 1,

observing that due to the new definition given in we are allowed to let p € R, p > 0.
This is a fundamental step for our discussion, since the parameter p = p(x, N) is the key
for adaptivity.

In the next subsection we consider a two-dimensional tensor product setting, referring to
the one-dimensional case discussion in |17].

4.2.2 Tensor product adaptive filtering

Let ¢ = (71, 72) € R? and let us consider the bivariate real function f(z), which is piecewise
analytic (and not just differentiable) according to Definiton and to the discussion of
previous chapter. For y = (y1,v2) € R?, we take

- 1
27(y) = ) Z oker(y) (4.22)
kez2
where
Tk = 0}, Ops (4.23)

in the sense given by [(4.20)| and [(4.21)]

Let & = (£1,&2) be the nearest point of discontinuity with respect to @ in the euclidean
norm.
For i = 1,2, we call dl(xz) = ‘I‘Z — 61’
We claim the following result, proved in the following lines of this section.

Theorem 19. Let f : R? = R be a piecewise analytic function. Then, defining
p = (p1,p2) = (Nnjdi(21))"/?, (Nn3da(z2))"/?) , (4.24)

we get the asymptotic exponential decaying of the error |f — S% f| away from the points of
discontinuity of f, where S f = f* ®7 and in we use the parameters p1,ps defined
in(4.24),

We define the two cut-off functions

(o) = 1if |z <1/2, (4.25)
PRET=00 it fas] > 1, '

with p1,ps € C(())o
We also define the auxiliary function

X(Y) = x=(y) = x1(y1)x2(y2) = p1(y1/d1(z1)) p2(y2/d2(x2)) - (4.26)
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We can split the error f — S f =f — f*x®7 in

S —feer@) = [ @@l - eyl -l

v oWl - e - i)y (4.27)
(—m,m)?

=1+ 1,

We observe that the y-function f(x)— f(x—vy) is smooth if |y1| < di(x1) and |y2| < da(x2).
We consider now the two-dimensional filter function

o(x) =P (x1)oP?(z2) (4.28)

and the Fourier transform

_ 1 o —ix-y
=z [y

1 L
T an? /Rz A1 (y1)e™ 103 (y2)e™ " dyrdys -

o(x)
(4.29)

The tensor product structure allows us to sample two univariated Fourier transforms sep-
arately and to write

k k
oo (3 (5)

_N / 67 (Nyy e~ N (V) 52y iNv(b2l/N) gy g
RQ

| (4.30)
OT(N (g1 +2mm0)) ¢ (N (32 + 2mnn) )e ™"+ Vdy

H g —ik|-
= m /[ﬂ. o %2 (bl (N(yl + 27rn1))¢2 (N(yg =+ 27T’I’L2))6 || ydy ,
m

where |k| = (|k1], |k2|). Observing then that

oK = /R2 37 (y)e kv dy | (4.31)

we get finally

2
DY) = 1y 3 RN+ 20m)65 (N (g + 2mm2) (4.32)

nez?

We estimate the absolute value writing

2
D7) < g O 67N (o + 27m))5 (N (32 + 27n2)

2
- % S ST (N (g1 +2mn))| Y 105 (N (g2 + 27n2)))| (4.33)

n1€Z no€Z
< ON?||o?*[|cm [|oP2 [[ere (N [yi ) 7P (Ny2]) 772

for y € (—m, )2, any p1,p2 and C > 0 a constant.
We state the following result.

Lemma 2. Let oP be as defined in|(4.21)l Then there exist constants M,,n, > 0 indipen-
dent from p such that
o?]ler< My (p!)?n;" . (4.34)
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Proof. See [17] Lemma 2.1. O
Observation 20. Since p > 0 can be a positive real and non integer number, we mean

Ifller = maXHf Nipe, kEN, (4.35)

pl=T(p+1). (4.36)
In view of the previous lemma, we get
D7 (y)| < ON?*Myy Moy (91D (02)* (N1 [y1 ) ™7 (N1 y2]) 772 (4.37)
We choose then
P =Prmin = (N0o, [y1)"? ) P2 = pomin = (N1a,|y2])"/ . (4.38)

With this choice of adaptive pi,p2 the localized mollifier ®7(y) admits an exponential
decay
|97 (y)| < Co(1+ Nlyi[)e VoD (4 +N|y2|) (N lel) /2 (4.39)

In particular, since 7 is supported at |y;| > ( U and ly2| > d ) , if we let N be larger
enough we obtain asymptotically

|Z1| < Cq p(1+ Ndy (xl))ef(Nn”dl(xl))l/z(l + Nd2(xz))ef(Nn”dQ(xQ))l/Q ; (4.40)

where the constant Cy ; depends now also on the function f.

