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Introduction

The Magnetic Particle Imaging (MPI) is an emerging medical imaging technology which
attracted the interest of di�erent research groups in the last years [14]. The technique of
the MPI is based on the detection of a tracer which consists of superparamagnetic iron
oxide nanoparticles through the superimposition of di�erent magnetic �elds.
When the particles are excited by oscillating magnetic �elds, an electromagnetic induction
phenomenon is induced and measured. The acquisition of the signal which comes from the
particles is performed moving a �eld free point along suitable sampling trajectories, using
appropriate magnetic gradient �elds.
A possible choice is to move along Lissajous curves [13], but the problem of selecting the
set of sampling points to take along the curve is not trivial. The �rst time in which the
Lissajous curves have been considered in polynomial interpolation and approximation topic
is the debut of the Padua points.

Let n be a positive integer. The Padua points are the set of points (xm, yk) ∈ [−1, 1]2

de�ned as

xm = cos

(
(m− 1)π

n

)
, yk =


cos

(
(2k − 2)π

n+ 1

)
if m is odd ,

cos

(
(2k − 1)π

n+ 1

)
if m is even ,

(1)

where 1 ≤ m ≤ n+ 1 and 1 ≤ k ≤ n/2 + 1.
They can be seen as a modi�ed version of Morrow-Patterson points and they are equis-
paced with respect to the Dubiner metric [8].
They were �rst presented in 2005 in [7] and they turned out to be the best nodes for poly-
nomial interpolation on the square. Indeed, if ΛPDn is the Lebesgue constant in [−1, 1]2

related to the set of Padua points, then we have the very good result ΛPDn = O(log2(n))
and it is well known that the Lebesgue constant gives information about how suitable a
set is for global polynomial interpolation on a certain domain.

In the light of these considerations, e�orts have been made in order to understand more
about this particular set of points and di�erent de�nitions for this set were presented.
First of all, the Padua points PDn are related to the Chebyshev-Lobatto points given by

Cn :=

{
znk := cos

(
kπ

n

)
, n ∈ N , k = 0, ..., n

}
. (2)

We can decompose Cn in the disjoint union

Cen = {znk , k = 0, ..., n , j even} ,

Con = {znk , k = 0, ..., n , j odd} ,
(3)

getting

PDn = (Cen × Cen+1) ∪ (Con × Con+1) . (4)

iii
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Figure 1: Padua points with n = 6. They are the union of an even grid (red) and an odd
one (blue)

We observe that #PDn = (n+1)(n+2)
2 which is the cardinality of the space of bivariate

polynomials of degree ≤ n.
For the next fundamental de�nition for the Padua points we consider the following para-
metric curves:

γ1
n(t) = (− cos(n+ 1)t,− cosnt) ,

γ2
n(t) = (− cosnt,− cos(n+ 1)t) ,

γ3
n(t) = (cos(n+ 1)t, cosnt) ,

γ4
n(t) = (cosnt, cos(n+ 1)t) ,

(5)

where 0 ≤ t ≤ π , n ≥ 1.

Figure 2: Padua points in Figure 1 are generated by the curve γ1
6(t) and they belong to

the �rst family
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The curves are contained in the square [−1, 1]2 and they are particular Lissajous
curves. We can de�ne four di�erent families of Padua points writing, for i = 1, ..., 4,

PDi
n =

{
γin

(
k

n(n+ 1)
π

)
, k = 0, ..., n(n+ 1)

}
. (6)

Hence, each family of Padua points is the union of the self-intersection points of γin and
the points where the curve touches the boundary of the square [8].
The four families have the same properties and they di�er just for a rotation with respect
to the center of the axis. Moreover, exactly two points of the set are always lying in two
consecutive vertices of the square.
This relation between Lissajous curves and Padua points stimulated interest in such a class
of curves for polynomial interpolation issues.

In the �rst chapter we introduce a more general setting, which allows us to de�ne the
Lissajous node points. Lissajous nodes are provided with the similar excellent properties
of Padua points about stability and can be divided in two classes: nodes given by degener-
ated Lissajous curves and nodes extracted from non-degenerated Lissajous curves. We see
that Padua points are Lissajous nodes given by a particular degenerated Lissajous curve.
After a general introduction, we focus our attention on the non-degenerate case. The main
reason for this choice is that non-degenerate curves are more suitable for applications in
MPI, since it's preferable to take the centre of the square as Lissajous node in order to
calibrate the scanner.

Figure 3: A non-degenerate Lissajous curve.

We state some important results about interpolation on Lissajous nodes, using pecu-
liar quadrature rules for such a set of nodes. Almost every result which we state for the
non-degenerate case is valid, �xing some parameters, for the degenerate case also.
For this chapter we mainly refer to [10], where both cases are discussed.

In the second chapter we move to the cube [−1, 1]3, considering three-dimensional de-
generate Lissajous curves [3] [4].
Recent results have been reached in this topic, providing algebraic cubature formulas on
particular sets of points lying on these curves. Using conjectured optimal parameters,
we can perform the hyperinterpolation polynomial approximation, which considers a dis-
cretized expansion of a function in series of chosen orthogonal polynomial up to a �xed
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total-degree.
The hyperinterpolation coe�cients can be computed by a single one-dimensional discrete
Chebyshev transform. Moreover, the hyperinterpolation operator norm has the minimal
growth property.

In applications, we typically deal with objects represented by underlying discontinuous
functions. This causes the arise of the Gibbs phenomenon and as a consequence a distor-
tion in the image reconstruction given by the Lissajous sampling. The connection between
Chebyshev and Fourier series let us to consider the polynomial (hyper)interpolant as a
Fourier series.
In Chapter 3 we recall some well known facts about Fourier theory and we de�ne a proper
set of functions for our applications, showing that the Gibbs phenomenon is caused by the
slow decreasing of the Fourier coe�cients related to discontinuous functions. We present
the topic �rst in one dimension and then in a general multidimensional case.

Figure 4: An example of the appearance of the Gibbs phenomenon.

In the fourth chapter we start to discuss about how we can dimish this distortion phe-
nomenon and recover precision, looking for a fast and as e�cient as possible solution.
A classic method is the application of Fourier spectral �lters on the coe�cients of the poly-
nomial (hyper)interpolant (see [12] [15] for possible applications). We de�ne what we mean
with �lter functions and we present some common used one-dimensional �lters. Then, we
extend the �ltering process to a multidimensional setting through a tensor product struc-
ture.
The spectral �ltering dimishes the Gibbs phenomenon but it also causes a general smooth-
ing in the image with a loss of de�nition and precision. In order to get a better result,
we introduce the concept of adaptivity, considering a �lter function whose level parameter
depends on the physical position of every point in the domain. In particular, considering
an adaptive parameter which changes with respect to the distance between each point and
its correspondent closest discontinuity we prove that we can get an asymptotic exponential
reduction of the error away from the discontinuities, assuming some hypothesis about the
regularity of the underlying function.

In Chapter 5 we do some numerical experiments applying the results of the previous chap-
ters. First we introduce the reconstruction problem and the parameter which we use to
evaluate the images, the SSIM, justifying this choice among other possible solutions. After
that, we describe the setting of our two-dimensional experiments and we describe all the
steps needed to reach the �nal results. The complete Matlab codes are avaiable in the
inclosed CD.
Applying the adaptive �ltering process, we notice that the tensor product structure com-
bined with the separation of the distances in one-dimensional ones causes the appearance
of a distortion phenomenon which a�ects the �nal result. In order to get rid of such a prob-
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lem, we conjecture an e�cient solution modifying the de�nition of the adaptive parameter
of the �lter.

Figure 5: A reconstruction (right) of a test function (left) using the modi�ed adaptive
parameter.

We extend the procedure doing some experiments in three dimensions also.

In the last chapter we write some conclusions and considerations about this work and
about the obtained results.
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Chapter 1

Lissajous node points in the square

1.1 Lissajous curves and nodes

Let n = (n1, n2) ∈ N2, s = (s1, s2) ∈ R2 and u = (u1, u2) ∈ {−1, 1}2.
We call a two-dimensional Lissajous curve the closed curve γns,u de�ned as

γns,u : [0, 2π]→ [−1, 1]2 , γns,u(t) :=

(
u1 cos(n2t− s1π/(2n1))
u2 cos(n1t− s2π/(2n2))

)
. (1.1)

From now on we assume that the numbers n1 and n2 are relative prime. This condition
implies that 2π is the minimal period of γns,u.
The Lissajous curve γns,u is called degenerate if s2−s1 ∈ 2Z and non-degenerate otherwise.
With some manipulations of the parameters we get a very useful rewrite of the de�nition
of Lissajous curve.

Proposition 1. There exist t′ ∈ R, η ∈ [0, 2) and u′ ∈ {−1, 1}2 such that

γns,u(t− t′) = γn(0,η),u′(t) . (1.2)

where t ∈ [0, 2π].
Moreover, γns,u is degenerate if and only if η = 0. Finally, if s ∈ Z2 then η ∈ {0, 1}.

Proof. Surely we can �nd a t′′ such that γns,u(t− t′′) = γns′,u(t) with s′1 = 0.
Let a ∈ Z be the unique integer such that 0 ≤ a + s′2/2 < 1. As n1 and n2 are relatively
prime we can �nd i, j ∈ Z such that a = in1 + jn2. Let t

′ = t′′ + iπ/n2 and η = 2a + s′2.
Then

n1(t− t′)− s2π/(2n2) = s1(t− iπ/n2)− s′2π/(2n2) = n1t− ηπ/(2n2) + jπ

n2(t− t′)− s1π/(2n1) = n2t− iπ

and we obtain (1.2) for u′1 = (−1)iu1, u
′
2 = (−1)ju2.

The curve γns,u is degenerate if and only if γn(0,η),u′ is degenerate. By de�nition η ∈ 2Z if

and only if η = 0. In order to complete the proof, we note that s ∈ Z2 implies s′2 ∈ Z and
then η ∈ {0, 1}.

From now on s ∈ Z2, as many Lissajous curves which are important in applications
have this property.
This allows us to restrict our considerations to the curves

γnε : [0, 2π]→ [−1, 1]2 , γnε (t) := γn(0,ε−1),1(t) =

(
cos(n2t)

cos(n1t− (ε− 1)π/(2n2))

)
(1.3)

with ε ∈ {1, 2} and where we �x the re�ection parameter 1 = (1, 1).
Up to a shift t′ and up to a re�ection with respect to the coordinate axis, all degenerate
curves can be written in the form γn1 and all non-degenerate curves can be written as γn2 .

1



2 CHAPTER 1. LISSAJOUS NODE POINTS IN THE SQUARE

Observation 1. The Lissajous curve generating the Padua points (see [5]) can be written

in the form γ
(n,n+1)
1 or γ

(n+1,n)
1 up to a re�ection.

We are interested in the sets of points generated by Lissajous curves, in the sense given
by the following de�nition.

De�nition 1. Let γnε be a Lissajous curve with ε ∈ {1, 2} and let

tεnk :=
πk

εn1n2
, k = 0, ..., 2εn1n2 − 1 . (1.4)

The set
LSnε := {γnε (tεnk ) : k = 0, ..., 2εn1n2 − 1} (1.5)

is the set of Lissajous node points related to γnε .

(a) The degenerate curve γ
(5,6)
1 (b) The non-degenerate curve γ

(5,6)
2

(c) The degenerate curve γ
(5,7)
1 (d) The non-degenerate curve γ

(5,7)
2

Figure 1.1: Some examples of Lissajous curves and nodes. Notice that (a) is the same as
in Figure 3 in the Introduction and in (b) the center of the square is a node.

We de�ne also for ε ∈ {1, 2} the following index set associated to Lissajous nodes

Γεn :=

{
(i, j) ∈ N2

0 :
i

εn1
+

j

εn2
< 1

}
∪ {(0, εn2)} . (1.6)

The set Γεn plays an important role for bivariate interpolation.

1.1.1 The non-degenerate case

Let γn2 be a non-degenerate Lissajous curve. The set LSn2 contains all self-intersection
points LSnint,2 of γn2 . Indeed, a necessary condition for γn2 (t) = γn2 (t′) with t 6= t′ is
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(see [2])

t =

(
i

n1
+

j

n2

)
π , t′ =

(
− i

n1
+

j

n2

)
π , i, j ∈ Z , (1.7)

or

t =

(
i

n1
+

j

n2
− 1

2n1n2

)
π , t′ =

(
i

n1
− j

n2
− 1

2n1n2

)
π , i, j ∈ Z . (1.8)

We only show that if t is as in (1.7) then γn2 (t) ∈ LSn2 , the other cases can be investigated
with similar calculations.
If we expand the de�nition of LSn2 , we get

γn2

(
πk

2n1n2

)
=

(
cos(πk/(2n1))

cos(π(k − 1)/(2n2))

)
, k = 0, ..., 4n1n2 − 1 . (1.9)

On the other hand,

γn2

((
i

n1
+

j

n2

)
π

)
=

(
cos(π[2(in2 + jn1)]/(2n1))

cos(π[2(in2 + jn1)− 1]/(2n2))

)
, i, j ∈ Z . (1.10)

The previous equations gives us

k = 2(in2 + jn1) , i, j ∈ Z , (1.11)

which allows us to conclude the proof observing that the condition (1.11) holds, since n1

and n2 are relative prime (see [1] for further details).

