
Università degli Studi di Padova

Dipartimento di Fisica e Astronomia "Galileo Galilei"
Corso di Laurea Triennale in Fisica

Thermal Fluctuations of the
superconducting order parameter
in the Ginzburg-Landau theory

Laureando: Relatore:
Davide Zuliani Prof. Luca Salasnich
Matricola 1100946

Anno Accademico 2016-2017





Contents

1 Phenomenological aspects of superconductivity 1
1.1 Drude theory of conduction in metal . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The discovery of superconductivity . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 The Meissner-Ochsenfeld effect . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Type I and type II superconductivity . . . . . . . . . . . . . . . . . . . . . . 5
1.5 London theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2 Ginzburg-Landau theory 9
2.1 Landau’s approach to phase transition . . . . . . . . . . . . . . . . . . . . . 9
2.2 Landau theory and superconductivity . . . . . . . . . . . . . . . . . . . . . 9
2.3 Ginzburg-Landau theory for inhomogeneous systems . . . . . . . . . . . . . 13
2.4 Ginzburg-Landau theory in a magnetic field . . . . . . . . . . . . . . . . . . 16

3 Thermal fluctuations in Ginzburg-Landau theory 17
3.1 Thermal fluctuations and heat capacity . . . . . . . . . . . . . . . . . . . . 17
3.2 Bogoliubov, HFB and Popov approximations . . . . . . . . . . . . . . . . . 20
3.3 Shift of the critical temperature . . . . . . . . . . . . . . . . . . . . . . . . . 22

Conclusions 27

Bibliography 29

iii





Introduction

Superconductivity is maybe amongst the most important physical phenomena of the last
century. Not only it has been studied in every aspect (theoretical and experimental), but
since its discovery in 1911 we are still finding new aspects and new effects, leading to new
results and practical applications.
In this thesis I will briefly explain the first attempt to describe theoretically superconduc-
tivity and its main consequences, the Ginzburg-Landau theory, proposed as a phenomeno-
logical theory by Vitalij Ginzburg and Lev Landau in 1950 as a generalization of London
theory. The interesting thing of this theory is that it ignores the microscopical point of
view, trying to describe superconductivity and its effects by using tools and considera-
tions coming from thermodynamics, avoiding (where possible) the language of quantum
mechanics.
The strength of this theory has been confirmed in 1959 by Lev Gor’kov, who showed that
it was possible to derive the Ginzburg-Landau theory from the BCS theory, a microscopic
theory of superconductivity proposed in 1957 by Bardeen, Cooper and Schrieffer, also
giving microscopic interpretation of all its parameters.

In this thesis I will firstly describe the phenomenological aspects of superconductivity:
from the first experiment performed by H. Kamerlingh Onnes in 1911 to the first attempt
to give a phenomenological theory of the various phenomena made by Fritz and Heinz
London. Secondly I will introduce the formalism of Ginzburg-Landau theory, showing the
physical starting point and the basic calculations, including nonuniform systems. Finally
I will consider the thermal fluctuations near the critical temperature of a superconductor,
leading to some theoretical results concerning some thermodynamic quantities and the
appropriate definition of the critical temperature.

v





Chapter 1

Phenomenological aspects of
superconductivity

1.1 Drude theory of conduction in metal

During our studies we first find a microscopic point of view when we try to describe
the conduction in metals. As a matter of fact we consider the flow of electrons in a

metal, and this leads to Drude theory of conducting metals. We remember that in this
theory we can relate the conductivity of a metal with other microscopical quantities using
the relation

σ = ne2τ

m
(1.1.0.1)

where σ is the conductivity, e is the electron charge and τ is the average lifetime for free
motion of the electrons between collisions. The Eq. (1.1.0.1) relates the conductivity with
the temperature of the metal, via the different scattering processes that occur during the
lifetime τ . After having defined the resistivity ρ of a metal such that

ρ = 1
σ

= m

ne2 τ
−1 (1.1.0.2)

we can consider that the average scattering rate τ−1 is related to the different process
that relates the electron with the rest of the metal: scattering by impurities, by electron-
electron interaction and by electron-phonon collision, all processes which are independent
so that we can easily write

τ−1 = τ−1
imp + τ−1

el−el + τ−1
el−ph (1.1.0.3)

In this way the total resistivity could be define as the sum of all this processes

ρ = m

ne2

(
τ−1
imp + τ−1

el−el + τ−1
el−ph

)
(1.1.0.4)

Each of this rate is a charateristic function of temperature:

1



2 Phenomenological aspects of superconductivity

• τ−1
imp: independent of temperature, it is just considering the impurities in the metal;

• τ−1
el−el: proportional to T 2;

• τ−1
el−ph: proportional to T 5 if the temperature is under the Debye temperature.

Therefore at low temperatures we expect a relation between resistivity and tempera-
ture of this form

ρ = ρ0 + aT 2 + . . . (1.1.0.5)
where ρ0 is the resistivity depending only on the concentration of impurities.

1.2 The discovery of superconductivity
After having liquified Helium, H. Kamerlingh Onnes wanted to test the validity of Drude
theory al low temperatures, turning his attention to mercury because of its low concen-
tration of impurities; it was 1911 [1][2]. What he discovered was unbelievable: instead of
measuring low levels of resistivity (something that we could expect considering the low
concentration of impurities) he observed that all signs of resistivity vanished rapidly at a
critical temperature Tc of about 4.1 K, as shown in Fig. (1.1). This set forth the discovery
of a new state of matter, which was not predicted by Drude theory: superconductivity.

Figure 1.1: Rapid decreasing of resistivity at Tc (adapted from [2]).

If we are interested in measuring the resistivity of a superconducting material we
can measure the (no)decay of persistant currents: first we set up a current (for example
by induction) in a superconducting ring and assuming an exponential decay such that
i(t) = i0e

− t
τ we can find a lower bound on the decay time τ and therefore an upper bound

for ρ, which is
ρ ≤ 10−25 Ω (1.2.0.1)

which compared to the resistivity of copper ρCu ≈ 1.7 · 10−8 Ω gives the idea of the main
effect of superconductivity.
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We have come to the conclusion that if T < Tc we reach a new state of matter, a su-
perconductive state, whose main characteristic is that ρ = 0. If we consider the main
relation which relates the current density j and the electric field E

j = σE (1.2.0.2)

we thus find that in order to have finite values of j we must have

E = 0 (1.2.0.3)

at all points inside the superconductor, and so we have a current flow without electric
field.

