
UNIVERSITÀ DEGLI STUDI DI PADOVA

DIPARTIMENTO DI TECNICA E GESTIONE DEI SISTEMI INDUSTRIALI
CORSO DI LAUREA MAGISTRALE IN INGEGNERIA MECCATRONICA

Model-based development of a self-balancing,
two-wheel transporter

Relatore: Roberto Oboe

Laureando: Dino Spiller
1084324-IMC

ANNO ACCADEMICO: 2017-2018

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

S U M M A RY

The current work aim to propose an evolute theoretical model for the two-wheel
self-balancing transporter, together with a practical implementation of the device,
that serves as proof for the model itself.

Inside this document the mathematical modeling, the control strategies (LQR for
the equilibrium and PI for steering) and the management the system non-idealities
that affects the real-device.

An automated powerful tool was realized and described, to make it possible
the easy compare of simulation and real-device performances/behavior. It can be
considered a useful tool for the proof of future studies and system improvements.

The results of this work are a good correspondence between the theoretical
model simulation and the real device behavior, in addition to the good stability
performances of both the simulated and real device.

iii

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

Perché la vita é un brivido che vola via,
é tutto un equilibrio sopra la follia.

(Vasco Rossi)

T H A N K S

To Prof. Roberto Oboe: thanks for all your kindness and support, especially for en-
couraging me in the moment when I believed I couldn’t ever make the device
work. You made the things "lighter", with your sympathy and that finally helped
me. Sometimes I think I’d love to be like you.

To Simone: you were not simply a colleague. You always had the patience of
listening me when I told you my difficulties about this project and even gave me
useful keys to see difficult situations from the right perspective.

To Maria, my mother: you always believed in me and see something that some-
times even I couldn’t. I’m your seventh son, but you always made me feel like I
was the only.

To Antonio, my father: thanks for your example. What I learned from you is the
love for the honesty and that for the study: an activity you never stopped in every
moment of your life.

To Nicola and Andrea: you are the "sun" of my life. You’re one of the main moti-
vation of this work: it’s a toy for you! I will never forget the times passed with you
sleeping on my knees, when I studied and the times you told me "don’t give up,
papa!". I wish you’ll be blessed by equally lovelies children.

And over all, to Michela: It’s you I miss, every day, when I can’t wait to be back
at home. This work is only the "iceberg top" of what you helped me to do these
years of university: your patience, your encouragements and your love made it
possible the completion of this hard work. I’ll always remember the moments we
had a break together, making our "terrazza-parties": pleased by the aroma of your
presence, of your beauty and your love, that is even better than that of the coffee
we had together.

Without you none of the words in this story might have been written... even
those in this book.

v

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

C O N T E N T S

1 introduction 1

1.0.1 Existing literature 2

1.0.2 Motivation and attempts 2

1.0.3 Thesis outline 3

2 definition of system specifications 5

2.1 Introduction 5

2.2 Problem definition 5

2.3 Dimensions 5

2.4 Motor torque 6

2.4.1 Speed at full weight, inclined ground 6

2.4.2 Maximum deceleration 7

2.4.3 Motor choice 7

2.5 Battery 10

2.6 Motor Driver 11

2.7 IMU 12

2.8 Joystick 13

2.9 Remote communication 14

2.10 Overall architecture and Shematic 15

2.10.1 Master board 17

2.10.2 Slave Board 17

3 system modelling 19

3.1 Introduction 19

3.2 Kinematic model 19

3.2.1 Assumptions 21

3.3 Dynamic model 22

3.4 Lagrangian 23

3.5 System linearization 24

3.6 System decoupling 26

3.7 Stability analisys 28

3.8 Conclusions 30

4 a more realistic model 31

4.1 introduction 31

4.2 Linearization of the new system 33

4.2.1 decoupling 34

4.3 Transfer function and stability analisys 35

5 control 37

5.1 Introduction 37

5.2 Control of Equilibrium subsystem 37

5.2.1 The optimum (LQR) controller 37

5.2.2 Application of LQR to the equilibrium subsystem 41

5.2.3 Stability analysis 42

5.2.4 LQR tuning 45

5.3 Control of Steering subsystem 46

5.3.1 LQR steering controller 47

5.3.2 PI steering controller 48

5.4 Conclusions 51

vii

[December 2, 2017 at 17:06 – classicthesis]

viii contents

6 system non-idealities 53

6.1 Introduction 53

6.2 Motor torque 53

6.3 Current Loop 58

6.4 Angle and angle-rate reading 62

6.4.1 IMU modelling and calibration 63

6.4.2 angle measurement 67

6.4.3 Sensor fusion 69

6.4.4 Kalman filtering 70

6.4.5 Kalman tuning 71

6.4.6 The Bartlett’s test 72

6.4.7 Application of Kalman Filter to the system 73

6.5 Position and Velocity reading 75

6.6 Conclusions 84

7 algorithms implementation 85

7.1 Introduction 85

7.2 Overall architecture and behavior 85

7.3 The Matlab environment 87

7.3.1 Vehicle parameters 88

7.3.2 overall model 88

7.3.3 Equilibrium model and controller 90

7.3.4 Steering model and controller 91

7.3.5 Digital filters 93

7.3.6 Simulink simulation 94

7.3.7 bluetooth param writer 95

7.3.8 Data collection and post-processing 96

7.4 The embedded environment 98

7.5 The control firmware 98

7.5.1 The control algorithm 99

7.5.2 data filtering/processing 102

7.5.3 state recontstruction 105

7.5.4 control signals generation 106

7.5.5 errors management and safety strategies 109

7.6 Conclusions 111

8 model validation 113

8.1 Introduction 113

8.2 Velocity and acceleration reconstruction 113

8.2.1 position and acceleration 114

8.3 IMU model validation and tuning 116

8.3.1 datasheet verification 116

8.4 Tuning sensor fusion algorithm 120

8.4.1 Verification of linear acceleration subtraction 120

8.4.2 Finding the best coefficients for complementary filter 121

8.5 Validation of the first model 123

8.5.1 Steady state 123

8.5.2 Reference-following sequence 125

8.6 Steering model and controller tuning 128

8.7 Equilibrium model and controller tuning 129

8.8 Tuning and validation of the evolved (rider’s) model 131

8.8.1 Controller tuning, for the rider 133

[December 2, 2017 at 17:06 – classicthesis]

contents ix

8.8.2 Tuning the parameters of "Q" matrix 134

8.9 Conclusions 136

Conclusions 139

Appendix 141

a appendix-a : lagrangian derivation step-by-step 143

a.1 Lagrangian: derivation for the first model 143

bibliography 147

[December 2, 2017 at 17:06 – classicthesis]

L I S T O F F I G U R E S

Figure 1 Me, while riding the self-balancing vehicle described in this
thesis. 1

Figure 2 Base dimensions (observed from upside) 6

Figure 3 The requirement of a certain minimum speed at full weight,
along an inclined plane. Figure from [38]. 6

Figure 4 HUB motor, used in many self-balancing toys. Figure from
[10]. 8

Figure 5 RC model motor, image from [1] 9

Figure 6 Battery used for the high-current RC motor. Figure from
[6]. 10

Figure 7 Open-hardware motor controller, a project of Benjamin Ved-
der [35] image also from [35] 12

Figure 8 Open-hardware IMU i2C evaluation module of Invensense’s
MPU6050. Figure from [28]. 13

Figure 9 Joystick used during experiments. Image from [2] 14

Figure 10 Serial-to-bluetooth (HC-06) module used for remote logging
of data coming from the self-balancing transporter, to the
host PC. Figure from [5] 15

Figure 11 Hardware architecture schematic of the self-balancing trans-
porter. Note the absence of a "central board" and the choice
of a master-slave architecture 16

Figure 12 Graphical representation of the entities of the system. 19

Figure 13 Detailed description of torques and references on right wheel.
In the left, the wheel, while in the right the TWSBT base:
note that the torque generated by the motor applies equal
and opposite in the two bodies. The symmetric holds for the
left wheel. 23

Figure 14 Poles and zero-es of equilibrium subsystem (open-loop un-
stable poles). 28

Figure 15 Free evolution of the model ?? with θP(0) = 5° and τθ = 0

. 29

Figure 16 Root locus and Bode plot with stability margins of the δ
τδ

transter function (33). 30

Figure 17 A more-complex model comes with the introduction of a
further freedom-degree: the separation of the angle between
the rider and the base. 31

Figure 18 Zero-order-hold process, used (as default method) by MAT-
LAB, for the continous-to-discrete conversion of a system.
Figure from MATLAB’s website. 41

Figure 19 Control scheme for the equilibrium of the self-balancing
transporter: a discrete-time LQR acts on the "equilibrium
torque". The unit delay represents the processing limit of
the micro-controntroller, which must collect data (via serial-
link), calculate the necessary torque (current), and send back
the current reference to the motors. 42

x

[December 2, 2017 at 17:06 – classicthesis]

List of Figures xi

Figure 20 Poles of the system: in the upper figure, the uncontrolled
system, in the lower the controlled one. The choice of the
coefficients of Q and R yielded to both real and complex-
conjugated, under-damped poles. 44

Figure 21 Poles of the system: differently from the situation of figure
20, the controlled-poles are now all negative-real. 45

Figure 22 Steering control block: two different algorithms are available
for simulation. 47

Figure 23 Poles of the steering system: too-negative poles might de-
termine unstable controller. 48

Figure 24 PI controller blocks. 49

Figure 25 Frequency representation of the steering subsystem. In the
upper graph the uncontrolled system, in the middle the
loop-gain of the PI-controlled system, and in the lower the
frequency response of the overall controlled system. 50

Figure 26 Torque ripple in a BLDC motor, due to a variation of ke ≈ kt
along the electrical angle. Figure from [29]. 54

Figure 27 Block-diagram of a field-oriented control for a 3-phase BLDC
motor. Figure from [17]. 55

Figure 28 Electrical schematic (simplified) of a BLDC motor. Figure
from [29]. 56

Figure 29 Graphical interface of the board controller: motor identifica-
tion panel. 57

Figure 30 Noise torque applied to the motors: it represents mainly the
terrain irregularities and other uncontrolled external torque
disturbances. 58

Figure 31 Current limit in the current controller. In the figure it is also
noticeable the simplified linear relation (kt) between current
and torque. 60

Figure 32 Variable voltage across inductor and corresponding current. 60

Figure 33 Block-model of a current proportional controller, acting on
stator’s inductor. 61

Figure 34 The control scheme represented in figure 33, is equivalent to
a high-frequency pole at pulsation of Kp/Ls rad/s. 61

Figure 35 Final model for the current controller: the linear effect of a
low-pass filter, plus the nonlinear effect of current satura-
tion. 61

Figure 36 Current transient, with blocked rotor, measured at one of
the motor-phases. Its effect is similar to that of a first-order
LPF, thus it is possible to estimate its time-constant and put
it into the model of figure 34. 62

Figure 37 IMU magnetometer reference axes. Figure from [28] 63

Figure 38 IMU accelerometer and gyroscope rotation directions. Fig-
ure from [28] 63

Figure 39 Block-model of the accelerometer unit. 65

Figure 40 Accelerometer reading affected not only by the gravitational
acceleration, but also by the movement-correlated linear ac-
celeration 66

Figure 41 Block-model of the gyroscope unit. 67

[December 2, 2017 at 17:06 – classicthesis]

xii List of Figures

Figure 42 Linear approximation of angle: valid in the interval of ±20°.
Figure from [25] 68

Figure 43 Model of angle reading from accelerometer: note the possi-
bility to test the benefit of subtracting the acceleration cal-
culated, from the x output of the accelerometer. 68

Figure 44 Comparison of angle reading with accelerometer and com-
plementary filter. In this setup α = 0.98 and β = 0.02 70

Figure 45 Complementary filter model: the simplest approach for IMU
sensor fusion. 70

Figure 46 The Bartlett whiteness test: If a signal is white the result-
ing plotting is similar to the green line (almost coincident
with te dashed diagonal), the red line indicates a "high-
frequency-dominated" signal. The blue a "low-frequency-
dominated". 72

Figure 47 Possible solutions for the sensor-fusion algorithm to use,
during simulations. 75

Figure 48 Model for the motor position reading: a quantized angle, in
combination with a discrete-time reading. 77

Figure 49 Position reading (higher) graph: after the introduction of a
second-order, 5 Hz LPF, the "steps" (in the blue track) have
been smoothed (red track), at the cost of a measure delay.
This had a great benefit in velocity and acceleration read-
ing. 78

Figure 50 Position reading complete chain: hall quantization in the
left, in the center the reduction and the coordinate trans-
form. In the right, the selectable second-order LPF. 78

Figure 51 Wheel velocity retrieving: a high-pass filter is equivalent to
a time derivative, plus a high-frequency pole, that makes it
a proper system. 79

Figure 52 First-order, discrete high-pass filter, with a pole at 40rad/s. 80

Figure 53 Average-derivative for velocity calculation. 80

Figure 54 Simulink model of a 10-tap, average derivative block, suit-
able for velocity estimation. 81

Figure 55 PLL scheme, used for the derivation of velocity, from posi-
tion. For simplicity the controller is not a PI, but a simple
proportional one. 81

Figure 56 Bode plot of the transfer function (104). This emulates the
PLL circuit with a Butterworth-tuned complex-conjugated
poles. 82

Figure 57 Different velocity-calculation blocks: the model’s outputs were
select-able, in order to make different simulations and choose
the best solution. 84

Figure 58 Logic architecture of the system 85

Figure 59 Simulink: blocks for exporting state variables to the MAT-
LAB environment. 95

Figure 60 After having run the model parameters calculation, these
data are sent from the PC, to the embedded board 95

Figure 61 Master board reading its internal motor position (in RED
the data flow). 100

[December 2, 2017 at 17:06 – classicthesis]

List of Figures xiii

Figure 62 Master board reading the IMU registers (in RED the data
flow). 101

Figure 63 Master board reading the remote motor position (in RED
the data flow). 101

Figure 64 Retrieving the state variables from the quantized measures.
These blocks represents the work inside the microcontroller
routines. 105

Figure 65 Position, velocity and acceleration reading: comparison of
different algorithms. 113

Figure 66 Position, velocity and acceleration reading: a zoom for in-
vestigation about algorithm’s behavior during fast and slow
transients. 114

Figure 67 Position, velocity and acceleration reading during a simu-
lated control sequence (not in free evolution). 115

Figure 68 Yaw angle and angle-rate reading, during a simulated con-
trol sequence (not in free evolution) using the velocity-reading
filter "HPF+pole" set with ωHPF = 2π ∗ 5Hz. 115

Figure 69 Section of the datasheet of MPU9250, regarding the accelerom-
eter. 117

Figure 70 Noise at the "X" output of the accelerometer. On the left,
the simulated block, modeled with a Power Spectral Density
equal ot the value found in the datasheet. On the right the
real-one. The outputs are very close each other and the noise
variance is also similar. 117

Figure 71 Section of the datasheet of MPU9250, regarding the gyro-
scope. 118

Figure 72 Noise at the output of the gyroscope. On the left, the sim-
ulated block, with the value found in the datasheet. On the
right the real-one. The outputs are very close each other and
the variance is also similar: the real-device variance is even
smaller than that of the datasheet. 119

Figure 73 Noise at the output of the gyroscope, when filtered at 5Hz.
On the left, the simulated block, on the right the real-one
that has the embedded digital filter. The frequency behavior
is very similar in the two situations. 119

Figure 74 Investigation in linear acceleration subtraction: signals with-
out linear acceleration subtraction. 120

Figure 75 Investigation in linear acceleration subtraction: signals with
linear acceleration subtraction. 121

Figure 76 Simulation with different values of complementary filter co-
efficients (left α = 0.95, right α = 0.999). 122

Figure 77 Wood cylinder anchored to the self-balancing transporter.
The simple and regular geometry and the knowledge of
weight and dimensions, makes it easy to model it into the
simulator. 123

[December 2, 2017 at 17:06 – classicthesis]

Figure 78 Steady state simulation: here the "real-device" shows a dif-
ferent behavior in both horizontal position and velocity, and
in pitch angle: it is visible an oscillation around a value, that
denotes the seamlessly presence of an unconsidered limit-
cycle. Note that even if the reference is 0, the equilibrium
point is not in θP = 0 and Xb = 0, probably because of an
imperfection in the angle reading, from the IMU. 124

Figure 79 In the yaw angle the real-device behavior is very similar to
the simulation, except by the presence of an offset in the yaw
angle: it is due to the fact that here the controller is a PI and
it doesn’t care about yaw, but only about yaw-rate. 125

Figure 80 Reference-following simulation: during velocity ramps there
is a good matching between the simulated and the real-
device behavior, while when the reference turns to 0, it is
visible the limit-cycle previously mentioned. Note that like
the "steady" test, when the reference is 0, the equilibrium
point is not in θP = 0 and Xb = 0. This means that during
the following rotation, caused by the following of yaw-angle
reference, a deviation in the position and velocity happens.
126

Figure 81 In the yaw angle the real-device behavior is different be-
cause the model has a low-value in the friction coefficient of
the wheels. 127

Figure 82 Reference-following of yaw-angle: by setting the wheel’s fric-
tion coefficient to ψ = 0.1, it is visible a better matching be-
tween the simulation and the real-device experiment. 128

Figure 83 Reference-following of yaw-angle: the LQR controller tracks
not only the yaw-rate, but also the yaw-angle: this is con-
sidered a great improvement in the overall performances.
129

Figure 84 Horizontal displacement and angle tracking with definitive
weights of Q = diag([10, 3, 1, 0.1]) and R = 0.1. 130

Figure 85 Last tests with a human rider, driving the TWSBT. 131

Figure 86 Controller for the model of chapter 4, with rider’s pitch an-
gle different from that of the base. 132

Figure 87 First simulation of rider with controller tuned with param-
eters of table 10: the controller is unstable. 133

Figure 88 Comparison of the results of simulation and real-device,
while it controls the rider. 136

L I S T O F TA B L E S

Table 1 Motor Requirements (with a margin of approx. 2) 8

Table 2 Pros& cons of hub motor 9

Table 3 Pros& cons of RC motor 10

Table 4 Conventions 20

xiv

[December 2, 2017 at 17:06 – classicthesis]

List of Tables xv

Table 5 Values set to the Q and R matrices of the equilibrium con-
troller. Two sets are provided, in order to accomplish the
task of "real-life" or "simulation". 46

Table 6 Values set to the Q and R matrices of the steering con-
troller. 48

Table 7 Values chosen for the PI steering controller, in the case of a
rigid-cylindric-body 1m height and 30kg weight. 51

Table 8 Parameters of the Hub Motor described in chapter 2. 59

Table 9 Parameters of the wood cylinder of figure. 123

Table 10 Parameters of the rider governing the TWSBT. 132

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

1
I N T R O D U C T I O N

Figure 1: Me, while riding the self-balancing vehicle described in this thesis.

A self-balancing scooter (also "hoverboard", self-balancing board) is a self-balancing
personal transporter consisting of two motorized wheels connected to a pad on
which the rider places his feet and stands up. The rider controls the speed by
leaning forwards or backwards, and direction of travel with a steering command.

The self-balancing feature is the result of a complex computer algorithm that sta-
bilizes the under-actuated system formed by the person standing over the vehicle.
The person can "perturb" this system by leaning forwards or backwards and mak-
ing the controller try to stabilize it again, with the consequence of back or forward
movement.

In recent years, the two-wheeled self-balancing vehicles have been recognized as
a powerful personal transporter and commercial versions like Segway PT [37] are
available in the market since the year 2001.

Another successful newer example is the -so called- Hoverboard [33]: a confir-
mation of the interest in this type of vehicle as a companion in the everyday life.
Probably considerable as an evolution of the first, it has introduced some interest-
ing news in the drive mechanism such as the revolutionary absence of the drive-bar.
Paying the cost of a lower-usability, this has indeed, the advantage of being small,
lightweight and portable.

1

[December 2, 2017 at 17:06 – classicthesis]

2 introduction

Both those vehicles, together with many other similar alternatives are deriva-
tions of the self-balancing robot: a non-linear multi- variable and naturally unstable
system.

Controlling such a system is a challenge, therefore it attracts attention of many
modern control researchers, included the author.

Control stability, robustness and safety have been studied over the years both by
manufacturers of such vehicles and by the research community.

1.0.1 Existing literature

Many studies concerning the control of the two-wheel self-balancing transporter
(TWSBT) have focused on different aspects of the problem.

Some studies have focuses on the problem of modellization: starting from bal-
ancing a single-wheel transporter (only 2-DOF) [8], to a more-complex problem,
which is the decoupling of the two-wheel robot into two subsystems that are the
balancing and the Yaw angle subsystems [39] and [15] .

Other studies like [16],[12] and [3] have focused on the comparison between
balancing control techniques, attempting to find the stability, points-of-force and
limits of different techniques, like PID, LQR, LQG.

Some other studies like [7] and [34] have focused on the solution of self-balancing
problem with alternative methods like fuzzy logic and neural networks.

Further interesting materials have been found, concerning some less-conventional
themes about this problem: the model of the interaction between human and the
self-balancing vehicle [20] and [19], the problem of the security in case of necessity
of sudden braking [23] and finally some studies on the sensor-fusion scheme, for
the accelerometer-gyroscope pitch angle detector [25].

1.0.2 Motivation and attempts

The first motivation of this thesis’ argument is the love for my son Nicola: it is a
way to build "a self-balancing toy" for him. At the same time, the TWSBT problem
is probably the most powerful and economic way to test the knowledge of the
theoretical concepts learned in the Mechatronic Engineering master degree course.
The realization of such "toy" was the way to face in a rigorous way arguments like
power electronics, mechanics, system and motion control, both in theory and in
practice, with the real-world problems.

The success of this study, and the quality of the work performed might become
in a short time a starting point for a high-quality open-source project, where ad-
vanced control techniques and high quality hardware might be used or simply
studied by the community.

The intent of this thesis is the building of a reliable model, with a high-performance
controller, differently from the popular PID, used in many hobby projects.

The analysis of the literature just exposed, served as inspiration for the success-
ful implementation of control strategies, using methods and models proposed by
such studies.

The device model, control scheme and the algorithms were simulated using
Matlab and Simulink, but during the thesis a real prototype of the vehicle was
realized, using state-of-the-art electronics boards taken from an open-source elec-

[December 2, 2017 at 17:06 – classicthesis]

introduction 3

tronic project [35], equipped with a real-time embedded operating system, a couple
of motors and wheels and other home-made hardware.

This prototype served as a test-bed for the proof of the model the control algo-
rithm performances.

1.0.3 Thesis outline

In chapter 2, a complete description of the system requirements and the conse-
quent component chosen.
In chapter 3, the description of the derivation of the dynamic model for the self-
balancing, two-wheel vehicle. Also in this chapter, the block-model derived from
equations, useful for the successive simulation of the vehicle.
In chapter 4, the description of an evoluted model, where differently from the
first, the rider has a freedom degree against the angle of the base. Even here a
block model was built: the model’s parameters regarding the rider and its behav-
ior, were derived from physiological studies.
In chapter 5 and the control schemes adopted, together with the motivations that
drove the choices, the stability check and the simulation of the control scheme ap-
plied to the model.
In chapter 6 a discussion about the non-idealities of the system, whose presence
has a direct consequence on the controlled system. They are important since they
made the difference between a pure-theoretic model and a real-one, and also their
study made it possible to design a more-realistic model and do better-tune of the
controller.
In chapter 7 the practical implementation of the algorithms: the software structure,
the algorithm code, and the telemetry system.
In chapter 8 the validation of the model which is essentially the comparison be-
tween simulation blocks’ behavior and real-world prototype.
In the last chapter, the conclusions and future work.

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

2
D E F I N I T I O N O F S Y S T E M S P E C I F I C AT I O N S

2.1 introduction

The current thesis aims to design a self-balancing human transporter and to test
on it some strategies about control (discussed in the successive chapters).
The goal of this project is to implement it by using a simple and robust architec-
ture, using as less components as possible, possibly cheap.
In such a way, the whole work can be converted in an open-source project, useful
for hobbyists, students and everyone that needs an open-source platform for test-
ing self-balancing control strategies.
In this chapter it will be discussed the specifications of the project and then the
calculus that drove the choices about components.

2.2 problem definition

The human transporter being designed needs to verify the following expected fea-
tures:

• The vehicle must carry persons, so the dimensions of the vehicle must take
it into account

• Maximum weight to transport: MMAX = 90kg

• Maximum Velocity in horizontal ground: VMAX = 15km/h

• Speed at full-weigth, 10% ground inclination: Vincl,MIN = 10km/h

• Minimum deceleration capability: Adec,MIN = 0.5m/s2

• Battery autonomy (under normal-use): Wbatt,MIN = 1hour

All the previous specification are the drivers for the components choice.

2.3 dimensions

As for that in the specifications, the transporter has to carry persons. The choice is
that of making the vehicle usable, but as compact as possible.
Using a simple table, a meter, and by making simple usability tests , it was cho-
sen to have a base width of about 0.4m. This will translate in a wheel-to wheel
distance of about D = 0.45m. In order to use cheap, non-custom materials, the
base structure was done using a skateboard table, and reducing its width to 0.4m.
This because souch tables are cheap, but made-up with high-performance and
lightweight materials, capable of carrying up to 100kg even under vibrations and
jumps.
The other motivation about the use of skateboard table is that their geometry is
familiar to the people, so it is a kind of warranty in the usability of the vehicle.
The use of skateboard table as base, fixes the base length to that of the standard

5

[December 2, 2017 at 17:06 – classicthesis]

6 definition of system specifications

tables: L = 0.2m. This implicitly defines approximately the dimension of the wheel
(its diameter must be approximately equal to the base length). The wheel and
motor choice will be discussed later, but the important thing is that the wheel di-
ameter is chosen to be approximately equal to L = 0.2m, thus the wheel radius
is half of this: rw = 0.1m. The height of the base is that of the skateboard table
(H = 0.01m), the space for the battery is under the skateboard table, so the choice
of that was made taking this into account.

Figure 2: Base dimensions (observed from upside)

2.4 motor torque

For the definition of motor torque needs, two requirements holds. In the following
sections the discussion about these:

2.4.1 Speed at full weight, inclined ground

This specification gives a precise indication about motor torque needs as long as
motor power need. About the first, let’s consider the situation as an application of
the inclined plane (see figure 3).

Figure 3: The requirement of a certain minimum speed at full weight, along an inclined
plane. Figure from [38].

[December 2, 2017 at 17:06 – classicthesis]

2.4 motor torque 7

The force P is given by:

P = m ∗ g

Thus, considering the critical condition, let’s apply the maximum weightMMAX =

90kg:

PMAX = MMAX ∗ g = 883N

Since the maximum inclination specified is 10%, which corresponds to an angle of
α = 5.71°, the resulting weight-force, acting parallel to the plane is:

P‖MAX = PMAX ∗ sin(α) = 883N ∗ 0.997 = 87.86N

Having the wheel a radius of 0.1m, as stated in the previous section, and having
two motors, the torque need is:

τMAX = P‖MAX ∗ rw/2 = 87.86N ∗ 0.1m/2 = 8.79Nm/2 = 4.39 [Nm] (1)

At the same time, it is possible to derive the power need for the motor: supposing
slip absence, the Vincl,MIN specification translates into:

Vincl,MIN = 10km/h = 10/3.6m/s = 2.78 [m/s]

thus:

ωw,inclinMAX = VinclinMAX
rw

= 27.8 [rad/s]

defining a power-need of:

Pmotmin = τMAX ∗ωwinclinMAX = 122 [W]

(2)

2.4.2 Maximum deceleration

The other requirement that defines the motor torque need is the maximum decel-
eration capability. By ignoring the equilibrium problem, let’s apply the D’alembert
principle to the transporter:

Fdec,MAX = MMAX ∗Adec,MIN
thus:

τdec,MAX = Fdec,MAX ∗ rw/2 = 90kg ∗ 0.5m/s2 ∗ 0.1m/2 = 2.75 [Nm]

(3)

In this last equation it is possible to observe that the requrement is less-strict than
that of the inclined plane, thus, using the torque calculated for the inclined plane,
it is possible to obtain stronger decelerations:

Adec,MAX = τMAX∗2
MMAX∗rw = 4.39∗2

90∗0.1 = 0.976 [m/s2] (4)

2.4.3 Motor choice

The previous requirements are theoretical, thus a consistent margin of about 2 is
taken:

The other important requirement of the motor (as it will be clear in the succes-
sive chapters), is the presence of a position-feedback. In the case of a DC motor, it

[December 2, 2017 at 17:06 – classicthesis]

8 definition of system specifications

Motor Torque needed 8 [Nm]

Motor Power needed 250 [W]

Table 1: Motor Requirements (with a margin of approx. 2)

is often used an encoder, but since the application does not need a high-precision
positioning, it is possible to use simple BLDC motors, with HALL sensors incor-
porated. The hall-sensors are very important since the motors, during the stand-
still self-balancing condition, will work almost in steady position (not generating
enough BEMF) and sensor-less driving is not possible with simple drivers. Given
the previous, two BLDC alternatives are considered:

1. Hub motor (direct-drive motor, incorporated into the wheel)

2. Small RC motor with gear-reduction

2.4.3.1 Hub motor

The hub-motor is that used in many modern self-balancing toys. Its characteristics
are:

• maximum voltage = 36V

• maximum current = 10A

• maximum power = 360W

• Ke=Kt= 0.694Nm/A

• maximum velocity = 30km/h

• motor configuration = 27N, 30P

This motor has three built-in hall sensors, thus allowing to have a position-reading
definition of 3 hall-sensors * 30 poles = 90 steps of position reading for every wheel
rotation.

Figure 4: HUB motor, used in many self-balancing toys. Figure from [10].