We can decompose the set LSn2 in the two disjoint sets

LSne,2 := {γn2 (t2n2k ) : k = 0, ..., 2n1n2 − 1} , LSno,2 := {γn2 (t2n2k−1) : k = 1, ..., 2n1n2} . (1.12)

In view of (1.7), t generates a self-intersection point in LSne,2 if and only if i /∈ n1Z, therefore
we have 2n2 elements in LSne,2 that are not in LSnint,2 and that lie on the boundary of

[−1, 1]2. The same reasoning tells us that 2n1 elements of LSno,2 are on the boundary of

[−1, 1]2. It is then natural to de�ne the subset LSnout,2 consisting in the 2n1 +2n2 elements

of LSn2 which lie on the boundary of [−1, 1]2. Hence we can write

#LSnint,2 =
4n1n2 − 2n1 − 2n2

2
= 2n1n2 − n1 − n2 . (1.13)

In particular,
#LSn2 = #LSnint,2 + #LSnout,2 = 2n1n2 + n1 + n2 . (1.14)

Lissajous node points are related to the Chebyshev-Lobatto points de�ned on the interval
[−1, 1]. We recall the de�nition:

znk := cos

(
kπ

n

)
, n ∈ N , k = 0, ..., n . (1.15)

Using this notation, we can write

LSn2 = {(z2n1
r , z2n2

s ) : r = 0, ..., 2n1 , s = 0, ..., 2n2 , r + s = 1 mod 2} . (1.16)

Further, we can see LSn2 as disjoint union of two rectangular grids given as

LSne,2 = {(z2n1
r , z2n2

s ) : r = 0, ..., 2n1 , s = 0, ..., 2n2 , r = 0 mod 2 , s = 1 mod 2} ,

LSno,2 = {(z2n1
r , z2n2

s ) : r = 0, ..., 2n1 , s = 0, ..., 2n2 , r = 1 mod 2 , s = 0 mod 2} .

We point out that

#Γ2n =
(2n1 + 1)(2n2 + 1)− 1

2
= #LSn2 . (1.17)

We end this section with the following geometric observation.

Observation 2. The set LSn2 is symmetric with respect to re�ections at the coordinate
axis. Moreover, there are no points of LSn2 on the vertices of the square [−1, 1]2.
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1.2 Quadrature formulae

We state some results about quadrature rules for Lissajous nodes. We will not enter in
details, since we are more interested in interpolation issues. Nevertheless, interpolation
results are consequences of quadrature formulas.
Let

ΠN := span{Ti(x)Tj(y) : i+ j ≤ N} (1.18)

be a polynomial space in [−1, 1]2, where

Ti(x) = cos(i arccos(x)) (1.19)

is the i-th Chebyshev polynomial of the first kind.
It is well-known that {Ti(x)Tj(y) : i+ j ≤ N} forms an orthogonal basis of the space ΠN

with respect to the inner product

〈f, g〉 :=
1

π2

∫ 1

−1

∫ 1

−1
f(x, y)g(x, y)ω(x, y)dxdy (1.20)

with the weight function ω de�ned as

ω(x, y) :=
1√

1− x2

1√
1− y2

. (1.21)

We can also formulate the corresponding normalized basis as {T̂i(x)T̂j(y) : i + j ≤ N}
where

T̂i(x) =

{
1 if i = 0,√

2Ti(x) if i 6= 0.
(1.22)

Our purpose is to �nd an appropriate polynomial space for interpolation and quadrature
related to Lissajous nodes given by a non-degenerate curve. The following results can be
easily extended to the degenerate case [10] [1].
We recall the set Γ2n de�ned in (1.6) and we de�ne the following polynomial space

Π2n := span{Ti(x)Tj(y) : (i, j) ∈ Γ2n} . (1.23)

We state this fundamental lemma.

Lemma 1. For all bivariate polynomials P satisfying 〈P, T2kn1T2kn2〉 = 0, k ∈ N, the
following holds:

1

π2

∫ 1

−1

∫ 1

−1
P (x, y)ω(x, y)dxdy =

1

2π

∫ 2π

0
P (γn2 (t))dt (1.24)

Proof. See [10].

From now on, we use the notation A = (xA, yA) for points in LSn2 .
We introduce then the following weights for A ∈ LSn2 :

wA :=
1

4n1n2
·

{
2 if A ∈ LSnint,2,
1 if A ∈ LSnout,2.

(1.25)

We get the following quadrature rule.

Theorem 3. For all polynomials P ∈ Π4n with 〈P, T4n2(y)〉 = 0 the quadrature formula

1

π2

∫ 1

−1

∫ 1

−1
P (x, y)ω(x, y)dxdy =

∑
A∈LSn

2

wAP (A) (1.26)

is exact. Moreover, for the polynomial P (x, y) = (T̂2n2(y))2 we have

1

π2

∫ 1

−1

∫ 1

−1
|T̂2n2(y)|2ω(x, y)dxdy =

1

2

∑
A∈LSn

2

wA|T̂2n2(yA)|2 = 1 . (1.27)
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Proof. The proof is mainly based on the previous lemma and on the fact that for all
trigonometric 2π-perodic polynomials q of degree less than 4n1n2 the following quadrature
rule is exact:

1

2π

∫ 2π

0
q(t)dt =

1

4n1n2

4n1n2∑
k=1

q(t2nk ).

See again [10] for further details.

1.3 Interpolation on Lissajous nodes

In this section we consider the bivariate interpolation problem on Lissajous node points in
the non-degenerate case.
Taking then A ∈ LSn2 as node points with given data values f(A) ∈ R, our aim is to �nd
an unique interpolating polynomial Lnf in [−1, 1]2 which satis�es

Lnf(A) = f(A) for all A ∈ LSn2 . (1.28)

In the bivariate case it is a priori not clear which polynomial space we should consider to
obtain a solution for this problem.
We observe that from(1.17)-(1.23) we got

dimΠ2n = #Γ2n = #LSn2 . (1.29)

Hence, the space Π2n is a natural candidate as interpolation space for the set LSn2 .

We introduce the reproducing kernel K2n : R2 × R2 → R related to the space Π2n as

K2n(x, y;x′, y′) :=
∑

(i,j)∈Γ2n

T̂i(x)T̂j(y)T̂i(x
′)T̂j(y

′) . (1.30)

Let A = (xA, yA) ∈ LSn2 , we de�ne the polynomial LA ∈ Π2n as

LA(x, y) := wA

(
K2n(x, y;xA, yA)− 1

2
T̂2n2(y)T̂2n2(yA)

)
. (1.31)

We are ready for the following theorem.

Theorem 4. The interpolation problem (1.28) has the unique solution

Lnf(x, y) =
∑
A∈LSn

2

f(A)LA(x, y) (1.32)

in the polynomial space Π2n.
Moreover, the coe�cients cij = 〈Lnf, T̂i(x)T̂j(y)〉 of Ln with respect to the orthonormal
basis {T̂i(x)T̂j(y) : (i, j) ∈ Γ2n} of Π2n can be computed as

cij =


∑
A∈LSn

2

wAf(A)T̂i(xA)T̂j(yA) if (i, j) ∈ Γ2n \ (0, 2n2) ,

1

2

∑
A∈LSn

2

wAf(A)T̂i(xA)T̂2n2(yA) if (i, j) = (0, 2n2) .
(1.33)

Proof. Let RLSn
2 be the vector space of real functions on the set LSn2 . We can de�ne the

inner product

〈g, h〉w =
∑
A∈LSn

2

wAg(A)h(A) , g, h ∈ RLS
n
2 , (1.34)
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then we consider the functions e(i,j) ∈ RLSn
2 given by e(i,j)(A) = T̂i(xA)T̂j(yA).

We want to show that the set E = {e(i,j) : (i, j) ∈ Γ2n} is an orthogonal basis of the
vector space RLSn

2 with respect to the discrete inner product 〈·, ·〉w.
First of all we recall that #Γ2n = #LSn2 .
For the basis polynomials e(i,j)(x, y)e(i′,j′)(x, y) = T̂i(x)T̂j(y)T̂i′(x)T̂j′(y) ∈ Π2n with
(i, j) 6= (i′, j′) we have the inequality i/n1 + j/n2 + i′/n1 + j′/n2 < 4 (see (1.6)), that
implies e(i,j)(x, y)e(i′,j′)(x, y) ∈ Π4n. Then we can apply the quadrature formula of Theo-
rem 3 and we get for (i, j) 6= (i′, j′)

〈e(i,j), e(i′,j′)〉w =
∑
A∈LSn

2

wAT̂i(xA)T̂j(yA)T̂i′(xA)T̂j′(yA) = 〈T̂i(x)T̂j(y), T̂i′(x)T̂j′(y)〉 = 0 .

Moreover, if (i, j) = (i′, j′) then

‖e(i,j)‖2w = 〈e(i,j), e(i,j)〉w =
∑
A∈LSn

2

wA(T̂i(xA)T̂j(yA))2 =

{
1 if (i, j) ∈ Γ2n \ (0, 2n2) ,

2 if (i, j) = (0, 2n2) .

Hence we proved that E is an orthogonal basis of the vector space RLSn
2 with respect to

the discrete inner product 〈·, ·〉w.
For all A,A′ ∈ Γ2n we have

LA′(A) = wA′
∑

(i,j)∈Γ2n

1

‖e(i,j)‖2w
e(i,j)(A′)e(i,j)(A) (1.35)

Then, for all (i, j) ∈ Γ2n we can write

〈LA′ , e(i,j)〉w = wA′e
(i,j)(A′) = 〈δA′ , e(i,j)〉w , (1.36)

where δA′ denotes the Kronecker delta function on LSn2 corresponding to A′. Therefore,
since E is a basis of RLSn

2 we have LA′(A) = δA′(A) for all A,A′ ∈ Γ2n, that implies
(1.28). The vector space homomorphism f → Lnf from RLSn

2 to Π2n is not only injective
but also bijective, because the dimensions of the spaces agree. Hence, Lnf ∈ Π2n is also
uniquely determined.
Finally, the de�nition of LA(x, y) implies Lnf(x, y) =

∑
(i,j)∈Γ2n cij T̂i(x)T̂j(y) for the

values in (1.33).

1.3.1 Fast computation for the coe�cients of the interpolant

We can derive a fast scheme for the computation of the coe�cients cij de�ned in (1.33),
using the characterization (1.16) of the points LSn2 .
The �rst step is to store all relevant information in data matrices. We de�ne a matrix
C2n = (cij) ∈ R(2n1+1)×(2n2+1) as

cij =

{
〈Lnf, T̂i(x)T̂j(y)〉 if (i, j) ∈ Γ2n ,

0 otherwise ,
(1.37)

with i ∈ {0, ..., 2n1} and j ∈ {0, ..., 2n2}.
The weights wA and the data values f(A) are stored in a matrixGf = (gij) ∈ R(2n1+1)×(2n2+1)

de�ned as

gij :=

{
wAf(A) if A = (z2n1

i , z2n2
j ) ∈ LSn2 ,

0 if A /∈ LSn2 .
(1.38)

For a general �nite set of points χ = {x0, ..., xm} ⊂ [−1, 1] we de�ne

T n(χ) := (T̂i(xj)) ∈ R(n+1)×(m+1) (1.39)
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with i ∈ {0, ..., n} and j ∈ {0, ...,m}.
Finally, we de�ne a mask M2n = (mij) ∈ R(2n1+1)×(2n2+1) as

mij :=


1 if (i, j) ∈ Γ2n \ (0, 2n2) ,

1/2 if (i, j) = (0, 2n2) ,

0 if (i, j) /∈ Γ2n .

(1.40)

Then, the coe�cient matrix C2n of the interpolating polynomial Lnf can be computed as

C2n = (T 2n1(Z2n1)GfT 2n2(Z2n2)T )�M2n , (1.41)

where � denotes the pointwise multiplication and Z2ni = {z2ni
0 , ..., z2ni

2ni
} , i = 1, 2.

For an arbitrary point (x, y) ∈ [−1, 1]2, we get

Lnf(x, y) = T 2n1(x)TC2nT 2n2(y) . (1.42)

The matrices T 2n1(Z2n1),T 2n2(Z2n2) have a particular structure and describe discrete
cosine transforms. Hence it is possible to evaluate the matrix-matrix product in (1.41)
using fast Fourier methods. We obtain indeed

cij = mijαij

2n2∑
l=0

(2n1∑
k=0

gkl cos
ikπ

2n1

)
cos

jlπ

2n2
(1.43)

where αij =
√

2− δ0,i

√
2− δ0,j . Then the use of fast Fourier methods is justi�ed by the

following fact,
2n1∑
k=0

gkl cos
ikπ

2n1
= Re

2n1∑
k=0

gkle
−i 2πik

4n1 , (1.44)

with l = 0, ..., 2n2.
An implementation formula in Matlab code can be found in [1].

1.4 Lebesgue constant related to Lissajous nodes

In this section we state and summarize the good stability properties of Lissajous nodes,
which justify the choice of such a set of points for bivariate Lagrange interpolation.
We consider the absolute condition number for the interpolation problem (1.28) given as
the Lebesgue constant

Λn := max
(x,y)∈[−1,1]2

∑
A∈LSn

2

|LA(x, y)| . (1.45)

We have the following results.

Theorem 5. Let nmin = min{n1, n2} and nmax = max{n1, n2}. Then

DΛ log2(nmin) ≤ Λn ≤ CΛ log2(nmax) , (1.46)

where the positive constants CΛ and DΛ do not dipend on n1, n2.