1.3 The Meissner-Ochsenfeld effect
The real definition of superconductivity is actually based on the demonstration of the so
called Meissner-Ochsenfeld effect, a phenomenon that consists on the expulsion of a weak
external magnetic field from the inside of a superconductor.
Let begin from a representation of the situation: in Fig. (1.2) we can see a sample of a
superconductor, whose temperature T is greater than the critical temperature Tc and the
external magnetic field Bext = 0; we then decrease the temperature to reach the condition
T < Tc and after that we switch on the field Bext.
If we consider the Maxwell equation

∇×E = −∂B
∂t

(1.3.0.1)

and we combine this with Eq. (1.2.0.3) we find that at all points inside the superconductor
it must be

∂B
∂t

= 0 (1.3.0.2)

which means that if we apply an external magnetic field to a superconductor, inside it
there is no magnetic field, i.e. Bint = 0.

But the real Meissner-Ochsenfeld effect is another one: always considering Fig. (1.2)
if we now begin by switching on the magnetic field Bext = 0 and then we cool the sample
to reach the superconductive state, we find out that the sample expels the magnetic field
thus reaching the condition Bint = 0. The main difference from the other situation is the
fact that this phenomenon could not be explained considering the condition ρ = 0, and
that leads to a new definition of the superconductive state.
We now give a brief demonstration of the Meissner-Ochsenfeld effect. First of all we can
easily understand that the expulsion of the external magnetic field Bext is related to the
presence of screening currents flowing around the edges of the sample; the magnetic field
Bint produced by these currents is equal and opposite to the external field, thus leaving
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Figure 1.2: Comparison between the two situations: the one on the right is the Meissner-
Ochsenfeld effect (adapted from [1]).

zero field inside the superconductor.

We will now consider Maxwell’s equations in a magnetic medium: we can define the
total current as the sum of the externally applied currents jext and the internal screening
currents jint

j = jext + jint (1.3.0.3)
In this way the internal currents generate a magnetization per unit volume M of the
sample, defined by

∇×M = jint (1.3.0.4)
In a similar way we can define the magnetic field H generated by the external currents

∇×H = jext (1.3.0.5)

which is linked with B and M by the relation

B = µ0 (H + M) (1.3.0.6)

where µ0 is the permeability constant.
We then recall the other Maxwell’s equation

∇ ·B = 0 (1.3.0.7)

so that considering this equation we have that the component of B perpendicular to the
surface of the sample must remain constant, while from equation (1.3.0.5) we have that
the component of H parallel to the surface must remain constant, thus leading to the
boundary conditions

∆B⊥ =0
∆H‖ =0

(1.3.0.8)
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Figure 1.3: Cylindrical sample
(adapted from [1]).

We can now consider a cylindrical sample, so that we
can easily think about it as an infinitely long solenoid
of length L with N coils, as shown in Fig. (1.3). In
this case we have that the field H is uniform inside
the sample,

H = j
N

L
k̂ (1.3.0.9)

where j is the current flowing through the solenoid coil
and k̂ is a unit vector along the solenoid axis.

In this way we can impose the Meissner condition B = 0 in equation (1.3.0.6) which
immediately gives

M = −H (1.3.0.10)

and considering the fact that the magnetic susceptibility χ is defined by

χ = dM
dH

∣∣∣∣
H=0

(1.3.0.11)

we find that for a superconductor
χ = −1 (1.3.0.12)

and so a superconductor is a perfect diamagnet.
In this way it is possible to measure χ and to establish if a sample (once we have reached
the critical temperature Tc) is a superconductor.

1.4 Type I and type II superconductivity

Figure 1.4: Magnetization M as a function of H in type I (left) and type II (right)
superconductor (adapted from [2]).
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What we have learned in the previous section works only in the limit of very weak external
field. If the field becomes stronger there are two possible behaviours for the superconduc-
tor.
The first case is the type I superconductor: in this case the internal magnetic field Bint

remains zero until the superconductive state is suddenly destroyed. This does not happen
when we exceed the critical temperature Tc, but when we reach a precise value for the
field, named critical field Hc. The magnetization M obeys the Eq. (1.3.0.10) for all fields
less than Hc, when it becomes almost zero.
The other possibility is what we call a type II superconductor: now we have two different
critical fields, namely the lower critical field Hc1 and the upper critical field Hc2. In this
case the magnetization follows the Eq. (1.3.0.10) only for small values of H, while when
we reach Hc1 the magnetic flux begins to enter the superconductor so that Bint 6= 0 and
the magnetization M starts to decrease. In this way the magnetic flux gradually increase
until we reach Hc2, when the superconductive state is completely destroyed and so M = 0.
The two possibilities are sketched in Fig. (1.4).

We can now describe the variation of the critical fields as a function of temperature T , i.e.
draw a thermodynamic phase diagram for the critical fields: first of all we find out that
they all approach zero at critical temperature Tc, as shown in Fig. (1.5).

Figure 1.5: Critical fields H as a function of temperature T in type I (left) and type II
(right) superconductor (adapted from [1]).

Something very interesting happens when we consider type II superconductor: infact
there is a great difference between the trend of the lower critical field Hc1 and the upper
on Hc2; the explanation of this difference was given by Abrikosov, who was capable to
show that the magnetic field can enter inside the superconductor in the form of vortices.
A vortex is just a region of circulating supercurrent around a center core which actually
has become normal metal. With this composition, the magnetic field can enter passing
through the metal core, and the surrounding supercurrent screen the magnetic field from
the rest of the superconductor outside the vortex.
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1.5 London theory
In 1935 Frizt and Heinz London proposed a phenomenological theory to describe the
electrodynamic properties of a superconductor. Their main assumption is that the elec-
trons form a "normal" fluid concentration nn and a superfluid concentration ns, such that
nn + ns = n = N

V : this is called a two-fluid picture.
While the "normal" fluid behaves normally (following Drude’s theory of conduction), the
superfluid is assumed to be insensitive to scattering, and in this frame we could write for
the current

js = −ensvs (1.5.0.1)
Combining Eq. (1.5.0.1) with the Newton’s equation of motion

d

dt
vs = F

m
= −eE

m
(1.5.0.2)

we obtain the first London equation

∂js
∂t

= e2ns
m

E (1.5.0.3)

