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Abstract

Metabolic demand associated with resting-state brain activity is one of the main
focus of neuroscience research. Task-free brain activation has been found to ex-
hibit coherent spatial patterns, and the associated glucose consumption is pre-
dominant if compared to task activation. However, a complete characterization
of the link between energy and function in the brain is still missing. The aim
of this thesis project was to explore novel strategies for the integration between
metabolic measures coming from Positron Emission Tomography based on flu-
orodeoxyglucose ([18F]FDG PET) and functional information extracted from
resting-state Functional Magnetic Resonance Imaging (rsfMRI) measures. This
was done adopting two different perspectives. On one hand, it was verified how
metabolic and functional networks, inferred from time-series correlation across
brain regions, relate to each other. On the other hand, across-subject similarity
between sets of metabolic parameters and functional features was assessed.
The analysis was performed on a dataset provided by Washington University in
St.Louis, consisting of non-simultaneous PET and MR acquisitions on a large
cohort of subjects.
A first part of the work focused on [18F]FDG data. An Image-derived input
function (IDIF) was extracted from the internal carotid arteries. This was
later used for microparameter estimation with Variational Bayesian approach.
Across-subjects correlation matrices were obtained for subjects series of K1 and
k3 values. Moreover, average metabolic connectivity matrix was extracted from
[18F]FDG parcel-level TACs. Similarly, from fMRI data, average functional
connectivity matrix was extracted. Regional Homogeneity (ReHo) and Global
Functional Connectivity (GFC) were estimated and across-subjects connectivity
matrices were obtained for both parameters.
Time-series connectivity matrices coming from both PET and fMRI images were
used to assess similarity between metabolic and functional networks, whereas
across-subject connectivity matrices were used to compare metabolic and func-
tional parameters. To agevolate comparison, embedding was used on both time-
series and across-subjects connectivity: this was based on application of a gaus-
sian kernel, followed by calculation of the Laplacian Eigenmaps, a nonlinear
dimensionality reduction techinque. Resulting manifolds are called gradients in
neuroscience, and are commonly used to study functional architecture in the
brain.
From a network perspective, metabolic and functional gradients exhibited sig-
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nificant correlation, and the regions in which they overlapped the most belong
to visual and sensorimotor networks. Similar results were found between all
combinations of [18F]FDG microparameters and fMRI features gradients, im-
plying that both local and global functional relationship in the brain may be
associated with specific metabolic fingerprints.
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Chapter 1

Introduction

1.1 Brain metabolism and function

Energy utilization in the brain has been the focus of many studies, with the
aim of understanding mechanisms underlying cognition and ageing, or to derive
biomarkers for specific diseases, which could have an important role both in
disease prevention and in the improvement of medical care for patients. The
three key components in brain metabolism are represented by glucose, oxygen
and blood flow, which can be respectively expressed as the cerebral metabolic
rate of glucose (CMRglc), cerebral metabolic rate of oxygen (CMRO2) and
cerebral blood flow (CBF ).
It seems that most of the energy delivered to the brain is used by neurons in
order to restore resting membrane potential through the ATP-consuming ac-
tivity of the ionic-pumps. It is believed that energy utilization is higher in
regions richer in synapses [29] and it is reasonable to think that activation of
neurons population is linked with increased regional energy consumption [5].
However, glucose utilization in synapses is not straightforward: according to
the astrocyte-neuron lactate shuttle (ANLS) hypothesis [39], brain metabolism
is regulated by an interplay between neurons and astrocytes. In brief, glucose
can be metabolized through different metabolic pathways: after conversion to
pyruvate through glycolysis, which produces small amounts of energy in the
form of 2 ATPs, it can be completely oxidated through the tricarboxylic acid
(TCA) cycle, with production of up to 36 ATPs (the entire reaction is indicated
as oxidative phosphorylation), or, under low oxygen levels, pyruvate can be con-
verted to lactate by lactate dehydrogenase enzyme through a process known as
anaerobic glycolysis. When conversion to lactate happens in the presence of
oxygen, the process is referred to as aerobic glycolysis. Oxidative phosphoryla-
tion and aerobic glycolysis are differently expressed in neurons and astrocytes,
with astrocytes being more involved in production of lactate rather than the
full oxidative pathway, that is predominant in neurons, as shown by related
gene expression data. Following the release of glutamate, which is the main
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2 CHAPTER 1. INTRODUCTION

neurotransmitter for excitatory synapses in central nervous system (CNS), non
oxidative glucose utilization and glucose uptake from circulation is triggered in
astrocytes. This brings to the production of lactate, which is in turn shuttled
to neurons, where it can be further processed through the oxidative steps of the
TCA cycle. The complexity of this mechanism is reflected on the interpretation
of brain metabolism measures. In particular, increases in CBF and CMRglc
in response to a task or stimulus have been observed to be much higher than
changes in oxygen consumption [28].
Measuring quantities such as CMRglc, CMRO2 and CBF and unveiling their
mutual relationships can advance our understading of brain metabolism and
function. Over the years, PET scans have been extensively used for this pur-
pose, since they can provide direct measures of all three components. More re-
cently, there has been a growing interest in interpreting the blood-oxygenation
level dependent (BOLD) signal measured in fMRI, which is strongly affected by
CMRO2 and CBF , together with cerebral blood volume CBV . If calibrated,
fMRI can even provide measurments of CMRO2 changes [13]. Although imag-
ing of the brain through PET or fMRI is not a direct measure of neural activity
in brain regions, since the recorded signals are not immediately linked to ac-
tion potential in neurons, as it is the case of electrophysiological signals, these
modalities are still useful to further investigate coupling between metabolism
and function. However, the integration of the information coming from PET and
fMRI data is still under continous investigation. A review of the two techiques
is presented in following sections.

1.2 PET quantification

1.2.1 PET: physical principles and data acquisition

Positron emission tomography (PET) has proved to be an important neuroimag-
ing tool, used both in clinics and in research. Its applications rely on the use
of several radiolabelled ligands (or tracers), which produce a detectable sig-
nal. Tracers radioactivity is given by the presence of energetically unstable
isotopes, which decay emitting a positron that in turn annihilates with an elec-
tron, producing two γ rays, emitted at 180-degree to each other. Detection of
two opposite rays indicates that an annihilation event occurred along the detec-
tors coincidence line, otherwise known as Line Of Response (LOR). Scintillation
crystals in the gamma cameras (devices which the PET scanners are equipped
with) convert the γ photons into light photons, with signal intensity dependent
on the distance between detectors and source. Detectors provide radioactivity
counts, that need to be translated into a 3D image using reconstruction algo-
rithms.
One of the most common algorithms employed in PET images reconstruction
is Filtered Back Projection (FBP), a modified version of the traditional back
projection approach. In the latter, the different 1D acquired projections, rela-
tive to different angles, are spatially combined. However, the resulting image
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appears blurred: representation of an object in the image can be seen as a
convolution of the object itself and the so called Point Spread Function (PSF),
thus determining the blurring of the object. To overcome this issue, in FBP
a filter is applied to each of the projections. However, as a consquence of fil-
tering (usually achieved by applying a ramp filter in the Fourier domain), the
reconstructed image may be affected by noise, which can in turn leads to the
presence of negative artifacts [43].
More recently, an iterative approach, based on maximum-likelihood expectation
maximization (MLEM) has been proposed, known as Ordered-Subset expecta-
tion maximization (OSEM). As suggested by the name, scanner detectors are
divided into subsets, and to each of these expectation maximization is applied,
based on an initial estimate of the image. Division into subsets is introduced to
accelerate convergence, and it does so by a factor proportional to the number
of subsets [23]. In this case, differently from the FBP, the solution is bound
to be non negative. However, computational burden may be an obstacle to the
application of this algorithm.

During a PET exam session, the tracer is administerd intravenously, so that
the radioactive substance can reach the organs traveling through the blood-
stream: interaction between ligands and target regions can thus be visualized
and quantified thanks to the use of the PET scanner, together with the subse-
quent processing of the images obtained. Different kinds of radioligands were
developed to track physiological or pathological processes in the brain [32]. De-
pending on the experimental frameworks, it is possible to distinguish between
static and dynamic PET studies. The first modality consists of a single-frame
acquistion and is used mostly in clinical applications, whereas the second, being
more expensive and complex, is preferred in research and requires multi-frame
acquistions [7].

1.2.2 PET kinetic modeling

In order to derive quantitative information from dynamic PET, compartmen-
tal modeling is employed, a strategy based on a mathematical model which
describes the physiological processes involved in the tracer kinetics. Each com-
partment is, by definition, an amount of well-mixed and kinetically homogenous
material, and it is associated with a first-order time-dependent differential equa-
tion. The parameters of interest can be derived by using nonlinear estimators,
such as Weighted Non-Linar Least Square (WNLLS)[9, 7]. The employed model
varies with the radiotracer and the related physiological assumptions, and so
does the number of parameters to estimate.

[18F]FDG

One of the most commonly used radioligands is [18F]fluorodeoxyglucose ([18F]FDG).
As a glucose analogue, it is usually preferred to [11C]Glucose, which would be
the ideal tracer for studying glucose kinetics, but, unlike [18F]FDG, it produces
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Cp(t) C1(t) C2(t)

K1

k2

k3

Figure 1.1: The 3K model

metabolites that need to be accounted for, leading to more complex models
for studying its pharmacokinetics[9]. The compartmental model employed for
[18F]FDG, known as three-rate constants compartmental model (3K), was first
presented by Sokoloff in 1977 and originally developed for 2-[14C]deoxyglucose
[47]. It is represented in 1.1.

In this model, Cp(t) represents [18F]FDG plasma arterial concentration,
C1(t) the [18 F]FDG tissue concentration, whereas C2(t) is [18F ]FDG-6-P
trapped in the tissue, i.e. the amount of radiotracer which underwent phos-
phorylation catalyzed by the enzyme hexokinase. Similarly, the associated rate
constants K1, k2 and k3 in equation 1.1 are respectively associated with the for-
ward and reverse transcapillary membrane transport and the phosphorylation
reaction. It is worth noticing that, once phosphorylation occurs, the tracer can-
not go back to the previous form, and so the passage between the two compart-
ments C1(t) and C2(t) is unidirectional. In other words, the tracer is trapped
in compartment C2(t): such a compartment is said to be irreversible.

C1
̇ (t) = K1Cp(t)− (k2 + k3)C1(t) C1(0) = 0

C2
̇ (t) = k3C2(t) C2(0) = 0

(1.1)

After injection, the total concentration of radiotracer in the tissues, Ct(t), is
given by equation 1.2 (the so called measurement equation), which also accounts
for the fraction of blood volume, Vb, and the related radioactivity concentration,
Cb(t) [9].

Ct(t) = (1− Vb)(C1(t) + C2(t)) + VbCb(t) (1.2)

The rate constants K1, k2 and k3 can be estimated from PET images either
at voxel level or at Region-Of-Interest (ROI) level. However, using conven-
tional nonlinear estimators at voxel level may be ineffective due to the low
signal-to-noise ratio (SNR). To overcome this issue, a Variational Bayesian ap-
proach has been proposed [10], which was applied in this thesis project. Alter-
natively, model macroparameters (i.e. combination of microparameters) result
to be sufficiently informative in some cases: these can be estimated more easily
by applying some transformation to the data that make it possible to use linear
estimators. In particular, for [18F]FDG PET studies, Patlak’s method was de-
veloped [38], which works under the assumption that at least one compartment
is irreversible, as it is the case of 3K model, leading to the estimation of Ki,
which is the fractional [18F]FDG uptake (see 1.3).