Corollary 1. For any continuous function f ∈ C([−1, 1]2), we have

‖f − Lnf‖∞≤ (CΛ log2(nmax) + 2)Enmin(f) , (1.47)

where Enmin(f) denotes the best approximation error of f in the polynomial space Πnmin .
Moreover, if f ∈ Cs([−1, 1]2) is s-times continuously di�erentiable and ωsf denotes the

modulus of continuity of f (s), then

‖f − Lnf‖∞≤ C
log2(nmax)

nsmin

ωsf

(
1

nmin

)
. (1.48)

For further details about this section see [10].
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Chapter 2

Three-dimensional Lissajous curves

2.1 Admissible and optimal tuples

Given a = (a1, a2, a3) ∈ N3, we consider the curve in the cube [−1, 1]3 de�ned as

γa(t) = (cos(a1t), cos(a2t), cos(a3t)) , (2.1)

where t ∈ [0, π].
In the view of (1.3), we can say that γa is a degenerate tridimensional Lissajous curve.
This setting brings new problems with respect to the bidimensional case. First of all, γa
is not self-intersecting and thus we have to use a di�erent approach in order to �nd a set
of points interesting for approximation issues.
The �rst important step is to �nd an extension of Lemma 1, providing a formula whose
nodes lie on γa.
Fortunately this is possible, but we have to pay more attention as we will see.

De�nition 2. Let V = P3
m be the space of trivariate polynomials of total degree at most

m and let a = (a1, a2, a3) ∈ N3.
We say that a is V -admissible (of order m) if

@ 0 6= b ∈ Z3 , |b| = |b1|+ |b2|+ |b3| ≤ m , (2.2)

such that

a1b1 + a2b2 + a3b3 = 0 . (2.3)

We call A(V ) the set of such admissible tuples.

The set A(V ) is important for our purposes, as we are able to obtain a quadrature
formula just for tuples belonging to this set. Indeed, we have the following.

Theorem 6. Let V and a be as in De�nition 2 and let x = (x1, x2, x3),
w(x) = 1√

(1−x21)(1−x22)(1−x23)
. Then

∫
[−1,1]3

P (x)w(x)dx = π2

∫ π

0
P (γa(t))dt (2.4)

for all polynomials P ∈ V if and only if a ∈ A(V ).

Proof. See [4].

Restricting a polynomial P (x) to the curve γa(t) we can write

deg(P (γa(t)) ≤ m · max
i=1,2,3

ai . (2.5)

9
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We are interested in determining the admissible tuple a? ∈ A(V ) which minimizes deg(P (γa(t)),
i.e.

a? = min
a∈A(V )

max
i=1,2,3

ai . (2.6)

In [3] it has been proved that the growth of a? is at least of O(m2).
Through a computer search and calculations the following conjecture has been provided
in [4].

Conjecture 7. Let a? be an admissible and optimal tuple. Then:

1. For m ≡ 0(4)

a1 =
3m2 + 4m

16
, a2 =

3m2 + 8m

16
, a3 =

3m2 + 12m+ 16

16
.

2. For m ≡ 1(4)

a1 =
3m2 + 6m+ 7

16
, a2 =

3m2 + 10m+ 19

16
, a3 =

3m2 + 14m+ 15

16
.

3. For m ≡ 2(4)

a1 =
3m2 + 4

16
, a2 =

3m2 + 12m− 4

16
, a3 =

3m2 + 12m+ 12

16
.

4. For m ≡ 3(4)

a1 =


3m2 + 2m− 1

16
m ≡ 3(8)

3m2 + 6m+ 19

16
m ≡ 7(8)

, a2 =


3m2 + 14m+ 11

16
m ≡ 3(8)

3m2 + 10m+ 7

16
m ≡ 7(8)

,

a3 =
3m2 + 14m+ 27

16
.

2.2 Quadrature formula and hyperinterpolation

Similarly to the two-dimensional case, we can obtain a quadrature formula which is a
consequence of Theorem 6.

Corollary 2. Let P ∈ V and γa as in (2.1). Let

ν = m ·max{a1, a2, a3} . (2.7)

Then ∫
[−1,1]3

P (x)w(x)dx =

µ∑
s=0

wsP (γa(θs)) , (2.8)

where for

ws = π2ωs , s = 0, ..., µ , (2.9)

and
µ = ν + 1 , , θs = sπ

µ , s = 0, ..., µ ,

ω0 = ωµ = π
2µ , ωs = π

µ , s = 1, ..., µ− 1 .
(2.10)
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Proof. The proof follows the idea of the one given for Corollary 1 in [3].
We observe that with the change of variables τ = cos t we have∫

[−1,1]3
P (x)w(x)dx = π2

∫ π

0
P (γa(t))dt = π2

∫ 1

−1
P (Ta1(τ), Ta2(τ), Ta3(τ))

dτ√
1− τ2

.

(2.11)
Observing that P (Ta1(τ), Ta2(τ), Ta3(τ)) is a polynomial of degree not exceeding 2ν, the
conclusion follows by using the Gauss-Chebyshev-Lobatto univariate quadrature rules, ex-
act up to degree 2ν + 1.

We consider the total-degree orthonormal basis of P3
m with respect to the Chebyshev

product measure writing

φ̂ijk(x) = T̂i(x1)T̂j(x2)T̂k(x3) , i, j, k ≥ 0 , i+ j + k ≤ m , (2.12)

where T̂n(·) is the normalized Chebyshev polynomial of degree n

T̂n(·) = ςn cos(n arccos(·)) , (2.13)

with

ςn =

√
1 + sign(n)

π
(2.14)

de�ning sign(0) = 0.
Using the quadrature formula introduced in Corollary 2, we can approximate a function
f : [−1, 1]3 → R through a series of orthogonal polynomials up to total-degree m,

Hmf(x) =
∑

0≤i+j+k≤m
cijkφ̂ijk(x) , (2.15)

where the Fourier-like coe�cients are

cijk =

µ∑
s=0

wsf(γa(θs))φ̂ijk(γa(θs)) . (2.16)

The hyperinterpolation coe�cients can be computed as follows.

Proposition 2. Let f : [−1, 1]3 → R, γa, ν, µ, θs, ws, ωs as in Corollary 2. Then we have

cijk =
π2

4
ςia1ςja2ςka3

(
ψα1

ςα1

+
ψα2

ςα2

+
ψα3

ςα3

+
ψα4

ςα4

)
, (2.17)

where
α1 = ia1 + ja2 + ka3 , α2 = |ia1 + ja2 − ka3| ,

α3 = |ia1 − ja2|+ ka3 , α4 = ||ia1 − ja2| − ka3| ,

ψαi =
∑µ

s=0 ωsT̂αi(τs)f(Ta1(τs), Ta2(τs), Ta3(τs)) ,

(2.18)

with τs = cos(θs).

Proof. See [3].

Hm is a projection operator, since HmP = P for every P ∈ P3
m.

For our purposes, a fundamental property of the Hm operator is

‖Hm‖= sup
f 6=0

‖Hmf‖∞
‖f‖∞

= O((logm)3) , (2.19)

since this implies
‖Hmf − f‖∞= O((logm)3Em(f)) , (2.20)
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where Em(f) denote the best approximation error of f in P3
m.

Figure 2.1: The curve t→ (cos(9t), cos(11t), cos(17t)).

Figure 2.2: The curve t→ (cos(30t), cos(33t), cos(37t)).



Chapter 3

Fourier series and Gibbs phenomenon

3.1 Trigonometric series for function approximation

De�nition 3. A 2π-periodic trigonometric series in complex form∑
n∈Z

cne
inx , x ∈ R , (3.1)

is a two-sided series of functions de�ned in R, where cn ∈ C are the complex coe�cients
of the series.
If we �x m ∈ N, the m-reduction of the series (3.1) is the series

k=m∑
k=−m

cke
ikx , x ∈ R . (3.2)

From now on we use the simplifying notation ek(x) = eikx.
Let L1

2π(R) be the set of functions de�ned as

L1
2π(R) =

{
f : f : R→ R is 2π-periodic and

1

2π

∫ π

−π
|f(x)|dx <∞

}
, (3.3)

equipped with the (semi)-norm

‖f‖1:=
1

2π

∫ π

−π
|f(x)|dx . (3.4)

From easy direct calculations, we get that if m,n ∈ N then

1

2π

∫ π

−π
em(x)en(x)dx = δmn (3.5)

where δmn = 1 if m = n and it is equal to zero otherwise.
The next theorem is fundamental for all the theory.

Theorem 8. Let
∑

n∈Z cnen(x) be a 2π-periodic trigonometric series such that

lim
m→∞

∥∥∥∥f − k=m∑
k=−m

ckek

∥∥∥∥
1

= 0 (3.6)

where f ∈ L1
2π(R). Then for every n ∈ N

cn =
1

2π

∫ π

−π
f(x)en(x)dx . (3.7)

13
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Proof. Let j ∈ Z be �xed. Then∥∥∥∥fej − ( k=m∑
k=−m

ckek

)
ej

∥∥∥∥
1

=
1

2π

∫ π

−π

∣∣∣∣∣f(x)ej(x)−
( k=m∑
k=−m

ckek(x)

)
ej(x)

∣∣∣∣∣dx
=

1

2π

∫ π

−π
|ej(x)|

∣∣∣∣∣f(x)−
( k=m∑
k=−m

ckek(x)

)∣∣∣∣∣dx
=

1

2π

∫ π

−π

∣∣∣∣∣f(x)−
( k=m∑
k=−m

ckek(x)

)∣∣∣∣∣dx
=

∥∥∥∥f − ( k=m∑
k=−m

ckek

)∥∥∥∥
1

.

In particular, we can pass the limit under the integral sign and write

lim
m→∞

1

2π

∫ π

−π

( k=m∑
k=−m

ckek(x)

)
ej(x)dx =

∫ π

−π
f(x)ej(x)dx = cj(f) .

Moreover,

1

2π

∫ π

−π

( k=m∑
k=−m

ckek(x)

)
ej(x)dx =

k=m∑
k=−m

ck

(
1

2π

∫ π

−π
ek(x)ej(x)dx

)
=

k=m∑
k=−m

ckδkj

which concides with cj .

The last theorem gives sense to the following de�nition.

De�nition 4. Let f ∈ L1
2π(R). We de�ne the Fourier series of f in complex form as

Sf(x) =
∑
n∈Z

cn(f)en(x) , x ∈ R , (3.8)

where for every n ∈ Z
cn(f) =

1

2π

∫ π

−π
f(x)en(x)dx . (3.9)

Moreover, the m-reduction of Sf is the series

Smf(x) =
k=m∑
k=−m

ck(f)ek(x) , x ∈ R . (3.10)

The question now is if we are able to reconstruct any function f ∈ L1
2π(R) from its

Fourier series. This is not always possible, but it is achievable for a large class of functions
of common use, in particular for piecewise di�erentiable functions.

De�nition 5. Let [a, b] be a compact subset of R and let l ∈ Z≥0 ∪ {∞}. A function
f : [a, b] → R is C l-piecewise di�erentiable if there exist t0 = a < t1 < ... < b = tn and
functions fk ∈ C l([tk−1, tk],R), k = 1, ...,m, such that fk concides with f on every open
interval (tk−1, tk).
f : R→ R is C l-piecewise di�erentiable if so is the restriction of f on every compact subset
of R.
If l = 0 then f is piecewise continuous.
We say that f is piecewise di�erentiable if l ≥ 1.

We observe that piecewise di�erentiable functions are locally integrable and they always
admit right and left limits in every point.
We state the following well-known result.
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Theorem 9. Let f : R → R be 2π-periodic and C1-piecewise di�erentiable. Then the
Fourier series Sf is pointwise convergent to f where f is continuous. If f is not continuous
in ξ ∈ R, then

lim
m→∞

Smf(ξ) =
f(ξ+) + f(ξ−)

2
, (3.11)

where f(ξ+), f(ξ−) are respectively the right and the left limit of f in ξ.
Moreover, Sf is uniform convergent to f on any compact subinterval of R which does not
contain any leap point c such that |f(c+)− f(c−)| > 0.

Proof. Omitted, see for example [16].

The last theorem about convergence of Fourier series is valid in a more general setting
also and can be found in any book about complex analysis and Fourier theory. Neverthe-
less, the version we stated it is enough for our application issues.

3.2 Coe�cients decay rate for functions in Fk(R)

We are interested in the behaviour of Fourier coe�cients cn(f) as n → ∞. From the
Riemann-Lebesgue lemma (see for example [16]) we know that if f ∈ L1

2π(R) then

lim
n→∞

cn(f) = 0 . (3.12)

There is a strong connection between the smoothness of the function f and the decay rate
of the coe�cients cn(f).
We recall the following de�nition.

De�nition 6. The function f is absolutely continuous on the closed interval [α, β] if ∀ε > 0
∃δ > 0 such that for each �nite collection of disjoint intervals (αj , βj) ⊂ [α, β], j = 1, ..., s,
staisfying

∑s
j=1 (βj − αj) < δ one has

∑s
j=1 |f(βj)− f(αj)| < ε.

The function f is locally absolutely continuous on the open set Ω ⊂ R if it is absolutely
continuous on each closed interval [α, β] ⊂ Ω.

We introduce also the notion of weak derivative for the one-dimensional case, adapted
to our situation.

De�nition 7. Let Ω ⊂ R be an open set, l ∈ N and f, g ∈ L1
2π(R). The function g is a

weak derivative of the function f of order l on Ω (brie�y g = f
(l)
w ) if there exists a function

h equivalent to f on Ω (i.e. f = h a.e. in Ω) which has a locally absolutely continuous
(l− 1)-th ordinary derivative h(l−1) and such that its ordinary derivative h(l) is equivalent
to g in Ω.