The "pros" and "cons" of that solution are:

[December 2, 2017 at 17:06 – classicthesis]

2.4 motor torque 9

pros cons

robust construction , with wheel incorporated high weigth (2.5kg)

silent and very-regular torque expensive(approx. 70 e)

low current need high voltage need

Table 2: Pros& cons of hub motor

2.4.3.2 RC motor

The RC motor is a kind of motor used in RC models. It has been considered be-
cause of its high torque and high power density, in a very lightweight device. The
drawback of this solution is the need to design a wheel and a reduction system (of
about 1:6), but here are reported the characteristics:

• maximum voltage = 29.6V

• maximum current = 80A

• maximum power = 2200W

• Ke=Kt= 0.035Nm/A (considering a KV = 270RPM/V)

• motor configuration= 12N, 14P

This motor has three built-in hall sensors, thus allowing to have a position-reading
definition of 3 hall-sensors * 14 poles = 42 steps of position reading for every
motor rotation. Supposing a gear-reduction of about 1 : 6, the total steps of position
reading for every wheel rotation is: 42 ∗ 6 = 252 steps.

Figure 5: RC model motor, image from [1]

The "pros" and "cons" of this solution are:
For the purpose of the project it was chosen to use the hub motor, because it is

very simple to mount it into the structure and since there wasn’t the possibility to

[December 2, 2017 at 17:06 – classicthesis]

10 definition of system specifications

pros cons

very lightweight (320g) need for external gearbox and wheel

cheap (approx. 30 e) very high current needed

Table 3: Pros& cons of RC motor

prototype complex gearboxes/wheel, the RC motor was not used.
Nevertheless, since the RC motor represents a very-lightweight solution and also
cheap, even if not used in our prototype, it was considered into the simulations
and for the possibility of using it in cheap open-source projects.

2.5 battery

For the choice of the battery, it is requested to have an autonomy of about 1h in
"normal use". The goal is to define what is the power consumption under normal
use. It is reasonable to suppose an overall, average consumption of about 150W for
the vehicle (consider that the braking is regenerative).
Another important thing to consider choosing the battery is that the needs are very
different in the case of HUB motor and in that of RC motor. In this last case the
current requirements are very difficult to accomplish: 80A is a high-current and
imposes a charge/discharge capable battery, while with the HUB motor, a current
of 10A is not critical, even for lead batteries.
Giving the previous it was chosen to use:

• 6S (22.2V) 30C discharge Li-Po battery for the RC motors (the discharge rate
is over-sized, but it was the only model available)

• 12V Lead battery to put in series to the previous, for the HUB motors

The battery capacity (for the RC motor) needed is:

Ebatt,MIN = Pvehicle,AVG ∗ 1h = 150 [Wh]

which means:

Ibatt,MIN = Ebatt,MIN/Vbatt = 150Wh/22.2V = 6.76 [Ah]

(5)

This requirement drives the choice of a Li-Po battery capacity of 22.2V, 8 Ah.
For the Lead battery, a lesser capacity is admissible, thus choosing a 12V, 6Ah
model.

Figure 6: Battery used for the high-current RC motor. Figure from [6].

[December 2, 2017 at 17:06 – classicthesis]

2.6 motor driver 11

The last requirement is the vertical dimension: the wheel radius is rw = 10cm

is the maximum height admissible. The batteries chosen satisfied this dimension
constraint.

2.6 motor driver

This is probably the key component of the device. It must meet many requirements:

1. possibly cheap and easily available

2. BLDC driving capability (many producers name it "ESC")

3. Hall sensor management (many ESC drivers operates only in sensor-less
mode)

4. High current drive capability (possibly up to 80A)

5. High voltage management (36V is not a common value)

6. Fast response (in the following chapters it will result a loop time of 4-10ms)

7. Flexible and robust communication interface

8. Current control mode (many ESCs has only tunable velocity controller)

9. Management of different motor types

All the previous requirements were met with a controller developed in Open-
Source by Benjamin Vedder [35].
This project is not a simple ESC controller: it is a complete Open Hardware high-
quality project which has unique characteristics about the capabilities of tuning
motor control parameters such as :

• tunable PWM frequency

• tunable current control gain

• tunable velocity speed parameters

• tunable startup PWM-boost parameters

All this in a fully-open and community maintained project, with another very-
important feature: a user-forum for user’s matters, such as tuning issues, problem
issues, feature-request issues, best practice issues.

[December 2, 2017 at 17:06 – classicthesis]

12 definition of system specifications

Figure 7: Open-hardware motor controller, a project of Benjamin Vedder [35] image also
from [35]

In addition to the previous requirement meets, this device has several further
point-of-force:

1. very powerful micro-controller (STM32F405), with embedded floating-point
hardware accelerator

2. USB interface for motor diagnosis and configuration of motor characteristics

3. UART interface for external communication

4. High-speed CAN interface, useful for inter-board communication

5. I2C interface for external sensors interface

6. Management of HALL sensors and also ENCODER, with embedded calibra-
tion and position incremental output

7. Open-source software (easily customizable for integrating self-balancing con-
trol routines)

8. Uses an embedded real-time OS (Chibi-OS), very useful and easy to integrate
suspensive routines and sync mechanisms

This solution was chosen because it has all the features needed for the control
purpose, in a compact solution and with the unique possibility to customize the
firmware, allowing the integration of control loop without external boards. The
presence of an embedded real-time Operating System, made it easier to manage
wait conditions, threads, mutexes and inter-task synchronization via events.

2.7 imu

In this project there is the need to measure base inclination and rotation veloc-
ity. The most popular solution to this task is the use of a sensor-fusion scheme,
based on accelerometer and gyroscope (as it will be explained in the following
chapters). A component integrating these sensor is called Inertial Movement Units
(IMU). IMUs are very popular (almost always MEMS-based) devices, available in
the market with different features, sizes and interfacing system (analog, i2C, SPI...).

[December 2, 2017 at 17:06 – classicthesis]

2.8 joystick 13

Giving that the micro-controller has an available I2C interface, it was chosen to use
an IMU device with that interface, avoiding the problem of different ADC channels
and bias management.
In the panorama of possible solutions, the choice was to use a single-component
one, integrating both accelerometer and gyroscope and with an evaluation board
compact and suitable for easy connection with out controller board. Another im-
portant thing is the choice of an IMU with ready-to-use libraries. This is very
helpful for time-saving and error-avoidance.

Having the previous, the choice was the Invensense’s MPU6050-based open-
hardware module:

Figure 8: Open-hardware IMU i2C evaluation module of Invensense’s MPU6050. Figure
from [28].

Its features are:

• I2C interface

• 400kHz Fast Mode I2C for communicating with all registers

• Digital-output X-, Y-, and Z-Axis angular rate sensors (gyroscopes) with a
user-programmable full-scale range of ±250,±500,±1000, and ±2000°/sec

• Digital-output 3-Axis accelerometer with a programmable full scale range of
±2g,±4g,±8gand± 16g

• 3-axis silicon monolithic Hall-effect magnetic sensor with magnetic concen-
trator

In addition to the features needed, the chosen component owns a 3D magnetic sen-
sor (often called "compass"), but it was never used in the application. Nevertheless,
this feature might be an interesting and powerful one, in a future scenario, giving
to the controller the possibility to manage a further sensor, useful for features like
slip-detection or others.

2.8 joystick

The Joystick was hardly-used during the experiments: is was very helpful for driv-
ing the transporter back-and-forth, making rotations or simply standing, while

[December 2, 2017 at 17:06 – classicthesis]

14 definition of system specifications

collecting data. In the final prototype the joystick was replaced by a simple steer-
ing potentiometer. The Joystick used is a simple dual-potentiometer one, 10kΩ in
both axis

Figure 9: Joystick used during experiments. Image from [2]

2.9 remote communication

During the experiments it was necessary to collect data in order to validate as-
sumptions, algorithms and eventually to post-process real-life data. The choice
was to do this in the most simple way: a serial-to-bluetooth board connected to
the micro-controller’s UART and sending data remotely to the host computer, via
Bluetooth. The board selected is the HC-06:

[December 2, 2017 at 17:06 – classicthesis]

2.10 overall architecture and shematic 15

Figure 10: Serial-to-bluetooth (HC-06) module used for remote logging of data coming
from the self-balancing transporter, to the host PC. Figure from [5]

It was chosen because of its very-interesting features:

• very cheap (sold as a component of Arduino project it is available even at
only 3$

• very compact: only 2.7 cm x 1.3 cm

• fully compliant with Serial Port Profile (SPP), thus very easy to integrate with
every operating system

• baudrate up to 115200bps (and over)

• UART level and Vdd=3.3V: the same as that of the controller board

The need to use a wireless module for remote communication/logging is obvious:
having a moving device, it is strongly forbidden to use a wired communication
scheme. The use of Bluetooth has the advantage to be embedded in almost every
laptop (while other wireless standards such as zig-bee or others needs a counter-
part USB key and drivers.

2.10 overall architecture and shematic

After having described the requirements, here it is described the overall connection
scheme with the corresponding descriptions. The scheme of connections is visible
in the figure:

[December 2, 2017 at 17:06 – classicthesis]

16 definition of system specifications

Figure 11: Hardware architecture schematic of the self-balancing transporter. Note the ab-
sence of a "central board" and the choice of a master-slave architecture

[December 2, 2017 at 17:06 – classicthesis]

2.10 overall architecture and shematic 17

The open-hardware and open-source feature of the controller board, makes it
possible to integrate the self-balancing control algorithm directly inside the motor-
control board, without the need for an external "super-part" board. In order to
implement correctly the control, it is compulsory to communicate with the other
board for:

• retrieve information about motor’s rotor position

• set the desired current

Those needs drived the choice of a "Master-Slave" architecture, described below.

2.10.1 Master board

Master board is "the heart" of the self-balancing controller: in order to work, this
board must collect all the available sensor’s data and translate them into state vari-
able’s values.
Giving that this board drives (in real-time) one HALL-sensor-ed motor, it implic-
itly has the real-time info about its motor’s rotor position.
The rotor’s position of the opposite motor is available thanks to the inter-board
communication via CAN bus: it is very fast (500kbaud/s) and robust against EMI
interferences and data corruption. It makes it possible to design a fast control-loop,
thanks to the fast variable update (approx. every 300 microseconds).
The board collects also the base inclination thanks to the i2C IMU attached to it.
Even this interface is very fast (400kHz SCL), making it possible to have a very-fast
angle readout (approx. every 100 microseconds).
The Joystick attached to this board is used as reference for steering and forward ac-
celeration references. It doesn’t need a very-fast update (like the balancing control-
loop): it is read at a speed of about 10Hz, which is sufficient for reference speed.
Once the algorithm produces its output, the current to the Master board is imposed
simply by an internal function, while that for the other board is set via a CAN-bus
communication message.

2.10.2 Slave Board

The slave board duties are the feedback of its rotor position and the reception/ac-
tuation of the current reference. This board has another "unusual" duty: since the
interfaces of the master-board were all occupied by the sensors, this board was
used to communicate to host PC: the master board sends and receives UART com-
mands to/from the PC via a "TUNNELLING" inside the CAN bus (a function
utility already present in the original open-source project).
This last function obviously can’t be too fast, since the communication has many
"hops" to travel in: this is not a tragic drawback since that interface is used simply
for sending state variable and command signal entities to the PC. This data send
can be performed at a lower-rate than the loop speed, thus the choice was taken as
suitable.

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

3
S Y S T E M M O D E L L I N G

3.1 introduction

The problem of controlling the Two-Wheel Self Balancing Transporter (TWSBT)
starts with the modeling of the system. In this chapter it will be introduced the
kinematic model, the dynamic model (using Lagrange approach) and the decou-
pling of the system in balancing and steering subsystems. At the end of the chapter
it will be presented some considerations about the results and the block-models
derived from the equations.

3.2 kinematic model

Figure 12: Graphical representation of the entities of the system.

The conventions used for this model are summarized in table 4.

19

[December 2, 2017 at 17:06 – classicthesis]

20 system modelling

mP mass of the rider [kg]

mw mass of the wheel (identical in Left and
Right)

[kg]

JθP inertia of the rider, referred to the pitch
rotation

[kgm2]

JδP inertia of the rider, referred to the yaw
rotation

[kgm2]

Jw inertia of the wheel [kgm2]

αm, βm angle of the (Left, Right) motor (referred
to the base)

[rads]

α,β angle of the (Left, Right) wheel (referred
to the ground)

[rads]

θP angle of the person (referred to the
ground, where 0 is the vertical upper po-
sition)

[rads]

vL, vR velocity of the (Left, Right) center of the
wheel

[m/s]

xb, vb horizontal position and velocity of the
base center (origin)

[m],[m/s]

xP, yP, zP coordinates of the rider’s center of mass [m]

L distance between base and center of mass
of the rider

[m]

D distance wheels [m]

r radius of the wheel [m]

CL, CR torques applied to the wheels, by the mo-
tor (after the gearbox)

[Nm]

ρ reduction ratio between the motor rota-
tion and wheel rotation

τL, τR torque of the (Left,Right) motor [Nm]

ψ viscous friction coefficient

Table 4: Conventions

[December 2, 2017 at 17:06 – classicthesis]

3.2 kinematic model 21

3.2.1 Assumptions

The following assumptions are used for the problem:

1. The friction is considered linear and proportional to the motor’s rotation
speed, even if different from reality

2. The rider is modeled as a rigid body (cylinder) of "2L" height

3. The efficiency of the gearbox is equal to 1

4. The reduction has no elasticity

5. The friction produced by the air, with the system’s components, is neglected

6. The vertical coordinate of the base is taken as system’s vertical origin

The relation between motor’s position (referred to the rider’s angle) and the
wheel’s angle (referred to the ground) is:

α = θP + ραm

β = θP + ρβm

α̇ = θ̇P + ρα̇m

β̇ = θ̇P + ρβ̇m

(6)

The congruence equations for the wheels and base are:

vL = rα̇

vR = rβ̇

vb = vL+vR
2 = r α̇+β̇2

δ̇ = vL−vR
D = r α̇−β̇D

(7)

while, concerning the rider’s center of mass:

xP = xb + LsinθPcosδ

yP = LcosθP

zP = zb + LsinθPsinδ

ẋP = ẋb + Lθ̇PcosθPcosδ− Lδ̇sinθPsinδ

ẏP = Lθ̇PsinθP

żP = żb + Lθ̇PcosθPsinδ+ Lδ̇sinθPcosδ

v2P = ẋ2P + ẏ
2
P + ż

2
P =

= v2b + L
2θ̇2P + 2Lθ̇P[ẋbcosθPcosδ+ żbcosθPsinδ]+

+2Lδ̇[−ẋbsinθPsinδ+ żbsinθPcosδ]

(8)

where:

ẋb = vbcosδ

żb = vbsinδ
(9)

thus:

v2P = v2b + L
2θ̇2P + 2Lθ̇P[vbcosθPcos

2δ+ vbcosθPsin
2δ] =

= v2b + L
2θ̇2P + 2Lθ̇PvbcosθP

(10)

[December 2, 2017 at 17:06 – classicthesis]

22 system modelling

3.3 dynamic model

The resulting torque, after the gearbox of each motor, suffers of the viscous friction
and it is modeled as:

CL = 1
ρ(τL −ψα̇m) = 1

ρτL −
ψ
ρ2
(α̇− θ̇P)

CR = 1
ρ(τR −ψβ̇m) = 1

ρτR −
ψ
ρ2
(β̇− θ̇P)

(11)

kinetic energy of the wheels:

the following equations accounts for both translational and rotational compo-
nents of the wheel motion. The kinetic energy associated with rotation of the wheel
around its vertical axis is neglected.

TL = 1
2mwv

2
L +

1
2Jwα̇

2 = 1
2(mwr

2 + Jw)α̇
2

TR = 1
2mwv

2
R +

1
2Jwβ̇

2 = 1
2(mwr

2 + Jw)β̇
2

Tw = TL + TR = 1
2(mwr

2 + Jw)(α̇+ β̇)2

(12)

kinetic energy of the rider:

the kinetic energy of the rider is built-up with three components:
The translational kinetic energy is the following:

TtP = 1
2mPv

2
P = 1

2mP
(
v2b + L

2θ̇2P + 2Lθ̇PvbcosθP
)

= 1
2mP

[(
r α̇+β̇2

)2
+ L2θ̇2P + 2Lθ̇Pr

α̇+β̇
2 cosθP

]
(13)

The rotational kinetic energy due to the rotation of the rider around the wheel’s
centre (θP) is made-up by the following:

TθP = 1
2JθPθ̇

2
P

(14)

The rotational kinetic energy due to the rotation around the vertical axis (y) is
made-up by the following:

TyP = 1
2

(
JδP +mPL

2sinθ2P
)
δ̇2 = 1

2

(
JδP +mPL

2sinθ2P
) (
r α̇−β̇D

)2
(15)

The total kinetic energy of the rider is given by:

TP = TtP + TθP + TyP =

1
2mP

[(
r α̇+β̇2

)2
+ L2θ̇2P + 2Lθ̇Pr

α̇+β̇
2 cosθP

]
+

1
2JθPθ̇

2
P+

1
2

(
JδP +mPL

2sin2θP
) (
r α̇−β̇D

)2
(16)

kinetic energy of the motors:

The kinetic energy of the motors is:

Tm = TmL + TmR = 1
2Jm(α̇2m + β̇2m) =

= 1
2
Jm
ρ2

(α̇2 + β̇2 + 2θ̇2P − 2α̇θ̇P − 2β̇θ̇P)
(17)

[December 2, 2017 at 17:06 – classicthesis]

3.4 lagrangian 23

Total kinetic energy:
The overall kinetic energy of the system is:

T = TP + Tw + Tm =

1
2mP

[(
r α̇+β̇2

)2
+ L2θ̇2P + 2Lθ̇Pr

α̇+β̇
2 cosθP

]
+

1
2JθPθ̇

2
P+

1
2

(
JδP +mPL

2sin2θP
) (
r α̇−β̇D

)2
+

1
2(mwr

2 + Jw)(α̇+ β̇)2+
1
2
Jm
ρ2

(α̇2 + β̇2 + 2θ̇2P − 2α̇θ̇P − 2β̇θ̇P)

(18)

potential energy (of the rider):

This contribute of potential energy is given by simply the vertical position of the
rider’s center of mass:

U = mPgLcosθP (19)

3.4 lagrangian

Given the previous, it is possible to write the expression of the Lagrangian for the
system

L = T −U (20)

Figure 13: Detailed description of torques and references on right wheel. In the left, the
wheel, while in the right the TWSBT base: note that the torque generated by the
motor applies equal and opposite in the two bodies. The symmetric holds for
the left wheel.

Having this, the Lagrange equations becomes:

d
dt

(
∂L
∂α̇

)
− ∂L
∂α = CL

d
dt

(
∂L
∂β̇

)
− ∂L
∂β = CR

d
dt

(
∂L
∂θ̇P

)
− ∂L
∂θP

= −(CL +CR)

(21)

[December 2, 2017 at 17:06 – classicthesis]

24 system modelling

The right-terms of the Lagrange equations represents the active contributes to the
dynamics. The first and second equations’ terms are quite obvious, while for the
third equation, the active contribute is the sum of the torques of the two motors,
as easily noticeable observing figure 13.

Which permits to write the complete form of the motion equations (112) this
way: [

mPr
2

4 +
r2(JδP+mPL

2sin2θP)
D2

+mwr
2 + Jw + Jm

ρ2

]
α̈+[

mPr
2

4 −
r2(JδP+mPL

2sin2θP)
D2

+mwr
2 + Jw

]
β̈+[

mPLrcosθP
2 − Jm

ρ2

]
θ̈P +

ψ
ρ2
α̇− ψ

ρ2
θ̇P+

−
mPLθ̇

2
PrsinθP
2 + 2mPL

2r2sinθPcosθP
D2

θ̇P
(
α̇− β̇

)
= τL

ρ[
mPr

2

4 −
r2(JδP+mPL

2sin2θP)
D2

+mwr
2 + Jw

]
α̈+[

mPr
2

4 +
r2(JδP+mPL

2sin2θP)
D2

+mwr
2 + Jw + Jm

ρ2

]
β̈+[

mPLrcosθP
2 − Jm

ρ2

]
θ̈P +

ψ
ρ2
β̇− ψ

ρ2
θ̇P+

−
mPLθ̇

2
PrsinθP
2 + 2mPL

2r2sinθPcosθP
D2

θ̇P
(
β̇− α̇

)
= τR

ρ[
mPLrcosθP

2 − Jm
ρ2

]
α̈+

[
mPLrcosθP

2 − Jm
ρ2

]
β̈+

+
[
mPL

2 + 2Jm
ρ2

+ JθP

]
θ̈P −mPgLsinθP+

+2ψ
ρ2
θ̇P −

ψ
ρ2
α̇− ψ

ρ2
β̇− mPL

2r2sinθPcosθP
D2

(α̇− β̇)2 = −τLρ − τR
ρ

(22)

which are the motion equations for the system. Having this non-linear system, it
is now possible to linearize it, in order to build a linear controller.

3.5 system linearization

The linearization of the system is performed around the vertical equilibrium condi-
tion (θP ≈ 0) and for small horizontal rotations (δ ≈ 0), which has as consequence:

sinθP ≈ θP

cosθP ≈ 1

sin2θP ≈ 0

θ̇P(α̇− β̇) ≈ 0

(α̇− β̇)2 ≈ 0

θ̇2P ≈ 0

(23)

[December 2, 2017 at 17:06 – classicthesis]

3.5 system linearization 25

The system (43), after linearization, becomes the following:m11 m12 m13

m12 m11 m13

m13 m13 m33



α̈

β̈

θ̈P

+

 c11 0 −c11

0 c11 −c11

−c11 −c11 2c11



α̇

β̇

θ̇P

+

+

0 0 0

0 0 0

0 0 k33



α

β

θP

 =


τL
ρ

τR
ρ

−(τLρ + τR
ρ)


where:

m11 =
[
mPr

2

4 + r2JδP
D2

+mwr
2 + Jw + Jm

ρ2

]
m12 =

[
mPr

2

4 − r2JδP
D2

+mwr
2 + Jw

]
m13 =

[
mPLr
2 − Jm

ρ2

]
m33 =

[
mPL

2 + 2Jm
ρ2

+ JθP

]
c11 = ψ

ρ2

k33 = −mPgL

(24)

Which makes it possible to build-up the state-space system this way:

Mq̈+Cq̇+Kq = u

q =


α

β

θP

 , x =

{
q

q̇

}
=



α

β

θP

α̇

β̇

θ̇P


, u =


1
ρ 0

0 1
ρ

−1ρ −1ρ


{
τL

τR

}

M =

m11 m12 m13

m12 m11 m13

m13 m13 m33


C =

 c11 0 −c11

0 c11 −c11

−c11 −c11 2c11


K =

0 0 0

0 0 0

0 0 k33



(25)

[December 2, 2017 at 17:06 – classicthesis]

26 system modelling

And finally the state-space representation:

ẋ = Ax+Bu

x =

[
q

q̇

]

ẋ = Ax+Bu =

[
q̇

q̈

]
=

[
q̇

M−1(−Kq−Cq̇+ u)

]
=

=

[
03 I3

−M−1K −M−1C

]
x+

[
03

M−1

]
u =

=

[
q̇

q̈

]
=

[
q̇

M−1(−Kq−Cq̇+ u)

]
=

=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 a43 a44 0 a46

0 0 0 0 a55 0

0 0 a63 a64 0 a66





α

β

θP

α̇

β̇

θ̇P


+



0 0

0 0

0 0

b41 b42

b51 b52

b61 b62


{
τL

τR

}

(26)

The non-null terms in the [A] and [B] matrices are not reported. In the next section
it will be clear why.

3.6 system decoupling

The system just introduced has the problem of a deep coupling between the BAL-
ANCE and the STEERING components. The scope of this section is to introduce a
decoupling strategy for it, in a way it will be possible to design two separate con-
trollers (one for the balance and one for the steering), presented in the successive
chapter.

First of all, the state coordinates will be changed, using the expressions (7), so
that it will be easier to talk about base velocity and steering angle, instead of the α
and β quantities. The base-change matrix is:

qs =


Xb

δ

θP

 =

 r/2 r/2 0

r/D −r/D 0

0 0 1



α

β

θP

 =
[
S

]
q

so that:
α

β

θP

 =
[
S

]−1
Xb

δ

θP

 =
[
S

]−1
qs

thus: [
M

]
q̈+

[
C

]
q̇+

[
K

]
q = u

becomes: [
M

] [
S

]−1
q̈s +

[
C

] [
S

]−1
q̇s +

[
K

] [
S

]−1
qs = u

=
[
Ms

]
q̈s +

[
Cs

]
q̇s +

[
Ks

]
qs

(27)

[December 2, 2017 at 17:06 – classicthesis]

3.6 system decoupling 27

Following the procedure, like in the formulas (28), the new system matrices will
be:

ẋs =

[
qs

q̇s

]
= Asxs +Bsu =

=



0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

0 0 as43 as44 0 as46

0 0 0 0 as55 0

0 0 as63 as64 0 as66





Xb

δ

θP

vb

δ̇

θ̇P


+



0 0

0 0

0 0

bs41 bs42

bs51 bs52

bs61 bs62


{
τL

τR

} (28)

At this point the important decoupling scheme. Since the "common-mode" torque
oft the two motors contributes for the base movement and the "differential-mode"
contributes for the base rotation, two new entities are introduced: the balancing
and the rotation torques:{

τθ

τδ

}
=

[
1 1

1 −1

]{
τL

τR

}
=
[
D

]{τL
τR

}
so that:{
τL

τR

}
=

[
D

]−1{τθ
τδ

}
=

[
0.5 0.5

0.5 −0.5

]{
τθ

τδ

} (29)

Appliying the previous to the state-space causes the decoupling of the problem,
but in order to manage better the problem, a more-convenient view of the state-
space system comes with a re-arrangement of the state variables order. The final
result is the following:

ẋN = ANxN +BNuN =

Ẋb

θ̇P

Ẍb

θ̈P

δ̇

δ̈


=



0 0 1 0 0 0

0 0 0 1 0 0

0 an32 an33 an34 0 0

0 an42 an43 an44 0 0

0 0 0 0 0 1

0 0 0 0 0 an66





Xb

θP

Ẋb

θ̇P

δ

δ̇


+



0 0

0 0

bn31 0

bn41 0

0 0

0 bn62


{
τθ

τδ

}

(30)

[December 2, 2017 at 17:06 – classicthesis]

28 system modelling

In this final system it is clearly visible that the problem can be divided in the
following two separate systems:

Equilibrium subsystem:

ẋθ = Aθxθ +Bθτθ =
Ẋb

θ̇P

Ẍb

θ̈P

 =


0 0 1 0

0 0 0 1

0 an32 an33 an34

0 an42 an43 an44



Xb

θP

Ẋb

θ̇P

+


0

0

bn31

bn41

 τθ
and Steering subsystem:

ẋδ = Aδxδ +Bδτδ ={
δ̇

δ̈

}
=

[
0 1

0 an66

]{
δ

δ̇

}
+

[
0

bn62

]
τδ

(31)

3.7 stability analisys

The linearized, decoupled system has two subsystems that are interesting to ana-
lyze. In the following rows, some considerations about the linearized models (31),
considering these parameters : a rider of 80kg and 1.80m height.

Concerning the equilibrium subsystem, it is a controllable system, even if under-
actuated. It owns the following poles and it is possible to note the presence of, as
expected, an unstable (positive real) pole:

poles of equilibrium = 0 , 2.3267 , −2.3315 , −0.0167 (32)

Represented in Gauss’ plane in figure14.

Figure 14: Poles and zero-es of equilibrium subsystem (open-loop unstable poles).

[December 2, 2017 at 17:06 – classicthesis]

3.7 stability analisys 29

The unstable nature of the system is also confirmed by the nonlinear model, by
plotting a free evolution obtained by applying a small perturbation to the tilt angle
(5 degrees) and by holding τθ = 0. Those values, applied to the nonlinear model
?? gives the evolution visible in 15.

Figure 15: Free evolution of the model 43 with θP(0) = 5° and τθ = 0 .

[December 2, 2017 at 17:06 – classicthesis]

30 system modelling

Concerning the steering subsystem, the poles are two: one (weakly) stable and
one at the origin. The transfer function of the steering angle, against torque is:

Wδ(s) =
δ
τδ

= 1
s

7.2
s+0.09861 (33)

The root-locus and the Bode plot for the system are visible in figure 16.

Figure 16: Root locus and Bode plot with stability margins of the δ
τδ

transter function (33).

3.8 conclusions

In this chapter it was introduced the simplest model for the study of the self-
balancing inverse-pendulum system. This model was validated with simulations,
using the simulink block-model. The properties of the system’s subsystems (such
as poles, zeros and stability) was also analyzed making this model usable in order
to design a suitable controller.
In the following chapter a further step into the system modeling, by introducing a
model extension, making it more realistic and interesting for study.

[December 2, 2017 at 17:06 – classicthesis]

4
A M O R E R E A L I S T I C M O D E L

4.1 introduction

The system model presented in chapter 3 is the most commonly used for the
"self-balancing robot" problem, which consist of a rigid body standing up over two
wheels.
Even if useful in many studies, this model doesn’t take in care one of the most im-
portant peculiarities of the TWSBT, visible in figure 17: a further freedom-degree,
that is a different angle between the person and the base.

Figure 17: A more-complex model comes with the introduction of a further freedom-
degree: the separation of the angle between the rider and the base.

In this new system, even if the body and the base might assume two different
absolute angles, they remain coupled with the "spring" group, which consists of a
spring-damper couple, representing the rider’s ankle action. This coupling, in the
absence of τs, provides the regime-equality of base and rider angles. The torque τs
is the model of the action provided by the rider when it plans to impose a velocity
and, as it happens in the reality, makes it possible to impose a difference between
the angles, even at regime condition.
The values of Ks and cs were not measured, because they depend on many factors,
in fact the spring-damper model is a hard simplification of the complex muscular
system. Some physiological studies as [20] and [19] have studied the problem of
the stiffness and damping values for a human body trying to stand vertically and
gave numeric values useful for the model buildup. In [9] an application of this

31

[December 2, 2017 at 17:06 – classicthesis]

32 a more realistic model

model to the self-balancing vehicle was used. This was taken as a starting point for
this chapter.
Thanks to this, it is possible to rewrite in a convenient way the extended model of
the system that will be called MODEL2, that differs from the first, mainly by the
presence of the additional freedom degree.