Considering the superconductor to be in a stationary state (so that the two densities nn
and ns are assumed to be uniform in space) we can take the curl of both sides of Eq.
(1.5.0.3)

∂

∂t
∇× js = e2ns

m
∇×E = −e

2ns
m

∂B
∂t

(1.5.0.4)

which integrated in time gives

∇× js = −e
2ns
m

B (1.5.0.5)

which is the second London equation.
Considering the static Maxwell equation

∇×B = µ0j (1.5.0.6)

and combining these two equations we obtain

∇×∇×B = ∇(∇ ·B)−∇2B = −∇2B = −µ0e
2ns
m

B (1.5.0.7)

which gives

∇2B = µ0e
2ns
m

B (1.5.0.8)

We can now define the London penetration depth λL

λL :=
√

m

µ0e2ns
(1.5.0.9)

which is the distance inside the surface over which an external magnetic field is screened
out to zero, given that B = 0 inside the superconductor.
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The second London equation Eq. (1.5.0.5) could be rewritten in terms of the magnetic
vector potential A which is defined by

B = ∇×A (1.5.0.10)

and it gives

js = −nse
2

m
A

= − 1
µ0λ2 A

(1.5.0.11)

In this way we can think of js as the screening current which is required to keep the mag-
netic field outside the superconductor, so that London theory could explain the expulsion
of the magnetic field from a superconductor.
The main weakness of this theory is the restriction of a stationary state: therefore we can-
not explain the Meissner-Ochsenfeld effect, because in that case ns would not be constant
(as required by London’s theory). The Ginzburg-Landau will overcome this complication.



Chapter 2

Ginzburg-Landau theory

2.1 Landau’s approach to phase transition

In the 1930s Landau developed a general approach to the theory of second-order phase
transitions. Generally a phase transition is a phenomenon which consists in a system

passing from an initial state to a final one, followed by a drastic change of one or more
physical quantities. In particular we have a second-order phase transition if the second
derivatives are singular (or discontinuous), thus resulting in a particular curve called
lambda point [3].
This is a typical thermodynamic approach (we find phase transition for the first time
when we talk about aggregation state of matter), but the interesting ingredient used by
Landau in his theory is the order parameter, a concept used to describe the way the phase
transition works. To better understand this new concept we can think of an isotropic
ferromagnet: above the Curie temperature TCurie it has no magnetic moment, while below
TCurie it develops a spontaneous magnetic moment; in this way the magnetization M(r)
is a suitable order parameter.

2.2 Landau theory and superconductivity

We may ask now how we could apply this approach to superconductivity. The answer relies
on the fact that Ginzburg and Landau postulated the existence of an order parameter ψ
which characterizes the state of the system, in a way such that

ψ =
{

0 T > Tc

ψ(T ) 6= 0 T < Tc
(2.2.0.1)

This is the starting point of Ginzburg-Landau (GL) theory.
In this way the superconductive state is characterized by a non-zero order parameter.
Moreover Ginzburg and Landau assumed that this parameter should be a complex number,
thinking of it as a macroscopic wave function for the superconductor, in perfect analogy
with the wave function proposed to describe Bose-Einstein condensate and superfluid

9



10 Ginzburg-Landau theory

helium [2]. It is relevant to say that the real meaning of ψ was deeply understood only
after the work made by Gor’kov to show the connection between the GL theory and the
BCS theory.
After having chosen the order parameter, we thus have to find the relation between the
order parameter ψ and the free energy F ; in this way Ginzburg and Landau assumed
that the free energy must depend smoothly on |ψ|, and this is because the free energy
is a real number and the global phase of a quantum state (the superconductive state) is
not observable. Furthermore ψ goes to zero at the critical temperature Tc and so we can
Taylor expand the free energy F in powers of |ψ|.
Given all this assumptions we thus find out that the free energy F must be of the form

F(T ) = Fn(T ) + Fs(T ) = Fn(T ) + a(T )|ψ|2 + b

2 |ψ|
4 + . . . (2.2.0.2)

where Fn(T ) represents the "normal" free energy (the non superconductive state) and
Fs the superconductive-free energy; here a(T ) and b(T ) are temperature dependent phe-
nomenological parameters. Notice that odd powers of |ψ| are excluded since they are not
differentiable at ψ = 0.
The general way to approach the free energy is to minimize it; to do this we have to assume
that b(T ) is positive, otherwise we would not have a minimum for free energy, which is a
non physical solution. Minimizing the free energy Fs leads us to two possibilities:

• a(T) ≥ 0, and so Fs has a single minimum for ψ = 0;

• a(T) < 0, and Fs has a ring of minima with equal amplitude but different phase, in
fact we have that

∂Fs
∂ψ

= 2a|ψ|+ 2b|ψ|3 = 0 =⇒ |ψ| = 0 (maximum), |ψ| =
√
−a(T )
b(T )

which is consistent with the fact that b(T ) must be positive. The fact that we have an
infinite number of minima for a(T ) < 0 is related to the fact that ψ is a complex number
that can be written as

ψ = |ψ|eiθ (2.2.0.3)

where θ is the phase and its an arbitrary value which gives us the infinite number of
solutions. The situation is plotted in Fig. (2.1).
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Figure 2.1: Minima of the free energy Fs at different values of a (adapted from [2]).

We understand that the phase transition from a normal state to a superconductive
state is related to the sign of a(T ): Ginzburg and Landau assumed that for high temper-
atures (above Tc) a > 0 and we have a normal state; while the temperature decreases,
a(T ) decreases too, and when a(T ) = 0 we have the phase transition, thus changing the
minimum free energy solution. In this way, assuming that a(T ) and b(T ) change smoothly
with temperature, it is useful to make a Taylor expansion to leading order in T around
the critical temperature Tc, so that we have

a(T ) ≈ a′ (T − Tc) + . . .

b(T ) ≈ b+ . . .
(2.2.0.4)

with a′ and b two phenomenological constants both positive.
In terms of these new parameters it is easy to see that the order parameter |ψ| has this
form

|ψ| =


√

a′

b

√
Tc − T T < Tc

0 T > Tc
(2.2.0.5)

In Fig. (2.2) it is shown the order parameter |ψ| as a function of the temperature T : we
can easily see that passing the critical temperature Tc we have an incredible change in
the values of |ψ|. Moreover Fig. (2.3) represents the behaviour of magnetization M in a
ferromagnet near its Curie point: the similarity between these situations is a consequence
of the fact that both represent a second-order phase transition within Landau’s general
theory.
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Figure 2.2: Order parameter |ψ| as a
function of temperature (adapted from [1]).