1.2. PET QUANTIFICATION 5

Cp(t) C1(t) C2(t)
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k4

Figure 1.2: The 4K model

Ki =
K1k3
k2 + k3

(1.3)

Once, Ki is known, it is possible to derive the cerebral metabolic rate of
glucose (CMRglc), by using a correction factor, the so called Lumped Constant
(LC), which describes the relationship between the tracer and glucose itself. LC
value is tissue dependent.

CMRglc = Ki
Cp−g

LC
(1.4)

In equation 1.4, Cp−g indicates the subject’s glycemia, measured at the
beginning of the PET session.
It was noticed that, if the experiment lasts more than 120 minutes, radioactivity
starts to fall down, as a consequence of the dephosphorylation of [18F]FDG-6-P.
For this reason, in 1979 Phelps and colleagues [41] proposed a modification of
the 3K model by incorporating an additional rate constant, k4, that accounts for
dephosphorylation, thus making the second compartment reversible (see figure
1.2).

1.2.3 Input function

As already stated, quantification by means of compartmental model requires the
assessment of an input function, and so arterial plasma radioactive concentra-
tion needs to be estimated throughout the dynamic acquistion. This is usually
achieved by drawing arterial blood samples, a procedure which has many draw-
backs. First of all, it may cause discomfort to the patients and expose them to
risks of injuries and, in some serious cases, to artherial thrombosis [21]. Fur-
thermore, technical personnel involved in collecting the samples is exposed to
radiations. Finally, processing of the samples depends on some laboratory pro-
cedures, which may sensibly rise the costs associated with the dynamic acquisi-
tions, preventing its translation to clinical practice. In brief, once samples have
been drawn, radioactivity in blood, Cb(t), is measured with a gamma counter.
Plasma is then separated from blood cells through centrifugation, from which
total radiactivity in plasma Ctot(t) is measured by the gamma counter. For
tracers which produce radiometabolites, plasma parent fraction (PPf , i.e. the
fraction of radiactivity given only by the unchanged compound) needs to be
estimated through high-performance liquid chromatography (HPLC), so that
Cp(t) can be obtained: this is the quantity directly fed to the model as a forcing
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function, whereas Cb(t) is necessary for blood volume correction, as shown in
equation 1.2 [54].

IDIF

In the last decades, many efforts have been made to develop alternatives to ar-
terial blood sampling, which still remains the gold standard procedure, despite
its invasiveness and complexity. One promising approach is to derive the input
function directly from the PET scans, exploiting the fact that some vascular
structures are included in the FOV of the images. Most of these methods aims
at extracting time-activity curves from internal carotids, either by defining an
adequate ROI in the image or by exploiting some statistical techniques like Inde-
pendent Component Analysis [64]. One of the most problematic issues involved
with image-derive input function (IDIF) is relative to the limited resolution of
the scanner and the small vascular caliber of the internal carotids: this results in
spill-in or spillover, i.e. activity physically coming from surrounding tissues and
accidentally mapped to the vessels area in the image, and spill-out, that is when
the activity originating from smaller structures is distributed across sorrounding
voxels [63]. Of course these factors need to be taken into account when dealing
with IDIF. In modern scanners, where the FOV was expanded to include also
the neck area of the subject, common carotid arteries, that have bigger caliber
compared to internal carotid arteries, may represent a more robust alternative,
since they should be less subject to spillover. Another possibility, yet to be
validated, is represented by venous vessels [45].
Since the acquisitions analyzed for this thesis come from an old scanner (Siemens
ECAT EXACT HR+) whose FOV exclude the area of the common carotids, we
focused on the approaches based on internal carotid arteries (ICAs) ROI iden-
tification. In particular, we adopted the method proposed by Chen in 1998 [11]
and validated for [18F]FDG studies. Such a method is based on the segmen-
tation of a ROI over the internal carotid arteries, identified on the early PET
frames: more specifically, the summed images over the early 36-second period
is used to identify arterial territory in the images, since this is the time when
activity is around its peak in arteries and still very low in tissues. In addition to
carotid segmentation, a tissue ROI is defined in proximity to the carotid ROI,
identified by using the last PET frame superimposed over the early summed
image. This last segmentation is used to perform spillover correction, together
with a reduced blood sampling procedure consisting only of 5 venous samples,
usually collected during the last 15 minutes, i.e. when the arteriovenous equili-
bration has been reached (so venous samples can be considered equivalent to the
arterial samples)[63]. This correction is based on the assumption that Cmea(t),
which is the activity obtained from the carotid ROI, is given by a linear combi-
nation of the real plasma radioactivity Cp(t) and the radioactivity spilled from
the sorrounding tissue Ct(t), measured from the tissue ROI.

Cmea(t) = RC × Cp(t) + SP × Ct(t) (1.5)

In equation 1.5, RC stands for recovery coefficient, whereas SP is the
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spillover coefficient from tissues to vessels.
It is worth emphasizing that the protocol described above is not entirely blood-
free, as it still requires blood sampling. However, samples are reduced in number
since they are collected only in the last 15 minutes of the PET session, and are
drawn from veins rather than from arteries, so the precedure is less invasive
and risky than the gold standard. Some completely blood free alternatives have
been studied, but they still have some limitations and may bring to insufficient
spillover correction, which has consequences on the subsequent kinetic parame-
ters estimation, and especially on the microparameters [63]. With some tracers,
one of the obstacle to IDIF employment is the need to estimate PPf . However,
this is not the case for [18F]FDG, which doesn’t have any radiometabolites, as
already mentioned.

Input function modeling

One important assumption for feeding input function to the compartmental
model is that its time activity curve is noise-free. Of course this is not imme-
diatly true for the measured plasma radioactive concentration, whichever the
modality used to obtain it. A possible solution is to apply a model-based de-
noising. A physiological model, based on a compartmental description of the
plasma input function and derived assuming a bolus injection of the tracer, was
proposed by Feng and colleagues in 1993 [15], and it is reported below.

Cp(t) =

⎧⎪⎨⎪⎩
0 t < t0

A1(t− t0) +

3∑︂
t=1

Ai(e
−ai(t−t0) − e−a1(t−t0)) t ≥ t0

(1.6)

In equation 1.6, t0 indicates the injection time. A modification of this model
is reported in 1.7, accounting for the fact that injection is not instantaneous.

Cp(t) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

0 t < t0∑︁3
t=1 Ai

tpeak − t0
(t− t0) t0 ≤ t < tpeak

3∑︂
t=1

Aie
−ai(t−tpeak) t ≥ tpeak

(1.7)

In equation 1.7, t0 indicates the time of the injection of the radiotracer,
whereas tpeak indicates the input function peak time. This model describes the
three phases that are expected from radioactivity concentration in plasma, which
are a zero phase (before the injection), a fast rising phase, here modeled as a
straight line, and finally an exponential-like clearance, that can be approximated
as a tri-exponential curve, with each of the three ai accounting for different
velocities in the decay [53].
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1.2.4 Microparameters estimation: Variational Bayesian
approach

As already stated, using WNLLS approach at voxel-level wouldn’t provide re-
liable parameter estimates due to the low SNR. A solution is provided by the
Variational Bayesian approach, which has been adapted to PET data in [10].
Exploiting Bayes theorem, it is possible to obtain the posterior parameters dis-
tribution P (Θ|y) starting from expectations on parameters values, formalized
as prior distribution P (Θ), where Θ is the parameters vector and y are the
observed data:

P (Θ|y) = P (y|Θ)P (Θ)

P (y)
(1.8)

As shown in 1.8, calculation is based on knowledge of the so called likeli-
hood P (y|Θ). However, in real applications, deriving integrals for the posterior
calculation is unfeasible, and so it is necessary to resort to an approximation
of the real posterior. In this case, computational burden is shifted to finding
the best approximation, that is equivalent to minimizing the distance between
real posterior and the approximated form Q(Θ). Such a distance is expressed
as Kullback-Leibler divergence (KL):

KL[Q(Θ)||P (Θ|y)] = logP (y)− F (1.9)

Since logP (y) does not depend on Θ and KL is always non-negative, minimizing
KL is equivalent to maximizing free energy F :

F =

∫︂
Q(Θ)log

P (y|Θ)P (Θ)

P (y)
dΘ (1.10)

A possible solution for Q(Θ) is represented by the mean field approximation,
obtained separating Θ into two groups, one comprising model parameters θ and
the other relative to noise parameters ϕ. In [10], a multivariate normal distri-
bution (MVN) for θ and a Gamma distribution (Ga) for ϕ are assumed. The
priors, which are based on the same models as the approximated posteriors, are
estimated directly from data. In practice, ROI-level WNLLS is first used, and
the derived parameters estimations are propagated along all the ROI voxels as
priors. ROIs definiton, which is crucial for priors distribution derivation, is usu-
ally based on pre-existing brain atlases or, alternatively, data-driven clustering
can be employed to divide time-series in homogeneous groups.

1.2.5 Metabolic connectivity

A recent approach applied to PET dynamic studies is represented by metabolic
connectivity. The term was coined by Lee and colleagues [27], indicating the
adoption of a network perspective in the analysis of [18F]FDG data, with the
intent of characterizing relationships between metabolic measurments in differ-
ent brain regions. This is usually carried out through multivariate statistical
techniques applied to subject series of [18F]FDG parameters. The techniques
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usually employed include Seed Correlation Analysis, Independent Component
Analysis, Principal Component analysis (PCA), Sparse inverse covariance esti-
mation (SICE) and Graph theory [60]. These were mostly applied to series of
standardized uptake value (SUV) or CMRglc [57]. For this thesis project, the
approach was extended to the analysis of microparameters K1 and k3.
A different investigation modality for metabolic connectivity can be derived
operating in a similar manner as with Functional Connectivity (FC), and so
computing inter-regional correlation directly from time-series data. However,
just a few examples of this kind of approach on PET data are available [52, 1].
One of the most problematic issue with using PET time-series is represented
by the impact of multicollinearity, which calls for an adequate standardization
approach [59]. A possible solution is discussed in paragraph 2.2.3, and used to
derive time-series metabolic connectivity in this work.

