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Abstract

This thesis deals with the analysis of water management in a network
of canals, focusing on the Cavallino di Venezia drainage network. In
particular, it is proposed an improvement for the water distribution of
this site. Aiming to find a feasible solution to this issue, it is derived
a nonautonomous difference-equation-based model that considers the
constraints imposed on a general water network.
The presented approach primarily leverages graph-theoretical tools and,
by means of a modified version of the distributed consensus protocol ac-
counting for the physical restrictions within the network, the water ex-
change among nodes is regulated at a common level given by the average
of the initial heights.
The main contribution of this thesis is thus devoted to the adaptation of
the classic consensus protocol to this specific framework, by introducting
a time-variant adjustment to copewith different water regimes occurring
at each canal loading or draining. In addition, the proposed solution is
shown to have general application properties, namely it is designed to be
suitable for many frameworks in which the consensus protocol needs to
take into account restricted capacity of information exchange. This as-
pect is explored through a theoretical study on the convergence of the
developed distributed algorithm towards the state agreement and, con-
sequently, an analytical metric for the convergence rate is suggested. Fi-
nally, to support the obtained theoretical results, numerical simulations
using MATLAB are also reported and the devised distributed algorithm
is applied to the Cavallino di Venezia drainage network in order to show
its performances in a real scenario.
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Abstract

Questa tesi si occupa della gestione dell’acqua facente parte di un sistema
di canali e, in dettaglio, viene preso in considerazione il sistema di canali
della città diCavallinodiVenezia. Inparticolare, vienepropostounmiglio-
ramento nella redistribuzione delle acque di questo sito. Con l’obbiettivo
di trovare una soluzione per questo tipo di problema, è proposto unmod-
ello non autonomo di equazioni alle differenze in grado di considerare
i limiti fisici di un generico sistema di canali. L’ approccio descritto fa
leva sulla teoria dei grafi, e mediante una versione modificata del già noto
protocollo di consensus distribuito, viene tenuto conto delle restrizioni
fisiche del sistema, e l’ altezza dell’acqua nei vari nodi del sistema viene
portata verso la media delle altezze iniziali.
Il contributo principale di questa tesi è l’adattamento del protocollo del
consensus a questo campo specifico. Ciò viene raggiunto introducendo
parametri tempo varianti calcolati in base alla capacità del sistema di cari-
care e scaricare acqua da un canale all’altro. Inoltre, la soluzione trovata
presenta applicabilità generica per tutti i sistemi riconducibili a grafi che
risentono di ridotte capacità di trasmissione tra i propri nodi. Questo as-
petto è approfondito tramite uno studio teorico sulla convergenza dell’
algoritmo distribuito proposto e, conseguentemente, viene descritta una
metrica analitica per la velocità di convergenza dello stesso. Infine, a sup-
porto dei risultati teorici ottenuti, vengono effettuate delle simulazioni
numeriche in ambiente MATLAB testando l’algoritmo proposto per ge-
stire le acque della rete di canali di Cavallino di Venezia in modo da valu-
tarne le prestazi- oni in uno scenario reale.
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1
Introduction

This thesis focuses on the Cavallino Treporti drainage water network.
Cavallino Treporti is a long and thin peninsula that separates the north-
eastern Venetian lagoon from the Adriatic Sea. The peninsula is also sep-
arated from the land by the river Sile on the north-east side and it extends
toward south-west into the Venetian lagoon. Figure 1.1 shows this piece
of land highlighting the water network that will be under analysis.
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Figure 1.1: Satellite view of Cavallino‐Treporti and its canal network

Note that the network is composed of open canals and pipelines. In-
deed, it is crossed by the Saccagnana canal, which divides the network
into two parts: the main subnetwork is the one of the peninsula facing
onto the Adriatic Sea and a second subnetwork extends amidst a urban
area located further inland in the lagoon. The two networks are con-
nected through underground pipelines that lies on the Saccagnana canal.
Both subnetworks communicate throughhydraulic structures (gates)with
the lagoon, rivers and sea surrounding the peninsula.
The peculiarity of this territory is that it is located under the sea level and
it is protected by an elevated coastline with gates that can isolate the net-
work from the external water system. Sharing water junctions with the
sea, affects the lagoon surrounding the Cavallino peninsula by tides. In
addition to the normal fluctuation of the water level generated by tides,
the entire lagoon area is subject to a phenomenon called Acqua alta [2].
This phenomenon is caused by a combination of astronomical, meteo-
rological and geological events. This problem often occurs during rainy
periods and requires the operators to isolate the Cavallino network from
the outside environment to prevent flooding in the Urban area of the
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Cavallino territory. However, this strategy does not allow the possibility
for the network to drain part of the water outside. The Cavallino water
network is not designed to withstand such extreme phenomena; indeed,
the previously mentioned events in combination with violent rainfalls
cause flooding on the Urban area of the Cavallino territory.
The aforementioned fact depicts a system which, in the worst case sce-
nario, has the issue to stay isolated from the external water network and,
possibly, with an excess of water load in at least some of the canals. The
main objective of this thesis is to avoid this kind of issue by designing an
algorithm that controls and distributes the water evenly throughout the
network, so to be able to reach the largest admissible water capacity.