We estimate now the second integral 7o = f(ﬂr )2 7 (y)[f(x) — f(x —y)|x(y)dy.
Let g(y) be defined as

9(y) = 92(y) = [f(z) — flxz —y)x(y) . (4.41)
For the Plancherel’s Theorem we can write
T, = / o (gy)dy= Y oxi(k), (4.42)
(=m.m)? by [N
[k | <N

where g(k) = g(ki, k2) are the Fourier coefficients of the function g.
First we work on such coefficients. We can estimate the smooth functions x1,x2 at the
same regularity of oP!,oP2 ie. fori=1,2

Ixiller < My, (pit)? (np,di(a:)) P (4.43)

writing then for p = (p1, p2),

Ixller= lxaller: lIxallers (4.44)
meaning
Ixllow= max |[D* x| (4.45)
1=P1
ko <p2

where k = (k1, ko) € N2.
Using the analyticity of the function f we get then

lgllor< Myllxllcr= Myllxallor [Ixz2llers - (4.46)
We can finally estimate the Fourier coefficients
9(K)| < Cllgller k| [ka| 772

2 — 2 _ (447)
< Cr (1) (Mpydr(z1)|k1]) 7P (p2!)* (np, da(2) [ka]) 72
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with Cy, = CM;M, M,, > 0 is a constant.
We are ready to estimate the integral Z,. In order to do this, we split the sum in in

Iy =81 +S+8+8, (4.48)
with
St =Y i<y (o) = D)(ogz — (k) ,
[ka|<N
Sz =Y ikien (o — (k) ,
\k2|SN (4 49)
Sz =Y kv (02 — (k) ,
[ko| <N
Sii= = s~ G(k)

|kg|>N

We are going to estimate these sums separately.
Since |0} — 1[,|o}2 — 1| < 1, we can then write

|S1| < [Sal 5 [S1] < [S5 (4.50)

and focus then on the other sums.
Let us consider Sy, we split it in Sy := So1 + Soo defined as

So1 =D ky1<ny2 (Uﬁ —1Dg(k) ,
kgl <N (4.51)
S22 = > Nj2<iky <N (O’Zi —1Dg(k) .

lko| <N

We start with Sp;1. Using the Taylor expansion and the result in [(4.47) we get

Sul < 30 Jol = 1Yl(k)|
lk1|<N/2
[ko| <N

Z LHJMH - <M>p1 (pl!)2 (p2!)2
p! (=32 \ N T2 (pydn (1) [Tr )71 (mpyda(w2) ka7 (4.52)

<
[k1|<N/2
[ko| <N
1 (p1!)? (p2!)?
=C —||o?? .
ro 2 ol len L) T e N Gt T

[ka| <N

With appropriated constants, we can estimate

Ham”Cpl(_%é)g Cop1ing P . (4.53)
Using such a result we have
1 (p1!)? (p2!)*
821 S C , s 0.p1 11
Sl < Cpp Z/ il e 4 g e TN (a2 TP
[ko| <N
(p!)? (p2!)?
< Cf,Co
Foen kl;m (M1 Moy da (21 )N )P (115, da(2) o] )P2
kg <N
(p1!)? (p2!)? (4.54)
< Cf, Ca
e k1|%1:\7/2 (M1 Mo da (1) N )P |k§N (o> da (2) ko] )P2
(p1!)? (p2))?
< C;,Co N
= ey da (1) NP Z (Mpad2(z2)| k2| )P2

|k2| <N

(p1!)?
(Npy,ovdr (z1)N)PL

S Cf7/770'1 Bd27p§ N
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where Cf oy = Ct,pCoy, Mp1,or = N1 Moy and B, ps 1s such that

(p2))?
< By ps » (4.55)
k2| <N (Mpy da(x2) | k2| )P2 b
dependent on da(z2) and
b2 = p; ‘= Imax {pQ,mina 2} s (456)

with pa min defined in [(4.38)[ (with a different constant n). The reason for this choice is
that we will consider such a ps min with a possible different 7 as adaptive parameter for
Ts, but we have to be sure about the convergence of the series in . Nevertheless, we
observe that as N becomes larger the series is convergent for po = pa min by definition of
this parameter.

We consider now Sps. Since ‘O’ii — 1] <1, here we have

|Saa| < Z oy — 113 (K]

N/2<|ky | <N
[ko|<N

Y okl

N/2<|ky | <N
[ko|<N

IN

Z (p1!)? (pa!)?