The presence of this further freedom degree will change the lagrangian expres-
sion, introducing a further term of potential energy:

Us = 1
2ks(θb − θP)

2

so:

U = mPgLcosθP +
1
2ks(θb − θP)

2

(34)

and a dissipation term, given by the damper, whose contribute is subtracted from
the active force τs, resulting in:

Cs = τs − cs(θ̇P − θ̇b) = τs + cs(θ̇b − θ̇P) (35)

The torques supplied by the motors now are referred to the base angle (not the
rider’s one):

CL = 1
ρ(τL −ψα̇m) = 1

ρτL −
ψ
ρ2
(α̇− θ̇b)

CR = 1
ρ(τR −ψβ̇m) = 1

ρτR −
ψ
ρ2
(β̇− θ̇b)

(36)

Also the kinetic energy of the motors varies in:

Tm = TmL + TmR = 1
2Jm(α̇2m + β̇2m) =

= 1
2
Jm
ρ2

(α̇2 + β̇2 + 2θ̇2b − 2α̇θ̇b − 2β̇θ̇b)
(37)

And it is introduced the kinetic energy of the base (translational and rotational):

Tb = 1
2Jbθ̇

2
b +

1
2mbv

2
b =

= 1
2Jbθ̇

2
b +

1
2mb

(
r α̇+β̇2

)2
= 1
2Jbθ̇

2
b +

1
4mbrα̇

2 + 1
4mbrβ̇

2 + 1
2mbrα̇β̇

(38)

The new coordinates vector and the Lagrangian becomes:

q =


α

β

θb

θP


L = T −U = 1

2mP

[
r2 α̇

2

4 + r2 β̇
2

4 + r2 α̇β̇2 + L2θ̇2P + Lθ̇Pr(α̇+ β̇)cosθP

]
+

1
2JθPθ̇

2
P +

1
2

(
JδP +mPL

2sin2θP
) [
r2 α̇

2

D2
+ r2 β̇

2

D2
− 2r2 α̇β̇

D2

]
+

1
2(mwr

2 + Jw)(α̇
2 + β̇2 + 2α̇β̇)+

1
2
Jm
ρ2

(α̇2 + β̇2 + 2θ̇2b − 2α̇θ̇b − 2β̇θ̇b)+

1
2Jbθ̇

2
b +

1
4mbrα̇

2 + 1
4mbrβ̇

2 + 1
2mbrα̇β̇

−mPgLcosθP −
1
2ks(θb − θP)

2

(39)

thus:
d
dt

(
∂L
∂α̇

)
− ∂L
∂α = CL

d
dt

(
∂L
∂β̇

)
− ∂L
∂β = CR

d
dt

(
∂L
∂θ̇b

)
− ∂L
∂θb

= −(CL +CR) −Cs

d
dt

(
∂L
∂θ̇P

)
− ∂L
∂θP

= Cs

(40)

[December 2, 2017 at 17:06 – classicthesis]

4.2 linearization of the new system 33

The final result of these last expressions are the equations of motion in the new
coordinates:[
mPr

2

4 +
r2(JδP+mPL

2sin2θP)
D2

+mwr
2 + Jw + Jm

ρ2
+ 1
2mbr

]
α̈+[

mPr
2

4 −
r2(JδP+mPL

2sin2θP)
D2

+mwr
2 + Jw + 1

2mbr

]
β̈+

−Jm
ρ2
θ̈b +

mPLrcosθP
2 θ̈P+

+ ψ
ρ2
α̇− ψ

ρ2
θ̇b+

−
mPLθ̇

2
PrsinθP
2 + 2mPL

2r2sinθPcosθP
D2

θ̇P
(
α̇− β̇

)
= τL

ρ[
mPr

2

4 −
r2(JδP+mPL

2sin2θP)
D2

+mwr
2 + Jw + 1

2mbr

]
α̈+[

mPr
2

4 +
r2(JδP+mPL

2sin2θP)
D2

+mwr
2 + Jw + Jm

ρ2
+ 1
2mbr

]
β̈+

−Jm
ρ2
θ̈b +

mPLrcosθP
2 θ̈P+

+ ψ
ρ2
β̇− ψ

ρ2
θ̇b+

−
mPLθ̇

2
PrsinθP
2 + 2mPL

2r2sinθPcosθP
D2

θ̇P
(
β̇− α̇

)
= τR

ρ[
−Jm
ρ2

]
α̈+

[
−Jm
ρ2

]
β̈+

+
[
2Jm
ρ2

+ Jb

]
θ̈b +

[
2ψ
ρ2

+ cs

]
θ̇b+

−csθ̇P −
ψ
ρ2
α̇− ψ

ρ2
β̇+ ksθb − ksθP = −τLρ − τR

ρ − τs

[
mPLrcosθP

2

]
α̈+

[
mPLrcosθP

2

]
β̈+

+
[
mPL

2 + JθP
]
θ̈P −mPgLsinθP − ksθb + ksθP+

+csθ̇P − csθ̇b −
mPL

2r2sinθPcosθP
D2

(α̇− β̇)2 = τs

(41)

4.2 linearization of the new system

As before, the system linearization is performed around the vertical equilibrium
condition (θP ≈ 0 ≈ θb) and for small horizontal rotations (δ ≈ 0), which has as
consequence:

sinθP ≈ θP

sinθb ≈ θb

cosθP ≈ 1

sin2θP ≈ 0

θ̇P(α̇− β̇) ≈ 0

(α̇− β̇)2 ≈ 0

θ̇2P ≈ 0

(42)

[December 2, 2017 at 17:06 – classicthesis]

34 a more realistic model

The system (43), after linearization, becomes the following:
m11 m12 m13 m14

m12 m11 m13 m14

m13 m13 m33 0

m14 m14 0 m44



α̈

β̈

θ̈b

θ̈P

+


c11 0 −c11 0

0 c11 −c11 0

−c11 −c11 c33 c34

0 0 c34 −c34



α̇

β̇

θ̇b

θ̇P

+

+


0 0 0 0

0 0 0 0

0 0 k33 −k33

0 0 −k33 k44



α

β

θb

θP

 =



τL
ρ

τR
ρ

−(τLρ + τR
ρ) + τs

−τs


=


1
ρ 0 0

0 1
ρ 0

−1ρ −1ρ −1

0 0 1



τL

τR

τs


where:

m11 =
[
mPr

2

4 + r2JδP
D2

+mwr
2 + Jw + 1

2mbr+
Jm
ρ2

]
m12 =

[
mPr

2

4 − r2JδP
D2

+mwr
2 + Jw + 1

2mbr
]

m13 =
−Jm
ρ2

m14 =
mPLr
2

m33 =
2Jm
ρ2

+ Jb

m44 =
[
mPL

2 + JθP
]

c11 =
ψ
ρ2

c33 =
[
2ψ
ρ2

+ cs

]
c34 = −cs

k33 = ks

k44 = −mPgL+ ks

(43)

4.2.1 decoupling

The presence of θs doesn’t change the decoupling scheme adopted, whose modifi-
cation is very limited:

qs =


Xb

δ

θb

θP

 =


r/2 r/2 0 0

r/D −r/D 0 0

0 0 1 0

0 0 0 1



α

β

θb

θP

 =
[
S

]
q

so that:
α

β

θb

θP

 =
[
S

]−1

Xb

δ

θb

θP

 =
[
S

]−1
qs

and the decoupling matrix is:
τθ

τs

τδ

 =

1 1 0

0 0 1

1 −1 0



τL

τR

τs

 =
[
D

]
τL

τR

τs



(44)

[December 2, 2017 at 17:06 – classicthesis]

4.3 transfer function and stability analisys 35

Following the same steps done for the derivation of the (31), the state-space
expression of the system with this further freedom degree is:

ẋθ = Aθxθ +Bθτθ =

Ẋb

Ẍb

θ̇b

θ̈b

θ̇P

θ̈P


=



0 1 0 0 0 0

0 an22 an23 an24 an25 an26

0 0 0 1 0 0

0 an42 an43 an44 an45 an46

0 0 0 0 0 1

0 an62 an63 an64 an65 an66





Xb

Ẋb

θb

θ̇b

θP

θ̇P


+



0 0

bn21 bn22

0 0

bn41 bn42

0 0

bn61 bn62


{
τθ

τs

}

and:

ẋδ = Aδxδ +Bδτδ ={
δ̇

δ̈

}
=

[
0 1

0 an88

]{
δ

δ̇

}
+

[
0

bn83

]
τδ

(45)

4.3 transfer function and stability analisys

In the following rows, some considerations about the linearized new models (45).
The main system parameters adopted for this study are:

• a rider of 80kg

• 1.80m height

• ks = 1440

• cs = 350

For the values of ks and cs, the values were copied from [19].

Concerning the equilibrium subsystem, it is possible to tell that the rider’s angle
is not accessible: only the base angle is known (accelerometers can read this, but
nothing can read the rider’s angle). Having this, it is possible do define the output
matrix as the subset of state variables readable from the system:

C =


1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

 (46)

Thanks to the definition of C, it is possible to say that the equilibrium subsystem
is an UNOBSERVABLE and, observing A and B matrices, even an UNCONTROL-
LABLE one. The poles of the system are:

poles of equilibrium = 0 , −10345 , 2.2479 ,

−0.0092 , −4.1154 ,

−2.2499

(47)

The presence of a high-frequency pole is given by the base: it has a very small
weight, and even a very small inertia momentum (compared with that of the rider),

[December 2, 2017 at 17:06 – classicthesis]

36 a more realistic model

thus resulting in a contribute of a very-high frequency.
As for the first model, the main scope of the control will be to maintain upside the
rider.

[December 2, 2017 at 17:06 – classicthesis]

5
C O N T R O L

5.1 introduction

In the previous chapters there were built two linearized models of the vehicle: one
(simplified) where the rider was -linked with the vehicle base, and one where it
had a further freedom degree. Even the first, simplified model have demonstrated
to be a multi-input, multi-output (MIMO) system.

Further transforms permitted to separate the inverse-pendulum system into two
distinct subsystems algebraically independent, thus that might be separately con-
trolled. The steering subsystem is a single-input, single-output (SISO) system, that
has a simple dynamic description, while the equilibrium subsystem is a single-input,
multi-output (SIMO) system.

This chapter describes the control strategies adopted for the two subsystems,
together with considerations about the stability of that controllers.

5.2 control of equilibrium subsystem

The equilibrium subsystem is a single-input, multi-output (SIMO) system, thus it is
necessary to adopt a suitable controller.

In the panorama of possible controllers, some possibilities are:

• Pole-placement technique

• Self-learning controllers

• Linear Quadratic (optimum) controllers

Since the poles and their meaning is such a system is not obvious, the Pole-
placement was discarded. Also the choice of self-learning controllers was dis-
carded, since the aim was to build a precise-behavior system, where it was always
possible to know and discuss the control behavior. Also there was not enough time
to properly train an algorithm.

The final choice was the adoption of an optimum controller (LQR) because it was
very easy to relate the controller weights, with the system’s coordinates. The draw-
back of this approach is that it is not that simple to relate the controller’s gains,
with the coordinate’s dynamics.

Regarding this missing relation, some studies like [13] and [22] have proposed
the use of a genetic algorithm in order to properly tune the LQR coefficients, for
obtaining the desired system dynamics. In this section it will be described the
LQR controller designed for the self-balancing vehicle and some discussion about
the coefficient choice and the consequent stability.

5.2.1 The optimum (LQR) controller

The classic approach in controlling a system is to find a feedback controller in
order to make it place the poles/zeroes of the system in a way to obtain stability
and some other performances such as bandwidth. Many times it is of interest to

37

[December 2, 2017 at 17:06 – classicthesis]

38 control

have a controller that can guarantee adequate rejection to disturbances. The limit
of this approach is that it is difficult to evaluate the effect of bandwidth, pole
position, disturbance rejection, in other aspects such as single state deviation or
energy consumption. This is the main scope of the optimum controller: designer
has a tool to privilege the economicity or the deviation from one or a set of state
variables, giving the possibility to have a very powerful and flexible control that
satisfies different characteristics.

All the previous is possible with a "cost functional", which is a quadratic form
that describes the "cost" (always non-negative) when privileging one aspect instead
of another. For a discrete-time proper system defined as:x(k+ 1) = Fx(k) +G(k)

x(0) = x0

(48)

The cost functional is:

J(u, x0) =

T−1∑
k=0

[x(k)TQx(k) + u(k)TRu(k)]dk+ x(T)TSx(T)

Where it is possible to observe three terms in a quadratic form, associated with a
matrix.

• The first term is that with Q, which is positive semi-definite. It describes the
cost related to the deviation of the state during the sequence 0− T . Having
Q diagonal, for every single element in the diagonal, corresponds the cost
of the deviation of that singular state variable. Note: the higher the values, the
more precise the controller.

• The second term is that with R, which is also positive semi-definite. It de-
scribes the cost related to the input sequence (the power consumption for
obtaining a result). Note: the higher the values, the more economic the controller.

• The third term is that with S, which is also positive definite. It describes the
cost related to the error in the final state. Note: the higher the values, the more
precise the controller.

5.2.1.1 Infinite-horizon control

The previous functional is valid in the case that T is a finite number (control over
a finite-time horizon).
In the case T → ∞ there is the advantage that the input can be built with a linear
and constant feedback from the state, but some problem arises:

1. In order to have J non-infinite, it is important to verify the existence of an
input sequence with which J assumes a finite value.

2. Having a control in the form of a feedback, it must be internally stable.

3. The feedback matrix might be found by solving the Algebraic Riccati Equa-
tion (ARE), which admits several solutions. Only one of such solution is the
optimum: the problem is to determine the solution that matches the require-
ments.

[December 2, 2017 at 17:06 – classicthesis]

5.2 control of equilibrium subsystem 39

In the same discrete-system in 48, at infinite-time horizon, the cost functional be-
comes:

J(u, x0) =

∞∑
k=0

(x(k)TQx(k) + u(k)TRu(k)) (49)

Where Q is symmetric and positive-semidefinite and R is symmetric and positive-
definite.
- lemma 1 If the system 48 is stabilizable, there exist input-sequences for whom the
index 49 is finite.
- lemma 2 If the system 48 is stabilizable, the succession of matrices M(0),M(−1)...
defined as:

M(0) = 0

M(k) = Q+ FTM(k+ 1)F+

−FTM(k+ 1)G[R+GTM(k+ 1)G]−1GTM(k+ 1)F

converges (for k → ∞) to a symmetric, positive semi-definite matrix that satisfies
the ARE:

M = Q+ FTMF+−FTMG[R+GTMG]−1GTMF (50)

- lemma 3 Assume M is a solution symmetric, positive semi-definite solution of
ARE. For every input succession u(0), u(1), ...u(T − 1) and every initial state x0, it
results that:

T−1∑
k=0

(x(k)TQx(k) + u(k)TRu(k)) = (51)

xT0Mx0 − x
T (T)Mx(T)+ (52)

+

T−1∑
k=0

[(R+GTMG)u(k) +GTMFx(k)]T∗ (53)

[R+GTMG][(R+GTMG)u(k) +GTMFx(k)] (54)

Observing also the theorem:
Theorem 1:
Having the system 48 and M, the solution found with lemma 2, then

1. the control law

u∞(k) = K∞(k)x(k)
K∞ = −(R+GTM∞G)−1GTM∞F

minimizes the index J

2. For every other solution symmetric, positive-semi-definite M̄ of ARE, the
matrix M̄−M∞ is positive-semidefinite

The theorem gives a way to calculate an optimum controller with linear-feedback
function that creates an input sequence, directly from the system state. The draw-
back is that the solution found might be not-stabilizing. It depends on some prop-
erties of the matrices F and G .

[December 2, 2017 at 17:06 – classicthesis]

40 control

Another aspect is that if M∞ is positive-semi-definite (not definite), the optimum
input for some state configuration might be the NULL sequence, since there exists
non-null initial states for which it exists a minimum value of the cost J. This corre-
sponds to have no action on the system, by the controller.
Theorem 2:
If M∞ is the solution of ARE that minimizes the 49 for the system 48. Having a C
matrix such that:

Q = CTC

Then M∞ is positive-definite only if the couple (F, C) is observable.

5.2.1.2 Optimum control and stabilization

The stabilization of the system is the most important requirement for our control,
since it must act in an unstable system and make it stable. Here are some important
aspects of the internal stability requirements for the control:
Theorem 3:
Given the system 48, with (F,G) stabilizable, and M∞ the optimum solution of
ARE. This solution is also stabilyzing if the couple (F, C) is observable.
Theorem 4:
Given the system 48, with (F,G) stabilizable and Q = CTC. It is true that:

• ARE has at most one symmetric positive-semi-definite solution associated
with a stabilizing control.

• This solution exists only if the couple (F, C) is observable.

• If a stabilizing solution MS exists, for every symmetric positive-semi-definite
solution M̄ the matrix MS − M̄ is symmetric positive-semi-definite.

• If a stabilizing solution MS exists, it is possible to derive it starting with as a
limit for k→∞ of the ARE solution assuming M(0) an arbitrary symmetric
positive-definite matrix.

Corollary:
If the solution MS of ARE is stabilizing, it is the only symmetric positive-semi-
definite solution of the equation.

At this point a scenario is possible: MS and M∞ both exists and different. It is
obvious that the stabilyzing solution is the obligatory choice. In this case the con-
trol will be:

us(k) = ksx(k) (55)

This solution, in the space of the stabilyzing laws, is that associated with the mini-
mum cost index.

[December 2, 2017 at 17:06 – classicthesis]

5.2 control of equilibrium subsystem 41

5.2.2 Application of LQR to the equilibrium subsystem

The introduced state-feedback control scheme was used to stabilize the equilibrium
subsystem, whose linearized form is the following state-space system (reported
from equation (31)):

ẋθ = Aθxθ +Bθτθ =
Ẋb

θ̇P

Ẍb

θ̈P

 =


0 0 1 0

0 0 0 1

0 an32 an33 an34

0 an42 an43 an44



Xb

θP

Ẋb

θ̇P

+


0

0

bn31

bn41

 τθ (56)

This continuous-time system must be discretized, in order to apply in it, the men-
tioned controller. Given a system of matrices A, B,C, D, the corresponding dis-
cretized matrices are:

Ad = eATs

Bd =
(∫Ts
τ=0 e

Aτdτ
)
B

Cd = C

Dd = D

(57)

This discretization of the system was automatically performed by the MATLAB
program with the "c2d" command:

%% Model discretization (for the equilibrium subsystem)

sys_cont=ss(A_e,B_e,C_e,D_e,’statename’,states,’inputname’,inputs,’outputname

’,outputs);

sysPd = c2d(sys_cont, Ts); % discrete-time model (LTI obj)

[Ad,Bd,Cd,Dd] = ssdata(sysPd); % discrete-time model (state-space matrices) �
which performs a continuous-to-discrete transform, based on the "zero-order-hold"
technique, which basically holds the input for the entire Ts period, as shown in
figure 18.

Figure 18: Zero-order-hold process, used (as default method) by MATLAB, for the
continous-to-discrete conversion of a system. Figure from MATLAB’s website.

Now, having the discretized system, an LQR controller can be easily built, with
the MATLAB command "dlqr":

% DLQR parameters for the model: discrete-time variant of LQR

Kd = dlqr(Ad,Bd,Q,R) �
which solves the Discrete Riccati Equation (DRE) and returns Kd, that is the vector
of gains to be applied to the state-errors (the vector of differences between the

[December 2, 2017 at 17:06 – classicthesis]

42 control

reference value of the state and the true, measured value), as stated in equation
(55), where ks is replaced with the Kd, and the reference now is not 0, like in (55),
but is xref.

This results in:

u(k) = Kd ∗ [xref(k) − x(k)]
which means:

τθ = Kd ∗



Ẋb

θ̇P

Ẍb

θ̈P


ref

(k) −


Ẋb

θ̇P

Ẍb

θ̈P

 (k)


(58)

This equation was modeled in the block-scheme with the components in figure 19.

Figure 19: Control scheme for the equilibrium of the self-balancing transporter: a discrete-
time LQR acts on the "equilibrium torque". The unit delay represents the pro-
cessing limit of the micro-controntroller, which must collect data (via serial-link),
calculate the necessary torque (current), and send back the current reference to
the motors.

As noticeable in figure 19 the only meaningful reference supplied to the system
is that of linear velocity: the linear position is obtained as a time-integration of that
velocity reference.

The references for both the pitch angle and its velocity are set to a constant value
that is the only one that makes sense: zero. Infact it has no sense to supply a dif-
ferent pitch reference, since it will determine a violation of equilibrium condition,
with a consequent constant acceleration, to balance the perturbed equilibrium.

5.2.3 Stability analysis

As explained in the previous subsections, the optimum controller is not necessarily
a stabilizing one. In this section it will be investigated the choice of the weights of
the Q matrix, their effect on the system performances and into the control stability
and the considerations made, in order to guarantee a stable controller.

Unfortunately (as stated in the introduction of this chapter) the weigths set in
the Q matrix, and those in R has not a direct, simple correlation with the system
dynamics and the stability, but they has the advantage of a simple interpretation,
regarding "what we want" from the system.

[December 2, 2017 at 17:06 – classicthesis]

5.2 control of equilibrium subsystem 43

Being the states:

x =


Xb

θP

Ẋb

θ̇P

 (59)

setting the "weights" of the Q matrix:

Q =


wXb 0 0 0

0 wthetaP 0 0

0 0 wẊb 0

0 0 0 wθ̇P

 (60)

means "how much we care about an error in that state coordinate". Example: a high
value onwthetaP means we carry much about the angle deviation from the vertical
position, while a high weight in wXb means we want the vehicle to deviate the less
possible, from the position set.

A high weight in the velocities means a little deviation from the velocities set-
point. This implies that if the velocities are set to 0, we will have a "slow" control,
while with a low weight, we let the control follow the other references without
"carrying much" about how much the velocity deviates from null: it corresponds
to a "fast control".

The R matrix (in our case it is a simple scalar-value) represents "how much we
care about the input usage", which is similar to say "how economic must be the control".
A high value on R means we want an "economic" control, which implies many
times a "poor-performance" control. A low value means obviously the opposite: a
high-performance control, with the "defect" of spending much energy.

A final consideration about the relation between the matrices Q and R: the ratio
between them represents a "control invariant", in the sense that if (for instance) we
double the value of R and half all the values of Q, the control dynamics stays the
same.

Now it remains the stability issue: a wrong choice of the Q and R coefficients
might determine a critically stable, or even an unstable system. This deeply de-
pends on the form of the matrix to be controlled (Ad). In chapter 3 we already
discussed about the eigenvalues of the A matrix, which corresponds to the (unsta-
ble) poles of the free-evolution system.

What we can do here is to evaluate the stability of the controlled system by
analizing the eigenvalues of the controlled system’s matrix:

A ′ = [A− ksB] (61)

We can tell that:

• setting wXb = 0 creates an unstable controller, in fact this means "don’t care
about position" and it is obviously an unstable condition (MATLAB automati-
cally outputs an error about this, refusing to compute an unstable controller).

• a combination of the weights ofQ and Rmight result in real-negative (or null)
or complex-conjugated poles: they might be over-damped or under-damped,
making the output prone to self oscillations.

[December 2, 2017 at 17:06 – classicthesis]

44 control

The last statement is visible in figures 20 and 21. In the first figure, the choice of Q
and R yelded to both real and complex-conjugated, under-damped poles, while in
the second figure, the poles are all negative.

Figure 20: Poles of the system: in the upper figure, the uncontrolled system, in the lower
the controlled one. The choice of the coefficients of Q and R yielded to both real
and complex-conjugated, under-damped poles.

[December 2, 2017 at 17:06 – classicthesis]

5.2 control of equilibrium subsystem 45

Figure 21: Poles of the system: differently from the situation of figure 20, the controlled-
poles are now all negative-real.

At this point the simplest idea about the settings of the weights of matrices
Q and R is to try-and error until we reach a controller where poles are all real-
negative and "as negative as possible", for getting a high performance device.

Obviously it is not that simple: this is an ideal model, which means that at the
moment we did not considerate the dynamics of other components of the system
which can be either limited-band current loops, non ideal sensors etc. These kind
of components will be discussed in the next chapter, but what we can tell here is
that it is important to avoid highly-negative poles, which might determine an inter-
action with other component’s dynamics and consequent stability compromises.

5.2.4 LQR tuning

Even having investigated about the choice of the "weights" of the Q matrix and
having stated that awXb = 0 determines an instable controller, the "true life" is that
when using the self-balancing transporter, the rider doesn’t care about maintaining
the vehicle to the initial position: he only wants the vehicle to maintain the vertical
position and move forward or back when he lean in the desired direction.
In this scenario a different controller must be designed: a controller where the
weight relative to the horizontal position is wXb ≈ 0. Also it is important to set
wẊb = 0, infact since in this scenarion both the references of Xb and Ẋb will be 0,
setting wẊb 6= 0 means the controller will try to "slow" the vehicle until it reaches
0 velocity.

The "real life" controller has another constraint: the weight relative to the vertical
angle must be sufficiently high, in order to give the rider the sensation to be in a
"rigid ground", instead of an excessively floating platform that might induce him
to do corrective actions, in contrast of the inclination of the base.

[December 2, 2017 at 17:06 – classicthesis]

46 control

Obviously an excessive "readiness" might result in high gains with "nervous" be-
havior and stability risks.

The LQR tuning is then the activity of finding a good compromise between
"readiness" and stability, with regard to the human perception.

The scope of this thesis is not only to "build a comfortable vehicle", but to build
an affordable model and to validate it. In order to do this, another scenario was
created: a rigid body, solidly-linked with the base and some experiments regard-
ing the behavior of the vehicle, compared with simulation results. In this case it is
important to validate the behavior of the vehicle with wXb 6= 0 and wẊb 6= 0 .

Having two different scenarios of control, the choice of the coefficients in the
matrices was made by following the two different control strategies:

1. Control weights for "real-life" transporter wXb ≈ 0

2. Control in "simulation", with wXb 6= 0

After several tries, the final choices for the equilibrium LQR parameters are those
reported in table 5.

[Q] R

"real-life" control, with wXb ≈ 0 diag([1e− 10; 3; 0; 0.1]) 0.1

"simulation" controller, with wXb 6= 0 diag([1; 3; 10; 0.1]) 0.1

Table 5: Values set to the Q and R matrices of the equilibrium controller. Two sets are
provided, in order to accomplish the task of "real-life" or "simulation".

The results of both the simulation and the experimental data is discussed in
chapter 8.

5.3 control of steering subsystem

The problem of controlling the steering subsystem consists in the control of the
state-space system described in (31) and here reported:

ẋδ = Aδxδ +Bδτδ ={
δ̇

δ̈

}
=

[
0 1

0 an66

]{
δ

δ̇

}
+

[
0

bn62

]
τδ

(62)

Which can be conveniently rewritten by using the second row of the (62):

δ̈ = an66δ̇+ bn62τδ

And using the Laplace transform of this expression (with a slight abuse of nota-
tion), it results:

sδ̇ = an66δ̇+ bn62τδ

δ̇ (s− an66) = bn62τδ
δ̇
τδ

= bn62
(s−an66)

Which takes to this transfer-function:

δ̇
τδ

= bn62
(s−an66)

(63)

[December 2, 2017 at 17:06 – classicthesis]

5.3 control of steering subsystem 47

Which is a first-order, one-pole transfer function.
After this brief introduction, different control strategies might be adopted, here

we analyze the following two possibilities:

1. LQR steering controller

2. PI steering control

Those two strategies have been implemented and made available for simulation,
as visible in figure 22.

Figure 22: Steering control block: two different algorithms are available for simulation.

As noticeable in figure 22, the reference for both the systems is the steering angle
rate and not the steering angle: this last quantity is in fact important only for the
LQR controller and it is derived by time-integration of the previous reference. In
this controller, differently from the equilibrium one, we did not differentiate the
strategy between "real life" and "simulation", because the needs are the same. The
only difference in the two situations is the reference: in simulation the reference
comes from a "repeating sequence" block, while in "real-life", this comes from the
position of a potentiometer (the steering command of a joystick).

In the following sections, a discussion about the application of the LQR and the
PI control strategies.

5.3.1 LQR steering controller

The theory behind the LQR control was already discussed at the beginning of this
chapter: here a brief discussion about the weights of the Q and R matrices of the
controller. Even the discretization of this system is omitted, since the procedure is
identical to that on the previous section. In this case the Q matrix is defined as:

Q =

[
wδ 0

0 wδ̇

]
(64)

where wδ and wδ̇ are, respectively the weights related to steering angle error and
steering rate error. Even here it is important to verify the stability of the controller,
consequently to the choice of the previous weights. This deeply depends on the
values of the state-evolution matrix. Like for the equilibrium controller, it is useful
to plot the poles of the controlled system, as visible in figure 23.

[December 2, 2017 at 17:06 – classicthesis]

48 control

Figure 23: Poles of the steering system: too-negative poles might determine unstable con-
troller.

The calibration of the "weights" can take into account the mentioned poles and
try to reach a convenient trade-off between performances (with strong-negative
poles) and stability ("slower" poles, but without the risk to work "near other sys-
tem’s components dynamics").

A good compromise for the coefficients of the Q and R matrices is reported in
table 6. The results of both the simulation and the experimental data is discussed

[Q] R

LQR gains for steering controller diag([1, 2]) 0.1

Table 6: Values set to the Q and R matrices of the steering controller.

in chapter 8.