1.3 fMRI functional connectivity

1.3.1 MR scanner: physical principles

Magnetic Resonance (MR) scanner functioning is based on the application of
magnetic fields using several electromagnetic coils, in combination with Radio
Frequency (RF) pulses. Its use in medical imaging exploits the composition of
human body, which is mostly made up of water. When exposed to the effects
of a static magnetic field, B0, spin magnetic moments associated with hydrogen
nuclei in water molecules become aligned with the magnetic field direction. As
a consequence, spins of the different atoms, that usually have random direction,
become parallel, thus generating a non-zero net magnetization vector M . When
a transient magnetic field (usually a RF energy), B1, is applied in addition to
the B0, a phenomenon known as nuclear magnetic resonance (NMR) happens,
which is the target of the MR scanner. It is in fact possible to deviate the
magnetization vector so that the component Mz in the direction z of the static
magnetic field disappears, in favor of a component Mxy in the perpendicular
xy-plane. Once excitation with B1 stops, Mz is recovered with a velocity that
depends on tissue composition: time to reach equilibrium is called T1 relaxation
time, and this generates the so called T1-weighted images. Mxy relaxation time
T2 is always less or equal than T1 and depends on molecular interactions. In non
ideal condition, actual relaxation time in xy, referred to as T2*, is also affected
by dishomogeneities in B0: this generates T2*-weighted images.
In 3D space, application of B0 along z direction makes it possible to excite a
confined slice, where frequency and phase encoding are used to appropriately
map the two remaining directions. By acting on repetition time (TR), which is
the time between two consecutive RF pulses, and echo time (TE), so the time
between the beginning of the RF pulse and the instant of its maximum intensity,
it is possible to obtain different kind of sequences. Among these, Echo Planar
Imaging (EPI) sequence allows to obtain T2*-weighted images with improved
temporal resolution, making it feasible to follow dynamic processes, as in fMRI.
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Figure 1.3: Hemodynamic response function

1.3.2 fMRI and BOLD signal

Functional magnetic resonance is the biomedical imaging technique employed
for monitoring brain activity through the use of the MR scanner. Experiments
led by Ogawa and colleagues in 1990 [35] showed for the first time MRI po-
tentiality to measure blood oxygenation by exploiting hemoglobin as an en-
dogenous contrast agent. Deoxygenated hemoglobin (deoxyhemoglobin) is in
fact paramagnetic, and as a consequence it interferes with magnetic excita-
tion of tissues, causing a decrease in T2* relaxation time. On the contrary,
oxygenated haemoglobin (oxyhemoglobin) is diamagnetic, so signal intensity
increases when its concentration is higher than the deoxygenated counterpart.
This signal is known as BOLD (blood oxygenation level dependent) and it is an
indirect measure of neuronal activation. As already discussed (see 1.1), regional
energy demand in the brain involves the activity of both neurons and astrocytes.
Whenever a region is activated, a cascade of events is triggered, such as new
capillaries recruitment and vasodilation. This determines an increase in both
cerebral blood flow (CBF ) and cerebral blood volume (CBV ). Since oxygen
consumption is delayed with respect to activation (glycolytic step in astrocytes
precedes oxidative metabolic path in neurons), oxyhemoglobin accumulates in
proximity to the activation area, causing an increase in signal intensity. BOLD
signal is indeed strictly linked to the hemodynamic response function (HRF ):
according to the interpretation provided by Friston and colleagueas [17], HRF
serves as a low pass convolution filter for neural activity, which gives rise the the
measured BOLD signal. Looking at 1.3, it can be observed that HRF presents
an undershoot, probably caused by the fact that, once activation phase in neu-
rons population ends, CBF decreases faster than CBV , so deoxyhemoglobin
level are even higher than the baseline level (before activation). It can also be
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noticed that in HRF there’s an initial dip, whose physiological meaning is still
debated. Interestingly, similar pattern can be observed in measures of lactate
levels, and so initial dip in BOLD can be interpreted as a result of the early
activation of the oxidative pathway in neurons through conversion of lactate
shuttled from astrocytes [29].
Possibility of measurement of the BOLD signal relies on some technical require-
ments. First of all, a magnetic field strength greater than or equal to 1.5 T is
needed. Another important parameter is represented by TR: considering that
HRF has a duration of around 10 seconds, a TR at least equal to 2 seconds is
needed to reconstruct the entire signal from samples without any information
loss.

1.3.3 Resting state fMRI

Since the introduction of fMRI, its most immediate application has been the
investigation of brain activity induced by external stimuli or tasks performed
by the subject inside the scanner: this approach is known as task-fMRI. How-
ever, the idea that intrinsic task-free brain activity could be meaningful had
already emerged in previous studies. From the metabolic perspective, during
the [18F]FDG PET experiments led by Sokoloff in 1955, no change in glucose
consumption was detected between the resting state condition and a situation
where the subject was involved in solving a complex arithmetical problem [48].
This was probably due to the fact that the change was too small to be detected
by the available tools, as it was later shown that a moderate increase in energy
consumption actually occurred during task [16]. From these first results, it was
possible to conclude that, even when the brain is considered at rest, and so when
subject is not involved in activities other than thinking, metabolic demand is
still significant and actually predominant.
Initially, resting state BOLD signal constituted the baseline to which task in-
duced activation patterns were compared, and its slow (< 0.1 Hz) fluctuations
were treated as noise [46]. A change in perspective happened when coherent
patterns of resting state activation were first observed within the somatomotor
system [8]. From that time on, studying brain functioning in resting state has
become one of the priorities in neuroscience research, both for the sake of under-
standing more about the meaning of these intrinsic activations, and for finding
new leads in brain diseases research.

Functional Connectivity and brain networks

Resting-state Functional Connectivity (FC) was developed with the intent of
characterizing intrinsic brain activity by finding regions which show mutual co-
herence in signal fluctuations. Application of this techinque led to progressively
describe brain functional architecture. According to similarity and synchroniza-
tion in low-frequency fluctuations, several brain networks have been identified in
the last years. A functional organization of cerebral cortex was derived by Yeo
and colleagues in 2011 [61], confirming definitions of networks that had been
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DMN FPN VIS SMN

DAN VAN LN

Figure 1.4: Yeo’s 7 networks represented over Schaefer’s parcellation

previously presented. In particular, based on FC profiles, cortical regions were
clustered in 7 distinct networks: Default-Mode network (DMN), Ventral atten-
tion network (VAN), Dorsal attention network (DAN), Visual network (VIS),
Frontoparietal network (FPN), SomatoMotor network (SMN) and Limbic (LN)
(see figure 1.4). Among these, VIS and SMN are mostly confined to specific sen-
sory and motor cortices, whereas the remaining networks span across different
association regions. In particular, DMN is a task-negative network: this means
that it tends to be less active during task than during rest. Interestingly, this
unique feature was first reported in PET studies, when decrease in blood flow
was observed in certain areas during visual task activation [44]. Anatomical
regions comprised in DMN are the medial prefrontal cortex, precuneus area and
angular gyrus. Its function is still debated, but it appears to be involved in
activity such as mind wandering, autobiographical memory or thinking about
the future. The idea of two separate attention networks was first proposed in
2002 [12], with DAN devoted to voluntary reorientering of attention and VAN
activated in response to unexpected stimuli. VIS network is located on the
occipital lobe, an area that had already emerged as responsible for processing
visual stimuli in task-fMRI studies. Similarly, motor and somatomotor cortices
functionality, included in the SMN, had been long studied even before the advent
of fMRI. FPN is located along the lateral prefrontal cortex and anterior inferior
parietal lobule, areas involved in cognitive control [26] and working memory [34].
What is referred in Yeo’s networks organization as limbic lies mostly on the or-
bitofrontal cortex and temporal poles. Its role is still debated: it has been joined
to FPN in some studies [55], whereas in parcellation proposed by Gordon and
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colleagues in 2016 [19] these regions have been included into a None network,
as the areas with low FC not clustering within any other network. Clustering
activity coming from limbic areas is indeed problematic due to the distortions
in the signals caused by magnetic susceptibility changes between tissue and air.
Moreover, a recent study investigating BOLD signal variability between regions
using multi-echo fMRI, has associated limbic activity with DMN [4].

It is worth considering that networks organization delineated by Yeo and
later reproduced with some minor differences in Schaefer functional atlas [42],
although being very influential, is not universal. One of the most debated aspect
in neuroscience is the number of networks in which the entire brain architecture
can be decomposed [55]. Same study by Yeo [61] also proposes a division of
the main networks in 17 distinctive subnetworks, based on the stability of the
derived clusters. Different networks classification have been presented over the
years and, although it appears that there is not a definitive or right answer, the
need for a consensus has been expressed [55].

Another useful FC parameter for measuring similarity within neighborhood
of nodes (intended as voxels or vertices) is represented by Regional Homogeneity
(ReHo), [62]:

W =

∑︁
(Ri)

2 − n(R)2

1
12K

2(n3 − n)
(1.11)

In equation 1.11, W is the Kendall’s coefficient of concordance (KCC), K is
the number of nodes in the neighborhood, Ri is the rank of the ith time point,
R is the mean of the ranks and n the number of time points in each time-series.
When specific regions are activated, ReHo in involved parcels is expected to
increase, thus yielding information about the localisaiton of brain functions.

Adopting a different perspective, it is also useful to characterize level of in-
tegration of each node with all the others. For this reason, Global Functional
Connectivity (GFC) was recently introduced as a complementary fMRI feature.
In order to calculate GFC, for each voxel or region, the average correlation
between its time-series and all the others is computed [2].

1.4 Connectivity Gradients

Exploring topography of brain features has always been a trending topic in
neuroscience. Derivation of structural and functional gradients across the brain
cortex (and even subcortex [50]) is an emerging modality to respond to this need.
Gradients constitute sets of axis along which brain regions are represented in
relation to specific features, such as histology or function. They are obtained
through embedding of brain data to a space where similar nodes end up being
close to each other. Differently from parcellation, which divide brain regions
by delineation of discrete spatial boundaries, gradients offers the possibility to
represent gradual change in the examined features [3].
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An important result from gradients analysis applied to resting state fMRI data
came in 2016 from Margulies and colleagues [31]: decomposition of connectiv-
ity matrices revealed a principal gradient in which DMN lies at the opposite
end of primary sensory and motor regions. This actually confirmed what was
previously postulated by Mesulam [33]: a synaptic hierarchy emerged from his
tractracing studies of the macaque monkey, with different synaptic levels in-
volved in cognition, starting from primary sensory and unimodal zones, up to
the association areas represented by hetero-modal, paralimbic and limbic re-
gions. Consistency between the two studies served as a validation of gradients
use in neuroscience community. As a result, in the last years, gradients have
been extensively exploited in research. An interesting potentiality offered by
gradients is the integration between different imaging modalities of brain data:
this has been done for example between fMRI and microstructural data [36].
As far as we know, gradients were never used to integrate [18F]FDG PET and
fMRI data. This was attempted in this thesis project as a new strategy for
investigating the relationship between metabolism and function.

1.4.1 Mathematical derivation of gradients

The core of gradients derivation methods is usually represented by a dimension-
ality reduction technique. Among these, it is possible to distinguish between
linear and non linear approaches. A commonly used linear solution is provided
by principal component analysis (PCA), which outputs gradients as principal
directions of variation. In case of non linear approach to dimensionality reduc-
tion, gradients are to be intended as manifolds rather than directions. These
techniques have the potential to disentagle complex geometrical relationships
between data points in the original space. Two algorithms used in literature are
Laplacian Eigenmaps (LE) and Diffusion Mapping (DM). Starting from a graph
representation, LE reproject data into a new space where nodes are grouped to-
gether based on their similarity. DM operates in a similar manner, but it models
probability of transition from a node to the other.
Independently from the dimensionality reduction solution adopted, the input
data should be represented by a symmetrical matrix. This is usually assured by
the application of a kernel function, such as cosine similarity, gaussian kernel,
or simply Pearson’s correlation.
To sum up, gradients derivation methods usually comprise two main steps: 1)
calculation of an affinity matrix based on some kernel function, 2) application
of a dimensionality reduction technique.
For functional gradients, input data is usually represented by connectivity ma-
trices: so what is expected from reprojecting data points (usually brain parcels)
into the new space is that connected nodes end up being close to each other.
Functional connectivity matrices are usually obtained by applying Pearson’s
correlation, and, since they are already symmetrical, it would be sufficient to
apply the dimensionality reduction technique of choice directly to the input
data, without resorting to any further similarity kernel. This is equivalent to
the application of the entire gradients derivation pipeline (made up of the two
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steps presented above) to time-series data, using Pearson’s correlation as an
affinity measure. However, starting from symmetrical correlation matrices, it
has been also attempted to apply an additional kernel function, such as co-
sine similarity or gaussian kernel, before dimensionality reduction, with positive
effects on reliability of the results obtained [22].

