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Abstract

Robotic system in industrial and house context with focus on manipulation has in-

creased. The manipulation might be controlled totally by a computer system or it can

be realized through devices controlled by human user, this type of control is the teleop-

eration, which can be difficult as it requires the user to posses total control of the robot,

therefore the user is assisted with a shared autonomy. In this work a shared autonomy

system which provides assistance in a free space is expanded with collision avoidance,

which is important inmost of real operating environmentwith the objective to increase

its performance. The two systems are linked together with the proposed hybrid archi-

tecture, which is then tested through several experiments with computer generated in-

put and human control together with other configuration. The results are exposed to

prove the effectiveness of the system.
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1 Introduction

Robotic system have seen in the previous years a progressive diffusion in many indus-

trial context. This is the Industry 4.0 [3], the introduction of robotics in small and

medium-sized businesses where there are limitation of cost and space but also the need

to automate simple task which may change from day to day. These new systems are

not limited to increase working performance. Another important growing field is the

assistive robotics, where robots are used to help a person with a disability to perform

physical tasks of daily-living activities [4]. In both industrial and healthcare applica-

tions, the user informs the robotic system his intention of performing a certain task

and the robotic intelligence plans the motion of the device to accomplish the task. The

robot behavior can span from fully autonomoॺ, when the robot autonomously fulfill

the task once it is defined, to fully controlled, when the user teleoperates directly ev-

ery movement of the robotic device. In this context, the concept of semi-autonomous

control, also known as shared-autonomy, means the definition of control laws that inte-

grates user’s commandswith some autonomous behaviors of the robotic device in order

to maximize the efficacy of the assistance. Shared autonomy covers different aspects of

robotics system, from assisting the grasping to collision avoidance in navigation task.

This work focuses onmanipulation, expanding a shared autonomy system capable

of target prediction and assistance to target. The expansion adds collision avoidance,

to obtain increased performances. The proposed system connects assistance to target

and collision avoidance with an hybrid architecture mixing together the results. The

architecture has been tested with different experiments in a simulated environment to
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prove the effectiveness of the system.

1.1 Background

Robotic systems have proven to be a worthwhile solution in many factory context [5].

Their size which was needed for their task also proved to be a big limitation until re-

cent times with new types of smaller and cheaper robots. If considering the assistive

robotics, the task is embedded in the context of normal human activities of daily living

and would otherwise have to be performed by an attendant [6]. These ranges from so-

cial interaction, feeding, cleaning the house or other domestic activities. In all of these

scenario the robots needs to understand the task and to understand the assisted as he

might not be able to provide commandswith high precision related to their disability or

the complexity of the task or of the device used to communicate with the robot. Some

of these systems might also be teleoperated by family members but they still have lim-

ited information about the environment, and the system should be able to assist into

doing such tasks.

Teleoperation is used in many context where the robot provides the physical mo-

tion and the user provides the control, giving the user greater strength as robot can lift

heavy weight, or allowing to operate in hazardous environment for human users [7].

When communication delays make direct control impractical or it is desired to reduce

operator workload, the robot is givenmore autonomy for example commanding to fol-

low a specified path instead of using direct control. Another possibility is when a robot

is teleoperated by an user who doesn’t have good knowledge about the environment,

the robots should have some collision avoidance system [8] [9]. This also work with

self-driving car when they are driven by an user but if a collisionmight happen, the sys-

tem takes control of the car and tries to avoid the collisionwith response timewhich are

faster than that of an able-bodied human [10]. Such systems were the robot has partial

autonomy over its own action is defined as shared-autonomy.
The idea of a system with shared-control has actually been from some time [7].
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Figure 1.1: Example of sliding scale autonomywhere user and robots are given amax velocity
usable different in each level. [1]

More recently, with the expansion of robotic systems in a more wide use, this idea has

been greatly developed. One of the first thing covered by shared control was driving as-

sistance [1]. Moving a robot from start to goal is called navigation, and being navigation

one of themost researched topic in autonomous system,made it one of the first to be re-

searched with shared autonomy as a core aspect. One of the techniques used to achieve

shared control, but also covers the navigation and collision avoidance is the potential

field method [2] which can be seen in Figure 1.2. In this scenario the user command

is used as a vector in a potential field generated with some free space detector (such as

sonar, radar, or laser scanner). The user command is weighted by the potential field

which gives as result a new command that follows the user intention but also avoid col-

lision. Another technique of shared navigation uses the sliding scale autonomy [1]. In

this case a finite number of levels are predefined, and these levels go from total control

of the user to total control of the system with the system in charge of deciding which

level to use. For example if a collision is avoidablewith a small command but the system

is not sure if it is close to the user target, the level selected is the one with most of the

control to the user but enough for the robot to help avoiding it. Some key aspects of

this system are deciding the number of levels, how much the control is shared in each
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level, how the system decide which of them to use in the present scene.

1.2 Related Work

In this work the task is grasping where the shared autonomy covers different aspects

of the manipulation: collision avoidance when moving the manipulator, assistance to

target to improve grasping, and target prediction to allow continuous use. For example

the assistance to target has been already seen that it could be implemented in different

ways such as sliding-scale autonomy or in a continuous approach [1].

Instead of working on all the aspects of the task, it is possible to focus on one of

them at a time. Target prediction could be done in two different ways: asking the user

directly with vocal or visual interface, or alternatively trying to predict in a probabilis-

tic way which goal the user wants. The explicit approach works better in discrete cases

where the number of possible goals is limited but it requires the user to provide a con-

stant feedback to the robot, thus being slow and usually needing training for the user

as complexity increases. However, there are often a continuum of goals to choose from

(e.g. location to place an object, size to cut a bite of food) and previous works have

proved that this leads to ineffective collaboration [2] [11]. Therefore gathering implicit

information about user intent is preferred, but in this case the system needs to use only

the user input intended for control and from that predicting the user objective but it

could be unreliable and confidence of the prediction is an important parameter which

will take part in the shared control.

With the goal predicted and the confidence over that, the system can now assist the

user for the movement to reach the goal and in the grasping phase. The assistance over

the grasping is one of the aspects that depends on the gripperwhichmight be very differ-

ent from a human hand and also different to control for a normal operator. Therefore

the shared control might take care of this part by providing the best gesture and adapt

the final pose for it to be successful [12]. The grasp pose might be computed in many

different ways, like a database of predefined poses or through math functions. If the
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Figure 1.2: In the first image from the left, the sonar readings of free space are visible with
the command of the user as an arrow. In the second the movement gets weighted with the
potential field. In the third, the result can be seenmoved towards the free space. [2]

focus is on the movement, there are other problems depending on the input type. The

high-level interface is not always available and usually the input device is a joystick. This

type of input works only on two axis but most of real task needs all the three dimen-

sion, so the joystick has different ”modes” that switch between different set of planes.

This mode switching is time consuming and for a proper use it requires the user to be

trained or having a lot of experience with the device. Therefore a shared control system

might take care of this part by switching between modes [13] reducing the difficulty of

the movement.

The intervention when moving needs to be described by some policy that will use

the previously calculated parameter. The policy itself can be of really different imple-

mentation, for example it describes how much the system can intervene from no in-

tervention to a total takeover of the robot over the use, with the most common im-

plementation taking total control of the robot when a threshold on the predictor is

reached [14]. While this approach is effective at accomplishing the task, studies have

shown that users often prefer having more control [15]. Potential field method has

been used to push away from obstacle [2] and towards goal. In other works the user

has at disposal a high-level interface, and generate the commands with various level of

autonomy after the user intention is provided [16]. One possible approach is to give the

user high-level visual interface. The interface might provide the user with way-points

to follow, or with predefined grasping target computed from the scene [16]. In this
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case the user has different options from way-points to selecting a precomputed grasp-

ing pose of the chosen object. At this point the problem of shared control becomes

a standard pick problem already described in literature with many tools already devel-

oped that provides all the functionality previously described, navigation with collision

avoidance and grasping. The system would be limited in providing assistance only to

discrete sequential tasks. However, for a more natural control, it would be more de-

sirable that the user provides continuous inputs to the system that should provide a

greater degree of assistance when it is more confident on the user’s high-level intention

and decreases otherwise. This approach could be called blending as it merges robot and

user input. Autonomous takeover, potential field methods, virtual fixtures can all be

seen as blending methods [17]. In this sense, the system should firstly predict the user’s

intention from the stream of input commands and then provide a level of assistance

proportional to the confidence over the prediction.

For the prediction, one possible strategy is to compute the probability for the com-

mand to be directed towards taking a specific goal [17]. At each command the system

computes the distance from the future state of the robot with the current command

to one of the goals. If the future state is closer to one of the goals, then that goal has

a greater probability than the others. One step further to prediction is using all the

commands provided by the user and not only the last one [18]. This type of system is

important as it merges the prediction with the assistance over the movement allowing

to do two steps together with less computation. The choice also comes from other two

consideration: it can generalize what is a state and a goal, and it can give assistance over

all of the possible goals when there is little confidence on prediction.