Figure 2.3: Magnetization M as a function
of temperature (adapted from [4]).

Entropy and specific heat

As an example of application of the GL theory we can calculate some thermodynamic
variables such as the entropy S and the specific heat C. We remember that

S = −∂F
∂T

(2.2.0.6)

Since F contains both the contributions of the "normal" state and the "superconductive"
one, also S will contain these contributions. In this way we find out that for T ≥ Tc the
free energy is F = Fn so that there is no contribution to entropy from the superconductive
state; but when T < Tc we have that

S = Sn + Ss = Sn −
∂

∂T
Fs

(√
−a(T )
b(T )

)
(2.2.0.7)

and thus we obtain that the contribution to entropy from the superconductive state is

∆S = S − Sn = − ∂

∂T
Fs

(√
−a(T )
b(T )

)
= ∂

∂T

(
a2(T )
2b(T )

)

≈ ∂

∂T

(
(a′)2

2b (Tc − T )2
)

= −(a′)2

b
(Tc − T )

(2.2.0.8)

We find that the entropy is continuous at T = Tc, in agreement with the fact that the
phase transition is continuous, i.e. not of first order.

We recall now how to calculate the heat capacity

C = T
∂S
∂T

(2.2.0.9)
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As seen before the heat capacity C will be the sum of the two contributions related to the
"normal" and the superconductive state. In this way we can calculate the variation of the
heat capacity

∆C = C − Cn = Cs (2.2.0.10)

In this way when T ≥ Tc, ∆C = 0 because there is no contribution from the superconduc-
tive state; but when T < Tc we find that

∆C = (a′)2

b
T (2.2.0.11)

Thus the heat capacity has a jump discontinuity of

∆C = (a′)2

b
Tc (2.2.0.12)

at Tc, as shown in Fig. (2.4) where it is plotted the heat capacity CV per unit volume as
a function of T .

Figure 2.4: Heat capacity per unit volume CV near the critical temperature Tc (adapted
from [1]).

As we can see in the figure there is a discontinuity and then a change of slope. The
linear trend of the function for T ≥ Tc is described by the Sommerfeld constant γ.

2.3 Ginzburg-Landau theory for inhomogeneous systems
The next step in GL theory is to consider spatially non-uniform situations, i.e. the order
parameter could depend on position, ψ(r). To do so, Ginzburg and Landau postulated
that the free energy is essentially the one described before, with a new term (the simplest
one) depending on the gradient of ψ(r). In this way they could write a new definition of
the free energy F

F = Fn(T ) +
∫ (

a(T )|ψ(r)|2 + b

2 |ψ(r)|4 + γ|∇ψ(r)|2
)
d3r (2.3.0.1)
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We notice that the superconductive-state-free energy Fs is therefore a functional of ψ(r),
so that we can denote it as Fs[ψ], meaning that the scalar number Fs depends on the
whole function ψ(r) at all points in the system.
We then have to give a definition of the parameter γ. We recall that at the very beginning
of section 2.2 we noticed the fact the Ginzburg and Landau assumed the order parameter
ψ to be a macroscopic wave function for the superconductor; in this way the term with the
gradient of ψ(r) could be considered as a kinetic term, and by analogy with the Schrödinger
equation we can write

γ = ~2

2m̃ (2.3.0.2)

where m̃ is an effective mass for the quantum system.

In order to find the new order parameter ψ(r) we have two possibilities:

1. To consider an infinitesimal variation in the function ψ(r)

ψ(r)→ ψ(r) + δψ(r) (2.3.0.3)

and minimize the total free energy with the condition δFs = 0;

2. To consider that Fs[ψ(r)] actually is a functional of ψ(r), which is minimized by a
function which satisfies

∂Fs[ψ]
∂ψ(r) = 0 ∂Fs[ψ]

∂ψ∗(r) = 0 (2.3.0.4)

where ψ∗(r) is the complex conjugate of ψ(r).

We will pursue this second possibility. First of all we notice that Eq. (2.3.0.4) are mathe-
matically functional derivatives, and in this way there is a tremendous analogy with partial
derivatives.
In fact if we have a function on many variables f(x1, x2, x3, . . .) we can easily express how
this function changes due to infinitesimal variation of its variables

df = ∂f

∂x1
dx1 + ∂f

∂x2
dx2 + ∂f

∂x3
dx3 + . . . (2.3.0.5)

In a similar way we can write a formula for the superconductive-state-free energy, which
indeed is a function of infinitely many variables ψ(r) and ψ∗(r)

dFs =
∫ (

∂Fs[ψ]
∂ψ(r) dψ(r) + ∂Fs[ψ]

∂ψ∗(r)dψ
∗(r)

)
d3r (2.3.0.6)

Now we can calculate the two expressions in Eq. (2.3.0.4), and we easily obtain

∂Fs[ψ]
∂ψ∗(r) = − ~2

2m̃∇
2ψ + a(T )ψ + b(T )ψ|ψ|2

∂Fs[ψ]
∂ψ(r) =

(
− ~2

2m̃∇
2ψ + a(T )ψ + b(T )ψ|ψ|2

)∗ (2.3.0.7)
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where the second equation is just the complex conjugate of the first one.
Thus we have found that the process of minimization of the total free energy leads to what
seems to be a Schrödinger equation for ψ(r)

− ~2

2m̃∇
2ψ(r) +

(
a+ b|ψ(r)|2

)
ψ(r) = 0 (2.3.0.8)

However, unlike the usual Schrödinger equation, this is a nonlinear equation because of
the second term in the brackets.