1.1 State of the art

In this section, the state of the art about water distribution problem is
presented. In general, there are many different approaches to water dis-
tribution problem. This is due to the fact that there are many aspects
eventually to consider, such as cost reduction or optimization, control
optimization, supply or allocation problem, leaksmanagement. Also the
time variable could be key in this problem, as in [1], where it is presented
a detailed review of the management problems and essential mathemati-
cal models that are divided into short (STP)-medium (MTP)-long (LTP)
term framework categories. Figure 1.2 gives awide picture about the vari-
ability and difference that this kind of problem in function of the time
can offer.
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Figure 1.2: Water Distribution Network, time frames division [1]

All these aspects are usually taken into account separately since their
nature is very different between one another. For this reason, different
kind of solutions to the problem are requested. Network design is a good
example of a long term framework application and could esemplify well
the starting point addressing such a problem. In [3], the implementation
of a smart water grid system is presented and supports the public utilities
board’smission to supply goodwater 24/7 to its customers; another solu-
tion is presented in [4] where a stochastic formulation validated through
Monte Carlo simulation is applied in order to fix uncertainty in demand
in designing framework. Together with the design purpose comes the
reliability of the system as main object of the LTP andmodels leveraging
stochastic solutions are preferred. An example of this approach is yielded
by [5] where a new approach for reliability-based optimization of water
distribution networks is presented and is capable of recognizing the un-
certainty in nodal demands and pipe capacity as well as the effects of me-
chanical failure of system components.
MTP framework categories include for example vulnerability assessment
as in [6], where some fundamental concepts are highlighted from graph
theory for vulnerability assessment of water distribution networks.
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More than the previous two cases, the STP framework gives us a better
picture towhat this thesis is about. This category includes themajority of
the aspects than can be studiedwith automated systems, and usually have
an immediate and adaptive contribute to the controlled parameters. The
vastmajority of solutions in this category comprehendsmachine learning
tools and graph-based algorithms.
Machine learning tools are usually employed for leak and infiltration as-
sessment as in [7], where it is shown a comparison between statistical and
machine learningmodels for pipe failuremodeling predictionor, as in [8]
wheremachine learning is exploited in order to determine andpredictwa-
ter contamination.
As machine learning is often exploited for quality issues, graph theory
is best employed for more operational planning problems. Examples of
graph theory applied to water network distribution issues are very com-
mon and used to solve different tasks; for example, in [9], graph the-
ory is used to create an algorithm to manage the scheduling of the water
network. In particular their algorithm returns an optimal minimal cost
pump-scheduling pattern; whereas, in it is [10] it is introduced a holis-
tic analysis framework to support water utilities on the decision making
process for an efficient supply management. Furthermore, within graph
theory, it’s common opinion [11],[12] that theoretical computer science
is in a vantage point to achieve significant advances for what concerns the
understanding of key emergent properties in complex systems.
From this perspective, we can certainly model water distribution prob-
lems by using distributed networked systems. Given this premise and
willing to dive more deeply into graph theory related to water distribu-
tion problem, we found consensus algorithm as one of the most applied
solution.
In networks of agents, “consensus” means to reach an agreement regard-
ing a certain quantity of interest that depends on the state of all agents.
A consensus algorithm (or protocol) is an interaction rule that specifies
the information exchange between an agent and all of its neighbors on
the network [13]. Consensus can be applied, in general, for multiple
purposes, as for example in [14], where it is provided a theoretical frame-
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work for the analysis of consensus algorithms concerningmulti-agent net-
worked systems. This work emphasizes the role of directed information
flow and discusses the connections between consensus problems in net-
worked dynamic systems.
More relevant to our specific case we find [15], where a consensus-based
control strategy for a water distribution system is proposed. The latter
enables a water system to continuously supply the demand minimizing
the impact of faulty equipment within the water distribution system fa-
cilities. Within the consensus literature, it is possible to find several ap-
plications, as in [16] where it is proposed a study of average consensus
problem of multi-agent systems for general network topologies with uni-
directional information flow. They propose two linear distributed algo-
rithms, deterministic and gossip, respectively for the caseswhere the inter-
agent communication is synchronous and asynchronous. In both cases,
the developed algorithms guarantee state averaging on arbitrary strongly
connected digraphs.
Discrete consensus in a dynamic networks is significantly similar to what
we are describing in this thesis. Someprior examples are given also in [17],
where it is proposed a class of discrete-time dynamic average consensus
algorithms that allow a group of agents to track the average of their ref-
erence inputs. The corrisponding convergence results rely on the input-
to-output stability properties of static average consensus algorithms and
require that the union of communication graphs over a bounded period
of time be strongly connected.
Anotherwork that has very similar scope to this thesis is presented in [18]
through a multi-agent assignment problem, in which a group of agents
has to reach a consensus on an optimal distribution of tasks under com-
munication and assignment constraints. In this paper, starting from any
unfeasible solution, it is developed an extended version of the gossip al-
gorithm able to iteratively find an initial feasible assignment state in or-
der to reach the consensus state among the agents. Constraints are an-
other aspect that consensus algorithm theory takes into account, as in
[19]where it is considered the global consensus problem for discrete-time
multi-agent systems with input saturation constraints under fixed undi-
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rected topologies. Firstly, necessary conditions are given for achieving
global consensus via a distributed protocol based on relative state mea-
surements of the agent itself and its neighboring agents. Then, the focus
is is directed towards two special cases, where the agent model is either
neutrally stable or a double integrator.
Inpresenceof constraints consensus algorithmusuallyneed tobe adapted,
as in [20] inwhich it is presented a study of consensus for a teamof agents
with continuous dynamics in the presence of state constraints. Due to
the existence of state constraints, most existing consensus algorithms can-
not be applieddirectly and, thus, a novel consensus algorithm is proposed
to deal with state constraints. The novel consensus algorithm is shown
to guarantee consensus when a few conditions are satisfied.
Even though the literature is full of examples in which consensus algo-
rithm is exploited and modified in order to adapt to a particular case,
there are still some gaps to fill. In particular, speaking about constrained
consensus algorithm, it is missing the case where the constraints are ap-
plied to the capability of the system to exchange information between
one another.