1.3 Expanding the Shared Autonomy

In the shared autonomy context, this work focus on the grasping task: the user has to

move the manipulator to a desired object and take it with the robot. This is one of the

most common task as it take part in almost any daily andworking activities. Most of the
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implementation of this system have been developed in a controlled environment: the

manipulator is fixed and it has aworking areawhere it can operatewhich is the common

installation of these devices. To control the robot the focus is on the grippermovement

as it is simpler for the user and possible with a joystick. In this work instead of a joystick

the control is achieved with wearable sensors called MYO which are low costs sensors

and provides inertial and muscular information of the arm. The wearer should be ca-

pable of easily providing direction information in a three dimensional space bymoving

the arm as command for the gripper to reach the desired object, the robot will be in

charge of the grasping simplified for the user. But easier command comes at the cost

of lower precision, the command is difficult to manage correctly, even more difficult if

the target of the system is a physical impaired person, and that is where the shared con-

trol aid the user. The system tries to predict the user intent and correct the movement

accordingly, whichmeans less intervention from the user and faster at reaching the goal.

The assistance over the movement presented earlier lacks of the collision avoidance

which is an important part in a shared controlled system and its inclusion would bene-

fits the user. In this work the task given to the robot is manipulation and even if some

of the concept of navigation still applies, they need to be revised and adapted. Reaching

an object for grasping is still navigation but the obstacles now are usuallymore complex

and the actual grasping needs to be decided correctly as it depends from the object and

from the gripper mounted on the manipulator. Therefore a shared autonomy system

for manipulation can manage different aspects of the manipulation task: navigation of

the gripper from starting position to pick position, avoidance of obstacle on the path,

how to effectuate the grip depending on the tools available and the object.

Collision avoidance is important in navigation for both mobile robots and manip-

ulators, therefore adding collision avoidance to the system should improve the perfor-

mance of thismethod, as not every object in the scene is a goal. The first direct improve-

ment of the collision avoidance is safety. Avoiding collision means avoiding damage to

objects and people, which is very important as the system described in some of the first

example works at close contact with people. The second improvement is related to nav-
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igation, the shared control might prefer a path that leads directly in collision but user

aware of that will try to avoid the obstacle leading to conflicting commands. Instead

if the shared control predict a collision it will try to avoid it and assisting the user in

the collision avoidance, which means a shared control with avoidance is a better shared

control.

There are many algorithm for the collision avoidance but the focus is on what is

needed: it must be online as the user is the one in charge of the global path by provid-

ing continuously command, and it must work in a three dimensional space because it

is a manipulation task. Working in a three dimensional space is in fact one of the rea-

sons for planning ahead of the offline approach because it is computational expensive,

it requires more memory to store collisions and more computational power to update

direction and the path planned. That’s why these offline algorithms compute the plan

without considering occupation and then recompute the path only for the part with a

collision, reducing total time required for the planning. Being the online requirement

themost important requisite of the system, the collision avoidance implemented in this

work comes fromnavigation ofmobile robots and has been adapted toworkwith ama-

nipulator.
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2 Methods

Thework focuses on providing assistance to the user whenmoving amanipulator. The

system acts as in Figure 2.1. The user sees the environment and provides commands ac-

cording to the goal to be reached, while the robot can model the environment by its

external sensors. The inputs are given to the shared autonomy system which processes

the information (user input and knowledge of the environment) providing as output

a new command which assists the user to reach the target avoiding obstacles. The out-

put of the system goes to the robot which now acts modifying the environment. The

process is repeated till completion of the task.

The representation in Figure 2.1 is generic as the devices might be of different types

and use different robots. Therefore the system needs to be flexible with changes. In this

context, the Robot Operating System (ROS) is used as it is generic and each package

can be replaced with another doing the same function. ROS is a flexible framework for

writing robot software. It is a collection of tools, libraries, and conventions that aim to

simplify the task of creating complex and robust robot behavior across a wide variety

of robotic platforms [19]. The distribution of ROS used in this work is Kinetic1.

In this chapter the components of the shared autonomy system are analyzed. At

first the focus will be on a framework that provides target prediction and assistance to

movewithin the same package, reducing time taken at each command and giving a gen-

eralizedmodel of goal and action. Then the collision avoidance is introduced andmod-

ified to work in the robot workspace. The two packages are then connected together
1http://wiki.ros.org/kinetic
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Figure 2.1: Generic shared autonomy system.

with an hybrid architecture that opportunely weights the resulted actions.

2.1 Target prediction and assistance

For the target prediction, the shared autonomy framework usedminimizes a cost func-

tion with an unknown user goal. The user’s goal is assumed as fixed, and the user takes

action to reach the goal without considering assistance. The problem is formulated as

a Partially Observable Markov Decision Process (POMDP) with the goal as unknown

state, while the actions are observable.

2.1.1 Defining the framework

If the goal is knownby the system, the problem simplifies as aMarkovDecisionProcess.

Formally, let x ∈ X be the environment state (e.g. human and robot pose). Let u ∈
U be the user actions, and a ∈ A the robot actions. As both agents can affect the

environment state, a transition is defined as T (x′|x, u, a)where x′ is the state result of
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the actions u and a in the state x. For simplicity some assumption are introduced.

• The user has an intended goal g ∈ G which does not change during execu-

tion. This allow the state of the system to be expanded with this goal, with

new state defined by s = (x, g) ∈ X × G. The transition function is over-

loaded to model the transition in environment state without changing the goal,

T ((x′, g)|(x, g), u, a) = T (x′|x, u, a).

• It is assumed that the user has a policy for each goal πu(u|s) = πu
g (u|x) =

p(u|x, g). This policy is modeled with maximum entropy inverse optimal con-

trol (MaxEntIOC) framework [20], where the policy corresponds to stochasti-

cally optimizing a cost functionCu(s, u) = Cu
g (x, u).

• The user is assumed taking action only on s, the current environment state and

their intended goal, and does not model any actions that the robot might take.

• At each time step, the user first selects an action, which the robot observes. The

robot selects actionabasedon the state anduser input through apolicyπr(a|s, u) =
p(a|s, u), that minimize a cost function dependent on the user goal and action

Cr(s, u, a) = Cr
g (x, u, a).

With this setup, the value function for a robot policyV πr as the expected cost-to-go

from a particular state, assuming some user policy πu is:

V πr

(s) = E

[∑
t

Cr(st, ut, at)

]
(2.1)

ut ∼ πu(·|st)

at ∼ πr(·|st, ut)

st+1 ∼ T r(·|st, ut, at)

From the value function it is now possible to define the optimal value function V ∗

as the cost-to-go for the best robot policy. The action-value functionQ∗ computes the
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immediate cost of taking action a after observing u, and following the optimal policy

thereafter.

V ∗(s) = min
πr

V πr

(s) (2.2)

Q∗(s, u, a) = Cr(s, u, a) + E [V ∗(s′)] (2.3)

s′ ∼ T (·|s, u, a)

The optimal robot action is given by argminaQ
∗(s, u, a). In order to make explicit

the dependence on the user, the optimal value function and the action value function

are written as:

Vg(x) = V ∗(s) (2.4)

Qg(x, u, a) = Q∗(s, u, a) (2.5)

With the problem formulated with a known goal, it is now possible to expand it to

a Partially ObservableMarkovDecision Process (POMDP)where the goal is unknown

and the objective is the same, minimize a cost function. A POMDP maps a distribu-

tion over states, known as the belief b, to actions. It is assumed that all uncertainty is

over the user’s goal, and the environment state is known. This subclass of POMDPs,

where uncertainty is constant, has been studied as a Hidden Goal MDP [21], and as a

POMDPlite [22].

In this framework, the distribution of the user’s goal is deduced by observing the

user actionsu. Similar to the known-goal setting value function (2.1), the value function

of belief is defined as:
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V πr

(b) = E

[∑
t

Cr(st, ut, at)|b0 = b

]
(2.6)

st ∼ bt

ut ∼ πu(·|st)

at ∼ πr(·|st, ut)

bt+1 ∼ τ(·|bt, ut, a)

Where the belief transition τ corresponds to transitioning the known environment

statex according toT , andupdatingourbelief over theuser’s goal. Similar to the known

goal case, it is possible to define value and action-value quantities over beliefs:

V ∗(b) = min
πr

V πr

(b) (2.7)

Q∗(b, u, a) = Cr(b, u, a) + E [V ∗(b′)] (2.8)

2.1.2 Target Prediction

In order to infer the user’s goal, the distribution of user actions at state x for user goal

g is modeled with a policy πu
g . The predictor used is the Maximum Entropy Inverse

Optimal Control (MaxEntIOC) [20], as it explicitly models a user cost function Cu
g ,

and the cost for the robot Cr
g is defined as a function of Cu

g . In this work, the user

does not model robot actions, this makes possible to define a MDP with states x ∈ X

and user actions u ∈ U as before, transition T u(x′|x, u) = T (x′|x, u, 0), and cost

Cu
g (x, u). MaxEnt IOC computes a stochastically optimal policy for this MDP.