5.3.2 PI steering controller

Looking at (63) it is clearly visible that the system to control is not a MIMO, but
simply a SISO system, and additionally its transfer function is a first-order one.
Because of this, a simple proportional controller might be sufficient, with the aid
of an integral action, to avoid a steady-state error.

[December 2, 2017 at 17:06 – classicthesis]

5.3 control of steering subsystem 49

Figure 24: PI controller blocks.

With this basic idea a PI controller is designed. The first thing to do is to choose a
suitable proportional gain (Kp), in odrer to reach the desired bandwidth (increase
Kp to increase bandwidth).

Being the (63) a first-odrer system, theoretically the gain might be undefinitely
be increased without compromising stability margins.

The truth is that in the system are present other (non-ideal) components, dis-
cussed in the following chapter, that might limit the maximum bandwidth and
whose dynamics might interact with that of the controller (seamlessly adding
poles), compromising stability in case of too-high gains.

In order to properly choose Kp and the consequent system bandwidth, it must be
also considered the integral action. Because of this a brief mathematical digression
is presented. Let’s describe the PI transfer function, as easily derivable from figure
24

WPI = Kp +
Ki

s
= Ki

1+ s/(Ki/Kp)

s
= Ki

1+ s/ωPI
s

(65)

where ωPI is the pulsation of the zero relative to the PI controller. The loop gain is
then the product of the gains of PI controller and the system’s transfer function:

WLOOP = WPI ∗ δ̇τδ = Ki
1+s/ωPI

s
bn62

(s−an66)
=

= Ki∗bn62
−an66

1+s/ωPI
s

1
(s/(−an66)+1)

(66)

Which is the combination of a static gain, a pole at the origin and one real-pole,
plus a real zero. This loop gain’s frequency behavior is visible in figure 25.

[December 2, 2017 at 17:06 – classicthesis]

50 control

Figure 25: Frequency representation of the steering subsystem. In the upper graph the
uncontrolled system, in the middle the loop-gain of the PI-controlled system,
and in the lower the frequency response of the overall controlled system.

Now it is more simple to present the principle of gains selection: the Ki have
been chosen so that the zero at ωPI will present the minimum interaction possible
with the pole at −an66: ideally one third "slower". The Kp gain was chosen also
in a way to guarantee a loop-gain bandwidth of (at most) equal to the original
system’s pole in −an66.

Ki = Kp
−an66
3

(67)

This combination of criterion, whose result is in figure 25, took to the choice of
gains (calculated by imposing a "cylinder body" of 1m height and 30kg weight)
of: Even for the PI steering controller, both the simulation and the experimental
results will be presented in chapter 8.

[December 2, 2017 at 17:06 – classicthesis]

5.4 conclusions 51

Kp Ki

PI coefficients for the steering controller 2 13.8241

Table 7: Values chosen for the PI steering controller, in the case of a rigid-cylindric-body
1m height and 30kg weight.

5.4 conclusions

In this chapter it was described the control algorithms chosen for the two subsys-
tems that forms the TWSBT. It was described the motivation of the controller type
and the tuning strategies. Also it was reported a discussion about the stability.

All the controllers described here are designed on the base of an "ideal" system:
it is a simplistic approach and lacks of many real-life limits that might modify a lot
the controller performances and its stability, but a first model-based control design
is a good base for further tuning, based on real-life non-idealities.

In the following chapter, a detailed description of those real-life non-idealities,
and how they were modeled, and used to properly tune the described controllers.

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

6
S Y S T E M N O N - I D E A L I T I E S

6.1 introduction

In chapeter 3 it was introduced a basic model, useful for the study of the dynamics
of the system. Such a system was useful for a first approach to the problem such
as the design and testing of equilibrium and steering controllers, but it lacked of
a high number of real-life phenomenons that acts on the system. In the successive
chapter, a first evolution of the model aimed to build a more realistic one, by
treating the human driver as "something different from a solid body, solidal with
the base", that is a first step in the direction of non-idealities description.

Further model evolutions might consider the complex continous elastic behavior
of the mechanical parts, but with a realistic consideration, this complication can be
neglected, since the vibration modes will seamlessly act at high frequencies that
does not influence much the equilibrium and the steering controllers and even if,
they can’t be managed, because they acts outside the controller’s bandwidth.

In the following subsections it will be described other system non-idealities that
might concretely influence the control strategy and how those unidealities were
managed in the design of the self-balancing transporter. In addition, in order to
try to design a model, as realistic as possible, these unidealities were also (where
possible) added to the model in chapter 3.

6.2 motor torque

In an ideal model, the torque generated by a motor is constant and proportional
to the supplied current:

τmot = kt ∗ imot (68)

thus, driving the motor with a good current controller, ideally corresponds to a
direct control of the motor’s torque.

Unfortunately the real-world is different: the relation between current and torque
is linear only for some kind of motors, and only in a limited frequency range. Most
cheap motors suffer of non-constant torque constant, exactly as the Brushless-DC
motors employed in this project (see figure 26).

53

[December 2, 2017 at 17:06 – classicthesis]

54 system non-idealities

Figure 26: Torque ripple in a BLDC motor, due to a variation of ke ≈ kt along the electrical
angle. Figure from [29].

In the Brushless-DC (BLDC) motors, the value of kt is not constant along the
rotation of the motor, and results in a torque ripple during the motor rotation that
repeats at six-times the rate of rotation.

kt(θr) = ke(θr) =
dλe(θr)

dθr
(69)

This phenomena is acceptable for many applications, where the motor works
at high-rotation-speeds, because the load inertia and the friction has a low-pass
effect on the torque transmission, resulting in a "sufficiently smooth" motion, at
the endpoint of the transmission chain. As opposite, this torque-ripple can result
unacceptable for many industrial processes, having a need of high-precision and
regularity.

The design of a self-balancing vehicle is partially a low-cost transportation ap-
plication, where the torque ripple is not a big matter, but at the same time, the
torque ripple could strongly influence the on-board accelerometer reading, thus
seriously disturb, or even compromise the reading of the pitch angle, especially at
low-speed.

Another fact is that the torque-ripple might probably excite some vibration
modes of the structure, thus it might affect not only the controller, but can even
compromise the long-term mechanical structure of the product, with possible fail-
ures.

6.2.0.1 Torque vs driving technique

In our application (for a matter of cost and dimension) it was not feasible to think
about the use of sinusoidal morots, so eliminating the pure-DC motor, the BLDC
choice was almost obvious. In the BLDC world, the motor construction and quality,
strongly influences the magnitude and form of the ripple torque, thus a first choice
of low-torque-ripple motor was made.

Even with this, the problem of the ripple torque will always be, as long as a
BLDC motor will be employed. Nevertheless, if the choice of a BLDC motor is
almost compulsory, the choice of the driving technique might play a decisive im-
provement in the torque ripple. Several studies such as [18] and [17] have tested
the possibility to apply some advanced control techniques like Field-Orient Con-
trol (FOC) in order to reduce the torque ripple in the motor.

[December 2, 2017 at 17:06 – classicthesis]

6.2 motor torque 55

The scheme of the 3-phase BLDC FOC control is shown in figure 27

Figure 27: Block-diagram of a field-oriented control for a 3-phase BLDC motor. Figure from
[17].

This control technique, widely used in the motor control world is mainly based
on the knowledge of the 3-phase motor’s model (reported on figure) and it’s pa-
rameters.

[December 2, 2017 at 17:06 – classicthesis]

56 system non-idealities

Figure 28: Electrical schematic (simplified) of a BLDC motor. Figure from [29].

Infact, by precisely orienting the magnetic field generated by the stator currents
(named ia , ib and ic), against the flux linkage, generated by the permanent mag-
net, it is possible to directly control the torque generated by the motor.

The application of the field-oriented control to the permanent-magnet motors,
was originally on the sinusoidal PMSM, while an application to the BLDC was
illustrated in [18].

The complete FOC theory will not be reported, but what is important is that for
a proper control, the motor must be IDENTIFIED: the parameters shown on figure
28 must be measured or calculated.

In the board used in the project, a simple graphical interface (figure 29) made it
possible to do the automatic identification process by measuring/calculating:

• winding resistance

• winding inductance

• flux linkage

• hall position

• current controller gain

This simple, but convenient GUI made it possible to "tune" the controller by simply
connecting with an USB cord, the PC to the controller board.

[December 2, 2017 at 17:06 – classicthesis]

6.2 motor torque 57

Figure 29: Graphical interface of the board controller: motor identification panel.

6.2.0.2 FOC torque ripple benefits

Unfortunately, during the measurements there were no instruments to measure
the motor torque, in order to do a comparation between the FOC-driving, against
a sector-wise constant-PWM driving, thus a "scientific measure" of the FOC benefit,
against a constant-PWM driving was possible.

The only appreciable fact was a deep decrease in motor’s noise and a higher-
perceived regularity, during the movement.

In the theoretical model introduced in3, thanks to the adoption of the FOC strat-
egy, it was not added any parasitic ripple-torque to the motors, (since it was ver-
ified that the BLDC motor was "naturally smooth"), and the further introduction
of this control technique reduced the ripple-torque at the point that there was no
need to consider the ripple in the model.

Concerning the FOC model, it was simply modeled as a current controller block,
described in the following section.

Another note is that probably the terrain irregularities will have a higher dis-
turbance effect, than the torque ripple, so in the model it was introduced only
disturbance torques (one for each motor), representing this last phenomenon.

See figure 30.

[December 2, 2017 at 17:06 – classicthesis]

58 system non-idealities

Figure 30: Noise torque applied to the motors: it represents mainly the terrain irregularities
and other uncontrolled external torque disturbances.

6.3 current loop

Some studies of self-balancing vehicles in literature, includes in their dynamic
model, a complete or approximated model of the motor(s) of the vehicle, resulting
in a structure where the input signals are the motor’s voltages and the outputs are
the same as that in the model of chapter 3.

This is one possible approach, but might result in a complication of such model
and the impossibility to separate it in a series of conceptually different blocks, thus
the impossibility to separate the study of single blocks.

Another approach is that of the chapter 3, where it was assumed the presence of
a current controller, which corresponds to a seamless direct control of the torque into
the motors. In the simplest form infact, there is a linear correlation (kt) between
current and torque.

The exceptions about this linearity were all treated in the previous subsection, so
in this section, it will be presented only a brief discussion about the non-idealities
strictly related to the current control-loop, that influences the overall behavior of
both the equilibrium and the steering controllers.

6.3.0.3 current limit (saturation)

In the ideal world, a motor supplies a torque proportional to the current flowing
into it, but the problem is that the current is not infinite, but has natural or imposed
limits.

[December 2, 2017 at 17:06 – classicthesis]

6.3 current loop 59

symbol value unit

rs 0.128 Ω

Ls 167 µH

kt 0.694 V/(rad/s)

Vbus,MAX 36 V

PNOM 350 W

Table 8: Parameters of the Hub Motor described in chapter 2.

A first current limit is the bus voltage: by the ohm’s low, there is an intrinsic
current limit by the resistance of the motor’s winding, thus, referring to figure 28:

ia,peak,MAX =
Vbus
2rs

(70)

obviously this is a Maximum Value, at steady speed: when the rotor starts spinning,
the current limit will obviously be reduced because of the back-EMF generated by
the ea, eb, ec generators:

ea = eb = ec = ωm · ke ≈ ωm · kt (71)

As an example, the Hub Motor, described in chapter 2 has the parameters listed in
table 8.

Considering such parameters, it results a maximum resistance-limited current
of:

ia,peak,MAX =
Vbus
2rs

=
36

2 · 0.128
≈ 140 [A] (72)

Another current limit is imposed by the motor’s constructor: the Joule’s power
dissipated by the winding resistance will heat-up the motor and make it reach a
critical temperature. This limit is often stricter than the previous.

For many RC motors the current limit given by the producer has 2 values:

• Maximum Continous Current : tolerated for unspecified time, without cousing
damages to motor

• Maximum Pulse Current : a current tolerated for a limited time (typically for
one minute) that is almost the double of the previous

The Hub Motor had no explicit current limit, thus it was derived from the power
rating of table 8. Having the mentioned nominal power, it can be calculated the
nominal current as:

imot,NOM =
PNOM
Vbus

=
350

36
≈ 10 [A] (73)

Thus it is admitted a "pulse current" of about double the previous, resulting in:

imot,MAX ≈ imot,NOM ∗ 2 ≈ 20 [A] (74)

This limit was modeled as a "saturation block", visible in figure 31.

[December 2, 2017 at 17:06 – classicthesis]

60 system non-idealities

Figure 31: Current limit in the current controller. In the figure it is also noticeable the
simplified linear relation (kt) between current and torque.

6.3.0.4 control loop delay

In its simplest form, the current-control loop, is a simple Proportional controller which
acts on a PWM signal that regulates the voltage (vLs) across the motor’s stator
inductance.
In this simplification, infact, it was considered only the high-frequency behavior
(the most important effect of control loop), thus neglected the effect of the back-
EMF and the resistance of the winding, because they act only at low-frequencies.

Figure 32: Variable voltage across inductor and corresponding current.

[December 2, 2017 at 17:06 – classicthesis]

6.3 current loop 61

Referring to figure 32, the current through the Ls inductor is:

iLs(t) =
1

L

∫t
0

vLs(t)dt+ i0 (75)

If we apply a simple proportional controller to the above circuit, the result is a
scheme like that in figure 33.

Figure 33: Block-model of a current proportional controller, acting on stator’s inductor.

The effect of such a controller is a further high-frequency pole at a frequency
of 2π · (Kp/Ls), as visible in figure 34, which differs a lot from an ideal current
actuator since it reduces significantly the gain margin of the controllers acting at
the input of this block.

Figure 34: The control scheme represented in figure 33, is equivalent to a high-frequency
pole at pulsation of Kp/Ls rad/s.

Any controller acting on this block’s input must infact take into account of the
presence of the further pole introduced by this block: the phase shift and the delay
produced by it, might represent a stability risk for both the equilibrium and the
steering controllers.

The final model for the current controller’s and the saturation effect is visible on
figure 35.

Figure 35: Final model for the current controller: the linear effect of a low-pass filter, plus
the nonlinear effect of current saturation.

In the current loop of the vehicle designed, a FOC controller was employed, with
a PI current controller instead of a simple P control. This is not a big deal since
the final effect is only a first-order-like LPF transient, visible in figure 36. This
transient makes it possible to calculate the τ time constant, used in the block of
figure34 inserted on the overall device model.

[December 2, 2017 at 17:06 – classicthesis]

62 system non-idealities

Figure 36: Current transient, with blocked rotor, measured at one of the motor-phases. Its
effect is similar to that of a first-order LPF, thus it is possible to estimate its
time-constant and put it into the model of figure 34.

6.4 angle and angle-rate reading

The equilibrium control of almost every kind of self-balancing vehicle is deeply
based on the pitch angle (and angle-rate) reading. The most diffused method for
the pitch-angle reading of mobile platforms, is the use of an Inertial Movement
Unit (IMU).
IMU units are generally sensors that combines accelerometers and gyroscopes that
senses one or more physical coordinates (generally they offer 2D or 3D sensing ca-
pabilities). The reading of the pitch angle with those devices is generally obtained
by a sensor-fusion, described in the following subsections.

[December 2, 2017 at 17:06 – classicthesis]

6.4 angle and angle-rate reading 63

Figure 37: IMU magnetometer reference axes. Figure from [28]

Figure 38: IMU accelerometer and gyroscope rotation directions. Figure from [28]

IMU-based angle reading is preferred because it permits the reading of the vehi-
cle’s base inclination, without the necessity to have any physical link to the ground
and, most important, in the panorama of contact-less angle reading, it is one of the
simplest methods (against ultrasound proximity sensors, visual sensors, laser etc.).

The mass-diffusion of such inertial sensors make them smaller and cheaper
year-by-year. Another interesting feature is the deep-integration that those sensors
offer: only few years ago, it was impossible to think about a 3-D accelerometer
combined with a 3-D gyroscope without an expensive-price and huge dimension.
Nowadays it is common to find not only 3-D accelerometer combined with a 3-D
gyroscope, but even a 3-D magnetometer in the same (incredibly small) 3x3mm
package (avoiding even the problem of misaligned sensor’s origins).

Even with all those interesting features, those sensors’ output can’t be directly
employed for the angle-reading task. As just reported, the signals must be "mixed"
together, filtered (avoiding an excessive measurement noise) and the sensors must
be calibrated, because they are non-ideal sensors.

In the following sections, the description of the sensor’s models and all the signal
conditioning for the angle and angle-rate reading, which is one of the challenging
tasks in many control projects.

6.4.1 IMU modelling and calibration

The accelerometer and the gyroscope of an IMU are non-ideal sensors, whose out-
put can suffer of several non-idealities, that can strongly compromise the angle-
reading performances. The main non-idealities are listed:

1. Bias: almost always the accelerometer shows a non-null acceleration in the
axis perpendicular to the graound, or even an acceleration different from "g"
in that parallel: this is very common and requires an adjustment, in order

[December 2, 2017 at 17:06 – classicthesis]

64 system non-idealities

to supply a correct output. Even the gyro can output a non-null angle-rate,
even with steady conditions.

2. Non-linearity: it is supposed that in the measurement range of the sensor,
its output is always linear, but it is very common that at the extremes of the
measurement range, a meaningful linearity distortion appears.

3. Gain: even having canceled the bias, it can appear that when flipping an
accelerometer upside-down it shows a +/− 8.5m/s2 acceleration variation,
instead of a +/− 9.81m/s2. This is the typical gain error.

4. Noise: as all "true" sensors, accelerometers and gyroscope suffers of noise
presence, that must be conveniently managed.

5. Saturation: all the sensors can provide a measure in a limited range. When
the true phenomena exceeds this, a saturation in the measurement might
appear.

In this subsection it will be presented a model for both the accelerometer and the
gyroscope, that can conveniently replicate the sensor’s behavior in simulation, and
a calibration procedure, that aims to minimize or eliminate some of those unideali-
ties.

6.4.1.1 Accelerometer model

The accelerometer is one of the simplest ways for measuring the angle, with some
limitations that will be soon explained. Basically the model of a 3-D accelerometer
is described by:

A(t) =


ax(t)

ay(t)

az(t)

 =


bx

by

bz

+


nx(t)

ny(t)

nz(t)

+


accx(t)

accy(t)

accz(t)

 (76)

Where A(t) is the vector of raw accelerometer data, b∗ are the accelerometer bi-
ases, n∗ are the measurement noises (supposed as normal-distributed, zero-means
noises N(0, σ2)) and acc∗ are true accelerations.

Concerning the noises, the accelerometer’s datasheet reports the value of (300µg
√
Hz),

which is a constant-power, normally-distributed noise. It was modeled with a
limited-bandwidth, white-noise block, visible in the models’ scheme of figure 39.

In order to have a good measure, it remains the problem of bias cancellation,
which is a part of the process called calibration.

The activity of IMU calibration is a very common engineering task and several
different solutions have been proposed for this, such as [4], [32] and [26].

In the specific case of our system, the IMU (as stated in the datasheet) have been
factory-calibrated in the gain value, for both accelerometer and gyro.

Even the non-linearity of the sensors were neglected by the fact that the device
is used in the measurement of a very small angle range.

At the end, the only task remaining, concerning the accelerometer calibration is
the accelerometer bias correction. A proposed method is the following.

[December 2, 2017 at 17:06 – classicthesis]

6.4 angle and angle-rate reading 65

Since the noise is supposed null-means, it won’t appear in the average of mea-
sures. Giving this, simply averaging a sufficient number of accelero measures, it is
possible to retrieve the sensor’s bias in this way:

avg(A(t)) = avg



ax(t)

ay(t)

az(t)


 =


bx

by

bz

+ avg



accx(t)

accy(t)

accz(t)




thus :
bx

by

bz

 = avg



ax(t)

ay(t)

az(t)


− avg



accx(t)

accy(t)

accz(t)




(77)

The bias removal was obtained simply by positioning the IMU parallel to the
ground sequentially, in the three accelero coordinates and removing the value read
in the axes parallel to the ground.

The bias-free measures are then:
ax(t)

ay(t)

az(t)

−


bx

by

bz

 =


accx(t)

accy(t)

accz(t)

+


nx(t)

ny(t)

nz(t)

 (78)

In this way, the accelerometer is calibrated, thus the values are unbiased and only
affected by Gaussian noise. The model of the accelerometer is visible in figure 39,
where only two coordinates were considered, since the equilibrium problem (for
which the sensor is employed) is basically a bi-dimensional matter.

Figure 39: Block-model of the accelerometer unit.

The saturation block represents the full-scale of the accelerometer. Several values
can be set. In our design it was chosen ±2g. The output filter is a configurable first-
order LPF block, present inside the component that can be set at various values. In
our case it was left to the default value of 250Hz.

The "Interpreted MATLAB Fcn" block of figure 39 represents the accelerome-
ter’s sensitivity for gravity and other accelerations, which are basically the linear
acceleration of the base. The acceleration scheme is reported in figure 40.

[December 2, 2017 at 17:06 – classicthesis]

66 system non-idealities

The linear acceleration affects the measure, creating an acceleration coupling in
the sense that there exist a coupling between linear acceleration and angle reading,
thus the angle measure is no more precise as expected because affected by an
acceleration other than the gravitational, that corrupts the angle measure. Other
considerations about this problem are in the following sections.

Figure 40: Accelerometer reading affected not only by the gravitational acceleration, but
also by the movement-correlated linear acceleration

Longitudinal acceleration in fact adds to the x (and z) components of the ac-
celerometer a quantity like:

accx = g ∗ sinθ+ aLIN ∗ cosθ
accz = g ∗ cosθ− aLIN ∗ sinθ

(79)

Considering equation 81, the corresponding accelerometer’s angle will be deeply
affected by any linear acceleration.

6.4.1.2 Gyroscope model

Concerning the gyroscope model, the equations governing it are:

G(t) =


gx(t)

gy(t)

gz(t)

 =


bx(t)

by(y)

bz(b)

+


nx(t)

ny(t)

nz(t)

+


ωx(t)

ωy(t)

ωz(t)

 (80)

In this case, differently from the accelerometer, the bias is not simply a constant
value (in fact it shows a time-drift) and its cancellation plays a key-role in the control
strategy. Several models like such as [27] and [24] are proposed in literature, about
this bias phenomena and strategies for its cancellation.

In our case, the bias of gyroscope was modeled with a constant-part and a
random-walk one, representing the bias-drift, at low-frequency and low entity. The
complete model is shown in figure 41.

[December 2, 2017 at 17:06 – classicthesis]

6.4 angle and angle-rate reading 67

Figure 41: Block-model of the gyroscope unit.

As for the accelerometer, a saturation block represents the full-scale limit (in our
case 250°/s), and the output is limited in bandwidth (in our case it was left the
default value of 256Hz).

For both the accelerometer and gyro models, a validation process will be pre-
sented in chapter 8.

6.4.2 angle measurement

Looking at figure 37, under the assumption that the only acceleration acting on the
IMU is the earth’s g, it is possible to calculate the pitch angle by simply knowing
the acceleration’s x and z components, infact:

θ = arctan
(
accx
accz

)
(81)

Since the angle reading must be performed many times per second, and the micro-
controller has limited calculus power, the arctan operation might result in a heavy-
weight for the micro-controller. In order to lighten the calculus load, it can be
considered that equation (81) is a nonlinear function, however, we can approximate
the θ angle through a straight line as it is showed in Figure 42, thus (sin θ ≈ θ) for
small values of θ. In Figure 42, it can be observed that this linear approximation
is acceptable in the interval ±0.35rad, that is ±20°. This range is large enough
to contain the normal operation of the self-balancing vehicle. Therefore we can
rewrite again the equation (81) in the approximate form:

θ ≈ accx
accz

(82)

The equation (82) is linear and it is meaningful as long as the system maintains the
pitch angle in the mentioned range ±20°.

[December 2, 2017 at 17:06 – classicthesis]

68 system non-idealities

Figure 42: Linear approximation of angle: valid in the interval of ±20°. Figure from [25]

The presented technique is consistent as long as the only acceleration acting in
the system is the gravitational one. Unfortunately, for the self-balancing vehicle,
this assumption is almost never met, because of the presence of vibrations, lon-
gitudinal accelerations and side accelerations. This raises the problem of a very
noisy reading, that can’t be directly used for the purpose of angle-reading of self-
balancing vehicle. The most typical procedure adopted for avoiding this problem is
the sensor fusion of measures from accelerometer and gyroscope. Even by fusing ac-
celerometer and gyroscope data, the angle measure is affected by some neglected
accelerations (other than the gravitational) acting on the accelerometer. Some of
them can be considered under the definition of "noises", uncorrelated with the
movement, but some other not. As described in the accelerometer model, the vehi-
cle acceleration represents an acceleration coupling that might alter measures.

Since the linear acceleration is known by the equilibrium algorithm (it is derived
by double-derivation of wheels angle), the simplest thing to do, is to subtract it
from the x-component of the accelerometer reading.

This simple solution is possible, under the assumption of working around small
angle, where it is possible to linearize the equation(79), thus considering (cos θ ≈ 1)
and (sinθ ≈ θ ≈ 0), thus neglecting the effect of linear acceleration on the z-
component. If the angle is out of a small range, it is not possible to simply linearize
it and subtract from the x-component: it is a recursive, hard to manage problem.

In the realization of the self-balancing vehicle, the condition of small-angle is
always verified, so that the acceleration was simply removed only from the x-
component. This subtraction was made "select-able", in order to test the effective-
ness of the solution. This possibility, as long as the accelerometer’s angle calcula-
tion is shown in figure 43.

Figure 43: Model of angle reading from accelerometer: note the possibility to test the bene-
fit of subtracting the acceleration calculated, from the x output of the accelerom-
eter.

[December 2, 2017 at 17:06 – classicthesis]

6.4 angle and angle-rate reading 69

Since the accelerometer has many drawbacks about sensitivity of spurious accel-
erations, it might be obvious to measure the angle by integrating the gyroscope’s
output. This is obviously not feasible, since gyroscope has always a bias, thus its
integration will result in an angle constantly increasing (or decreasing), or (since
the bias has also a time-drift) a variable contribution to the angle. In this project, to
overcome those problems, having different sensors, with different pros and cons,
it is possible to use the sensor fusion.

6.4.3 Sensor fusion

This technique aims to take advantage of each (accelerometer and gyroscope) sen-
sor, fusing measures into a unique high-quality output.

Several sensor-fusion techniques are possible, as proposed in [25], [31] and [21] .
A first simple one is the Complementary Filter and its structure is:

θfilt = α ∗ (θfilt + gyro ∗ Ts) +β ∗ θacc
where :

α+β = 1

and

α >> β

(83)

The gyroscope data is integrated every time-step with the current angle value.
After this, it is combined with the angle read from the accelerometer.

This simple filter weights a lot the gyro integration, because in the rapid-movement
it is very affordable, but avoids its drift because integration involves the accelerom-
eter data that is more affordable in slow "long term" horizon, canceling the bias
contribution given by the gyroscope’s integration.

An example of such filter’s behavior is shown in the Figure 44, where the ac-
celerometer was read at a rate of 100Hz, and the complementary filter’s coefficients
were: α = 0.98 and β = 0.02.

[December 2, 2017 at 17:06 – classicthesis]

70 system non-idealities

Figure 44: Comparison of angle reading with accelerometer and complementary filter. In
this setup α = 0.98 and β = 0.02

The result is good, but in some cases it might result "too noisy", or "too slow", if
not properly calibrated. The complementary filter must then be tuned properly, in
order to give the expected output. A model for this filter is presented in figure 45.

Figure 45: Complementary filter model: the simplest approach for IMU sensor fusion.

A validation of this model will be presented in chapter 8.

6.4.4 Kalman filtering

Even if the complementary-filter works fine in many applications, it has to be prop-
erly tuned in order to obtain a trade-off between responsiveness and noise removal.
Many times, in order to reduce the noise in the measures it is necessary to deeply
low-pass accelerometer’s data, resulting in the introduction of heavy time-delays
in measures, that sometimes might result unacceptable and might compromise de-

[December 2, 2017 at 17:06 – classicthesis]

6.4 angle and angle-rate reading 71

vice’s performances.

An alternative to the simple complementary filter is the powerful and more-sophisticated
Kalman filter.

The Kalman filter is a powerful algorithm used to identify (find a description that
is the variance of) a disturbing signal acting on a system. It is a recursive algorithm
based on the innovation signal of the process (which is the difference between the
true and the estimated system output) to estimate the current state of a system.
It is often used when the state of a system is not available, but necessary for the
control purpose.
The correctness of the estimation must be verified: the residual noise of the inno-
vation signal must be "white". For this scope it will be used a Bartlett test to verify
this condition (explained in the following sections).
In our specific case, the process is the sensor’s fusion model and the state is the
"ideal" measure, without the additive noises.
The starting point is a discrete system in which acts noises, like the following:

x(k) = Fx(k− 1) +Gu(k− 1) +m(k)

y(k) = Hx(k) +w(k)
(84)

The noises m(k) acting on x(k) can eventually be correlated. The important as-
sumption that must be met, is that the noises m(k) and w(k) are uncorrelated (if
they are correlated, they must be previously uncorrelated).
The correlation of the m(k) signals is expressed by their co-variance (discrete) ma-
trix obtained with:

Qd = E[mm ′]

and the variance of the output error (for a scalar output) is:

R = E[ww ′] = E[w2]

The Kalman filter then executes a recursive prediction of the successive state, based
on a Minimum variance prediction in the form:

x̂(k) = Fx̂(k− 1) +Gu(k− 1) +K[y(k− 1) −Hx̂(k− 1)]

where:

K = PHT (HPHT + R)−1

and P is the solution of Algebric Riccati Equation (ARE):

P = FPFT +Q1d − FPH
T (R+HPHT)−1HPFT

Where the term e(k− 1) = [y(k− 1) −Hx̂(k− 1)] is the Innovation signal that will
be investigated if "white".
The term Q1d is the "true process co-variance", which describes the uncertainty of
the noise acting on the process. It might be different form Qd, because this one is
the "nominal" value.