1.2 Thesis contributions
The objective of this thesis is the control of thewater height in every canal
of the Cavallino network.
Inparticular, as it is desired toobtain themaximumwater capacity through-
out the considered hydraulic system, we devise a distributed algorithm to
set the water height of each canal at the same level. Such an approach is
expected to cope with the physical constraints of the network involved.
This thesis mainly deals with the well known consensus protocol. The
consensus protocol, in general, could be interpreted as a graph based pro-
tocol that, under appropriate hypotesis, ensures the convergence of the
systemnodes to a commonvalue also called agreement value. We adapted
this protocol in order to satisfy the main physical limits that a real me-
chanical system can exhibit. The rationale presented in this thesis is ori-
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ented toward finding a solution to this issue, so to proper describe and
simulate the application of consensus protocol in a physical environment,
such as that of water channels. In particular, we manage to adapt the
classic consensus protocol introducing non-linear constraints that can be
satisfied thanks to the proposed tunable parameter [21][22][23]. This
parameter regulates the rate of information exchanged between nodes
and, thus, allows to satisfy requirements on limited water flow capacity.
Clearly, the approach proposed can be also applied to any other situation
in which the same framework is recognized. On top of that, we provide
a convergence metric study of the proposed protocol to evaluate the per-
formance of this new approach. Finally, to support the theoretical results
obtained, we report some numerical simulations on a real nominal and
faulty scenarios. The simulations show both the correctness, robustness
and the versatility of the devised adaptive algorithm to the different pro-
posed frameworks.

1.3 Thesis outline
This thesis aims at proposing a solution to thewatermanagement ofCav-
allino Treporti drainage water network.
In doing so, Section 2 presents some basic theoretical tools that will be
exploited in the subsequent chapters.
In particular basics of graph theory and consensus theory are reported.
Chapter 3 describes how we derive a feasible model that takes into ac-
count the main features and limits that a structure like a water network
could intrinsically have.
In chapter 4, the derivedmodel and constraints are exploited into the pro-
posed algorithm to control the water network. On top on that, a simple
example of the algorithm execution is presented.
Chapter 5 introduces a convergence analysis of the algorithm previously
mentioned. In particular, a convergence metric is then computed in or-
der to evaluate the algorithm performances in relation to the constraints
applied.
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In Chapter 6, exploiting the MATLAB environment, the algorithm is
applied to a simplified version of the Cavallino Treporti drainage water
network in order to simulate how the algorithm behaves in a real case sce-
nario. Furthermore, some numerical consideration on the convergence
metric are discussed.
Chapter 7 draws the conclusions of the entire work.
Finally, inAppendixAone can finduseful computations in order to fully
understand the mathematical derivations.

1.4 Notation
In this section, the notation used in this thesis is presented.

• G: graph

• JG: adjoint graph ofG

• V: set of nodes
• E: set of edges

• vi: ith vertex or node
• eij: edge connecting vi and vj
• di: degree of vi
• k: iteration counter variable
• N(vi) orNi: neighborhood of vi
• | · |: absolute value or cardinality

• n: number of nodes
• m: number of edges

• ΔG: degree matrix ofG

• AG: adjacency matrix ofG

9



• EG: incidence matrix ofG
• Pij: element in the ith raw and jth column of P

• P: consensus matrix
• PJ: Jordan form of P

• LG: Laplacian ofG

• In: identity matrix of dimension n

• 1n =


1
1
...
1

: n dimensional vector of ones

• ||x||2 = (
∑n

i=1 |x2i |)
1
2

• ||x||∞ =maxi|xi|

• λLi : ith eigenvalue of L

• Rn×n: n× n domain real numbers
• Z: integer number domain

• N: natural number domain
• σ(LG): spectrum of LG

• x(k): state vector of n dimension at iteration k
• xi(k): ith state at iteration k
• xmax: maximum element of vector x
• xmin: minimum element of vector x
• T: change of basis matrix

• wT: transposed form of vector w

• w0: eigenvector of P and first raw of T

• v0: eigenvector of P and first column of T−1

10



• VT: n× n− 1 dimensional matrix representing T−1 without v0
• WT: n− 1× n dimensional matrix representing Twithout wT

0

• Λ: n− 1×n− 1 diagonal matrix containing the eigenvalue of Pwith-
out λ0

11
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2
Theoretical background

This chapter is aimed to give the theoretical background needed to create
and implement the solutions and simulations proposed. Starting from
basic graph theory, a list of the main definitions about graphs is given.
Secondly, the matrix representations of graphs are briefly explained with
an overview on the principal characterizing properties. Then, the con-
sensus problem is introduced and discussed within the presented graph-
matrix framework.