For k ∈ Z≥0, we introduce the following set of functions:

Fk(R) = {f ∈ L1
2π(R) : ∃f (k+1)

w /∈ C(R) and it is piecewise di�erentiable} . (3.13)

Let f ∈ Fk(R), using integration by parts we can write

1

2π

∫ π

−π
f(x)e−inxdx =

[
i

2πn
f(x)e−inx

]x=π

x=−π
− i

2πn

∫ π

−π
f ′(x)e−inxdx

= − i

2πn

∫ π

−π
f ′(x)e−inxdx

(3.14)

which gives us the estimate

|cn(f)| ≤ M

n
, (3.15)
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where M = ‖f ′‖1.
We can iterate this process until the step

cn(f) =

(
− i
n

)k+1 1

2π

∫ π

−π
f (k+1)
w (x)e−inxdx . (3.16)

The function f
(k+1)
w is piecewise continuous. Let us suppose that ξ ∈ R is the unique leap

point of f
(k+1)
w . We can suppose ξ ∈ (−π, π) without loss of generality. Let then f1, f2 be

the restrictions of the function f
(k+1)
w to (−π, ξ) and (ξ, π) respectively. We can write

cn(f) =

(
− i
n

)k+1 1

2π

(∫ ξ

−π
f1(x)e−inxdx+

∫ π

ξ
f2(x)e−inxdx

)
=

(
− i
n

)k+1 1

2π

(
i

n

[
f1(x)e−inx

]x=ξ−

x=−π
+
i

n

[
f2(x)e−inx

]x=π

x=ξ+
− i
n

∫ ξ

−π
f ′1(x)e−inxdx+

− i

n

∫ π

ξ
f ′2(x)e−inxdx

)
=

(
− i
n

)k+2 1

2π

(
f2(ξ+)e−inξ

+ − f1(ξ−)e−inξ
−

+

∫ ξ

−π
f ′1(x)e−inxdx+

∫ π

ξ
f ′2(x)e−inxdx

)
.

(3.17)

Therefore we get

|cn(f)| ≤ Mn−(k+2) , (3.18)

where M = 1
2π

(
|f2(ξ+)|+ |f1(ξ−)|

)
+
∫ ξ
−π |f

′
1(x)|dx+

∫ π
ξ |f

′
2(x)|dx <∞.

Since the previous reasoning can be extended to the general case in which f
(k+1)
w has a

�nite number of leap points, we obtain

|cn(f)| ∈ O
(

1

nk+2

)
as n→∞ . (3.19)

It is interesting for applications to consider the case in which a function f ∈ L1
2π(R) is

not continuous and it is piecewise di�erentiable. Using the same argument presented for

f
(k+1)
w in (3.17), we get in this case

|cn(f)| ∈ O
(

1

n

)
as n→∞ . (3.20)

Observation 10. In the de�nition of the set Fk(R) in (3.13) we required f
(k+1)
w to be

piecewise di�erentiable. Actually, in order to achieve the �nal step in (3.17) the functions
f1, f2 can be just absolutely continuous and with piecewise continuous weak derivatives
f ′1,w, f

′
2,w.

3.3 The Gibbs phenomenon

In the previous section we saw that the decay rate of Fourier coe�cients is determined by
the smoothness of the function which we are considering. We observed that for piecewise
di�erentiable functions which are discontinuous the decay rate is O(1/n).
We point out that the step between a decay of order O(1/n) and a O(1/n2)-order one is
someway crucial. In order to be more precise, we recall a fundamental result for series
convergence, that is

∞∑
n=0

1

nα
<∞⇐⇒ α > 1 . (3.21)
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Thus, if f ∈ Fk(R) for some value of k ≥ 1 then the sum of its Fourier coe�cients is
convergent, otherwise if we lose the continuity of f then we get the divergence of the
considered sum.
This fact is directly involved in the uniform convergence of the partial sum Smf to f . The
reducted Fourier series Smf converges uniformly to f on a compact subinterval of R if we
are able to put an uniform bound to

|f(x)− Smf(x)| =
∣∣∣∣f(x)−

k=m∑
k=−m

ck(f)ek(x)

∣∣∣∣= ∣∣∣∣k=−m−1∑
k=−∞

ck(f)ek(x) +
k=∞∑
k=m+1

ck(f)ek(x)

∣∣∣∣ .
We estimate the previous expression writing∣∣∣∣k=−m−1∑

k=−∞
ck(f)ek(x) +

k=∞∑
k=m+1

ck(f)ek(x)

∣∣∣∣≤ k=−m−1∑
k=−∞

|ck(f)|+
k=∞∑
k=m+1

|ck(f)| (3.22)

and �nally
k=−m−1∑
k=−∞

|ck(f)|+
k=∞∑
k=m+1

|ck(f)| ≤
k=∞∑
k=−∞

|ck(f)| . (3.23)

If the Fourier coe�cients decay is fast enough, then the right-side member in the inequality
(3.23) can be made arbitrary small taking m large enough, obtaining an uniform bound
indipendent from x and uniform convergence of the series Smf to f .
The lost of uniform convergence in presence of one or more leap points causes the mani-
festation of the Gibbs phenomenon.

The Gibbs phenomenon is the particular way in which the reducted Fourier series Smf
of a C l-piecewise di�erentiable and discontinuous function f behaves near leap points,
presenting high oscillations that do not disappear as m becomes larger. Such oscillations
produce an increasing of the maximum of Smf near jumps, causing a worse approximation
of the function f .
At a �rst sight, this behaviour seems to be in contrast with the pointwise convergence of
the series to the considered function. Actually the contrast does not take place, since the
region of the overshoot approaches the discontinuity point and it tends to zero in the limit
of the partial sum.
For m large, the partial sum Smf overshoots the jump by approximately the 9% of its
length.

Figure 3.1: Fourier series approximation of a square wave function
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3.4 Multi-dimensional Fourier series and coe�cients

Let f : Rν → R be a real-valued function, ν ∈ N, ν ≥ 2. We say that f is 2π-periodic if f
is 2π-periodic in every variable.
For 1 ≤ p ≤ ∞, x = (x1, x2, ..., xν), we consider the set

Lp2π(Rν) =

{
f : f : Rν → R is 2π-periodic and (2π)−ν

∫
(−π,π)ν

|f(x)|pdx <∞
}
, (3.24)

where dx is the ν-dimensional Lebesgue measure, and the (semi)-norm

‖f‖p:=


(2π)−ν

(∫
(−π,π)ν

|f(x)|pdx
)1/p

if 1 ≤ p <∞,

(2π)−ν sup
x∈Rν

|f(x)| if p =∞.

(3.25)

The result of Theorem 8 admits a multi-dimensional generalization, see [19].
Given n = (n1, n2, ..., nν) ∈ Zν , we set en(x) = en1(x1)en2(x2)...enν (xν), with en(x) =
en1(x1) en2(x2)...enν (xν).

De�nition 8. Let f : Rν → R, f ∈ L1
2π(Rν). The multi-dimensional Fourier series of f

in complex form is de�ned as

Sf(x) =
∑
n∈Zν

cn(f)en(x) , x ∈ Rν , (3.26)

where for every n ∈ Zν

cn(f) = (2π)−ν
∫

(−π,π)ν
f(x)en(x)dx . (3.27)

Moreover, if m ∈ N the m-reduction of Sf is the series

Smf(x) =
∑
k∈Zν
‖k‖∞≤m

ck(f)ek(x) , x ∈ Rν , (3.28)

where ‖k‖∞= ‖(k1, k2, ..., kν)‖∞= sup {|k1|, |k2|, ..., |kν |}.

We state a generalization of Theorem 9, which allows us to consider the reducted
bivariated Fourier series for approximation issues.

Theorem 11. Let 1 < p ≤ ∞. If f ∈ Lp2π(Rν) then

lim
m→∞

Smf(x) = f(x) (3.29)

almost everywhere in Rν .

Proof. Omitted, see [19].

We want to cover the same path of Section 2.2 and �nd estimates for Fourier coe�cients
decay rate considering a su�cient set for our applications.
Let α = (α1, α2, ..., αν) ∈ Zν≥0, α 6= 0. We use the notation

Dαf ≡ ∂α1+α2+...+ανf

∂xα1
1 ∂xα2

2 ∂xανν
. (3.30)

We denote |α| = α1 + α2 + ...+ αν . Given an open set Ω ⊂ Rν , we call C∞0 (Ω) the set of
in�nitely continuously di�erentiable functions which have compactly supported in Ω.
We give a more general de�nition of weak derivative.
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De�nition 9. Let Ω ⊂ Rν be an open set, α ∈ Zν≥0, α 6= 0, and let f, g ∈ L1
2π(Rν). The

function g is a weak derivative of the function f of order α on Ω (brie�y g = Dαwf) if
∀φ ∈ C∞0 (Ω) we have ∫

Ω
f(x)Dαφ(x)dx = (−1)|α|

∫
Ω
g(x)φ(x)dx . (3.31)

The previous de�nition and De�nition 7 given for the one-dimensional case are related
as one can see in [6].
We consider the set of functions Fk(Rν) de�ned as:

De�nition 10. Let k ∈ Z≥0. Fk(Rν) is the set of functions f ∈ L2
2π(Rν) such that

f ∈ Ck(Rν) and there exists Dαwf /∈ C(Rν) for every |α| = k + 1.
Moreover, Dαwf is piecewise di�erentiable, i.e. there exists a partition (Ωi)i=1,...,n of
[−π, π]ν , where Ωi is a closed set with Lipschitz boundary for every i = 1, ..., n, and
di�erentiable functions fi : Ωi → R such that Dαwf coincides with fi on every open set
Ω̊i

The Riemann-Lebesgue lemma (see for example [16]) tells us that even for the multi-
variate case we have

lim
n→∞

cn(f) = 0 , (3.32)

where with n→∞ we mean max {n1, n2, ..., nν} → ∞.
We start to discuss the Fourier coe�cient decay rate for functions in Fk(Rν). Let then
f ∈ Fk(Rν), integrating by parts we can write

cn(f) = (2π)−ν
∫

(−π,π)ν
f(x)en(x)dx

= (2π)−ν
[
i

ni

∫
∂(−π,π)ν

f(x)en(x)vxidσ −
i

n1

∫
(−π,π)ν

∂f

∂xi
(x)en(x)dx

]
,

(3.33)

where vxi is the i-component of the outward unit surface normal to ∂(−π, π)ν . The surface
integral in the last equation is equal to zero, due to the periodicity of the function. Then

cn(f) = −(2π)−ν(ni)
−1

∫
(−π,π)ν

∂f

∂xi
(x)en(x)dx (3.34)

and

|cn(f)| ≤ M

ni
, (3.35)

where M = ‖ ∂f∂x1 ‖1.
Since by hypothesis f ∈ Ck(Rν) and admits a weak derivative Dαwf for every |α| = k + 1,
we can iterate the previous integration by parts procedure until the step

cn(f) =

(
− i

ni

)k+1

(2π)−ν
∫

(−π,π)ν
Dα?
w f(x)en(x)dx , (3.36)

where α? is the ν-dimensional vector with k + 1 in the i-th component and zeros in the
others.
We observe that we can obtain di�erent estimates choosing i = 1, 2, ..., ν. Every estimate
has to be considered as referred to the coe�cients decay rate in the i-th direction.
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3.4.1 Separated-variables case

Starting from (3.36), we suppose ν = 2 and

Dα?
w f(x1, x2) = g1(x1)g2(x2) , (3.37)

where g1 /∈ C(R) but piecewise di�erentiable and g2 ∈ Fl(R) for some l ∈ Z≥0.
We can easily extend the conclusions of this two-dimensional setting to the general multi-
dimensional case.
Using Fubini-Tonelli theorem we can write

1

4π2

∫
(−π,π)2

Dα?
w f(x1, x2)en(x1, x2)dx1dx2 =

1

4π2

∫
(−π,π)2

g1(x1)g2(x2)en1(x1) en2(x2)dx1dx2

=
1

2π

∫ π

−π

[
1

2π

∫ π

−π
g1(x1)en1(x1)dx1

]
g2(x2)en2(x2)dx2 .

(3.38)

Hence, we can use the estimates given in the Section 3.2 getting the following two∣∣∣∣ 1
2π

∫ π
−π

[
1

2π

∫ π
−π g1(x1)en1(x1)dx1

]
g2(x2)en2(x2)dx2

∣∣∣∣ ≤M1n
−1
1 ,

∣∣∣∣ 1
2π

∫ π
−π

[
1

2π

∫ π
−π g1(x1)en1(x1)dx1

]
g2(x2)en2(x2)dx2

∣∣∣∣ ≤M2n
−(l+2)
2 ,

(3.39)

for some 0 < M1,M2 <∞, depending on the direction taken.
Choosing i = 1 in (3.36) we conclude

|cn(f)| ≤M(n1)−(k+2) , (3.40)

taking i = 2 we get
|cn(f)| ≤M(n2)−(k+l+3) . (3.41)

The coe�cients decaying in the x2 direction is then much more faster than in the x1's one.
As a consequence of such a fact, we will observe in Section 3.4.3 that the Gibbs phenomenon
could arise in just one direction, the other being regular.
The generalization of the considerations of this subsection to the multi-dimensional case
are immediate.

3.4.2 The general case

Let us come back to (3.36). Without loss of generality, we can suppose that the partition
described in the De�nition 10 is composed of two sets Ω1 and Ω2.
Therefore, integrating by parts we can write∫

(−π,π)ν D
α?
w f(x)en(x)dx =∫

Ω1
f1(x)en(x)dx+

∫
Ω2
f2(x)en(x)dx =

− i
ni

(∫
Ω1

∂f1
∂xi

(x)en(x)dx+
∫

Ω2

∂f2
∂xi

(x)en(x)dx+

−
∫
∂Ω1

f1(x)en(x)vxidσ −
∫
∂Ω2

f2(x)en(x)vxidσ

)
,

(3.42)

We observe that by hypothesis the four integrals in the last line of (3.42) are well-de�ned
and �nite. Hence �nally, putting together the last equation with (3.36) and considering
the absolute values as done before we get the �directional� estimate

|cn(f)| ∈ O(n
−(k+2)
i ) as n→∞ . (3.43)
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Observation 12. Similarly to what observed for the one-dimensional case in the Obser-
vation 10, even in this two-dimensional case one can consider weaker hypothesis on Dαwf
in De�nition 10. Indeed, it is enough for the functions fi to admit piecewise continuous
weak derivatives .