Coherence length

Eq. (3.3.0.2) has several useful applications; one of these is to study the properties of
surfaces and interfaces of a superconductor.
For example we can consider this simple model for the interface between a normal metal
and a superconductor: suppose that the interface lies in the yz plane, separating the
normal metal (x < 0) where ψ(r) must be zero, from the superconductor (x > 0) where
ψ(r) must be continuous. In this way we have to solve the nonlinear Schrödinger equation

− ~2

2m̃
d2ψ(x)
dx2 + a(T )ψ(x) + b(T )ψ3(x) = 0 (2.3.0.9)

in the region x > 0 with the boundary condition ψ(0) = 0.
The solution of Eq. (2.3.0.9) is

ψ(x) = ψ0 tanh
(

x√
2ξ(T )

)
(2.3.0.10)

where ψ0 is the order uniform-order parameter defined in Sec. (2.2) and ξ(T ) is defined
as

ξ(T ) =
√

~2

2m̃a(T ) (2.3.0.11)

and it is called Ginzburg-Landau coherence length.

Figure 2.5: Order parameter ψ(x) near the
surface of a superconductor (adapted from
[2]).

The coherence length ξ(T ) is therefore an im-
portant physical parameter for a supercon-
ductor, which is a measure of the distance
from the surface over which the order param-
eter ψ(x) has become nearly to the uniform
value |ψ| =

√
−a
b . It is interesting to notice

that from Eq. (2.3.0.11) the coherence length
ξ(T ) diverges at the critical temperature Tc.
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2.4 Ginzburg-Landau theory in a magnetic field
Until now we have considered the GL theory without considering the presence of a mag-
netic field, and in this way we have neglected the effect of the charge of the superconductive
state.
In order to do so we assume that the magnetic field affects the order parameter ψ(r) as if
it is the wave function for charged particles, applying the usual replacement in quantum
mechanics

~
i
∇ → ~

i
∇− qA (2.4.0.1)

where A is the magnetic vector potential. Moreover the total free energy of the system
should include also an additional term corresponding to the electromagnetic energy of the
field B, and therefore Eq. (2.3.0.1) becomes

F = Fn(T ) +
∫ (

a|ψ(r)|2 + b

2 |ψ(r)|4 + 1
2m̃

∣∣∣∣(~i∇− qA
)
ψ(r)

∣∣∣∣2
)
d3r

+ 1
2µ0

∫
B2(r) d3r

(2.4.0.2)

In order to find the minimum free energy we have to do a functional differentiation of Eq.
(2.4.0.2) with respect to ψ(r) and ψ∗(r), which results again in a nonlinear Schrödinger
equation, with an additional term containg A

− ~2

2m̃

(
∇− qi

~
A
)2
ψ(r) +

(
a+ b|ψ(r)|2

)
ψ(r) = 0 (2.4.0.3)

If we then differentiate functionally the free energy Fs with respect to A we obtain a
formula for the supercurrent

js = −q~i2m̃ (ψ∗∇ψ − ψ∇ψ∗)− q2

m̃
|ψ|2A (2.4.0.4)

which is a more general equation if compared with what we have obtained with London
theory in Sec. (1.5); in fact considering the approximation of uniform ψ(r) Eq. (2.4.0.4)
simplifies to

js = −q
2|ψ|2

m̃
A (2.4.0.5)

which should reproduce the London equation obtained in the end of Sec. (1.5).



Chapter 3

Thermal fluctuations in
Ginzburg-Landau theory

The GL theory described so far is actually a mean-field theory: all kinds of fluctuation
are neglected, so that the order parameter is assumed to be constant in time and

space. Using this approximation we have defined the free energy Fs[ψ] as a functional of
the order parameter ψ(r), and in order to find this order parameter we have minimized
the free energy.
Actually the GL theory could be easily extended to consider thermal fluctuations; in this
way we can analize the situation close to the minimum of the free energy, in particular
we can consider the real order parameter ψ0 = |ψ| as the one obtained in Sec. (2.2) by
expanding the free energy Fs in powers of |ψ|

ψ(r) = ψ0 + η(r) (3.0.0.1)

where η(r) represents a fluctuation with respect to the uniform configuration ψ0.
The aim of this chapter is to give a formulation of the contribution of fluctuations to
ψ0, reviewing the definition of critical temperature Tc with the introduction of thermal
fluctuations.

3.1 Thermal fluctuations and heat capacity
We firstly consider thermal fluctuations in order to find the expression of the heat capacity,
and compare it with the formula found in Sec. (2.2). We consider a system above the
critical temperature, T > Tc.
Considering Eq. (3.0.0.1) we recall that ψ0 = 0 for T > Tc, therefore the free energy
actually is the energy of excitations

Fs[ψ] = Fs[η] (3.1.0.1)

In this way in thermal equilibrium the system would have some probability to be in a state
different from ψ0; each possibile state must follow the Boltzmann probability distribution,

17
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which gives
P[ψ] = 1

Zs
e−βFs[ψ] (3.1.0.2)

where β = kBT with kB Boltzmann constant, T temperature and Z is the partition
function defined as

Zs =
∫
D[ψ]D[ψ∗]e−βFs[ψ] (3.1.0.3)

It is easy to see that Zs is a functional integral, which is actually quite difficult to evaluate.
In order to do so we can use what it is called Gaussian approximation: in the definition
of the free energy Fs[ψ] we neglect the fourth-order term b

2 |ψ|
4, and thus it gives (not

writing the temperature-dependance)

Fs[ψ] ≈
∫ (

a|ψ(r)|2 + ~2

2m̃ |∇ψ(r)|2
)
d3 (3.1.0.4)

Considering Eq. (3.1.0.3) we see that there is infinite number of integral to solve, cor-
responding to an infinite set of points in the domain. To solve this integral we use the
Fourier transformation of ψ(r) and ψ∗(r)

ψ(r) = 1√
V

∑
k
ψke

ik·r (3.1.0.5)

where V is the volume and k is the wave vector. We therefore insert Eq. (3.1.0.5) in Eq.
(3.1.0.4) and we find

Fs[ψ] ≈
∫ (

aψ∗(r)ψ(r) + 1
2m̃

(~
i
∇ψ(r)

)∗ ~
i
∇ψ(r)

)
d3r

= 1
V

∑
kk′

∫ (
aψ∗kψk′ +

1
2m̃(~kψk)∗~k′ψk′

)
e−ik·r+ik′·r d3r

=
∑

k

(
aψ∗kψk + ~2k2

2m̃ ψ∗kψk

)

=
∑

k

(
a+ ~2k2

2m̃

)
ψ∗kψk

(3.1.0.6)

