/%gyé’

UNIVERSITA DEGLI STUDI DI PADOVA
DEPARTMENT OF INFORMATION ENGINEERING

MASTER DEGREE IN TELECOMMUNICATION ENGINEERING

Using Machine Learning to Turn Optical Fiber
Specklegram Sensor into a Spatially Resolved
Sensing System

Supervisor

Pror. ANDREA GALTAROSSA Author

MARCO FONTANA
Tutor at UNICAN

DRr. Luis RopDricUEZ-COBO

AcADEMIC YEAR 2017/2018






To Danilo.






ABSTRACT

Optical fibers present a remarkable set of characteristics that make them stand out for
sensing applications. They allow geometric versatility, increased sensitivity over existing
techniques, and inherent compatibility with fiber optic telecommunications technology.
Furthermore, the sensors based on optical fibers represent a low cost and efficient solu-
tion for several applications, and they are particularly appreciated for their small size,
robustness, and flexibility. These characteristics had permitted a strong growth of the
importance of optical fiber sensors in the last decade.

Among sensors based on different phenomena and technologies, many authors have
studied the relation existing between external perturbations and the speckle pattern
(also called specklegram) produced in multimode optical fibers. A specklegram can be
created by the propagated modes interfering within an optical fiber. Each point of the
field distribution at the output end of the fiber is the sum of several contributions with
aleatory phases and depends on the fiber stability. Thus, speckle patterns are sensitive to
changes affecting the optical fiber, and they can be analyzed in order to detect different
types of perturbations, such as vibrations, displacements, angular alignments, strain and
even vital signs.

Fibre Specklegram Sensors (FSSs) has been proved as very sensitive systems that can
be implemented using low-cost technologies. However, current state-of-the-art shows
that there are almost no publications about the use of the specklegram in optical fiber
as a spatially resolved sensing system. The main reason could be found in the very high
complexity of this phenomenon, which is affected by a large number of parameters.

One of the primary methods for the detection of a perturbation using an FSSs is based
on the comparison between the specklegrams in time. A modification of the configuration
of the speckles means that the status of the fiber is changed, that is a perturbation
occurred. The use of this approach does not permits to identify the parameters that
have changed in the fiber configuration status. Therefore it is not possible to determine
what kind of perturbation affected the fiber.

Furthermore, the FSSs implement distributed sensing, which means that all the points
along the fiber contribute to determining the specklegram at the output end. Thus, it is
not possible to detect the position along the fiber where the perturbation has occurred,
at least for pieces of fiber longer than a few centimeters.

This work aims to find out whether there is a clear correlation between the distance
at which the perturbation is generated in a fiber optic and the changes that occur in the
outer speckle pattern. In this regard, we set up a system able to detect a perturbation
occurring along the fiber and to recognize where it has taken place.

In particular, we realized two different experiments. In the first one, we generated and
detected perturbations in three distinct positions along the fiber, i.e., at the beginning,
at the end and in the middle of it. In the second one, we revised the same approach
trying to detect perturbations occurred in ten positions. In both cases, we analyzed
the specklegrams at the output end of the fiber using two different machine learning
techniques.

The results show classifications over 99% of accuracy when testing new data under
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certain conditions and the perturbations are occasioned in three different places, while
the accuracy down to 71% when the perturbations are occasioned in ten different points.

While this work can be regarded as a proof of concept, it may afford to give rise to
an attractive and promising research line, leading to developing a new set of sensors for
various application scenarios.

Keywords: Fiber optics, Fiber optics sensors, Polymer optical fiber sensors, Spatial
resolution sensing, Specklegram, Artificial Neural Networks, Deep Learing Algorithms.



SOMMARIO

Le fibre ottiche presentano un insieme di caratteristiche tale da renderle una scelta
eccellente per la realizzazione di diversi tipi di sensori. Esse, infatti, sono facilmente
maneggiabili, dotate di una notevole sensibilita e sono intrinsecamente compatibili con
la tecnologia esistente nel campo delle telecomunicazioni. Inoltre, i sensori realizzati in
fibra ottica presentano costi di realizzazione contenuti e forniscono soluzioni efficienti per
molte applicazioni. In aggiunta, sono apprezzati anche per le loro dimensioni contenute
e per la loro robustezza e flessibilita. L’insieme di tutte queste caratteristiche ha per-
messo ai sensori in fibra ottica di accrescere notevolmente la loro importanza nell’ultimo
decennio.

Tra i vari sensori, basati in generale su fenomeni e tecnologie differenti, molti autori
hanno studiato la relazione che intercorre tra le perturbazioni esterne e lo specklegram
all’uscita di una fibra multi-modo. Uno specklegram puo essere creato dall’interferenza
tra i modi propagati all’interno della fibra ottica. Ogni punto di cui & costituito il campo
elettromagnetico all’'uscita della fibra ¢ il risultato della sovrapposizione di contribuiti
caratterizzati da fase aleatoria e dipende dalla stabilita della fibra. Questa proprieta
rende lo specklegram sensibile alle alterazioni subite dalla fibra e, tramite la sua ana-
lisi, & possibile identificare diversi tipi di perturbazioni, quali vibrazioni, spostamenti,
allineamenti angolari, tensione ed anche parametri vitali.

I sensori specklegram (FSS, Fibre Specklegram Sensor) hanno dato prova di poter
costituire sistemi molto sensibili ad un costo ridotto. Tuttavia, allo stato dell’arte non
esistono pubblicazioni di rilievo riguardanti I'utilizzo dello specklegram come fondamento
di sensori in grado di rilevare la posizione alla quale ¢ avvenuta una perturbazione. La
ragione principale puo essere ricercata nella estrema complessita del fenomeno, il quale
dipende da un numero di parametri piuttosto elevato.

Uno dei principali metodi per la rilevazione di una perturbazione mediante un FSS si
basa sulla comparazione tra gli specklegram in istanti successivi di tempo. Una differente
configurazione dello specklegram all’uscita della fibra segnala un cambiamento dello stato
in cui si trova la fibra ottica, ovvero indica che ¢ avvenuta una perturbazione. Questo
approccio non permette di identificare quali parametri abbiano variato la configurazione
della fibra, rendendo quindi difficile identificare il tipo di perturbazione subito da essa.

Inoltre, gli FSS realizzano una rilevazione della perturbazione in modo distribuito,
ovvero tutti i punti lungo la fibra contribuiscono a determinare la configurazione dello
specklegram che si otterra all’uscita. Questo fatto implica I'impossibilita di rilevare la
posizione lungo la fibra presso la quale & avvenuta la perturbazione, se non nel caso di
frammenti di fibra lunghi solo pochi centimetri.

Lo scopo di questa tesi consiste nel ricercare una possibile correlazione tra la distanza
alla quale la perturbazione ¢ stata generata lungo la fibra ottica e le modificazioni av-
venute nello specklegram. A questo proposito abbiamo disposto un sistema in grado di
rilevare una perturbazione lungo la fibra e di riconoscere dove essa € avvenuta.

In particolare, abbiamo realizzato due esperimenti. Nel primo abbiamo generato e
rilevato le perturbazioni in tre distinte posizioni, ovvero all’inizio, alla fine e nel mezzo
della fibra. Nel secondo esperimento, abbiamo ripreso il medesimo approccio per rilevare
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perturbazioni avvenute in dieci posizioni. In entrambi i casi, 'analisi degli specklegram
all’uscita della fibra e stata effettuata tramite 1'utilizzo di due diverse tecniche di machine
learning (apprendimento automatico).

I risultati mostrano una classificazione la cui accuratezza supera il 99% nel pri-
mo esperimento (nel caso i dati analizzati soddisfino determinate condizioni), mentre
Paccuratezza scende al 71% nel secondo esperimento.

Sebbene il risultato di questo lavoro possa essere considerato un prototipo volto ad
implementare ’approccio innovativo appena esposto, esso puo dare origine ad una linea
di ricerca promettente ed attrattiva, portando allo sviluppo di un nuovo insieme di
sensori applicabili in differenti scenari applicativi.
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INTRODUCTION

This first chapter introduces the context of this thesis and its structure. Starting with a
presentation about the optical fiber sensors and the speckle interferometry, we formulate
the goal of this work. Then, in Section 1.3 we present the thesis structure.

Context

Over the last three decades, optical fiber sensors have attracted substantial attention

and shown to be capable of quantifying a wide range of physical measurands such strain,
vibration, temperature, rotation, acceleration, pressure, electric and magnetic fields,
current, and so on. During this period, the growth of the optoelectronics and fiber
optic communications industries led to a reduction of the components prices and a
substantial quality improvement of these. The expansion of these industrial sectors
permitted to fiber optic sensors not only to cover market segments where the traditional
electronic sensor could not provide a solution, but also an to become competitive with
the existing standard sensors. The advantages of optical fiber sensing include the ability
to be lightweight, of very minimal size, passive, high bandwidth, low power and resistant
to electromagnetic interference.

The core of optical sensing technology is the optical fiber, which structure is repre-
sented in Figure 1.1. It is composed of three main components: the core, the cladding,
and the jacket. The discontinuity of the refractive index between the core and the
cladding confines the electromagnetic field within the fiber, ensuring the transmission of
light through the core with minimal loss. This effect is primarily achieved with a higher
refractive index in the core relative to the cladding, causing a total internal reflection of
light. The outer buffer jacket serves to protect the fiber from external conditions and
physical damage.

JACKET

Fibre axis
CLADDING {n,,)

Figure 1.1: Schematic of an optical fiber.
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Measurand

Optical Fiber Optical Fiber

r v V¥
Source Transducer Detector

Electronic
Processing

Figure 1.2: Basic components of an optical fiber sensor system.

1.1.1| Fiber-Optic Sensors

Fundamentally, a fiber-optic sensor works by modulating one or more properties of a
propagating light wave, including intensity, phase, polarization, and frequency, in re-
sponse to the environmental parameter being measured. The general structure of an
optical fiber sensor system is shown in Figure 1.2. It consists of an optical source (Laser,
LED, etc.), the optical fiber, a sensing or modulator element (which transduces the mea-
surand to an optical signal), an optical detector and processing electronics (oscilloscope,
optical spectrum analyzer, CCD sensor, etc.).

To date, a number of key optical sensors have been reported, and they are employed
in many different application fields. Based on their topology and configuration, Fiber
Optic Sensors (FOSs) can be further classified as:

Single-point The measurements are carried out at a single point, typically located at
the end of the fiber.

Multipoint Consists of two or more sensing regions along the length of the fiber, where
each region can detect the same or a different parameter.

Distributed Use the entire fiber length to sense one or more external parameters. This
is a capability unique to fiber-optic sensors and one that cannot easily be achieved
using conventional electrical sensing techniques.

The ability of multipoint and distributed sensors to simultaneously measure one or
more parameters at different location provides important economic advantages. It allows
a significant reduction of the cost of fiber usage and installation compared to using
multiple single point sensors.

1.1.2 | Fiber-Optic Specklegram Sensors

Another interesting categorization distinguishes between sensor using the temporal or
the spatial content of the light waves. The vast majority of the researches and sensing
solutions belongs to the first category and includes Bragg grating sensors, interferometric
sensors, and intensity-based sensors. A far below number of studies have been done
in exploiting the spatial content at the output of the fiber to investigate its sensing
capabilities.

16
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\‘\Speckle Output Pattern

S

Optical Fiber

Light Source | |

External Perturbation

Figure 1.3: Schematic of the fiber optic specklegram sensor.

Fiber-Optic Specklegram Sensors (FSSs) belong to the second category and are called
spatially modulated sensors or modal modulated sensors. They are based on a different
intensity distribution of the output that results from inter-modal interference between
all guided modes in the fiber. More specifically, each point of the field distribution
(speckle) combines several contributions with different phases and depends on the fiber
stability. When the optical fiber carrying the coherent light is perturbed, the distribution
of the speckle intensities changes, with some speckle becoming brighter, some dimmer,
and some not changing at all. The total intensity of the pattern remains unchanged,
however. An analysis of the changes in the speckle pattern output from the optical fiber
can be performed using a camera and image analysis methods.

In Figure 1.3 is represented a schematic of a fiber optic specklegram sensor. The sens-
ing part of an F'SSs consist of a multimode optical fiber and permits the propagation of a
certain number of modes, depending on its geometrical characteristics and the material
which is made of. In this context, polymer optical fibers (POF) can be an attractive so-
lution, as they have many of the same advantages as conventional silica optical fibers for
sensing application. In general, POFs provide a much lower cost alternative, although
with higher transmission losses. Furthermore, POFs have some additional advantages,
including robustness, ease of handling, high flexibility in bending and high sensitivity to
strain. Polymers also have excellent compatibility with organic materials, giving them
great potential for biomedical applications.

Goals

The goal of this thesis work is to demonstrate that the specklegrams at the output end of

the fiber include the information relative to the position where the perturbation occurred
along the fiber. Furthermore, this information can be extracted using machine learning
techniques and used to implement a spatially resolved sensing system.

In order to prove this concept, we set up a system able to perturb the fiber in a series of
predetermined points along the fiber. As the specklegram is highly sensitive to vibration
and displacements of the fiber, the perturbation was produced by a mechanical arm able
to repetitively ‘touch’ the fiber, maintaining it under the same conditions.

This system was used to produce a very high number of perturbations for each position
along the fiber, in order to obtain a significant amount of specklegrams relative at each
one of them. This data was employed to train the machine learning algorithms, for the
purpose of building a network able to distinguish and categorize them relative to the

17
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position where the fiber has been perturbed.

In particular, we implemented two different supervised machine learning techniques.
The first one was based on an artificial neural network (ANN), consisted of three layers
of neurons of various sizes. The second one was based on a convolutional neural network
(CNN), that provided a structure composed of several intermediate layers between the
input and the output ones.

Furthermore, we also collected a relevant set of data relative to perturbations induced
manually on the fiber. The aim was to verify that the correct classification was due
not just to the similarities introduced by the mechanical generation of the perturbation.
Adding a certain amount of randomness, intrinsically provided by the human way to
touch the fiber, we induced a series of perturbations different between them.

Thesis Outline

The thesis will initially provide a complete theoretical background regarding the speckle-

gram phenomena and the state-of-the-art of the sensor based on it. In particular, we will
report some examples of FSSs for vibration and strain detection, and the multiplexing
techniques available nowadays.

The following chapter will focus on the methods used to analyze and categorize the
specklegrams. Firstly, we will present the concept of neuron in an artificial neural net-
work and the biological links that inspired this approach many years ago. Then, we will
examine the two main approaches tested in this work.

In the Chapter 4 will be discussed the experimental setup, starting from the physical
implementation of the system used to produce the perturbations along the fiber. Then,
we will examine some more practical aspects, as the pre-process of the data and the
configuration of the networks.

Finally, we will present the obtained result in Chapter 5, and we will draw our con-
clusions in Chapter 6.

18
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In this chapter, we introduce the most important concepts related to the speckle sensing.
Firstly, in Section 2.1.1, we will analyze the interferometry, that is the fundamental
phenomena underlying the specklegram effect. Then, in Section 2.2, we will report the
primary models and techniques that permit to relate the perturbations affecting the fiber
with the output’s behavior. Finally, in Section 2.3, we will outline some of the leading
sensing applications of these models and other practical considerations.

Introduction

Among the most known optical metrology methodologies are those based on speckle

patterns. If the light interacts with a surface whose roughness is comparable with its
wavelength, a speckle distribution appears due to the interference of several waves with
statistical phase distribution. In the early years of the laser as an instrumental tool, the
speckle was considered as an undesired optical noise, especially in holographic applica-
tions. However, since the 70’s, many experimentalists have used this phenomenon to
determine a wide variety of physical parameters by interferometric measures.

On the other hand, speckle also appears when laser radiation is launched in a multi-
mode optical fiber. The result of the interaction of several modes produce what is known
as modal noise at the output end of the fiber, that is nothing but a complex speckle pat-
tern. Obviously, this is an undesired effect in an optical communication system, but
it contains information of the spatial state of the optical fiber, which can be used in
metrological applications. A small perturbation of the multimode optical fiber will pro-
duce changes in the spatial distribution of the speckle pattern which can be detected in
several ways.

The use of a CCD camera for speckle measurement was first proposed by Butters et
al. and Macovski in the 70’s. Their technique is known as Electronic Speckle-Pattern
Interferometry (EPSI), and it has been used to obtain a real-time display of the vibration
amplitude of an object. The actual use of EPSI for vibration analysis was initiated by
Ek and Molin in 1971, and it has become common. Nowadays, the reference techniques
have been developed by Spillman [1] and Yu [2].