Observation 13. It is well known that Fourier series theory can be applied to approximate
integrable functions which could be non-periodic on a more general bounded interval. In
order to do this and to preserve the possible continuity of the function, symmetrization and
periodic extension are applied both in one-dimensional and multi-dimensional case.
Therefore, in the next lines we could consider non-periodic functions and there will be no
ambiguities in our discussions.

3.4.3 Regularity and Gibbs phenomenon

First, we observe that if a function f is piecewise di�erentiable according to De�nition 10
then we get

|cn(f)| ∈ O(n−1
i ) as n→∞ . (3.44)

We saw in the one-dimensional case that a �rst order decay rate is slow enough to let the
Gibbs phenomenon appear and this happens in the multi-dimensional case also.
As example, we take the function which takes the value 1 inside the centered circle of
radius 0.75 and the value 0 outside, displayed in Figure 3.2.

Figure 3.2: The considered discontinuous function.

We can see in Figure 3.3 that a Fourier series approximation of this function carries
global oscillations, in particular near the discontinuities. More precisely, the Gibbs phe-
nomenon appears if there is at least one direction in which the decaying is too slow.
In order to observe this fact, let us consider the function f(x, y) = f1(x)f2(y) where

f1(x) =

{
x if −1/2 ≤ x ≤ 1/2 ,

0 otherwise ,
(3.45)

is discontinuous and f2(y) = 10e−y
2
is very regular. We can see in Figure 3.5 that the oscil-

lations given by the Gibbs phenomenon are directed just in the x-direction, not involving
the other one as observed in Section 3.4.1.
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Figure 3.3: Fourier series approximation showing the Gibbs phenomenon.

Figure 3.4: Plot of function f .

Figure 3.5: Fourier approximation of function f .
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3.5 From Chebyshev to Fourier series

In the �rst chapter we saw that we can express the interpolating polynomial of a function
f on Lissajous nodes using a two-dimensional Chebyshev series

Lnf(x, y) =
∑

(j,k)∈Γ2n

cjkTj(x)Tk(y) . (3.46)

We want to show the connection between Chebyshev and Fourier series. Let x = cos(t),
y = cos(s). Then

Lnf(x, y) =
∑

(j,k)∈Γ2n

cjk cos(j arccos(x)) cos(k arccos(y))

=
∑

(j,k)∈Γ2n

cjk cos(jt) cos(ks)

=
∑

(j,k)∈Γ2n

cjk
4

(ej(t) + ej(t))(ek(s) + ek(s)) .

(3.47)

We consider the following symmetric extension of the set Γ2n de�ned in (1.6),

Γ2n
S :=

{
(i, j) ∈ Z2 : (|i|, |j|) ∈ Γ2n

}
. (3.48)

Hence, we can write

Lnf(t, s) =
∑

(j,k)∈Γ2n

cjk
4

(ej(t) + ej(t))(ek(s) + ek(s)) .

=
∑

(j,k)∈Γ2n
S

c̃jkej(t)ek(s) ,
(3.49)

where

c̃jk =


cjk if (j, k) = (0, 0),

1

2
c|j||k| if (j, k) 6= (0, 0) but j = 0 or k = 0,

1

4
c|j||k| for the others (j, k) ∈ Γ2n

S .

(3.50)

It is useful to give to the coe�cients a rectangular shape. In order to achieve this, we
consider the following set of indices related to Γ2n,

R2n :=

{
(i, j) ∈ N2

0 : i < 2n1 and j ≤ 2n2

}
. (3.51)

We observe that Γ2n ⊂ R2n.
Considering then the symmetric extension

R2n
S :=

{
(i, j) ∈ Z2 : (|i|, |j|) ∈ R2n

}
, (3.52)

we get

Lnf(t, s) =
∑

(j,k)∈R2n
S

˜̃cjkej(t)ek(s) , (3.53)

where
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˜̃cjk =

{
c̃jk if (j, k) ∈ Γ2n

S ,

0 if (j, k) ∈ R2n
S \ Γ2n

S .
(3.54)

Observation 14. In Theorem 11 we gave a convergence result for series approaching the
limit in a square shape. The same result is reached considering more general polygons if
the expansion of the chosen polygon involves any direction in the same way. This is a
consequence of the Theorem stated by Fe�erman in [11].

Therefore, all the results about spectral �ltering of the next chapter are e�ective for
Chebyshev series and for the applications we are interested in also.
The results of this section are also true for the three-dimensional case, since even in this
setting the hyperinterpolant is expressed as a Chebyshev series.



Chapter 4

Fourier spectral �lters

4.1 Filtering process for solving the Gibbs phenomenon

4.1.1 The one-dimensional case

In the previous chapter we saw that if f ∈ L1
2π(R) is discontinuous but piecewise di�eren-

tiable then the Fourier coe�cients decay rate collapses and Gibbs phenomenon appears.
We point out that Gibbs phenomenon does not involve just the behaviour of the reducted
Fourier series near the discontinuities, it a�ects its general behaviour in the whole interval
also, providing oscillations and errors. Indeed, the slow decay rate of the coe�cients makes
the high frequences play a stronger role in the sum.
A possible solution for this problem is to accelerate the decay rate using appropriate func-
tions.

De�nition 11. A real and even function σ(η) is called a spectral �lter of order p if:

1. σ(0) = 1 , σ(l)(0) = 0 for 1 ≤ l ≤ p− 1.

2. σ(η) = 0 for |η| ≥ 1.

3. σ(η) ∈ Cp−1, η ∈ (−∞,∞).

In the De�nition 4 in the previous chapter we de�ned the m-partial Fourier series of a
function f ∈ L1

2π(R) as

Smf(x) =
k=m∑
k=−m

ck(f)ek(x) , x ∈ R . (4.1)

We are going to consider the following partial �ltered series

Sσmf(x) =
k=m∑
k=−m

σ

(
k

m

)
ck(f)ek(x) , x ∈ R . (4.2)

Observation 15. Given Sσmf , we observe that:

• Due to its de�nition, the �lter does not act on low coe�cients and it a�ects mainly
the high ones.

• It is essential for the �lter to be a smooth function. As known, Gibbs phenomenon
does not disappear just cutting down the high coe�cients, so a step function would
be useless as a �lter.

• The second condition in De�nition 11 allows us to write

Sσmf(x) =

∞∑
k=−∞

σ

(
k

m

)
ck(f)ek(x) , x ∈ R . (4.3)

25
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We give some well-known examples of �lters [12]:

• The Fejér �lter (�rst order)

σ(η) = 1− η . (4.4)

• The Lanczos or sinc �lter (�rst order)

σ(η) =
sin(πη)

πη
. (4.5)

• The raised cosine �lter (second order)

σ(η) =
1

2
(1 + cos(πη)) . (4.6)

• The exponential �lter of order p (p even)

σ(η) = e−αη
p
. (4.7)

In this case, since σ(1) = e−α does not respect the formal de�nition of �lter, in
applications we set the value of α to the computer's roundo� error.

We state the following theorem, which shows that using a �ltering process we can recover
precision away from discontinuities in presence of Gibbs phenomenon.

Theorem 16. Let f be a Cp-piecewise di�erentiable function with one point of discontinu-
ity ξ. Let σ be a �lter of order p and x ∈ [−π, π], we denote d(x) = mink∈Z |x− ξ + 2kπ|.
Let

SσNf(x) =
∑
k∈Z

σ

(
k

N

)
ck(f)ek(x) . (4.8)

Then

|f(x)− SσNf(x)| ≤ CN1−pd(x)1−pK(f) + CN1/2−p
(∫

R
|f(t)(p)|2dt

)1/2

, (4.9)

where

K(f) =

p−1∑
l=0

d(x)l
(
f (l)(ξ+)− f (l)(ξ−)

) ∫
R
|G(p−l)

l (η)|dη , (4.10)

Gl(η) =
σ(η)− 1

ηl
(4.11)

and C > 0 is a constant.

Proof. The proof is based on some lemmas and results, see [12].

4.1.2 A multi-dimensional extension

We want to extend the �ltering process introduced in the previous lines.
This could be done in di�erent ways and an intuitive one is to consider a tensor product
structure. This pattern is indeed easy to be constructed and applied and, since we know
the good properties of one-dimensional �lters, we can be sure that the tensor product
extension is going to be e�cient in our applications.
We recall that for f ∈ L2

2π(Rν), m ∈ N we de�ned the bivariate partial Fourier series as

Smf(x) =
∑
k∈Zν
‖k‖∞≤m

ck(f)ek(x) , x ∈ Rν , (4.12)
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where ‖k‖∞= ‖(k1, k2, ..., kν)‖∞= sup {|k1|, |k2|, ..., |kν}. As in the last subsection, we
consider from now on multivariate piecewise di�erentiable functions.
Let σ be a spectral �lter according to the De�nition 11. Fixed a number N ∈ N, we can
consider the vector of length 2N + 1

σk = σ

(
k

N

)
, −N ≤ k ≤ N (4.13)

and write
SσNf(x) =

∑
k∈Z

σkck(f)ek(x) . (4.14)

We can construct a tensor product pattern

σk = σk1σk2 ...σkν , −N ≤ k1, k2, ..., kν ≤ N . (4.15)

We can then consider the �ltered series

SσNf(x) =
∑
k∈Zν

σkck(f)ek(x) . (4.16)

Observation 17. The choice of the function σ(η1, η2, ..., ην) = σ(η1)σ(η2)...σ(ην) is well
justi�ed. Indeed, it is easy to see that if σ is a �lter of order p then:

1. σ(0) = 1 , (Dασ)(0) = 0 for 1 ≤ |α| ≤ p− 1.

2. σ(η1, η2, ..., ην) = 0 for ‖(η1, η2, ..., ην)‖∞≥ 1.

3. σ(η1, η2, ..., ην) ∈ Cp−1.

It follows that the function σ acts on high frequences in a regular way as σ in the univariated
case.

Observation 18. We de�ned σ using a unique one-dimensional �lter. Actually, one could
consider a more general de�nition

σ = σ1 · σ2 · ... · σν (4.17)

where σ1, σ2, ..., σν are di�erent �lters which can be of di�erent orders. Such a de�nition
could be interesting in the case we know the function which we are handling a priori. For
example, we could decide to apply a strong �lter in a direction and a weak one in the other,
or if we know that the Gibbs phenomenon appears in only one direction (see Section 3.4.3),
let us say x1-direction, we can set σ2 ≡ 1 deciding to not act on the regular direction.
In fact, in applications we are not given the possibility to know the function which we are
dealing with. Therefore, we prefer a more �neutral� approach.

4.2 Adaptive �ltering process

4.2.1 Introduction

Spectral �lters act on the Fourier coe�cients and do not consider the physical position of
the discontinuities.
It is known that the operation of such �lters is equivalent to molli�cation in the physical
space. Indeed, de�ning the molli�er

Φσ(y) :=
1

2π

∑
k∈Z

σkek(y) (4.18)

we can write

SσNf(x) ≡ f ∗ Φσ(y) =
1

2π

∫ π

−π
Φσ(y)f(x− y)dy . (4.19)
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In order to gain more adaptivity, we slightly modify the �lter vector introduced in (4.13),
considering

σk = σ

(
|k|
N

)
, −N ≤ k ≤ N . (4.20)

With the �lter vector de�ned in this way, we have more freedom in choosing the �lter
function.
We take then the following function as �lter

σp(x) =

exp

(
xp

x2 − 1

)
|x| < 1 ,

0 |x| ≥ 1 ,

(4.21)

observing that due to the new de�nition given in (4.21) we are allowed to let p ∈ R, p > 0.
This is a fundamental step for our discussion, since the parameter p = p(x,N) is the key
for adaptivity.
In the next subsection we consider a two-dimensional tensor product setting, referring to
the one-dimensional case discussion in [17].

4.2.2 Tensor product adaptive �ltering

Let x = (x1, x2) ∈ R2 and let us consider the bivariate real function f(x), which is piecewise
analytic (and not just di�erentiable) according to De�niton 10 and to the discussion of
previous chapter. For y = (y1, y2) ∈ R2, we take

Φσ(y) :=
1

4π2

∑
k∈Z2

σkek(y) , (4.22)

where

σk = σp1k1σ
p2
k2
, (4.23)

in the sense given by (4.20) and (4.21).

Let ξ = (ξ1, ξ2) be the nearest point of discontinuity with respect to x in the euclidean
norm.
For i = 1, 2, we call di(xi) = |xi − ξi|.
We claim the following result, proved in the following lines of this section.

Theorem 19. Let f : R2 → R be a piecewise analytic function. Then, de�ning

p = (p1, p2) = ((Nη∗1d1(x1))1/2, (Nη∗2d2(x2))1/2) , (4.24)

we get the asymptotic exponential decaying of the error |f − SσNf | away from the points of
discontinuity of f , where SσNf = f ∗Φσ and in (4.18) we use the parameters p1, p2 de�ned
in (4.24).