Laplacian Eigenmaps

For this thesis project, Laplacian Eigenmaps was chosen to perform the embed-
ding required for gradients derivation. This algorithm has been shown to be
robust in the face of non-linear relationships [20], and its reliability is compara-
ble to PCA [22].
As anticipated, LE is a non linear dimensionality reduction technique which
starts from a graph representation of data. Given an affinity matrix A, the
associated graph is made up of interconnected nodes, whose edges are weighted
according to reciprocal similarity, as calculated by the kernel function. Using
the affinity matrix, graph Laplacian L is calculated:

L = D −A (1.12)

In equation 1.12, D is the diagonal degree matrix, whose elements are defined
as D(i, j) =

∑︁
j A(i, j). L is, by construction, a matrix with rank equal to n−1

(with n indicating the number of nodes). Once L is calculated, the generalized
eigenvalue problem in equation 1.13 is solved.

Lg = λDg (1.13)

The eigenvectos g = [g1, g2, ..., gn] represent the manifolds for the new em-
bedding. Differently from other dimensionality reduction techniques such as
PCA, in LE most informative eigenvectors are associated with the smallest
eigenvalues, and so, to select a subset of m < n eigenvectors, eigenvalues are to
be sorted in ascending order. However, the first smallest eigenvalue is always
equal to 0, and it is associated with a constant eigenvector, which is always a
solution of the laplacian eigenvalue problem (since L is singular). Considering
that the constant eigenvector wouldn’t express any variance in the original data,
it is normally discarded. Moreover, the second smallest eigenvalue can be taken
as a measure of how well connected the graph is, and it is known as algebraic
connectivity [3]. It can be shown that solving 1.13 is equivalent to the mini-
mization of a cost function represented by the distance of the nodes in the new
space:

U(x) =
∑︂
ij

Wij(xi − xj)
2 (1.14)

Wij are the weights in the graph, and so the similarity measure computed
between node i and j. Minimizing 1.13 implies that data points, once projected
in the new space, will be close to each other if they are strongly connected in
the graph (i.e. similar in the original space). In case of fMRI time-series, this
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means that regions which show similar connectivity fingerprints will be grouped
together in the new space.



Chapter 2

Materials and methods

2.1 Dataset description

2.1.1 [18F]FDG PET data

Dynamic acquisitions (60 min) from 71 cognitively unimpaired individuals (56±15
years old) on a HR+ PET scanner were provided by Washington University
community (St Louis, MO, USA). Subjects received a [18F]FDG bolus (185
MBq). For most subjects, dynamic reconstruction grid consisted of: 24x5s,
9x20s, 10x60s and 9x300s frames (see figure 2.2). Two different reconstruction
algorithms were applied: filtered back-projection (FBP) and ordered subset ex-
pectation maximization (OSEM). For this thesis work, most of the analysis was
performed on FBP reconstructed images, apart from MC matrix derivation.
During PET dynamic acquisitions, venous samples were collected for 55 sub-
jects from the antecubital vein, with different sampling schedules: for most of
the subjects sampling occured 5, 10, 15, 20, 30, 45 minutes after the injection of
the radiotracer, whereas for a minority of subjects only three samples were ac-
quired, after 30, 40 and 50 minutes. Each sample consisted of about 2 ml, half of
which was used to measure radioactivity in plasma. Radioactivity counter mea-
surements was given in counts per 12 seconds. The counter’s efficiency (0.2707
cps/Becquerels) was experimentally determined.

2.1.2 MRI data

For the same cohort of individuals who underwent PET dynamic acquistions,
MRI data were separately acquired on a Siemens Prisma 3T scanner. For
each subject, Multi-echo T1w MPRAGE was provided, (TR=2500,TI=1000
ms, TE=1.81, 3.6, 5.39, 7.18 ms, voxel size=0.8 x 0.8 x 0.8 mm). Alternating
anterior-posterior (AP) and posterior-anterior (PA) phase encoding, 4 rsfMRI
runs (AP, PA, AP, PA), each on consisting of 375 volumes acquired over 5 min-
utes, were recorded as Gradient-Echo Multi-Band images (TR/TE=800/33 ms,
flip angle=52◦, voxel size=2.4 x 2.4 x 2.4mm, MultiBand factor=6), together

17
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(a) FBP (b) OSEM

Figure 2.1: Axial slice from images reconstructed by the two different algorithms

Figure 2.2: PET reconstruction time grid
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with 2 Spin-Echo (TR/TE=6000/60 ms, flip angle= 90◦) sequences acquired
with opposing polarities of the phase-encode blips for image distortion correc-
tion.

Structural preprocessing

Preprocessing was performed on T1w images, which were later used to coregister
both PET and fMRI data. T1w images were bias field corrected using ANTs’
N4, skull stripped using ANTs’ BrainExtraction tool and segmented into gray
matter (GM), white matter (WM), and cerebrospinal fluid (CSF), using SPM.

2.2 [18F]FDG data analysis

2.2.1 IDIF extraction

In order to proceed with micro and macro-parameters estimation for each sub-
ject, it was crucial to obtain a robust estimation of arterial plasma radioactivity
to use as input function to the compartmental model. To this purpose, we im-
plemented a revisitation of Chen original approach [11] for deriving the input
function from the internal carotid arteries (ICA) and correcting for spillover. In
particular, our implementation differs from the procedure originally proposed
by Chen and colleagues since ICA and tissues segmentations are performed
automatically by our algorithm and just require tuning of some parameters.
Moreover, before averaging the TACs derived from the selected ROIs, a voxels
selection procedure based on k-means parametric clustering is applied to time-
series. Finally, a tri-exponential model based on [15] is fitted against the data
to obtain a noise-free input function, before applying Chen’s correction. Details
about these procedures are illustrated in the following paragraphs.

Carotids segmentation

To obtain segmentations of the carotids, we decided not to use time-of-flight
(TOF) angiography since 1) it was not available for all the subjects, 2) it would
require coregistration to the PET images, which could result in misaligned ROIs.
However, a vessels image was still necessary to guide the ROI selection, and so
we generated a pseudo-TOF by summing the first PET frames, taking into con-
sideration the fact that in the first minutes of the acquisition tissue radioactivity
is still negligible and most of the contribution to the signal is given by tracer
concentration in vessels. This approach was adapted from [11], with an im-
portant variation: rather than imposing a rigid time threshold (36 seconds in
the original paper) to limit the number of frames included in the sum, we used
an individualised threshold for each subject, dependent on the estimation of
the arterial Cp(t) peak time. This choice is motivated by the significant inter-
subjects variability found in arterial peak time, that made it impossible to find
a threshold suitable for all the individuals. Moreover, using estimated arterial
peak time as a threshold proved to be useful in reducing the visibility of veins
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Carotids segmentation

Hot voxels selection

Raw IDIF extraction

AIF model fitting

Chen’s correction

Background tissue region

Highest activity cluster

Figure 2.3: Pipeline for IDIF extraction

After carotid segmentation, 40 arterial voxels are selected and averaged to extract
the raw IDIF. The curve is denoised through model fitting. Together with carotid
segmentation, sorrounding tissue is segmented and highest activity region identified

to later perform Chen’s correction
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in the pseudo-TOF, considering that venous peak is delayed with respect to
arterial peak.

However, the estimation of arterial peak time was not trivial without first
identifying ICA region: the strategy we adopted, considering time framing in
our data, was to first identify venous peak frame, and then use the frame which
immediately preceded it as a first approximation of arterial peak time. Venous
peak time was found by summing PET frames (up to 60 seconds) and binarizing
the resulting image, thus obtaining a mask which we will call late pseudo-TOF.
For each TAC extracted from the late pseudo-TOF, peak time was calculated
and the mode was taken as estimation of venous peak time, considering that
the biggest vascular structures included in the FOV are represented by superior
sagittal sinus (SSS) and transverse sinuses. This approach actually led, in many
cases, to an overestimation of the arterial peak time, but it is still good enough to
partially exclude contribution of venous vessels in the final pseudo-TOF image
(referred to as early pseudo-TOF ). Automatic segmentation was obtained by
adapting the Hessian-based filter for enhancement of vascular structures imple-
mented by Jerman and colleagues [25]. Since venous sinuses are not completely
absent in the early pseudo-TOF, before applying the algorithm a masking pro-
cedure has been devised to constrain the search of the vesselness algorithm to
a subspace in the volume. With the aim of creating this search box, a sub-
set of slices was automatically selected for each plane of the volumetric scan.
First of all, to obtain a 3D image that better highlighted brain anatomy, the
last 10 frames were summed. Then, a maximum intenisty projection to each of
the three planes (axial, sagittal, coronal) was calculated, and from this, sum-
ming again along one of the two remaining planes, a one dimensional signal
was obtained. Then, taking into consideration brain shape, thresholds based on
percentiles of the 1D final projections were calculated. For both coronal and
sagittal planes, same threshold (70th percentile) was used for identifying upper
and lower bounds of the subset of slices. Since 1D projection in axial plane was
not symmetrical and the aim was to exclude the area of the SSS (above) and the
background (below), 30th and 80th percentiles were chosen as upper and lower
bounds. The final box is generated from the intersection of the slices selected
from each plane. The entire procedure is summarized in figure 2.4.

The output of the Jerman filter consists of a vesselness probability map,
which we binarized by adjusting a threshold iteratively, up to the inclusion of
an adequate number of voxels (around 500), so that the ICAs were correctly
marked. Additional clean up is performed by selecting the two biggest con-
nected 3D structures (that are expected to be the internal carotid arteries).
The entire segmentation algorithm was first run with default parameters, set
for all the subjects in the dataset. Each output segmentation was then visually
inspected and some were repeated, if considered unsatisfactory, using parame-
ters individualised for the specific subjects.