2.1.1| Interferometry

Interferometry takes advantage of the phenomena of interference of light for measure-
ment purposes. Interference is related to the wave nature of light and is the ability of
two or more coherent waves to extinguish themselves. Light can be expressed as an

19
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electromagnetic wave through the Maxwell equations. The combination leads to the
—
well-known Helmholtz equation, here expressed for the electric field vector E:

*E ¢ 0E

_ 7= _ 2.1
or? 2 ot (2.1)

where ¢ is the dielectric constant, ¢ is the speed of light and where we assume an
electrical neutral matter with no free charges (p = 0, 0 = 0). Since this equation is
linear and Fourier synthesis permits us to generate any waveform, we are allowed to use
the following exponential wave function as the main solution:

E = By expli(p(7) — wb) (2.2)

where Eo is the electrical field vector amplitude, ¢(7) is a space-dependent phase factor
and wt is a time-dependent phase factor. The time-dependent term contains within w
the frequency of the wave v (w = 27v). All detectors react rather on the intensity of
light, which is proportional to the squared amplitude of the electric vector:

I x|E?? = EE"* (2.3)

where the star * means complex conjugate.

The necessary condition for interference is the coherence, that can be expressed in
the spatial or in the temporal domain (or both). Spatial coherence is concerned with
the phase correlation of two different points across a waveform at a given instant of
time. The magnitude of the spatial coherence is related to the apparent dimensions of
the light source: the nearer the light source approaches a 'point source’, the greater the
spatial coherence of the emitted light. On the other end, temporal coherence describes
the phase correlation of waves at a given point in space at two different instants of
time. The temporal coherence of light is dependent upon the frequency bandwidth of
the source: the more nearly the output of a source approximates monochromaticity, the
more temporally coherent is the emitted light. In practice, a high degree of temporal and
spatial coherence is achieved by using laser light. The high degree of temporal coherence
arises from the laser’s monochromaticity. The high degree of spatial coherence results
since the wavefronts in a laser beam are in effect similar to those emanating from a very
distant, single point source.

In the case of superposition of two (or more) coherent waves El and ._E)g, the resulting
electric filed vector E, is the sum of the contributing single waves:

Er = El + EQ (24)
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E=E+E E?

Figure 2.1: Constructive and destructive interferences.

and the time dependent terms in the intensity disappear:

Ix|E?=|E, + Es? (2.5)
= (E\ + E»)(E, + Ey)’ (2.6)
— E\E} + E2E; + B E; + ETE» (2.7)
= I + Iy + 2v/11 15 cos[p1 (7)) — o 7)] (2.8)
= I,(1 +mcos(Ayp)) (2.9)

with

Iow=1 + 1y (210)
Ap = 01 (7) — pa(7) (2.11)

m— 2\/ IIIQ _ Ima:r - Imzn
Il + IZ Ima:p + Imzn

I,y is called background intensity, m is the contrast or modulation, and Ay is the phase
difference.

When two waves are in phase, that is Ap = 0 (mod 27), the interference is said to be
constructive and the resulting intensity is maximal. When two waves are “out of phase”,
that is Ay = 7, the interference is said to be destructive, and the resulting intensity is
minimal. An example of interferometric fringe pattern is reported in Figure 2.1.

The two waves propagate along two different paths until they are combined again
causing interference. The phase difference can be written as:

2nAL
A

Ap = 2nvAt = (2.13)
where At is a time delay and AL is an optical path difference. So, the phase difference
between the two waves is directly related to a time delay or an optical path difference
between the two waves.

2.1.2 Propagation in a Multimode Fiber

Mathematically, according to wave theory, a mode is an allowable electromagnetic field
that fulfills Maxwell’s equations and boundary conditions. The optical fiber is a dielectric

21



2. Specklegram Sensing

High-order Mode (longer path) Cladding

V \ / \ Core A)(lal Mode (shortest path)
\/én_f__--—--- Low order Mode (shorter path)
\ Cladding

Figure 2.2: Ray propagation in a multimode fiber.

waveguide whereby the light can be transmitted by the process of total internal reflection.
An optical fiber can support the propagation of one or more modes, according to its
dimensions, the material which is made of, and the frequency of the light through it.
According to Maxwell’s equations, modes traveling in an optical fiber are transverse.

Assuming the dimensions and the imperfections of the optical fiber much greater
then the light’s wavelength, we can model the propagation of the modes using the ray
theory. From this point of view, modes are simply the several paths that light might
travel in a fiber. The fundamental mode travels along the axis of the optical fiber. The
higher-order modes have a low incident angle, so light travels a greater distance than
the low-angle rays to reach the end of the fiber. A schematic representation of these
concepts is depicted in Figure 2.2. Based on the ray model, each mode has a different
phase velocity caused by different optical path and each mode has a different spatial
position at the output of the fiber.

The number of modes capable of propagating in a fiber can be computed defining the
Normalized frequency (V'), expressed as

2ma 1
V= T(m —ng)? (2.14)

where n1 and ng are, respectively, the refractive indices of the core and the cladding, a
is the core diameter, and A is the wavelength of light.

The Numerical Aperture (NA) of an optical fiber is defined as NA = (n; —ng) hence
equation (2.14) can be rewritten as

V= %TCLNA (2.15)
Using the normalized frequency, for a step-index fiber, the number of modes M can

be approximated by

2
M = V? (2.16)
and, for a graded-index fiber
2
M = ‘1 (2.17)

The speckle pattern is formed by interference between different propagation modes.
The amount of speckles is approximately equal to the number of modes M, which is
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2. Specklegram Sensing

given in equations reported above.

As seen from the equations (2.15), (2.16), and (2.17), the fiber with a large core
diameter and a high NA shows a greater number of speckles. Furthermore, the increase of
the wavelength of light reduces the number of speckles. Finally, a step-index fiber exhibit
more speckles than a graded-index fiber, because from the equations (2.16) and (2.17),
half of the modes supported by the step-index fiber cannot be propagated in the graded-
index fiber.

Speckle Phenomena and Analysis Techniques

In this section, we will report the main aspects that affect the speckle phenomena and
the most important analysis techniques. It is important to note that some of these
methods primarily use the spatial intensity content of the specklegram, while others use
the complex amplitude sensing. Despite the complex amplitude approach gives better
result regarding sensitivity, our analysis will be set up only using the spatial intensity
content, as it permits a simple and low-cost setup able to demonstrate the feasibility of
our technique.

2.2.1 Specklegram Sensors

When the light is launched into an optical fiber, a certain number of modes will be
propagated and will reach the output end of the fiber. These modes will overlap and
interfere in a quite complex way, producing a speckle pattern (also called specklegram)
at the output of the fiber. This is a well-known phenomenon in optical communication
systems and is known as modal noise. It is an undesired effect in data transmission but,
from the sensing point of view, it provides the spatial information of the fiber status.
When a perturbation occurs along the fiber, the speckle pattern changes in a tricky way,
expressing the new state assumed by the optical fiber. A hologram forms at the output
of the sensor with the speckle field, and the fiber status information can be recorded
in a hologram. The sensors based on the analysis of the speckle patterns are called
Fiber-Optic Specklegram Sensors (F'SSs).

FSSs are among the sensors which are based on exploiting the spatial content. Their
operating principle is based on intensity distributions at the sensor output, which result
from inter-modal interference between all guided modes in the fiber. Spatial information
can be retrieved by the analysis of change of speckle patterns distribution using image
processing techniques with statistical features. Due to the use of statistical properties
of speckle patterns at the sensor analysis, these sensors were also named as fiber-optic
Statistical Mode Sensors in some researches of the literature [1].

FSS can be divided into two groups as holographic and non-holographic specklegram
sensors. In holographic techniques for the use of a complex amplitude distribution, a
hologram is exploited to capture a reference wavefront for the unperturbed fiber status.
The hologram is utilized as a filter to detect the wavefront variation due to fiber status
change.

In non-holographic techniques, the intensity content of the speckle field can be mea-
sured by detecting the change of statistical properties between perturbed speckle in-
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2. Specklegram Sensing

Figure 2.3: Photograph of whole speckle pattern captured by a CCD camera.

tensity pattern and unperturbed speckle intensity pattern. Holographic FSSs are more
sensitive than non-holographic FSSs due to the inclusion of phase information.

When the output from a multimode optical fiber is projected on a screen, a uniform
circular pattern is observed at the output end of the fiber. The characteristics of the
specklegram, like dimension and quantity of the speckles, are related to the number of
modes propagated, as reported in the previous section. Multimode fibers are capable of
guiding many modes which have different phase velocities. Propagated modes interfere
depending on the source coherence.

The sensitivity of specklegram sensors is affected by properties affected by each element
of the sensing system: the optical source, the optical fiber, and the detector. The first
one determines the characteristics of the transmitted light, as the degree of coherence
and monochromacy, in addition to the power and the frequency of the transmitted light.
The optical fiber is the sensitive part of the system, which means that its physical
characteristics will determine the ways of interaction with the environment. Different
materials can provide distinct degrees of flexibility and different responses to stresses.
Finally, the detector has to deal with the majority of the parameters, from the contrast
ratio of the received signal to the maximum number of samples per unit of time, if the
detection is realized in the digital domain.

The photograph of a whole speckle pattern captured by a CCD camera at the output of
a specklegram sensor, whose light source is a laser, is shown in Figure 2.3. If the optical
source is coherent, the pattern becomes granular containing host of speckles of changing
intensities. Alternatively, if incoherent optical source is used, a smooth distribution of
intensity takes place within the pattern. More sensitive sensors were accomplished with
more coherent light sources.

Nowadays, CCD cameras are usually used as the detector for the fiber-optic speckle-
gram sensors, because they provide an excellent trade-off between sensitivity and cost. It
is possible to record the change of speckles over time and analyze them utilizing image
processing techniques. The picture of this speckle pattern is presented in Figure 2.4,
where (a), (b), and (c) are taken before, during, and after the perturbation, respectively.
The image was obtained using a laser source at 638 nm wavelength as the optical source
and a graded-index multi-mode fiber (about 6 m length) with core/cladding dimension of
50/490 pm. As we can see from the Figure 2.4, after the perturbation the fiber returns to
the original state, leading to the speckle pattern obtained before the perturbation. The
distribution of speckles varies slowly over time; however, the intensity of the total pat-
tern remains constant. Then, it is possible to establish a reference specklegram related
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(a) (b) (c)

Figure 2.4: The photographs of local speckle pattern (a) before, (b) during and (c) after a
perturbation captured by a CCD camera.

‘- Speckle before distortion
Speckle after distortion

Figure 2.5: The graphical representation of the speckle pattern before and during the pertur-
bation due to mode redistribution.

to the unperturbed fiber and use it to detect pattern changes due to mode redistribution
associated to various types of perturbation (stress, temperature, etc.).

Graphical representation of the speckle pattern before and after the perturbation is
illustrated in Figure 2.5. Perturbation causes a change in the refractive index of the
fiber, as well as a tiny variation in length. The first effect produces small phase changes
that affect the speckle pattern. Moreover, the slight variation in length alters the phase
changes in the multi-mode fiber. The combination of the two effects induces changes in
the distribution of the speckles, resulting in intensity variations in each speckle. Using
some of the approaches that will be presented in the next sections, these variations can
be analyzed to relate the change in the speckle pattern with the characteristics of the
perturbation occurred.

2.2.2 [ Image Difference Approach

For the analysis of F'SS, the mathematical models for speckle intensity variations have
been developed in [1] and [2]. Even though it is difficult to predict the speckle dis-
tribution, an approximate relationship between the perturbing factor and the speckle
intensity distribution can be developed for which the perturbation of the fiber can be
determined. Assuming that coherent light is used in a multimode optical fiber, the the-
ory of the operating principle of optical fiber specklegram sensors can be obtained from
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the spatial intensity change.
If I}, is the intensity of the k" speckle, the total intensity is given by

N
I= Z Ij; = constant (2.18)
k=1

where N is the total number of pixels present.

Now, let the initial fiber status be Sy assuming that all the modes are equally exited.
The output light field at a given position of the fiber speckle filed can be considered as
the contribution from all the modes, for which the complex phasor of the mth mode at
point @ in status Sy can be written as

Uom, (x, y) = aom (xa y) eXp[j¢0m (l’, y)] (219)

where (z,y) is the spatial coordinate of the observation plane that is perpendicular to
the optical axis of the fiber. Because the wave filed at point @) is the summatiion caused
by M modes of the fiber, it can be written as

M M

z,y) = Y tom(z,y) = D aom(z,y) expljdom(z, )] (2.20)
m=1 m=1

where M is the total number of modes. When the status of the fiber changes as a result

of perturbation, the speckle field emerging from the fiber will also be changed. Suppose

that a new fiber status S is established (as a result of perturbation); then the mth mode

complex phasor becomes

m(z,Y) = [aom(2,y) + Aaw] exp{j[dom (2, y) + Adp]} (2.21)

The wave filed at point () would be

M
Uz, y) = Y um(z,y) Z aom (2, y) + Aam] exp{jldom(z,y) + Adm]}  (2.22)
m=1 m=1

where Aa,, and A¢,, are the corresponding amplitude and phase variations, respectively,
caused by the fiber-status changes. Defining the intensity as I(z,y) = |U(z,y)|?, the
intensity deviation between status Sy and status S at @ can be written as

AI(.’L’,y) = I0(1:7y) - I(l‘,y) = ’Uo(l‘,y)‘Q - |U(l‘ay)|2 (223)

where Iy and I are the intensities at point () caused by the initial and the status changes
of the fiber, respectively. For simplicity, we shall drop the (z,y) coordinate from our
expressions. By substituting Equation (2.20) and (2.22) into Equation (2.23), we have

1

M
Z Z Aomaon eXp (¢Om - (bn)]

m=1 n=m+1
M-1 M
— Z Z (CLOm + AClm)<a0n + Aan) exp[j(¢0m - ¢On + A(bm - A¢ﬂ)] (2'24)

m=1 n=m+1
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Because the phase variation dominates the speckle filed variation compared with the
amplitude variation (assuming a lossless waveguide), Equation (2.24) can be written as

M-1

M
Z 4a0m0n sin ¢0m ¢0n + (A(bm - A¢n>/2]

m=1 n=m+1

X sin[(Adn — Adm) /2] (2.25)

in which Aa,, ~ 0. By integrating over the speckle field, we can write the M SV as

MSV://)AI‘dxd:r

M-1 M
IS 3 st st (b0 A2
m=1 n=m+1 (226)

X sin[(Ady, — Ady)/2]|dxdy
For simplicity of notation we let
Vmn = Gm — ¢ Athpm = Adp — Adp, (2.27)
in which we see that
KL < (2, y) < dom(z,y) KAL) < Atpmn < Athoy (2.28)

where L is the length of the fiber and k is the wave number of the light source.
Now we assume that the fiber is perturbed by a strain AL/L; then we have

Atbum = Adp = Ay = (n — m) Adbors /M (2.29)

in which we assume that the variation Ay, is uniformly distributed in the interval

(0,%onr), where
Atorr = kENAL(1/ cosbpr — 1) (2.30)

where ) is the incident angle of the Mth modal wave field with respect to the fiber
axis, 1 is the refractive index of the fiber, and £ represent the strain optics correction
factor, which has a typical value of ~ 0.78. From Equation (2.30) we see that, as the
number of excited modes increases, the more rapidly the modal phase changes. Thus,
the sensitivity of the sensing system would be higher.

Because sin A, = Ay (for a small phase variation), by substituting Equation (2.29)
and (2.30) into Equation (2.26) we have

MSV //‘ il iwj 2a0maon<2;>fnL

m=1 n=m+1

« < LI 1) (n— m) /M sin () |dady  (2.31)

cos O

where A is the wavelength of the light source and L is he length of the probing section.
From relation (2.31) we found that M SV would be linearly proportional to the fiber
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perturbation. As the number of modes increases (e.g., several hundreds of modes), 0,/
can be approximated by

0 = arcsin (sm 00) (2.32)
Ui

where 6. is the critical angle of reflection and sin 6. is the N.A. of the multimode fiber.
We note that as the N.A. increases, Ay would not be significantly affected by the
increase of the modes. Instead, 6, is proportional to the external strain variation and
the N.A. of the fiber.