After having calculated Fs[ψ] we have to write the partition function Zs; inserting Eq.
(3.1.0.5) in Eq. (3.1.0.3) we can write for the partition function

Zs =
∏
k

(∫
dψkdψ

∗
k

)
e−βFs[ψ] (3.1.0.7)

and therefore we can insert Eq. (3.1.0.6) which gives

Zs =
∏
k

∫
exp

[
−β

(
a+ ~2k2

2m̃

)
ψ∗kψk

]
dψkdψ

∗
k (3.1.0.8)
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At this point we can change variable in order to have a solvable integral [2]

ψ∗k, ψk → <[ψk], =[ψk] (3.1.0.9)

and Eq. (3.1.0.8) becomes

Zs =
∏
k

∫
exp

[
−β

(
a+ ~2k2

2m̃

)
<2[ψ∗k] + =2[ψk]

]
d<[ψk]d=[ψk] (3.1.0.10)

In this way it is easy to see that for each k we have a two-dimensional gaussian integral
(hence the name Gaussian approximation [2]), and so we have for the partition function

Z∫ =
∏
k

π

β
(
a+ ~2k2

2m̃

) (3.1.0.11)

Once we have calculated the partition function Zs it is possible to evaluate all thermody-
namic quantities of interest, for example the heat capacity C; we recall that for the entropy
we have [2]

S = ∂

∂T
kBT lnZs (3.1.0.12)

and so

C = T
∂S
∂T

= T
∂2

∂T 2kBT lnZs

= kBT
∂2

∂T 2T
∑

k
ln π

β
(
a+ ~2k2

2m̃

) (3.1.0.13)

In order to do the differentiation we consider only the term which is singular at Tc, and
this is a, therefore we do not differentiate the other factors of T

Ccrit ≈ −kBT
∂

∂T

(∑
k

T da
dT

a+ ~2k2

2m̃

)

= kBT
2
(
da

dT

)2∑
k

1(
a+ ~2k2

2m̃

)2

(3.1.0.14)

Considering now the thermodynamic limit V → ∞ we can go over to an integral over k,
and therefore

Ccrit ≈ kBT 2
(
da

dT

)2
V

∫
d3k

(2π)3
1(

a+ ~2k2

2m̃

)2

= kBT
2

2
√

2π
(m̃) 3

2

~3
V√
a

(
da

dT

)2
(3.1.0.15)
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and considering that a = a′(T − Tc) we find out that

Ccrit ≈
kBT

2

2
√

2π
(m̃) 3

2

~3
(a′)2V√
a′(T − Tc)

(3.1.0.16)

This calculation shows that the thermal fluc-
tuations could make a large contribution
to the heat capacity, particularly when ap-
proaching to critical temperature Tc, where
there is a divergence (typical of mean-field
theory). In Fig. (3.1) we can see a compar-
ison between the heat capacity calculated in
Sec. (2.2) (dotted black line) and the heat ca-
pacity with the contribution of thermal fluc-
tuation (red line).

Figure 3.1: Contribution of thermal fluctua-
tions to heat capacity (adapted from [1]).

3.2 Bogoliubov, HFB and Popov approximations
In order to understand the following calculations for the thermal fluctuations, it is impor-
tant to consider the approximations that will be used.
In the very beginning of Sec. (2.2) it has pointed out the analogy between Bose-Einstein
condensate and superconductors, which can be considered as the starting point of the GL
theory. This analogy will continue because the approximations that we are going to use
come from the equation that defines a condensate, namely the Gross-Pitaevskii equation,
equation that we will obtain rapidly.

We are considering the second quantization of matter and our starting point is the ex-
act Heisenberg equation of motion for the Bose field operator ψ̂(r) [5]

i~
∂ψ̂(r, t)
∂t

=
(
−~2∇2

2m + Uext(r)− µ
)
ψ̂(r, t) + gψ̂†(r, t)ψ̂(r, t)ψ̂(r, t) (3.2.0.1)

where Uext(r) is a static external potential that traps the atoms, µ is the chemical poten-
tial and we have assumed [5] a short-range interaction V (r− r′) = gδ(r− r′).
In this way the equation for the condensate wavefunction is obtained by taking an av-
erage appropriate to a Bose broken symmetry; separating the condensate part from the
noncondensate one we can write

ψ̂(r, t) = Φ(r) + ψ̃(r, t) (3.2.0.2)
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where Φ(r) =
〈
ψ̂(r, t)

〉
is a spatially varying macroscopic Bose field, and ψ̃(r, t) is the

noncondensate field operator with
〈
ψ̃(r, t)

〉
= 0 [5]. Therefore Eq. (3.2.0.2) becomes

i~
∂Φ(r, t)
∂t

=
(
−~2∇2

2m + Uext(r)− µ
)

Φ(r, t) + g
〈
ψ̂†(r, t)ψ̂(r, t)ψ̂(r, t)

〉
(3.2.0.3)

Using Eq. (3.2.0.2) we can rewrite the last term of Eq. (3.2.0.1)

ψ̂†ψ̂ψ̂ = |Φ|2Φ + 2|Φ|2ψ̃ + Φ2ψ̃† + Φ∗ψ̃ψ̃ + 2Φψ̃†ψ̃ + ψ̃†ψ̃ψ̃ (3.2.0.4)

and by taking the average we have〈
ψ̂†ψ̂ψ̂

〉
= ncΦ + m̃Φ∗ + 2ñΦ +

〈
ψ̃†ψ̃ψ̃

〉
(3.2.0.5)

which is actually the last term of Eq. (3.2.0.3); here we have introduced the following
local quantities [5]

nc(r, t) ≡ |Φ(r, t)|2 the local condensate density

ñ(r, t) ≡
〈
ψ̃†(r, t)ψ̃(r, t)

〉
the noncondensate density

m̃(r, t) ≡
〈
ψ̃(r, t)ψ̃(r, t)

〉
the "anomalous" density

(3.2.0.6)

Using these definitions the generalized Gross-Pitaevskii (GP) equation is obtained

i~
∂Φ(r, t)
∂t

=
(
−~2∇2

2m + Uext(r)− µ
)

Φ(r, t)+g [nc(r, t) + 2ñ(r, t)] Φ(r, t)

+gm̃(r, t)Φ∗ + g
〈
ψ̃†(r, t)ψ̃(r, t)ψ̃(r, t)

〉
(3.2.0.7)

Having now written the general form for the GP equation, it is time to introduce the
possible approximations that could be used to simplify Eq. (3.2.0.7):

• Bogoliubov approximation: this approximation for Φ corresponds to neglecting
ñ(r, t), m̃(r, t) and the three-field correlation function

〈
ψ̃†ψ̃ψ̃

〉
. In this way Eq.