Simultaneously with internal carotids segmentation, background region for
spillover correction has been derived by morphological dilation of the vessels
mask. This approach was adapted from [49]. In order to identify the most
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Figure 2.4: ICA box selection procedure

For each of the three planes, a 2D projection is obtained and then reduced to a
monodimensional signal whose shape depends on brain profile. Thresholds based on
each monodimensional projection provides a subset of slice. Intersection between the
three subsets provides the final box in which ICAs can be segmented
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(a) coronal slices selection (b) axial slices selection (c) sagittal slices selection

Figure 2.5: Slice selection procedure for the three planes

It can be observed how coronal and sagittal cuts are provided by symmetrical
percentiles, whereas for axial cut thresholds are not symmetrical: the intent is to

exclude area of the SSS from above and background area from below

appropriate tissue region to perform correction, two concentric masks were gen-
erated: a first one, around ICAs, which is probably the most affected by spill-out
activity from vessels, and a second, built around the first, which is the one ac-
tually used for correction. Both these masks have internal radius equal to twice
the voxel size, i.e. around 5 mm (see figure 2.6).
Once the background mask was obtained, related voxels TACs were extracted.
k-means (K=3, replicates=1000, distance= squared Euclidean) was applied on
late frames (from around 30 minutes), the cluster with highest activity was then
selected and its centroid (median of all the TACs in the cluster) adopted as a
first raw approximation of the real Ct(t).

IDIF modelling

Since many voxels in the mask are affected by sorrounding tissue activity, as-
sociated TACs present lower peaks than expected or higher tail, and so they
are not good candidates for representing radiactivity in plasma. Average of the
entire pool of TACs derived from the mask would provide a Cp(t) with under-
estimated peak amplitude, which can be critical in terms of microparameters
estimates. To overcome this potential problem, a hot voxels selection step based
on [40] has been implemented. First, peak time is caculated for each TAC, then
global peak time is estimated as the mode of all individual peaks time and all
the voxels whose peak is not synchronized with the estimated peak time are
discarded. A second selection is based on parametric k-means clustering (K=2,
replicates=500, distance=squared Euclidean), applied to all the time-series sur-



24 CHAPTER 2. MATERIALS AND METHODS

5 mm

5 mm

ICAs

spill-out region

background region

Figure 2.6: Background region

In order to automatically segment the tissue region for performing Chen’s correction,
two concentric cylinders are built around the ICAs mask. The first cylinder reprsent

the spill-out region, which is affected by ICAs activity, whereas the background
region is the tissue area which is expected to affect ICAs activity

viving the first step of selection, based on calculation of parameters such as peak
amplitude, tail mean value, rising slope, ending slope, AUC before peak, AUC
after peak, standard deviation. The cluster whose centroid show the highest
peak is selected, and associated time-series are sorted by peak height: the first
40 voxels, i.e. with highest peak, are kept and averaged to obtain the raw IDIF.

Considering that time framing is very dense in the beginning and data tend
to be really noisy, time-series have been partially undersampled. In particular,
starting from peak time, for all the remaining 5 seconds frames, sparser sam-
pling is obtained by averaging data points in 15 seconds time windows.

Final denoising is obtained by fitting model 1.7 against undersampled time-
series. For the non-linear part of the model WNLLS has been first used to fit
the three exponential decays. Weights were determined by employing the typi-
cal noise model for PET studies [6], which consists in a non-identity covariance
matrix Σe, where each diagonal elements is obtained as Σe(ti, ti) = y(ti)/∆ti ,
with y(ti) indicating the measurement at time ti and ∆ti equal to the duration
of ith time frame. Non diagonal elements are set to 0, since noise is supposed to
be uncorrelated. Σe is built accounting for the fact that PET data are acquired
over time frames of different lenghts, and so noise level is not equal for all data
points.
With respect mostly to the slowest exponentials, fitting was not satisfactory for
many subjects in terms of coefficient of variation CV (higher than 100%), so a
pool of well-fitted curves was selected, and averages of each parameter ( expo-
nential decays a1, a2, a3 and amplitudes A2 and A3) were used as priors for a
MAP estimation applied to all subjects (adapted from [56]). For the linear part
of the model, i.e. the straight line that represent the rising phase of the Cp(t),
two different approaches have been tested: 1) Linear Least Squares (LLS) has
been applied to fit the slope, 2) original unfitted values have been used.
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Chen’s correction

Model in equation 1.5 was fitted against arterial denoised curves using a LLS
estimator for the subjects whose venous samples were available. The last three
decay corrected venous samples were used as Cp(t), whereas the first samples,
that had been drawn before arteriovenous equilibrium time, were not used.
The radioactivity counter measurements, provided in counts per 12 seconds,
were converted in counts per seconds (cps). Radioactivity measures were also
normalized by plasma sample weight into radiactivity concentrations (kBq/ml).
The following formula was applied for decay correction:

At = A02
− t

T1/2 (2.1)

where At is radioactivity measured by the counter, A0 is radiactivity when
the sample was drawn from the subject vein and T1/2 is the halflife of the
radioisotope (109.8 min for [18F]FDG). Ct(t) from tissue mask and Cmea(t) from
ICA mask were interpolated to the venous sampling time-grid. Estimated RC
and SP were then used with original Cmea(t) and Ct(t) to calculate corrected
Cp(t).

2.2.2 Microparameters estimation: Variational Bayesian
approach

VB approach adapted to PET data analysis, as implemented in [10] (see 1.2.4),
was used to derive voxel-wise estimates of K1, k2, k3 and V b using corrected
IDIF. To proceed with estimation, some preprocessing steps were required.
First, last 9 frames (from 44th to 52th), whose acquisition windows last 5 min-
utes, were motion corrected using an in-house combination of PMOD (www.pmod.com)
and FSL mcflirt [24], with 44th frame employed as target for the alignment of
the subsequent frames. Same pool of frames, after motion correction, was used
to derive a pseudo-static PET, later coregistered to T1w preprocessed image
using ANTs. ROIs for priors derivation were identified by applying k-means
(k=11, replicates=500, distance=squared Euclidean) clustering on TACs: in
particular, a total of 11 clusters were obtained, 6 of which for GM and 6 for
WM (exploiting segmentations obtained by structural preprocessing, see 2.1.2).
Prior variance λ was set to 0.5, which is the optimal value identified through
simulated data in [10]. Finally, parameters maps are brought to MNI space us-
ing ANTs so that voxelwise group average can be calculated for each parameter
map.

2.2.3 Metabolic connectivity

Time-series

Time-series metabolic connectivity (MC) matrices are derived for each subject
as in [60]. PET dynamic OSEM reconstructed images were employed. The
choice of OSEM over FBP reconstruction was aimed at reducing impact of
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noise on time-series, which could affect correlation results, especially for the
first 25 frames, i.e. the ones acquired over 5 seconds windows. MC computation
was performed over parcellated data. For cortical parcels derivation, Schafer
functional multiresolution atlas was used: it is based on the 7 and 17 networks
identified by Yeo [61], and it was released in several versions. For this study,
the 200 parcels atlases for 7 and 17 networks were used. In addition to the
200 cortical parcels, 14 subcortical parcels were concatanated, corresponding
to anatomical regions of thalamus, caudate, putamen, pallidum, hippocampus,
amygdala and accumbens area, and derived from FSL FIRST subcortical atlas
[37]. Parcels, originally in MNI space, were registered to T1w space and finally
to PET space in order to derive related TACs.
Before computing pairwise correlation, parcels time-series were interpolated
over a uniform denser time grid (step=1s). Normalization was then performed.
Parcels time-series were first z-scored as follows:

Xz2 =
X1 − µp(t)

σp(t)
(2.2)

In the equation above, X1 is the original data, Xz2 are the time-series after
zscoring along parcels, µp and σp are the mean and the standard deviation
calculated along parcels, as in 2.3 and 2.4.

µp(t) =
1

P

P∑︂
p=1

X1(p, t) (2.3)

σp(t) =
√︁
var(X1(:, t)) (2.4)

Secondly, mean of the z-scored data Xz2 is calculated (equation 2.5) and
subtracted to each parcel time-series (equation 2.6):

µXz2
(p) =

1

T

T∑︂
t=1

Xz2(p, t) (2.5)

XS = Xz2 − µXz2
(2.6)

Normalization is necessary before computing correlation because of the collinear-
ities of PET time-series. Finally, Pearson’s correlations (see 2.7) between parcels
normalized TACs (XS) was calculated and stored in a 214x214 symmetrical ma-
trix.

rxy =

∑︁n
i=1(x− x)(y − y)

2
√︁∑︁n

i=1(x− x)2 2
√︁∑︁n

i=1(y − y)2
(2.7)
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Figure 2.7: Time-series Metabolic Connectivity derivation

Procedure employed for deriving metabolic connectivity. After deriving parcels
time-series from Schafer atlas, normalization is applied to reduce collinearities.
Finally, correlation matrix is obtained through Pearson’s coefficient calculation.

Subject-series

As done for time series, using the 200 Schaefer cortical atlas, for both 7 and 17
networks versions, and 14 FIRST subcortical parcels atlas, parameters values
were extracted. Subjects-series of parcels parameters values were thus obtained
as a 214x55 matrix. After z-scoring within subjects, Pearson’s correlations
between subject-series were calculated and 214x214 correlation matrices were
obtained for both K1 and k3.

2.3 fMRI data analysis

The analyses were performed on the first AP run.

2.3.1 Preprocessing

The basic preprocessing steps for fMRI data were adapted from Human Con-
nectome Project (HCP) minimal preprocessing pipeline[18]. First of all, slice
timing was performed, followed by distortion correction using FSL TOPUP and
based on the provided SPIN ECHO (SE) image for the specific phase encoding.
Motion correction was then performed with FSL’s mcflirt, using an EPI tem-
plate (mean volume) as reference. Finally, functional data were coregistered to
skull-stripped T1w structural image.
Additional preprocessing applied to fMRI were confound-regression and filter-
ing. For the first operation, the contributions coming from motion parameters,
their first order derivatives and the first 5 Principal Components (PCs) of WM
and CSF were removed. A high pass filter (HPF, cut-off frequency=0.1 Hz) and
a low pass filter (LPF, cut-off=0.1 Hz) were then applied in sequence to the
regressed data. T1w and EPI image were both brought to MNI space.
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Figure 2.8: Functional Connectivity Derivation

Procedure for deriving functional connectivity. Starting from parcels time-series,
Pearson’s correlation is applied to obtain symmetrical FC matrices. Differently from

MC, no normalization is required

2.3.2 FC and fMRI features computation

Time-series

For FC computation, volumes which showed a Framewise displacement (FwD)
greater than 0.3 mm were discarded. Time-series related to the 200 cortical
parcels from Schafer 7 networks atlas and 14 subcortical parcels derived using
FLS FIRST (see paragraph for details) were extracted, averaging voxels time-
series for each parcel. FC matrices (214x214) were derived for each subject
applying Pearson’s correlation to parcels time-series.

Subject-series

ReHo voxel-level maps were obtained, using the formula reported in 1.3.3, with
number of voxels per neighbourhood set to 27. Similarly, GFC voxelwise map
were also obtained. Then, using Schaefer cortical and FIRST subcortical atlases
in EPI space (obtained by first coregistering from MNI space to T1w space and
finally to EPI space), parcel-level ReHo and GFC estimates were derived. ReHo
values coming from differents subjects were concatanated as column vectors in
a single matrix (214x71), which was then z-scored within subjects. Correlations
between each pair of ReHo subject-series were calculated and stored in a 214x214
matrix. The same was done for GFC.

2.4 Connectivity Gradients and PET-fMRI mul-
timodal integration

2.4.1 Time-series analysis

This part of the analysis was performed on a pool of 22 subjects, for which both
OSEM reconstructed PET images and fMRI data were available. Once FC and
MC matrices were obtained, averages of both were calculated. Subjects who
had less than 50% of uncensored volumes in processed rsfMRI time-series were
discarded, and the resulting pool of individuals was used to calculate group-
average matrices for the two modalities. Limbic regions were excluded, so that
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G1

G2

...
...
...