2.2.3 | Image Correlation Approach

In this section, we report another approach originally described in [4], which uses the
intensity inner product of the speckle fields. In other words, by taking the intensity
speckle patterns before and during the perturbation of the fiber, the intensity inner
product between the two speckle patterns can be calculated. Since the fiber speckle field
is caused by the modal phasing of the fiber, the intensity inner product would be highly
sensitive to the fiber status changes.

As already done in the previous section, let’s assume that a laser beam is launched into
the sensing fiber and all the modes in he fiber are equally excited. Using the definitions
of intensity given in the previous section, that is I(x,y) = |U(z,y)|?, we can write the
intensity inner product of the speckle fields as

IPC = //Io(w,y)f(w,y)dxdy
M M M M

- // Z YD D domaci(aci + Aagi)(agj + Aaoy) expli(domn + Poij + Adij)ldzdy

1=0 j=0 m=0n=0
(2.33)

which can be shown as

M M
IPC =" Bjjexpli(Agy)] (2.34)
i=0 j=0

where

M M
Bi; = // Z Z AomGon(Goi + Aaoi)(aoj + Atoj) expli(Gomn + Goij)ldzdy — (2.35)

m=0n=0

The normalized intensity inner product can be calculated as
S To(z, y)I(x, y)dxdy

[ff 1§ (x, y)dzdy [[ I*(x,y)dzdy

NIPC =

5 (2.36)

We see that if the sensing fiber is not perturbed, the two speckle patterns are virtually
identical, for which we have normalized inner product (NIP)=1. However, if the fiber
is perturbed, the modal phase deviates. It produces a different speckle field that causes
the NIP to reduce. One may note that the smallest NIP would be approaching zero.
However, NIP will never go to zero, since the intensity speckle distribution is a positive,
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real quantity.

It is important to note that complex speckle field detection would be far more sensitive
than this intensity speckle field. Comparing the results reported in [4] with other works
of the same authors, we can observe that the sensitivity obtained with a coupled-mode
analysis is about ten times greater than what has been achieved with the inner-product
technique.

2.2.4 First and Second Order Moment Statistical Features

Recently, new statistical features were proposed in order to improve FSS’s performance [5],
namely first and second order moments.

If I(z,y) is the output intensity pattern, z-mean and y-mean values are defined as

Yy rl(z,y) ey yl(z,y)

Ly = and fy = 2.37
Sy I(2,9) Yy () (2.37)
The pth order radial moment is
ZCE y[(:E - /Jx)z + (y - My)Q]p/zl(‘x’ y)
y = E{rP} = : 2.38
p=Hl] S 100) (233
Using (2.38), first and second moments can be expressed as
o — Yuyl@ = p12)? + (y — py)*1V?1(2,y) (2.30)
Py (@, y)
e Seulle = 12+ (v~ ) 9)
eyl(@ — pe)” + (y — py) [ (2, y
[y = =2 Y (2.40)

Zx,y I(:Ea y)

First and second order moment statistical features provide a better result in some sensor
characteristics for image processing of speckle patterns [6]. So, they can be used as alter-
natives for specklegram sensor design for the applications where sensor characteristics
linearity and precision are more important. Moreover, the first and the second-order
moments are normalized features which do not depend on the initial output pattern.
Hence, they are expected to be more robust in the presence of light source fluctuations.

Moreover, in [7] Efendioglu et al. exploited the nonlinear mapping ability of the
Artifical Neural Networks (ANNs) to extract the statistical features coded in the speckle
patterns and to design a stress sensor. This approach will be taken up in the next
chapters and will be the main focus of this thesis.

2.2.5 Comparison between Different Statistical Features

Statistical features introduced in the previous sections can be used to design statistical
mode sensors. In [8] the authors proposed to compare these feature regarding precision,
non-linearity, and hysteresis of the statistical mode sensors. These characteristics can
be considered as a sort of performance indices, taking into account different desirable
properties of a generic sensor.
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Precision Relates to the degree of reproducibility of a measurement. That is, if the
same effect is applied, an ideal sensor will output the same value every time. The
precision of a sensor is defined as

el
vz,

where e, is the root-mean-square (RMS) value of the fluctuations of the sensor’s

Precision = (2.41)

output (given a constant magnitude of perturbation), and y,, is the average of the
estimated force values for the fixed externally applied force.

Non-linearity The linearity of a sensor is expressed as the extent to which the actual
measured value departs from the ideal curve, which is the least squares line equa-
tion obtained from experimental data. Non-linearity can be calculated in terms of
the parameters of the least squares line equation as follows:

len]

T (2.42)

Non — linearity =
where F' is the magnitude of the applied effect, and e, is the deviation between
the least squares line and the actual force F'.

Hysteresis A sensor should be capable of following the changes of the input regardless
of which direction the change is made. The difference in the output of the sensor
for a given input value is called hysteresis. Referring to Figure 2.6, the calculation
of the hysteresis occurs at X,,,, which is the mid-point of the curve. This point can
be located using the formula:

Xm =

X _
( = + Xomin (2.43)

2

After the midpoint is located, the hysteresis can be calculated as follows:

Ymn - Ymp

- 2.44
Ymax - szn ( )

Hysteresis = 100’

In [8], the authors set up a series of experiments applying a varying force to the top of
a metal plate, with the optical fiber passing under it. Measurements were performed by
adding 0.5 kg of load at a time until 4 kg and then decreased in the same steps until 0
kg.

Figure 2.7 shows the statistical features versus applied force, for each case. The results
are also reported in the table below.

Feature Precision error Non-linearity Hysteresis
First moment 0.1547 3.3984 31.0746
Second moment 0.1215 2.4970 30.7947
Correlation 0.3661 8.5623 20.5548
Differencing 5.6160 197.3918 16.8319
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As seen from the tabulated values, first and second order moment turns out to be the best
features concerning precision error and non-linearity values. More precisely, the second
order moment results to be the best feature regarding these two characteristics. However,
first and second order moments are the worst techniques concerning the hysteresis, as
it is shown in Figure 2.7(c) and 2.7(d). On the other hand, the differencing feature
provides the best value in terms of hysteresis, but also the greater non-linearity value.
Finally, correlation exhibit more linear trend respect to the differencing technique, and
worse hysteresis value.

In conclusion, all these four features present advantages and disadvantages, depending
on the considered characteristic. The implementation of a specific sensor should take into
account what are the required characteristics of the system, and choose the appropriate
feature regarding these data.

State of the Art of FSSs

Specklegram sensing has been researched for many years, and several parameters have
been successfully measured using F'SSs. In this section, we will investigate just two im-
portant sensing types of FSSs, regarding detection of vibration and strain. These are
the most researched fields, which produced the most interesting applications. Our ex-
perimental approach will refer to these sensing techniques and capabilities. On the other
hand, other parameters can be sensed with an FSS, as microwave power, temperature,
refractive index, angular alignment, wavelength, assessment of hand movements, and so
on.

Finally, the last section will report two interesting techniques for multiplexed-sensing
implementation. As will be explained, nowadays the possibilities in this sense are
strongly limited. Our work aims to offer a possible alternative to these methods, en-
abling the capacity of sensing a higher number of points at the same time on a single
fiber. Specklegram sensing has been researched for many years and several parameters
have been successfully measured using F'SSs. In this section we will investigate just two
important sensing types of FSSs, regarding detection of vibration and strain. The most
notable applications will be reported also.

2.3.1 | Vibration Sensing

The high speckle sensitivity to external perturbations has been studied for vibration
sensing purposes. Although having a very high sensitivity increases the final noise, it
also allows the FSS application to measure extremely low perturbations.

FSS for optical fiber vibration sensing has been demonstrated in [1]. Spillman et
al. implemented a newly designed sensor projecting the pattern at the output end
of the fiber on a CCD array, and digitally processing observed changes in the intensity
distribution. They developed a mathematical model similar to what already discussed in
subsection 2.2.2, but based on the distinct contribution given by the self-mode interaction
and the so-called mode-mode interaction. Assuming that the perturbation F'(¢) is small,
the outcome of the Spillman’s analysis is the relation between the intensity of each
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speckle I; and the two types of interaction, described by the following equation:
I; = Ai{1 + Bj[cos(d;) — F(t)p;sin(d;)]} (2.45)

where A; represent the self-mode interaction, and F'(t), B; and §; define the interaction
between the modes. Particularly, F'(t) is the external perturbation of the fiber, which
modifies the index of refraction or the length of the fiber or both. The argument of
the harmonic functions §; describes the difference in the propagation constant and the
random phase of all the pairs of modes considered within the same speckle intensity I;.
A;, B;, ¢; and §; are constant values for any given i.

The result is identical to the result that would be expected as the output from an indi-
vidual interferometer in conditions of small perturbation. Therefore, the speckle pattern
can be considered as an array of interferometers subjected to the same perturbation
simultaneously. To extract the perturbation information F'(¢), a differential processing
method was proposed and applied to Equation 2.45. The sum of the absolute value of
the changes in all the signals can be described by:

N

Alr =Y

i=1

. [é C; sin(&)]] C”;Et)’ (2.46)

In Equation 2.46 the term within the brackets sums all the components of the speckle
pattern, so the sum will remain constant despite local variations (the total energy is
maintained). Equation 2.46 can be written as:

dIr dF(t)

As demonstrated by experimental tests, the dependence between the perturbation and
the variation of the intensity patter in linear. This property was used to detect personnel
walking over sensing fiber arranged in a serpentine pattern in an indoor environment.
In particular, the differential analysis technique discussed above permits to determine
the exact number of steps, as demonstrated in [9]. Another very interesting application
was proposed in [10], where an FSS intrusion system is presented.

In [11] the differential process described above is developed taking into consideration
the variations occurred in the speckle between two consecutive specklegrams (see Fig-
ure 2.8). Although the dynamic range of this approach very limited [12], that is the
interval where the output is truly proportional to the perturbation is quite modest, it is
perfectly valid when the capturing sampling frequency is high enough (e.g., video stan-
dard). Given that this method is only related to the current and previous specklegrams,
all along term drifts (such as temperature) are removed from the sensor system.

In [13] this approach was proposed to monitor the health of structures as a non-
destructive evaluation (NDE) technique. Indeed, the damage to the structures can be
detected by analyzing the vibration signals. Since the optical fibers can be embedded
within composites, they provide a unique opportunity to monitor vibration. Further-
more, optical fiber sensor can also provide the unique capability of long sensing lengths.
Finally, they are the ideal choice for this type of application since they can be imple-
mented with very low-cost components.
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Figure 2.8: Two consecutive specklegrams and their differential processed image.

Another interesting application was presented in [14] [15], where a specklegram sensor
was used to detect vital signs. Indeed, F'SSs have enough sensitivity to detect the pressure
variation on wrists and the changes in the chest diameter during the breathing process.
In [16], the authors demonstrated that these physiological parameters can be obtain
simply placing the fiber between mattress and the bed sheets, in a non-contact and
continuous monitoring modality. This feature implies the ability to distinguish between
the vibration due by the vital signs and the signal produced by the movements of the
patient lying on the bed. Then, it is also possible to monitor the sleep quality or avoid
the formation of pressure sores in mobility-restricted patients [14].

Finally, another interesting approach has been tested in [11], which relies on the distri-
bution of the modes in the speckle pattern. Using the approximation of the propagation
within a multimode fiber described by the ray model, we can state that low order modes
(whose optical path are closed to the longitudinal fiber axes) will interfere centered in the
middle of the speckle pattern. On the contrary, high order modes will produce speckle
dots (or darks) all over the output speckle pattern. Thus, when the number of modes
propagated by the fiber is high, statistically, the result of the interference between the
higher nodes will be projected to the outer part specklegram. Then, we can state that
this part has the highest sensibility since the higher modes are the most influenced by
the perturbation to be measured. Otherwise, the speckle center is mainly driven by low
order modes that are less sensitive to external perturbations.

In [11] the author adapted the differential processing scheme using rings of different
radius instead of the whole speckle pattern. As expected, the results show that as the
radius increased, the obtained sensitivity also increases, because these areas are mainly
influenced by higher order modes, which are also more exposed to external perturba-
tions. On the other hand, the sensitivity enhancement can also add extra noise to
the measurements, because the environment variations have more influence in the final

sequence.

2.3.2 | Strain Sensing

Strain measurement was reported in [12], where the authors proposed a method based
on the normalized absolute speckle-intensity variation (NSIV), defined as:

[, |AIldxdy 1
= NSIV = 2120020~ g 2.4
Y S1V 1] Tdwdy C’S Vv (2.48)
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where SIV is the absolute speckle-intensity variation, and C' = [[, Idzdy is the total
intensity of the speckle field, that is constant under the assumption of losses waveguide
and light energy conservation. The difference between propagation constants AS,,; =
Bm — B is a function of mode numbers m and [, and refractive index n. Then, a
proportionality constant C.,l can be introduced and the AfS,,; can be redefined as:

AL = nCoy (2.49)

where C,,,; describes the difference of the propagation constants between the mth and (th
modes and simplifies the relation between AfS,,; and the refraction index n of the fiber.
For any given m and [, C},; is a constant. Variation of propagation constant difference
can be written as:

Expressing 0(nL) as
0(nL) =dnL+ dLn (2.51)

we obtain the following relation:

(5(AﬂmlL) = leneffLa? (2.52)
Then, we can express 1, as
YnerrLe
Y = %Dn (253)

where D,, is constant for any given system state with M modes. Therefore, the NSIV
is linearly proportional to the strain e, the length of the sensing multi-mode fiber L
and the effective refractive index n.rr. The experiments have demonstrated that the
sensor based on this model have good linearity and larger dynamic range respect to
other studies [2]. However, the proposed model is still based on the assumption that the
perturbation 0(ASyL) = CpunessLe is small, i.e. Le must be a small value.

In other works, some photorefractive materials are employed to stabilize the processed
specklegrams [17] [18]. This effect can be applied to reduce the extra noise due to the
typical oversensitivity of specklegrams and to extend the dynamic range for slow varying
perturbations. Despite the adaptation capabilities of the proposed schemes, the setup is
not suitable for low-cost applications.

In [19] Rodriguez-Cobo et al. extended the dynamic range of the strain specklegram
sensor by a new processing scheme. The designed algorithm employs the morphological
differences between two specklegrams under very different perturbations to determine
key-specklegrams (KSs) as reference points. These KSs are determined during the sensor
calibration ramp and they are associated with a strain value, establishing different local
reference points corresponding to the different modal states.

The morphological processing begins with the conversion of the specklegram to a
binary image and the application of a circular averaging filter to reduce the sharpness
of the obtained dots, lowering the total amount of noise. Then, a list of sorted spots
is computed, ordering them by area. The larger spots will constitute the geometrical
representation of a specklegram, and they define its high-level morphological structure.

Once obtained the spots’ list, the comparison between two speckles can start. The
spots with larger areas of both specklegrams are compared to the closest one taking into
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Figure 2.9: Morphological comparison between two specklegrams of different modal states.

account their position. Firstly, it is established the correspondence between the spots of
the two speckle patterns. Then, the difference between the areas of the corresponding
spots is calculated and normalized against the total area. This value can be thought
as an index of similarity of the modal states represented in the two specklegrams, and
it is based on the amount of coincident light speckles. A high error value indicates a
completely different bright speckle distribution, what implies a different modal state.

In Figure 2.9 two specklegrams of different modal states are depicted. In the two
images, the five most relevant spots are highlighted with circles, while the matched
spots between the two specklegrams are marked with crosses. In this case, most of the
bright speckle are is not coincident, so the obtained value is high, indicating a different
modal state.

The intensity variation between two specklegrams can be defined as:

N
AIT{’L.7 .7}

(2.54)

nm’

KNM

where K is the full scale value of the specklegram colormap and py, ., corresponds to
the pixel of the n,m position of the specklegram ¢ or j. Applying this notation to
Equation 2.47, the perturbation value of the i-th specklegram under a weak perturbation
having the initial specklegram as reference can be obtained with:

AF{i} = %AIT{O, i} = LoAI{0, 4} (2.55)

being Ly the proportionality constant (slope) between the speckle intensity variation, i.e.
between the i-th and the first specklegram. During the sensor calibration step, different
KSs are detected, and their associated slopes (Lgg()) and strain values (Sgg)) are
also saved. Consequently, when a new specklegram is available, I(i), it can be evaluated
regarding its closest KS under the weak perturbation assumption. The absolute strain
value can be obtained as

Strain(i) = AF{i} = Sgg@) + d(i) Lgsa Ir{KS(i),i} (2.56)

where KS(i) denotes the KS associated with the I(7) specklegram, Skg(;) and Lgg(;)
denote the strain value and slope correspondent to the KS associated with the i-th
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Figure 2.10: Two lasers are launched into two optical fibers and combined using a coupler.
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specklegram and d(i) € [—1,1] describes the intensity variation direction (positive or
negative).