The distribution of actions at a single state are computed based on how optimal

that action is forminimizing cost over a horizonT. Tomaintain knowledge of the states

action, the sequence of environment states and user inputs is introduced as ξ, note that

sequences are not required to be trajectories, in that xt+1 is not necessarily the result of
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applying ut in state xt.

ξ = x0, u0, . . . , xT , uT

The cost of a sequence is defined as the sum of costs of all state-input pairs:

Cu
g (ξ) =

∑
t

(Cu
g (xt, ut)) (2.9)

It also proved [23] that minimizing the worst-case predictive loss results in a model

where the probability of a sequence decreases exponentially with cost:

p(ξ|g) ∝ exp(−Cu
g (ξ))

Importantly, it is possible to efficiently learn a cost function consistent with this model

fromdemonstrations [20]. The problem of this approximation it’s the computation of

p(ξ|g). The difficulty lies in the normalizing constant known as the partition function:∫
ξ

exp(−Cu
g (ξ))

Evaluating this explicitly would require enumerating all sequences and calculating their

cost. However, as the cost of a sequence is the sum of costs of all state-action pairs,

dynamic programming can be utilized to compute this through soft-minimum value

iteration when the state is discrete [24] [25]:

Q≈
g,t(x, u) = Cu

g (x, u) + E
[
V ≈
g,t+1(x

′)
]

(2.10)

V ≈
g,t = softmin

u
Q≈

g,t(x, u) (2.11)

x′ ∼ T u(·|x, u)

Where the soft min function is defined as:

softminxf(x) = − log
∫
x

exp(−f(x)) dx (2.12)
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Let ξ0→t be a sequence from time 0 to t, and ξt→T
x a sequence from time t to T ,

starting at x. The log partition function is given by the soft value function (2.12):

V ≈
g,t(x) = − log

∫
ξt→T
x

exp
(
− Cu

g (ξ
t→T
x )

)
dx (2.13)

where the integral is over all sequences starting at x at time t. Furthermore, the

probability of a single input at a given environment state is given by [24]:

πu
t (u|x, g) = exp

(
V ≈
g,t(x)−Q≈

g,t(x, u)
)

(2.14)

Many works derive a simplification that enables them to only look at the start and

current states, ignoring the inputs in between [25] [17]. Key to this assumption is that ξ

corresponds to a trajectory, where applying action ut at xt results in xt+1. However, if

the system is providing assistance, thismaynotbe the case. Inparticular, if the assistance

strategy believes the user’s goal is g, the assistance strategywill select actions tominimize

Cu
g . Applying these simplifications will give positive feedback, where the robot makes

itself more confident about goals it already believes are likely. In order to avoid this, it

is ensured that the prediction comes from user inputs only, and not robot actions:

p(ξ|g) =
∏
t

πu
t (ut|xt, g) (2.15)

By applying Bayes’ rule it is possible to compute the probability of a goal given the

partial sequence up to t:

p(g|ξ) = p(ξ0→t|g)p(g)∑
g′ p(ξ

0→t|g′)p(g′)
(2.16)

That correspond into the POMDP observation model presented, as the transition of

belief over goals through τ in (2.6).

The soft-minimum value iteration is able to find the exact partition function when

states and actions are discrete. However, it is computationally intractable to apply in

15



continuous state and action spaces, that is in the presented work. Instead, it is possible

to use a second order approximation about the optimal trajectory. This approximation

is possible assuming a constant Hessian [17]. With this simplification the difficult to

compute soft-min functions V ≈
g and Q≈

g are replaced with the min value and action-

value functions V u
g andQu

g :

πu
t (u|x, g) = exp(V u

g (x)−Qu
g (x, u)) (2.17)

Finally, as there are often multiple ways to achieve a goal, the function are over-

loaded to consider them correctly. Each of these ways is referred as a target. For a single

goal (e.g. object to grasp), let the set of targets (e.g. grasp poses) be k ∈ K . Each target

has a cost functionCk, fromwhich computing value and action-value functionsVk and

Qk, and soft-value functions V ≈
k andQ≈

k . Instead of considering every target as single

goal it is possible to merge target of the same goal together [18]. This allows the value

and action-value function for the goal to be computed as:

Qg(x, u, a) = Qk∗(x, u, a) (2.18)

k∗ = argmin
k

Vk(x
′) (2.19)

Vg(x) = min
k

Vk(x) (2.20)

And the soft value functions are computed as:

V ≈
g (x) = softmin

k
V ≈
k (x) (2.21)

Q≈
g (x, u) = softmin

k
Q≈

k (x, u) (2.22)
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2.2 SC in this work

The Shared Control package is a modified version of the one proposed in [18]. In that

scenario, a human operator was provided with a joystick capable of performing move-

ment on 2 axis of the plane (x, y). The codewas developed in Python2.7 and specifically

oriented to the manipulator used in the paper. The shared control node receives the

twist command from the joystick, then computes the newprobability using the present

position of the manipulator hand and the twist command. After that, the system re-

turns the result action that optimizes for each goal according to their probabilities. This

nodewas developed toworkwithADApackages (AssistiveDexterousArm)2 developed

by Personal Robotics Lab3, which uses the MICO [26] Robot Arm built by Kinova4.

In this work there are some differences that required tomodify the package tomake

it work in the presented scenario andmake it more flexible to use. The user action, pre-

viously defined as u are twist command as it has been developed to work with joystick

inputs. The state of the system x is the pose of the gripper in respect to the base_link.

The user cost function,Cu
k , is definedwith a simplemodel that proved toworkwell but

simple to compute [18]. Let d be the distance between the robot state x0 = T u(x, u)

and target k:

Cu
k (x, u) =

α d > δ

αd
δ

d ≤ δ
(2.23)

That is, a linear cost near the target d ≤ δ, and a constant cost otherwise. This is based

on the observation that users make fast, constant progress towards their goal when far

away, and slow down for alignment when near their goal [18]. For prediction, when

the distance is far away from any target d > δ, the algorithm shifts probability towards

goals relative to how much progress the user action makes towards the target. If the

user stays close to a particular target d ≤ δ, probability mass automatically shifts to
2https://github.com/personalrobotics/ada
3https://personalrobotics.cs.washington.edu/
4https://www.kinovarobotics.com/en
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that goal, as the cost for that goal is less than all others. The cost for the robot in the

original systemwas set equal to the user: Cr
k(x, u, a) = Cu

k (x, a), causing the robot to

optimize for the user cost function directly.

In the original system, the SCNode worked in a modality which will be referenced

as ”always attracted” by the goals. In this mode the node always publish the assisted

command, even if the user is notmoving. This type of control has been used to simplify

the controls for the user when using a joystick. Instead, the robots moves only on user

command giving him more control. The latter will be referenced as ”not attracted”

continuously by the goals.

Having the system working in ”not attracted” mode, the cost function has been

modified from the original implementation, where few commands should have great

impact over the predictions and the systemwas allowed to keepmoving autonomously,

thus even small actions repeated over time were enough to reach the goal. Instead, in

this implementation the user is kept in charge of moving and the system provides as-

sisted actions only when receiving new commands. That means the user provides a

lot of commands that should be weighted accordingly with a small cost per command.

This change in the cost function translates to a lower α than the original. After com-

puting the probabilities, the system computes the optimal action, argmaxaQ
∗(b, u, a)

which depends from the costCu
k (x, u). As it is often impossible to calculate directly, a

first-order approximation is used, which leads to following the gradient ofQ∗(b, u, a),

which in turn have lower impact over the assisted action for the change in the parame-

ter α. Therefore, the computed gradient have its magnitude increased by multiplying

by another factormfar when far from the goals, and by factormclose when close to it.

Two different factors are used withmfar < mclose, as the assistance when close to the

goal should be greater to correctly reach the grasp target of the goal.

With this setup the package is already capable of providing assistance but some

problem persists. What if the user already sees that the goal is correct? To provide a

faster response, two alternatives are introduced which can be used alone or together.

The first is to give the user a special ”pick” command. The other possibility is a thresh-
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old on probability. When one of the goals g ∈ G has a probability greater than the

others of at least a certain value:

p(g) ≥ p(g′) + pthresh ∀g′ ∈ G, g ̸= g′ (2.24)

When the condition is met, the SC node sends the pick message to the robot controller

node. In both cases the package will use the last goal published by the shared control

and then will autonomously perform the grasping task.