G10

Figure 2.9: Gradients derivation procedure

Starting from an input matrix (a symmetrical correlation matrix in this case),
gaussian kernel was applied in order to derive new manifolds for data representation



30 CHAPTER 2. MATERIALS AND METHODS

bias coming from AP phase encoding did not affect results, and also consid-
ering that limbic network functional distinction is still not clear. Subcortical
parcels were also excluded to focus exclusively on cortical gradients. BrainSpace
toolbox was employed [14] for gradients calculation. Row-wise sparsification of
the input matrix, which ensures to have a connected graph for calculation of
the Laplacian, was performed, keeping only values above 90th percentile. Re-
sults from using the original unsparsified data and the sparsified version were
compared. Gaussian kernel was used to obtain final similarity matrix (see 2.8),
followed by application of LE.

A(i, j) = e−(γ||xi−xj ||2) (2.8)

First 10 eigenvectors, sorted according to the associated eigenvalues importance
(excluding the first, which is constant and so not informative), were calculated.
Eigenvectors scores were represented over hemispheres using HCP Connectome
Workbench [30] in order to provide gradient maps and to visual inspect results.
Gradients scores were also grouped by networks to test capability of distinguish-
ing them using the new manifolds. In order to integrate information from the
two modalities, two approaches were tested. The first was the joint alignement
of gradients, as implemented on the BrainsSpace toolbox. In brief, this is a vari-
ant of gradients calculation which attempts to project both the data matrices
in a common space, using a joint similarity matrix J , which is built including
intra-dataset (AI) and inter-dataset (AIJ) affinity matrices:

J =

⎛⎜⎜⎜⎝
A1 A12 . . . A1N

AT
12 A2 . . . A2N

...
...

. . .
...

AT
1N AT

2N . . . AN

⎞⎟⎟⎟⎠ (2.9)

Secondly, to test similarities between sets of gradients, masks were created in
which best corresponding areas between gradients are marked. This was done
using tails of the unaligned gradient scores distribution, keeping only 20% top
and bottom values. Discrete masks were obtained for the two modalities, with
top values represented as 1 and bottom as -1. These were combined, first by
summing them without any transformation, and then by repeating the sum after
inverting sign of MC discrete mask: this is necessary to compare unaligned
gradients since reference can be flipped when space projection is performed
separately for different matrices. Another possibility to overcome this issue
is represented by Procrustes’s alignement, but it had been verified that this
procedure drastically changed the resulting MC gradients shape when using
FC as reference. Between the two combinations obtained from each couple
of discrete masks, the one with greatest number of non-zero parcels was kept,
assuming that it was correspondant to the best overlap. This procedure has been
repeated for all the combinations of the first two MC and FC gradients. To test
overall gradients similarity, Pearson’s correlation for each couple of gradients
was also computed.
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2.4.2 Subject-series analysis

This part of the analysis was limited to a pool of 45 subjects, for which both
functional features and metabolic parameters had been calculated. For across-
subjects covariation of [18F]FDGK1, k3 and rsfMRI features, similarity matrices
were calculated using gaussian kernel on sparsified (90th percentiles) and un-
sparsfied matrices, followed by application of LE. The same procedure for iden-
tification of best overlapping regions, which had been performed on time-series
gradients, was also repeated for subjects-series gradients. Correlation between
first two gradients coming from the subject-series of the different parameters
were computed in order to assess similarities.
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Chapter 3

Results

3.1 [18F]FDG data analysis

3.1.1 IDIF extraction

Carotid segmentation

ICAs were automatically segmented for all subjects and then visually inspected.
An example of ICAs segmentation mask is represented in figure 3.1. For most
subjects, using default parameters for ICAs segmentation was successful. In
a minority of cases automatic segmentation was considered unsatisfactory and
it was repeated with individualized parameters. In particular, head positioning
had an impact on the selection of the subset of slices which contain the carotids.
For instance, if the head was sligthly bent to one side during acquistion, the
threshold used to select the slices from the axial plane needed some adjust-
ment. Similarly, if the head was positioned towards the bottom of the FOV,
the number of slices which are masked out due to noise was reduced. Another
parameter which needed tuning was the expected number of voxels in the final
ICAs mask, which served as a threshold for binarizing the vesselness probability
map, output of the Jerman Filter. For more details, see figure 3.2.
Together with segmentation of the carotid arteries, the tissue region to be used
for Chen’s correction was segmented. The three clusters grouping TACs ex-
tracted from the tissue mask had a consistent spatial organization across sub-
jects, with the highest activity cluster collocated in the same area which was
manually segmented in Chen’s original paper [11](see figure 3.3).

IDIF modelling

Hot voxels selection through parametric clustering was used to identify the best
candidate TACs for Cp(t) extraction (see 3.4): in most cases, this procedure led
to the identification of exactly 40 voxels, which was the maximum allowed. In a
minority of cases, the surving time-series in the selected cluster were fewer than
40.

33
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(a) axial view (b) 3D mask

(c) coronal view (d) sagittal view

Figure 3.1: Carotid mask

Internal carotid arteries mask superimposed over average PET image

Undersampling the Cp(t) proved to be efficient in reducing the noise, as shown
in figure 3.5. However, it had little to no impact on the Cp(t) obtained after tri-
exponential model fitting (figure 3.6). The raw and fitted curves for all subjects
are represented in figure 3.8. Even in cases when the raw IDIF was too noisy to
obtain a good fit, MAP estimation using adequate priors was efficient enough
to obtain a reliable Cp(t) estimation (figure 3.7). Mean parameters relative to
the fitted Cp(t) are reported in table 3.1.
Fitting a straight line to the rising part of the IDIF (up to the peak) was
compared to using the original raw curve. Using the raw curve preserves a
smoother rising phase, even if the resulting IDIF may be affected by artifacts
coming from the reconstruction time grid employed (see figure 3.9). This was
the version finally used as input function for compartmental modelling.
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(a)

(b)

(c)

Figure 3.2: Tuning of segmentation parameters

Examples of segmentation corrected by manual tuning of algorithm parameters.
(a) Subject head was bent to one side, resulting in asymmetrical ICAs mask:
changing the thresholds for axial slices selection led to a symmetrical mask.

(b)Subject head was positioned towards the bottom of the FOV: in order to obtain a
complete segmentation of the carotid area, the number of axial slices that were

masked out due to noise was reduced.
(c) In this case the default value corresponding to the expected number of voxels,
used for binarization of the vesselness probability map, was reduced to obtain a

physiologically-plausible segmentation
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(a) (b)

Figure 3.3: Tissue mask for Chen’s correction

(a) Background mask for Chen’s correction superimposed on PET average mask and
clustered into three regions (blue, orange, yellow),(b) Centroids(=median across

TACs) from the three clusters

Figure 3.4: Arterial voxels selection from ICAs mask

On the left, ICAs mask is shown with the 40 voxels selected by parametric
clustering, with corresponding peak amplitude as indicated by the colormap [Bq/ml].

On the right, the normalized TACs are shown, sorted by peak amplitude
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Figure 3.5: Undersampled Cp(t)

Using a 15 seconds frame sampling grid, noise impact is reduced for the first time
points

(a) (b)

Figure 3.6: IDIF model fitting

Triexponential model fitting results using original raw IDIF (a) and undersampled
IDIF fitted without initial LLS (b)
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(a) (b)

Figure 3.7: MAP estimation

Raw IDIF fitted using WNLLS (a) and using a MAP estimation approach (b). MAP
estimation is robust even when the input curve is very noisy, leading to a physiological
Cp(t) estimate

(a) (b)

Figure 3.8: raw IDIF and fitted Cp(t)

Raw (a) and fitted (b) curves zoomed in the first 20 minutes. All curves were
normalized and synchronized with respect to peak time. Average is shown in thick

red, confidence intervals (mean + SD) in dotted black



3.1. [18F]FDG DATA ANALYSIS 39

Figure 3.9: Straight line and raw curve for the rising phase of the IDIF

Cp(t) obtained fitting a straight line to the rising part of the IDIF (up to the peak) is
plotted in blue, whereas Cp(t) obtained using the original raw curve for the initial

part is plotted in red.
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MEAN±SD
time to peak [s] 24.75±6.7
peak amplitude [KBq/ml] 65±18.2
AUC [KBq*min/ml] 310±59.2
A2/A1 [unitless] 0.04±0.04
A3/A1 [unitless] 0.13±0.04
α1 [min−1] 11.01±0.25
α2 [min−1] 0.37±0.002
α3 [min−1] (1.54±0.2) x 10−2

Table 3.1: IDIF parameters

Chen’s correction

Chen’s correction was performed using available venous samples. The resulting
Cp(t) shows a more gradual decay than the uncorrected curve. In some cases,
the tail of the corrected curve was scaled down becoming lower than the tail
of the uncorrected version, probably when the spillover effect was predominant.
As a consequence of rescaling using the estimated RC, peak amplitude was
increased in the corrected Cp(t). For more details, see figure 3.10.

3.1.2 Microparameters estimation: Variational Bayesian
approach

The VB approach allowed to obtain voxel-wise estimates of K1, k2, k3, Vb

(and Ki as a macroparameter). The subject-level K1 and k3 and Ki paramet-
ric maps were normalized to MNI152 space, and their average and variability
(CV%=SD/mean*100) across subjects were evaluated. The CV% maps show
high consistency of parameter estimates across subjects, without significant re-
gional heterogeneity (figures 3.11, 3.12, 3.13).

3.1.3 Metabolic Connectivity

Time-series

Time-series MC average matrix is shown in figure 3.14, where parcels are grouped
based on Yeo’s resting state networks. It can be noticed that typical within-
network correlation usually present in FC matrix is also present in MC for the
VIS network and for some parcels belonging to FPN. Moreover, VIS network
activity is anticorrelated with parcels activities of the other six functional net-
works.

Subject-series

Across subjects correlation matrices for K1 and k3, parcelled using the Schaefer
cortical and FIRST subcortical atlas (214 regions), were made sparse (90th per-
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(a)

(b)

Figure 3.10: Chen’s correction

In (a) the rescaled IDIF tail became lower than the uncorrected curve, whereas this
does not happen in (b). However, decay becomes steeper as a consequence of Chen’s

correction, and peak higher
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(a) K1 [ml/cm3/min]

(b) k3 [min−1]

(c) Ki [ml/cm3/min]

Figure 3.11: Microparameter average maps

Mean maps (across subjects) were obtained after coregistration of each individual
parametric map to MNI space
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(a) K1 [ml/cm3/min]

(b) K1 CV%

Figure 3.12: K1 average map and CV %

Multislice axial visualization of K1 average across subjects and corresponding CV
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(a) k3 [min−1]

(b) k3 CV%

Figure 3.13: k3 average map and CV%

Multislice axial visualization of k3 average across subjects and corresponding CV
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(a) Mean matrix (b) CV

Figure 3.14: Metabolic Connectivity

Metabolic Connectivity: average matrix (a) and CV (b), obtained applying Pearson’s
correlation on parcels time-seres (Schaefer 7 nets cortical atlas and 14 FIRST subcor-
tical)

centile) in order to highlight the highest correlation values, and are represented
in figure 3.15. For K1, a clear modular structure does not seem to emerge for
functional networks, whereas for k3 within-network correlation survive thresh-
olding for VIS and part of the SMN.