The experimental results showed good accuracy, exploitable in many structural appli-
cations. The dynamic range results strongly enhanced, and it is limited in practice only
by chance to have two equals KSs (that is very low).

The greatest error was detected during a transition between two references KSs. Nev-
ertheless, the results indicate that this approach can deal with the noisy nature of the
F'SSs since it provides a good response also out of the calibration points. In addition, the
maximum strain error is obtained during the transition between KSs, when distances
to both references are larger, but this error is not proportional to the dynamic sensor
range.

2.3.3 | Multiplexing Techniques

FSSs, in combination with CCDs, have been proved as a very sensitive solution at re-
duced costs. However, a simple FSS system employs a CCD for each sensing point, what
limits their application to multi-point sensing scenarios. In [20], the authors proposed dif-
ferent multiplexing schemes to overcome this limitation, particularly wavelength-division
and space-division techniques.

Wavelength Division Multiplexing (WDM) This approach is based on the RGB filters
adopted in the modern CCD color cameras. Using three different lasers, each
one matched with one of the RGB colors, it is possible to have three simultaneous
channels in the same optical fiber and using just a single CCD sensor. The channels
are isolated at the receiver by the RGB filters, permitting the independent analysis
of each one of the output specklegrams. Omne of the possible drawbacks of this
technique regards the structure of the modern RGB filters. Commercial CCDs
usually employ correlation patterns that can produce cross-talk depending on the
chosen laser sources, which can introduce some noise. However, Rodriguez-Cobo
et al. demonstrated that by choosing suitable laser sources, this noise can be
insignificant, achieving three independent channels. A schematic representation of
a sensor composed of two sensing areas is depicted in Figure 2.10.

Space Division Multiplexing (SDM) This technique employs the entire CCD area by
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Figure 2.11: Five speckle patterns projected to the same CCD area.

projecting different speckle patterns over the whole CCD. In order to obtain reliable
measurements, it is important that the total intensity of the speckle pattern must
remain constant. This condition limits the number of possible multiplexed chan-
nels since the whole size of specklegrams captured must contain enough speckles.
Therefore, the area of each CCD section will be limited by the specklegram diame-
ter and also by the resolution of the CCD. Figure 2.11 shows an example where five
sensing areas have been created into the same CCD by projecting specklegrams of
different multimode optical fibers.
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MACHINE LEARNING TECHNIQUES

This chapter is an introduction to machine learning, with a particular focus on neural
networks. In the first section, we will define the concept of learning associated with the
computer science. Then, in Section 3.2, we will present the characteristics of Artificial
Neural Networks (ANNs) and their biological motivations. Finally, in Section 3.3, we
will introduce the backpropagation algorithm, and some important aspects related to the

learning process.

Introduction

In this section, we define what machine learning is, and we present the main approaches

developed so far in this field. Furthermore, we report a brief history of this topic, in
order to provide a complete view of its development and to deal with the evolution of
its terminology, which has not always been linear and coherent.

3.1.1 | Machine Learning Basics

Pattern recognition has been a fundamental field of research in the past decades, and it
is going through an exceptional development in the last years. The main purpose of this
type of analysis is concerned with the automatic detection of regularities coded into data
through the use of computer algorithms. The information extracted from the raw data
permits to make decisions and take actions, such as classifying the data into different
categories or predict the behavior of a certain output.

In [21] Murphy defines machine learning as a set of methods that can automatically
detect patterns in data, and then use the uncovered patterns to predict future data or
to perform other kinds of decision making under uncertainty.

There are several ways to design a learning algorithm. Nevertheless, they are usu-
ally divided into two main approaches, called supervised and unsupervised learning.
In the first one, the algorithm receives as input a labeled set of input-output pairs
D = {(x;,y:)},. Here D is called the training set, and N is the number of training
samples. The final goal is to detect in an autonomous way a mapping from inputs x to
outputs y, acquiring the ability to predict or classify the data. The algorithm consists of
a comparison between the prediction y provided by the system for the input x, and an
update of the system’s structure in order to obtain a more appropriate output. In gen-
eral, x; could be whatever kind of complex structured object, such an image, a speech,
a video, a time series, a text message. Similarly, the output can assume whatever kind
of format, but most methods assume that y; is a categorical variable from the finite set,
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yi € {1,...,C}, or that y; is a real-valued scalar. When y; is categorical, the problem is
known as classification or pattern recognition, and when y; is real-valued, the problem
is known as regression.

In the second approach (unsupervised), the algorithm is provided only with inputs,
D = {x;}}¥, and the goal is to find ‘interesting patterns’ in the data. Unlike the
supervised case, this learning approach is not a so well-defined problem, since it is not
clear what kinds of pattern to look for, and which error metric can be assumed as the
reference one.

One of the main aspects that affect the performance of machine learning algorithms
is related to the representation of the data under analysis. The earliest techniques were
based on the execution of a learning algorithm on a set of features extracted from the
raw data. The choice of the right feature set was usually crucial for the performance of
the system, and they had to be hand-designed. However, in many cases, it was difficult
to know what features should be extracted. Nowadays, this approach is still in use, but
in the last decade a new solution has taken hold. It consists of using machine learning to
discover not only the mapping from representation to output but also the representation
itself. This approach is known as representation learning and often provides better
performance than hand-designed based ones. Furthermore, it allows a faster adjustment
of the system for new tasks, with minimal human intervention.

As much it is necessary to extract high-level features from the raw data, as much
representation learning is unable to provide an appropriate solution to this task. To
overcome this limit, in recent years has become popular a series of technologies called
deep learning. They introduce representations that are expressed in terms of other, sim-
pler representations. In other terms, deep learning enables the construction of complex
concepts out of simpler ones, representing data as a nested hierarchy of concepts.

One of the most important examples of a deep learning model is the artificial neural
network (ANN), also called feedforward neural network or multilayer perceptron (MLP).
This model can be seen as a mathematical function mapping some set of input values to
output ones. The overall function is formed by composing many simpler functions.

Figure 3.1 shows the hierarchy between the technologies discussed in this introduction.
As can be seen, all these technologies are considered a branch of artificial intelligence
field.

In this chapter, we will focus on the MLP approach, starting from the biological
concepts that inspired its design. Then, we will follow the evolution that leads to the
deep learning technology.

3.1.2 Brief Historical Review

Multilayer perceptron and deep learning approaches are the results of researches started
in the 40’s. During this extended period of time, the popularity of artificial intelligence
was not constant, with peaks of enthusiasm and valleys of skepticism. There have been
three waves of development, each of which named these technologies differently [22].
The first one was started with cybernetics in the 1940s-1960s, with the development
of theories of biological learning. It was mainly due to McCulloch and Pitt’s pioneering
work on a neuron’s model and the implementations of these structures, especially the
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Figure 3.1: A Venn diagram showing how deep learning is a kind of representation learning,
which is in turn a kind of machine learning, which is used for many but not all
approaches to Al

perceptron (by Rosenblatt in 1958). The second wave started with the connectionist
approach of the 1980-1995 period, with backpropagation learning algorithm popularized
by Rumelhart in 1986. This algorithm allows training a neural network with one or two
hidden layers. Finally, the current and third wave, in which these technologies are called
as deep learning, started around 2006 and it is still evolving.

As stated above, the earliest learning algorithms were intended to be computational
models of biological learning, that is, models of how learning is achieved by neurons in
the brain. For this reason, the technologies based on them were named artificial neural
networks (ANNs). Finally, in recent years these networks were developed to design what
today is defined as deep learning.

Despite the origin of these algorithms, nowadays these technologies are generally not
designed to be realistic models of biological functions. Furthermore, the term ‘deep
learning’ refers to a more general principle of learning multiple levels of composition,
which can be applied in machine learning frameworks that are not necessarily neurally

inspired.

Artificial Neural Networks

In this section, we develop the founding principles regarding the artificial neural net-
works. Firstly, we report the main motivation that led the researches in this field. Then,
starting from the biological structure of the neural networks, which inspired the first
studies, we will define the most popular structures that are currently used. Particularly,
we will develop the concept of convolutional neural network, and its advantages respect
to the previous technologies.
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3.2.1| Definition and Biological Analogy

Artificial Neural Networks (ANNs) can be defined as structures comprised of densely
interconnected adaptive simple processing elements (called artificial neurons or nodes)
that are capable of performing massively parallel computations for data processing and
knowledge representation [23]. As already mentioned in the previous section, ANNs’
structure does not reflect the characteristics of a real biological system; it just abstracts
some of the key features of such information processing system. Particularly, this type
of technology permits to deal with nonlinearity, achieve high parallelism, robustness,
fault and failure tolerance, learning, ability to handle imprecise and fuzzy information
and to generalize concepts. Artificial models possessing such characteristics are desirable
because [24]:

o nonlinearity allows the fit of a greater and more complex variety of data;

e mnoise-insensitivity provides accurate prediction in the presence of uncertain data
due to high noise levels and measurements errors;

e high parallelism permits to design faster systems. Furthermore, it reduces the
probabilities of hardware failures;

¢ learning and adaptivity allow dynamic updates of the system, which can change
its internal structure in response to changing data conditions;

o generalization enables application of the model to unlearned data.

In Figure 3.2 is depicted a schematic of an oversimplified biological neuron with three
major function units: dendrites, cell body (also called soma), and axon. The dendrites
are responsible for receiving the input signals from other neurons and pass them over to
the cell body. On the other hand, the axon transmits the signals received from the cell
body to the dendrites of the neighboring neurons through the synapse (a microscopic
gap). This element releases a neurotransmitter in quantities proportional to the incom-
ing electrical signal to transmit it to another group of neurons. The receiving neuron
generates a new electrical signal depending on the intensity of the incoming signals, or
if the quantity of neurotransmitter exceeds its internal threshold. The amount of signal
that passes through a receiving neuron depends on the intensity of the signal emanat-
ing from each of the feeding neurons, their synaptic strengths, and the threshold of the
receiving neuron. As illustrated in Figure 3.2, it is important to note that a neuron has
a large number of dendrites/synapses. It means that its output is usually affected by a
large number of signals, which are combined and transmitted to other neurons simulta-
neously. The contribution of each signal to the final output depends by its strength and
can either excite or inhibit the firing of the neuron.

The analogy between an artificial neuron and a biological one is that the connections
between nodes represent the axons and dendrites, the connection weights represent the
synapses, and the threshold approximates the activity of the soma. Besides, both the
biological network and ANN learn by incrementally adjusting the magnitudes of the
weights or synapses’ strengths.

The model of neuron in its simplest form can be considered a threshold unit, that is
a processing element that collects inputs and produces an output only if the sum of the
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Figure 3.2: Schematic representation of a biological neuron.

inputs exceeds an internal threshold value [25]. The tasks performed by a neuron can
be summarized in two steps: 1) collect and sum of all the signal at the synapses, and 2)
if the collected signal is great enough to exceed the threshold, send a signal down the
axon to other neurons. Artificial neural systems are created by interconnecting many of
these simple neurons into a network.

3.2.2 The Artificial Neuron

McCulloch and Pitts is the most widely used neuron model, and it is illustrated in
Figure 3.3. Each kth neuron consists of two parts [26]: the net function vy and the
activation function ¢(-). This mathematical neuron computes a weighed sum of its m
inputs signals, x;, j = 1,2,...,m, and generates an output of 1 if the sum is above a
certain threshold b;. Otherwise, an output of 0 results. Mathematically,

1, if Zm: Wi X4 > bk
Ye = L= (3.1)
0, if Zj:l Wi T < by,

where wy; is the synapse weight associated with the jth input of the kth neuron. Positive
connection weights (wy; > 0) enhance the net signal (v;) and excite the neuron, and
the link is called excitatory, whereas negative weights reduce v and inhibit the neuron
activity, and the link is called inhibitory. In Equation (3.1), the neuron threshold may
be considered as another weight wgy = by attached to the neuron with a constant input
xo = 1. In such case, the summation in Equation (3.1) is run from 0 to m, and the net
signal v is compared to 0.

The McCulloch-Pitts neuron has been generalized in many ways. For example, other
types of network input combination have been proposed in the literature. Furthermore,
alternative activation functions have been adopted, such as piecewise linear, sigmoid, or
Gaussian, as shown in Figure 3.4. The sigmoid function is by far the most frequently
used in ANNSs. It is a strictly increasing function that exhibits smoothness and has the
desired asymptotic properties. The standard sigmoid function is the logistic function,

defined by:
1

g(x) = 1+ex—p(—ax) (3.2)

where a is the slope parameter.

The perceptron presented by Rosenblatt in 1958 is an evolution of the original McCul-
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Figure 3.3: McCulloch and Pitt’s neuron model.

loch and Pitts’ model, which introduced a learning rule and other minor improvements.
An insight into learning algorithms is presented in Section 3.3.

3.2.3| Neural Network Topology

As previously mentioned, artificial neural systems are created by interconnecting mul-
tiple neurons to form a network. This network can be designed according to differ-
ent topologies, that yields different behaviors. The topology can be described with
a weighted direct graph, where nodes are the neurons, and the directed arcs are the
synaptic links, i.e. the connections between neuron outputs and neuron inputs.

The topology configurations can be divided into two main categories, represented in
Figure 3.5. The acyclic topology, depicted in Figure 3.5(a), does not provide for feedback
loops. The ANNs based on this topology are called feed-forward. They are memory-less
systems, that is, their response to an input is independent of the previous network state.
Multilayer perceptron represents the most common family of feed-forward networks, in
which neurons are organized into layers that have unidirectional connections between
them (see Figure 3.6) [27]. Such type of neural network is often used to approximate a
nonlinear mapping between inputs and outputs.

The second category consisting of neural networks with cyclic topology. As shown in
Figure 3.5(b), in this configuration the graph of the network contains at least one cycle
formed by directed arcs. This type of network is also known as recurrent (or feedback)
network. Unlike feed-forward networks, feedback ones have internal memory, providing
a nonlinear dynamic system model. In other words, the output of the system depends
not only on the input but also on the internal state of the network. Furthermore, every
time a new input is presented to the network, the actual state of the system is updated.
Recurrent neural networks often exhibit complex behavior and remain an active research
topic in the field of artificial neural networks.
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Figure 3.4: Different activation functions: (a) Threshold function, (b) Piecewise-linear function,
(c) Sigmoid function for varying slope parameter a.
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Figure 3.5: Illustration of (a) an acyclic graph and (b) a cyclic graph. The cycle in (b) is
emphasized.
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Figure 3.6: Architectural graph of a multilayer perceptron with two hidden layers.

3.2.4 | Multilayer Perceptron Neural Networks

A multilayer perceptron (MLP) neural network consists of a feed-forward, layered net-
work of McCulloch and Pitts’ neurons. Each neuron in an MLP has a nonlinear acti-
vation function that is often continuously differentiable. Some of the most frequently
used activation functions for MLP include sigmoid function and the hyperbolic tangent
function.

Figure 3.6 shows the architectural graph of a multilayer perceptron, where neurons
are represented by circles and are divided into layers. While the inputs at the left are
also labeled as the input layer, there is usually no neuron model implemented in that
layer. Thus, for example, the network represented in Figure 3.6 is defined as a three-
layer feed-forward network since the input nodes are usually not counted as a layer. The
inputs pass through a series of hidden layers, where this name refers to the fact that the
outputs of these neurons remain on the inside part of the network, and it is not available
to the user.

The network illustrated in Figure 3.6 is fully connected, which means that a neuron
in any layer of the network is connected to all the neurons in the previous layer. Fur-
thermore, there are no connections between units in the same layer and no feedback
connections between layers. In other words, any acyclic interconnection between neu-
rons is allowed, and the signal flow through the network in a forward direction. For
these reasons, this configuration yields to a feed-forward network, and it is one of the
most popular for MLP implementation.

The key point that has made MLPs one of the most popular technologies among
researches and users of neural networks is its learning algorithm, namely the back-
propagation (BP) algorithm. It has been proved that with a sufficient number of hidden
neurons, an MLP with a few as two hidden layer neurons is capable of approximating
an arbitrary complex mapping within a finite support [28]. More details about this
algorithm will be reported in Section 3.3.
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Figure 3.7: Diagram illustrating part of a convolutional neural network, showing a layer of
convolutional units followed by a larger subsampling units. Several successive pairs
of such layers may be used.