< o 4.57
a2 T Gy (e a7 (15 2) ] P2 (4.57)
[ko| <N
(p!)? (p2!)?
=C
e N/%'ZMN (1 (1) 1 )P %N (12 (2) [
(m!)?
< Ct, By, s N—P
= IR, dy () NP
with a little abuse of notation 7,, = 1,, /2 and the other constants as before.
We got
|S2| < [Sa1| + [Saz]
(p1!)? (p1!)?
< CfpoyBayp: N +C¢,Bgypyr N ———————
= Y fp,01-Pda,p; (Npy .o d1 (1) NP1 J:pPda,p; (1py da (21)N)P2 (4.58)

(p1!)?
<C,N— P
N : (nszdl (‘Tl)N)pl

where Ns, = Min {nplydlanpl} and ng = Cﬁﬂﬂl Bd21p§ + Cf»PBdMDS'
Concerning 83, the situation is totally symmetric to So. Splitting it into two series we
eventually get the estimate

1S5 < C N ) (4.59)
T (g da (@) NP2 '
with constants similarly to before 75, = min{7p,0,,Mp,} and Cs; = Cf 0, Bay pr +
Ct.pBay p;
The final step deals with Sy.
Sal < > a(k)]
lky|>N
Fa = (4.60)

< Z (p1!)? Z (p2!)?
TGy i@k £ (g da(w2) ka2
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We use the following general fact

1 <1 1 1
< ﬁ < /n ﬁdl’ = pjnp_l . (461)
Hence,
1?2 1 1?2
|Sa] < CppN (p1}) (p2!) (4.62)

p1 — 1 (pydi(z)|ka])Pr po — 1 (mpyda(a)|kal)P2

One could be worried about the two terms (p; — 1)™', (p2 — 1)~%. In fact, as N becomes
larger p1,p2 > 1, so since we are interested in the asymptotically behaviour of the estimate
in the next lines we will simply write Cs, = Cy,,(p1 — 1)1 (p2 — 1)7L.

In the end, we have then asymptotically

| Zo| < |S1] + |Sa| + |Ss] + |S4l
< 2|Sa| + |Ss| + |S4l

(p1!)? (p2!)? 2 (p1!)? (p2!)?
<20, N—r—-r——-—+C,N—-"-——"———+C,,N .
2 (Nsydi () N)PY 7 (ssda(w2) N)P2 U (mpydi ()[R [)P (mpyda(22) Ko )P2
Choosing then
P1 = Pimin = (Nmdy (1‘1))1/2 , P2 = D2,min = (N772d2($2))1/2 ; (4.63)

with 71 = min {n,,, s, } and n2 = min {n,,, ns, }, we get

ITo| < 205, Ne~WNmdi@)'? o Ne=(Nmeda(e2)!? 4 ¢ N2e=(Nmdi (@) /2= (Nnpda(w2))/?
(4.64)

Coming back to the very beginning of this section,

|f = SK I < [T + |22
< Cy (1 + Ndy(z1))e” Nordi @)1 Nda(2))e~Nimada(@2)!/? |
+20,,Ne~(Nmdr@)'? | o Ne=(Nnada(w2))'/2
< 20, Ne-(Nnidi@)'? 4 o N~ (Nm3d2(22))

+ [Cop(1+ Ndy (21))(1 + Ndy(w2)) + Cyy N2e~ Nnida(wi) /2 ~(Nnjda(w2))' /2
(4.65)

+ 084N2€—(N771d1(901))1/2—(1\7772d2(91?2))1/2

1/2

where 77? = min {7701 ’ 771}7 77; = min {no’za 772}'
We have obtained then asymptotic exponential accuracy recovery away from the disconti-
nuities with the adaptive

p = (Nnjdi(21))"/?, (Nn3da(x2))'/?) . (4.66)

Observation 21. In this section we required the analyticity of f away from its disconti-
nuities. In f is not such smooth, we lose the exponential accuracy obtaining a polynomaial
decay rate.

Observation 22. The tensor product structure allows us to extend the result to a multi-
dimensional setting. The adaptive parameter in this general case is

p = (Nnidi(21))"?, (Nmsda(@2))'/?, .. (Nmidy (x))"?) . (4.67)
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Chapter 5

Numerical tests

5.1 Introduction to the problem

Let f:R” = R, f € Fi(R") as in Definition [10| and v = 2, 3.

We consider the problem of reconstructing the function f from a set of samples, using the
theorical instruments about interpolation and filtering introduced in the previous chapters
and considering f as the underlying function of a two or three-dimensional image.

First of all, we discuss how we can evaluate the final reconstruction f' which we will get
in the end of the process. The parameters described in this section are valid in the three-
dimensional case also.

e In applications we mainly deal with discontinuous functions, that is the case in which
the Gibbs phenomenon appears.
Thus, we do not consider the behaviour of the error in infinity norm ||f — f|ls
to evaluate our results, since as known we can not expect to gain more and more
precision in the points where the function f is discontinuous, and so there is no hope
to make the error go down increasing the number of sample points.

e In order to measure the quality of a reconstructed image, a common used parameter
is the PSNR (Peak-Signal-to Noise-Ratio).
If F, F are the two n X n matrices representing the images obtained evaluating re-
spectively f, f on a suitable mesh grid, the PSNR parameter is defined as

B 2
PSNR(F, ) = 10 - log,y — 5P (5.1)
MSE(F, F)
where maxp is the value of the maximum element (pixel) of F' and
A B

i=1 j=0

is the mean squared error.

We observe that such a parameter is strictly connected to the L%norm error || f— || 2.
For this reason, the PSNR is not a good parameter for our applications.