3.1.4 FC and features computation

Time-series

FC average matrix is represented in figures 3.16. From visual inspection, two
modules can be easily identified: one comprising VIS, SMN, DAN and VAN
(both ipsilateral and controlateral), and the other distributed across parcels of
the DMN and the FPN.
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(a) K1 (b) k3

Figure 3.15: K1 and k3 across-subjects connectivity

K1 (a) and k3 (b) across subjects connectivity matrices were sparsified (90th percentile)
in order to highlight the most meaningful correlations

(a) Mean matrix (b) CV

Figure 3.16: Functional Connectivity

Functional Connectivity: average matrix (a) and CV (b), obtained applying Pear-
son’s correlation on parcels time-seres (Schaefer 7 nets cortical atlas and 14 FIRST
subcortical)
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Subject-series

Across subjects correlation matrices for fMRI features GFC and ReHo, par-
celled using the Schaefer cortical and FIRST subcortical atlas (214 regions),
were made sparse (90th percentile) in order to highlight the highest correlation
values, and are represented in figures 3.17.
For GFC, parcels within VIS and DMN shows high correlation, which survives
sparsification. Correlation is also strong between some parcels belonging to
DMN and FPN.
For ReHo, similar modularity emerges: VIS and DMN within-networks connec-
tions are preserved, and the same can be said about FPN and DMN between-
networks connections. Differently from GFC, the connections within SMN are
maintained, particularly on the right hemisphere.

(a) GFC (b) ReHo

Figure 3.17: GFC and ReHo across-subjects connectivity

GFC (a) and ReHo (b) across subjects matrices were sparsified (90th percentile) in
order to highlight the most meaningful correlations

3.2 Connectivity Gradients and PET-fMRI mul-
timodal integration

3.2.1 Time-series analysis

Components obtained from LE application are sorted decreasingly according to
their relative importance, providing metabolic and functional gradients.

Gradients Maps obtained from MC average matrix are shown in figures 3.18
and 3.19. Gradients derived from both sparsified and unsparsified matrix have
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a similar cortical distribution. First gradient separates the occipital lobe, part
of the temporal lobe and part of the cingulate gyrus from the frontal and pari-
etal lobes, whereas second gradient groups together occipital lobe and lateral
prefrontal cortex at one end of the scores distribution, whereas medial prefrontal
cortex, cingulate gyrus and temporal lobes are at the opposite end.
In figure 3.20, G1 scores are plotted against G2 scores: VIS parcels are markedly
separated from the other networks.

(a) G1 (b) G2

(c) Eigenvalues

Figure 3.18: Unsparsified MC gradients

(a) G1 separates the occipital lobe, part of the temporal lobe and part of the cingulate
gyrus from the frontal and parietal lobes.
(b) G2 groups together occipital lobe and lateral prefrontal cortex at one end of the
scores distribution, whereas medial prefrontal cortex, cingulate gyrus and temporal
lobes are at the opposite end

Gradients Maps obtained from unsparsified FC average matrix are repre-
sented in figure 3.21. G1 divides DMN from VIS and SMN, whereas G2 sepa-
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(a) G1 (b) G2

(c) Eigenvalues

Figure 3.19: Sparsified MC gradients

Cortical gradient scores distribution is similar to the unsparsified version, with some
minor differences in ventromedial prefrontal cortex
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(a) (b)

Figure 3.20: MC: gradients scatter plot

Scatter plot of MC G1 scores and G2 scores, from unsparsified (a) and sparsified
(b) input matrix. VIS parcels are almost completely separated from the others and
concentrated towards G1 negative values

rates occipital and lateral prefrontal areas from medial prefrontal cortex, parietal
and temporal lobes. Sparsified matrix gives sligthly different results, with G1
dividing VIS from SMN, and G2 having DMN and VIS at the opposite ends
of scores distribution. This networks separation can also be observed in figure
3.23, where first two gradients scores are plotted on the same plane.

Gradients derived from joint alignment are represented in figure 3.24. First
order gradients provide a similar cortical organization for both MC and FC, di-
viding occipital region from the rest of the brain. Second order gradient shows
different architecture for the two modalities: in MC occipital lobe is separated
from prefrontal cortex, whereas in FC, second gradient divides DMN from SMN.

Comparing the first and second order MC and FC gradients using Pearson’s
coefficient, significant correlations were found between FC G1 and MC G1, FC
G2 and MC G1, FC G2 and MC G2 (see figure 3.25). Maixmum overlapping
areas for first gradients of MC and FC are located over VIS and SMN. Over-
lapping regions between FC G1 and second MC G2 belong to VAN and SMN.
Matching areas between second FC gradient and first MC gradient comprise VIS
and DMN areas (mostly prefrontal cortex and precuneus). Second FC and MC
gradients share areas located over the medial prefrontal cortex, the precuneus
and the temporal lobe, mostly belonging to DMN.
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(a) G1 (b) G2

(c) Eigenvalues

Figure 3.21: Unsparsified FC gradients

(a) G1 divides DMN from VIS and SMN. (b) G2 separates occipital and lateral pre-
frontal areas from medial prefrontal cortex, parietal and temporal lobes.
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(a) G1 (b) G2

(c) Eigenvalues

Figure 3.22: Sparsified FC gradients

(a) G1 divides VIS from SMN. (b) G2 has negative values on DMN and positive values
on VIS
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(a) (b)

Figure 3.23: FC: gradients scatter plot

First two FC gradients scores, from unsparsified (a) and sparsified (b) input matrix,
are plotted together. In here, typical transmodal-unimodal gradient seems to be de-
lineated, with DMN separated from SMN and VIS

MC G1 MC G2

FC G1

FC G2

Figure 3.26: Overlapping regions of metabolic and functional gradients

Maixmum overlapping areas for first gradients of MC and FC are located over VIS and
SMN. Overlapping regions between FC G1 and second MC G2 belong to VAN and
SMN. Matching areas between second FC gradient and first MC gradient comprise
VIS and DMN areas (mostly prefrontal cortex and precuneus). Second FC and MC
gradients share areas of the medial prefrontal cortex, precuneus and parcels over the
temporal lobe, all belonging to DMN.
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(a) MC G1 (b) MC G2

(c) FC G1 (d) FC G2

(e) Eigenvalues

Figure 3.24: Joint Alignment of MC and FC gradients

In here, both matrices were embedded together in the new space. Similar spatial
pattern is shared by first order gradients scores of the two modalities, whereas second
FC gradient seems to maintain unimodal-transmodal architecture
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Figure 3.25: Pearson’s correlation between first and second order MC and FC
gradients

FC G1 and MC G1 are significantly anticorrelated, and so are FC G2 and MC G1,
which exhibit the strongest correlation. Anticorrelation between FC G2 and MC G2

is moderate but significant

3.2.2 Subject-series analysis

For K1, G1 divides areas of the cingulate gyrus, precuneus and somatomotor
cortex from parcels belonging to occipital and prefrontal cortex, whereas G2
groups together areas of occipital and ventromedial prefrontal cortex on one
side, and parcels from the dorsal prefrontal cortex on the other (figure 3.27).
Plotting K1 G1 and G2 scores on the same plane (figure 3.29a), no clear division
can be noticed for functional networks.
For k3, areas of the cingulate gyrus and precuneus have the highest G1 scores
whereas parcels of the prefrontal cortex have the lowest. No symmetric pattern
emerges from G2 scores distribution between the two hemispheres, apart from
the occipital lobe (figure 3.28). Observing scatter plot of first two k3 gradients
scores, VIS seems well separated from the other networks (figure 3.29b).

For GFC, G1 separates VIS and SMN from prefrontal cortex, cingulate
gyrus, precuneus and temporal lobe, while G2 groups together VIS, medial
prefrontal cortex, and temporal lobe at one end of scores distribution, and dor-
solateral prefrontal cortex at the opposite (figure 3.30).
ReHo first gradient separates VIS and SMN from regions corresponding to ven-
tral prefrontal cortex and part of the cingulate gyrus. G2 separates occipital
and temporal areas from dorsomedial and ventromedial prefrontal cortex (figure
3.31).

Comparing the first and second order K1 and GFC gradients using Pear-
son’s coefficient, significant correlations were found between GFC G1 and K1
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(a) G1 (b) G2

(c) Eigenvalues

Figure 3.27: K1 gradients

(a) G1 divides areas of the cingulate gyrus, precuneus, somatomotor cortex from
parcels belonging to occipital and prefrontal cortex.
(b) G2 has positive values on ventromedial prefrontal cortex and occipital lobe, and
negative values on dorsal prefrontal cortex
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(a) G1 (b) G2

(c) Eigenvalues

Figure 3.28: k3 gradients

(a) G1 has areas of the cingulate gyrus and precuneus on the negative side of the
scores distribution, and some parcels of the prefrontal cortex on the opposite.
(b) No symmetric pattern emerges from G2 between the two hemispheres, apart from
the occipital lobe, whose parcels have the same polarity
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(a) K1 (b) k3

Figure 3.29: Gradients Scatter plot for K1 and k3

Scatter plot of K1 (a) and k3 (b) G1 and G2 scores. No clear networks separation
emerges, apart from VIS in k3

G1, GFC G2 and K1 G1, GFC G2 and K1 G2 (see figure 3.33a). Maixmum
overlapping areas for first gradients of K1 and GFC are located over cingulate
gyrus and part of the occipital lobe. Overlapping regions between GFC G1
and K1 G2 are just a few parcels on the prefrontal cortex and occipital lobe.
Matching areas between GFC G2 and K1 G1 are moslty located over the lateral
prefronal cortex and cingulate gyrus area. GFC G2 and K1 G2 matches on
ventromedial prefrontal cortex, dorsolateral prefrontal cortex and occipital lobe
(see figure 3.34).
Comparing the first and second order K1 and ReHo gradients using Pearson’s
coefficient, significant correlations were found between ReHo G2 and K1 G1,
ReHo G2 and K1 G2 (see figure 3.33b). Best overlapping areas are mostly
located over the prefrontal cortex and cingulate gyrus (see figure 3.35).