3.2.5 Convolutional Neural Networks

Artificial neural networks can be used to recognize data expressed in a very large num-
ber of ways. However, despite the full-connected structure of an ANN can yields good
solutions in almost all cases if a large training set is available, this could be a subop-
timal approach for some types of data. For example, given an image to analyze, an
ANNSs considers each pixel as an independent variable, regardless of its absolute and
relative positions. On the contrary, the pixels in an image are related each other, and in
particular, the nearby ones are more strongly correlated than more distant pixels.

A convolutional network is a multilayer perceptron explicitly designed to recognize
two-dimensional shapes with a high degree of invariance to translation, scaling, skewing,
and other forms of distortion [29]. These characteristics are achieved by extracting local
features that depend only on small subregions of the image. The extracted information
can then be merged in later stages of processing in order to detect higher-order features
and ultimately to yield information about the image as a whole. Also, local features
that are useful in one region of the image are likely to be useful in other regions of the
image, for instance, if the object is translated.

These notions are incorporated into convolutional neural networks through three mech-
anisms: local receptive fields, weight sharing, and subsampling [30]. An overview of the
whole structure of a CNN is depicted in Figure 3.7.

Local receptive fields As we have seen in the previous section, in a traditional neural
network the output of each neuron (also called unit in this contest) depends on the
output of the previous layer through a weight set. Thus, every neuron in a layer
interacts with every neuron in the previous one. Convolutional networks, however,
typically implement sparse interactions (also referred to as sparse connectivity or
sparse weights): each neuron takes its synaptic inputs from a local receptive field in
the previous layer, thereby forcing it to extract local features. This characteristic
leads to a reduction of the number of parameters that need to be stored and to a
decrease of the number of operations required to analyze the input data.

In Figure 3.8 this concept is illustrated through a directional graph. The gray
circles highlight the neurons that affect the output of neuron gs. It is clear that
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5o

Figure 3.8: The receptive field of the units in the deeper layers of a convolutional network is
larger than the receptive fields of the units in the shallow layers.

even if the direct connections in a CNN are sparse, units in the deeper layers can
be indirectly connected to all or most of the input image.

Weight sharing In a traditional neural network, each element of the weight matrix is
used exactly once when computing the output of a layer. It is multiplied by one
element of the input and then never revised. The structure of the computational
layers in a convolutional network is different, since these are composed of multiple
feature maps. Each map forms a plane within which the individual neurons are
shared or, from another point of view, they are tied, because the value of the weight
applied to one input is tied to the value of a weight applied elsewhere. Indeed, each
member of the set of parameters is used at every position of the input. As units in
a feature map take inputs only from a small region of the image, we can note that
this process, rather than learning a separate set of parameters for every location,
detect the same pattern at different locations in the input image. Since an image
contains several features, in order to detect them and build an effective model,
this type of systems are equipped with multiple feature maps in the convolutional
layer, each having its own set of weight and bias parameters.

This form of structural constraint leads to the following beneficial effects:

o Shift invariance: if a specific feature (or the whole image) is shifted, there
will be just a shift of the activations into the corresponding feature map by
the same amount.

e Reduction in the number of free parameters: in addition to the reduction pro-
vided by the sparse connectivity, the weight sharing allows a further reduction
of them.

In Figure 3.9 is illustrated a simple example about the concept of parameter shar-
ing. The black arrows indicate the connections that use a particular parameter in
two different models. In Figure 3.9(a) each unit of the layer 1 interacts in the same
way with the corresponding unit in the layer 2. That is, the parameter represented
by the black arrow is shared to be used at all input locations, as in the case in
CNNs. Contrary, in Figure 3.9(b) there is a single black arrow, which means that
there is no parameter sharing. The gray arrows in the background indicate that
the image is relative to a fully connected model.

The term ’convolutional’ associated with this type of network is related to how the
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evaluation of the activations of units is implemented. In fact, it is equivalent to
a convolution of the image pixel intensities with a ‘kernel’ comprising the weight
parameters.

Subsampling In order to sum up information extracted from the network, the data
coming from the convolutional units is subsampled in an appropriate layer. More
specifically, the subsampling layer is composed of several planes, one corresponding
to each of the feature maps in the convolutional layer. Each unit executes the
subsampling on a small receptive field in the corresponding feature map, as is
shown in Figure 3.7. As can be noted, differently from the computation of the
convolutional layer, in this case the receptive fields are chosen to be contiguous
and nonoverlapping.

The operations performed on the inputs are local averaging and subsampling. They
allow a reduction of the sensitivity of the feature map’s output, in order to better
manage shifts and other forms of distortion.

In a practical architecture, several convolutional and subsampling layers are alter-
nated in the network. The output of each pair of these layers provides a more general
representation of the image, summarizing its features and adding invariance to input
transformations. The increasing depth related to this type of structure represents the
reason why this technology has been called deep learning.

In Figure 3.10 is represented a well-known convolutional neural network, introduced
by Yann Le Cun et al. in 1998. As we can see, each convolutional layer has its own set of
feature maps, that accepts inputs from the previous subsampling layer. It is important to
note that the number and the dimensions of the feature maps vary through the network:
the ’deeper’ layers are characterized by a lower spatial resolution, that is compensated
by an increasing number of feature planes. This approach was inspired by Hubel and
Wiesel’s work on the cat’s primary visual cortex, which identified orientation-selective
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Figure 3.10: LeNet5, a convolutional neural network for classifying handwritten digits.

simple cells with local receptive fields similar to convolutional layers, and complex cells
performing subsampling-like operations. The alternation between these layers enables
the detection of higher-order features at a lower resolution.

Unlike other standard algorithms in image classification, the preprocessing is not fre-
quently performed in CNNs. Instead of setting parameters, we just need to train the
filters in CNNs. Moreover, in feature extraction, CNNs are independent of prior knowl-
edge and human interference. The training procedure for a CNN is similar to that for
a standard ANN using backpropagation algorithm, which will be described in the next
section.

Nowadays, this topology continues to be popular in neurally-inspired models of visual
object recognition. In the next chapters, we will use the pattern recognition capabilities
of this type of neural network to categorize the specklegram at the output of the fiber.
Further details about the specific implementation of the CNN will be reported in Chapter
4.

Learning from Data

The ability to learn is a fundamental trait of intelligence. In the ANN context, it can be
interpreted as the ability to change the internal structure of a system by itself, according
to the external stimuli. In practice, this implies the update of the connection weights
so that a network can efficiently perform a specific task. This operation is executed
by trying to fit the resulting internal model of the system with the underlying rules
expressed from a given collection of representative examples.

In this section, we will first define the concept of learning process, in order to under-
stand in which environment a neural network operates. Then, we will analyze how the
network weights are updated, with reference to the backpropagation algorithm, based on
the error-correction rule. Finally, we will highlight some important problems related to
the correct choice of the complexity of the system, that has to concern with the specific
task assigned.

3.3.1 Context and Definitions

We can define the learning process quoting Mitchell [31]: ‘A computer program is said to
learn from experience E with respect to some class of task T and performance measure
P, if its performance at task T, as measured by P, improves with experience X’. This is
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a very intuitive definition that can be useful to define better what are the elements that
will constitute our analysis system.

The Task, T It defines how the machine learning algorithm should process an example,
that is an input data. In particular, the task concerns the features that constitute
and describe the example, and that have to be detected. For example, in our case,
the input will consist of an image, which can be described through the values of
its pixels.

There are many kinds of tasks that can be solved with machine learning. In our
case, we will have to deal with a classification problem. In this type of task, the
machine learning algorithm is asked to specify which of k categories some input
belongs to. In other words, the learning algorithm has to produce a function
f:R™ — {1,... k} that relates the given inputs with a specific category. The
output of the algorithm is indicated by y = f(x), where x is the array of detected
features. It can be in the form of a numeric code (identifying a specific category)
or a probability distribution over categories.

The Performance Measure, P For the classification task, the performance measure is
simply the accuracy of the model. More specifically, the accuracy is the propor-
tion of examples for with the model produces the correct output. Alternatively,
the equivalent information can be obtained by measuring the error rate, i.e. the
proportion of examples for which the model produces incorrect output.

The experience, X It refers to which learning rules govern the updating process, that
is how the weights inside the system are adjusted. As already discussed in the
introduction, machine learning algorithms can be categorized in supervised or un-
supervised. In the first case, the system is provided with a correct output for every
input pattern. The learning algorithm aims to determine the set of weights that
minimize the difference between the output of the system and the correct one. In
the second case, unsupervised learning explores the underlying structure in the
data, without a correct output that leads the analysis.

3.3.2| Error-Correction Learning Rule

As mentioned in the previous sections, multilayer perceptrons and convolutional neural
network are some of the most popular techniques adopted in pattern recognition field.
They are both based on the back-propagation algorithm, which implements the super-
vised learning paradigm already described above. The BP algorithm, in turn, is based
on the error-correction learning rule, which we are about to introduce in this section.
To illustrate this algorithm, let’s consider the simple case in which the output layer
is constituted by a single neuron k, as illustrated in Figure 3.11. The input signal x(n)
of the neuron k is originated by one or more layers of hidden neurons, which are driven
by an input vector applied to the source nodes at the input layer of the network. The
argument n represents the discrete time-dependency of the variable. During the learning
process, the actual output, yx(n), generated by the output of the neuron &k (and in this
case by the whole network) may not equal the desired output, di(n). Consequently, we

o1



3. Machine Learning Techniques

Qutput

One or more
Input vector x(n)
o neuron

aden

neurons

Multilayer feedforward
network

Figure 3.11: Block diagram of a neural network which implements error-correction learning.

can define an error signal eg(n) as

ex(n) = di(n) — yr(n) (3-3)

that can be used in a control mechanism (see Figure 3.11) to modify the connection
weights, in order to gradually reduce the error itself in a step-by-step manner. This
objective is achieved by minimizing a cost function or index of performance, E, defined
as the instantaneous value of the error energy:

Lo
The algorithms continue to update the weight of the network until the system reach a
steady state. At that point, the learning process is terminated.

Rosenblatt proposed in 1962 a learning procedure that provides the optimal weight
vector of a perceptron in a finite number of iterations, given a set of training inputs and
regardless of the initial values of the weights. However, it is important to note that this
learning procedure takes place only when the perceptron output is different from the
desired signal, i.e. when ex(n) # 0. Furthermore, Rosenblatt proved that a single-layer
perceptron network performs accurately only with linear separable classes, that is when
the objects at the input of the network can be divided into classes separated by a linear
hyperplane. This statement is called perceptron convergence theorem. Figure 3.12 shows
an example of linearly and nonlinearly separable two-object classification problems. In
practice, it is not possible to know in advance whether the patterns are linearly separable.
In order to overcome this limitation, additional layers (the hidden ones) were added,
leading to the multilayer perceptron structure.

3.3.3 Backpropagation Algorithm

The learning phase of a back propagation network can easily be viewed as a classical
unconstrained nonlinear optimization problem [32]. The solution of such a problem
concerns the modification of a set of independent variables, in order to minimize or
maximize a certain cost function. The MLP fits this model quite nicely. In this context,
the weights can be considered as the independent variables and the function FE, defined
in Equation (3.4), is the quantity that we aim to minimize. Hence, ultimately, the goal
of training the network is to update the weights so that the network outputs for each
pattern match the desired outputs.
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The cost function defined in Equation (3.4), can be seen as a function depending on
the set of weights w of the network, and denote as E(w). It can be represented in the
k-dimensional space of the vector w, where k is the number of weights of the network,
i.e. the dimension of the vector w. An example of this type of representation is provided
in Figure 3.13 for k£ = 2, where we can note that the cost function forms an irregular
multidimensional complex hyperplane, with peaks, saddle points, and minima. The aim
of backpropagation algorithm is to find a weight vector w which minimizes the error
function E(w).

Firstly, we can note that changing the weight vector from w to w + dw, the error
function varies of a quantity that can be approximated to §E ~ éw! VE(w), where Vw
points in the direction of greatest rate of increase of the error function. If we assume
that E(w) is a smooth continuous function of w, that its minimum will occur at a point
in weight space such that

VE(w) =0 (3.5)

If this condition does not hold for the current weight vector, it can be changed in the
direction of —VE(w), in order to reduce the error (see Figure 3.13). This is a necessary
but not sufficient condition, since there are points at which the gradient vanishes that
do not represent a minimum (or at least not a global one). This observation highlight
the complexity associated with the BP’s aim, i.e. find an optimal weight vector.

The backpropagation algorithm is based on proceeds by iterations, which in turn are
constituted of two flows, represented in Figure 3.14.

e The function signals are the result of the inputs that propagate through the net-
work, from the input layer to the output one. They produce a solution, that can
be considered as a combination of the functions provided by the hidden neurons of
the network. If we consider an ANN with assumed initial weights (usually small
random values), the functional signals are calculated on the training examples
provided to the input layer of the network.

e The error signals are originated at the output end of the network and propagate
backward through the network. They are error-dependent functions.
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Figure 3.13: Geometrical view of the error function E(w) as a surface sittinf over weight space.
Point w 4 is a local minimum and wpg is the global minimum. At any point w¢,
the local gradient of the error surface is given by the vector VE.

-—— Function signals
- ——- Error signals

Figure 3.14: Illustration of the directions of two basic signal flows in a multilayer perceptron:
forward propagation of function signals and back-propagation of error signals.

In order to develop the BP algorithm in a simpler way, we will consider the learning
process of a single neuron. In Figure 3.15 are represented the signals involved in this pro-
cedure and the neuron, which is divided into two parts, as already seen in Section 3.2.2.
The first one, which output is denoted as wu, consists of a summation unit, while the
second part represents a nonlinear activation function, z = f(u). Furthermore, we can
note that the neuron is driven by two inputs [x123], associated to as many weights. In
addition, the bias term is represented by a constant input signal (equal to one) associated
to the weight wg. We can define the net function as:

2
U= Z wW;T; = WX (3.6)
i=0

where g = 1, w = [wowjws] is the weight matrix, and x = [1z125]7 is the input vector.

+

XZD

Figure 3.15: MLP example for back-propagation training: single neuron case.
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On the rightest part of the Figure 3.15, we can see that the error signal e is calculated
as the difference between the desired signal and the output one (as in the previous
section). Given a set of training samples {(x(n),d(n));1 < n < N} and w initialized
with small random values, the error back-propagation training begins at the input layer.
All N inputs are transmitted to the single neuron, which produces the corresponding
output {z(n);1 <n < N}. Then the cost function is computed as:

E= % S le(n)]? = % > ld(n) — z(n))? = % > ld(n) = f(wx(n))]>. (3.7)
n=1 n=1 n=1

The objective is to adjust the weight matrix w to minimize the error E(w). This leads
to a nonlinear least square optimization problem. Basically, these algorithms adopt a
similar iterative formulation:

w(t+1) =w(t) + ow(t) (3.8)

where Aw is the correction made to the current weights w(¢). Different algorithms differ
in the form of Aw. The standard backpropagation algorithm adopts the steepest descend
gradient algorithm, which defines the correction of the weights as ow = —ng(t) =
ndE/dw. In the previous equation, g is known as the gradient vector, and 7 is the step
size (or learning rate). The derivative of the scalar quantity E with respect to individuals
weights can be calculated as:

gj; _ ;ni::l 8[%(;)]2 _ é[d(n) — 2(n)] (— (9;5;)) fori=0,1,2 (3.9)

where )
0z(n) _ Of(u) Ou _ iy 0 ( ’w-m) e 310
ow, ~ ou aw ) aw, ]Z%” S w) (3.10)

Then, we can rewrite Equation (3.9) as:

gfi =—>_ld(n) = z(m)lf (u(n)z;(n). (3.11)

n=1

Let’s define the signal d(n) as the signal error e(n) multiplied by the derivative of the
activation function f’(u(n)), that is d(n) = [d(n) — z(n)]f'(u(n)). In this way, we can
express Equation (3.11) as:

N
gf =— Z d(n)zi(n). (3.12)
? n=1

The signal 6(n) represent the amount of correction needed to be applied to the weight w;
for the given input x;(n). Thus, the overall change of the ith weight is the sum of such
contribution over all IV training examples. Hence, we can express the weight update as:

N
wi(t+1) =wi(t)+n Z d(n)zi(n). (3.13)
n=1
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Each time the weights are updated is called an epoch. In this case, the epoch size is
equal to IV, that is the number of training examples.