We de�ne the two cut-o� functions

ρi(xi) =

{
1 if |xi| ≤ 1/2 ,

0 if |xi| ≥ 1 ,
(4.25)

with ρ1, ρ2 ∈ C∞0 .
We also de�ne the auxiliary function

χ(y) = χx(y) = χ1(y1)χ2(y2) = ρ1(y1/d1(x1))ρ2(y2/d2(x2)) . (4.26)
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We can split the error f − SσNf = f − f ∗ Φσ in

f(x)− f ∗ Φσ(x) =

∫
(−π,π)2

Φσ(y)[f(x)− f(x− y)][1− χ(y)]dy+

+

∫
(−π,π)2

Φσ(y)[f(x)− f(x− y)]χ(y)dy

:= I1 + I2 ,

(4.27)

We observe that the y-function f(x)−f(x−y) is smooth if |y1| ≤ d1(x1) and |y2| ≤ d2(x2).
We consider now the two-dimensional �lter function

σ(x) = σp1(x1)σp2(x2) (4.28)

and the Fourier transform

σ(x) =
1

4π2

∫
R2

φσ(y)e−ix·ydy

=
1

4π2

∫
R2

φσ1 (y1)e−ix1y1φσ2 (y2)e−ix2y2dy1dy2 .

(4.29)

The tensor product structure allows us to sample two univariated Fourier transforms sep-
arately and to write

σk = σp1
(
|k1|
N

)
σp2
(
|k2|
N

)
=
N2

4π2

∫
R2

φσ1 (Ny1)e−iNy1(|k1|/N)φσ2 (Ny2)e−iNy2(|k2|/N)dy1dy2

=
N2

4π2

∑
n∈Z2

∫
[−π,π]2

φσ1 (N(y1 + 2πn1))φσ2 (N(y2 + 2πn2))e−i|k|·ydy

=
N2

4π2

∫
[−π,π]2

∑
n∈Z2

φσ1 (N(y1 + 2πn1))φσ2 (N(y2 + 2πn2))e−i|k|·ydy ,

(4.30)

where |k| = (|k1|, |k2|). Observing then that

σk =

∫
R2

Φσ(y)e−i|k|·ydy , (4.31)

we get �nally

Φσ(y) ≡ N2

4π2

∑
n∈Z2

φσ1 (N(y1 + 2πn1))φσ2 (N(y2 + 2πn2)) . (4.32)

We estimate the absolute value writing

|Φσ(y)| ≤ N2

4π2

∑
n∈Z2

|φσ1 (N(y1 + 2πn1))φσ2 (N(y2 + 2πn2))|

=
N2

4π2

∑
n1∈Z

|φσ1 (N(y1 + 2πn1))|
∑
n2∈Z

|φσ2 (N(y2 + 2πn2))|

≤ CN2‖σp1‖Cp1‖σp2‖Cp2 (N |y1|)−p1(N |y2|)−p2 ,

(4.33)

for y ∈ (−π, π)2, any p1, p2 and C > 0 a constant.
We state the following result.

Lemma 2. Let σp be as de�ned in (4.21). Then there exist constants Mσ, ησ > 0 indipen-
dent from p such that

‖σp‖Cp≤Mσ(p!)2η−pσ . (4.34)
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Proof. See [17] Lemma 2.1.

Observation 20. Since p > 0 can be a positive real and non integer number, we mean

‖f‖Cp = max
k≤p
‖f (k)‖L∞ , k ∈ N , (4.35)

p! = Γ(p+ 1) . (4.36)

In view of the previous lemma, we get

|Φσ(y)| ≤ CN2Mσ1Mσ2(p1!)2(p2!)2(Nησ1 |y1|)−p1(Nησ2 |y2|)−p2 . (4.37)

We choose then

p1 = p1,min = (Nησ1 |y1|)1/2 , p2 = p2,min = (Nησ2 |y2|)1/2 . (4.38)

With this choice of adaptive p1, p2 the localized molli�er Φσ(y) admits an exponential
decay

|Φσ(y)| ≤ Cσ(1 +N |y1|)e−(Nησ1 |y1|)
1/2

(1 +N |y2|)e−(Nησ2 |y2|)
1/2

. (4.39)

In particular, since I1 is supported at |y1| ≥ d1(x1)
2 and |y2| ≥ d2(x2)

2 , if we let N be larger
enough we obtain asymptotically

|I1| ≤ Cσ,f (1 +Nd1(x1))e−(Nησ1d1(x1))1/2(1 +Nd2(x2))e−(Nησ2d2(x2))1/2 , (4.40)

where the constant Cσ,f depends now also on the function f .

We estimate now the second integral I2 =
∫

(−π,π)2 Φσ(y)[f(x)− f(x− y)]χ(y)dy.

Let g(y) be de�ned as

g(y) = gx(y) = [f(x)− f(x− y)]χ(y) . (4.41)

For the Plancherel's Theorem we can write

I2 =

∫
(−π,π)2

Φσ(y)g(y)dy ≡
∑
|k1|≤N
|k2|≤N

σkĝ(k) , (4.42)

where ĝ(k) = ĝ(k1, k2) are the Fourier coe�cients of the function g.
First we work on such coe�cients. We can estimate the smooth functions χ1, χ2 at the
same regularity of σp1 , σp2 , i.e. for i = 1, 2

‖χi‖Cpi≤Mρi(pi!)
2(ηρidi(xi))

−pi , (4.43)

writing then for p = (p1, p2),

‖χ‖Cp= ‖χ1‖Cp1‖χ2‖Cp2 , (4.44)

meaning
‖χ‖Cp := max

k1≤p1
k2≤p2

‖Dkχ‖L∞ , (4.45)

where k = (k1, k2) ∈ N2.
Using the analyticity of the function f we get then

‖g‖Cp≤Mf‖χ‖Cp= Mf‖χ1‖Cp1‖χ2‖Cp2 . (4.46)

We can �nally estimate the Fourier coe�cients

|ĝ(k)| ≤ C‖g‖Cp |k1|−p1 |k2|−p2

≤ Cf,ρ(p1!)2(ηρ1d1(x1)|k1|)−p1(p2!)2(ηρ2d2(x2)|k2|)−p2 ,
(4.47)



4.2. ADAPTIVE FILTERING PROCESS 31

with Cf,ρ = CMfMρ1Mρ2 > 0 is a constant.
We are ready to estimate the integral I2. In order to do this, we split the sum in (4.42) in

I2 := S1 + S2 + S3 + S4 , (4.48)

with
S1 :=

∑
|k1|≤N
|k2|≤N

(σp1k1 − 1)(σp2k2 − 1)ĝ(k) ,

S2 :=
∑
|k1|≤N
|k2|≤N

(σp1k1 − 1)ĝ(k) ,

S3 :=
∑
|k1|≤N
|k2|≤N

(σp2k2 − 1)ĝ(k) ,

S4 := −
∑
|k1|>N
|k2|>N

ĝ(k) .

(4.49)

We are going to estimate these sums separately.
Since |σp1k1 − 1|, |σp2k2 − 1| ≤ 1, we can then write

|S1| ≤ |S2| , |S1| ≤ |S3| (4.50)

and focus then on the other sums.
Let us consider S2, we split it in S2 := S21 + S22 de�ned as

S21 :=
∑
|k1|≤N/2
|k2|≤N

(σp1k1 − 1)ĝ(k) ,

S22 :=
∑

N/2≤|k1|≤N
|k2|≤N

(σp1k1 − 1)ĝ(k) .
(4.51)

We start with S21. Using the Taylor expansion and the result in (4.47) we get

|S21| ≤
∑

|k1|≤N/2
|k2|≤N

|σp1k1 − 1||ĝ(k)|

≤
∑

|k1|≤N/2
|k2|≤N

1

p1!
‖σp1‖Cp1 (− 1

2
, 1
2

)

(
|k1|
N

)p1
Cf,ρ

(p1!)2

(ηρ1d1(x1)|k1|)p1
(p2!)2

(ηρ2d2(x2)|k2|)p2

= Cf,ρ
∑

|k1|≤N/2
|k2|≤N

1

p1!
‖σp1‖Cp1 (− 1

2
, 1
2

)

(p1!)2

(ηρ1d1(x1)N)p1
(p2!)2

(ηρ2d2(x2)|k2|)p2
.

(4.52)

With appropriated constants, we can estimate

‖σp1‖Cp1 (− 1
2
, 1
2

)≤ Cσ1p1!η−p1σ1 . (4.53)

Using such a result we have

|S21| ≤ Cf,ρ
∑

|k1|≤N/2
|k2|≤N

1

p1!
‖σp1‖Cp1 (− 1

2
, 1
2

)

(p1!)2

(ηρ1d1(x1)N)p1
(p2!)2

(ηρ2d2(x2)|k2|)p2

≤ Cf,ρCσ1
∑

|k1|≤N/2
|k2|≤N

(p1!)2

(ηρ1ησ1d1(x1)N)p1
(p2!)2

(ηρ2d2(x2)|k2|)p2

≤ Cf,ρCσ1
∑

|k1|≤N/2

(p1!)2

(ηρ1ησ1d1(x1)N)p1

∑
|k2|≤N

(p2!)2

(ηρ2d2(x2)|k2|)p2

≤ Cf,ρCσ1N
(p1!)2

(ηρ1ησ1d1(x1)N)p1

∑
|k2|≤N

(p2!)2

(ηρ2d2(x2)|k2|)p2

≤ Cf,ρ,σ1Bd2,p∗2N
(p1!)2

(ηρ1,σ1d1(x1)N)p1
,

(4.54)
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where Cf,ρ,σ1 = Cf,ρCσ1 , ηρ1,σ1 = ηρ1ησ1 and Bd2,p∗2 is such that

∑
|k2|≤N

(p2!)2

(ηρ2d2(x2)|k2|)p2
≤ Bd2,p∗2 , (4.55)

dependent on d2(x2) and

p2 = p∗2 := max {p2,min, 2} , (4.56)

with p2,min de�ned in (4.38) (with a di�erent constant η). The reason for this choice is
that we will consider such a p2,min with a possible di�erent η as adaptive parameter for
I2, but we have to be sure about the convergence of the series in (4.55). Nevertheless, we
observe that as N becomes larger the series is convergent for p2 = p2,min by de�nition of
this parameter.
We consider now S22. Since |σp1k1 − 1| ≤ 1, here we have

|S22| ≤
∑

N/2≤|k1|≤N
|k2|≤N

|σp1k1 − 1||ĝ(k|

≤
∑

N/2≤|k1|≤N
|k2|≤N

|ĝ(k|

≤
∑

N/2≤|k1|≤N
|k2|≤N

Cf,ρ
(p1!)2

(ηρ1d1(x1)|k1|)p1
(p2!)2

(ηρ2d2(x2)|k2|)p2

= Cf,ρ
∑

N/2≤|k1|≤N

(p1!)2

(ηρ1d1(x1)|k1|)p1
∑
|k2|≤N

(p2!)2

(ηρ2d2(x2)|k2|)p2

≤ Cf,ρBd2,p∗2N
(p1!)2

(ηρ1d1(x1)N)p1
,

(4.57)

with a little abuse of notation ηρ1 = ηρ1/2 and the other constants as before.
We got

|S2| ≤ |S21|+ |S22|

≤ Cf,ρ,σ1Bd2,p∗2N
(p1!)2

(ηρ1,σ1d1(x1)N)p1
+ Cf,ρBd2,p∗2N

(p1!)2

(ηρ1d1(x1)N)p1

≤ Cs2N
(p1!)2

(ηs2d1(x1)N)p1
,

(4.58)

where ηs2 = min {ηρ1,σ1 , ηρ1} and Cs2 = Cf,ρ,σ1Bd2,p∗2 + Cf,ρBd2,p∗2 .
Concerning S3, the situation is totally symmetric to S2. Splitting it into two series we
eventually get the estimate

|S3| ≤ Cs3N
(p2!)2

(ηs3d2(x2)N)p2
, (4.59)

with constants similarly to before ηs3 = min {ηρ2,σ2 , ηρ2} and Cs3 = Cf,ρ,σ2Bd1,p∗1 +
Cf,ρBd1,p∗1
The �nal step deals with S4.

|S4| ≤
∑
|k1|>N
|k2|>N

|ĝ(k)|

≤ Cf,ρ
∑
|k1|>N

(p1!)2

(ηρ1d1(x1)|k1|)p1
∑
|k2|>N

(p2!)2

(ηρ2d2(x2)|k2|)p2

(4.60)
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We use the following general fact∑
k>n

1

kp
<

∫ ∞
n

1

xp
dx =

1

p− 1

1

np−1
. (4.61)

Hence,

|S4| ≤ Cf,ρN
1

p1 − 1

(p1!)2

(ηρ1d1(x1)|k1|)p1
N

1

p2 − 1

(p2!)2

(ηρ2d2(x2)|k2|)p2
. (4.62)

One could be worried about the two terms (p1 − 1)−1, (p2 − 1)−1. In fact, as N becomes
larger p1, p2 > 1, so since we are interested in the asymptotically behaviour of the estimate
in the next lines we will simply write Cs4 = Cf,ρ(p1 − 1)−1(p2 − 1)−1.
In the end, we have then asymptotically

|I2| ≤ |S1|+ |S2|+ |S3|+ |S4|
≤ 2|S2|+ |S3|+ |S4|

≤ 2Cs2N
(p1!)2

(ηs2d1(x1)N)p1
+ Cs3N

(p2!)2

(ηs3d2(x2)N)p2
+ Cs4N

2 (p1!)2

(ηρ1d1(x1)|k1|)p1
(p2!)2

(ηρ2d2(x2)|k2|)p2
.

Choosing then

p1 = p1,min = (Nη1d1(x1))1/2 , p2 = p2,min = (Nη2d2(x2))1/2 , (4.63)

with η1 = min {ηρ1 , ηs2} and η2 = min {ηρ2 , ηs3}, we get

|I2| ≤ 2Cs2Ne
−(Nη1d1(x1))1/2 +Cs3Ne

−(Nη2d2(x2))1/2 +Cs4N
2e−(Nη1d1(x1))1/2−(Nη2d2(x2))1/2 .