2.1 Basics on graph theory
This section presents a list of the basic notions and definitions on graph
theory, since the latter provides several tools for studying the consensus
theory.

2.1.1 General definitions
Definition 1 (Graph) An (undirected) graph is a pair G = (V,E), where
V = {v1, ..., vn} is the set of the nodes endowed with a state x and E ⊆ V×V
is the set of edges, i.e. connections between vertices.

13



Definition 2 (Neighbor) vi, vj are said to be neighbors iff eij ∈ E.

Definition 3 (Neighborhood) Given a vertex vi, its neighborhood is de-
fined as the set N(vi) =Ni = {vj : eij ∈ E}

Definition 4 (Degree) The number of neighbors of node i is called degree
of node i.

Definition 5 (Regular Graph) Agraph is said to be regular if all its nodes
have the same degree.

Definition 6 (Path) A path is a sequence of neighbouring nodes. If it is
closed it is called a cycle.

Definition 7 (Connected Graph) Agraph is connected if given ∀vi, vj there
exists a path connecting vi e vj.

Definition 8 (Subgraph) A graph whose vertices and edges are subsets of
another graph.

Definition 9 (Spanning Tree) Aspanning tree is a subgraph that connects
all the vertices in V with some of the edges in E, without creating cycles.

Definition 10 (Weighted Graph) Let w : E → R be a real positive func-
tion, a weighted graph is defined as the triplet Gw = (V,w,E).
This function allow us to define the length of a path as∑i∈pathwi.

Definition 11 (Geodesic) A geodesic is the path between two nodes with
minimum length.

Definition 12 (Diameter) The length of the longest geodesic is called di-
ameter. In particular, let G be a graph, φG is the diameter of G.

Definition 13 (Directed graph/Digraph) A directed graph (also called
digraph) is a graph where the edges have a starting and an ending node
called tail and head, respectively.

14



Definition 14 (Connected Digraph) Adigraph is said to be strongly con-
nected if there exists an oriented path between any pair of nodes, weakly
connected if the non-oriented version is connected.
In the case of digraphs we distinguish between in-degree, i.e. the number

of incoming edges of a node, and out-degree, i.e. the number of outgoing
edges of a node. These distinction brings to define in-neighbours and out-
neighbours

In order tomodel situations inwhich the nodes have amemory of their
own state we introduce the following:

Definition 15 (Self Loops) Self-loops are edges where tail and head coin-
cide.

Definition 16 (Simple Graph) A simple graph, also called a strict graph,
is an unweighted, undirected graph containing no graph loops or multiple
edges. A simple graph may be either connected or disconnected.

2.1.2 Matrices defined over graphs
In this section, we define the matrices used to characterize a graph (di-
rected and undirected) and their properties. The graph will be denoted
asG = (V,E)with |V| = n number of nodes and |E| =m number of edges.

Figure 2.1: Graph and digraph used as examples in the following
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Definition 17 (Node Degree Matrix) Thenodedegreematrix of a (non-
oriented) graphG is the diagonalmatrixΔG ∈ Rn×nwith entries the degrees
of the nodes. For oriented graphs, the diagonalmatricesΔGIN andΔGOUT

are
defined, whose elements are, respectively, the in-degrees and out-degrees of
the nodes.

Consider, for example, the non-oriented and oriented graphs in Figure
2.1. The node degree matrices for the graphs are:

ΔG =


2 0 0 0 0
0 3 0 0 0
0 0 2 0 0
0 0 0 4 0
0 0 0 0 1

 (non-oriented)

ΔGOUT
=


1 0 0 0 0
0 2 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

 (oriented) ΔGIN =


1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 3 0
0 0 0 0 0

 (oriented)

Now,wedefine a fewmatrices that represent the relations amongnodes
in the graph.

Definition 18 (Adjacency Matrix) The adjacency matrix AG ∈ Rn×n of
an undirected graph without self-loops is defined as:

AG(i, j) =
1 if (i, j) ∈ E
0 otherwise

AG =


0 1 0 1 0
1 0 1 1 0
0 1 0 1 0
1 1 1 0 1
0 0 0 1 0

 (non-oriented).
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Whereas for a directed graph without self-loops it is:

AG(i, j) =
1 if (i→ j) ∈ E
0 otherwise

AG =


0 1 0 0 0
0 0 1 1 0
0 0 0 1 0
1 0 0 0 0
0 0 0 1 0

 (oriented).

Note that, in the undirected case matrix AG is symmetric and, in the di-
rected case it is, in general, non-symmetric.

So far, we have not considered self-loops. If the graph has self-loops,
we can extend the definition by choosing:

AG(i, i) = 1 if (i, i)/(i→ i) ∈ E

Bymeansof the incidencematrix,wedescribe the relationsbetweennodes
and edges in the graph.