6.4.5 Kalman tuning

The process for discovering the correct Q1d, called the Kalman tuning, consists in:

[December 2, 2017 at 17:06 – classicthesis]

72 system non-idealities

1. Calculate all the F,G,H,Qd, R matrices and initializing:

P = 0

Q1d = Qd ∗ κ
where, initially it is posed:

κ = 1

2. Run the system and evaluate the innovation e(k) = [y(k) −Hĥ(k)] "white-
ness". If it is "sufficiently white", the Q1d is correct. If not:

3. Adjust the value of κ until the innovation results "sufficiently-white"1 .

6.4.6 The Bartlett’s test

This test gives a fast and intuitive way to verify the "whiteness" of a signal. Having
the FFT of the signal, the values found are progressively integrated and plotted
into a graph where the horizontal axis reports the number of FFT samples, while
the vertical axis reports the value of the integration (whose absolute value is not
important). What is important is to observe is the "straightness" of the line: if
the signal is white, the FFT signal is almost "flat", thus the integration results in
a straight ascending line. If the signal is not white, the FFT is not flat, and the
integration results in a curved line that might be either over or below the graph’s
diagonal (see figure 46).

Figure 46: The Bartlett whiteness test: If a signal is white the resulting plotting is similar to
the green line (almost coincident with te dashed diagonal), the red line indicates
a "high-frequency-dominated" signal. The blue a "low-frequency-dominated".

1 note that Q1d can even be arbitrary build (without relating it to its nominal value), but relating it to
Qd makes easier the tuning process

[December 2, 2017 at 17:06 – classicthesis]

6.4 angle and angle-rate reading 73

6.4.7 Application of Kalman Filter to the system

In order to use the Kalman filter in the IMU reading process, a proper model of
gyroscope, accelerometer and their combination must be done.

6.4.7.1 Gyroscope model

Following the model proposed by [25], which corresponds to the single-dimension,
discrete form of (80), the gyroscope output (considering only the "pitch" angle rate
output coordinate) can be modeled as:

sg(t) = ω(t) + bg(t) +ng(t) = θ̇(t) + bg(t) +ng(t) (85)

where:

• sg is the gyroscope output

• ω is the angular velocity

• bg is the gyro measure bias, supposed slightly variable

• ng is the Gaussian noise added to the gyroscope measure, whose variance is
unknown

The angle reading, starting from the gyro output, can be achieved by integration
of the angle-rate:

θ(t) = θ(t0) +
∫t
t0
θ̇(t)dt (86)

Now, substituting (85) in (86) it results:

θ(t) = θ(t0) +
1
s
(sg(t) − bg(t) −ng(t)) (87)

The bias is supposed to be affected by a process (white) noise nb, thus its evolution
model is:

ḃg(t) = bg(t) +nb(t) (88)

6.4.7.2 Accelerometer model

Even for the accelerometer, a discrete-time model is build:

sa(t) = θ(t) +na(t) (89)

where:

• sa is the accelerometer output, already conditioned by subtracting bias and
coupled acceleration, as described in section 6.4.1.1

• θ is the pitch angle

• na is the Gaussian noise added to the accelerometer measure, whose variance
is unknown

In this case, the angle reading model for the accelerometer will be:

θ(t) = sa(t) −na(t) (90)

Note that the signal θ(k) is not simply the accelerometer’s output, but the result
of the angle calculus explained in the previous section.

[December 2, 2017 at 17:06 – classicthesis]

74 system non-idealities

6.4.7.3 Sensors combination

The previous models of the sensors can be conveniently used to build a state-space
system, affected by noise. Using the (87), we define the state of the system as the
vector:

ẋ(t) =

[
θ̇(t)

ḃg(t)

]
and u(t) = sg(t) (91)

The output definition is derived directly by the (90), thus the complete system, in
the form (84) is obtained by substitution of all the previous, yielding to:

ẋ(t) =

[
θ̇(t)

ḃg(t)

]
=

[
0 1

0 0

]{
θ(t)

bg(t)

}
+

[
1

0

]
[sg(t) +ng(k− 1)] +

[
0

1

]
nb

y(t) =
[
1 0

]
x(t) +na(t)

(92)

Where, as obvious:

x(t) =

{
θ(t)

bg(t)

}
u(t) = sg(t) A =

[
0 1

0 0

]
B1 =

[
1

0

]
B2 =

[
0

1

]

C =
[
1 0

]
m1(t) = ng(t) m2(t) = nb(t) w(t) = na(t)

(93)

Since the controller is discrete-time, the just-presented model must be discretized
and it is necessary to find a model for the co-variance of the noise processes (to be
applied to the kalman filter). Here the results:

F = eATs =

[
1 Ts

0 1

]

G =
∫Ts
0 e

AτBdτ =

[
Ts

0

]
Q = σ2ngw

1
0→Ts + σ

2
nb
w20→Ts

where:

w10→Ts =
∫Ts
0 e

AτB1B
T
1 (e

Aτ)Tdτ =

[
Ts 0

0 0

]

w20→Ts =
∫Ts
0 e

AτB2B
T
2 (e

Aτ)Tdτ =

[
T3s /3 T2s /2

T2s /2 Ts

]
R = σ2na

(94)

Note that the variance related to the accelerometer angle (σ2na) is not simply the
sensor’s noise variance, but since the angle coming from the accelerometer is a
ratio between the two signals (see (82)), the corresponding variance is the product
of the variances of the accx signal noise and the inverse variance of the accz signal
noise (which is obtained by first-order Taylor approximation of the process).

The model of Kalman filter is already part of the Simulink environment. In figure
47, it is presented the blocks that makes possible to choose which sensor-fusion
strategy to adopt.

[December 2, 2017 at 17:06 – classicthesis]

6.5 position and velocity reading 75

Figure 47: Possible solutions for the sensor-fusion algorithm to use, during simulations.

Unfortunately, for a matter of time, the validation of the kalman filter for the
pitch angle calculation was not performed, thus the task is a point of interest for
future works.

6.5 position and velocity reading

In order to accomplish the controls designed in the chapter 5, it is necessary to
have the description about the position and velocity of the base. An important
assumption of slip-absence made in chapter 3 guarantees that the base position
and velocity might be (linearly transforming) directly calculated by knowing the
wheel’s position and velocity.

The problem so, is the knowledge of the mentioned quantities for each wheel.
Many times, if a previous good design was done, the problem reduces to the knowl-
edge of motor’s rotor position and velocity.

The rotor position and speed reading quality depends on several design issues
such as:

• the presence or absence of sensors and their type

• the link between motor and wheel (elasticity, backlash)

• the measurements post-processing

The mentioned issues also drove the motor choice, in fact for this kind of appli-
cation, not only the power and torque constraints are important, but also the motor
chosen must meet the previous items.

6.5.0.4 Sensorless vs sensored

In the last years, the motor drivers have grown a lot their performances, making it
possible to have amazing features even with cheap motors, even without any sen-
sors (one of the first sensor-less applications was [14]). The limit of most sensor-less
drivers is the low-speed operation, in fact the "traditional" sensor-less operation is
based on the motor’s Back-EMF reading, which is not easily measurable at low or
steady speed.

Even for this last limit, some driving solutions like [30] and [11] have demon-
strated the possibility of precise positioning of sensorless motors, even at low-
speed, which is exactly the most important feature to achieve for correct balancing
of the vehicle.

Unfortunately those techniques are relatively new and not available in many
commercial or hobby products, infact their implementation sometimes needs the
use of expensive components such as FPGAs and high-speed ADCs.

[December 2, 2017 at 17:06 – classicthesis]

76 system non-idealities

Giving that, for this project, a "more traditional" (sensor-ful) motor solution was
chosen. In this context, it was necessary to determine the minimum motor angular
resolution needed for the quasi-static, self-balancing task. It is obvious infact, that a
poor resolution might result in an instable control, with seamlessly limit-cycles or
even with control drift. On the other hand, the higher resolutions comes with a cost:
a high-precision encoder is often very expensive. A trade-off between performance
and cost must be found.

A good cost-reduction can be the direct use of hall-sensors, incorporated on
many low-cost brushless motors, instead of the need for an expensive encoder.
The big question is if the resolution is sufficient for the desired task. Unfortunately
no literature was found about that matter, so the only thing possible was the study
of this porblem or a try-and-error with models.

For a matter of time, the second choice was adopted, with the only starting-
point constraint of looking for a combination of motor and wheel, with a minimum
guaranteed resolution of 5°/hall− step.

6.5.0.5 Motor-wheel link

The last important consideration about the wheel position reading is the quality of
the movement transmission between the motor and the wheel. There exists a vast
panorama of movement transmissions: The most common are:

• belts-pulleys

• gearboxes

• direct-drive motors

The belt-based solutions often has :

• Pro: low-weigth

• Pro: zero-backlash

• Con: considerable elasticity of the link.

Gearboxes often has exactly the opposite pros & cons of the belts.

Direct drive motors has:

• Pro: good positioning features and no elasticity or backlash

• Pro: are very silent

• Con: frequently is a big-sized motor.

The choice of the motor was already explained in chapter 2, and the final result
was the choice of a hall-sensor-ed direct-drive hub-motor. It has many advantages,
especially for the fact that the wheel’s position coincides with the motor position.
The other advantage is the possibility to ignore other non-idealities such as back-
lash or link elasticity, particularly critical for a self-balancing transporter.

Thanks to this choice of a direct-drive motor, from now on, the effect of trans-
mission non-idealities will be neglected.

[December 2, 2017 at 17:06 – classicthesis]

6.5 position and velocity reading 77

6.5.0.6 Motor model and velocity reading

Giving all the previous considerations, a convenient model for the motor position
reading was provided: it simply considerate the position output as a quantized
measure, as visible in the figure 48.

Figure 48: Model for the motor position reading: a quantized angle, in combination with
a discrete-time reading.

The quantizers in the figure emulates the effect of the motor’s hall sensors. The
quantization step, here named hall-step is the number of degrees between two con-
secutive hall commutations. The total number of commutations in a motor revolu-
tion is:

nsteps = npoles ∗nhall−sensors (95)

Thus the hall-step is:

hS = 2π
nsteps

= 2π
npoles∗nhall−sensors [°/hall− step] (96)

Where (as obvious), nhall−sensors in a motor is (almost always) 3 and npoles
is the number of magnetic poles of the motor. This is the value introduced in the
"quantization step" of the blocks of figure 48.
By considering the presence of a motion reduction, with rate of ρ, the resolution
in the reading of the wheel’s angle is:

qwheel = ρ ∗ 2π
nsteps

[°/hall− step] (97)

As explained in this chapter, the position reading is affected by an uncertainty,
directly related to the quantization process. With the simulations and the practical
experiments, this had demonstrated to be not a big problem, since (with a proper
hall step), it won’t determine any performance decrease.

Even if it doesn’t compromise stability, after some simulations and experiments
it was noted that the granularity in the position reading makes the velocity (and
the acceleration) readings very noisy. That’s why a second-order LPF (acting at
5 Hz) was introduced in the position reading path. As noticeable in figure 49, the
"granularity" was deeply reduced, at the cost of a delay in the measure (lower
graphs).

[December 2, 2017 at 17:06 – classicthesis]

78 system non-idealities

Figure 49: Position reading (higher) graph: after the introduction of a second-order, 5 Hz
LPF, the "steps" (in the blue track) have been smoothed (red track), at the cost of
a measure delay. This had a great benefit in velocity and acceleration reading.

At least, the ZOH block simulates the discrete-time reading of the angle. In fact
the angle-reading happens at the rate of the control-loop.

The motor angle position is directly provided by the driver board, which trans-
lates the hall steps into an increasing/decreasing 32-bit counter, thus there was no
need for translating the angle from a 0− 360° interval, to a continuous one. The
32-bit counter also will seamlessly never saturate since one wheel represents (for
the motor chosen) 90 counter steps. One wheel rotation corresponds to:

drot = 2πrwheel = 2π0.1 = 0.628 m (98)

Thus the counter (positive or negative) saturation will happen at:

dsat =
231

90 drot = 14984.6 km (99)

whick is far more a the battery autonomy trip, thus it is reasonable to reset the
counter at every battery charge and don’t matter about counter saturation.

The model of position-reading, comprising the select-able LPF is visible in figure
50.

Figure 50: Position reading complete chain: hall quantization in the left, in the center the
reduction and the coordinate transform. In the right, the selectable second-order
LPF.

[December 2, 2017 at 17:06 – classicthesis]

6.5 position and velocity reading 79

6.5.0.7 Velocity reading

In the system there is not a specific velocity sensor, so that the vehicle velocity
must be derived from the (time-derivative of) position. This operation is risky
in systems where a small superimposed noise might be amplified by the time-
derivative. Even in the absence of noise, the quantization steps representing the
hall process, if directly derived, will result in velocity-spikes that affects velocity
as undesired noise.

Another fact is that the pure-time-derivative of a quantity is not possible in a
real system, since it will result in a not-proper one. The challenge is then to find a
convenient solution for the (reliable) velocity reading.

The problem of reading velocity from quantized-position is very common in
motion control, thus literature provides a wide panorama of solutions such as:

• High-pass filter

• Average-derivative block

• PLL

• Kalman filter

A brief description of all the previous solutions, and their corresponding model,
will be provided. The validation of such models will be discussed in chapter 8.

6.5.0.8 High-pass filter

In place of the derivation block, it might be adopted a (proper) High-pass Filter, as
visible in figure 51.

This filter has the advantage of being exactly equivalent to a derivative block,
but with the addition of a hgh-frequency pole, that makes it a proper system.

Figure 51: Wheel velocity retrieving: a high-pass filter is equivalent to a time derivative,
plus a high-frequency pole, that makes it a proper system.

The Laplace form of the HPF is:

WHPF = s
1+s/ωHPF

(100)

The previous filter was time-discretized at the rate of the controller (Ts) and the
resulting frequency response is that on figure 52.

[December 2, 2017 at 17:06 – classicthesis]

80 system non-idealities

Figure 52: First-order, discrete high-pass filter, with a pole at 40rad/s.

This filter gave a first acceptable result for the velocity reading, but demonstrated
a consistent high-frequency residual noise, discussed in chapter 8.

6.5.0.9 Average-derivative block

This technique, is essentially an interpolation of multiple time-derivatives of the
position’s readings, performed along successive sampling steps, to remove noise
and even to limit "spikes".

Figure 53: Average-derivative for velocity calculation.

Referring to figure 53, the value of e∗ is the average of the input signal e(k) and
it is ideally placed in the middle of the time period.

The average derivative is defined as:

de(kT)
dt ≈ 1

4

[
e(k)−e∗

1.5T +
e(k−1)−e∗

0.5T −
e(k−2)−e∗

0.5T −
e(k−3)−e∗

1.5T

]
(101)

where:

e∗ = 1
4
[e(k) + e(k− 1) + e(k− 2) + e(k− 3)] (102)

[December 2, 2017 at 17:06 – classicthesis]

6.5 position and velocity reading 81

This corresponds to the following:

de(kT)
dt ≈ 1

6T
[e(k) + 3e(k− 1) + 3e(k− 2) + e(k− 3)] (103)

In case of an average of more than four values, the previous formula must be
simply adapted.

The advantage of this technique is that it is not recursive and it is very computationally-
light. The disadvantage is that the derivative value comes with a delay of n/2 steps,
where n is the number of samples and the output might result "noisy" if compared
with other techniques. A model of this filter was built with a 10-tap block, as shown
in figure 54.

Figure 54: Simulink model of a 10-tap, average derivative block, suitable for velocity esti-
mation.

6.5.0.10 PLL

PLL is another technique frequently used for the velocity derivation. Its scheme is
visible in figure 55.

Figure 55: PLL scheme, used for the derivation of velocity, from position. For simplicity
the controller is not a PI, but a simple proportional one.

In simple words the mentioned circuit is a "reference follower", that outputs the
velocity derived from the position. In this scheme, the reference follower is a simple
proportional controller. In a "true" PLL, an integral contribute to that controller is
always present, to null the "regime error". In this section, the integral contribute
was omitted in order to simplify the following considerations.

This powerful scheme gives good results in the speed reading, but it is not sim-
ple to properly "tune" the kPLL and τPLL parameters. An improper tuning might
in fact compromise the good reading of the velocity, together with a possible insta-
bility of the PLL circuit. Improper settings might result in a weak follower or -as
opposite- in an under-damped one, with noise emphasis.

[December 2, 2017 at 17:06 – classicthesis]

82 system non-idealities

A proposed method to properly tune the PLL and avoid instability is to see the
PLL as a LTI system and to derive its closed-loop transfer function:

WPLL =
kPLL

1
1+sτPLL

1+kPLL
1
s

1
1+sτPLL

= s
s2τPLL/kPLL+s/kPLL+1

(104)

Which is essentially a pure derivative, with the addition of two poles. In order
to tune properly the PLL, it is proposed to choose a τPLL and then calculate the
kPLL gain in order to make the two poles complex-conjugate and with a dumping
factor imposed by Butterworth’s criteria. In this way it is guaranteed the absence
of over-elongation in the output.

In the system model, an LTI (filter) block (named VHPF+pole) with a transfer
function of (104) and a frequency response of figure 56 was made, in order to
verify the coincidence of this block, with a PLL. The results of this comparative
will be discussed in chapter 8.

Figure 56: Bode plot of the transfer function (104). This emulates the PLL circuit with a
Butterworth-tuned complex-conjugated poles.

6.5.0.11 Kalman filter

The kalman filter and its tuning were already discussed in section6.4.4. In this
section it will be presented how the position and velocity processes were modeled,
for the application of the Kalman filter.

A complete-order description of the motion of the base might be expressed as
the following state-space system:

Xb

vb

ab


k+1

=

1 Ts T2s /2

0 1 Ts

0 0 1



Xb

vb

ab


k

+

T
3
s /6

T2s /2

Ts

wk (105)

Where wk is the noise applied to the acceleration process. This system is a third-
order one, which means that it might be hard to manage, for Kalman routines
running in a micro-controller. In order to make it simpler to manage, the system
was reduced in dimension, thanks to the assumption that the contribution of ab

[December 2, 2017 at 17:06 – classicthesis]

6.5 position and velocity reading 83

is small, especially if considering a constant acceleration during the sample-time.
Given this, the acceleration model was incorporated to the model of its noise ak ∼

N(0, σ2a) .
Thanks to this, a simplified model was built, inspired to that of [36], where the

state vector becomes:

x =

{
Xb

vb

}

and the system evolution description is:

xk+1 = xk + ẋkTs +
(Ts)

2

2 ak

ẋk+1 = ẋk + Tsak
(106)

which corresponds to:

xk+1 =

[
1 Ts

0 1

]
xk +

[
(Ts)

2

2

Ts

]
ak (107)

Obviously the output is the (noise affected) measure of the position: which corre-
sponds to:

yk =
[
1 0

]{Xb
vb

}
+ vk (108)

where vk ∼ N(0, σ2h) is the noise related to the hall-steps, which was modeled as a
normally-distributed noise with variance:

σ2hall =
q2hall
12

=
(2π
nhallsteps

)2

12

The covariance matrix is defined as:

Q =

[
(Ts)

4

4
(Ts)

3

2
(Ts)

3

2 T2s

]
σa

This filter was only modeled and tuned in simulation, but not implemented in
the real device, since its computational weight, compared with the reduced benefit
against "lighter" filters made it not convenient.

6.5.0.12 veleocity reading comparisons

All the previous velocity-reading techniques were modeled with the correspond-
ing simulink blocks and the model’s outputs were select-able, in order to make
different simulations and choose the best solution.

Souch a model is visible in figure 57.

[December 2, 2017 at 17:06 – classicthesis]

84 system non-idealities

Figure 57: Different velocity-calculation blocks: the model’s outputs were select-able, in
order to make different simulations and choose the best solution.

The validation and the final choice of the velocity calculation method is dis-
cussed in 8.

6.6 conclusions

In this chapter were illustrated the most important non-idealities that makes the
difference between the theoretical model and the real one, how they were identified
and put in the simulation model.

The good thing is that those non-idealities blocks are "additive" and affected only
one of the blocks in the "block hierarchy", in fact the original block, representing
the dynamic model was preserved (in a self-consistent Simulink block) and also the
"high-level" block, representing the references and the controllers was not modified
by these blocks.

Finally, in this chapter there were illustrated only the mathematical considera-
tions and the related models because the validation of such models will be de-
scribed in the following chapter.

[December 2, 2017 at 17:06 – classicthesis]

7
A L G O R I T H M S I M P L E M E N TAT I O N

7.1 introduction

Until now it was presented the system’s components, the mathematical model
and the system non-idealities models. In this chapter it will be presented how the
models were traduced into code and how it "fits" into the system architecture and
the practical issues that have been solved.

In particular, since the algorithm runs into an embedded microcontroller, a deep
focus on the mechanisms lying into it and the motivation that drove some imple-
mentation choices.

7.2 overall architecture and behavior

As introduced in chapter 2, the hardware architecture of the device consists of two
identical motor-driver boards, where the one attached to the IMU acts as MASTER
and the other as SLAVE, the -just mentioned- IMU board and a bluetooth mod-
ule board. Differently from figure 11, which is a mere "schematic" representation,
figure 58 will be used to represent the data flows, during the algorithm running.

Figure 58: Logic architecture of the system

The two Motor boards are the components addicted to the generation of high-
power signals that moves the motors, even making use of the motor’s sensors.
Even though, this is not the only work performed by those boards, since they
are equipped with a powerful micro-controller with a real-time operating system
(RTOS) that permits to perform several tasks in addition to the motor control. The
original firmware that performs all this motor control and other tasks is well doc-
umented in [35].

The powerful platform and the operating system are a good starting point: this
combination is the reason behind the idea of adding a further TASK into the RTOS

85

[December 2, 2017 at 17:06 – classicthesis]

86 algorithms implementation

which performs the control of both equilibrium and steering, without the need of
an external board for this task.

The implementation and integration of the algorithm inside the micro-controller
was successful, thanks also to the reliability of the high-speed CAN-bus communi-
cation channel that transfers data at a rate of ≈ 500 kbaud/s. Another advantage
is the fact that part of the data for the algorithm is resident in the MASTER board
and don’t need to be remotely read.

The biggest problem in this implementation, is that the boards are identical, but
must behave differently. Also there was the need to add some communication com-
mands for data-exchange between the two boards (other commands in addition to
those in the original firmware), and those commands must be symmetric between
to the two boards.

The need was then to have:

• two hardware-identical boards

• a different behavior between the two boards

• a set of communication commands, shared between the boards

The solution adopted was to have a unique firmware in both the boards: in this
way the communication protocol is automatically shared. The problem of the dif-
ferent behavior was solved by a non-volatile software parameter : the CAN address.
In this way the MASTER board is that with CAN address=0 and the slave has CAN
address=1. This convention served also as definition of LEFT=CAN address=1 and
RIGHT=CAN address=0. At start-up, the micro-controller checks its address and
consequently knows if it has to behave as MASTER or SLAVE inside the system.

Thanks to this solution also the firmware maintenance was very easy, with a
unique firmware version and without the need to worry about cross-versions com-
patibility.

The IMU board is an i2c-SLAVE device, whose MASTER is the MASTER mo-
tor control board. The communication between the two is the fastest possible in
the i2c standard 400kHz bit-clock. The micro-controller reads the IMU standard
registers and doesn’t use the special function (such as sensor-fusion or quaternion
buil-up) provided by the manufacturer. In this way a possible replacement of the
IMU model is possible, without the loss of specific algorithms.

The bluetooth board needed a minimum configuration since it is factory-set with
a fixed UART-baudrate of 9600bps. Following the procedure described in [28], the
baud-rate was changed with the fastest universally-supported bitrate (115200bps),
that made it possible to exchange data with PC with low latencies and high data-
throughput (particulary useful for data exchange between the self-balancing vehi-
cle and the PC, during work). Note that the bluetooth module is simply an "in-
terface bridge" between the serial ports of the PC and that of the micro-controller:
there is infact no protocol overhead for the communication: both the PC and mi-
crocontrollers works like they were wire-connected by serial port.

[December 2, 2017 at 17:06 – classicthesis]

7.3 the matlab environment 87

7.3 the matlab environment

All the models described into chapters 3, 4 and 6 have already been implemented
by block-modeling with Simulink software. What has not already been described
is where the block-models picks the parameters.

In this section the description of mathematical implementations needed for the
parameters calculus and how they are used before, during and after the simulation.
In the MATLAB routines in fact it has been implemented the possibility of:

• calculation of simulation parameters and filters

• running the simulation with Simulink

• launching the experiment into the real-device (the same as the simulation)

• collecting the data from the real-device

• post-processing data and perform a comparison between simulation results
and real-device behavior

Here is the code that performs the previous:

% Two-wheels, inverse pendulum transporter model and controller

clc;

close all;

clear all;

% simulation parameters

s=tf(’ s ’);
f_PWM = 168e6/35000; % [Hz] PWM frequency (see ST code)

Ts = 0.008; % [s] sampling time (loop executes at this

frequency)

final_time=30; % [s] end time

% n_samples = t_simul/Ts;

run(’vehicle_params .m’);
run(’overall_model .m’);
run(’equilibrium_model_and_controller .m’);
run(’ steering_model_and_controller .m’);
run(’ digi ta l_f i l ters ’);
run(’header_file_control_params .m’); % write params into C header file

run(’bluetooth_param_writer ’); % write params via bluetooth radio

run(’personal_transporter_model0_discrete_PID . slx ’);
disp(’ATTENTION: i t is compulsory to run the simulation , in order to compare

true and simulated data ! ’)
disp(’After simulation complete , come back here and press ENTER’)
pause

run(’ state_readings_experim .m’); % start simulation and collect data �
In the following subsections a brief description of the presented subroutines.

[December 2, 2017 at 17:06 – classicthesis]

88 algorithms implementation

7.3.1 Vehicle parameters

This script sets all the parameters for the simulation. Very important are the motor
and rider’s parameters: they deeply influences the control behavior.

% % BLDC motor parameters (gearmotor)

PN = 500; % [W] Nominal power of each motor

iNom = 20; % [A] Approx nominal current See

datasheet

n_poles = 30; % [/] number of magnetical poles on the motor

n_winds = 27; % [/] number of windings on the motor

r_gearbox = 1; % [/] Gearbox ratio

rho = 1/r_gearbox;

UN = 36; % [V] Nominal motor voltage

ke = 0.694; % [V*s/rad] this is the motor voltage constant

Rs = 0.128; % [Ohm] I don’t know.... it has to be measured

(i.e. with the 4 wires method)

Ls = 166.8e-6; % [H] motor ph-ph inductance

kt = ke; % [Nm/A] torque constant: number of Nm for

every ampere of motor

n_hall = 3; % number of hall sensors

iMAX = 2*iNom; %it is assumed that the pulse current is approx. double the

nominal current

% accelerometer params

n_bit_accelero=16; % number of bits of accelerometer

m_P=30; %[kg] mass of the person

L=0.51; %[m] half the height of the person

m_b=5; %[kg]mass of the base

b_h=0.05; %[m]base heigth

b_l=0.2; %[m]base length

J_b=1/12*m_b*(b_h^2+b_l^2); %[kg*m^2]momentum of inertia of the base

r=0.1; %[m] radius of the wheel

Jd=1/2*m_P*0.2^2; %[kg*m^2]momentum of inertia of the person,

rotating around its vertical axis

D=0.5;%0.4; %[m] distance between wheels

m_w=2.5; %[kg] mass of a wheel

J_w=1/2*m_P*r^2; %[kg*m^2]momentum of inertia of the wheel

J_m=1/2*0.5*0.03^2; %[kg*m^2]momentum of inertia of the motor

psi=5.7e-4;%1 %[Nm/(rad/s)] viscous friction coefficient

of the motor(derived with experimet)

g=9.81; %[m/s^2] gravity

JO=1/3*m_P*(2*L)^2; %[kg*m^2]momentum of inertia of the person,

rotating around wheel’s axis

c_s=350; %[Nm/(rad/s)] viscous friction coefficient

of physiological ankle model

k_s=1440; %[Nm/rad] spring coefficient of

physiological ankle model

tacho_to_angle = (2*pi)/(n_poles*n_hall); �
7.3.2 overall model

This file describes all the model-buildup as described in chapter 3, the coordinate-
change matrix and the decoupling matrix:

[December 2, 2017 at 17:06 - classicthesis]

7.3 the matlab environment 89

% Overall model: the "M","C","K" matrixes and the coordinate-change and

% decoupling matrix

m11 = m_P*r^2/4+r^2*Jd/(D^2)+m_w*r^2+J_w+J_m/rho^2;

m12 = m_P*r^2/4-r^2*Jd/(D^2)+m_w*r^2+J_w;

m13 = m_P*L*r/2-J_m/rho^2;

m33 = m_P*L^2+2*J_m/rho^2+JO;

c11 = psi/rho^2;

k33 = -m_P*g*L;

%syms m11 m12 m13 m33 c11 k33

M = [m11 m12 m13;...

m12 m11 m13;...

m13 m13 m33];

C = [c11 0 -c11;...

0 c11 -c11;...

-c11 -c11 2*c11];

K = [0 0 0;...

0 0 0;...

0 0 k33];

A = [zeros(3) eye(3);...

-inv(M)*K -inv(M)*C];

U =[1/rho*eye(2);-1/rho -1/rho];

B = [zeros(3);inv(M)]*U;

% B_d = B*D;

% coordinates change, in order to decouple the system.

% xb = r*(alpha + beta)/2

% delta = r*(alpha-beta)/D

% xb r/2 r/2 0 alpha

% delta = r/D -r/D 0 beta

% theta_P 0 0 1 theta_P

%syms r D

%matrix of base-change: S

S = [r/2 r/2 0;...

r/D -r/D 0;...