(3.2.0.7) becomes

i~
∂Φ(r, t)
∂t

=
(
−~2∇2

2m + Uext(r)− µ+ gnc(r, t)
)

Φ(r, t) (3.2.0.8)

which is the GP equation that describes a Bose-Einstein condensate at T = 0 [5];

• Hartree-Fock-Bogoliubov (HFB) approximation: in this approximation we ne-
glect only the term

〈
ψ̃†ψ̃ψ̃

〉
;

• Popov approximation: this approximation (also called dynamic Popov approxima-
tion) corresponds to neglecting both

〈
ψ̃†ψ̃ψ̃

〉
and m̃(r, t).



22 Thermal fluctuations in Ginzburg-Landau theory

3.3 Shift of the critical temperature
In this section we want to consider the contribution of thermal fluctuation to critical
temperature, in particular we want to find how the value of the critical temperature
changes when introducing thermal fluctuations.
Firstly we call ψ0 the uniform order parameter as calculated in Sec. (2.2) and Tc0 the
related critical temperature; we do this in order to distinguish them from the following
results. Then we could write the space-dependent order paramenter ψ(r) in this way

ψ(r) = ϕ0 + η(r) (3.3.0.1)

where ϕ0 represents a "new" uniform order parameter which include the contribution of
thermal fluctuations, while η(r) represents a fluctuation with respect to ϕ0 [7].
The starting point of our calculation is the nonlinear Schrödinger equation obtained in
Sec. (2.5) (

a(T ) + b(T )|ψ(r)|2
)
ψ(r)− γ∇2ψ(r) = 0 (3.3.0.2)

Now we insert Eq. (3.3.0.1) in Eq. (3.3.0.2) with the condition

〈η〉 = 〈η∗〉 = 0 (3.3.0.3)

where 〈·〉 defines the thermal average. Physically speaking this condition is easily under-
standable: since η represents a fluctuation, when we take the average this must be zero.
Therefore we obtain (not writing the dependencies)

aϕ0 + bϕ3
0 + aη + 2bϕ2

0η + bϕ2
0η
∗ + 2bϕ0η

∗η + bϕ0η
2 + bη∗ηη − γ∇2η = 0 (3.3.0.4)

We take the thermal average of Eq. (3.3.0.4), considering Eq. (3.3.0.3), and we find(
a+ 2n 〈η∗η〉+ b

〈
η2
〉)
ϕ0 + bϕ3

0 + b 〈η∗ηη〉 = 0 (3.3.0.5)

At this point it is fundamental to consider approximations, and here we have two possi-
bilites:

• To consider a Bogoliubov approximation, so that we neglect all the thermal averages.
In this way we simply obtain the definition of the uniform order parameter ψ0;

• To consider a Popov approximation, neglecting the averages
〈
η2〉 and 〈η∗ηη〉.

Considering the Popov approximation [7] we therefore obtain

(a+ 2b 〈η∗η〉)ϕ0 + bϕ3
0 = 0 (3.3.0.6)

and consequently we find for the "new" uniform order parameter

ϕ0 =

0 for T ≥ Tc√
−a+2b〈η∗η〉

b for T < Tc
(3.3.0.7)
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Notice that the order parameter ϕ0 is definitely a new order parameter, different from ψ0
as defined in Sec. (2.2); also the critical temperature Tc at which the order parameter ϕ0
becomes different from zero is different from the one defined in Sec. (2.2). In this case the
condition which determines the "new" critical temperature Tc is

a(Tc) + 2b
〈
|η|2

〉
c

= 0 (3.3.0.8)

where η∗η = |η|2 and the subscript 〈·〉c means that we are at Tc [7].
At this point we want to find a formula that could allow us to calculate

〈
|η|2

〉
at Tc, namely〈

|η|2
〉
c; in order to do so we consider Eq. (3.3.0.4) and we insert Eq. (3.3.0.6). Then we

have to treat self-consistently the fluctuation η(r), and in order to do so we consider these
conditions

|η|2η ≈ 2
〈
|η|2

〉
η

η2 ≈ 0
(3.3.0.9)

as done by Griffin [6]. In this way Eq.(3.3.0.4) becomes

aη + 2bϕ2
0η + 2b

〈
|η|2

〉
η + bϕ0η

∗ + 2bϕ0|η|2 − γ∇2η = 0 (3.3.0.10)

As done in Sec. (3.1) we could work with T ≥ Tc, so that the new uniform order parameter
ϕ0 = 0; then Eq. (3.3.0.10) reduces to(

a+ 2b
〈
|η|2

〉)
η − γ∇2η = 0 (3.3.0.11)

This is a new nonlinear Schrödinger equation, from which we could easily find the formula
for the new free energy Fs,η[ψ]

Fs,η[η(r)] =
∫
LD

[(
a(T ) + 2b

〈
|η|2

〉)
|η(r)|2 + γ|∇η(r)|2

]
dDr (3.3.0.12)

where we are actually considering a general ipervolume of dimension D [7]. It is inter-
esting to notice that the fourth-order term is completely disappeared, and Eq. (3.3.0.12)
resembles Eq. (3.1.0.4); in this way we could talk of gaussian approximation.
Given this similarity between these expressions, we could follow the same steps of Sec.
(3.1): in this way we could expand η(r) using Fourier transformation

η(r) = 1√
LD

∑
k
ηke

ik·r (3.3.0.13)

where k is the wave vector and ηk are the Fourier coefficients. Therefore, using Eq.
(3.3.0.13) in Eq. (3.3.0.12), we could easily find that

Fs,η =
∑

k

(
a(T ) + 2b

〈
|η|2

〉
+ γk2

)
|ηk|2 (3.3.0.14)
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The procedure is absolutely identical with the one used in Sec. (3.1); we can calculate the
thermal average of |η|2 using〈

|η|2
〉

= 1
Zs

∫
D[η(r)]D[η∗(r)]|η(r)|2e−βFs,η [η(r)] (3.3.0.15)

where Zs is the partition function as defined by Eq. (3.1.0.3); this gives as result [7]〈
|η|2