2.3 Collision Avoidance

The collision avoidancemight be done in twoways: offline andonline. Most of the nav-

igation tools for mobile robots works online and collision avoidance for manipulator is

done offline. This is related to how the motion planning is done, for the manipulator

planning is done before starting tomove because the robot is fixed and it has knowledge

of the working area, thus allows to plan ahead a collision free path [27] [28]. Instead

mobile robots cannot trace all the working area and they have to deal with mobile ob-

stacles more frequently (like people or other mobile robots). The planning is therefore

done in two steps, a global planning from start to goal which avoid static obstacles like

walls, and a local planning which takes care of obstacles as they appear to the robots

sensors [29].

The collision avoidance selected for this work is online as the control produces twist

command continuously, but being originally developed for mobile robots it has been

modified to work correctly with a manipulator. As it was meant to work with mobile

robot, the only collisions and commands allowed are on the plane. Even though the

manipulator works in a 3d space, the bi-dimensional avoidance is enough for testing

the integration of shared control and collision avoidance. From this package a possible

expansion in 3D could be separating the space in multiple level over z axis, and creating

for each of them a representation of that level. When computing the avoidance, the

level used would be the one in which the gripper is present.
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2.3.1 Creating the Costmap

For the representationof the collisions, this packageuses a costmap2D that describes the

environment in which the robot moves. The costmap is divided in squared cell which

have their size decided at start, a cell that contains an obstacle has maximum cost per

cell whereas free space has cost zero. It uses as input a TwistStamped command which

can be provided by different devices (joystick, keyboard, MYO) and will be called vin.

At each vin received, the node generates a new command that avoid obstacle which will

be called vsafe.

The costmap needs to describe collisions in the workspace of the robot. These col-

lisions are detectedwith aRGB-D camera fixed on top of the table. This type of camera

provides a depth image (a pointcloud) which is useful as a representation of a 3D envi-

ronment. But the system requires a costmap and therefore an intermediate step from

pointcloud needs to be done. This step might be done in different ways. One possible

approach is to detect the objects in the scene (e.g. shape+color, Apriltag, YOLO) and

by knowing their original size it is possible to add them to the costmap as collision.

The approach, which has been used in this work, is converting the pointcloud to an

OctoMap [30]. The OctoMap is a model that implements a 3D occupancy grid map-

ping approach, providing data structures and mapping algorithms particularly suited

for robotics. The map implementation is based on an octree and is designed to various

requirements with the most important for this work being three. First it has the capac-

ity to provide a full 3D model of arbitrary environments without prior assumptions

about it. The second is compactness as the map is stored efficiently, both in memory

and on disk, which is important for complex environment. The third is the possibil-

ity of projecting the map to a plane, directly generating a costmap2D. The problem

with the projection is that the gripper itself is seen as an object and projected as an ob-

stacle. Also the goal are seen as obstacle and they need to be removed or the collision

avoidance will push away from them. The goal collisions are removed by request of the

UR_Control node, which will publish one message for each goal containing the posi-
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tion of the center and the length of the side. The CANodewhen receiving themessage,

clears the costmap in a square with the desired properties of center position and size.

Since the gripper could be detected as obstacle more passages are needed. The first

step is delimiting with parameter the maximum and minimum z value on the vertical

axis. Only the objects on the workspace which has known height should be consid-

ered, and with this threshold all the obstacle that might be on the ground are correctly

removed. The second step is previously moving the gripper on top of the workspace

above the maximum z. By applying these two steps, the produced costmap considers

only objects on the table real obstacles. The third step is to set a parameter that makes

the map static. The static map when subscribing to the source of data, the Octomap

node, takes only the first message published, which is the first map. This is required

because when the gripper will begin moving on the table and seen from the camera,

the octomap will be updated and the gripper added as collision on the costmap. But

with the three steps described before, the map will be correctly generated at the start

and fixed. Even though these steps might be restricting, it is possible to assume that

the robot is the only agent that is present in the workspace and whenever a new task is

needed the system will restart regenerating the map with the new collisions.

Fromwhat described above, the costmap has a static layer which represents the ob-

stacles in the scene. It was assumed that the robot is the only agent that is moving in the

workspace and therefore there is no need to update themap. At every new task themap

is generated having always the correct representation of the environment. But the static

layer proved to be not enough to make the CA Node correctly working. In particular,

another layer has been added: the inflation layer, which expands all the obstacles by a set

amount with a scaling cost from free space to lethal. This layer is useful as the influence

of the obstacles are visible in advance to the systemwhen heading towards one of them.

The scaled cost allows the avoidance command to be more flexible as it can move near

the collision without being stopped but keeping the distance because it tries to main-

tain the minimum trajectory cost. It is also safer because the obstacle is represented by

the costmap with squared cells of fixed size, affected by approximation errors.
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2.3.2 Generating safe commands

The CANode now has the correct map and is capable of creating safe commands from

theuser ones. Previously vin and vsafe where defined respectively as the twist command

fromtheuser and the twist commandgeneratedby the collision avoidance. When anew

vin is received the node will generate multiple possible trajectories and selects the one

with the minimum cost. Finally, it returns the vsafe which generated that trajectory.

Each of these trajectories is generated by one of possible speed along the x and y axis

taken from a specific set.

Vy

Vx

Vin

Vy

Vx

Vin Vin

Vsafe

1) 2)

3) 4)

Vin

Figure 2.2: Collision avoidance in action: 1) The workspace with the obstacle visible. The
user command vin is in collision. 2) The set of possible of (vx, vy) is shown as grid of yellow
circle. Some possible command are the black arrows starting from the gripper. 3) From all the
possible velocity the one that minimize the cost function is taken shown as the green arrow.
4) The optimal velocity is given as the output vsafe.

Define vx as the linear speed on the x axis, define the parameter vxsample as number

of sample speed for the x axis, anddefine the parameters vxmax and vxmin as themaximum
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andminimum speed for x. The set Vx of possible velocities on x is now computed and it

contains all the possible speed from vxmax to vxmin, sampled evenly for a total of vxsample:

Vx =

{
vx

∣∣∣∣∣vx = i · v
x
max − vxmin

vxsample − 1
, ∀i ∈ 0, 1, . . . , vxsample − 1

}
(2.25)

In the same way as vx, vy is introduces as the linear speed on the y axis, vysample as the

number of samples, vymax and vymin as themaximum andminimum speed for y. The set

Vy of possible velocities on y is:

Vy =

{
vy

∣∣∣∣∣vy = i · v
y
max − vymin

vysample − 1
, ∀ i ∈ 0, 1, . . . , vysample − 1

}
(2.26)

For each combination of possible velocity, (vx, vy) ∈ Vx × Vy, a trajectory S is

generated as a set of point starting from (xo, yo) the robot pose at this time. The points

are sampled between time steps tstep = tmax/tsample, where tmax is the maximum

time in the future to explore and tsample is the number of time sample. Therefore each

trajectory S is composed of all points (x, y) generated by a given (vx, vy):

S =

(x, y)

∣∣∣∣∣∣ (x, y) = (xo + j · tstep · vx, yo + j · tstep · vy)
∀ j ∈ 0, 1, . . . , tsample − 1

 (2.27)

At this point there are |Vx × Vy| trajectories, from which are discarded those that

have at least one point which is an obstacle. For the remaining trajectories a cost is

defined. Define C(x, y) as the cost of the cells that contains the point (x, y), which is

provided by the costmap. Define udist(x, y) as the distance of the point from the user

trajectory Su generated by vin. Two parameters cscale and uscale are introduced, where

cscale is a scaling factor for the cell cost and uscale is the scaling factor for the distance

from the desired trajectory. The optimal trajectory S∗ which is both safe (no collision)

23



and tries to follow the user vin is computed as:

S∗ = argmin
S

 ∑
(x,y)∈S

C(x, y) · cscale + udist(x, y) · uscale

 (2.28)

Therefore (vx, vy) that generated S∗ are the linear component on the x,y axis that de-

fines the safer linear trajectory. This command is the normalized to have the same size

of vin, the result is vsafe.

2.4 Integrating the Collision Avoidance

In a real scenario some objects might not be goal for different reason, some of them

might be obstacles present in the workspace. Other objects might be impossible for the

manipulator to be grasped and therefore not to be considered as goal. In any of these

cases they should be avoided as a collision might damage the robot and the object. The

solution is simple and comes from the navigation problem of mobile robot: integrate

a collision avoidance system. Collision avoidance is already one of the most extensively

researched topic withmany possible implementations. For simplicity when referencing

the collision avoidance node it will be abbreviated as CA Node and the shared control

node as SCNode. It is now possible to create a simple combination of the two node for

the system where the output of the SC Node is given as input to the CA Node.