0 0 1];

% other coordinates change, to find the motor angle

% alpha = theta_P+rho*alpha_mot

% beta = theta_P+rho*beta_mot

% theta_P = theta_P

Smot=[rho 0 1;...

0 rho 1;...

0 0 1];

% now rewrite the whole system in the coordinates [xb delta theta_P]’

M_s = M*inv(S);

C_s = C*inv(S);

K_s = K*inv(S);

A_s = [zeros(3) eye(3);...

-inv(M_s)*K_s -inv(M_s)*C_s];

B_s = [zeros(3);inv(M_s)]*U;

%decoupling matrix, built assuming:

[December 2, 2017 at 17:06 - classicthesis]

90 algorithms implementation

% tau_theta = 1 1 tau_L

% tau_delta 1 -1 tau_R

Dec = inv([1 1;1 -1]);

%decoupled B_s matrix

B_sd = B_s*Dec;

%re-arrange the whole system in a more-convenient view

% the system’s state vector were: [xb delta theta_P dot_xb dot_delta

dot_theta_P]’

% now they becomes:[xb theta_P dot_xb dot_theta_P delta dot_delta]’

N=[1 0 0 0 0 0;...

0 0 1 0 0 0;...

0 0 0 1 0 0;...

0 0 0 0 0 1;...

0 1 0 0 0 0;...

0 0 0 0 1 0];

A_sN=N*A_s*inv(N);

B_sdN=N*B_sd; �
7.3.3 Equilibrium model and controller

The script about the equilibrium control, derives the equilibrium subsystem de-
rived from the "overall model" and calculates the control parameters, used in the
Simulink model.

In this script it is also defined the set of points used in the reference generator:

%% Balancing subsystem ("equilibrium")

A_e=A_sN(1:4,1:4);

B_e=B_sdN(1:4,1:1);

% % test of controllability with the only "theta_P" variables

C_e=[0 1 0 0 ;...

0 0 1 0];

D_e=[0 ;...

0];

states = { ’Xb’ ’ theta_p ’ ’vb ’ ’ theta_dot_p ’};
inputs = { ’ tau_theta ’ };

outputs = { ’ theta_p ’ ’vb ’};
sys_ssb = ss(A_e,B_e,C_e,D_e, ’statename ’,states, ’inputname ’,inputs, ’outputname

’,outputs);

% Check poles of the state-space (evaluate stability of the system)

poles_equilibrium = eig(A_e);

[V,P]= eig(A_e);

CTB=ctrb(sys_ssb);

if(rank(CTB) == length(A_e))

fprintf(’Ok MAC. . . . The system is controllable .\n’)
else

fprintf(’Gosh MAC! . . . The system is NOT controllable !\n’)
end

% observability of the system

[December 2, 2017 at 17:06 - classicthesis]

7.3 the matlab environment 91

obsv_rank = rank(obsv(A_e,C_e));

%% LQR parameters for the continuos time model

Q=diag([5;15;2;0.1]); %used for simulations

R=0.1;

%R=0.001;

K = lqr(A_e,B_e,Q,R);

% Controllable parameters

Ac = (A_e-B_e*K);

Bc = B_e;

Cc = C_e;

Dc = D_e;

sys_cl = ss(Ac,Bc,Cc,Dc, ’statename ’,states, ’inputname ’,inputs, ’outputname’,
outputs);

%% Model discretization (for the equilibrium subsystem)

sysPd = c2d(sys_ssb, Ts); % discrete-time model (LTI obj)

[Ad,Bd,Cd,Dd] = ssdata(sysPd); % discrete-time model (state-space matrices)

% DLQR parameters for the model: discrete-time variant of LQR

Kd = dlqr(Ad,Bd,Q,R)

% Controllable parameters

Acd = (Ad-Bd*K);

Bcd = Bd;

Ccd = Cd;

Dcd = Dd;

poles_rd = eig(Acd);

% reference vector, for the linear velocity

references_dot_Xb=[0, 0;...

1, 0.5;...

2, 0.5;...

4, -0.5;...

6, 0;...

final_time, 0]; �
7.3.4 Steering model and controller

Similar script, as that for the equilibrium: here the routines calculates parameters
for the two proposed controllers: LQR and PI:

%% steering subsystem

states_steering = { ’ delta ’ ’dot_delta ’};
A_t=A_sN(5:6,5:6);

B_t=B_sdN(5:6,2:2);

C_t=[0 1];

D_t=0;

sys_steer = ss(A_t,B_t,C_t,D_t, ’statename ’,states_steering, ’inputname ’, ’
tau_delta ’, ’outputname’, ’dot_delta ’);

sys_steer_d = c2d(sys_steer,Ts);

[A_td,B_td,C_td,D_td] = ssdata(sys_steer_d);

[December 2, 2017 at 17:06 - classicthesis]

92 algorithms implementation

poles_steering=eig(A_t);

[tf_t_num tf_t_den] =ss2tf(A_t,B_t,C_t,D_t);

% design LQR for steering subsystem

% delta;dot_delta

Q_steer=diag([1;0.01]);

R_steer=0.1;

K_steer_c = lqr(A_t,B_t,Q_steer,R_steer)

K_steer = dlqr(A_td,B_td,Q_steer,R_steer)

% lqr-controlled system

A_tc = (A_t-B_t*K_steer_c);

B_tc = B_t;

C_tc = C_t;

D_tc = D_t;

sys_steer_c = ss(A_tc,B_tc,C_tc,D_tc);

% Now evaluate the stability of the controlled system

poles_steer_controlled = eig(A_tc);

figure()

subplot(2,1,1);

pzplot(sys_steer);

title(’Poles and zeros of steering angle transfer function ’)
subplot(2,1,2);

pzplot(sys_steer_c);

title(’Poles and zeros of the LQR controlled system ’)

%% design of PI controller for the steering subsystem

% zeros_steering = roots(tf_d_num(1,:));

tf_t=tf(tf_t_num,tf_t_den);

% reduce the degree of the polynomials

if((tf_t_num(end)==0)&& (tf_t_den(end)==0))

tf_t= tf(tf_t_num(1:length(tf_t_num)-1),tf_t_den(1:length(tf_t_den)-1));

end

KP_t=2% nearly unity gain, since the process is almost sufficiently fast

KI_t=omega_open_loop/10*KP_t

% then the controller becomes:

Wpi_t=KI_t/s+KP_t;

% tf_pi_t=tf(Wpi_t)

% discretization:

Wpi_td = c2d(Wpi_t, Ts);

[numPI, denPI] = tfdata(Wpi_td, ’v ’);

%closed-loop controller and system: verification

Wloop_t=(tf_t*Wpi_t);

Wcl_t=(tf_t*Wpi_t)/(1+(tf_t*Wpi_t));

figure()

subplot(3,1,1);

bode(tf_t);

title(’Frequency plot of transfer function of steering subsystem ’)
subplot(3,1,2);

margin(Wloop_t);

title(’Frequency plot of loop−gain in the PI−controlled steering subsysyem’)

[December 2, 2017 at 17:06 - classicthesis]

7.3 the matlab environment 93

subplot(3,1,3);

margin(Wcl_t);

title(’PI−controlled steering subsysyem frequency response ’)

%% yaw-rate references

references_dot_delta=[0 ,0;...

10, 0;...

12, 3;...

14, -3;...

16, 0;...

final_time, 0]; �
7.3.5 Digital filters

This script collects all the parameters concerning the digital filters. The generic
name digital filters incorporates all the parameters for various function, as clearly
noticeable directly in the code. Those parameters are useful for both the simulation
environment and the real device (infact they are sent via bluetooth, as described
in the following sections):

%% DISCRETE_TIME FILTERS

%% Define the DT high-pass filters (for velocity estimation)

% continuous-time filter definition

% omega_HPF = 20; % [rad/s] the pole is placed at that frequency

% omega_HFpole = 1000; % [rad/s] another high-frequency pole

% numFc = s;

% denFc = (1+s/omega_HPF)*(1+s/(omega_HFpole));

% sysFc = numFc/denFc;%tf(numFc, denFc); % s/(s/omega_HPF+1)

f_HPF = 2.5;

omega_HPF = 2*pi*f_HPF; % [rad/s] the pole is placed at that frequency

psi_HPF=0.707;

numFc = s;

denFc = (s^2/omega_HPF^2+2*psi_HPF*s/omega_HPF+1);

sysFc = numFc/denFc;%tf(numFc, denFc); % s/(s/omega_HPF+1)

% filter discretization

sysHPF = c2d(sysFc, Ts);

[numF, denF] = tfdata(sysHPF, ’v ’);

%% discrete-time integrator

sysInt=tf([0 1],[1 0]); % = 1/s

sysIntD = c2d(sysInt, Ts);

[numInt, denInt] = tfdata(sysIntD, ’v ’);

%% second-order low-pass filter for accelerometer

f_LPF=10; %[Hz]

omega_LPF=2*pi*f_LPF;

psi_LPF=0.707;

LPF_c=tf(1/(s^2/omega_LPF^2+2*psi_LPF*s/omega_LPF+1));

LPF_d = c2d(LPF_c, Ts);

[numLPF, denLPF] = tfdata(LPF_d, ’v ’);

%% PLL (alternative way for derivation): try to design it considering "omega

% and psi"

[December 2, 2017 at 17:06 - classicthesis]

94 algorithms implementation

% f_PLL = 5;

% omega_PLL = 2*pi*f_PLL;

% k_PLL=10; %OPTIMUM VALUES

% psi_PLL=0.707;

% tau_PLL=omega_PLL

f_PLL = 3;

omega_PLL = 2*pi*f_PLL;

k_PLL=15;

psi_PLL=0.707;

tau_PLL=omega_PLL;

%% accelero and gyro internal bandwidths (internal first-order LPF)

f_IMU_BW = 5; %Hz

omega_IMU_BW =2*pi*f_IMU_BW;

lpfIMUinternal = c2d(tf(1/(s/omega_IMU_BW + 1)), Ts);

[numIMUint, denIMUint] = tfdata(lpfIMUinternal, ’v ’);

% IMU offsets

imu_accx_offset = 0.492-0.1-0.0517+0.024303;

imu_accz_offset = -0.2357-0.06;

imu_gyro_offset = -0.01489-0.0011;

%% Complementary filter

alpha_c = 0.999;

beta_c = 1-alpha_c;

%% Kalman Filter (for IMU)

Q_kalman_IMU=[0.000001, 0;0, 0.0001];

R_kalman_IMU=0.002;

%% current loop PI filter

Kp_i_loop=0.158;

Ki_i_loop=124;

mot_model=(1/(Rs+s*Ls));

curr_PI=(Kp_i_loop+Ki_i_loop/s);

iloop_PI =tf(curr_PI*mot_model/(1+curr_PI*mot_model));

iloop_PI_d=c2d(iloop_PI,Ts);

[numIloop, denIloop] = tfdata(iloop_PI_d, ’v ’); �
7.3.6 Simulink simulation

The simulink simulation is used to collect the simulation data, exported to the
MATLAB environment with the name of statevars as visible with the simulink
blocks of figure 59.

[December 2, 2017 at 17:06 – classicthesis]

7.3 the matlab environment 95

Figure 59: Simulink: blocks for exporting state variables to the MATLAB environment.

7.3.7 bluetooth param writer

After having set all the control parameters and the filters with the MATLAB soft-
ware, in order to report al these settings to the board, a specific routine provides
the over-the-air parameter send to the real-device control board via bluetooth. In
addition to the parameters, also the simulation set-points are sent, so that the real-
device experiment can execute the same work as the simulation.

This operation is based on a custom data-exchange serial protocol, implemented
in MATLAB (for the PC-side) and in C for the embedded controller board. The
protocol is the native implemented into the Custom VESC project, as described in
[35], and the data flow is that shown in figure 60.

Figure 60: After having run the model parameters calculation, these data are sent from the
PC, to the embedded board

[December 2, 2017 at 17:06 – classicthesis]

96 algorithms implementation

7.3.8 Data collection and post-processing

The data collection and post-processing consists on sending via bluetooth the "start
simulation" command and then collect via bluetooth all the data autonomously
sent by the self-balancing vehicle.

After having sent the "start simulation" command, the PC "toggles its role", by
"listening" the data coming from the device. In this situation, the data-flow is the
opposite as that in figure 60.

close all;

n_samples = final_time/Ts;

ser = serial(’/dev/tty .SELF_BALANCE_115200−SPP’, ’BaudRate ’,115200);
fopen(ser);

ser.Terminator=3;

startSimulation(ser);

var_names=["Xb";"thetaP";"dotXb";"dotThetaP";"delta";"dotDelta";"torqueEq";"

torqueSteer";"tachoL";"tachoR";"ref Xb";"ref dotXb";"ref dotDelta"];

num_vars=length(var_names);

timevector=zeros(1,n_samples);

statevars=zeros(num_vars,n_samples);

%[...]

%% Reading from serial

% header = 0x02

% tail = 0x03

% format:

% header len payload CRC16 tail

% (1B) (1B) (n*B) (2B) (1B)

ind=1;

buf_ind=1;

buffer= ’ ’;
while ind<=n_samples

% [...collect samples]

fclose(ser);

run(’ state_reading_postproc .m’);

function out = startSimulation(ser)

COMM_START_SIM_SEQUENCE = 44;

msg = MessageComposer;

msg = msg.setCommand(COMM_START_SIM_SEQUENCE,true);

msg = msg.addCrcHeadersAndSend(ser);

end �
As visible near the end of the routine, a further step of "post-processing", pro-

vides the comparation between the collected samples and the simulation results:
useful for model validation:

%% Collection finished: here is data-processing

timevector = timevector-timevector(1);

timevector = timevector*Ts;

[December 2, 2017 at 17:06 - classicthesis]

7.3 the matlab environment 97

figure();

subplot(2,1,1);

plotSimAndExperimVar("Xb",timevector,var_names,statevars_sim.Data,statevars,"m

");

subplot(2,1,2);

plotSimAndExperimVar("dotXb",timevector,var_names,statevars_sim.Data,statevars

,"m/s");

figure();

subplot(2,1,1);

plotSimAndExperimVar("thetaP",timevector,var_names,statevars_sim.Data,

statevars,"rad");

subplot(2,1,2);

plotSimAndExperimVar("dotThetaP",timevector,var_names,statevars_sim.Data,

statevars,"rad/s");

figure();

subplot(2,1,1);

plotSimAndExperimVar("delta",timevector,var_names,statevars_sim.Data,statevars

,"rad");

subplot(2,1,2);

plotSimAndExperimVar("dotDelta",timevector,var_names,statevars_sim.Data,

statevars,"rad/s");

function graph = plotSimAndExperimVar(varname,timevector,var_names,sim_vars,

exper_vars,y_unit_str)

temp_string = ’ Plot of simulated and experimental value of : ’ + varname;

ind =find(var_names==varname);

temp_string = "ref "+varname;

ind_ref=find(var_names==temp_string);

if(ind_ref)

reference=sim_vars(1:length(timevector),ind_ref);

%reference=exper_vars(ind_ref,:)

graph=plot(timevector,reference,timevector,sim_vars(1:length(

timevector),ind),timevector,exper_vars(ind,:));

title(temp_string);

legendvars=["reference";"simulated";"Experimental"]

legend(legendvars);

else

graph=plot(timevector,sim_vars(1:length(timevector),ind),timevector,

exper_vars(ind,:));

title(temp_string);

legendvars=["simulated";"Experimental"]

legend(legendvars);

end

xlabel(’time [s] ’)
temp_string = ’value of : ’ + varname + ’ [’ +y_unit_str+ ’] ’;
ylabel(temp_string)

end �

[December 2, 2017 at 17:06 – classicthesis]

98 algorithms implementation

7.4 the embedded environment

This section describes the environment in which the control algorithm works. The
focus is the firmware architecture and how the control algorithm uses it.

The microcontroller is the STM32F405RGT6, which is a Cortex-M4 microcon-
troller working at 168MHz, with hardware floating-point unit: this feature was
very helpful for the algorithms performances.
The compilation toolchain chosen for the project was gcc-arm-none-eabi 4.8 2014q2
and the operating system is a custom porting of ChibiOs ver. 3.2 provided by [35].

The whole setup of the toolchain and the debugging tools (STM32F3discovery
evaluation board with embedded ST-link) is also well-described in [35].
Here it will be shortly described the operating-system components involved for
the (equilibrium and steering) control.

As visible in figure [], the control software makes use of the following peripher-
als, with the corresponding drivers named Hardware Abstraction Layers (HAL):

• Timer/counter 5, with PWM HAL: used for the time base that triggers the
control algorithm

• I2c2, with i2c HAL: used for the communication between microcontroller and
IMU

• UART, with serial HAL: used for the communication with PC: the communi-
cation channel is bluetooth, but it is "transparent" for the serial communica-
tion to the PC

• CAN bus with CAN HAL: used for inter-board communication. In the fol-
lowing sections, a detailed description of the data exchanged for the two
boards.

• Threads and signals: those are not peripherals, but it is important to note that
the control algorithm works inside one of the running threads: this is a key
feature offered by the operating system, that deeply simplifies the firmware
development. Also the signals were very helpful for synchronization with
external events. These operating system features were very helpful and sim-
plified a lot both the firmware structure and the "code readability".

• time measurement: also this is not a peripheral, but a primitive offered by
the operating system. The time measurement was used for the calculus of
algorithm performance.

The embedded environment is a short description of the hardware and firmware
environment where the algorithm works. In the following section a deeper descrip-
tion of the control algorithm.

7.5 the control firmware

In this section a detailed description of the control algorithm: how it works and
how the external components are involved. Also some short code-blocks describing
the algorithm.

Even in this section, a short discussion of the board’s data flow, during other
system tasks.

[December 2, 2017 at 17:06 – classicthesis]

7.5 the control firmware 99

7.5.1 The control algorithm

The control algorithm consists of a single routine, executing at fixed time interval.
This routine executes in loop, inside an operating system’s thread:

// create the thread of control loop. Attention: this function holds the event

catchers, thus it

// is necessary to start it before the event signals

chThdCreateStatic(ctl_loop_thread_wa, sizeof(ctl_loop_thread_wa), HIGHPRIO ,

ControlLoopMain, NULL); �
Even if it has strong time constraints, it doesn’t execute inside an interrupt service
routine (ISR) because it has to perform wait-cycles of external data and this is
incompatible with ISR. Also the motivation is that the micro-controller used to
run this algorithm must perform many other activities such as motor control, that
has even stronger time constraints, because it also has "safety issues", imposed by
over-current control.

In this view, the following strategy was adopted:

1. The pwm timer issues an interrupt at regular and very precise time intervals

void init_PWM_loop_trigger(uint8_t loop_period_ms){

pwmStop(&PWMD5);

// initialize PWM: the timer that triggers the loop function.

pwmStart(&PWMD5, &pwmcfg);

pwmChangePeriod(&PWMD5,(LOOP_TIMER_FREQ*loop_period_ms)/1000);

pwmEnablePeriodicNotification(&PWMD5);

// Starts the PWM channel 0 using 11% duty cycle.

pwmEnableChannel(&PWMD5, 0, PWM_PERCENTAGE_TO_WIDTH(&PWMD5, 1100)

);

pwmEnableChannelNotification(&PWMD5, 0);

} �
2. The ISR issues a "soft" signal (event)

// PWM peripheral: at timer reload provides the "tick" for the control

loop

static void pwmpcb(PWMDriver *pwmp) {

// PWM reset (period) routine

(void)pwmp;

chEvtSignal(ctl_loop_thread,CH_EVT_TMR_LOOP_TRIGGER);

} �
3. The control loop was "freezed", waiting this event. Once it is read, the con-

trol routine executes until its end (that comes when the torque commands
are posted to the actuators) and loops again, freezing while waiting another
trigger event.

static THD_FUNCTION(ControlLoopMain, arg){

//control loop initialization

for(;;){

chEvtWaitAny((eventmask_t) CH_EVT_TMR_LOOP_TRIGGER);//

wait the event of the timer routine

//...

}

} �

[December 2, 2017 at 17:06 – classicthesis]

100 algorithms implementation

The drawback of the solution is that there is not the guarantee of precise time ex-
ecution of the routine, since it runs in a "normal thread" and it is interruptible any
time any ISR. This is not a big defect since the routine execution time is affected
even by external data provision, that might introduce an important variable-latency
behavior. Also the other positive-side of this approach is that the "trigger" remains
precise, because it is generated by a hardware-timer and so the loop doesn’t accu-
mulate any time-execution delay.

In brief, the key steps of the control algorithm are:

1. data collection

2. data filtering/processing

3. state reconstruction

4. control signals generation

5. errors management

In the following subsections, the description ot these steps.

7.5.1.1 data collection

The MASTER board reads:

• its motor’s (RIGHT) own position

// the local motor position

// NOTE: the motors are mounted in opposite direction, so it is necessary

to flip MOT_R sign!

state_vars.tacho_R = -(mc_interface_get_tachometer_value(false)); �

Figure 61: Master board reading its internal motor position (in RED the data flow).

Note: this value is an integer, 32-bit value that increments or decrements at
every hall-sensor commutation. This is the simplest data-collection task since
the data is resident in the board: no error is possible here .

• the IMU accelerometer and gyroscope registers

// read the IMU (has embedded timeout)

imu_ok=getMotion6(&ax, &ay, &az, &gx, &gy, &gz); �

[December 2, 2017 at 17:06 – classicthesis]

7.5 the control firmware 101

Figure 62: Master board reading the IMU registers (in RED the data flow).

In the routine it is noticeable a return-code for the operation: this sets to
"false" in case of timeout (1ms) or reading error (i2c error). The error man-
agement will be discussed afterwards.
The values coming from the IMU are all 16-bit integers and the value repre-
sented depends on the full-scale set. Here the initialization values :

accel_full_scale = MPU9250_ACCEL_FS_2; // [g]

gyro_full_scale = MPU9250_GYRO_FS_250; // [deg/s]

imu_LPF_settings = MPU9250_DLPF_BW_256; // [Hz] �
• the remote (LEFT) motor position The remote motor is read via the CAN

bus:

//read the remote motor position

comm_can_get_tacho(MOT_L);

// wait the slave motor position to arrive (with a timeout, signaled as 0

value return)

evt_received = chEvtWaitAllTimeout(CH_EVT_MOT_L_TACHO_RECV,LOOP_TIMEOUT); �

Figure 63: Master board reading the remote motor position (in RED the data flow).

Even here the data read is an integer, 32-bit value that increments or decre-
ments at every hall-sensor commutation, and it is present an error detection
(discussed afterwards).

After having collected all the data, it is time for the processing.

[December 2, 2017 at 17:06 – classicthesis]

102 algorithms implementation

7.5.2 data filtering/processing

The main tasks in the data processing are those described in the chapter 6, relative
to the:

1. angle reconstruction. This task is accomplished by the following routine,
whose inputs are the IMU registers previously read:

// input: ax, ay, az, gx, gy, gz

// output: thetaP, dot_thetaP

void IMUSensorFusion(int16_t ax, int16_t ay, int16_t az, int16_t gx,

int16_t gy, int16_t gz, float *thetaP, float *dot_thetaP){

static float pitchAngleComplementary = 0;

// avoid warnings

ay++;

gx++;

gz++;

float accX,accZ,gyroY;

float pitchAngAccLin;

// Accelerations: the output is a raw number, compared with full-

scale, and the unit is "g".

// Convert the measure in m/s^2

accX = (float)ax * accelero_coeff;

accZ = (float)az * accelero_coeff;

// angular velocities: in rad/s

gyroY = (float)gy * gyro_coeff;

// subtract the (already measured) offsets

accX = accX -self_balancing_params.imu_accx_offset;

accZ = accZ -self_balancing_params.imu_accz_offset;

gyroY= gyroY+self_balancing_params.imu_gyro_offset;

// variation: from ax, subtract the horizontal acceleration

accX = accX-state_vars.ddot_Xb*cos(state_vars.theta_P);

accZ = accZ+state_vars.ddot_Xb*sin(state_vars.theta_P);

//float accel_norm = sqrt((Axyz[0]*Axyz[0])+(Axyz[1]*Axyz[1])+(

Axyz[2]*Axyz[2]));

float accel_norm = sqrt((accX*accX)+(accZ*accZ));// probably more

correct

float sin_pitch = -accX/accel_norm;

float cos_pitch = sqrt(1.0-(sin_pitch*sin_pitch));

float pitchAngAcc = atan2f(sin_pitch,cos_pitch);

// avoid "divide-by-zero"

if(accZ!=0.0)

pitchAngAccLin = (accX/accZ);

else

pitchAngAccLin = (accX/0.0001);

// low-pass filter the angle obtained by the noisy accelerometer

float pitchAccFiltered = filter_second_order_process_sample(&

self_balancing_params.accelero_LPF,pitchAngAccLin);

[December 2, 2017 at 17:06 - classicthesis]

7.5 the control firmware 103

// sensor fusion: in order to reduce the noise in the angle,

introduced by accelerometers, use

// the angle speed integral:

*dot_thetaP = -gyroY;

// the set_Xb_filt filter is a generic integrator, so we use its

coefficients

pitchAngleComplementary = -self_balancing_params.set_Xb_filt.D1*
pitchAngleComplementary + self_balancing_params.set_Xb_filt.

N1*(*dot_thetaP);

//pitchAngleComplementary = self_balancing_params.

compl_filt_alpha*pitchAngleComplementary +

// //

self_balancing_params.compl_filt_beta*pitchAccFiltered;

// pitchAngleComplementary = self_balancing_params.

compl_filt_alpha*pitchAngleComplementary +

//

self_balancing_params.compl_filt_beta*pitchAngAccLin;

pitchAngleComplementary = self_balancing_params.

compl_filt_alpha*pitchAngleComplementary +

self_balancing_params.compl_filt_beta*pitchAngAcc;

//kalman_Process_sample(k_sys,pitchAccFiltered,*dot_thetaP);

//kalman_Process_sample(k_sys,pitchAngAccLin,*dot_thetaP);

kalman_Process_sample(k_sys,pitchAngAcc,*dot_thetaP);

float pitchAngleKalman = k_sys->angle;

if(state_vars.send_angle_via_bluetooth){

SendAngleFusionOverBluetooth(state_vars.loop_counter,

&accX,

&accZ,

&pitchAngAccLin,

&pitchAccFiltered,

dot_thetaP,

&pitchAngleComplementary,

&pitchAngleKalman,

&k_sys->err);

}

//*thetaP = pitchAngleComplementary;

*thetaP = pitchAngleKalman;

} �
As noticeable looking at the code, this routine has several variation possible,
depending on what code rows are active and what are commented out. In fact
the angle from the accelerometer can be calculated with linear approximation,
or with "true" trigonometric value. Aldo the output of the accelerometer can
be further filtered by a second-order filter (or not). Finally the pitch angle can
be "fused" by complementary or by Kalman filter.

One important thing to note is the subtraction of the linear acceleration: since
the control-loop has a fast dynamic, compared to that of the real device, it is
assumed that the linear acceleration and the pitch angle are almost constant,
during the control-step time. Thanks to this, it is possible to subtract the

[December 2, 2017 at 17:06 – classicthesis]

104 algorithms implementation

linear acceleration from the accelerometer reading, based on the previous-
cycle calculated pitch angle.

2. velocity reconstruction

The task of velocity reconstruction (for both the linear velocity, and the yaw-
rate) consists of filtering the position data with the second-order filter de-
scribed in 6.5.0.8. The discrete-time (second-order) filter, expressed in the
z-domain has the following input-output form:

H(z−1) = N0+N1∗z−1+N2∗z−2
1+D1∗z−1+D2∗z−2

(109)

Then, the implementation of the previous discrete-time filter have been de-
veloped with the following C-code :

/**

* Process one sample of a second-order filter

* @param filter

* The filter object that stores the memory of previous samples and

coeffs

* @param new_sample

* The sample to process

* @return

* The current output, as a consequence of the new-sample processing

*/

float filter_second_order_process_sample(FILT_second_order *filt, float

new_sample){

float curr_out = -filt->D1*filt->prev_output-

filt->D2*filt->preprev_output+

filt->N0*new_sample+

filt->N1*filt->prev_input+

filt->N2*filt->preprev_input;

filt->preprev_output=filt->prev_output;

filt->prev_output=curr_out;

filt->preprev_input=filt->prev_input;

filt->prev_input =new_sample;

return curr_out;

} �
Where the memories of the previous-states of both input and output are
stored inside the "filter" object structure:

/** Second order digital filter. It is represented in the form:

* Y(z) N0 + N1*z^(-1) + N2*z^(-2)

* ---- = ----------------------------

* U(z) 1 + D1*z^(-1) + D2*z^(-2)

* Thus, the 5 coefficients must be specified

*/

typedef struct{

float prev_input; // u(z^(-1))

float preprev_input; // u(z^(-2))

float prev_output;// y(z^(-1))

float preprev_output;// y(z^(-2))

float N0;

float N1;

float N2;

float D1;

float D2;

}FILT_second_order; �

[December 2, 2017 at 17:06 – classicthesis]

7.5 the control firmware 105

The velocity is then the desired output value coming with the output of the
filter second order process sample function.

The velocity reconstruction is part of the following "state reconstruction"
stage, described in the following subsection.

7.5.3 state recontstruction

The state reconstruction is (in this specific-case) the process of appliying all the
necessary linear transforms that permits to obtain the state-variables, starting from
de device’s measures, as described by the blocks of figure 64:

Figure 64: Retrieving the state variables from the quantized measures. These blocks repre-
sents the work inside the microcontroller routines.