Indeed, the filtering process makes the Gibbs phenomenon disappear but it also
causes the loss of the optimal properties of the initial Fourier-like interpolant in
minimizing the L2-error (see [16]). Thus, the final reconstruction f it’s not optimal
with respect to the PSNR parameter.

e A good parameter that can be considered is the SSIM (Structural Similarity In-
dex). This parameter has been introduced to evaluate the quality of a reconstruction
according to human visual perception and it is nowadays one of the most used pa-
rameter in imaging science [18§].

35
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Considering two k x k submatrices X, Y of F, F respectively, the parameter is defined
as
(2papy + 1) (202y + ¢2)

SSIM(X,Y) = ,
SRR V7 N R Ry

(5.3)

where ji., pty are the average values of X and Y, 0,,0, are the variances, o,y is the
covariance between the two matrices and ¢y, co are parameters defined as

Cl1 = (kﬁlL)2 Cy = (kQL)Q s (54)

where L is the dynamic range of the pixel-values and k; = 0.01, k2 = 0.03 by default.
The parameter SSTM (F, F), which is a value between —1 and 1, is computed as the
mean of the parameters given by different submatrices.

We refer to this parameter to evaluate our results, but as we will see the human sight
perception will play an important role too.

Two-dimensional experiments

The setting of our experiments in Matlab is:

e The domain is the square [—1,1]2.

e The evaluation matrix is a 201 x 201 matrix. The step of the grid is indeed s = 0.01.

e A modified version of the Chebfun 5.3.0 package, which is avaiable in the inclosed

CD.

We describe the steps of our procedure, considering as example the function f : [-1,1]? —
R defined as

(5.5)

1 2?2 +y*<(0.6)%,
flz,y) = .
0 otherwise .

Figure 5.1: Function f.
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Figure 5.2: Function f as a gray scale image.

5.2.1 Lissajous sampling

We want to reconstruct the function f sampling on Lissajous nodes. The Chebfun package
is suitable for our purposes, since it already contains an algorithm which performs the global
polynomial interpolation on Padua points in an optimized way. We can then slightly modify
the package, obtaining a fast and efficient way to interpolate on Lissajous nodes.

First, we find the Lissajous nodes and the relative weights given by a chosen curve 7532’33).
pars=[32,33,2]; % [n1,n2,flag]
x=lissapts([pars(1),pars(2)],pars(3));

The function lissapts.m included in the package is defined in the following way.

function [xy,idx,w] = lissapts(n,e,range)

% (C) Francesco Marchetti 23.03.2016

b

% Note: lissapts.m is a variation of LSpts.m by Wolfgang Erb
b

% USAGE of

% [xy,idx,w] = lissapts(n,e,range)

A

% Computes Lissa (LS) points with parameter nl, n2 (relatively prime)
% and e for a given range.

% If range is not given then range = [-1, 1, -1, 1].

% If n is a natural number then n = [n,n+1].

h

Y o
% INPUT:

A

% n : vector of parameters of the Lissajous curve.

% e : e = 1 (degenerate), e = 2 (non-degenerate).

% range : [x.start,x.end,y.start,y.end] range of the x-

h and y-coordinates.

b
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% OUTPUT:

yA

h Xy
% idx
h

% ow

b

: 2-columns array of x,y coordinates of the LS nodes.

: logical matrix which denotes the entries of the Chebyshev
tensor product grid that form XY.
1-column array of weights of the LS nodes.

We can then write

fx=f(x(:

,1,x(:,2));

f_lissa=chebfun2(fx,[-1 1 -1 1],’lissa’,pars);

1.5 5

Figure 5.3: Plot of f lissa. The Gibbs phenomenon is clearly visible.
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Figure 5.4: f lissa as a gray scale image
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Late versions of Matlab provide a default function to calculate the SSIM parameter. We

have
SSIM(f, f lissa) =0.5122 .

5.2.2 Spectral filtering

Using
C=chebcoeffs2(f_lissa); % Fourier coefficients
C(abs(C)<1le-10)=0; % Set to 0 if too small

we get the spectral coefficients of f lissa in a matrix C.
We recall the definitions of some filters.

e The Fejér filter (first order)

e The sinc filter (first order)

e The raised cosine filter (second order)
1
a(n) = 51+ cos(mn)) .

e The exponential filter of order p (p even)

anP

o(n) =e™ ",
where « is the computer’s roundoff error.
Taking as example the raised cosine filter, we write
etal=[0: (pars(3)*pars(1))].*(1/(pars(3)*pars(1)));
eta2=[0: (pars(3)*pars(2))].*(1/(pars(3)*pars(2)));
filt1=1/2.*(ones(1,length(etal))+cos(pi.*etal));

filt2=1/2.*(ones(1,length(eta2))+cos(pi.*eta2));
Fil=filt2.’*filt1l;

P_filt=C.%F1; % Application of the filter

f_filt=chebfun2(P_filt,[-1,1,-1,1],’coeffs’);

1.5 5

Figure 5.5: Plot of f filt. We managed to dimish the Gibbs phenomenon.