The gradient descent method very often misbehaves on large-scale problems and be-
cause its success depends on the user dependent parameters. Other methods, as the
conjugate gradient algorithm provides a faster and more stable method to train a mul-
tilayer feed-forward neural network respect to the traditional steepest descent [33]. In
particular, this method will be implemented in our analysis of the specklegrams, de-
scribed in the next chapters.

3.3.4| Training and Testing

The central challenge in machine learning is to build a network able to minimize the
output error on new, previously unseen inputs. The ability to provide this type of
capacity is called generalization.

Typically, when training a machine learning model, we have access to a training set.
The first step is to compute some error measure on the training set, called training error,
in order to reduce it. This first phase is nothing but an optimization problem, as we
have seen in the previous sections. A much more relevant measure is the error rate of
the system in the field, where it would be used in practice. In order to estimate this
parameter, the accuracy of the trained network is measured on a set of samples disjoint
from the training set, called the test set. The real goal of the machine learning algorithm
is to provide a low error related to this data, called test error or generalization error.

The gap between test error, Fj.s, and training error, Fy.qn, has been investigated in
many theoretical and experimental works. They indicate that the gap decreases with
the number of training samples approximately as [34]:

Etest - Etrain = k(h/P)a (314)

where P is the number of training samples, « is a number between 0.5 and 1.0, and k
is a constant. The quantity h is a measure of ‘effective capacity’ or complexity of the
system, that summarize the ability to fit a wide variety of functions.

It has been proved that the gap always decreases when the number of training samples
increases. Furthermore, as shown in Equation (3.14), the width of the gap is related to
the capacity h of the system. In general, as the capacity h increases, Ei.qin decreases.
Thus, when increasing the capacity, there is a trade-off between the decrease of the
training error and the increase of the gap, with an optimal value of the capacity h that
achieves the lowest test error Fieg:.

Furthermore, as the capacity h increases, Eyqin decreases. Therefore, when increasing
the capacity h, there is a trade-off between the decrease of Ey.qin and the increase of
the gap, with an optical value of the capacity h that achieves the lowest generalization
error Fieg:.

Most learning algorithms are designed to minimize the training error as well as some
estimate of the gap. These two factors correspond to as many central challenges in
machine learning: underfitting and overfitting. The first one occurs when the algorithm
is not able to provide a sufficiently low error value of the training set. In other words,
underfitting is usually a symptom of an under-sized system in terms of capacity. On the
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Figure 3.16: Typical relationship between capacity and error.

other hand, overfitting occurs when the system is over-sized and leads to a significant
gap between the training error and test error. This problem is due to the wrong iden-
tification of the key features from the algorithm, which are not suitable for the desired
classification. Thus, a correct quantification of the necessary capacity is important to
obtain an efficient system. A graphical representation of these concepts is reported in
Figure 3.16, where the training and the test errors are related to the capacity.

Finally, another crucial aspect that affects the performance of a machine learning
algorithm is related to the amount of training data they are provided with. It has to be
sufficiently high, in relation to the complexity of the task.
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EXPERIMENTAL SETUP

In this chapter, we will define the experimental setup used to test the machine learning
capabilities on specklegram categorization. Let us remember that the aim of this thesis
s to build a system able to recognize in which position along the fiber optic sensor the
perturbation has occurred. Firstly, we will introduce other interesting solutions developed
in the last years to reach similar purposes. Then, in Section 4.2.1 we will report all the
main characteristics of the types of optical fibers used for our experiments, with particular
regard to the number of modes propagated and the related sensitivity. In Section 4.2.2,
we will describe the experimental setup used to produce a great number of perturbations,
in order to train the ANNs. Before to use the acquired specklegrams, it is necessary
to preprocess those, in order make them suitable for the neural networks’ input. This
process is described in Section 4.3, followed by the presentation of the structures of the
ANNSs used in our analysis.

Hypothesis and Motivations

The multimode optical fibers (MMFs) are viewed as unreliable in some sensing context.
This consideration is usually due to the supposed ‘randomization’ of light propagated
through it, that is typically attributed to undetectable deviations from the ideal fiber
structure. It is a commonly held belief that the chaos provided by MMF is unpredictable
and that the light is influenced proportionally to the length of the fiber.

In the last few years, this belief is changing, and some authors have started to study
this topic from a deterministic point of view. For example, in [35] Ploschner et al.
proposed a way to determine the transformation matrix (a subpart of the scattering ma-
trix) through numerical modeling, instead of computing it empirically. This approach
allows the ability to predict the system’s behavior without performing its characteri-
zation whenever a deformation occurs. While this technique was used to compensate
the speckle phenomenon, instead of exploiting it, it is clear that its feasibility implies a
predictable and deterministic (at least in part) behavior of the MMFs.

These considerations motivated us to design a new sensing system based on the cat-
egorization of the specklegrams at the output of an optical fiber. The aim of this new
approach is not only to provide an efficient way to detect the perturbations occurred
along the fiber, but also the position where they happened.

In this respect, an interesting application was proposed by Fujiwara et al. in [36].
They designed a tactile sensor based on optical fiber specklegram analysis, developed
on a 30 x 30 mm? plate. The sensing capabilities are provided placing three MMFs in
a parallel fashion and using the inner-product coefficient (see Section 2.2.3) to deter-
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mine the similarities between the output speckle and the reference one. Although this
configuration allows precise detection of the position where the perturbation (in this
case, an applied pressure) occurs, this method is suitable only for such a controlled and
size-limited environment.

A similar drawback also affects the method introduced by Pléschner, which was devel-
oped for a 300-mm-long fiber segment. Although the author states that light propagation
should not be obstructed by significant randomizing processes in longer segments of an
optical fiber, another problem interferes in the sensing context. It is important to re-
member that the FSSs are integral sensors: they provide at the output end a specklegram
that is the result of the configuration of the whole fiber. Thus, the output will be af-
fected not only by the primary perturbation which we are interested in, but also by the
vast multitude of imperceptible perturbations detected along the fiber, depending on the
sensitivity of the sensor (i.e., the number of supported modes). Hence, this contribution
is considered as a noisy effect, that is necessary to reduce or, at least, to handle.

An interesting solution for a longer sensor was proposed in [37]. In a traditional
multimode interferometer, the system is longitudinally-independent, which means that
its properties can be considered independent respect to the position along the fiber.
This characteristic hinders the design of spatially-resolved sensing systems. Kotov et
al. solved this problem varying the number the modes propagated along the fiber. This
property can be achieved through the use of either mode controllers or technology inho-
mogeneities of fiber. Since some output signal parameters, as amplitude and spectrum,
significantly depend on the number of propagating modes at the point of perturbation,
it is possible to determine the position where the fiber has been perturbed.

Although this configuration provides an effective solution for the proposed purpose,
it also has some relevant drawbacks. Firstly, the setup appears quite complex and
costly, since it is composed of several mode controllers or segments of different types of
fiber. Furthermore, the cost of the system grows as much the desired spatial resolution
increase. Finally, the proposed system suffers from losses due to the connections between
the different elements through which the light is propagated. The increase of the spatial
resolution leads to higher losses here too, which reduce the power transmitted to the
detector and limit the sensibility of the system.

To overcome these disadvantages, we propose a solution based on a completely different
approach. Our system does not rely on the longitudinal differentiation of the propagation
medium, rather on the implementation of more advanced image analysis techniques.
As already proved by Efendioglu in [7], ANNs can be usefully exploited to extract the
meaningful features coded into the specklegrams at the output of the optical fiber. Their
ability to build nonlinear models through automatic learning algorithms based on the
analysis of large training sets results particularly useful in this context.

Assuming to use an optical fiber able to support a great number of modes, that is very
high-order modes, the image detected at the output end of the fiber will consist of a large
number of tiny speckles. Thus, the set of the possible speckle patterns is sufficiently large
in order to permit a different configuration of the modes for each position of perturbation.
Our idea is to build a model able to categorize the input speckle patterns in relation to the
position where the perturbation occurred. In order to do this, we exploit the advantages
of the machine learning techniques, training different types of neural networks with very
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large datasets of specklegrams. The resulting model has been tested using the same
system configuration and providing to the network new inputs.

The results of our analysis will be presented in Chapter 5, while in the next sections
we will report the structure of the system used to train and test the model. Furthermore,
in Section 4.4 it is presented the structures of the ANNs used for our analysis.

Setup

In this section, we will describe the setup used to produce the perturbations along the

fiber and to record the specklegrams at the output end of the POF. As we will see, all the
elements of the system are cost-effective, enabling the possibility to design a competitive
real-world sensor, in principle.

Firstly, we will present the types of optical fiber used as sensing elements. Particu-
lar importance will be given to the properties and the physical characteristics of these
POFs, which lead to different advantages and drawbacks. Then, we will describe the
components of our system, highlighting the problem related to the automatic production
of perturbations and providing an alternative solution.

4.2.1| Sensing Medium

In our experiment, we used polymer optical fibers (POF) as sensing medium. This type
of fiber has many of the same advantages of the standard silica optical fiber for sensing
applications. However, it constitutes a more cost-effective solution, although with higher
transmission losses. This drawback does not affect our experiment, as the length of the
fiber will never exceed 12 meters. In any case, this type of fiber can be used up to 100
m, enabling its implementation in improving future applications. In addition, POFs are
easier to handle, more robust, and they have high flexibility. All these characteristics are
appreciated in our experimental context, and they are usefully used also for real-world
applications [38].

In order to test our system, we conducted several experiments with slight modifications
of the experimental setup. Probably the most important one is related to the specific
type of POF used. In particular, we used a step-index POF, here called ‘type 1’, and a
graded index POF, here called ‘type 2. The main difference between these two kinds of
fibers concerns the diameter of the core, as reported in Table 4.1. As already mentioned
in Section 2.1.2, this parameter directly affects the normalized frequency, and therefore
the number of modes supported by the fiber at certain wavelength A. In this specific
case, we can note that the type-1 fiber has three times the number of modes propagated
by type-2 fiber. This data has been calculated at A = 638 nm, that is the wavelength of
the light used as input. We will report more details about this in the next section.

This distinctive feature between the two types of fiber leads to a different configura-
tion of the specklegram at the output end, illustrated in Figure 4.1. As expected, the
dimension of the speckles varies greatly between the two kinds of fiber. The output of
type-1 fiber is composed of a great number of tiny speckles, that forms an almost perfect
circle, as depicted in Figure 4.1(a). The internal part, brighter than the external one,
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Properties of the fibers Type 1 Type 2
Refractive index profile Step Index Graded Index
Numerical aperture 0.5 0.19
Core diameter (pm) 240 50
Normalized frequency at A = 638 nm 1181.8 93.56
Number of modes at A = 638 nm 6983 2188

Table 4.1: Characteristics of the tested optical fibers.

(a) Type 1 (b) Type 2

Figure 4.1: Example of specklegram at the output of the two different types of fibers: (a) type
1, (b) type 2.

mainly contains the lower-order modes, while the external one contains the interactions
between the higher-order modes. Despite this last part can be considered as the richest
of information, it is important to note that it is affected by a great amount of noise. For
this reason, we considered the whole speckle pattern in our analysis.

On the other hand, the output of the type-2 fiber is composed of a lower amount of
speckles, which appear to have greater diameter respect of those related to type-1 fiber.
As we can see in Figure 4.1(b), in this case the circle produced by the speckles is not
so well defined, leading to a grainy figure at the output. An interesting advantage of
this type of fiber concerns the lower amount of noise present at the output; on the other
hand, the sensitivity is significantly reduced.

Finally, the different brightness between Figure 4.1(a) and 4.1(b) is not necessarily
due to the type of fiber. The reason is mainly related to the use of a different set of
detector’s parameters to record the specklegrams at the output of the fibers.

4.2.2 | Perturbation and Recording System

As already mentioned, the system able to categorize the specklegrams at the output end
of the optical fiber has been built using different types of neural networks, which have
been trained on very large datasets through supervised learning algorithms. In order
to produce these datasets, we designed a system able to perturb the fiber in different
positions.

Having regard to the complexity of the classification problem that the system has to
deal with, we needed sets composed of thousands of different specklegrams, in order to
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Figure 4.2: Schematic of the experimental setup used to automatically produce perturbations
along ten different points of the fiber. The specklegrams are recorded by the CCD
sensor the output end of the POF.

obtain a better fit between the data and the model. For this reason, we implemented
an automatic system that hits the fiber in predetermine positions, record the speckle
pattern and assign a label relative to the position where the perturbation occurred.

We realized two different version of the system: one consisting of three points of
perturbation, called System 1, and a second one consisting of ten points of perturbation,
called System 2. In the first case, we used a 6-meters long POF, while in the second
one we used a 12-meters long fiber. The other characteristics of the system, as the light
source, the mechanism of perturbation, and the speckle detector are common to both
systems. A schematic of System 2 is illustrated in Figure 4.2, while in Figure 4.3 and 4.4
is depicted the real system from different point of views.

As can be seen from the figures, the POF passes through a series of supports, which
have a dual task. The first one is to enable the correct interaction between the POF itself
and the fiber hitter, i.e. the fiber has to be ‘touched’ in predetermined positions and with
a limited amount of force. The second task is related to the stability of the system. In
this context, it is important that the fiber assumes almost the same position after every
perturbation. More specifically, each piece of POF related to a perturbation position
has to be in a configuration straight and parallel to the ground. In this way, the fiber
hitter perturbs the POF in the same way in all the positions. If it is not, the position is
no longer the only distinctive feature between the recorded specklegrams, and this can
lead the machine learning algorithms to an improper detection of the speckle pattern’s
features. In order to avoid this problem, the fiber has been fixed to the supports with
some adhesive tape. It permits a flexible movement of the POF during the perturbation,
and it brings the fiber back to the initial position during the unperturbed phase.

A very important element of our system is the fiber hitter, colored red in Figure 4.3
and 4.4. It is the element that directly perturbs the POF, and it has been carefully
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Figure 4.3: Setup of the experimental system seen from above. The shape of the fiber hitter is
slightly different respect to Figure 4.2, in order to provide a faster data acquisition.

designed in order to induce a proper vibration of the fiber. In fact, since this FSS
provides a great sensitivity, it is important to produce a limited perturbation, in order
avoid the saturation of the signal detected at the output. Further details about this
aspect will be reported in the next section. In addition, if the perturbation is too
intense, the stability of the system can be compromised, leading to the recording of a
faulty dataset.

The fiber hitter is connected to the linear stepper motor, which in turn is controlled
by an advanced motion driver. For our experiments, we used a Newport MM4005 driver,
programmed through Matlab®Instrument Control Toolbox. This device allowed us to
drive the stepper motor at a constant and prefixed speed, producing a very long sequence
of identical movements along the fiber.

The last two elements of our systems are the light source, and the detector at the
output end of the fiber. The first one consists of a low-cost laser emitting at A = 638
nm (red light), while the detection of the specklegrams is provided by an economic CCD
sensor, derived from a digital camera. An important aspect concerning the CCD sensor is
the calibration, which needs to be performed whenever the POF is replaced. In fact, the
circle formed by the speckle at the output of the fiber needs to be centered respect to the
CCD sensor, in order to detect the whole speckle pattern, i.e. the interactions between
all the propagated modes. Furthermore, the movements produced by the stepper motor
lead to a misalignment of the specklegram. Then, it is not possible to record too large
datasets, since a periodic calibration is needed to avoid faulty data.

In addition, it is important to determine an optimal CCD’s parameters set, as well as
choose a proper distance between the optical fiber and the sensor itself. For example,
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Figure 4.4: Setup of the experimental system seen from the ground. The shape of the fiber
hitter is slightly different respect to Figure 4.2, in order to provide a faster data
acquisition.

the brightness has to be adjusted in order to avoid the saturation of the inner part
of the specklegram, which would prevent the detection of the changes of the low-order
modes’ configuration. At the same time, the contrast has to be set so that the sparse
speckles into the external part of the specklegram can be easily detected. Thus, this
optimization is essential to obtain a well-defined and high-contrast record of the speckle
patterns, suitable to be correctly analyzed by the machine learning algorithms.

Despite the notable results obtained with this system, which will be reported in the
next chapter, it is clear that these are relative to a very controlled environment. That
is, the model provided by the machine learning algorithms trained on the specklegrams
supplied by the system lacks of generalization. This means that its performances are
brilliant if we try to classify speckle patterns related to perturbations produced by our
system. However, if we attempt to categorize the perturbations produced in another way,
the results appear to be poor. Thus, the supposed equality between the perturbations
over the time prevents the correct identification of the feature set suitable to detect the
position where the perturbation occurred.