The corresponding code is:

void UpdateStateVars(int32_t alpha_tacho, int32_t beta_tacho, float theta_P){

state_vars.Xb = TachoToAngle()*theta_P + (alpha_tacho*
self_balancing_params.r_wheel*self_balancing_params.rho*
TachoToAngle())/2 + (beta_tacho*self_balancing_params.r_wheel*
self_balancing_params.rho*TachoToAngle())/2;

state_vars.delta = TachoToAngle()*theta_P + (alpha_tacho*
self_balancing_params.r_wheel*self_balancing_params.rho*
TachoToAngle())/self_balancing_params.d_interwheel - (beta_tacho*
R_WHEEL*RHO*TachoToAngle())/self_balancing_params.d_interwheel;

state_vars.theta_P=theta_P;

// calculate velocities by HPF of positions

state_vars.dot_Xb=filter_second_order_process_sample(&

self_balancing_params.dot_Xb_filt,state_vars.Xb);

state_vars.dot_delta=filter_second_order_process_sample(&

self_balancing_params.dot_delta_filt,state_vars.delta);

// calculate acceleration

state_vars.ddot_Xb=filter_second_order_process_sample(&

self_balancing_params.ddot_Xb_filt,state_vars.dot_Xb);

} �

[December 2, 2017 at 17:06 – classicthesis]

106 algorithms implementation

As noticeable, the routines retrieves also the velocities from the positions. The
last routines calculates also the acceleration, used in the accelerometers’ angle cal-
culation.

7.5.4 control signals generation

The last task remaining is the generation of the control signals, using the controller
designed and considering the references:

// Schema:

// |Joy_FWD|*gain = set_ddot_Xb ->INTEGRATE-> set_dot_Xb ->INTEGRATE-> set_Xb

//

void ControlLoopBalance(void){

if(state_vars.simulation_active){

set_dot_Xb = reference_get_curr_value(&ref_seq_dot_Xb,((float)

state_vars.loop_counter*self_balancing_params.

loop_period_ms/1000.0));

}else{

// the joystick (forward direction) sets the acceleration

reference

set_ddot_Xb = JOY_FWD_TORQUE_GAIN*JoystickGetForward();

// find reference speed angle by integrating reference

acceleration

set_dot_Xb = filter_first_order_process_sample(&

self_balancing_params.set_dot_Xb_filt,set_ddot_Xb);

// by now, set all references to 0

set_Xb = 0;

set_dot_Xb = 0;

}

// find reference speed angle by integrating reference acceleration

set_Xb = filter_first_order_process_sample(&self_balancing_params.

set_Xb_filt,set_dot_Xb);

float bal_torque=0.0;

bal_torque= self_balancing_params.gainsLQR[0]*(set_Xb-state_vars.

Xb)+

self_balancing_params.gainsLQR[1]*(-state_vars

.theta_P)+ // the setpoints of both thetaP

and dot_thetaP will always be 0

self_balancing_params.gainsLQR[2]*(set_dot_Xb-

state_vars.dot_Xb)+

self_balancing_params.gainsLQR[3]*(-state_vars

.dot_theta_P);// the setpoints of both

thetaP and dot_thetaP will always be 0

// apply the gains to retrieve the balance torque:

SetBalanceTorque(bal_torque);

}

void ControlLoopSteeringPID(void){

if(state_vars.simulation_active){

set_dot_delta = reference_get_curr_value(&ref_seq_dot_Delta,((

float)state_vars.loop_counter*self_balancing_params.

loop_period_ms/1000.0));

[December 2, 2017 at 17:06 - classicthesis]

7.5 the control firmware 107

}else{

// the steering speed reference comes from joystick

set_dot_delta = JOY_STEER_GAIN*JoystickGetSteering();

}

float dot_delta_error=(set_dot_delta-state_vars.dot_delta);

// the PI controller is (at the end) a first-order filter, whose

coefficients were calculated with

// MATLAB

float yaw_torque=filter_first_order_process_sample(&

self_balancing_params.steering_PID,dot_delta_error);

// apply the gains to retrieve the steering torque:

SetYawTorque(yaw_torque);

}

void ControlLoopSteeringLQR(void){

if(state_vars.simulation_active){

set_dot_delta = reference_get_curr_value(&ref_seq_dot_Delta,((

float)state_vars.loop_counter*self_balancing_params.

loop_period_ms/1000.0));

}else{

// the steering speed reference comes from joystick

set_dot_delta = JOY_STEER_GAIN*JoystickGetSteering();

}

// find reference yaw angle by integrating angle speed

set_delta = filter_first_order_process_sample(&self_balancing_params.

set_delta_filt,set_dot_delta);

//set_delta = 0; // set delta to zero and act only on angular velocity

: less reactive, but avoids error accumulation due to integration

//self_balancing_params.set_dot_delta= 0;

float yaw_torque=(self_balancing_params.gainsLQRsteering[0]*(set_delta

-state_vars.delta)+

self_balancing_params.gainsLQRsteering[1]*(

set_dot_delta-state_vars.dot_delta));

// apply the gains to retrieve the steering torque:

SetYawTorque(yaw_torque);

} �
As noticeable, the references for both the equilibrium and the steering controllers
might come from two different sources:

• from the joystick, during the "normal" operation

• from the reference builder, during the simulation context (when the bluetooth
has received a signal of "start simulation" and the device attempts to execute
the same work of the Simulink’s simulation).

The "reference builder" is used to simulate the reference generator ("repeating se-
quence" block) in the Simulink model, by permitting to store some set-points (in
time and amplitude) and to return an interpolated value at every time-step in the
sequence:

typedef struct{

float time;

[December 2, 2017 at 17:06 - classicthesis]

108 algorithms implementation

float value;

}REF_POINT;

typedef struct{

int8_t last_valid; // index of last valid setpoint

REF_POINT refpoints[REF_MAX_REFERENCE_POINTS];

}REF_SEQUENCE;

/*

* Add a setpoint to a reference sequence

*

* @param the sequence

* @param the time of a setpoint

* @param the value o set at the corresponding time

* @return false if sequence is already full or if time requested is less than

that of the last point

*/

bool reference_add_setpoint(REF_SEQUENCE* seq, float time_of_vlaue, float

value){

if(seq->last_valid==REF_MAX_REFERENCE_POINTS) return false;

if(time_of_vlaue!=0 && time_of_vlaue <= seq->refpoints[seq->last_valid

].time) return false;

// if none of the previous, everything OK

seq->refpoints[++seq->last_valid] = (REF_POINT) {time_of_vlaue,value};

return true;

}

/*

* This updates the current value and the other parameters, according to the

time passed as a parameter,

* by interpolating the reference points. Any reference point whose time value

is less than its previous

* is considered as non-valid, like all the others succeding

*

* @param the sequence in which to read points

*

* @param the absolute time in the sequence.

*

* @return the value corresponding to the time specified. If the time is

greater than the time of

* the last reference point, it will be returned the last

value

*/

float reference_get_curr_value(REF_SEQUENCE* seq, float time){

if(time==0){

if(seq->refpoints[0].time == 0){

return seq->refpoints[0].value;

}else{

return 0;

}

}else{

// if time is greater than last valid setpoint

if(time>=seq->refpoints[seq->last_valid].time)

return seq->refpoints[seq->last_valid].value;

uint8_t i=0;

[December 2, 2017 at 17:06 - classicthesis]

7.5 the control firmware 109

while(i<REF_MAX_REFERENCE_POINTS){ // find the imediately-next

point

if(seq->refpoints[i].time > time) break;

i++;

}

// interpolation

if(i==0){

float ang_coeff = seq->refpoints[0].value/seq->

refpoints[0].time;

return time*ang_coeff;

}else{

float ang_coeff = (seq->refpoints[i].value-seq->

refpoints[i-1].value)/

(seq->refpoints[i].time-seq->refpoints

[i-1].time);

return (seq->refpoints[i-1].value)+(time-seq->

refpoints[i-1].time)*ang_coeff;

}

}

} �
7.5.5 errors management and safety strategies

The error management is more than necessary, because the system is distributed
and many errors might compromise the correct algorithm work, especially those
regarding the communication.
Those errors are admitted if-and-only-if they are very reduced in number: the
control might tolerate the missing of one sample and "skip" one control-loop, but
is the errors increase it results in hard compromise of filter’s outputs and then
controller’s commands. The communication-fault management is this:

if(imu_ok && (evt_received!=0)){// if both motors received and even IMU

received:

retries_cnt=MAX_LOOP_RETRIES;// all OK: reset retries counter and exec

routines only if no timeout

// [...]

}else{ // if there is a communication failure

sprintf((char*)buf,"IMU:%d,CAN:%d\n",imu_ok,(int)evt_received);
comm_can_tunnel_bluetooth_buffer(buf,12);

// a timeout has occurred: decrease retries counter

if(retries_cnt!=0){

retries_cnt--;

}else{ // all retries expired

comm_can_tunnel_bluetooth_buffer((unsigned char*)"RETRIES
EXPIRED!\n",17);

EmergencyBrake();

break;

}

} �
Note that the communication failure means that either there was an error in the
data received, or there was a timeout in the reception of IMU data or the remote
board’s position answer.

[December 2, 2017 at 17:06 – classicthesis]

110 algorithms implementation

In case of fault, even only one, a notification is sent via bluetooth and if the retries
expires the controller can’t perform any other correct work, thus calls the Emergen-
cyBrake procedure, that simply sets 0 current to the motors (let them free-rotate).
Those errors were frequent in the initial part of the project, but once the com-
munications were all correctly tuned, no failure notifications have been registered
during all the experiments.

Two conditions are checked for the purpose of safety:

1. The controller must work only if tilt angle doesn’t exceeds the limit (set to
±20°), where the linearization assumptions doesn’t hold anymore and the
control action might result "risky":

// attention: apply the controls only if the tilt angle is within the

limits!!!

if((state_vars.theta_P<CTL_MAX_TILT_ANGLE_RADS)&&(state_vars.theta_P>(-

CTL_MAX_TILT_ANGLE_RADS))){

ControlLoopSteeringPID();

//ControlLoopSteeringLQR();

ControlLoopBalance();

eq_cnt=0;

}else{

if((eq_cnt)<10){

EmergencyBrake();

eq_cnt++;

}

} �
if not possible, stop any action to the motors and let them free-rotate.

2. At every control loop it is monitored the state of the Safety button: a normally
closed contact that serves for the Emergency Stop of the vehicle:

// IMPORTANT safety guard: monitoring red button pressure

if(palReadPad(EMERGENCY_BUTT_PORT,EMERGENCY_BUTT_BIT)){ // if red button

is pressed

if(emgcy_cnt<10){

EmergencyBrake();

// reset the tachometers of both left and right wheels

mc_interface_get_tachometer_value(true); // local motor’s

tacho

comm_can_reset_tacho(MOT_L); //

remote motor’s tacho

ResetStateVars();

emgcy_cnt++;

}

}else{

emgcy_cnt=0;

UpdateTorquesToVehicle();

} �
the emergency button was very useful during the experiments, even for stop-
ping/restarting the device and to test its free-evolution behavior.

[December 2, 2017 at 17:06 – classicthesis]

7.6 conclusions 111

7.6 conclusions

In this chapter it was presented "all the software" in the project (all the source-code
will become shortly open-source and published), both for the model buildup and
for the real-time embedded controller.

This chapter have focused only on the key-routines, explaining some algorithms
and underlying considerations. As stated before, the embedded code of the con-
troller and the filters coexists in the micro-controller that drives the right motor.
The correct work and the absence of communication errors and latency failures
was considered a big success of integration of an evolved-controller code into a
successful open-hardware project’s device.

The possibility to perform many automated tasks (such as parameter update,
start/stop simulations and collecting data) remotely via bluetooth is considered
by the author a great result, useful for future investigations and/or improvements
works.

Those are the motivations that drove the idea of sharing the work with an open-
source project, fort the benefit of both hobbyists/passionate and for scientific anal-
ysis and community-provided project improvement contributions.

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

8
M O D E L VA L I D AT I O N

8.1 introduction

After having described the scope of the work, the components chosen and the
models and algorithms applied, this chapter aims to validate all the models built
and the solutions proposed. The main goal at the end of this work is to verify to
have a good matching between the theoretical model built and the true device.

Having this, is a very important result, because it permits to test improved algo-
rithms, new features and controllers tuning, all inside the simulator, which guar-
antees the result matching with the true system, without the need to waste much
time with running the experiments with the real-system itself.

Another important result of the validation process is the proof of the effective-
ness and stability of the designed controls, in order to govern the problem. A good
simulation environment, in fact, is only a good starting point, but without a "good-
controlled system" proof, many aspects might have been remained hidden.

This chapter thus aims to show the validation and to discuss this task’s issues.

8.2 velocity and acceleration reconstruction

As stated in chapter 6, several algorithms have been proposed for the derivation of
velocity, starting from the position reading.
In this section a discussion about performances of the various algorithms and the
final choice.

First of all, the different algorithms were tested during the free evolution of the
self-balancing transporter, as visible in figure 65, that is useful both for testing the
algorithms during low-speed and high-speed velocity variations.

Figure 65: Position, velocity and acceleration reading: comparison of different algorithms.

113

[December 2, 2017 at 17:06 – classicthesis]

114 model validation

As easily noticeable, figure 65 exhibits that the measure coming from the AVERAGE-
derivative algorithm has a high "residual-noise", even having averaged 10 samples:
this is due to the high sensitivity to the position "steps", generated by the hall
sensors’ output.

Even having this undesired behavior, it is interesting to zoom the figures before
leaving at all this algorithm.

Figure 66: Position, velocity and acceleration reading: a zoom for investigation about algo-
rithm’s behavior during fast and slow transients.

Looking at figure 66, it is possible to note that the AVERAGE-derivative, even if
noisier than the others has a lower delay in the velocity tracking, compared to the
others.

A similar small delay is obtained with the filter "HPF + pole", that has addition-
ally a lower residual noise. This is why this algorithm is the preferred and that
implemented in the "real-life" device. Its computational "low-cost", in fact makes it
very useful for the velocity-reconstruction task.

The other two algorithms, once correctly tuned, has similar behavior of the
"HPF+pole" one, but has a higher computational weight. This is why the final
solution was the "HPF+pole" algorithm, with the ωHPF placed at the frequency of
5Hz.

8.2.1 position and acceleration

Looking again at figure 66, a brief consideration about position: even if the position
filtered by the 10Hz-LPF filter is very smoother than that directly read from the
hall-sensors, this has the disadvantage of a higher delay during the fast-slopes
(that might eventually compromise stability) and a poor noise-rejection during the
slow position-variations.
This is why in the true-device, the LPF was not used in the position reading.

Concerning the acceleration, the same algorithm chosen for the velocity, was
adopted even for the acceleration. The result, in the last figure shows that the
choice is a good compromise between responsiveness and low noise addition.

Figure 67 confirms the choice of filter "HPF+pole" as preferable even during a
simulation of a controlled sequence.

[December 2, 2017 at 17:06 – classicthesis]

8.2 velocity and acceleration reconstruction 115

Figure 67: Position, velocity and acceleration reading during a simulated control sequence
(not in free evolution).

The velocity and acceleration has low additional noises and an imperceptible
delay.

Given the good results for the linear velocity reading, the filter was adopted
even for the readout of the angle-rate. In this case the effect of the hall sensors
has higher impact and the consequent superimposed noise is stronger, but even
acceptable as visible in figure 68.

Figure 68: Yaw angle and angle-rate reading, during a simulated control sequence (not in
free evolution) using the velocity-reading filter "HPF+pole" set with ωHPF =

2π ∗ 5Hz.

The usage of the same filter both for the linear velocity and for the yaw angle-
rate is not always acceptable, because these rates are different, and the difference
deeply depends on the dynamics expected for the two phenomena.

At the end of the discussion about velocity reading, what is finally used is a sin-
gle, second-order filter that acts (with different filter instances) in linear velocity,

[December 2, 2017 at 17:06 – classicthesis]

116 model validation

acceleration and yaw rate. This means that the self-balancing device will imple-
ment three second-order-filters with identical parameters.
The definition of filters’ parameters was automated by the MATLAB scripts in-
side the file "digital filters". Once defined there, the scripts provides the automatic
parameters upgrade to the real-device, via bluetooth.

8.3 imu model validation and tuning

The IMU is one of the key components of the system. Its description and the cor-
responding model have been already described in chapter 6. Also in that chapter
a discussion about the angle measurement by sensor-fusion.

In this section it will be described the validation procedures that aim to verify:

• the matching between datasheet’s data and true measures

• the model scheme validation by measures

• the calibration of the IMU

• the tuning of the sensor-fusion algorithms

In this section it is described the analisys, valid for the specific component In-
vensense MPU9250 [28].

8.3.1 datasheet verification

One of the most important things reported in the datasheet is the noise entity and
type. Noise affects both accelerometer and gyroscope measures: in order to build
an affordable model, it must report the same type of noises of the real one.

For both sensors, the noise type is a white noise, with constant power along the
frequency span. In the following subsections the verification of the datasheets data
and the models’ parameters data population.

8.3.1.1 Accelerometer noise and bias

The datasheet of the accelerometer reports the following data:

[December 2, 2017 at 17:06 – classicthesis]

8.3 imu model validation and tuning 117

Figure 69: Section of the datasheet of MPU9250, regarding the accelerometer.

The parameter regarding the noise is that called "Noise Power Spectral Density",
expressed in µg/

√
Hz. The Simulink block used to model it, is the "Band Limited

White Noise", which expects the value of the "Noise Power", that is expressed
in unit (in this case) of (µg)2/Hz = (µg/

√
Hz)2. This means that the value to

introduce in the model is the square of the "Noise Power Spectral Density" value
thus: (300 ∗ 10−6 ∗ g)2.

The validation of this noise model comes from the comparison of the output
of the (unfiltered) accelerometer’s simulated and real data. Obviously, during this
measure, the IMU unit must be perfectly steady, thus the measure represents the
sensor’s own noise. In figure 70 the results.

Figure 70: Noise at the "X" output of the accelerometer. On the left, the simulated block,
modeled with a Power Spectral Density equal ot the value found in the
datasheet. On the right the real-one. The outputs are very close each other and
the noise variance is also similar.

[December 2, 2017 at 17:06 – classicthesis]

118 model validation

The comparison suggests that the model is almost correct and the signal variance
is similar. In case it is found a "real value" for the noise spectral density, heavily
different from that of the datasheet, a correction to the model’s parameters must
be made.

An important thing to note in the figure is that the "real accelerometer" exhibits
a non-zero mean output, even when perfectly horizontal. This is the bias, presented
in the sensor modeling at chapter 6. This bias must be subtracted from the mea-
sures, as stated in the "calibration". The task was automated by a simple procedure
that is by placing the value in the "digital filters" MATLAB file. This value is then
sent to the device via bluetooth, together with the other filter’s parameters and the
calibration is made easy this way.

8.3.1.2 Gyroscope noise and bias

Concerning the gyroscope, the modeling procedure is similar to that of the ac-
celerometer. The datasheet’s section about gyro is that in figure 71.

Figure 71: Section of the datasheet of MPU9250, regarding the gyroscope.

The parameter regarding the noise is that called "Rate noise Spectral Density",
expressed in °/s/

√
Hz. As for the accelerometer, the "Noise Power" value to put

into the "Band Limited White Noise" is the square of the "Rate noise Spectral
Density", with the difference that in the Simulink model, the gyroscope outputs
rad/s instead of °/s, thus the final value inserted in the model is (0.01∗2∗pi/180)2.
Again, the validation by comparison is visible in figure 72.

[December 2, 2017 at 17:06 – classicthesis]

8.3 imu model validation and tuning 119

Figure 72: Noise at the output of the gyroscope. On the left, the simulated block, with the
value found in the datasheet. On the right the real-one. The outputs are very
close each other and the variance is also similar: the real-device variance is even
smaller than that of the datasheet.

Even for the gyroscope, a good correspondence between the model and the true-
life measures has been verified.

Concerning the bias, even for the gyroscope, the value of the average of the signal
can be put into the "digital filters" file, so that the "parameters update" procedure
provides the automatic bias removal (part of the IMU calibration task).

A note about this: in the case of the gyroscope, the bias has a higher impact on
the measures, since the gyroscope’s output is integrated during time, for retrieving
the pitch angle (even if "fused" for with the accelerometer).

8.3.1.3 IMU low-pass filter verification

A further model verification was performed to proof the effect of the digital fil-
ter modeled inside the accelerometer and gyroscope. In figure 73 a comparison
between the simulation-block and the true device behavior.

Figure 73: Noise at the output of the gyroscope, when filtered at 5Hz. On the left, the
simulated block, on the right the real-one that has the embedded digital filter.
The frequency behavior is very similar in the two situations.

The correct correspondence is useful because the simulation results is tight simi-
lar to the reality, making it possible to have affordable simulation and test benefits
or drawbacks of filtering, directly by simulation, without the need to have a real
device.

[December 2, 2017 at 17:06 – classicthesis]

120 model validation

8.4 tuning sensor fusion algorithm

After having validated the IMU sensors models and their calibration, this section
discusses about the task of calibration the sensor fusion algorithm.

The main tasks about the IMU filters tuning are:

1. find the best coefficients for the complementary filter

2. verify the opportunity of linear-acceleration subtraction

Here the results of the experiments.

8.4.1 Verification of linear acceleration subtraction

In order to verify the opportunity for subtraction of linear acceleration from the
accelerometer reading, it was performed an experiment of manual excitation of
the inverse pendulum, making the self-balancing vehicle running back and for-
ward, with simultaneous base inclination. In this experiment the base inclination
changed in a sinusoidal-like way. The test was the verification of angle read from
the accelerometer and the gyroscope output. Since the pitch angle and its rate’s
phases must differ of 90°, the test aimed to verify if this is true or not, and if the
acceleration subtraction has an influence.

Figure 74: Investigation in linear acceleration subtraction: signals without linear accelera-
tion subtraction.

By observing figure 74, when "fastly" perturbing the self-balancing device, it
moves back and forward but the linear acceleration adds to the gyroscope reading
and makes the pitch angle and its rate to differ by almost 0°: it is considered big
error.

[December 2, 2017 at 17:06 – classicthesis]

8.4 tuning sensor fusion algorithm 121

After subtracting the linear acceleration from the accelerometer’s x coordinete
readings, the situation changes, like visible in figure 75.

Figure 75: Investigation in linear acceleration subtraction: signals with linear acceleration
subtraction.

This experiment confirms the opportunity for the subtraction of liner accelera-
tion from the accelerometer reading, making it more affordable and coherent with
the gyroscope.

The only drawback of this is the presence of spurious "spikes" in the acceleration
readings that compromises the reading quality: this is not a big problem since
the accelerometer reading is meaningful (see complementary filter) only in long-
period (low frequencies), instead the spikes are fast and don’t affect mush the
complementary filter result.

8.4.2 Finding the best coefficients for complementary filter

The choice of the coefficients for α and β determines a different behavior of the
device. As a "quantitative" consideration, we can tell that they they are "the indi-
cators of what we trust more" between the output of the two IMU sensors. The
high value of α indicates that "we trust more the gyroscope", a low value instead
indicates that "we trust more the accelerometer", but it is not all here.

The values of α and β determines an "equivalent bandwidth" of work, for the
sensors. In fact, since the gyroscope is affordable for "fast rotations", it is good for
the management of "high frequencies". As opposite, the accelerometer is good for
the management of long-term pitch angle reading (since differently from the gyro-
scope, it is bias-free). Even with this, it must be considered that a too-high value
of α might determine a long time before any gyroscope bias error is canceled, as

[December 2, 2017 at 17:06 – classicthesis]

122 model validation

opposite a low-value might result in a loosely-stable equilibrium controller, since
the accelerometer is very noisy.

The tuning activity is a trade-off between system stability and measure preci-
sion. In this case there were performed several experiments, simply by testing the
reaction (angle and horizontal position deviation) of the TWSBT to external distur-
bances (kicks) with different values of α and "quantitatively" verify the effect on
the equilibrium performances:

• α = 0.95

• α = 0.99

• α = 0.999

Also the simulations have demonstrated the different behavior of the system
with different settings of α. Their results are reported in figure 76.

Figure 76: Simulation with different values of complementary filter coefficients (left α =

0.95, right α = 0.999).

As noticeable in figure 76, higher values of α guarantees less noise in the state
variables and less elongations in the transients. Another key-consideration is the
presence of strong oscillations in the device with α = 0.95, confirming a loosely
stability. This is also confirmed by the real-device, where a value of α < 0.95
determines an unstable device.

At the end of the tests, it was chosen to adopt α = 0.999, since the device has an
intrinsic "slow dynamic", and the accelerometer output must be considered only
for very-slow frequencies. The value chosen also guaranteed less deviation of the
vehicle in case of external perturbations. It has also demonstrated to be a good
choice to be employed for the transport of the rider, since it gives the (subjective)
sensation of a "stable base", much more than with lower α values.

[December 2, 2017 at 17:06 – classicthesis]

8.5 validation of the first model 123

symbol meaning value unit

H = 2 ∗ L Total height of the cylinder 1 [m]

d Diameter of the cylinder 0.25 [m]

mP Mass of the cylinder 30 [kg]

Table 9: Parameters of the wood cylinder of figure.

8.5 validation of the first model

In chapter 7 it was illustrated the automated script that makes possible the com-
parison between the model simulation and the real-device behavior. In this section
the results of this comparison, for different tasks of the control.

In order to make the real-device as similar as possible to the real one, a custom
wood cylinder was built. Having a well-defined solid geometry, the wood cylinder
is easy to model and its data were placed into the MATLAB script’s data. The
wood-cylinder, visible in figure 77 has the parameters described in table 9.

Figure 77: Wood cylinder anchored to the self-balancing transporter. The simple and reg-
ular geometry and the knowledge of weight and dimensions, makes it easy to
model it into the simulator.

8.5.1 Steady state

Here a comparison of the steady-state behavior of the device. During the first ex-
periment it is possible to notice that differently from the theoretical model, the
"experimental" (which means the real-device) behavior can’t stand in a fixed posi-

[December 2, 2017 at 17:06 – classicthesis]

124 model validation

tion, but has a residual oscillation due to a limit cycle. In figure 78 the focus on this
behavior.

Figure 78: Steady state simulation: here the "real-device" shows a different behavior in both
horizontal position and velocity, and in pitch angle: it is visible an oscillation
around a value, that denotes the seamlessly presence of an unconsidered limit-
cycle. Note that even if the reference is 0, the equilibrium point is not in θP = 0

and Xb = 0, probably because of an imperfection in the angle reading, from the
IMU.

[December 2, 2017 at 17:06 – classicthesis]

8.5 validation of the first model 125

Figure 79: In the yaw angle the real-device behavior is very similar to the simulation, ex-
cept by the presence of an offset in the yaw angle: it is due to the fact that here
the controller is a PI and it doesn’t care about yaw, but only about yaw-rate.

The presence of the limit-cycle is probably due to a Coulomb-friction not consid-
ered in the model, or even some backlash in the assembly of the cylinder with the
base.

The entity of the limit-cycle changes, when changing the weights of the LQR
equilibrium controller: when decreasing the weight related to the Xb control, as
expected, the limit-cycle increases in amplitude. The same for the weight of θP
angle.

No strategies have been adopted to try to eliminate the phenomena, since it is
out of the scope of this work.

8.5.2 Reference-following sequence

In this subsection a verification of the matching between the simulation results
and the real-device behavior. The scope of this verification is not to find a "good
reference-follower" but even if the device dynamics are slower than the reference,
the scope is to verify that the same behavior is present in the true device. In figure
81

[December 2, 2017 at 17:06 – classicthesis]

126 model validation

Figure 80: Reference-following simulation: during velocity ramps there is a good matching
between the simulated and the real-device behavior, while when the reference
turns to 0, it is visible the limit-cycle previously mentioned. Note that like the
"steady" test, when the reference is 0, the equilibrium point is not in θP = 0 and
Xb = 0. This means that during the following rotation, caused by the following
of yaw-angle reference, a deviation in the position and velocity happens.

[December 2, 2017 at 17:06 – classicthesis]

8.5 validation of the first model 127

Figure 81: In the yaw angle the real-device behavior is different because the model has a
low-value in the friction coefficient of the wheels.

8.5.2.1 Parameters adjust

Since the simulation of yaw angle was not good, it was repeated the test increasing
the ψ friction coefficient in the model. Figure 82 shows the results when setting
the coefficient to ψ = 0.1 (instead of the previous ψ = 0.0005).

[December 2, 2017 at 17:06 – classicthesis]

128 model validation

Figure 82: Reference-following of yaw-angle: by setting the wheel’s friction coefficient to
ψ = 0.1, it is visible a better matching between the simulation and the real-
device experiment.

In figure 82 it is visible a better matching between the simulation and the real-
device experiment. The residual yaw-angle-error is due to the fact that the con-
troller is a PI and doesn’t care about position tracking: only cares about yaw-rate
error tracking. In the following sections a discussion with LQR control even in the
steering.

8.6 steering model and controller tuning

In figure 82 it was shown the behavior of the yaw-angle reference follower when
the steering controller was a PI with KP = 2 and KI = 1.6878. It was good, but as
mentioned, the controller doesn’t track regime-yaw errors. In figure 84 the results
of a simulation using the LQR for the steering subsystem.

[December 2, 2017 at 17:06 – classicthesis]

8.7 equilibrium model and controller tuning 129

Figure 83: Reference-following of yaw-angle: the LQR controller tracks not only the yaw-
rate, but also the yaw-angle: this is considered a great improvement in the over-
all performances.

Using an LQR controller even for the steering subsystem makes it possible to
have a better tracking of the steering angle. This is not immediately visible by
the figures, but results in a more-stable device that even if encountering terrain
discontinuities, takes back the steering to the correct angle. This was not achieved
with the previous PI controller.

This is why the LQR was the preferred controller and its parameters are Q =

diag([1, 0.1]), R = 0.1;

8.7 equilibrium model and controller tuning

During all the experiments there was not a real need of performances, since the
device to control was a simple wood-cylinder. The only need was that the device
turns back to the original position (in order to verify if it attempts to it). The
final choice for the coefficients of Q and R matrices was: Q = diag([10, 3, 0.1, 0.1])
and R = 0.1, which means an attention to the horizontal displacement and to the
vertical position.