Definition 19 (Incidence Matrix) The incidencematrixEG(i,k) ∈ Rn×m

of an directed graph is defined as follows:

EG(i,k) =


+1 if vi tail of ek
−1 if vi head of ek
0 otherwise
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EG(i,k) =


1 0 0 0 0 −1
−1 1 1 1 0 0
0 −1 0 1 0 0
0 0 −1 −1 −1 1
0 0 0 0 1 0

 (oriented)

Note that the sum of the elements in a column is 0.
In order to describe graph theory we also need the following definitions.
A first simple classification of nonnegative matrices is as follows:

Definition 20 Given a generic matrix P ∈ Rn×n

• if we have P such that Pij > 0, then we say that P is positive: P > 0;

• if we have P such that Pij ≥ 0, then we say that P is non negative:
P ≥ 0.

Andmore in detail:

Definition 21 A generic non negative matrix P ∈ Rn×n is:

• irreducible if and only if ∑n−1
k=0 pk > 0;

• primitive if and only if ∃k̄ ∈ N such that:

Pk̄ > 0.

2.1.3 Properties of undirected graphs
Consider now only the case of undirected graphs without self-loops.
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Definition 22 (Laplacian of a Graph) The Laplacian of a graph LG ∈
Rn×n is:

LG = ΔG −AG

LG =


2 −1 0 −1 0
−1 3 −1 −1 0
0 −1 2 −1 0
−1 −1 −1 4 −1
0 0 0 −1 1

 (non-oriented).

If we choose an arbitrary orientation of the edges, we can further char-
acterize the Laplacian through its incidence matrix as follows:

LG = EGET
G.

Proposition 1 (Properties of the Laplacian Matrix) Here, somenotable
properties of the Laplacian matrix are given.

• if LG is symmetric, then its eigenvalues λLGi are real.

• The sum by rows and columns is equal to zero.

• LG1n = 01n, i.e. 0 is eigenvalue of the Laplacian with eigenvector 1n.

• LG is positive semidefinite. Indeed, by the characterization of theLapla-
cian through the incidencematrix, and denoting the state of the graph
with x, it follows that:

xTLGx = xTEGET
Gx = ||ET

Gx||22 ≥ 0

herefore the eigenvalues are all non-negative.

• By combining the above properties it follows that:
0 = λLG0 ≤ λ

LG
1 ≤ ... ≤ λLGn−1
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The spectrum of the Laplacian σ(LG)will be also denoted as σ(G) to char-
acterize the eigenvalues of the graph.

We present, now, some results for the spectral analysis of the Laplacian
eigenvalues.

Theorem 1 (Gershgorin Disks) Given any square matrix A ∈ Rn×n, it
holds that:

σ(A) ⊆
⋃
i=1,...,N{z ∈ C : |z− aii| ≤

∑
j ̸=i |aij|}

i.e. as shown in Figure 2.2 the the spectrum ofA is included in the union
of all circles centered in (aii,0) of radius

∑
j ̸=i |aij|

Figure 2.2: Gershgorin disks theorem: eigenvalues for matrix A lay in the grey area

Let’s see an application of the Gershgorin Theorem to the Laplacian
matrix. We know that the sum by rows for the Laplacian matrix is equal
to zero. Therefore the circles defined in theGershgorin Theorem are cen-
tered in (di,0), where di is the degree of the i-th node, and have radius
equal to di. It follows that the eigenvalues of the Laplacian are all in the
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interval [0,2dMAX], where dMAX = max{di, i = 1, . . . ,N}; i.e. they satisfy
the relation:

0 = λ0 ≤ . . . ≤ λn−1 ≤ 2dMAX. (2.1)
For the example in Figure 2.3, we have σ(LG) = {0, 1,2,4,5} and 2dMAX =

8. The placement of eigenvalues is shown in Figure 2.3. The red crosses
indicate the Laplacian eigenvalues.

Figure 2.3: Eigenvalues of the Laplacian matrix lay in the grey area

With the following theorem we state a condition for the connectivity
of a graph.

Theorem 2 (Connectivity of a Graph) A non-oriented graph G is con-
nected if and only if λG1 > 0, where λ1 denotes the second lowest eigenvalue
of the graph and it is called the Fiedler’s value.

From the theorem above it follows that, if a graph is connected, then it
has only one zero eigenvalue. Furthermore, it can be proven as a corollary
that the number of null eigenvalues is equal to the number of connected
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components in the graph. In the case of a graphwithmore than one con-
nected component, theLaplacianmatrix canbeput into ablock-diagonal
form, following a permutation of the nodes.

Remark 1 In addition, it is possible to yield some connectivity bounds of
particular interest. In a connected graph

λG1 ≤ kGV ≤ kGε ≤min{di}
where:

• λG1 : is the first non-null eigenvalue;

• kV(G): is thenode connectivity, namely theminimumnumber of nodes
that can be removed to make the graph disconnected;

• kε(G): is the edge connectivity, namely theminimumnumber of edges
that can be cut to make the graph disconnected;

• min{di}: is the minimum node degree.

2.1.4 Adjoint graph

Definition 23 (Adjoint graph) An adjoint graph JG (also called a line
graph, conjugate, covering, derivative, derived, edge, edge-to-vertex dual,
interchange, representative, or theta-obrazom graph) of a simple graph G
is obtained by associating a vertex to each edge of the graph and connecting
two vertices with an edge if and only if the corresponding edges of G have a
vertex in common [24].