Comparing the first and second order k3 and GFC gradients using Pearson’s
coefficient, significant positive correlations were found between GFC G2 and
k3 G1, GFC G2 and k3 G2, whereas significant negative correlation was found
between GFC G1 and k3 G2 (see figure 3.36a). Maixmum overlapping areas for
first gradients of k3 and GFC are located mostly over cingulate gyrus. Over-
lapping regions between GFC G1 and k3 G2 belong to occipital lobe, cingulate
gyrus. Matching areas between GFC G2 and k3 G1 are located over the lateral
prefronal cortex and cingulate gyrus area. GFC G2 and k3 G2 matches almost
entirely on the occipital lobe (see figure 3.37).
Comparing the first and second order k3 and ReHo gradients using Pearson’s
coefficient, significant positive correlations were found between ReHo G2 and
k3 G1, ReHo G2 and k3 G2, whereas significant negative correlation was found
betweem ReHo G1 and k3 G2 (see figure 3.36a). ReHo G1 and k3 G1 matches in
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(a) G1 (b) G2

(c) Eigenvalues

Figure 3.30: GFC gradients

(a) G1 separates VIS and SMN from prefrontal cortex, cingulate gyrus, precuneus and
temporal lobe.
(b) G2 groups together VIS, medial prefrontal cortex, and temporal lobe on one side
of scores distribution, whereas dorsolateral prefrontal cortex is on the opposite side
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(a) G1 (b) G2

(c) Eigenvalues

Figure 3.31: ReHo gradients

(a) G1 has negative values on VIS and SMN and positive values on ventral prefrontal
cortex and part of the cingulate gyrus.
(b) G2 separates occipital and temporal areas from dorsomedial and ventromedial
prefrontal cortex
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(a) GFC (b) ReHo

Figure 3.32: Gradients Scatter plot for GFC and ReHo

For both parameters VIS parcels are collocated on a specific area identified by the
two gradients

(a) GFC vs K1 (b) ReHo vs K1

Figure 3.33: Pearson’s correlation between first and second order gradients of
K1 with GFC and ReHo

(a) GFC G1 significantly correlates with K1 G1, whereas GFC G2 significantly corre-
lates with first and second K1 gradients.
(b) As for ReHo, G2 significantly correlates with both K1 gradients



62 CHAPTER 3. RESULTS

K1 G1 K1 G2

GFC
G1

GFC
G2

Figure 3.34: Overlapping regions for K1 and GFC gradients

Parcels in red are the ones where most extreme values of gradients distribu-
tion overlaps for the two parameters. Cingulate area and a few parcels on the
occipital lobes overlap recurrently
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K1 G1 K1 G2

ReHo
G1

ReHo
G2

Figure 3.35: Overlapping regions for K1 and ReHo gradients

Parcels in red are the ones where most extreme values of gradients distribution
overlaps for the two parameters. Cingulate area and dorsomedial prefronatl
cortex overlap recurrently
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(a) GFC vs k3 (b) ReHo vs k3

Figure 3.36: Pearson’s correlation between first and second order gradients of
k3 with GFC and ReHo

(a) GFC G2 is significantly correlated with k3 G1 and G2, whereas GFC G1 is signif-
icantly anticorrelated with k3.
(b) ReHo G2 is significantly correlated with k3 G1 and G2, whereas ReHo G1 is
significantly anticorrelated with k3.

the cingulate gyrus. ReHo G2 and k3 G2 overlaps on the occipital lobe. ReHo
G2 and k3 G1 share some parcels in the prefrontal cortex and cingulate gyrus.
Finally ReHo G2 and k3 G2 share some parcels distributed over the prefrontal
cortex 3.38).



3.2. CONNECTIVITY GRADIENTS AND PET-FMRI MULTIMODAL INTEGRATION65

k3 G1 k3 G2

GFC
G1

GFC
G2

Figure 3.37: Overlapping regions for k3 and GFC gradients

GFC and k3 gradients recurrently overlap on cingulate gyrus and occipital lobe
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k3 G1 k3 G2

ReHo
G1

ReHo
G2

Figure 3.38: Overlapping regions for k3 and ReHo gradients

ReHo and k3 gradients recurrently overlap on cingulate gyrus, occipital lobe and
prefrontal cortex



Chapter 4

Discussion

4.1 IDIF-based [18F]FDG quantification

In this thesis project, quantification of [18F]FDG microparameters has been per-
formed using an IDIF. As already discussed, this is a non invasive alternative
to arterial blood sampling, which could help translation of dynamic PET to
clinical practice. If, on the one end, it is true that the approach employed for
IDIF derivation is not entirely blood-free, as it relies on collection of venous
blood from the patient to perform Chen’s correction, venous sampling is still
less dangerous than arterial cannulation, and the number of samples required
can be limited to just three, undoubtedly causing less discomfort to the pa-
tient. We have actually shown that a completely blood-free approach can still
be achieved using model-based estimates (as with nonlinear mixed effect mod-
eling) of plasma radioactivity concentration from other physiological covariates
[58]. One of the problem usually connected with IDIF estimation is represented
by radio-metabolites correction: however, this is not addressed in this thesis
since [18F]FDG doesn’t produce radio-metabolites.
The extraction site for the approximated Cp(t) has been identified as the internal
carotid arteries, which is a well-documented option for ECAT HR+ scanners,
when taking their limited FOV in consideration. Since these structures are
affected by spillover due to their small caliber, we adopted Chen’s model to
correct the extracted curve [11]. The same model was evaluated and compared
to the existing alternatives for IDIF derivation in [64]: in the cited study, using
phantom data the estimated curve correlated with the reference curve, whereas
using clinical data the peak was systematically underestimated. This could be
critical, as one of the main problems which hindered the use of IDIF for mi-
croparameter estimates is their sensitivity to the the shape of the curve, and
especially to the early part. However, in [64] the authors hypothesizes that the
peak underestimation may be due to the inadequate sampling grid of the em-
ployed clinical studies, whose first 12 time frames last 10 seconds. In our data,
sampling grid is denser in the beginning (25 frames of 5 seconds), and so we
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suppose that artifacts coming from limited temporal resolution should be lim-
ited. As for the resulting shape of the IDIF, we also noticed that the rescaling
of the curve by the estimaed RC from Chen’s model contribute to increase peak
amplitude, therefore compensating for spill-out effects affecting peak. However,
comparison with the gold standard AIF would be useful to evaluate the ex-
tracted IDIF and to efficiently address potential problems
One of the main advantage of our IDIF extraction algorithm is that it depends on
a semi-automatic procedure, which only requires manual intervention in tuning
parameters useful for slices selection and vesselness probability map binariza-
tion. As a result, no manual segmentation of the carotids arteries was needed,
which would be a time-consuming and potentially error-prone procedure. More-
over, vascular segmentation didn’t rely on coregistration to structural or angio-
graphic images and was only based on the use of PET scans. An important
component of this algorithm is represented by arterial voxels selection[40]: this
ensures that only the best TACs are averaged to obtain the IDIF curve, without
introducing bias coming from non arterial voxels activity which are comprised
in the automatically segmented vascular ROI. A possible extension to the anal-
ysis performed on this dataset could be represented by the comparison of the
arterial and venous IDIF, as shown in [45]. In particular, Superior Sagittal Si-
nus(SSS) can be easily segmented, as it is done here for arterial peak estimation.
Having bigger caliber, SSS should be less affected by activity from sorrounding
tissues. However, venous peak is slower than arterial peak, as it is physiolog-
ically plausible and also confirmed by the analysis carried out for automatic
carotid segmentation in our images. Model based correction to estimate arte-
rial IDIF from venous IDIF may still be employed to make good use of veins
segmentation. With the same rationale, it would be possible to evaluate the
effect of Chen’s correction using SSS IDIF rather than the blood samples, so
as to have a completely blood-free IDIF extraction algorithm. For large axial
FOV scanners (e.g., PET/MR, newer PET/CTs like Siemens Biograph Vision),
another candidate site for IDIF extraction is represented by common carotid
arteries (CCA), which have bigger caliber than ICAs and whose sorrounding
tissues generally show low [18F]FDG uptake [45].
Microparameters estimation using VB approach yielded good results at voxel-
level, showing consistent parameters estimates across subjects. Validation using
gold standard approach for AIF extraction would be useful to fully evaluate the
effect of IDIF on rate constants estimates.

4.2 [18F]FDG and rsfMRI multimodal integra-
tion

Gradients derivation for time-series FC average confirmed what was previously
presented in literature [31]. First two gradients shows a clear network separation
for DMN, SMN and VIS, probably reflecting the synaptic hierarchy postulated
by Mesulam [33]. FPN, despite being separated from the remaining networks,
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end up being close to DMN parcels, especially using a sparsified input matrix,
probably by reason of its transmodal nature. Interpreting VAN and DAN col-
location in the plane identified by the first two gradients is not straightforward.
Interestingly, some VAN parcels are distributed among SMN parcels, and the
two attention networks do not overlap in this representation. This may be in-
tended as proof of their distinctive roles in cognition.
As for time-series MC average networks, first two gradients allow identification
of just the VIS. First order metabolic and functional gradients exhibit signifi-
cant correlation, but seem to overlap mostly in unimodal regions rather than in
transmodal ones. The same is not true for the other combination between first
and second order gradients, which overlap in parcels belonging to DMN, even if
the match never include the whole network.

From these results, it could be hypothesized that metabolic networks have a
specific cortical organization. However, it should be noted that there’s still no
gold standard for time-series MC calculation, and results seem to largely depend
on multicollinearities and to the kind of normalization applied [59]. Since gra-
dients proved to be a useful methodology for integration of information coming
from different modalities (as for structural and functional imaging in [36]), such
an experiment could be repeated once a new robust approach for MC matrix
derivation has been reached.
In this thesis it was also presented a first attempt of gradients application to
across-subject connectivity matrix. From a metabolic perspective, it is known
how K1 and k3 have different physiological interpretation, with K1 representing
[18F]FDG influx rate from plasma to tissue, and k3 representing tracer phos-
phorylation by hexokinase enzyme. This is reflected also in gradient maps,
which show a different spatial organization for the two parameters. Similarly
to what happens with time-series MC, VIS emerges as a distinct network in
the first two gradients space for k3. As regards fMRI features, similar spatial
pattern can be observed for GFC and ReHo first order gradients, showing that
the two metrics share some spatial properties, whereas some dissimilarity seem
to emerge from second order gradient distribution. Comparison between the
functional and metabolic parameters may surely contribute to characterize how
much global and local synchronization affect metabolism. The fact that signifi-
cant correlation was found between gradients from all combination of functional
and metabolic parameters may be interpreted as proof of the metabolic burden
associated to brain functional connections, as already revealed in terms of the
increase in metabolism associated with the degree of connectivity[51].
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Chapter 5

Conclusions and future
perspectives

The [18F]FDG data analysis led to the development of a semi-automatic pipeline
for IDIF derivation, starting from vessels segmentation up to AIF model fitting
and spillover correction. This could be easily adapted to other studies and the
district of choice for Cp(t) extraction could be easily modified according to spe-
cific needs. For this thesis project, IDIF was successfully extacted from internal
carotid arteries and, combined with Variational Bayesian approach, led to reli-
able voxel-wise microparameters estimates. However, validation using arterial
Cp(t) would be useful to assess the sensitivity of microparameters estimates to
the use of the IDIF rather than the AIF, which is the gold standard.

Gradients were used for the first time as an integration method of metabolic
and functional connectivity measures at group level. MC gradients may depend
on the normalization approach employed for managing TACs multicollinarities,
and since there’s still no gold standard for time-series MC derivation, results
are to be intended as preliminary. However, comparison through gradients may
still be a valuable option for studying metabolic demand of resting-state acti-
vations. Effects of using different kernel functions or different dimensionality
reduction techniques for MC gradients need to be explored. In particular, using
a linear technique, such as PCA, or other nonlinear techniques, as DM, may
represent a possible future extension to the analysis performed so far. Such a
modality could be also extended to the derivation of subject level functional
and metabolic connectivity gradients, which could prove useful for investigating
metabolism in phyisiological or pathological conditions.
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