Then, taking into account these considerations, we implement a procedure able to
overcome this problem. In order to produce more various perturbations, we used the
same basic setup reported in Figure 4.2, but we avoided using the linear stepper to hit
the fiber. Instead, we manually induced the perturbations ‘touching’ the fiber in different
ways with the fingertip, or using short sticks. This procedure allowed us to create some
manual datasets, where each perturbation can be considered unique and different from
the others.
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Acquisition and Processing of the Specklegrams

In this section, we will describe how the data acquired by the CCD sensor at the output
end of the optical fiber has been processed, in order to obtain a proper representation
of the induced perturbations. The data expressed in this form will constitute the input
of the ANNs both for the training and the testing phases.

As we have seen in the previous section, the movement provided by the linear stepper
motor produces the collisions between the fiber hitter and the optical fiber. At the
output end of the POF, the CCD sensor is able to record the specklegrams with a rate
of 30 RGB frames per second. We designed the system in order to obtain a sufficient
definition of the evolution of the perturbation by the CCD sensor. The same conditions
were applied during the recording of the manual datasets.

As mentioned in the previous section, the system needs to be calibrated after a certain
amount of perturbations. We will define a ‘dataset’ as the collection of the data derived
by the specklegrams acquired under a certain calibration session. The distinction be-
tween different datasets is due to the dependence of the results by the data used to train
or to test the system. This aspect will be discussed in more detail in the next chapter.

The processing phase starts when the whole dataset has been completely recorded. It
consists of three processes: compression of information, normalization, and classification.

In the first process, the single perturbation is represented by a sequence of 9 or 18
frames, depending on the type of POF used. In particular, the type-1 fiber showed a
longer duration of the perturbations, due to its higher sensitivity to the vibrations that
persist on the POF after the hit. We intend to compress of information provided by these
frames in a unique one, which will proceed to the normalization process. An overview
of the entire compressing process is provided in Figure 4.7. In order to better explain
this process, it will be divided into four steps:

Differential processing In this step, the videos belonging to a dataset are converted
to grayscale and considered frame by frame. Then, in order to detect the varia-
tions in the modes’ configuration, a differential process is applied, similarly to the
procedure reported in Section 2.3.1.

Let’s define F* as the kth frame, k € {1,..., K}, in the video sequence, where
each frame can be seen as a N x M matrix of pixels. The value of a single
m> Where n € {1,..., N} and
m € {1,...,M}. Then, the differential process is defined as the computation of

pixel belonging to a specific frame is denoted as F*

K — 1 frames, denoted as D*, each one composed by N x M pixels sz,w which
are defined as:

DfL,m = Fr]f,—l_nl - Frlf,m (41)

The result of the differential process is a video sequence in which each frame
represents the pixel-wise variation respect the next one in the sequence. If Df;m is
related to an output position where the intensity of the light remained constant,
it will be a dark pixel. Otherwise, it will as much white as the intensity varied
in that position. An example of the result provided by this step is reported in
Figure 4.7 (b).
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Figure 4.5: Example of differential signal obtained perturbing a type-1 fiber through the linear
stepper motor. The red circles represent the detected center of the perturbation.

Peak detection Since each video is composed of a large number of frames that are not
related to the perturbations occurred along the fiber, then we can consider deleting
those. In this way, we can better exploit our storage space, allowing the record
of a greater amount of videos. Furthermore, this step is fundamental to provide
correct labeling of the speckle patterns.

The precondition to properly execute this operation is to know the exact position
of the perturbation into the video. This process aims to pursue this goal.

In order to perform the peak detection, it is necessary to extract from the differen-
tial video D the amount of changes that occurred in each instant of time k. This
operation is equivalent to sum the values of all the pixels belonging to a differential
frame D¥. that is

N,M

P(ky= Y D, (4.2)

n=1m=1

where P(k), k € {1,..., K — 1}, is the one-dimensional differential signal. This
type of signal is especially useful to visualize the general characteristics of the
perturbations, as the duration and the intensity. Furthermore, it permits to verify
if the fiber has been perturbed by agents external to the system and to determine
the amount of noise that affects the measurements.

An example of a differential signal is reported in Figure 4.5, where we can identify
six perturbations. As we can see, the noise level does not affect the detection
of the perturbations significantly. However, it is not completely negligible, since
it differs by less than one order of magnitude respect to the point of maximum
perturbation. The high noise level is one of the aspects that will have to be
managed by the artificial neural networks.

Once calculated the differential signal, it can be used for automatic peak detection.
This operation is not always straightforward because the perturbations can in some
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Figure 4.6: Differential signal of a single perturbation, obtained perturbing a type-1 fiber
through the linear stepper motor.

cases be ‘messy’, that is they can be composed of several smaller peaks, instead of
a larger single one. For example, this depends on the type of interaction between
the fiber hitter and the POF. If the fiber slips uniformly on the fiber hitter, the
perturbation is represented by a single peak. Otherwise, if the movement of the
fiber is jerky, the related peak will be fragmented into smaller ones in the differential
signal. This last case is frequent for the perturbation produced manually.

Despite these difficulties, it is almost always possible to detect the peak position
into the video sequence, through the use of some numerical calculations. Figure 4.5
provides an example of the result of these computations, where the red circles rep-
resent the detected positions of the peaks. As we can see, the reference position of
each peak is approximately associated with the central frame of each perturbation.
This detail will become fundamental in the next step.

Partitioning of the video At this point, we know the positions of all the perturbations
(i.e. the peaks) in the differential video. Thus, we can isolate the differential
frames relative to each perturbation. Denoting as ¢; € {1,..., K — 1} the reference
position in time of the ith peak in the differential video, the frames containing
the evolution of the ith perturbation are those belonging to the reference set T; =
{Dt=(w=1/2 pt . Dttw=1)/21 where w is the width of peaks, supposed
odd and constant over time. The frames that do not belong to a reference set T;
can be discarded after this step.

Sum of the frames In the fourth and final step, we compress the amount of data related
to a single perturbation. This operation is necessary for two reasons. Firstly, it
allows saving more storage space, enabling the recording of a greater number of
videos. Secondly, it is difficult to manage the information provided by the whole
evolution of the perturbation. Furthermore, the analysis of such amount of data
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Figure 4.7: Representation of the steps of the compressing process. Figure (a) shows a sequence
of frames related to a perturbation induced on a type-1 fiber. Figure (b) represents
the differential video, where each frame is computed as defined in Equation (4.1).
Figure (c) shows the corresponding reference image of the analyzed perturbation.

requires a much more complex ANN, in order to fully exploit all the possible
relations between the pixels in time. This means that it is necessary to train the
network over a much more larger dataset to obtain a suitable model. All these
considerations lead to an increase of time and cost, going beyond the purposes of
our work.

In order to compress the data related to the ith perturbation, we sum all the frames
belonging to the reference set T; as a function of time. The result will be an image
S* of dimensions N x M, which summaries all the information related to the ith
perturbation. We can express the values of the pixels of S? as:

Spm= Y Dnm (4.3)
DeT;

where St

n.m» called reference image, represent the value of the pixel located in

position (n,m), n € {1,...,N}, m € {1,..., M}, in the resulting image. An
example of reference image is reported in Figure 4.7 (b).

Thus, at the end of the compression process, we own a set of images S°, which con-
stitute our dataset. The next phase concern the normalization of the actual dataset.
This procedure aims to ensure that the classification is based solely on the variations
of the mode’s configuration. For example, if two perturbations are induced in the same
position along the fiber, but with a different intensity, the strongest perturbation will be
related to a brighter reference image. Then, since we want to classify the perturbations
only in relation to the position, the images need to be normalized.

Furthermore, if the perturbations related to a specific position are systematically more
intense than the others, this characteristic would constitute a distinctive feature among
the speckle pattern categories. Thus, the machine learning algorithms could detect it
to distinguish between the specklegrams, leading to the improper identification of the
speckle pattern’s features.

In order to define this procedure, we can denote as R’ the result of the normalization
process applied to the reference image S°. This operation consists of dividing each pixel
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of S? by the sum of all the pixel’s values in the image. Mathematically:

Si

i
R = —57 o
anl,mzl n,m

(4.4)

When this process is concluded, we can move to the final one, i.e. the labeling. This
operation aims to divide the dataset of normalized images R’ according to the position
where the perturbations were induced along the fiber. In this way, the data acquired and
processed through these phases can be used to train the ANNs, or to test the accuracy
of the model obtained.

The labeling can be executed simply storing the normalized images R’ in the same
order of acquisition. Since the interactions between the POF and the fiber hitter are
fully predictable and periodic, the labeling is a straightforward operation. However, in
order to execute correct training of the ANNSs, it is important to generate an equally
divided dataset, i.e. each category has to contain the same number of images. If it is
not, the performances of the supervised learning algorithm are suboptimal, leading to
lower accuracy of the obtained model.

Structure and Training of the ANNs

Once obtained one or more normalized and labeled datasets, it is possible to proceed
with the creation of the model for the classification pattern task. As already said, this
operation is performed automatically using supervised machine learning techniques. In
particular, we used two different types of neural networks, exploiting the tools provided
by Matlab®R2016a.

4.4.1 Feedforward Neural Network

The first analysis was realized training a feedforward neural network (see Section 3.2.4).
This ANN consisted of two layers of neurons, plus the initial input layer, as depicted in
Figure 4.7. The number of neurons belonging to each layer varied depending on different
conditions.

Firstly, the number of inputs was equal to the number of pixels contained into each
image R'; as can be seen from Figure 4.7, each input variable is associated to a pixel of
the normalized image. The number of pixels that make up an input image depended on
the actual dimensions of the specklegram on the CCD sensor, i.e. on the type of POF
and on the distance between the fiber and the sensor.

On the other hand, the number of output neurons is equal to the number of categories
that we aim to characterize, that is the number of positions where the fiber can be
perturbed. Thus, this parameter expresses the spatial resolution wanted from the model,
that was equal to three or ten in our case.

Finally, the hidden layer, which connects the inputs to the output neurons, had a
dimension between 10 and 20 neurons. The exact value of this parameter was determined
for each training dataset, in order to obtain the best model possible, i.e. the one which
provides the higher accuracy. Anyhow, the results showed that the dimension of the
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Figure 4.8: Structure of the ANN used in the experiments for the classification of three position
of perturbation along the fiber.

hidden layer affects only marginally the performance of the system. For our purpose,
the implementation of this kind of ANN with approximately 12 neurons leads to a fast
training phase and a good accuracy.

To train the network described above, we used the scaled conjugate gradient back-
propagation algorithm provided by Matlab®Neural Network Toolbox. This training
procedure was proposed by Moller [33], as already mentioned in Section 3.3.3. In this
case, the corrections of the weights of the network are based on the conjugate direc-
tions, which decrease the complexity of the algorithm and provide better convergence
capabilities.

The optimization of the weights continue until any of these conditions is met:

e The entire training set is used as input for a maximum number of times;
e The execution of the algorithm requires more than a certain time;

e The network obtained from the training procedure yields performances below a
fixed goal,

e The performance provided by the updating of the weights decreases below a spec-
ified value;

e The performance provided using only the validating set increases more that a
certain value respect to the last time it decreased.

All the values used in the conditions above can be set depending on the needs of the
specific application. In our case, we run the learning algorithm using the default values.

After the training set (i.e., when the BP algorithm stops), the network is ready to be
tested on whatever dataset or single perturbation. The output neuron which is associated
with the maximum output value indicates the corresponding categorization of the given
input. The test of the network on a dataset different from the training one permits
to determine the level of generalization achieved during the training phase, that is the
quality of the model obtained.

4.4.2 Convolutional Neural Network

The second type of analysis regards the use of a convolutional neural network (see
Section 3.2.5), which structure is reported in Figure 4.9. As we can see, the network
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Figure 4.9: Structure of the CNN used in the experiments.

is composed of two convolutional layers, both followed by a subsampling layer. Also in
this case, the implementation of such a structure has been realized and trained using
the Matlab®Neural Network Toolbox.

Differently from the ANN’s case, the input of our CNN it is not considered just as
a set of variables. On the contrary, it is recognized as a grayscale image, where each
pixel expresses an intensity value related to a specific position. This approach enables
the application of the local receptive fields from the convolutional layer.

More specifically, this layer is composed of ten feature maps, also called filters, by
analogy with the term used in the convolution context. Each of these maps defines a
set of weights, that is shared over all the regions of the image. In the first convolutional
layer, the local field related to each unit is defined by a window with a height and width
of 15 inputs.

The output of the convolutional layer is analyzed by a “Rectifier Linear Unit” (ReLU),
that is simply an activation function which performs a threshold operation to each
element, without changing the number of them. In this type of network, the threshold
value is set to zero, that is

fay={" 720 (45)
0, <0
where z is the value of the considered unit, and the f(x) is the value related to that unit
at the output of the ReLU layer.

At this point, the network down-sample the representation of the data coming out
from the ReLU layer. In order to do this, a max pooling layer is used, which permits to
reduce the number of parameters by dividing the input into non-overlapping subregions
and taking the maximum element to represent the entire subregion at the output. In
our implementation, we set the size of the subregions of the first max pooling layer at
3 X 3 units.

Now, the matrix built in this way pass through another set of the layers described
above, characterized by a different set of dimensions and parameters. For example,
in the second convolutional layer, the height and width of the local receptive fields
decrease to 5, while the number of feature maps increases up to 16. In addition, also
the subregions of the second max pooling layer become smaller respect to the first one;
in our implementation, we set a 2 X 2 size units.

Then, in the final part of the network, the data obtained through all the previous
layers becomes the input of a fully connected layer, which expresses an output of 256

72



4. Experimental Setup

units. After another ReLU layer, the data is downsized using a new fully connected
layer, which has a number of outputs equal to the number of categories that we aim to
characterize, i.e. three or ten.

Finally, the very last operation that has to be executed on the data concerns the use
of the softmax function, that can be considered as the multiclass generalization of the
logistic sigmoid function (see Section 3.2.2). In the end, the data obtained conveys the
class scores in the classification layer.

The training of the network was performed using the tools available in Matlab®R2016a.
In particular, we exploited an algorithm based on stochastic gradient descent, as pre-
sented in Section 3.3.3. The trained network obtained with this procedure provided the
classification of a given input assigning the maximum of the values at the output layer
to the corresponding output neuron.
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EXPERIMENTAL TESTS

In this chapter are reported the tests carried out in order to determine the accuracy pro-
vided by the trained networks. In particular, we will highlight the conditions that affect
the results. As we will see, besides the dependency on the type of fiber used and the neu-
ral network employed as sensing medium, an important role is done by the training and
testing datasets. In general, if these are produced through the same procedure, the accu-
racy results higher, since the higher degree of similarity enables a better match between
the features discovered and those present in the inputs. Anyhow, the accuracy provided
by the manual datasets indicates a good level of generalization of the model design by the
learning algorithms.

Preliminary settings

At the beginning of our study, we tried to understand what were the best configuration
for the system reported in Section 4.2.2. One of the main aspects was related to the
choice of a suitable optical fiber, and therefore to the number of modes that it should
have been supported by it. Initially, we decided to use the type-1 fiber, because it
provides a greater sensibility and it is covered by a jacket. This detail allows a slower
impairment of the POF due to the interaction with fiber hitter, enabling the recording
of larger datasets. In addition, this type of fiber resulted in the best choice for vibration
detection, as demonstrated in previous works [11] [15] [16]. Therefore, this work enables
the release new functionality for these sensors, in order to allow further applications.

Secondly, we implemented our system using type-2 fiber. This choice was made to
test the performances of the proposed configuration with a POF that express a lower
noise level. In fact, the specklegrams at the output of type-1 fiber were continually
changing, even if the POF was not perturbed by the system. Although these movements
principally concerned only the higher-order modes, and a perturbation was detectable to
the naked eye, this high noise level could affect the performance of the system. Moreover,
the output specklegrams of the type-2 fiber can be considered more discernible between
each other, because they are composed of larger speckles (see Figure 4.1). Furthermore,
they are numerically fewer than those in type-1 fiber’s speckles.