(4.64)

Coming back to the very beginning of this section,

|f − SσNf | ≤ |I1|+ |I2|

≤ Cσ,f (1 +Nd1(x1))e−(Nησ1d1(x1))1/2(1 +Nd2(x2))e−(Nησ2d2(x2))1/2+

+ 2Cs2Ne
−(Nη1d1(x1))1/2 + Cs3Ne

−(Nη2d2(x2))1/2 + Cs4N
2e−(Nη1d1(x1))1/2−(Nη2d2(x2))1/2

≤ 2Cs2Ne
−(Nη∗1d1(x1))1/2 + Cs3Ne

−(Nη∗2d2(x2))1/2+

+ [Cσ,f (1 +Nd1(x1))(1 +Nd2(x2)) + Cs4N
2]e−(Nη∗1d1(x1))1/2−(Nη∗2d2(x2))1/2 ,

(4.65)

where η∗1 = min {ησ1 , η1}, η∗2 = min {ησ2 , η2}.
We have obtained then asymptotic exponential accuracy recovery away from the disconti-
nuities with the adaptive

p = ((Nη∗1d1(x1))1/2, (Nη∗2d2(x2))1/2) . (4.66)

Observation 21. In this section we required the analyticity of f away from its disconti-
nuities. In f is not such smooth, we lose the exponential accuracy obtaining a polynomial
decay rate.

Observation 22. The tensor product structure allows us to extend the result to a multi-
dimensional setting. The adaptive parameter in this general case is

p = ((Nη∗1d1(x1))1/2, (Nη∗2d2(x2))1/2, ..., (Nη∗νdν(xν))1/2) . (4.67)
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Chapter 5

Numerical tests

5.1 Introduction to the problem

Let f : Rν → R, f ∈ Fk(Rν) as in De�nition 10 and ν = 2, 3.
We consider the problem of reconstructing the function f from a set of samples, using the
theorical instruments about interpolation and �ltering introduced in the previous chapters
and considering f as the underlying function of a two or three-dimensional image.
First of all, we discuss how we can evaluate the �nal reconstruction f̃ which we will get
in the end of the process. The parameters described in this section are valid in the three-
dimensional case also.

• In applications we mainly deal with discontinuous functions, that is the case in which
the Gibbs phenomenon appears.
Thus, we do not consider the behaviour of the error in in�nity norm ‖f − f̃‖∞
to evaluate our results, since as known we can not expect to gain more and more
precision in the points where the function f is discontinuous, and so there is no hope
to make the error go down increasing the number of sample points.

• In order to measure the quality of a reconstructed image, a common used parameter
is the PSNR (Peak-Signal-to Noise-Ratio).
If F, F̃ are the two n × n matrices representing the images obtained evaluating re-
spectively f, f̃ on a suitable mesh grid, the PSNR parameter is de�ned as

PSNR(F, F̃ ) = 10 · log10

(maxF )2

MSE(F, F̃ )
, (5.1)

where maxF is the value of the maximum element (pixel) of F and

MSE(F, F̃ ) =
1

n2

n∑
i=1

n∑
j=0

(F (i, j)− F̃ (i, j))2 (5.2)

is the mean squared error.
We observe that such a parameter is strictly connected to the L2-norm error ‖f−f̃‖L2 .
For this reason, the PSNR is not a good parameter for our applications.
Indeed, the �ltering process makes the Gibbs phenomenon disappear but it also
causes the loss of the optimal properties of the initial Fourier-like interpolant in
minimizing the L2-error (see [16]). Thus, the �nal reconstruction f̃ it's not optimal
with respect to the PSNR parameter.

• A good parameter that can be considered is the SSIM (Structural Similarity In-
dex). This parameter has been introduced to evaluate the quality of a reconstruction
according to human visual perception and it is nowadays one of the most used pa-
rameter in imaging science [18].

35
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Considering two k×k submatrices X,Y of F, F̃ respectively, the parameter is de�ned
as

SSIM(X,Y ) =
(2µxµy + c1)(2σxy + c2)

(µ2
x + µ2

y + c1)(σ2
x + σ2

y + c2)
, (5.3)

where µx, µy are the average values of X and Y , σx, σy are the variances, σxy is the
covariance between the two matrices and c1, c2 are parameters de�ned as

c1 = (k1L)2 c2 = (k2L)2 , (5.4)

where L is the dynamic range of the pixel-values and k1 = 0.01, k2 = 0.03 by default.
The parameter SSIM(F, F̃ ), which is a value between −1 and 1, is computed as the
mean of the parameters given by di�erent submatrices.
We refer to this parameter to evaluate our results, but as we will see the human sight
perception will play an important role too.

5.2 Two-dimensional experiments

The setting of our experiments in Matlab is:

• The domain is the square [−1, 1]2.

• The evaluation matrix is a 201×201 matrix. The step of the grid is indeed s = 0.01.

• A modi�ed version of the Chebfun 5.3.0 package, which is avaiable in the inclosed
CD.

We describe the steps of our procedure, considering as example the function f : [−1, 1]2 →
R de�ned as

f(x, y) =

{
1 x2 + y2 ≤ (0.6)2 ,

0 otherwise .
(5.5)

Figure 5.1: Function f .
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Figure 5.2: Function f as a gray scale image.

5.2.1 Lissajous sampling

We want to reconstruct the function f sampling on Lissajous nodes. The Chebfun package
is suitable for our purposes, since it already contains an algorithm which performs the global
polynomial interpolation on Padua points in an optimized way. We can then slightly modify
the package, obtaining a fast and e�cient way to interpolate on Lissajous nodes.

First, we �nd the Lissajous nodes and the relative weights given by a chosen curve γ
(32,33)
2 .

pars=[32,33,2]; % [n1,n2,flag]

x=lissapts([pars(1),pars(2)],pars(3));

The function lissapts.m included in the package is de�ned in the following way.

function [xy,idx,w] = lissapts(n,e,range)

% (C) Francesco Marchetti 23.03.2016

%

% Note: lissapts.m is a variation of LSpts.m by Wolfgang Erb

%

% USAGE of

% [xy,idx,w] = lissapts(n,e,range)

%

% Computes Lissa (LS) points with parameter n1, n2 (relatively prime)

% and e for a given range.

% If range is not given then range = [-1, 1, -1, 1].

% If n is a natural number then n = [n,n+1].

%

% --------------------------------------------------------------------

% INPUT:

%

% n : vector of parameters of the Lissajous curve.

% e : e = 1 (degenerate), e = 2 (non-degenerate).

% range : [x.start,x.end,y.start,y.end] range of the x-

% and y-coordinates.

%
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% OUTPUT:

%

% xy : 2-columns array of x,y coordinates of the LS nodes.

% idx : logical matrix which denotes the entries of the Chebyshev

% tensor product grid that form XY.

% w : 1-column array of weights of the LS nodes.

%

We can then write

fx=f(x(:,1),x(:,2));

f_lissa=chebfun2(fx,[-1 1 -1 1],'lissa',pars);

Figure 5.3: Plot of f_lissa. The Gibbs phenomenon is clearly visible.

Figure 5.4: f_lissa as a gray scale image
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Late versions of Matlab provide a default function to calculate the SSIM parameter. We
have

SSIM(f, f_lissa) = 0.5122 . (5.6)

5.2.2 Spectral �ltering

Using

C=chebcoeffs2(f_lissa); % Fourier coefficients

C(abs(C)<1e-10)=0; % Set to 0 if too small

we get the spectral coe�cients of f_lissa in a matrix C.
We recall the de�nitions of some �lters.

• The Fejér �lter (�rst order)
σ(η) = 1− η . (5.7)

• The sinc �lter (�rst order)

σ(η) =
sin(πη)

πη
. (5.8)

• The raised cosine �lter (second order)

σ(η) =
1

2
(1 + cos(πη)) . (5.9)

• The exponential �lter of order p (p even)

σ(η) = e−αη
p
, (5.10)

where α is the computer's roundo� error.

Taking as example the raised cosine �lter, we write

eta1=[0:(pars(3)*pars(1))].*(1/(pars(3)*pars(1)));

eta2=[0:(pars(3)*pars(2))].*(1/(pars(3)*pars(2)));

filt1=1/2.*(ones(1,length(eta1))+cos(pi.*eta1));

filt2=1/2.*(ones(1,length(eta2))+cos(pi.*eta2));

F1=filt2.'*filt1;

P_filt=C.*F1; % Application of the filter

f_filt=chebfun2(P_filt,[-1,1,-1,1],'coeffs');

Figure 5.5: Plot of f_filt. We managed to dimish the Gibbs phenomenon.
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Figure 5.6: f_filt as a gray scale image

We have

SSIM(f, f_filt) = 0.8232 . (5.11)

5.2.3 Edges detection and distance matrix

As described in the previous chapters, we are going to apply an adaptive �lter to recover
more precision (Section 4.2.2). In order to do it, we need to know where are the disconti-
nuities, where is the nearest point of discontinuity related to each non-discontinuous point
and what is the distance between them.
The edge detection can be performed by the default Matlab function edge, in particular
we use the Canny edge-detector.
We observe that in the polynomial reconstruction there are no real discontinuities. Indeed,
the edge-detector �nd the large variation zones of the gradient and it claims that an un-
derlying discontinuity of the original function is hidden there.
We apply the algorithm to the �ltered matrix f_filt, since the massive perturbations in
f_lissa could be wrongly detected as discontinuities.

s=0.01;

t=-1:s:1; % Mesh in the square

[X,Y]=meshgrid(t);

f_filt_mesh=feval(f_filt,X,Y);

peaks=edge(p_filt_mesh,'Canny',[],3); % `3' is a chosen parameter

peaks=double(peaks); % peaks is a logical matrix

5.2.4 Adaptive �lter application

We can e�ciently �nd for each point its closest discontinuity point with respect to the
Euclidan distance using the function ipdm.m (Inter-Point Distance Matrix)1 , avaiable in
the inclosed CD.

function d = ipdm(data1,varargin)

% ipdm: Inter-Point Distance Matrix

% usage: d = ipdm(data1)

% usage: d = ipdm(data1,data2)

1http://it.mathworks.com/matlabcentral/�leexchange/18937-ipdm�inter-point-distance-matrix
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% usage: d = ipdm(data1,prop,value)

% usage: d = ipdm(data1,data2,prop,value)

%

% [...]

%

% Author: John D'Errico

% e-mail: woodchips@rochester.rr.com

% Release: 1.0

% Release date: 2/26/08

Let then ξ = (ξ1, ξ2) be the closest discontinuity point related to the point x = (x1, x2).
We can �nd the two distances

d1 = d1(x1) = |x1 − ξ1| , d2 = d2(x2) = |x2 − ξ2| . (5.12)

We consider then as suggested by the theory

p1 = (η?1N1d1)1/2 , p2 = (η?2N2d2)1/2 , (5.13)

where N1, N2 are natural numbers which depend on the degree parameters of the Lissajous
curve which we are considering.
We are ready then to perform the adaptive �ltering process.
A complete script including all the previous passages and a numerical implementation of
the adaptive �lter is avaiable in the CD. We point out that in applications we use a unique

η = η∗1 = η∗2 (5.14)

in the �nal expression (4.24).

Figure 5.7: Final result after adaptive �ltering.

Let f_apt be the �nal result in Figure 5.7. We get

SSIM(f, f_apt) = 0.6592 . (5.15)
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Figure 5.8: As example, this would be the result if we applied the edge-detector to f_lissa.

We can observe that f_apt is a�ected by a striped distortion, given by the tensor-
product structure of the adaptive �lter.
In order to improve the �nal result and to avoid the appearance of such a distortion, we
can modify the de�nition of the adaptive parameters trying to improve our result.
We point out that what follows in the section is conjectured from sperimentation and
observations and it is not supported by the theory as before.
We look for a unique parameter p = p1 = p2 which depends on the euclidean distance

d(x) = ‖x− ξ‖=
√
d2

1 + d2
2 . (5.16)

Then, we de�ne �rst

N =
√
N2

1 +N2
2 , (5.17)

and we slightly modify the initial parameters in

p1 = (ηNd1)1/2 , p2 = (ηNd2)1/2 . (5.18)

We can de�ne then

p =
√
p4

1 + p4
2 = ηNd(x) (5.19)

In Figure 5.9 we see the new result f?_apt, which is no more a�ected by the considered
distortion. Moreover,

SSIM(f, f?_apt) = 0.6120 . (5.20)
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Figure 5.9: The result f?_apt.

5.2.5 Non-linear adaptive parameter

In the �ltering process we have to deal with two di�erent situations:

• Using a strong �lter we get a robust reduction of the Gibbs phenomenon all over
the image, but we also cause a large smoothing e�ect near the edges of the object
represented by the function.

• Using a weak �lter we almost preserve the function near the discontinuities, but we
can not greatly reduce the Gibbs phenomenon.

Our aim is to �nd a balance between these two aspects, therefore we can make a step
forward.
The parameter p depends linearly on d(x). We conjecture what follows.

Conjecture 23. Let us consider the function Φ : [0,+∞) → [0,+∞) with the following
properties:

• Φ(0) = 0 .

• Φ is a regular and increasing function in [0,+∞) .

• Φ has a saturation property, that is there exists ε > 0 such that

Φ(x) ≥ x (5.21)

for x ∈ [0, ε].