(5.6)

(5.7)

(5.8)
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Figure 5.6: f filt as a gray scale image

We have
SSIM(f, f_filt) =0.8232. (5.11)

5.2.3 Edges detection and distance matrix

As described in the previous chapters, we are going to apply an adaptive filter to recover
more precision (Section . In order to do it, we need to know where are the disconti-
nuities, where is the nearest point of discontinuity related to each non-discontinuous point
and what is the distance between them.

The edge detection can be performed by the default Matlab function edge, in particular
we use the Canny edge-detector.

We observe that in the polynomial reconstruction there are no real discontinuities. Indeed,
the edge-detector find the large variation zones of the gradient and it claims that an un-
derlying discontinuity of the original function is hidden there.

We apply the algorithm to the filtered matrix f filt, since the massive perturbations in
f_lissa could be wrongly detected as discontinuities.

s=0.01;

t=-1:8:1; % Mesh in the square

[X,Y]=meshgrid(t);

f_filt_mesh=feval(f_filt,X,Y);

peaks=edge(p_filt_mesh, ’Canny’, []1,3); % €3’ is a chosen parameter
peaks=double (peaks) ; % peaks is a logical matrix

5.2.4 Adaptive filter application

We can efficiently find for each point its closest discontinuity point with respect to the
Euclidan distance using the function ipdm.m (Inter-Point Distance Matrix)m , avaiable in
the inclosed CD.

function d = ipdm(datal,varargin)

% ipdm: Inter-Point Distance Matrix
% usage: d = ipdm(datal)

% usage: d = ipdm(datal,data2)

"http://it.mathworks.com/matlabcentral /fileexchange/18937-ipdm-inter-point-distance-matrix
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% usage: d = ipdm(datal,prop,value)

% usage: d = ipdm(datal,data2,prop,value)
A

hL...]

/A

% Author: John D’Errico

% e-mail: woodchips@rochester.rr.com
% Release: 1.0

% Release date: 2/26/08

Let then & = (£1,&2) be the closest discontinuity point related to the point @ = (x1,z2).
We can find the two distances

di =di(z1) =[z1 —&| , do=da(22) = |z2 — & (5.12)
We consider then as suggested by the theory
p1=(miNid1)"? | py = (p3Nady)'/? (5.13)

where N1, No are natural numbers which depend on the degree parameters of the Lissajous
curve which we are considering.

We are ready then to perform the adaptive filtering process.

A complete script including all the previous passages and a numerical implementation of
the adaptive filter is avaiable in the CD. We point out that in applications we use a unique

n=mn;=n (5.14)

in the final expression |(4.24)]
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Figure 5.7: Final result after adaptive filtering.

Let f apt be the final result in Figure We get

SSIM(f, f_apt) = 0.6592 . (5.15)
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Figure 5.8: As example, this would be the result if we applied the edge-detector to f lissa.

We can observe that f apt is affected by a striped distortion, given by the tensor-
product structure of the adaptive filter.
In order to improve the final result and to avoid the appearance of such a distortion, we
can modify the definition of the adaptive parameters trying to improve our result.
We point out that what follows in the section is conjectured from sperimentation and
observations and it is not supported by the theory as before.
We look for a unique parameter p = p; = po which depends on the euclidean distance

d(@) = & — &|= /& + . (5.16)
Then, we define first

N =,/N+ NZ, (5.17)

and we slightly modify the initial parameters in
p1=@ONd)"? | py=(Ndy)'/?. (5.18)

We can define then
p=1\/pi+p3 =nNd(z) (5.19)

In Figure we see the new result f* apt, which is no more affected by the considered
distortion. Moreover,

SSIM(f, f* _apt) = 0.6120 . (5.20)
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Figure 5.9: The result f* apt.

5.2.5 Non-linear adaptive parameter

In the filtering process we have to deal with two different situations:

e Using a strong filter we get a robust reduction of the Gibbs phenomenon all over
the image, but we also cause a large smoothing effect near the edges of the object
represented by the function.

e Using a weak filter we almost preserve the function near the discontinuities, but we
can not greatly reduce the Gibbs phenomenon.

Our aim is to find a balance between these two aspects, therefore we can make a step
forward.
The parameter p depends linearly on d(x). We conjecture what follows.

Conjecture 23. Let us consider the function ® : [0,+00) — [0, +00) with the following
properties:

e $(0)=0.
o & is a regular and increasing function in [0,400) .

o ® has a saturation property, that is there exists € > 0 such that

O(x) >z (5.21)

for xz €0, €.