Another parameter that we tested at the beginning of our study concerned to the
resolution of the video recording. Initially, we used the maximum resolution possible,
that was 640 x 480 pixels per frame (the typical resolution of an economical webcam).
The reason was related to the dimension of the speckles in type-1 fiber output. We
believed that, in order to detect them, was necessary to fully exploit the CCD sensor’s
capabilities; otherwise the image’s pixels would have represented the mean of the speckles
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in a specific region.

This approach created two practical problems: the videos were difficult to manage, due
to their considerable size, and the training phase of the ANNs required a non-negligible
amount of time. Thus, we decided to decrease the resolution of the CCD sensor to 80 x 60
pixels per frame. Unexpectedly, the results improved significantly, probably because this
operation reduced the speckle’s changes due to the noise.

Other settings analyzed in our preliminary tests concerned the distance between two
perturbed points, that was fixed at two meters, and the size of each dataset, which
mainly depended on the perturbation method, which could be automatic or manual. The
acquisition of a dataset was often complicated by technical problems, as misalignment of
the specklegram respect to the CCD sensor, or the entanglement of the POF in the fiber
hitter. For these reasons, the size of the datasets was not constant, and it was sometimes
necessary to delete or merge some of these in order to properly train the networks.

Finally, we also tested alternative algorithms to extract the most important features
from the speckle patterns. For example, we used a Sequential Floating Forward Selection
(SFFS) algorithm to determine the correlation between the pixels located in different
positions in the images. Another test was performed using the Matlab®’s implementation
of an autoencoder neural network, provided into the Neural Network Toolbox. Both
these techniques aim to provide a compressed representation of the input data through
the extraction of the main features coded into the analyzed data. Despite the interesting
approach to the problem, both these methods did not provide significant results.

Then, in the end, we design two experiments based on the ANN and the CNN re-
ported in the previous chapter. In Figure 5.1 are illustrated the preliminary results
obtained with the settings described above, and using a limited dataset acquired auto-
matically. They are expressed through confusion matrices, that allow a clear overview
on the model’s behavior. In particular, the columns represent the category to which the
specklegrams belong, while the rows show the classification provided by the network. We
aim to obtain results as close as possible to 100% on the diagonal, highlighted in green,
that implies a correct detection of the position of perturbation. The items out of the
diagonal express the misclassifications accomplished by the model, and are marked in
red. As we can see, these results are encouraging in most cases, especially those related
to the type-2 fiber.

Based on these outcomes, we decided to train and test the networks using larger
datasets; furthermore, we checked the performance concerning the classification of per-
turbations produced manually, in order to verify the level of generalization achievable
by the system.

Experiments

After the preliminary tests, we conducted two main experiments to determine the per-

formances of our system. These tests were executed through two main experiments. In
the first one, the system was set to induce perturbations in three different positions; in
the second one, we incremented the number of perturbed point up to ten. In the next
sections, we will report the results concerning these two system’s configurations.
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Figure 5.1: Preliminary results obtained after the preprocessing, expressed by confusion matri-
ces. The data refers to (a) type-2 fiber using CNN, (b) type-2 fiber using ANN, (c)
type-1 fiber using CNN, and (d) type-1 fiber using ANN.

5.2.1 Experiment 1

As we previously mentioned in this chapter, the performances of the machine learning
algorithms are affected by the datasets used to train and test the networks. In our analy-
sis, firstly we employed the images belonging to the same dataset, in order to accomplish
both these operations. That is, we randomly divided the whole of specklegrams into two
disjointed sets, taking care to allocate the same number of images for each category in
both ones. In this case, we assign 75% of the specklegrams to the training set, and the
remaining 25% of the dataset to the testing one. The results are reported in Table 5.1
and show a satisfactory accuracy in almost all the cases.

We can start our analysis from the most controlled situation, that is the first one. In
this case, the classification is nearly perfect using both the tested types of neural net-
work. Moreover, we also obtained a notable accuracy employing the manual dataset; this
result indicates that the model does not categorize the specklegrams based on the par-
ticular type of perturbation, because they are completely different between each other,
in this specific case. Instead, the machine learning algorithms successfully extracted and
analyzed the most characterising features related to the positions, enabling an accuracy
slightly lower than 80%.

As we can see, the performance of ANN and CNN are quite similar in this case,
and the first technique yields slightly better results, in particular. This fact can be
unexpected, given the complexity of the convolutional neural network used to execute
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the experiment. On the other hand, it is important to note that CNNs were design to deal
with a very different kind of images, composed of shapes and objects. Thus, the process
of subsampling used to summarize the features and obtain the high-order characteristics
of the specklegrams can be deleterious, leading to an inappropriate representation of the
input data.

In addition, the local receptive fields mechanism can be useful to detect the speckle
pattern’s features independently on the exact position of the whole specklegram respect
to the CCD sensor. In principle, this characteristic should enable a less-frequent cali-
bration of the system, being able to manage the displacement of the optical fiber due
to the induced perturbations over time. On the other hand, this property can lead to
detecting a particular shape produced by the interaction of some modes independently
on other features’ position inside the speckle pattern. This behavior appears to be a loss
of information, which reduces the accuracy of the model.

Finally, we can compare the accuracy provided by the two different kinds of POFs used
in the experiment. Table 5.1 shows results mostly similar between the tests conducted on
manual datasets; on the other side, perturbations induced automatically by the linear
stepper yield higher accuracy using type-2 fiber. Furthermore, type-1 POF exhibits
almost the same performance among the two different perturbing methods. Since the
conditions provided by the automatic perturbations are quite different respect to those
related to the manual ones, we can speculate that the neural networks are not able to
adequately analyze the information provided by the speckle patterns.

This limitation can be due to several reasons, which can jointly play a part in this.
For example, the higher complexity of the specklegrams, which is the result of the larger
number of modes supported by type-1 fiber, could be too high for this type of analysis.
Another possible reason can be related to the resolution of the CCD sensor used in
the experiment, which may be not able to detect a sufficiently-accurate representation
of the modes’ configuration at the output end of the fiber. Finally, the two different
kinds of POFs are characterized by a very different level of noise, which can affect the
performances also under the best conditions provided by automatic perturbations.

Fiber  Training Dataset Testing Dataset ANN’s Accuracy CNN’s Accuracy

Type 1 43,020 [L] 14,340 [L] 79.1% 80.1%
14,550 [M] 4,850 [M] 78.7% 72.3%
Typeg 112500 [L] 37,500 [L] 99.8% 99.7%
17,050 [M] 5,680 [M] 79.1% 78.3%

Table 5.1: Results of the overall accuracy when using parts of the same datasets for training
and for testing. The columns ‘Train Data’ and ‘Test Data’ report the number of
perturbation used in the respective datasets. The notes next to these numbers
indicate how the perturbations were induced: using the linear stepper motor [L] or
manually [M].

In Table 5.2 are reported the performance of the same system configuration, but we

introduced a substantial difference respect to the results analyzed so far. In this case,
we used different datasets for the training and the testing phases, keeping unchanged
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the number of specklegrams belonging to each dataset respect to Table 5.1.

As we can note, the performances are lower, in general. The type-2 fiber perturbed
automatically by the linear stepper provides acceptable results, while in the manual case
the accuracy shows insufficient classification capabilities. For this specific task, type-1
POF based on ANN analysis yields good results, even if lower than the correspondent
case in Table 5.1.

This observation indicates a strong dependency of the model provided by the neural
networks to the specific state of the system. We tried to mitigate this effect applying
some transformations to the speckle patterns, before using them in the training phase.
In particular, we detected the center of the specklegrams belonging to various datasets
and we displaced the non-aligned ones to a common center, in order to obtain calibration
as a post-process. Unfortunately, this procedure did not produce substantial results.

Moreover, we tried to enhance the performances of the networks using other tech-
niques. For example, we reduced the noise level that affects the optical fibers, establish-
ing a threshold that a pixel has to exceed to be considered useful. That is, all the pixels
below this value were set to zero, excluding them from the analysis process.

Another approach that we investigated was based on the ‘artificial’ extension of the
datasets. In contrast with the post-process centering of the specklegram tested initially,
we increased the number of speckle patterns creating a series of similar copies, each one
slightly displaced respect the others. This operation aimed to reduce the overfitting
by providing a greater number of training images that contain the same information,
presented in a somewhat different way. This procedure should have enabled the design
of a better model, but our tests did not show appreciable results.

Fiber = Training Dataset Testing Dataset ANN’s Accuracy CNN’s Accuracy

Type 1 43,020 [L] 14,340 [L] 73.7% 71%
14,550 [M] 4,850 [M] 75.6% 66.1%
Typez L1250 [L] 37,500 [L] 96.9% 90.3%
17,050 [M] 5,680 [M] 53.4% 48.9%

Table 5.2: Results of the overall accuracy when using different datasets for training and for
testing. The columns ‘Train Data’ and ‘Test Data’ report the number of perturbation
used in the respective datasets. The notes next to these numbers indicate how the
perturbations were induced: using the linear stepper motor [L] or manually [M].

5.2.2 | Experiment 2

Based on the results obtained in the first experiment, we extended our system in order to
test its performance with a more challenging task. In particular, we increased up to ten
the number of position where the fiber was perturbed, as represented in Figure 4.2. In
this case, we also expanded the whole length of the fiber up to twelve meters, enhancing
the spatial resolution required to the model to one meter.

The preprocessing phase was the same used in the previous experiment, as well as the
structure of the neural networks. We made this choice because the task required to the
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system is substantially identical to the last case, that is based on the same information
coded into the images.

In this case, the stability of the system is more difficult to achieve, since the overall
fiber is perturbed more times respect to Experiment 1. For example, it is more com-
plicated to ensure that the POF remains in an appropriate configuration over time for
all the positions. Furthermore, the highest number of perturbations leads to a quicker
displacement of the output end of the fiber respect to the CCD sensor. For these rea-
sons, we decided to use only the type-1 POF, even if it provided lower results in the first
experiment. These mechanical properties are due to the physical characteristics of this
kind of fiber, which is covered by a jacket that increases the weight and the thickness
respect to type-2 POF.

In this case, we decided to evaluate the performances of the model only using images
from the same dataset for the training and the testing phases. This choice has been
made because we have already demonstrated the high dependency of the results from
the specific datasets used. Otherwise, in Experiment 2 we want to focus our attention
on the capacity of the system to manage a more significant number of positions. In
particular, the primary goal is to determine the amount of misclassifications of such a
complicated setup and find out between which categories these problems occur.

In Figure 5.2 and 5.3 are reported the results concerning Experiment 2. The first
figure presents the confusion matrix relative to the model obtained through the artificial
neural network, while the second figure illustrates the confusion matrix provided by the
convolutional neural network. As already seen in the previous sections, in a confusion
matrix the columns represent the real categories which the inputs belong, while the rows
show the classification provided by the model. It is important to note that the first
category concerns the most distant position from the CCD sensor, while the tenth one
represents the closest perturbation point to the camera. Finally, the correct classification
is identified by the diagonal elements (highlighted in green), while the others represent
misclassifications (highlighted in red).

If we compare the two figures, we can note that the model designed using the ANN
yields better results respect to that based on CNN, following the performances computed
in the previous experiment. As can we see, the speckle patterns related to the closes
positions to the CCD sensor are correctly detected in almost all the cases. Otherwise, the
perturbations induced at the beginning and in the middle of the fiber are characterized
by a lower accuracy, even if it the misclassification is almost always below 33% (in the
ANN case).

The deterioration of the performances going through the fiber from its end to the first
position can be explained considering the noise levels. The speckle patterns associated
with the last category are mostly affected by the noise from the final position to the CCD
sensor, i.e. just one meter of POF. Thus, the noise level can be considered low, enabling
the correct detection of the relevant feature by the learning algorithm. Otherwise, the
data produced by the closest positions to the laser, i.e. at the input of the fiber, will
have to deal with a much more long distance, that is a higher amount of noise induced
by about ten meters of POF. Then, the specklegrams related to those positions will be
corrupted through the fiber, and the information coded into them will result damaged.

In other words, the points of the fiber that are not affected by perturbations should be
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Figure 5.2: Confusion matrix of the Experiment 2, using ANN.
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Figure 5.3: Confusion matrix of the Experiment 2, using CNN.
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considered just as a medium to transmit the light to the CCD sensor. They should be
characterized by an invariant set of parameters, denoting the absence of perturbations.
But, in the real world, they are fully-fledged sensing points affected by the dynamics of
the environment, which change the set of parameters related to them.

In addition, the lower results regarding the classification of the perturbations occurred
at the input of the fiber have been explained in [1]. In this work, Spillman et al.
discovered that the perturbations in a multimode optical fiber last for a certain length
through it. Then, as much as the perturbation is induced in a position far away from
the detector, as much as the perturbation will result weakened for it.

However, regarding Figure 5.2, it is important to note that the worst accuracy is not
associated to the furthest point from the CCD sensor. Instead, it concerns the second
and the sixth points of perturbation. In these cases, it is clear that the system is not able
to learn or detect the set of features that allow the distinction between these positions
with those closest to them.

We can extend almost all the considerations reported above to Figure 5.3, even if the
performances are significantly lower and unsatisfactory.
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Overview

In this thesis, we described a system able to turn an FSS into a spatially resolved

sensor. That is, our approach enables the automatic classification of the speckle patterns
according to the position where the perturbation occurred.

In the first part of this work, we reported the theoretical concepts related to the
specklegrams, analyzing the current state of the art. In particular, we presented the
main techniques used to detect the perturbations through the speckle patterns, and we
described the major implementations of this kind of optical fiber sensor.

In the third chapter, we showed the characteristics of the artificial neural networks,
from their biological origins to the most recent approaches. We analyzed the different
configurations that can be adopted to build a classification model, exploiting the machine
learning algorithms.

Then, in Chapter 4 we described the experimental setup that we used to induce the
perturbations along the fiber. Furthermore, we reported the preprocessing method that
we applied to train the neural networks and to test their accuracy.

Finally, in Chapter 5, we showed the results of our experiments, highlighting the
positive aspects and the possible reasons for misclassifications.

As we have seen, our system provides a high accuracy using data produced automat-
ically, but the performances result lower if the perturbations are induced manually; in
particular, the categorization of three points using an ANN yield up to 99.8% and 79.1%,
respectively.

However, we observed a high dependency of the results on the specific conditions of
the system, leading to a higher amount of misclassifications if the testing data does not
belong to the same dataset used to train the network. This is an important aspect that
has to be taken into consideration in a real-world implementation.

In addition, we analyzed the performances of the system for a more challenging task
concerning the classification of ten perturbation points, within one meter of each other.
We obtained a lower accuracy (about 71%) mainly due to two categories, which were
mistaken for the closest ones.

This experiment also showed an interesting behavior of our method, related to the
distribution of the misclassification through the fiber length. In general, the accuracy
is higher for the categories closest to the sensor at the output end of the POF, while it
decreases for those on the other side of the fiber. This characteristic can be explained
considering the different noise levels and the diffusion of the light through the POF.

Finally, despite the proposed system represents a very basic setup, it allowed us to
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prove that this kind of classification is possible, even if it is necessary to develop more
advanced techniques in order to produce a real-world sensing system. We will briefly
discuss this topic in the next section.

Future works and possible implementations

One of the main drawbacks of the method described in this thesis is the high dependency
of the result to the specific configuration of the sensing system. This problem makes
impracticable the realization of a real-world implementation of our solution, since it is
impossible to train the network and obtain a sufficiently general classification model.

The primary reason for this drawback is the displacement of the fiber respect to the
CCD sensor. We tried to overcome this problem exploiting CNN properties and center-
ing the specklegram to a determined point in the image, but these techniques did not
result useful. Another approach that can be tested concerns the use of a different system
to fix the output end of the fiber to a specific position of the sensor. For example, the
use of silicone foam can stabilize the POF, leading to a more robust setup. Furthermore,
it could be used for the entire length of the fiber, ensuring the return to a basic configu-
ration of the POF; on the other hand, this technique strongly reduces the sensitivity of
the F'SS, which cause a decrease of the general performance of the system.

Another problem that should be addressed to develop a real-world implementation of
this system concerns the lower accuracy at the fiber input and the presence of a great
number of misclassifications for some perturbed positions. This aspect has to be further
investigated, in order to better determine its causes and their specific effects. However,
it could be interesting to use two optical fibers in the same configuration jointly, but
inverting the position of the laser and the CCD sensor. The information provided by
such a system should have a more uniform performance along the fiber length.

Finally, it could be useful to test the proposed approach with different machine learning
techniques or focusing the analysis on some specific regions of the specklegrams.
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