We claim that there exists at least one function with the previous properties, possibly de-
pendent on the setting of the sperimentations, such that using the adaptive parameter

p = ηNΦ(d(x)) (5.22)

we can improve the �nal result of the process in terms of resolution of Gibbs phenomenon
and image reconstruction.
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A possible family of functions which have the described properties and which we con-
sider for our experiments is

Φβ(x) = xβ , (5.23)

where 0 < β < 1. Then we can de�ne a new parameter

pβ = ηN(d(x))β (5.24)

The new parameter pβ is more sensitive and has a larger variation in small distances with
respect to the linear one. On the other side, pβ has a saturation e�ect as the distance
increases.

Figure 5.10: As example, Φβ(x) = x (linear) and Φβ(x) = x1/3 (non-linear).

Figure 5.11: Final reconstruction f1/4_apt using pβ with β = 1/4.

SSIM(f, f1/4_apt) = 0.7073 . (5.25)
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At this point one could wonder about what is a good choice for the parameter β and how
much we can let it become close to zero. Of course the choice depends on the step of the
grid which is used in sperimentations, since a large step is not sensitive to small values of
the parameter and so it would make no sense to set β too small, and can be made through
a computational search.
In our setting with the step s = 0.01, a good choice is for example β = 1/4.
A complete code related to the considerations of this subsection in avaiable in the CD.

In the next applications we will use then p1/4 as adaptive parameter.
The SSIM value after the �rst �ltering process is higher than the value related to the �nal
reconstruction. As we said in the introduction of the chapter, the SSIM parameter is good
to evaluate our results, but for example it can not appreciate so deeply the edges de�nition,
which is the best quality of the adaptive �ltering process.
Therefore, in applications one would prefer the �nal result, despite the values of the pa-
rameters.

5.2.6 More numerical results

We consider the following two functions de�ned in [−1, 1]2.

f1(x, y) =


2 |x| ≤ 0.5 , |y| ≤ 0.5 ,

1 −0.8 ≤ x ≤ −0.65 , |y| ≤ 0.8 ,

0.5 0.65 ≤ x ≤ 0.8 , |y| ≤ 0.2 ,

0 otherwise .

f2(x, y) =



2 (x+ 0.4)2 + (y + 0.4)2 ≤ 0.42 ,

1.5 (x− 0.5)2 + (y − 0.5)2 ≤ 0.32 ,

1 (x− 0.5)2 + (y + 0.5)2 ≤ 0.22 ,

0.5 (x+ 0.5)2 + (y − 0.5)2 ≤ 0.12 ,

e−(x2+y2) otherwise .

(5.26)

Figure 5.12: Function f1.
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Figure 5.13: Function f2.

We want to observe the behaviour of the SSIM parameter between these functions
and the reconstructions which are obtained as the degree (n, n+ 1) of the Lissajous curve
becomes larger.
At �rst, we investigate the behaviour of the parameter in the application of the �rst spectral
�lter.
Let us start with f1.

(a) Using the exponential �lter with p = 4. (b) Using the sinc �lter.

(c) Using the raised-cosine �lter. (d) Using the Fejer �lter.

Figure 5.14: Di�erent results for each di�erent �lter for f1 .

We observe that the Fejer �lter is not so e�ective for very high degrees.
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Figure 5.15: For n = 15, the �rst reconstruction from Lissajous sampling.

Figure 5.16: Result after sinc �lter application for n = 40.
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For f2 we get the following.

(a) Using the exponential �lter with p = 4. (b) Using the sinc �lter.

(c) Using the raised-cosine �lter. (d) Using the Fejer �lter.

Figure 5.17: Di�erent results for each di�erent �lter for f2 .

Figure 5.18: For n = 15, the �rst reconstruction from Lissajous sampling.
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Figure 5.19: Result after sinc �lter application for n = 40.

We can also analyze the behaviour of the SSIM parameter after the application of the
adaptive �lter. We observe that in this case the �rst �ltering process is important just in
order to apply the edge-detector in an e�cient way.
Therefore, without loss of generality we decided to use the sinc �lter among the others.
Moreover, in the following applications we use the same parameters in the edge-detector
and in the adaptive �lter for both the functions and for all the degrees. We point out
that for obvious reasons the parameter η should not depend on the di�erent choices of the
underlying function, while could be slightly modi�ed for di�erent degrees N related to the
considered Lissajous curve.
More information about the setting of the parameters can be found in the inclosed CD.

Figure 5.20: SSIM behaviour after adaptive �ltering process for f1.
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Figure 5.21: SSIM behaviour after adaptive �ltering process for f2.

(a) n = 25. (b) n = 40.

Figure 5.22: Two results for f1.

(a) n = 45. (b) n = 65.

Figure 5.23: Two results for f2.
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5.3 MPI applications

We can apply all the previous procedures to improve the image which we get from a MPI
scanner. The setting will be the following.

• The domain is the square [−1, 1]2.

• The evaluation matrix is a 201×201 matrix. The step of the grid is indeed s = 0.01.

• A modi�ed version of the Chebfun 5.3.0 package, which is avaiable in the inclosed
CD.

• Two 201× 201 matrices containing the two phantoms which we consider.

• The sampling process is a simulated procedure, representing the mode of operation
of a real MPI scanner placed at the University of Lübeck. For technical reasons,
the scanner needs to perform the sampling on a non-degenerate Lissajous curve

of maximum degree (32, 33). Thus, the curve γ
(32,33)
2 is the only curve which is

considered in this section.

Figure 5.24: The Lissajous curve γ
(32,33)
2 and nodes.

We call A and B the two phantoms which we consider. They are displayed in the following
�gures.

(a) The phantom A. (b) The phantom B.
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The polynomial interpolation on the Lissajous nodes given by γ
(32,33)
2 brings the two

following images.

(a) The phantom A reconstructed from Lissajous
sampling. SSIM = 0.665.

(b) The phantom B reconstructed from Lissajous
sampling. SSIM = 0.616.

Starting with A and then taking B, we can follow the path of the previous section and
we experiment �rst with the classical �lter functions which we have introduced and then
with the presented adaptive �lter.

(a) Using the exponential �lter with p = 6.
SSIM = 0.698.

(b) Using the sinc �lter. SSIM = 0.736.

(c) Using the raised-cosine �lter. SSIM = 0.738. (d) Using the Fejer �lter. SSIM = 0.539.

Figure 5.27: Di�erent results for A.
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(a) Using the exponential �lter with p = 6.
SSIM = 0.649.

(b) Using the sinc �lter. SSIM = 0.674.

(c) Using the raised-cosine �lter. SSIM = 0.673. (d) Using the Fejer �lter. SSIM = 0.496.

Figure 5.28: Di�erent results for B.

(a) Final reconstruction of A after adaptive �lter-
ing process. SSIM = 0.701.

(b) Final reconstruction of B after adaptive �l-
tering process. SSIM = 0.649.

A complete script with all the passages of this reconstruction is included in the inclosed
CD.
We observe that the image related to the phantom B is more perturbated than the one
related to A, due to the position of the phantom which is not completely �included� in
(−1, 1)2 and it goes up to the boundary, causing a loss of quality in the reconstruction. In
these cases, one has to pay more attention in choosing the parameters in the algorithm,
avoiding the wrong detection of non-existing edges.
In practice this is not a big problem, since the scanner can move its �eld of view, solving
then the positioning problem.
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5.4 Three-dimensional experiments

In this section we perform some experiments in the three-dimensional case, referring to
Chapter 2. Our setting is:

• The domain is the cube [−1, 1]3.

• The evaluation matrix is a 21×21×21 matrix. The step of the grid is indeed s = 0.1.

• The Chebfun package, which is avaiable in the inclosed CD and in the o�cial website
(not necessarily the modi�ed version).

We follow the same steps of the two-dimensional case. What slightly changes is the way
we do it.

1. In order to reconstruct a test function from the samples and to apply the spectral
�ltering process we use the function hyperlissa_pro.m (avaiable in the inclosed CD),
which is a modi�cation of hyperlissa.m2.

function [hypval,cfs]=hyperlissa_pro(deg,pts,f3,flag,filter);

% Francesco Marchetti, September 2016

% This function is a modification of hyperlissa.m from Stefano De Marchi

% and Marco Vianello

%

% It computes the hyperinterpolation polynomial of a trivariate function

% at a rank-1 Chebyshev lattice on a Lissajous curve of the cube, applying

% if desired a spectral filter

% NOTE: to be used in connection with the Chebfun package

% http://www.chebfun.org

% input:

% deg: hyperinterpolation degree

% pts: 3-column array of evaluation points

% f3: Trivariate function handle

% flag: 0 no-filter, 1 use filter

% filter: natural number to choose the type of filter

% output:

% hypval: 1-column array of values of the hyperinterpolation polynomial

% at the points pts

% cfs: hyperinterpolation coefficients

2. The edge-detection is performed using the default edge.m Matlab function combined
with the function canny.m3. As observable in the example script in the CD, we use
the function edge.m on the di�erent two-dimensional slices of the 3D matrix repre-
senting the image in order to �nd suitable tresholds for the edge detection, then we
pass the found treshold to canny.m to �nd the edges in the matrix. The tresholds
setting is already included in canny.m, but the results are often not satisfying.

2http://www.math.unipd.it/ marcov/CAAsoft.html
3https://it.mathworks.com/matlabcentral/�leexchange/45459-canny-edge-detection-in-2-d-and-3-d
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function [e, thresh] = canny(im, varargin)

%CANNY is an implementation of the Canny edge detector

% E = CANNY(IM) takes a 2-D grey-level image or a 3-D array representing

% a volume and returns a 2-D or 3-D logical edge map using centred

% differences and non-maximum suppression. No smoothing or thresholding

% is done when only one argument is given.

%

% [...]

%

% E = CANNY(IM, SIGMA, THRESH) also carries out hysteresis thresholding.

% THRESH has the same functionality as the threshold argument of EDGE.

% (Name-value pairs may be used instead of the THRESH argument for more

% control.)

%

% [...]

We use the function ipdm.m as before in order to �nd the distances between points
and related closest discontinuities.

3. The adaptive �ltering is performed in the same way with respect to the two-dimensional
case, through tensor product extension and then considering a modi�ed adaptive pa-
rameter.
Since in the three-dimensional setting we consider a step of the grid which is 10 times
larger with respect to the one chosen in the two-dimensional case, the adaptive �lter
can not express all its good properties about adaptivity and de�nition of the edges.
Moreover, due to computational issues we experiment just in the case with m = 10
as degree of the three-dimensional Lissajous curve, and we use β = 4 in the adaptive
parameter without knowing if it is optimal for this setting.

5.4.1 Numerics

(a) The function f1. (b) The function f2.

Figure 5.30: A representation for the two functions.

We consider the functions f1, f2 from [−1, 1]3 to R de�ned as

f1(x, y, z) =

{
1 x2 + y2 + z2 ≤ (0.6)2 ,

0 otherwise .
(5.27)
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f2(x, y, z) =



1 (x+ 0.5)2 + (y + 0.5)2 + (z + 0.5)2 ≤ (0.4)2 ,

1 (x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ≤ (0.4)2 ,

1 (x+ 0.5)2 + (y − 0.5)2 + z2 ≤ (0.4)2 ,

1 (x− 0.5)2 + (y + 0.5)2 + z2 ≤ (0.4)2 ,

0 otherwise .

(5.28)

Figure 5.31: Di�erent results for f1 with exponential and Lanczos �lters.

Figure 5.32: Di�erent results for f2 with raised cosine and Fejer �lters.

We can perform the adaptive �ltering process, obtaining the following results. We
recall that we used the degree m = 10.

Table 5.1 SSIM values

Functions f1 f2

Lissajous reconstruction 0.1876 0.1771
After adaptive �ltering 0.3285 0.2200

We observe an improvement of the SSIM value in both cases.



5.4. THREE-DIMENSIONAL EXPERIMENTS 57

(a) The reconstructed function f1. (b) The reconstructed function f2.

Figure 5.33: The reconstruction of the two functions using the adaptive �lter.
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Chapter 6

Conclusions

This work arises from a collaboration between the University of Padua and the University
of Lübeck and it started during an Erasmus placement exchange program of the autor in
Germany.

1. The Lissajous sampling is a stable and e�ective way to reconstruct a function without
using a very large number of sample points and it is a suitable procedure for MPI
applications. However, in the reconstruction of discontinuous functions it is inevitable
to face the Gibbs phenomenon.

2. Classic Fourier spectral �ltering methods are e�cient in dimishing the distortions
given by the Gibbs phenomenon, but they also provide a general smoothing in the
image and they cause a loss of de�nition.
In our setting, these spectral methods are useful to improve the image before the
application of the edge-detector. In order to get an acceptable result, we have to focus
on the resolution of strong warps given by the Gibbs phenomenon, since otherwise
they could be interpreted as edges by the detector.
Therefore, one should prefer a proper strong �lter, even if some precision is lost
near the existing edges in the �gure. We performed the application of such �lters,
obtaining good results.

3. The adaptive parameter suggested by the theory related to the adaptive �lter is af-
fected by some distortions given by the consideration of separated one-dimensional
distances in a tensor product setting.
In order to improve the �nal result, we conjectured a di�erent parameter, �rst linearly
dependent from the euclidean distance between points and related closest disconti-
nuities. After that, we presented the idea of considering a non-linearly dependence
from the distance in the parameter. This has brought an improvement in the general
quality of the �nal reconstructed image, hence this conjecture could be investigated
in the theory in order to �nd a related theorical background.

4. The three-dimensional case is much more expensive in terms of computational costs
with respect to the two-dimensional case. Therefore, we experimented with a larger
step in the grid and we could not manage to perform deep tests as in the previous
case. Thus, the results obtained could be enriched and improved considering a setting
which guarantees more accuracy.

59
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