With this setup the system should now be able to avoid obstacle. Define vin as

the input twist command received fromwhichever device used (e.g. joystick, keyboard,

MYO) and generated by the user. Define vout as the final twist command which will

be used by the UR_controller. Define vsc and vca respectively as the output of the SC

Node and the output of the CA Node. If vsc is a command that would take the robot

towards an obstacle, the CA Node will modify that command to avoid the collision.

But this combination doesn’t consider some possible combination of event that usually

happens in the real case. The first problem comes from the shared control, because

when computing the assisted action vsc it uses both the input vin which is notmodified
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Figure 2.3: The hybrid architecture which mixes the result of collision avoidance and target
prediction, based on the weights given to them.

and the position of the gripper. The position on the gripper depends on the previous

commands sent to theUR_Controller which weremodified by the collision avoidance,

therefore the probabilities associated with the goals change without reflecting the real

user intention, nor the assisted action which is considered by the model. In the case

where the user has only simple commands or he doesn’t understand that the robot is

avoiding an obstacle, the result will be that the probabilities won’t describe correctly

the past commands at the end of the avoidance, and the robot might be assisting to the

wrong goal. If the user is actively avoiding the obstacle, he will try to correct the path

after the avoidance but it will require more time to select the correct goal, because he

will need to contrast the wrong assisted action.

But there is another problem with this setting. Consider a possible scenario where

the shared control points at an object behind the obstacle but the collision avoidance

tries to point far from it. The two commands keep opposing each other resulting in the

robot to get stuck in front of the collision object. If the user notice this behaviour, he

has to provide more commands to solve the conflict, thus more intervention from the

user is required. This means the shared control is not efficiently assisting the user.

Therefore the system ismodified by introducing an hybrid architecture (Figure 2.3)

in which the two commands aremixed together with a weighted sum. The twoweights

are called wsc for the shared control and wca for the collision avoidance. The value of
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wca is based on how much the collision avoidance is intervening to avoid the obstacle.

Tomeasure this intervention the factor chosen is the angle between vin and vca. As the

two commands are TwistStamped, it is possible to consider the linear component as a

vector in 3D space. The angular component might be added but it is not considered in

this formulation. Therefore being the two vectors vin and vca with three component,

the angle is defined as:

α = arccos
vin · vca

∥vin∥ · ∥vca∥
(2.29)

This formulation of angle between vectors returns a result in the range [0 : π].

With the angle ready, it is now possible to map different angles to different weights.

The mapping has been chosen with some properties. The wca when the angle is over

a threshold αthresh should be equal to one or as close as possible to one; the mapping

should smooth the convertion from angle toweight; the point atwhich the twoweights

are equal is decided by h. The function chosen is the sigmoid function:

wca =
1

1 + exp
(
−k( α

αthresh
− h)

) (2.30)

This weight will be in range [0 : 1]. The other weight wsc is obtained from wca

with (2.32), and the mixed output is now computed as the weighted sum:

vout = vsc · wsc + vca · wca (2.31)

1 = wsc + wca (2.32)

The mixed output describes different scenario where the CA Node is active:

• The user ismoving towards the obstacle. The CANode detects that there will be

a collision and starts generating a new command with high deviation from the

original path. The resulted weights are in favor of the avoidance as it needs most

of the control.

• The user is avoiding the obstacle but pass nearby it. The CA Node detects that
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it is near a collision and it would be better to move a bit farther from it. The

command is different from that of the user, but has deviation lower than the

previous example. The resulted weights are in favor of the shared control as col-

lision avoidance is less important but the shared control still benefits from it.

• The user is correctly avoiding the obstaclemaintaining distance from it. The CA

Node doesn’t detect possible better path as the original one is moving in free

space, therefore no angle with the original command. The resulted weights are

with total control for the SC Node, as if there were no collision avoidance.

The intervention from the CA Node affects also the probabilities. If the user is

moving towards an obstacle, themixed vout will push away the gripper correctly but the

probabilities, as said above, are dependant on the position of the gripper itself. There-

fore, it is possible to assume that the value and action-value function are not correctly

describing the system changes from user action u. At this point two possible course

might be taken to fix the update. The first method is to verify if the collision avoid-

ance is active, and in that case stopping the update. The second method is to apply a

weight to the update such that, when the collision avoidance is active the changes in

probabilities are proportional to the intervention of ca. By having this intervention al-

ready measured and weighted, there is no need of extra computation. To decide which

is better, some assumption on a real scenario are needed. It is possible to assume that

the user will try to avoid the obstacle, his commands will be mixed and directed away

from obstacle, but still up to some degree to the desired object. It is also possible to

assume that if the user command doesn’t avoid the obstacle, the CANode intervention

will be higher and will affect the position of the gripper, which is the state x. Therefore

the second method is preferable as it describes better what happens in the system, the

weight given to the update is proportional to the intervention. The computation of the

update at time t is given by equation (2.17) and overloaded as:

πu
t (u|x, g) = exp

(
wsc ·

(
V u
g (x)−Qu

g (x, u)
))

(2.33)
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2.5 Final scheme

The nodes that provide the described function above, are linked together with the fol-

lowing scheme: TheOctoMap node that creates the costmap of the collision avoidance

Collision Avoidance
MYO

Kinect

Robot Command

OctoMap

ApriltagRGB

PointCloud
Projected CostMap2D

UR_Controller

Shared Control

Myo Control

Figure 2.4: Scheme with nodes of the project.

is linked to the Collision Avoidance. The UR_Control with the AprilTag detects the

objects and creates the goal with targets that will be used by the target prediction. It

also sends to collision avoidance the position of the goal so that it is removed from the

costmap. The MYO Control is the node that converts input from MYO [31] [32] to

velocity commands used by the others. This node might be replaced with any other

input provider, such as keyboard, joystick or also the input simulator seen in the next

Section 3.2.
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3 Experimental Validation

3.1 Experimental Setup

The system has been tested on a simulated environment seen in Figure 3.1. The ma-

nipulator used is the UR101 with the Robotiq 3-Finger Gripper2. The goals chosen are

two cubes with the apriltag id on top of them. They are just two because the validity of

the target prediction has already been tested in its proposal work [18] and they are both

cubes for the same reason, with the only target available for the grasping as the pick pose

on top of them. The manipulator is placed few centimeters from the top of the table.

On the other side, the RGB-D camera, a Kinect3 has been placed. The collision objects

are prismswith hexagonal base usually approximated as cylinder and twoparallelepiped

of different sizes. Even though one collision object and two possible goals might be a

simple scenario, it is enough to verify the improvement of the system with the hybrid

control from the two nodes, Shared Control and Collision Avoidance.

Together with the hybrid architecture system, others combinations of nodes have

been tested. The configurations with only the shared control and the non-assisted con-

figuration provide baselines for the others. The direct configuration where the output

of the first node is given as input to the second is the simplest approach and the hybrid

configuration is the one proposed in this work and seen in Figure 2.3.

To provide a solid base line for the experiments, consistency of inputs is needed
1https://www.universal-robots.com/it/
2https://robotiq.com/
3https://developer.microsoft.com/it-it/windows/kinect
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Figure 3.1: The simulated environment used in one of the test. The obstacles are in bluewhile
the goals in red. The gripper is placed just above the table and cannot be controlled directly
in the vertical direction, thus collisions might happen during the experiments.

between tests. They must be similar in how they try to reach the goal, and they must

be similar to those provided by a human user. These consistency would be difficult

to achieve for human operators, therefore they have been simulated by an appropri-

ate node which maintains the described properties over the various experiments. With

the results of the various architecture and motivated the choice over the hybrid, other

experiments were conducted on human volunteers with the MYO.

3.2 Simulated Input

The commands from the user might be provided with different tools, but when the

input is provided by a human user it is difficult to replicate the test with the same se-

quence of commands or requires a great number of subjects. Therefore a special simu-

lated command is used which place the focus on the objective while maintaining a re-

alistic sequence of commands. To achieve these objectives, a new node has been added.

At first this node takes the position of the selected goal pgoal = (xgoal, ygoal) and the

position of the gripper in the workspace pgrip = (xgrip, ygrip). Only the coordinates
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Figure 3.2: The tested architecture of nodes are listed. No Assistance is used only with the test
with user input where the user has direct control of the robot. Shared Control that provides
only target prediction and assistance to target. Shared Control with Collision Avoidance in
direct configuration where the output of the first node is the input of the second called SC to
CA in the experiments. The last combination is the Hybrid architecture seen in Figure 2.3.

(x,y) are considered because the collision avoidance doesn’t use the third dimension, as

explained in Section 2.4. Therefore the vector from gripper to goal is considered. This

vector can be easily computed and provides the direction of the command from start to

end that in a collision free environment would results in the correct movement to reach

the goal. Previously the error over the command where exposed as the user won’t be

able to provide such precise direction, therefore an error over the direction is added to

better simulate the user. The error in direction translates to an error over the angle of

the vector, therefore it is simple to generate a random error e resulting in the angle of

the command ϕc.