〉
= 1
LD

∑
k

1
β (a(T ) + 2b 〈|η|2〉+ γk2) (3.3.0.16)

and if we are at T = Tc then Eq. (3.3.0.16) reads〈
|η|2

〉
c

= 1
LD

∑
k

1
βγk2 = 1

LD

∑
k

kBTc
γk2 (3.3.0.17)

because Eq. (3.3.0.8) holds when T = Tc.
At this point we can easily use the thermodynamic limit in order to convert the sum to
an integral ∑

k
→ LD

∫ 1
(2π)D dDk (3.3.0.18)

and moreover we consider the two dimensional case (D = 2) [7], finding〈
|η|2

〉
c

=
∫ 1

(2π)2
kBTc
γk2 d2k (3.3.0.19)

In order to do this integration, Larkin and Varlamov [8] suggest that there must be some
physical constraints to the value of k; this could be physically understood if we consider
that the superconductor has a limited volume. Calling Λ and k0 the upper and the lower
limit respectively [7][8], Eq. (3.3.0.19) gives〈

|η|2
〉
c

= kBTc
2πγ ln

( Λ
k0

)
(3.3.0.20)

We can now define the Ginzburg-Levanyuk number Gi, which is a number that is asso-
ciated to the possibility to use the GL theory according to thermal fluctuations: this is
called the Ginzburg-Levanyuk criterion, which establishes that, near the transition point,
the theory can be applied up to the temperature when the fluctuation corrections become
comparable to the value of the corresponding physical quantities [8].

In our two-dimensional case the Ginzburg-Levanyuk number is

Gi(2) = b

4πa′γ (3.3.0.21)

It is easy to see that Gi is a positive number and it depends only on the phenomenolog-
ical parameters of the superconductor. Actually the proper definition of Gi lies on the
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microscopic view of superconductivity typical of BCS theory [8]. We can take kB = 1,
and inserting Eq. (3.3.0.8) in Eq. (3.3.0.20) and remembering the definition of a(T ) we
thus find

Tc0 − Tc
Tc

= 4 Gi(2) ln
( Λ
k0

)
(3.3.0.22)

and always according to Larkin and Varlamov [7][8] we find these definitions for the two
cutoffs of k

Λ =
√
a′Tc
4γ

k0 =
√
a′Tc Gi(2)

γ

(3.3.0.23)

Moreover it is easy to see that Λ = 1
2ξ , where ξ is the coherence length; inserting Eq.

(3.3.0.23) in Eq. (3.3.0.22) we find

Tc0 − Tc
Tc

= 2 Gi(2) ln
(

1
4 Gi(2)

)
(3.3.0.24)

Finally we have found a formula that gives us the shift of the critical temperature, de-
pending only on the characteristics of the superconductor. It is interesting to understand
if the shift of the critical temperature is downward or upward. If we define the reduced
temperature ε as

ε = Tc0 − Tc
Tc

(3.3.0.25)

we can plot ε as a function of Ginzburg-Levanyuk number Gi
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Looking at the plot it is easy to see that the reduced temperature ε is firstly positive, and
then it becomes negative. Actually Ginzburg was the first one to estimate Gi in a clean,
conventional superconductor, obtaining [8]

Gi ∼ 10−12 ÷ 10−14 (3.3.0.26)
Given these values of Gi we therefore conclude that the reduced temperature ε (and thus
the shift of the critical temperature) is positive, in perfect corrispondence with the results
obtained by Larkin and Varlamov [8]. Moreover if we consider Eq. (3.3.0.24) and Eq.
(3.3.0.26) we easily find out that the relative shift of the critical temperature ε is ∼ 10−11.
We can also be interested in finding the shift of the critical temperature relative to the
"old" critical temperature Tc0 ; in this way we can rewrite Eq. (3.3.0.24) in order to express
a new reduced temperature ε0 defined as

ε0 = Tc0 − Tc
Tc0

(3.3.0.27)

With a rapid algebraic manipulation we find out that

ε0 =
2 Gi(2) ln

(
1

4 Gi(2)

)
1 + 2 Gi(2) ln

(
1

4 Gi(2)

) (3.3.0.28)

As done before we can plot ε0 as a function of Gi. We then zoom the graph in order to
consider appropriate values of Gi,

0
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It is easy to see that also in this case, using Eq.(3.3.0.26), the relative shift of the critical
temperature ε0 is ∼ 10−11, thus confirming the fact that the introduction of thermal
fluctuations introduce a very small shift of the critical temperature.



Conclusions

In this thesis we have seen the importance of the GL theory as the first approach to
superconductivity, based on the improvement of the previous London theory. As said

at the beginning of Sec. (2.2) the strength of this theory lies on its correspondence with
the microscopic approach of the BCS theory.
Another interesting point of the GL theory explained in this thesis is the possibility of
considering the thermal fluctuations, in order to give new definitions of physical quan-
tities, which can also be proved experimentally; in this way we reach a result for the
new definition of the heat capacity C and for the shift of the critical temperature Tc con-
firmed by Larkin and Varlamov, who however considered a more sophisticated formalism,
including normalition group and diagrams; furthermore we have only considered the two-
dimensional case, while actually we can consider a general-dimensional case in order to
find other solutions.
It is easy to understand that we could not have the possibility to explain every aspect
of the GL theory (such as vortices, high temperature superconductivity, . . .), and a rapid
glance to the literature gives us the idea of how prolific this theory is.

Of course the main aim of this thesis was to get in touch with a subject that is not
treated during the laurea triennale in Physics; the reason why I chose the GL theory as a
subject for this thesis is the mixture of a lot of different topics, in order to describe cor-
rectly the behaviour of a superconductor: thermodynamic approach to phase transistion,
the concept of quantum wave function, tools of statistical mechanics; moreover supercon-
ductivity (and thus GL and other theories) has led to huge practical applications, both
in the research field (astronomical interferometers, atomic clocks, . . .) and in daily living
(for example the Maglev train). The possibility to test GL theory via experiments gives
us the chance to improve this theory together with a more advanced mathematical for-
malism, and more it is to do in order to discover new superconductive materials and new
applications.
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