We claim that there exists at least one function with the previous properties, possibly de-
pendent on the setting of the sperimentations, such that using the adaptive parameter

p = nN®(d(x)) (5.22)

we can improve the final result of the process in terms of resolution of Gibbs phenomenon
and 1mage reconstruction.
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A possible family of functions which have the described properties and which we con-
sider for our experiments is

Dg(z) = 27, (5.23)
where 0 < 8 < 1. Then we can define a new parameter
ps = nN(d(z))" (5.24)

The new parameter pg is more sensitive and has a larger variation in small distances with
respect to the linear one. On the other side, pg has a saturation effect as the distance
increases.

15

0.5

Linear
Man-linear

Figure 5.10: As example, ®5(z) = x (linear) and ®5(z) = 2'/3 (non-linear).
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Figure 5.11: Final reconstruction f1/4 apt using pg with = 1/4.

SSIM(f, f* apt) = 0.7073 . (5.25)
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At this point one could wonder about what is a good choice for the parameter § and how
much we can let it become close to zero. Of course the choice depends on the step of the
grid which is used in sperimentations, since a large step is not sensitive to small values of
the parameter and so it would make no sense to set 5 too small, and can be made through
a computational search.

In our setting with the step s = 0.01, a good choice is for example 5 = 1/4.

A complete code related to the considerations of this subsection in avaiable in the CD.

In the next applications we will use then p;,4 as adaptive parameter.
The SSIM value after the first filtering process is higher than the value related to the final
reconstruction. As we said in the introduction of the chapter, the SSIM parameter is good
to evaluate our results, but for example it can not appreciate so deeply the edges definition,
which is the best quality of the adaptive filtering process.
Therefore, in applications one would prefer the final result, despite the values of the pa-
rameters.

5.2.6 More numerical results

We consider the following two functions defined in [—1, 1]2.

2 |2/ <05, [y <05,
—08<z<-065, |y <08,

@9 =305 065<e<08, yl < 0.2,
otherwise .
2 (x +0.4)% + (y +0.4)? < 0.42, (5.26)
1.5 (x—0.5)*+ (y—0.5)* < 0.3%,
faz,y) = 41 (x —0.5)% + (y +0.5)? < 0.22,
0.5 (x4 0.5)% 4+ (y — 0.5)2 < 0.1%,
e~ (@) otherwise .
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Figure 5.12: Function f;.
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Figure 5.13: Function fs.

We want to observe the behaviour of the SSIM parameter between these functions
and the reconstructions which are obtained as the degree (n,n + 1) of the Lissajous curve
becomes larger.
At first, we investigate the behaviour of the parameter in the application of the first spectral

filter.

Let us start with f.

SSIM with Lanczos filter
T T T T

SSIM with exp filter
T T T T 1 T

T
———Filtered Filtered
Original g r Original

L L L L L L L L L L L L
10 20 30 40 50 60 70 80 10 20 30 40 50 60 o

(a) Using the exponential filter with p = 4. (b) Using the sinc filter.

1

09

08

07

06

05

04r

03

02

We

SSIM with raised-cosine filter SSIM with Fejer filter

80

07

L L L L L L L L L L L L
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70

(c) Using the raised-cosine filter. (d) Using the Fejer filter.

Figure 5.14: Different results for each different filter for f; .

observe that the Fejer filter is not so effective for very high degrees.

80
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Figure 5.15: For n = 15, the first reconstruction from Lissajous sampling.
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Figure 5.16: Result after sinc filter application for n = 40.
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For fy we get the following.

SSIM with Lanczos filter

SSIM with exp filter

T

0.45 . . . . . . 0.45 . . .
10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
(a) Using the exponential filter with p = 4. (b) Using the sinc filter.
SSIM with raised-cosine filter SSIM with Fejer filter

0.95 T T T T T T

Dg’ 1

10 20 30 40 50 60 70 80 10 20 30 40 50 60 70 80
(c) Using the raised-cosine filter. (d) Using the Fejer filter.

Figure 5.17: Different results for each different filter for f, .
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Figure 5.18: For n = 15, the first reconstruction from Lissajous sampling.
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Figure 5.19: Result after sinc filter application for n = 40.

We can also analyze the behaviour of the SSIM parameter after the application of the
adaptive filter. We observe that in this case the first filtering process is important just in
order to apply the edge-detector in an efficient way.

Therefore, without loss of generality we decided to use the sinc filter among the others.
Moreover, in the following applications we use the same parameters in the edge-detector
and in the adaptive filter for both the functions and for all the degrees. We point out
that for obvious reasons the parameter n should not depend on the different choices of the
underlying function, while could be slightly modified for different degrees N related to the
considered Lissajous curve.

More information about the setting of the parameters can be found in the inclosed CD.

S5IM with adaptive filter

0.9 T T

s Filte red
Original

0.8

10 20 30 40 50 60 70 80

Figure 5.20: SSIM behaviour after adaptive filtering process for f;.
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SSIM with adaptive filter
D. 85 T T T T T

Filtered
0.8 Original

0.75
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0.65
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045 i 1 i i 1 1
10 20 30 40 50 60 70 80

Figure 5.21: SSIM behaviour after adaptive filtering process for fs.