ϕgoal = arctan
(
ygrip − ygoal
xgrip − xgoal

)
(3.1)

ϕc = ϕgoal + e (3.2)
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φ

Figure 3.3: With target ”box0”, the angleϕ of direction ranges based on the added error.

The error e should be always less than the maximum angle that would point to-

wards the wrong goal, which would be impossible to counter for the system without

having explicit information about user intention.

max(e) <
|ϕgoal1 − ϕgoal2|

2
(3.3)

With themaximumpossible error found, the error can now be computed to be of fixed

size:

e = i · ϵ i ∈ {−2,−1, 0, 1, 2} (3.4)

In such way and with a fixed ϵ (in the experiments ϵ = 7◦ degrees) there are always 5

cases per experiment, with the same deviations from the original direction. They are

easily computed and simulate an user with low control over direction but enough to

point at the right goal. The components of the command vin are computed:

cx = vo · cos(ϕc) (3.5)

cy = vo · sin(ϕc) (3.6)
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3.3 Control with MYO

TheMYOprovides both theEMGsignals and the sensor orientation. TheEMGsignals

are analyzedby the classifier providedby theMYOsoftware, which is capable to identify

different hand gestures. The gestures used are ”Double tap” and ”Fist”. ”Fist” has been

used to command the robot to pick the target as it resembles closing hand to grasp an

object. The ”Double tap” is the easiest to identify for the classifier, therefore it has been

used as safety command that start or stop the control. The orientation has been used

to generate the movement direction. The command needed by the SC Node and CA

Node is a velocity command, therefore a conversion from orientation to twist is needed

to correctly map the user input.

3.3.1 From orientation to velocity

The orientation provided by theMYO is computed respect to a global frame and there-

fore it cannot be used directly. Thus, it is necessary to change the reference system from

global to user’s reference frame. Define qin as the quaternion that represents the orien-

tation at a specific time, the first quaternion received by theMYOControl is considered

to be in a neutral pose for the user, with his arm extended in front of him, and it is saved

as qstart. The difference between the present orientation and the neutral orientation is

therefore the orientation computed from the user reference system. Being the orienta-

tion expressed in quaternion the computation of qarm is:

qarm = qin · q−1
start (3.7)

The computed qarm is the correct orientation of the armwith respect to the user. If the

user moves from his starting position the correction no longer holds as qstart was the

orientation of the arm in the original pose. For this reason the ”Double tap” has been

used as start/stop command. Whenever the control is restarted, the actual orientation

of the arm is assumed as neutral and saved as new qstart.
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The arm orientation obtained at the previous step, is now converted to its Euler’s

representation in roll, pitch, yaw. Each angle is mapped to one of the three axis (x,y,z).

Therefore there are three tuple a, γ where:

a ∈ {x, y, z} (3.8)

γ ∈ {roll, pitch, yaw} (3.9)

For each (a, γ), a threshold γt over the angle γ is defined. With the threshold, the ve-

locity over that axis a is defined as:

va =


vo γ ≥ γt

0 −γt < γ < γt

−vo γ ≤ −γt

(3.10)

With vo being the set base speed. The three velocity obtained are the components of

vin, which is then published for the other nodes to be used:

vin = (vx, vy, vz) (3.11)

The velocity obtained in such way has in total eight possible directions, those along

with the axis and the four bisectors. Thus proving what has been said previously, the

user has low control over the direction and the system should be testedwith some error,

validating the method used to generate the error in the simulated input.

3.4 Performance with Simulated Input

In the first experiment with simulated input, the command has been generated with

frequency of 10Hz, while the frequency of the SC Node was 60Hz which was also set

in ”always attracted” thus moving with the last command received. The SC Node has

been set with both the ”pick” command and the threshold over probability disabled.
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Figure 3.4: The workspace for simulated input. The left configuration has the obstacle closer
to the center, instead the right configuration has the obstacle closer to the side of the table.
The cube on the left has been called ”box0” while the other is ”box1”. Those names have been
maintained in every tested environment.

The task is considered completed when the distance from the center of the gripper to

the goal is less than a certain threshold. If after 200 command the goal has not been

reached, the test is considered failed. The limit on the number of generated commands

corresponds to twenty simulated seconds. The workspace for simulated input contains

two cubes which are the goals, and one obstacle placed between the gripper starting

position and the goals. The obstacle is taller than the cubes and therefore collisions

might happen. The obstacle has been placed in two position, one closer to the center

and one more on the side as in Figure 3.4.

In Figure 3.5, the obstacle is represented as a black circle, with the collision distance

around it. As it can be seen the only case with collision is SC Only. Obviously with

no collision avoidance and simulated input towards the goal it was impossible for the

system to avoid collision, but it shows how the assistance works and the trajectories are

correctly directed towards the goal.

In both of the cases where the output was directly connected to collision avoidance, the

obstacle is avoided and no collision happens but it shows another event. To avoid the

obstacle the collision avoidance tries to push to one of the sides but the shared control

35



Central Obstacle Side Obstacle

Figure 3.5: Trajectories of the gripper in the workspace with different configuration of nodes:
SC Only with no collision avoidance, SC to CA for direct configuration, and Hybrid for hybrid
configuration. The selected goal is shown with the color of the path: red for the goal ”box0”
and blue for goal ”box1”. The trajectories that reach the time limit finish with a cross.

tries to reach the goal behind. The resulting behaviour is a conflict between the two

nodes that keeps the gripper in place, allowing only small movement to avoid the ob-

stacle, which also require more time than the previous configuration and reaching the

time limit. In those trajectories that manage to avoid the obstacle on the right side, the

path are then steered towards the opposite goal, as the avoidance moved the gripper

closer the incorrect target. With the constant simulated input this behaviour cannot be

avoided. In presence of a human user, he could eventually correct the behaviour, but it

would require more input and time to reach the goal.

In the last case the Hybrid architecture is shown. The obstacle is avoided in any path

and the goal is reached inmost of them. Thewrong selection of goal is not present even

in the most difficult path, even though it requires more time to reach the goal.

In Figure 3.6 the times for all simulated input are represented. It can be noticed

that with the direct architecture the time limit was reached dominating the mean. The

Hybrid and SC Only have similar times and they are both faster than the direct config-

uration. In the side obstacle experiments the same behaviour betweenHybrid and SC
to CA is observed. The higher times for ”box0” are dependent from the obstacle which

is moved closer to that goal.
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Central Obstacle Side Obstacle Central Obstacle Side Obstacle Central Obstacle Side Obstacle

Figure 3.6: Average times for first simulation divided in two plot one for each goal. The order
of the bar is kept with Central Obstacle: SC Only, SC to CA, Hybrid then Side Obstacle: SC to CA,
Hybrid. On the right side the number of collision for each of them.

Central Obstacle Side Obstacle

Figure3.7: Theposition values of the gripper are shown. The collision aremarkedwith ablack
square. All sequences have their time length normalized.
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Central Obstacle Side Obstacle

Figure 3.8: Probabilities of goal ”box0” over time. The times are normalized to have same
length. The probability of ”box1” is not shown as it is complementary to ”box0”.

One important aspect of the assistance which could not be seen in the path of Fig-

ure 3.5 is the assistance over the vertical axis. In Figure 3.7 the z axis corresponds the

vertical direction which is important as the target is placed on top of the goal but the

collision avoidance comes from navigation and it cannot move on that axis. This lim-

itation from the collision avoidance results in reaching the target with an error, or in

some cases colliding with the object.

Lastly for this simulation, the probabilities over time are represented in Figure 3.8.

Those tests with the path closer to the middle of the goals, proved to be the most dif-

ficult for the system to understand the user goal. In some cases the wrong goal has

been selected requiring more time to correct the probability. These cases can be seen

in Figure 3.5 where some trajectories reached the wrong target. The Hybrid configu-

ration showed more resistance at this behaviour maintaining the correct goal selected

over time.

The previous simulation covers the type of user which select the goal first then pro-

vide just one intention to which goal he wants (one direction at start), but the user

could be of another type. If the user has continuous control, while the robot moves

towards the goal he is capable of updating his intention based on the position of the

robot. This type of user could be simulatedwith a new type of input where at each step

the new direction is computed and then the new command is published. This type of
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Central Obstacle Side Obstacle

Figure 3.9: Trajectories of the gripper in the workspace with different configuration of nodes:
SC Only with no collision avoidance, SC to CA for direct configuration, and Hybrid for hybrid
configuration. The selected goal is shown with the color of the path: red for the goal ”box0”
and blue for goal ”box1”. The trajectories that reach the time limit finish with a cross..

input has been tested on the previous environments. The ”always attracted” mode has

been disables and the number of command generated is 1200with a frequency of 60Hz,

therefore the total time given for a task is 20 seconds as before.