A non-null value in the velocities is to "mitigate" the behavior against distur-
bances: since the regime reference is 0 for all the state-variable-references, the de-
vice attempts to "gracefully reduce the velocities". The final result is visible in
figure 84.

[December 2, 2017 at 17:06 – classicthesis]

130 model validation

Figure 84: Horizontal displacement and angle tracking with definitive weights of Q =

diag([10, 3, 1, 0.1]) and R = 0.1.

[December 2, 2017 at 17:06 – classicthesis]

8.8 tuning and validation of the evolved (rider’s) model 131

8.8 tuning and validation of the evolved (rider’s) model

Figure 85: Last tests with a human rider, driving the TWSBT.

This section describes the process of validation of the model proposed in chapter
4, where the self-balancing vehicle was enriched by the presence of a rider that can
lean backward and forward, achieving the movement of the vehicle, as desired.
This is in fact what happens in the real-device: the rider does exactly this.

An important thing to keep in mind is that (as already stated) the system pro-
posed in chapter 4 is not fully observable thus the pitch angle of the rider cannot
be calculated with the only knowledge of the base’s pitch angle.
The positive fact is that the non-observable poles of the system are stable thus the
overall system can be stabilized (as expected).

The resulting thing is that since the only known pitch coordinates are that of
the base, the equilibrium controller will remain the same as that proposed for the
model with the solid cylinder linked with the base, as visible in figure 86.

[December 2, 2017 at 17:06 – classicthesis]

132 model validation

symbol meaning value unit

H = 2 ∗ L Total height of the rider 1.8 [m]

d Diameter of the equivalent cylinder 0.5 [m]

mP Mass of the rider 80 [kg]

ks Elastic constant of the ankle’s spring 850 [Nm/rad]

cs Viscous friction coefficient of the ankle damper 350 [Nm/(rad/s)]

Table 10: Parameters of the rider governing the TWSBT.

Figure 86: Controller for the model of chapter 4, with rider’s pitch angle different from
that of the base.

The tuning consists in finding the adequate controller’s parameters for the equi-
librium and steering subsystems.

A first attempt was made by placing the parameters of a man (like me) into the
model and test the effects. The parameters are in table 10.

Putting these parameters into the model and and letting MATLAB solve the DRE
for the calculation of the LQR gains coefficients, results in the system behavior of
figure 87.

[December 2, 2017 at 17:06 – classicthesis]

8.8 tuning and validation of the evolved (rider’s) model 133

Figure 87: First simulation of rider with controller tuned with parameters of table 10: the
controller is unstable.

As noticeable in figure 87 the controller attempts to take the rider vertical, but
suddenly a strong vibration in the pitch angle makes it impossible and the con-
troller diverges.

This behavior was verified also in the real-device: a strong base vibration made
it impossible to ride it. It is a negative thing since the controller can’t achieve stable
equilibrium, but is also positive since the simulated behavior is similar to the real
one.

In the following subsection the actions performed to achieve the self-balancing
feature.

8.8.1 Controller tuning, for the rider

The actions taken to try to stabilize are a first strategy to make the vehicle suitable
for a rider’s transport. The result obtained is not fully satisfactory, but for a matter
of time it was not possible to perform further actions in that sense.

In brief, the actions that solved the problem of equilibrium for a rider, were two:

[December 2, 2017 at 17:06 – classicthesis]

134 model validation

1. Band-limitation of torque signal: having verified the presence of a high-frequency
vibration in the simulation, it was introduced a second-order low-pass filter
in the torque actuators. This made possible the control of phenomena at fre-
quencies similar to that of the system dynamics’ equilibrium, but avoids the
presence of high-frequency vibrations in the device’s base, especially during
the rider’s step-up and step-down. The filter is a second-order LPF at 7Hz
over-damped with ξ = 3(since it further reduces the presence of vibrations).

2. Reduction of rider’s height: the controller was calculated by assuming a re-
duced height of the rider. The simulations demonstrated that the stability
is achieved when the height is reduced to about 1/9 of the original height. In
the case of the rider with parameters of table 10, the height was reduced to
H = 0.2m. All other parameters remained unvaried.

Thanks to those modifications, the device became "ride-able", with a sufficient
perceived stability.

8.8.2 Tuning the parameters of "Q" matrix

This activity was to define good settings for the Q matrix,in order to give a good
subjective riding experience. In this case, the scope is to drive the vehicle by leaning
forward or back and not to "follow a reference", then the weights of Q were very
different from that of the solid-linked wood cylinder. In particular:

• The weight associated to Xb must be diverse from 0, since if 0 the controller
will become unstable, but very low since the scope is to maintain the rider
vertical, without care of its Horizontal position.

• The weight associated to θP must be high enough to give the rider the sen-
sation of a "solid base", but low enough to avoid the growth of undesired
"nervous-like" behavior

• The weights associated to the velocities are low, but not null because a null
value contributes to a "too-nervous" behavior, instead a small value has a
positive contribute in reducing some induced self-oscillations

The final weights chosen, after several experiments are that who results in a
better subjective riding experience:

Q = diag([1e− 10; 5; 0.1; 0.1]); (110)

8.8.2.1 Validation of rider’s control

Even if the control in presence of a rider has different Q-settings against those
used for the wood-cylinder, it was replicated the reference-following experiments
in presence of a rider, in order to validate the rider’s model presented in chapter
4. The results are visible in figure 88.

[December 2, 2017 at 17:06 – classicthesis]

8.8 tuning and validation of the evolved (rider’s) model 135

[December 2, 2017 at 17:06 – classicthesis]

136 model validation

Figure 88: Comparison of the results of simulation and real-device, while it controls the
rider.

Figure 88 denotes that the TWSBT is capable of taking vertical the rider while it
follows the reference, but the results of the experiment are quite different from the
data of the simulation.

This is almost obvious because of the facts that:

• the controller must be designed for the model of chapter 3, and then applied
for the evolved model, thus it is not really "optimum"

• the controller used was designed by thinking a rider with very different ge-
ometry: if using the true geometry the system is not stable

• in the simulation it was not modeled the possible reactions of the rider, that
in the experiment instead were present

Due to a matter of time the analysis have stopped here and no other experiments
were carried. Further analysis might take substantial improvement in the model,
thus the simulation might be more affordable and useful for control improvement.

8.9 conclusions

In this chapter there were discussed the tasks related to the parameters identifica-
tion, model validation and the controller tuning. The experiments has confirmed
that concerning the case of a solid body standing over the vehicle there was a good
matching between the simulation and the experimental results. This confirms the
good modeling and the correct parameters identification, thus the affordability of
the simulation environment.

Concerning the case of a rider, there were poor performances in simulation,
demonstrating that the model has a good dynamic description, but lacks of other

[December 2, 2017 at 17:06 – classicthesis]

8.9 conclusions 137

phenomena not already investigated (such as human reaction models) that might
be studied in successive investigations.

The positive thing about the rider configuration is that a first set of configura-
tions made it possible to have a good riding experience, that is (after all) one of the
most important goals for that kind of vehicle.

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

C O N C L U S I O N S

The scope of this work was to design a controller capable to drive a vehicle based
on the (inherently unstable) inverse pendulum system.

This result was achieved by following a rigorous engineering process that con-
sisted on:

• collection of the product requirements

• build-up of the system model, by solving the dynamic equations

• build-up of the simulation environment with introduction of system non-
idealities, for better simulation results

• parameters identification of the real device

• control design with stability verification and simulation

• practical implementation into a distributed embedded system

• verification of simulation environment by comparison with real-device exper-
iments

The result at the end of the work is a stable device, capable of carrying both
solid-attached loads and persons, with a good riding experience.

Also important is a high-quality simulation environment, that has good simulation-
experiment matching when carrying solid bodies linked with the TWSBT, useful
for further investigation, control tuning or control model evolution.

The limits of the system are the starting-points for possible future works, such
as:

• elimination of limit-cycle found in the device

• further improvements in tuning of Kalman filter applied to the IMU

• further tuning of rider’s model and controller, with better matching between
simulation and real-device experiments

• design of an adaptive or self-tuning controller, for better rider-experience,
according to the rider’s weight and geometry

The work has confirmed to be very interesting and challenging. It demonstrated
to be "complete" both for the theoretical content and the practical issues that
needed to be solved. At the end of the work, an excellent simulator and data-
collection system was built: this work will be soon published as an open-source
project, for the benefit of other researchers.

139

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

A P P E N D I X

141

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

A
A P P E N D I X - A : L A G R A N G I A N D E R I VAT I O N S T E P - B Y- S T E P

Even having the possibility to derive the expression of motion equations with au-
tomated tools, such as Wolfram Mathematica, in this appendix, the mathematical
steps of the derivation of the motion equations. The final equations were verified
also with the mentioned software.

a.1 lagrangian : derivation for the first model

Here the extended expression of the Lagrangian for the system

L = T −U =

= 1
2mP

[
r2 α̇

2

4 + r2 β̇
2

4 + r2 α̇β̇2 + L2θ̇2P + Lθ̇Pr(α̇+ β̇)cosθP

]
+

1
2JθPθ̇

2
P +

1
2

(
JδP +mPL

2sin2θP
) [
r2 α̇

2

D2
+ r2 β̇

2

D2
− 2r2 α̇β̇

D2

]
+

1
2(mwr

2 + Jw)(α̇
2 + β̇2 + 2α̇β̇)+

1
2
Jm
ρ2

(α̇2 + β̇2 + 2θ̇2P − 2α̇θ̇P − 2β̇θ̇P)+

−mPgLcosθP

(111)

Having this, the Lagrange equations becomes:

d
dt

(
∂L
∂α̇

)
− ∂L
∂α = CL

d
dt

(
∂L
∂β̇

)
− ∂L
∂β = CR

d
dt

(
∂L
∂θ̇P

)
− ∂L
∂θP

= −(CL +CR)

(112)

The right-terms of the Lagrange equations represents the active contributes to the
dynamics. The first and second equations’ terms are quite obvious, while for the
third equation, the active contribute is the sum of the torques of the two motors,
as easily noticeable observing figure 13.

143

[December 2, 2017 at 17:06 – classicthesis]

144 appendix-a : lagrangian derivation step-by-step

Executing the partial derivatives just presented, the equations’ becomes this non-
linear system:

−∂L∂α = 0

−∂L∂β = 0

− ∂L
∂θP

= mPLθ̇Pr
α̇+β̇
2 sinθP −mPgLsinθP+

−mPL
2sinθPcosθP

[
r2 α̇

2

D2
+ r2 β̇

2

D2
− 2r2 α̇β̇

D2

]
∂L
∂α̇ = 1

2mP

[
r2 α̇2 + r2 β̇2 + Lθ̇PrcosθP

]
+(

JδP +mPL
2sin2θP

) [
r2 α̇
D2

− r2 β̇
D2

]
+

(mwr
2 + Jw)[α̇+ β̇] + Jm

ρ2
(α̇− θ̇P)

∂L
∂β̇

= 1
2mP

[
r2 α̇2 + r2 β̇2 + Lθ̇PrcosθP

]
+(

JδP +mPL
2sin2θP

) [
r2 β̇
D2

− r2 α̇
D2

]
+

(mwr
2 + Jw)[α̇+ β̇] + Jm

ρ2
(β̇− θ̇P)

∂L
∂θ̇P

= mP

[
L2θ̇P + Lr

α̇+β̇
2 cosθP

]
+ JθPθ̇P +

Jm
ρ2

(2θ̇P − α̇− β̇)

d
dt

(
∂L
∂α̇

)
= 1

2mP

[
r2 α̈2 + r2 β̈2 + Lθ̈PrcosθP − Lθ̇

2
PrsinθP

]
+(

JδP +mPL
2sin2θP

) [
r2 α̈
D2

− r2 β̈
D2

]
+

2mPL
2θ̇PsinθPcosθP

[
r2 α̇
D2

− r2 β̇
D2

]
+

(mwr
2 + Jw)[α̈+ β̈] + Jm

ρ2
(α̈− θ̈P)

d
dt

(
∂L
∂β̇

)
= 1

2mP

[
r2 α̈2 + r2 β̈2 + Lθ̈PrcosθP − Lθ̇

2
PrsinθP

]
+(

JδP +mPL
2sin2θP

) [
r2 β̈
D2

− r2 α̈
D2

]
+

2mPL
2θ̇PsinθPcosθP

[
r2 β̇
D2

− r2 α̇
D2

]
+

(mwr
2 + Jw)[α̈+ β̈] + Jm

ρ2
(β̈− θ̈P)

d
dt

(
∂L
∂θ̇P

)
= mP

[
L2θ̈P + Lr

α̈+β̈
2 cosθP − Lr

α̇+β̇
2 θ̇PsinθP

]
+

JθPθ̈P +
Jm
ρ2

(2θ̈P − α̈− β̈)

(113)

[December 2, 2017 at 17:06 – classicthesis]

A.1 lagrangian : derivation for the first model 145

Which permits to write the complete form of the equations (112) this way:

1
2mP

[
r2 α̈2 + r2 β̈2 + Lθ̈PrcosθP − Lθ̇

2
PrsinθP

]
+(

JδP +mPL
2sin2θP

) [
r2 α̈
D2

− r2 β̈
D2

]
+

2mPL
2θ̇PsinθPcosθP

[
r2 α̇
D2

− r2 β̇
D2

]
+

(mwr
2 + Jw)[α̈+ β̈] + Jm

ρ2
(α̈− θ̈P) = τL

ρ − ψ
ρ2
(α̇− θ̇P)

1
2mP

[
r2 α̈2 + r2 β̈2 + Lθ̈PrcosθP − Lθ̇

2
PrsinθP

]
+(

JδP +mPL
2sin2θP

) [
r2 β̈
D2

− r2 α̈
D2

]
+

2mPL
2θ̇PsinθPcosθP

[
r2 β̇
D2

− r2 α̇
D2

]
+

(mwr
2 + Jw)[α̈+ β̈] + Jm

ρ2
(β̈− θ̈P) = τR

ρ − ψ
ρ2
(β̇− θ̇P)

mP

[
L2θ̈P + Lr

α̈+β̈
2 cosθP

]
+

JθPθ̈P +
Jm
ρ2

(2θ̈P − α̈− β̈)+

−mPgLsinθP+

−mPL
2sinθPcosθP

[
r2 α̇

2

D2
+ r2 β̇

2

D2
− 2r2 α̇β̇

D2

]
= −τLρ − τR

ρ − 2ψ
ρ2
θ̇P +

ψ
ρ2
α̇+ ψ

ρ2
β̇

(114)

By re-arranging the terms, it is easy to come back to the form of (43).

[December 2, 2017 at 17:06 – classicthesis]

[December 2, 2017 at 17:06 – classicthesis]

B I B L I O G R A P H Y

[1] alienpowersystems. alien-5065-sensored-outrunner-brushless-motor, 2017.
URL http://tinyurl.com/zdl27ww.

[2] Alps. Alps joystick, 2017. URL http://www.alps.com/prod/info/E/HTML/

MultiControl/Potentiometer/RKJXK/RKJXK1210002.html.

[3] W. An and Y. Li. Simulation and control of a two-wheeled self-balancing
robot. In 2013 IEEE International Conference on Robotics and Biomimetics (RO-
BIO), pages 456–461, Dec 2013. doi: 10.1109/ROBIO.2013.6739501.

[4] R. Antonello, I. Nogarole, and R. Oboe. Motion reconstruction with a low-cost
mems imu for the automation of human operated specimen manipulation. In
2011 IEEE International Symposium on Industrial Electronics, pages 2189–2194,
June 2011. doi: 10.1109/ISIE.2011.5984500.

[5] Arduino. Hc-06 uart-bluetooth module, 2017. URL http://tinyurl.com/

yd3w3ayh.

[6] Zippy batteries. Zippy 6s 8000mah, 2017. URL http://tinyurl.com/

ybs4uddc.

[7] J. R. Cao, C. P. Huang, and J. C. Hung. Stabilizing controller design using
fuzzy t-s model on two wheeled self-balancing vehicle. In 2016 International
Conference on Advanced Materials for Science and Engineering (ICAMSE), pages
520–523, Nov 2016. doi: 10.1109/ICAMSE.2016.7840187.

[8] C. H. Chiu and Y. F. Peng. Electric unicycle control. In 2017 International
Conference on Applied System Innovation (ICASI), pages 1546–1549, May 2017.
doi: 10.1109/ICASI.2017.7988222.

[9] M. Ciezkowski and E. Pawluszewicz. Determination of interactions between
two-wheeled self-balancing vehicle and its rider. In 2015 20th International
Conference on Methods and Models in Automation and Robotics (MMAR), pages
851–855, Aug 2015. doi: 10.1109/MMAR.2015.7283988.

[10] funefunshop. 8 inch hub motor, 2017. URL https://www.fonefunshop.com/

8-Inch-Electric-Scooter-Balance-Board-Wheel-With-Motor.html.

[11] F. Gabriel, F. De Belie, and X. Neyt. Inductance-based position self-sensing of
a brushless dc-machine using high-frequency signal injection. In IECON 2012
- 38th Annual Conference on IEEE Industrial Electronics Society, pages 3682–3687,
Oct 2012. doi: 10.1109/IECON.2012.6389306.

[12] Y. Gong, X. Wu, and H. Ma. Research on control strategy of two-wheeled
self-balancing robot. In 2015 International Conference on Computer Science and
Mechanical Automation (CSMA), pages 281–284, Oct 2015. doi: 10.1109/CSMA.
2015.63.

[13] Y. Gong, X. Wu, and H. Ma. Research on control strategy of two-wheeled
self-balancing robot. In 2015 International Conference on Computer Science and

147

[December 2, 2017 at 17:06 – classicthesis]

http://tinyurl.com/zdl27ww
http://www.alps.com/prod/info/E/HTML/MultiControl/Potentiometer/RKJXK/RKJXK1210002.html
http://www.alps.com/prod/info/E/HTML/MultiControl/Potentiometer/RKJXK/RKJXK1210002.html
http://tinyurl.com/yd3w3ayh
http://tinyurl.com/yd3w3ayh
http://tinyurl.com/ybs4uddc
http://tinyurl.com/ybs4uddc
https://www.fonefunshop.com/8-Inch-Electric-Scooter-Balance-Board-Wheel-With-Motor.html
https://www.fonefunshop.com/8-Inch-Electric-Scooter-Balance-Board-Wheel-With-Motor.html

148 bibliography

Mechanical Automation (CSMA), pages 281–284, Oct 2015. doi: 10.1109/CSMA.
2015.63.

[14] K. Iizuka, H. Uzuhashi, M. Kano, T. Endo, and K. Mohri. Microcomputer con-
trol for sensorless brushless motor. IEEE Transactions on Industry Applications,
IA-21(3):595–601, May 1985. ISSN 0093-9994. doi: 10.1109/TIA.1985.349715.

[15] L. Jiang, H. Qiu, Z. Wu, and J. He. Active disturbance rejection control based
on adaptive differential evolution for two-wheeled self-balancing robot. In
2016 Chinese Control and Decision Conference (CCDC), pages 6761–6766, May
2016. doi: 10.1109/CCDC.2016.7532214.

[16] W. Junfeng and Z. Wanying. Research on control method of two-wheeled
self-balancing robot. In 2011 Fourth International Conference on Intelligent Com-
putation Technology and Automation, volume 1, pages 476–479, March 2011. doi:
10.1109/ICICTA.2011.132.

[17] B. P. Kumar and Krishnan C. M. C. Comparative study of different control
algorithms on brushless dc motors. In 2016 Biennial International Conference on
Power and Energy Systems: Towards Sustainable Energy (PESTSE), pages 1–5, Jan
2016. doi: 10.1109/PESTSE.2016.7516444.

[18] Yong Liu, Z. Q. Zhu, and D. Howe. Direct torque control of brushless dc
drives with reduced torque ripple. IEEE Transactions on Industry Applications,
41(2):599–608, March 2005. ISSN 0093-9994. doi: 10.1109/TIA.2005.844853.

[19] Loram I. D. Kelly S. M. and M. Lakie. Human balancing of an inverted pen-
dulum: is sway size controlled by ankle impedance. Journal of Physiology, 532

(3):879–891, 2001.

[20] Winter D. A. Patla A. E. Prince F. Ishac M. and Gielo-Perczak K. Stiffness
control of balance in quiet standing. Journal of Neurophysiology, 80(3):1211–
1221, 1998.

[21] K. Madhira, A. Gandhi, and A. Gujral. Self balancing robot using comple-
mentary filter: Implementation and analysis of complementary filter on sbr.
In 2016 International Conference on Electrical, Electronics, and Optimization Tech-
niques (ICEEOT), pages 2950–2954, March 2016. doi: 10.1109/ICEEOT.2016.
7755240.

[22] H. Mansoor, I. U. H. shaikh, and S. Habib. Genetic algorithm based lqr control
of hovercraft. In 2016 International Conference on Intelligent Systems Engineering
(ICISE), pages 335–339, Jan 2016. doi: 10.1109/INTELSE.2016.7475145.

[23] S. Noguchi and S. Jeong. Evaluation of rapid rider weight shifting behavior
for a stand-riding-type self-balancing personal mobility vehicle: Pilot study.
In 2013 13th International Conference on Control, Automation and Systems (ICCAS
2013), pages 1474–1479, Oct 2013. doi: 10.1109/ICCAS.2013.6704119.

[24] N. O-larnnithipong and A. Barreto. Gyroscope drift correction algorithm for
inertial measurement unit used in hand motion tracking. In 2016 IEEE SEN-
SORS, pages 1–3, Oct 2016. doi: 10.1109/ICSENS.2016.7808525.

[25] J. Juan Rincon Pasaye, J. Alberto Bonales Valencia, and F. Jimenez Perez. Tilt
measurement based on an accelerometer, a gyro and a kalman filter to control

[December 2, 2017 at 17:06 – classicthesis]

bibliography 149

a self-balancing vehicle. In 2013 IEEE International Autumn Meeting on Power
Electronics and Computing (ROPEC), pages 1–5, Nov 2013. doi: 10.1109/ROPEC.
2013.6702711.

[26] U. Qureshi and F. Golnaraghi. An algorithm for the in-field calibration of
a mems imu. IEEE Sensors Journal, PP(99):1–1, 2017. ISSN 1530-437X. doi:
10.1109/JSEN.2017.2751572.

[27] M. I. Rashed, S. Lim, and H. Bang. Numerical modeling, testing and bias drift
analysis of mems based three-axis gyroscope for accurate angular rate estima-
tion for attitude determination of nano-satellites. In 2013 13th International
Conference on Control, Automation and Systems (ICCAS 2013), pages 376–381,
Oct 2013. doi: 10.1109/ICCAS.2013.6703928.

[28] seedstudio. Grove - imu 9dof, 2017. URL http://wiki.seeedstudio.com/

wiki/Grove_-_IMU_9DOF.

[29] Fairchild Semiconductor. Bldc-ripple-torque-
reduction-via-modified-sinusoidal-pwm, 2008. URL
https://www.fairchildsemi.com/technical-articles/

BLDC-Ripple-Torque-Reduction-via-Modified-Sinusoidal-PWM.pdf.

[30] M. K. L. Siu and K. T. Woo. A high-frequency signal injection based sensorless
drive method for brushless dc motor. In 2017 18th International Conference on
Advanced Robotics (ICAR), pages 367–372, July 2017. doi: 10.1109/ICAR.2017.
8023634.

[31] F. Sun, Z. Yu, and H. Yang. A design for two-wheeled self-balancing robot
based on kalman filter and lqr. In 2014 International Conference on Mechatron-
ics and Control (ICMC), pages 612–616, July 2014. doi: 10.1109/ICMC.2014.
7231628.

[32] D. Tedaldi, A. Pretto, and E. Menegatti. A robust and easy to implement
method for imu calibration without external equipments. In 2014 IEEE Inter-
national Conference on Robotics and Automation (ICRA), pages 3042–3049, May
2014. doi: 10.1109/ICRA.2014.6907297.

[33] Wikipedia the hoverboard. Self balancing scooter (hoverboard). URL https:

//en.wikipedia.org/wiki/Self-balancing_scooter.

[34] C. C. Tsai, H. C. Huang, and S. C. Lin. Adaptive neural network control of a
self-balancing two-wheeled scooter. IEEE Transactions on Industrial Electronics,
57(4):1420–1428, April 2010. ISSN 0278-0046. doi: 10.1109/TIE.2009.2039452.

[35] Benjamin Vedder. A custom vesc, 2015. URL http://vedder.se/2015/01/

vesc-open-source-esc/.

[36] Wikipedia. Kalman filter. URL https://en.wikipedia.org/wiki/Kalman_

filter#Example_application.2C_technical.

[37] Wikipedia-segwayPT. Segway personal transporter. URL https://en.

wikipedia.org/wiki/Segway_PT.

[38] Zanichelli. attrito sul piano inclinato, 2017. URL http://tinyurl.com/

y8fjk2on.

[December 2, 2017 at 17:06 – classicthesis]

http://wiki.seeedstudio.com/wiki/Grove_-_IMU_9DOF
http://wiki.seeedstudio.com/wiki/Grove_-_IMU_9DOF
https://www.fairchildsemi.com/technical-articles/BLDC-Ripple-Torque-Reduction-via-Modified-Sinusoidal-PWM.pdf
https://www.fairchildsemi.com/technical-articles/BLDC-Ripple-Torque-Reduction-via-Modified-Sinusoidal-PWM.pdf
https://en.wikipedia.org/wiki/Self-balancing_scooter
https://en.wikipedia.org/wiki/Self-balancing_scooter
http://vedder.se/2015/01/vesc-open-source-esc/
http://vedder.se/2015/01/vesc-open-source-esc/
https://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
https://en.wikipedia.org/wiki/Kalman_filter#Example_application.2C_technical
https://en.wikipedia.org/wiki/Segway_PT
https://en.wikipedia.org/wiki/Segway_PT
http://tinyurl.com/y8fjk2on
http://tinyurl.com/y8fjk2on

150 bibliography

[39] Z. Zheng and M. Teng. Modeling and decoupling control for two-wheeled
self-balancing robot. In 2016 Chinese Control and Decision Conference (CCDC),
pages 5263–5267, May 2016. doi: 10.1109/CCDC.2016.7531939.

[December 2, 2017 at 17:06 – classicthesis]

	Sommario
	Thanks
	Contents
	List of Figures
	List of Tables
	1 Introduction
	1.0.1 Existing literature
	1.0.2 Motivation and attempts
	1.0.3 Thesis outline

	2 Definition of system specifications
	2.1 Introduction
	2.2 Problem definition
	2.3 Dimensions
	2.4 Motor torque
	2.4.1 Speed at full weight, inclined ground
	2.4.2 Maximum deceleration
	2.4.3 Motor choice

	2.5 Battery
	2.6 Motor Driver
	2.7 IMU
	2.8 Joystick
	2.9 Remote communication
	2.10 Overall architecture and Shematic
	2.10.1 Master board
	2.10.2 Slave Board

	3 System Modelling
	3.1 Introduction
	3.2 Kinematic model
	3.2.1 Assumptions

	3.3 Dynamic model
	3.4 Lagrangian
	3.5 System linearization
	3.6 System decoupling
	3.7 Stability analisys
	3.8 Conclusions

	4 A more realistic model
	4.1 introduction
	4.2 Linearization of the new system
	4.2.1 decoupling

	4.3 Transfer function and stability analisys

	5 Control
	5.1 Introduction
	5.2 Control of Equilibrium subsystem
	5.2.1 The optimum (LQR) controller
	5.2.2 Application of LQR to the equilibrium subsystem
	5.2.3 Stability analysis
	5.2.4 LQR tuning

	5.3 Control of Steering subsystem
	5.3.1 LQR steering controller
	5.3.2 PI steering controller

	5.4 Conclusions

	6 System non-idealities
	6.1 Introduction
	6.2 Motor torque
	6.3 Current Loop
	6.4 Angle and angle-rate reading
	6.4.1 IMU modelling and calibration
	6.4.2 angle measurement
	6.4.3 Sensor fusion
	6.4.4 Kalman filtering
	6.4.5 Kalman tuning
	6.4.6 The Bartlett's test
	6.4.7 Application of Kalman Filter to the system

	6.5 Position and Velocity reading
	6.6 Conclusions

	7 Algorithms implementation
	7.1 Introduction
	7.2 Overall architecture and behavior
	7.3 The Matlab environment
	7.3.1 Vehicle parameters
	7.3.2 overall model
	7.3.3 Equilibrium model and controller
	7.3.4 Steering model and controller
	7.3.5 Digital filters
	7.3.6 Simulink simulation
	7.3.7 bluetooth param writer
	7.3.8 Data collection and post-processing

	7.4 The embedded environment
	7.5 The control firmware
	7.5.1 The control algorithm
	7.5.2 data filtering/processing
	7.5.3 state recontstruction
	7.5.4 control signals generation
	7.5.5 errors management and safety strategies

	7.6 Conclusions

	8 Model validation
	8.1 Introduction
	8.2 Velocity and acceleration reconstruction
	8.2.1 position and acceleration

	8.3 IMU model validation and tuning
	8.3.1 datasheet verification

	8.4 Tuning sensor fusion algorithm
	8.4.1 Verification of linear acceleration subtraction
	8.4.2 Finding the best coefficients for complementary filter

	8.5 Validation of the first model
	8.5.1 Steady state
	8.5.2 Reference-following sequence

	8.6 Steering model and controller tuning
	8.7 Equilibrium model and controller tuning
	8.8 Tuning and validation of the evolved (rider's) model
	8.8.1 Controller tuning, for the rider
	8.8.2 Tuning the parameters of "Q" matrix

	8.9 Conclusions

	Conclusions
	Appendix
	A Appendix-A: Lagrangian derivation step-by-step
	A.1 Lagrangian: derivation for the first model

	Bibliography