Figure 2.4 show an example of a graphG and its adjoint graph JG
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Figure 2.4: Left:GraphG‐Right: JG, the adjoint graph ofG

The adjoint graph of a graphwith n nodes,m edges, and vertex degrees
di contains n′ =m nodes and

m′ = 1
2
∑n

i=1 d2i −m
edges [25][26]. The incidence matrix E of a graph and adjacency matrix
E of its adjoint graph are related by

JG = ETE− 2In′.
Trivially, the connectivity is mantained in JG if previously present inG.

2.2 Elements of consensus theory

We introduce the problem of consensus with reference to one specific
applications properlymodified to our purpose: convergence to themean
of the initial conditions. We want to exploit consensus theory and apply
it to our specific case of study. We consider an autonomous system of the
form

x(k+ 1) = Px(k) (2.2)
and we want the state to converge to a unique solution.
In this model, x(k) ∈ Rn stands for the state vector, k ∈ N is the iteration
or time variable and P ∈ Rn×n is a square matrix that allow us to control
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the system.
The main idea behind this algorithm is the following:

• exchange state information between nodes;

• update current state.

2.2.1 Consensus dynamics
Let’s consider the update rule:

xi(k+ 1) = pi1x1(k) + pi2x2(k) + ...+ pinxn(k)

where
pij ≥ 0 and

n∑
j=1

pij = 1 (2.3)

and xi(k) is the state of the agent i at time k. Note that pij can be null if
the agent i does not exchange information with the agent j. Considering
the state xi in the system, we can notice that

xi(k+ 1) =
∑
j
pijxj(k)

= piixi +
∑
j ̸=i

pijxj(k)

= (1−
∑
j̸=i

pij)xi(k) +
∑
j̸=i

pijxj(k)

= xi(k) +
∑
j ̸=i

pij(xj(k)− xi(k))

where the left hand side after the equality symbol is the state and the
right hand side is the state dependent input ui(k) =

∑
j ̸=i pij(xj(k) − xi(k)).

If we consider the problem in matrix notation
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x(k+ 1) =


x1(k)
x2(k)
∗

xn(k)

+


(−p12 − p13...) p12 p13 ∗ p1n

p21 (−p21 − p23...) p23 ∗ p2n
∗ ∗ ∗ ∗ ∗
pn1 pn2 pn3 ∗ (−pn1 − pn2...)


︸ ︷︷ ︸

F


x1(k)
x2(k)
∗

xn(k)


From this, we end up having

x(k+ 1) = x(k) + Fx(k) = (In + F)x(k) = Px(k)
which is the autonomous systemwe presented in the beginning of Sec-

tion (2.2), with P provided by

P =


(1− p12 − p13....) p12 p13 ∗ p1n

p21 (1− p21 − p23...) p23 ∗ p2n
∗ ∗ ∗ ∗ ∗
pn1 pn2 pn3 ∗ (1− pn1 − pn2...)


We recognize that P is a stochastic matrix, that means that all its entries
are non-negative and all its rows sum to 1. Then, since P is stochastic, it
follows

P1n = 11n

whichmeans that 1n is the right eigenvector relative to the eigenvalue 1. In
this case, wewould like that the consensus problemconverges to a unique
solution P̄x(0) = α1n, and in particular, wewant α to be the average of the
initial states.

2.2.2 Properties of the consensus matrix
We consider the consensus protocol (in discrete time) presented in Sec-
tion 2.2 and before stating the theorem that characterizes its convergence
properties, weprovide some intuitionbehind that, by given the following
desiderata: we want P such that there is a dominant eigenvalue λ0 with
a Jordan block of dimension 1. Note that in general P is non-negative,
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meaning that all the entries are greater or equal than 0.
Being σ(P) the spectrum of P, ρ(P) is the spectral radius of P (ρ(P) =

max{ |λ| s.t.λ ∈ σ(P)}).
We note that if ρ(P) ≤ 1 and 1 is associated to block of dimension 1, all
modes related to the non-dominant eigenvalue vanish as the number of
iterations increases.
We ask for a dominant λ0 with a Jordan block of dimension 1 because,

in such a case, the Jordan decomposition results to be:

P = T−1
[
λ0 0
0 Λ

]
︸ ︷︷ ︸

PJ

T,

where T ∈ Rn×n is the change of basis matrix to the Jordan normal form
PJ composed by the generalized autovectors of P. Indeed we can notice
in PJ the first eigenvalue of P λ0 and Λ that is a Jordan matrix containing
all the other eigenvalues. It follows that:

Pk = T−1

λk0 0
0 Λk

T =
[
v0 VT

]λk0 0
0 Λk

[
wT
0

WT

]
.

Note

T−1T = In →
[
v0 VT

] [ wT
0

WT

]
=

[
wT
0

WT

] [
v0 VT

]
=

[
wT
0v0 wT

0VT
WTv0 WTVT

]
=

[
1 0
0 In−1

]
hence

Pk =
[
v0λ

k
0 VTΛk

] [ wT
0

WT

]
= v0λ

k
0wT

0 +VTΛkWT →k→∞ P̄ ≈ v0λ
k
0wT

0 = λk0(v0wT
0 ).

Definition 24 (Stochastic Matrix) A squarematrix is stochastic if all of
its entries are non negative, and the entries of each raw sum to 1.
It is said to be doubly stochastic if all of its entries are non negative, and the
entries of both each column and raw sum to 1.