In Figure 3.9 the trajectories are shown, and similar to the previous paths in Figure

3.5 the configuration SC Only alone is the only one colliding with the obstacle. The

direct configuration for central obstacle shows three caseswhere the time limit is reached

even though it seems the contrary from this perspective. This behaviour depends from

the target which is placed on top of the goal, forcing the assistance node to intervene

over that axis as seen in Figure 3.11. The two configurations, SC Only andHybrid, seem
to have similar performance in reaching the goal and avoiding the obstacle.

The average times in Figure 3.10 manifest the same behaviour between times of the

previous simulation (Figure 3.6). The SC Only configuration is the fastest, and theHy-
brid configuration is faster than the direct configuration even with the different input

of this simulation.

The new input type showedmore reliability in targeting the correct goal. In Figure

3.12 the probability for box0 are reported, and in all the test the correct goal has been

selected at start and maintained throughout time.
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Central Obstacle Side Obstacle Central Obstacle Side Obstacle Central Obstacle Side Obstacle

Figure 3.10: Average times for second simulation divided in two plot, one for each goal. The
order of the bar is kept with Central Obstacle: SC Only, SC to CA, Hybrid then Side Obstacle: SC
to CA, Hybrid. On the right side the number of collision for each of them.

Central Obstacle Side Obstacle

Figure 3.11: The position values of the gripper are shown for simulation 2. The collisions are
marked with a black square. All sequences have their time length normalized.
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Central Obstacle Side Obstacle

Figure 3.12: Probabilities for the second simulation of goal ”box0” over time. The times are
normalized tohave same length. Theprobability of ”box1” is not shownas it is complementary
to ”box0”.

3.5 Complex Workspace

The previous simulations showed two different types of user in a simple scenario, but

they have some limits. While an user with continuous control would change direction

based on observation like in simulation2, he needsmore time than the system to update

his current command. To overcome this limitation the direction is no longer changed

at each step, instead the update for the simulated input is done every two seconds. After

that the command is maintained for the next two seconds till the new update of direc-

tion. With a total time of twenty seconds there are a total of nine different command.

Thenew input has been testedwith twodifferent environments, they have different

placement of obstacles making the test more challenging. In the first workspace, called

simulation 3, the only path for the gripper is a narrowpassage in the center. The passage

forces all trajectories to pass through the center, making goal probabilities difficult to

estimate. Therefore the system has less time to select the correct goal and then assisting

to reach the target. The otherworkspace, simulation 4, has twonarrowpassages one for

each goal and allows the system todetect the correct target from the beginning. The two

simulations share the same data for SC Only as the results are not affected by obstacles

giving the same output.
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Figure 3.13: From the left: simulation3 in simulation, sim3 costmap, simulation4 in simula-
tion, sim4 costmap. The passages are just big enough for the gripper to pass with the collision
avoidance but they need a precise straight path through the obstacles.

The path of the new simulated input can be seen in Figure 3.14. The direct config-

uration avoided the obstacles but in most of the tasks failed to reach the goal in time.

Nine out of ten task failed, two before surpassing the obstacles. In the other it failed

as the avoidance required a lot of time, ending before the target was reached. In some

cases, the tasks ended on top of ”box1” and it may seems from this perspective that they

were successful. With the extra information of the gripper position over z axis, it is ev-

ident that the gripper wasn’t close enough to the target, and the system couldn’t assist

within the time frame resulting in failed task. In the Hybrid configuration, the obsta-

cles are avoided and the goals are reached in time, and even though two paths of ”box1”

showed to move in the wrong direction for some time, they were recovered.

The trajectories of the gripper for sim4 are shown in Figure 3.15. The central obsta-

cle forced the robot tomove to the side, but inmost of the testwith direct configuration

it couldn’t reach the passage. While close to the obstacle the avoidance has most of the

control but sometimes the robot reach one of those position with opposing command

where the avoidance change direction to avoid the obstacle but on the other side. In

each test, these positions have been encountered different times resulting in the robot

being stuck in front of the obstacle. In theHybrid configuration experiments some di-

rection changes also happenedbut theywere less influential, allowing the robot to avoid
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Figure 3.14: Trajectories of the gripper in sim3 with central passage. Each plot with path has
its coordinate over time shown on the right side of it. The length are normalized for time axis.

the obstacle correctly and reaching in time the target. By counting the number of suc-

cessful task, the best result is achieved by the Hybrid with only three failures, whereas

the direct configuration has eight failures due to time limit.

Average times follow the same behaviour of the previous simulations as seen in Fig-

ure 3.16. The SC Only configuration has the best times, while the direct configuration

is the slowest with an average close to the time limit. TheHybrid configuration main-

tained similar performance to SC Only.
The new type of simulated input updated over time is more stable as it always gives

the correct path minus a small error, and even with different failed test the correct goal

has beenmaintained over time as seen in Figure 3.17. One interesting aspect is found on

sim4 with Hybrid configuration. There are three probabilities which remained stable

formost of the time. They correspond to the three tests with time limit reached (Figure

3.15) and they selected correctly the goal but were unaffected by side movements due to

collision avoidance.

In the figures where time is shown (Figure 3.10, Figure 3.6, Figure 3.16) the same

pattern between configuration is visible, but for a better readability all the times have

been normalized. This step was necessary as the position of the obstacle and its dimen-

sions greatly affect the result of single tests. Therefore each sample of tests having the
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Figure 3.15: Trajectories of the gripper in sim4 with side passages. The obstacles on the sides
are not visible due to being outside of the x range. Each plot with path has its coordinate over
time shown on the right side of it. The length are normalized for time axis.

same simulation, configuration of nodes and goal have been normalized between its

maximum and minimum value. The results are shown in Figure 3.18. The SC Only
configuration and Hybrid have similar average value while the direct configuration is

the slowest, confirming the observation of the previous time plot. Having the times

normalized, allowed to test the statistical difference between the configuration and the

result is shown in the same plot. Between SC Only and SC to CA the result is p < 0.05

showing that their main difference is only the average value. Between SC to CA and

Hybrid the result is also p < 0.05, as they effectively behaved similarly but with the

latter being better in many test and faster.

The results of the simulated input give some observations on the effectiveness of

the architecture. The SC Only works correctly giving a lot of assistance, resulting in

overall faster times and good precision for the target. The limit of this system is the lack

of knowledge of the obstacles in the path resulting in many collisions. The simple ap-

proachof direct architecture, (SC to CA), is capable of avoiding the obstacle but in some

condition it leads to conflict between the two controllers (assistance to target and colli-

sion avoidance) resulting in the robot having problem in difficult position like sim3 and

sim4 where the distance between obstacles is narrow or the obstacle is placed between

robot and goal. The Hybrid configuration retains the ability to avoid the obstacles,
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Figure 3.16: Average times for third and fourth simulations divided in two plots, one for each
goal. On the right side thenumberof collisions for eachof them. The first line is for simulation3
with central passage while the second line for simulation4 with the two side passages.

while also weighting the two systems. The result is the ability to give more importance

to the critical part, avoidance of obstacle and assistance to target, based on the current

situation.
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Sim3: Central Passage Sim4: Side Passages

Figure 3.17: Probability of goal ”box0” for simulation3 (central passage) on first row, simula-
tion4 (side passages) on second row.
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Figure 3.18: Average normalized times of simulated input. Normalized between maximum
andminimum for their test. Statistical difference test result marked on bars.
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3.6 Performance with User Control

The tests with simulated input have shown that theHybrid configuration provides the

collision avoidance with time performance similar to the SC Only configuration. With

these information theHybrid configuration is therefore better than the direct configu-

ration. What may limit these tests is the input. While in simulation3 and simulation4,

the simulated input has beenmodified to better adapt to human input, a real usermight

greatly differ. Therefore some tests with human users were made, where the input has

been provided with the MYO described previously in section 3.3.

3.6.1 Testing the control

The first set of tests used a workspace similar to that of sim1 and sim2, but instead of

using the cylinder as obstacle, it uses a parallelepiped placed in the center and slightly

moved to the left sidemaking the object more difficult to be reached. The user had con-

trol onmovements over the plane (x,y) but no control over the elevation of the gripper

(z axis). Some time has been given to the user to become familiar with the controller.

The task was considered completed on user decision when he was satisfied with the po-

sition of the gripper respect to the goal. This type of control led to many tasks ending

not exactly on top of the object as from the perspective of the simulation it is difficult

for the user to understand correctly the relative position of the gripper to the goal.