(a) n = 25. (b) n = 40.

Figure 5.22: Two results for fj.

(a) n = 45. (b) n = 65.

Figure 5.23: Two results for fs.
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5.3

MPI applications

We can apply all the previous procedures to improve the image which we get from a MPI
scanner. The setting will be the following.

The domain is the square [—1,1]2.
The evaluation matrix is a 201 x 201 matrix. The step of the grid is indeed s = 0.01.

A modified version of the Chebfun 5.3.0 package, which is avaiable in the inclosed
CD.

Two 201 x 201 matrices containing the two phantoms which we consider.

The sampling process is a simulated procedure, representing the mode of operation
of a real MPI scanner placed at the University of Liibeck. For technical reasons,
the scanner needs to perform the sampling on a non-degenerate Lissajous curve
of maximum degree (32,33). Thus, the curve 7532’33) is the only curve which is

considered in this section.

Figure 5.24: The Lissajous curve 7532733) and nodes.

We call A and B the two phantoms which we consider. They are displayed in the following
figures.

20 a0 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

(a) The phantom A. (b) The phantom B.
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The polynomial interpolation on the Lissajous nodes given by 7532’33) brings the two

following images.

20 40 60 80 100 120 140 180 180 200 20 40 80 80 100 120 140 160 180 200

(a) The phantom A reconstructed from Lissajous (b) The phantom B reconstructed from Lissajous
sampling. SSTM = 0.665. sampling. SSTM = 0.616.

Starting with A and then taking B, we can follow the path of the previous section and
we experiment first with the classical filter functions which we have introduced and then
with the presented adaptive filter.

20 40 60 80 100 120 140 160 180 200
20 40 80 80 100 120 140 160 180 200

S‘;I}\leigo %};Z exponential filter with p = 6. ) 1550 the sine filter. SSTM = 0.736.

20 40 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

(c) Using the raised-cosine filter. SSIM =0.738.  (d) Using the Fejer filter. SSIM = 0.539.

Figure 5.27: Different results for A.
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20 40 80 80 100 120 140 180 180 200
20 40 80 80 100 120 140 160 180 200

E;g,[%ligo t(;}z) exponential filter with p = 6. (b) Using the sinc filter. SSIM = 0.674.

20 a0 60 80 100 120 140 160 180 200 20 40 60 80 100 120 140 160 180 200

(c) Using the raised-cosine filter. SSIM =0.673.  (d) Using the Fejer filter. SSIM = 0.496.

Figure 5.28: Different results for B.

40 60 80 100 120 140 160 180 200

20 40 60 80 100 120 140 160 180 200 20

(a) Final reconstruction of A after adaptive filter- (b) Final reconstruction of B after adaptive fil-
ing process. SSITM = 0.701. tering process. SSTM = 0.649.

A complete script with all the passages of this reconstruction is included in the inclosed
CD.
We observe that the image related to the phantom B is more perturbated than the one
related to A, due to the position of the phantom which is not completely “included” in
(—1,1)2 and it goes up to the boundary, causing a loss of quality in the reconstruction. In
these cases, one has to pay more attention in choosing the parameters in the algorithm,
avoiding the wrong detection of non-existing edges.
In practice this is not a big problem, since the scanner can move its field of view, solving

then the positioning problem.
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5.4 Three-dimensional experiments

In this section we perform some experiments in the three-dimensional case, referring to
Chapter 2] Our setting is:

e The domain is the cube [—1,1]3.

e The evaluation matrix is a 21 x 21 x 21 matrix. The step of the grid is indeed s = 0.1.

e The C'hebfun package, which is avaiable in the inclosed CD and in the official website
(not necessarily the modified version).

We follow the same steps of the two-dimensional case. What slightly changes is the way
we do it.

1. In order to reconstruct a test function from the samples and to apply the spectral
filtering process we use the function hyperlissa__pro.m (avaiable in the inclosed CD),
which is a modification of hyperlissa.mﬂ

function [hypval,cfs]=hyperlissa_pro(deg,pts,f3,flag,filter);

h

h
h
h
h
h
h

h
h

h
h
h
h
h
h

h
h
h
h

Francesco Marchetti, September 2016

This function is a modification of hyperlissa.m from Stefano De Marchi
and Marco Vianello

It computes the hyperinterpolation polynomial of a trivariate function
at a rank-1 Chebyshev lattice on a Lissajous curve of the cube, applying
if desired a spectral filter

NOTE: to be used in connection with the Chebfun package
http://www.chebfun.org

input:

deg: hyperinterpolation degree

pts: 3-column array of evaluation points

£3: Trivariate function handle

flag: O no-filter, 1 use filter

filter: natural number to choose the type of filter

output:

hypval: 1-column array of values of the hyperinterpolation polynomial
at the points pts

cfs: hyperinterpolation coefficients

2. The edge-detection is performed using the default edge.m Matlab function combined
with the function canny.mﬂ As observable in the example script in the CD, we use
the function edge.m on the different two-dimensional slices of the 3D matrix repre-
senting the image in order to find suitable tresholds for the edge detection, then we
pass the found treshold to canny.m to find the edges in the matrix. The tresholds
setting is already included in canny.m, but the results are often not satisfying.