With respect to the stochastic matrices, that appear to be our choice for
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the consensus law, we have the following

Lemma 3 If P is a stochastic matrix then:

• 1 is an eigenvalue with the associated eigenvector 1n

• σ(P) is a subset of the unit disk with ρ(P) = 1.

2.2.3 Elements of Perron-Frobenius theory
Keeping in mind Definition 20 and Definition 21 we will show some
facts.
In particular, we will see that if P is primitive then it is also irreducible
but not viceversa.
The important inclusion relation among these sets of matrices is shown
in Figure 2.5.

Figure 2.5: Relations among non‐negative matrices

The fundamental theorem that provides a spectral characterization for
these matrices is the following:

Theorem 4 (Perron-Frobenius) Consider amatrix P ∈ Rn×n with eigen-
values λ0 ≥ λ1 ≥ ... ≥ λn−1:

• If P is non negative: there exists λ0 ≥ 0 such that:
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– λ0 ≥ |λi|,∀i = 1, ...,n− 1;
– Right / left eigenvectors of P, (v0,w0) can be selected as non nega-
tive vectors, v0,w0 ≥ 0.

• If P is irreducible:

– λ0 is strictly positive, i.e. ∃!λ0 > 0 such that λ0 ≥ |λi|;
– Right / left eigenvectors of P, (v0,w0) are unique and positive,
v0,w0 > 0.

• If P is primitive:

– ∃!λ0 > 0 such that λ0 > |λi|;
– Right / left eigenvectors of P, (v0,w0) are unique and positive,
v0,w0 > 0.

Some observations about Theorem 4:
• λ0 is the dominant eigenvalue and defines the spectral radius of ma-
trix P;

• if the property of primitivity holds then it implies all the other prop-
erties it also entails that λ0 is unique.

2.2.4 Convergence properties of the consensus
protocol

Consider the linear system (2.2).
Theorem 5 If P is primitive, with λ0 dominant eigenvalue and v0,w0
eigenvectors (normalized such that wT

1 v1 = 1), then

limk→∞
Pk
λk0

= v0wT
0 .
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In practice, Theorem 5 has been proved when we stated λ0 as dominant
eigenvalue andwe decomposed P in Jordan form ending upwith amatrix
v0λ

k
0wT

0 as the convergence matrix. A direct consequence of this theorem
is the following corollary:

Corollary 1 If P is primitive and stochastic (by rows)

• λ0 = ρ(P) = 1 is simple, λ0 > |λi|, then we have semi-convergence;

• P̄ = limk→∞Pk = 1nwT
0 where w0 is normalized according to∑n

i=1w0i =
1

• given the update rule of themodel, we have limk→∞Pkx(0) = α1n, where
α = wT

0x(0) is a linear combination of the initial conditions with coef-
ficients given by w0 (consensus);

• If P is doubly stochastic, thenw0 = 1
n and limk→∞Pkx(0) = x̂(0)1nwhere

x̂(0) = wT
0x(0) is the average of the initial condition (average consen-

sus).

Remark 2 The following considerations are in order:

• Note that we have 1nwT
1 x(0) = (wT

1 x(0))1n. The value α is a scalar
number and thus we can say that, when k tends to infinity, the state
converges to α1n which is referred to as the agreement vector. Thinking
about our problem, this is the condition we have in all cases when the
consensus is attained.

• Westress that, from the point of view of iterative algorithms, x(0) is the
initial condition. Moreover, we think of themodel as the estimation of
a common variable that is the measurement we take at the sampling
instant. An interesting role is played by w0: it is the weighting factor
of the measurements we take.
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2.2.5 Convergence rate of consensus
How fast is the state converging to consensus? We have that:

Pk = 1nwT
0 +VΛkW→ P̄ = 1nwT

0
We can define a convergence gap as

e2(k) = ||x(k)−x̄||22 = ||(1nwT
0+VΛ

kW)x(0)−(1wT
0 )x(0)||22 = ||VΛkW)x(0)||22

This convergence is ruled by Λk: it depends on the spectrum of Λ and in
particular on the slowest of its modes (second largest eigenvalue of P).

2.2.6 Consensus over networks
In this section, we give some details on how the graph theory and the con-
sensus theory are strongly related; in particular, we are going to consider
a multiagent system ruled by the consensus protocol characterized by P
as in Equation (2.2) and whose agents are connected through a network
characterized by an adjacency matrix A.
Assume that the consensus matrix P is positive. Then, the adjacency ma-
trix A is positive and it has the same support of the matrix P where the
support of a matrix is defined as the set of the couples of indices corre-
sponding to entries that are non-zero. More in general, we know that P
positive is a particular case of P primitive. We can see that:

• P > 0 ⇒ A > 0, where A is the adjacency matrix and the two ma-
trixes have the same support. P > 0 means that P is full, that is any
node in the graph is connected to another node. A gives us the num-
ber of paths (sequences of edges) of length 1;

• Pk > 0⇒ Ak > 0. This matrix gives the number of paths of length k
among nodes.

Consider the following example:
Example 1 Consider the graph in Figure 2.6, in which m = |E| = 6 and
n = |V| = 5.
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Figure 2.6: Graph example. In blue and green are highlighted the path from node 1 to 2 of
length 2.