In Figure 3.19 the trajectories of the gripper are presented and it is clear that the user

ended most of his tasks before reaching the correct pose. The human user is capable

of avoiding the obstacle also inNo Assistance case, even though it required a lot of di-

rection changes and corrections to reach the target. In the test with only assistance to

target, the user collided with the obstacle for the first two test, when he was heading

towards goal ”box0”. This is the result of the assistance giving more speed to reach the

two goal but ignoring the obstacle. In the other tests of the same configuration, no col-

lisions occurred as the user adapted his own behaviour pushing the gripper far from the

obstacle before reaching the collision. Therefore the task was completed but the user
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Figure 3.19: Trajectories of the gripper in the first MYO experiment. The obstacle is placed
in the center forcing the user on the sides. Differently from sim4 the user can go how much
he desires to the side. The trajectories end when the user decided he was satisfied with the
position.

had to fight against the assistance.

In the direct architecture, the obstacle is correctly avoided but it can be seen that the

path is jumping between different directions. The inclusion of the avoidance evenwith

the simple direct configuration provided smoother trajectories. With the Hybrid ar-

chitecture the trajectories are smoother and the collision is avoided with no jumping

direction.

Observing the times in Figure 3.20, the non assisted case proved to be the slowest

while the SC Only configuration was the fastest. The SC Only configuration has been

faster because the assistance always pushed the gripper towards the goal, but it is also

the only configuration which caused collisions as in the simulated input scenario. The

SC to CA andHybrid achieved similar timings, with slightly better performance for the

direct configuration.

At this point, the direct configuration would seem to be better, but observing the

number of direction changes required to the user to reach the goal, shown in Figure

3.21, the Hybrid configuration had the smallest number of direction changes. There-

fore this configurationmaintained time performance close to the case of non assistance,
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Figure 3.20: Average times for MYO control divided in two plot, one for each goal. On the right
side the number of collision for each of them.
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Figure 3.21: The average numbers of direction changes divided per goal in two plots.
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but requiring less intervention from the user and correctly avoiding the obstacle. The

assistance to target is themain objective of the shared autonomy system and theHybrid
configuration allowed the user with a smaller number of commands to reach the goal.

The limit of these tests is the possibility to stop it on user decisionwhichmakes difficult

to verify the performance in assisting precise movements.

3.6.2 Second part of user test

In the previous set of tests, the user ended too early not reaching the target and there-

fore the performance in assisting precise movements was not clear. For this reason, the

user goal for the next experiments is the target position with a small threshold set to 3

cm of distance. As the target is placed on top of the object, the user control has been

updated with the vertical axis giving full control on the 3D space. The control of an

additional degree of freedom (i.e., gripper elevation) makes the task more complex as it

is difficult to have a correct estimation of the 3D gripper position from the user’s per-

spective. The configuration with only the assistance (SC Only) has been discarded as it

has been shown that it cannot avoid obstacles without the need of strong intervention

from the user.
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Figure 3.22: Trajectories of the gripper in the secondMYO experiment. The trajectories which
are marked with a black square collided with the object.

In Figure 3.22, the trajectories of the gripper are shown, and on the side the posi-
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tion over time for each configuration. The assistance to target is clearly visible as the

paths in No Assist have many direction changes to reach the goal while the other two

have their paths smoother. It is also visible the challenge of controlling the elevation

of the gripper as it required many changes to reach the correct target and sometimes

leading to collision with the object. Proceeding with the direct architecture it is visible

how the assistance and the collision avoidance gave the user better control, requiring far

less changes of direction and at the same time avoiding the obstacle. The limit of this

architecture was also visible in the test with simulated input, the elevation is not consid-

ered as the avoidance works on the horizontal plane, thus resulting in many collisions

with the goal. The Hybrid architecture instead reaches the correct target maintaining

smooth trajectories.

Figure 3.23: Average times for the second simulation with MYO control divided in two plot,
one for each goal. The order of the bar is with: No Assist for direct control, SC to CA direct
configuration, Hybrid architecture. On the right side the number of collision for each of them.

The time for testwithHybrid configuration showed to be faster than the other two,

as seen in Figure 3.23. The collision with the object are counted and visible in the same

figure showing the limitation of the collision avoidance.

The smoothness of the trajectory can be measured as number of different com-

mands the user needs to send in order to correct the robot behavior. In Figure 3.24

the results for the second test with the MYO are shown. The conclusion taken previ-

ously from the paths are confirmed, theHybrid configuration required less commands

from the user in respect to the other two configurations.
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Figure 3.24: The average numbers of direction changes for the second simulation with MYO
control, divided per goal in two plots.
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Figure 3.25: Trajectories of the gripper in the third MYO experiment. The trajectories which
are marked with a black square collided with the object.

The third set of simulations with user control, shares the workspace of sim4 but

it has been tested with a different user from the previous test. Again the control in

elevation has been difficult and in theNoAssist case requiredmany corrections to reach

the correct target as seen in Figure 3.25. With too much elevation the user also made

wrong estimation of gripper position resulting in wrong movements and numerous

corrections. TheHybrid architecture which also enabledmovement on the vertical axis

showed this behaviour but it managed to reach the target without collisions with the

object, differently from the direct configuration which collided two times.
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Figure 3.26: Average times for the third simulation with MYO control divided in two plot, one
for each goal. The order of the bar is with: No Assist for direct control, SC to CA direct configu-
ration, Hybrid architecture. On the right side the number of collision for each of them.

The times ofNo Assist andHybrid configurations are similar, as shown in Figure

3.26. In this test the direct architecture shows to be the fastest for ”box1” and the slowest

for ”box0”. This behaviour depends on the obstacle which is placed slightly on the left

in front of ”box0” and therefore it is more dependant on the avoidance. TheNo Assist
andHybrid are less influenced by the obstacles having similar timings between different

goals.
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Figure 3.27: The average numbers of direction changes for the second simulation with MYO
control, divided per goal in two plots.

The last plot for this test is the number of direction changes showed in Figure 3.27.

This user required many commands to reach the goal as he showed to have incorrect

estimate of elevation, seen in Figure 3.25. In this test the direct configuration might be

better, but it had two collisions with the obstacle.
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Figure 3.28: All of the testwith user control plotted together. Eachpoint is a single experiment
with color based on its configuration. For each configuration the regression line is plotted.

With all the data from user control tests, a single plot which places times on the

horizontal axis and the number of direction changes on the vertical axis is shown in

Figure 3.28. The regression line is showed for each of the control configuration. This

result confirms the observations made before. The No Assist is always the worst sce-

nario, requiring more commands as well as more time respect to the others. The two

configurations with the collision avoidance system (direct and hybrid) have shown to

be better than assistance only with the same timings, confirming that integrating the

avoidance to the system provides a better shared control. Between direct and hybrid it

is possible to observe that the difference between the intercept of direct and hybrid is

small, with the latter configuration being slightly better. The most notable difference

is that Hybrid architecture have most of the test with smaller timings and number of

commands, therefore they have similar ratio between time and number of commands,

but the hybrid shows generally to be faster and to use a smaller number of commands.
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4 Conclusions

Several experiments have been made to cover different possible situation and their re-

sults are showed in the previous chapter. The tests used user and simulated input, and

the latter also covered different type of user (always in control like the user input and

only one command at start). The experiments also used different configuration and

from the observations of the figures shown previously, some conclusion are made.

The simple configuration with assistance only, SC Only, provides maximum perfor-

mance in reaching the target whether the input is simulated or not. The performance

comes at the cost of higher risk of collision, as the user has to overcome the assistance to

avoid the obstacle and in simulated input collisions are not avoided. Therefore the in-

tegration of the collision avoidance is required in order to achieve a better system. The

Direct Architecture, SC to CA, where the avoidance uses the output of the assistance

is the first step but it shows some limitation. If the robot find itself close to the target,

the direct configuration may result in opposing behaviors from the two systems lock-

ing the robot in the current position. Another limitation is found after the obstacle has

been avoided. In this situation the probabilities associated with the goals are changed

based on the position, which in turn is affected by the obstacle avoidance resulting in

the system assisting wrongly the user. While these two problems might be addressed

by a user with good control capabilities, they require more command and usually even

more time than the non assisted control.

The Hybrid Architecture has proven to overcome the limitation of the other ar-

chitectures. It provides an additional policy to coordinate movements towards target
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and away from obstacles as required by the current state of the system. It also provides

collision avoidance without affecting the performance of assistance target and the user

has to provide less command making the control easier. However it has some limita-

tion which are related to the collision avoidance. The avoidance system is limited to

bi-dimensional control and it shows varying behaviour based on how it is approaching

the obstacle leading to different result even with the same condition, therefore an al-

ternative avoidance system might be considered. The new avoidance could also cover

movement in the three-dimensional environment and consider all the robot collision

instead of only the end-effector. Another limitation is the input which is limited to

speed control, which might be extended to position for example the position of the

user hand.
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