*http://www.math.unipd.it/ marcov/CA Asoft.html
®https://it.mathworks.com /matlabcentral /fileexchange/45459-canny-edge-detection-in-2-d-and-3-d
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function [e, thresh] = canny(im, varargin)

%CANNY is an implementation of the Canny edge detector

% E = CANNY(IM) takes a 2-D grey-level image or a 3-D array representing
% a volume and returns a 2-D or 3-D logical edge map using centred

% differences and non-maximum suppression. No smoothing or thresholding

% 1s done when only one argument is given.

h

/2

h

% E = CANNY(IM, SIGMA, THRESH) also carries out hysteresis thresholding.
%  THRESH has the same functionality as the threshold argument of EDGE.

%  (Name-value pairs may be used instead of the THRESH argument for more

%  control.)

h

h [...]

We use the function ipdm.m as before in order to find the distances between points
and related closest discontinuities.

3. The adaptive filtering is performed in the same way with respect to the two-dimensional

case, through tensor product extension and then considering a modified adaptive pa-
rameter.
Since in the three-dimensional setting we consider a step of the grid which is 10 times
larger with respect to the one chosen in the two-dimensional case, the adaptive filter
can not express all its good properties about adaptivity and definition of the edges.
Moreover, due to computational issues we experiment just in the case with m = 10
as degree of the three-dimensional Lissajous curve, and we use 8 = 4 in the adaptive
parameter without knowing if it is optimal for this setting.

5.4.1 Numerics

(a) The function f;. (b) The function fs.

Figure 5.30: A representation for the two functions.

We consider the functions fi, fo from [—1,1]3 to R defined as

1 22+ +22<(0.6)?,

) (5.27)
0 otherwise .

f1($,y,2’) = {
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(1 (4052 + (y+0.52+ (240.5)2 < (0.4)%,

1 (z—-05)%+ (y—0.5)2%+ (2 —0.5)2 < (0.4)%,
folz,y,2) =1 (2+0.5)% + (y — 0.5)% + 22 < (0.4)%, (5.28)

1 (z—05)?+ (y+0.5)% + 22 < (0.4)°

0 otherwise .

SSIM with exp filter SSIM with Lanczos filter

35

Figure 5.31: Different results for f; with exponential and Lanczos filters.

SSIM with raised-cosine filter SSIM with Fejer filter

Figure 5.32: Different results for fo with raised cosine and Fejer filters.

We can perform the adaptive filtering process, obtaining the following results. We
recall that we used the degree m = 10.

Table 5.1 SSIM values

Functions h fo
Lissajous reconstruction 0.1876 0.1771
After adaptive filtering  0.3285 0.2200

We observe an improvement of the SSIM value in both cases.
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(a) The reconstructed function fi. (b) The reconstructed function fo.

Figure 5.33: The reconstruction of the two functions using the adaptive filter.
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Chapter 6

Conclusions

This work arises from a collaboration between the University of Padua and the University
of Liibeck and it started during an Erasmus placement exchange program of the autor in
Germany.

1. The Lissajous sampling is a stable and effective way to reconstruct a function without
using a very large number of sample points and it is a suitable procedure for MPI
applications. However, in the reconstruction of discontinuous functions it is inevitable
to face the Gibbs phenomenon.

2. Classic Fourier spectral filtering methods are efficient in dimishing the distortions
given by the Gibbs phenomenon, but they also provide a general smoothing in the
image and they cause a loss of definition.

In our setting, these spectral methods are useful to improve the image before the
application of the edge-detector. In order to get an acceptable result, we have to focus
on the resolution of strong warps given by the Gibbs phenomenon, since otherwise
they could be interpreted as edges by the detector.

Therefore, one should prefer a proper strong filter, even if some precision is lost
near the existing edges in the figure. We performed the application of such filters,
obtaining good results.

3. The adaptive parameter suggested by the theory related to the adaptive filter is af-

fected by some distortions given by the consideration of separated one-dimensional
distances in a tensor product setting.
In order to improve the final result, we conjectured a different parameter, first linearly
dependent from the euclidean distance between points and related closest disconti-
nuities. After that, we presented the idea of considering a non-linearly dependence
from the distance in the parameter. This has brought an improvement in the general
quality of the final reconstructed image, hence this conjecture could be investigated
in the theory in order to find a related theorical background.

4. The three-dimensional case is much more expensive in terms of computational costs
with respect to the two-dimensional case. Therefore, we experimented with a larger
step in the grid and we could not manage to perform deep tests as in the previous
case. Thus, the results obtained could be enriched and improved considering a setting
which guarantees more accuracy.
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