Consider the adjacency matrix A

A =


0 1 0 1 0
1 0 1 1 0
0 1 0 1 0
1 1 1 0 1
0 0 0 1 0

 → A2 =


2 1 2 1 1
1 3 1 2 1
2 1 2 1 1
1 2 1 4 0
1 1 1 0 1

 ...→ A4 > 0

Note that, in matrix A2 , the entry (i, j) gives the number of paths of
length 2 in the graphG, from the node i to the node j.
For example A(1, 1) = 2 means that there are 2 different paths that go
from node 1 to node 1 in two steps (blue and green arrows in Fig. 1.2)
and A(4,2) = 2 means that there are 2 different paths that go from node
4 to node 2 in two steps.
By iterating,A3 has as entry (i, j) the number of paths of length 3 that go
from node i to node j and, in general, Ak has as entry (i, j) the number of
paths of length k that go from node i to node j.
Computing the subsequent powers ofmatrixA, we find out that the first
value of k for whichAk is full (i.e. has all its entries different from zero) is
k = 4.
This result implies that in 4 steps we can reach any other node from an ar-
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bitrary node of the graphG. Note that, sinceA4 > 0, then, by definition,
thematrixAG is primitive. If thematrix is full, the graphwill spread infor-
mation on all the nodes, thus every node in the graph is reached starting
from any node.
This concept can be also applied to the Pmatrix. So, we can state that if
P is primitive then there exists an integer number k such that Ak is full.

We also have the following properties:

• Primitive A: any node is connected to any other by a k-length path
(connected/strongly connected).

• Irreducible A: any node is connected to another by some k-length
path (connected/strongly connected).

• If starting from an irreducible A we can find a place where to stand
and wait, we can equalize all paths.

The properties just presented allow the formalization of the following
theorems:

Theorem 6 G is strongly connected if and only if A is irreducible

Theorem 7 Ais irreducible and there is a self-loop in the graphGdescribed
by A⇒ A is primitive
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3
Model design

In this chapter the model that will be exploited is presented. In particu-
lar, since our aim is to control the height of the water in the network, we
will consider as state of the height of canals.
Differently from the standard version of the consensus protocol, we will
consider constrained capacity of state variation during an iteration of the
algorithm. This choice is made in order to represent what could be con-
sidered as a limited capacity actuator in a real scenario. Imagine we want
tomove an amount ofwater fromcanalA to canal B,we are going to com-
pute the information needed to set the power of the actuator output. For
this reason, we need to know and manage the maximum capacity of the
actuator we are exploiting in order to tune the speed of the system in re-
lation with the iterations of the algorithm.
The following sections describe howwemanage tofind a feasible solution
to this problem.
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3.1 Waterallocationviadistributedcon-
sensus

From [21], a distributed model can be constructed by introducing some
memory in the system and adopting the model (2.2) to provide only a
weighted correction to current estimate, thus leading to

x(k+ 1) = η(k)x(k) + (1− η(k))Px(k)
= (η(k)In + (1− η(k))P)x(k)
= Pη(k)(k)x(k) (3.1)

where η(k) ∈ (0, 1) and In is the identity matrix of dimension n. The
matrixPη(k) ∈ Rn×n is still row-stochastic butwith eigenvalues in the range
(−1+2η(k), 1]. In this kind of model the ith component of x(k) represents
the height of thewater, expressed inmeters, of the ith canal. In thismodel
the following mild assumption is adopted.

Assumption 1 (Basic assumptions on the system)

1. mini xi(0) > 0
2. ∀i, j ∈ E: pij ∈ (0, 1)

Assumption 1 states that two different facts needs to hold. The first
means that the system is not empty. The second is a weak assumption
on the weights of matrix P to ensure certain convergence properties (de-
tailed in Section 3.1.1 ).
We can observe that, exploiting the linearity of the spectrum, it holds that
λPη(k)i = η(k) + (1− η(k))λPi , i = 0 . . .n− 1.
The presence of self-loops in the model, controlled by parameter η(k), al-
lows to modify the eigenvalues domain from the unit circle to the set
Υ ∪ 1 where Υ is a circle centered in (η(k),0) with radius 1 − η(k) < 1,
ruling out the possible presence of the critical eigenvalue λ = −1. More
interestingly, the η(k) parameter can be tuned to control the convergence
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speed, governed by the second largest (in modulus) eigenvalue of Pη(k).
Remarkably, this behavior can be seen as dependent on the control pa-
rameter η(k). A good and viable strategy is to select the parameter η(k) as

η(k)∗ = argminη(k)∈[0,1){maxi=1...n−1 |λ
Pη(k)
i |}

to minimize the convergence rate.

3.1.1 Design of the consensus matrix
In general, given a consensus problem we want to design P such that:

• P is adapted to the graphG = (V,E) (same support as A);

• the eigenvalues of P (except λP0 = 1) are located as close as possible to
0. By doing so, we are locating also the second eigenvalue λP1 , which
determines the speed of convergence.

• we want to reach average consensus

We can draw a feasible solution for Pmatrix exploiting theMetropolis-
weights-based-design that defines its coefficients as follows:

pij =


1

1+max{di,dj}
i, j ∈ E

1−∑
j pij i = j

0 otherwise
(3.2)

This designprovides a doubly stochasticmatrix considering second-order
information as the degrees of the neighboring nodes. Notice that this
kind of selection for matrix P ensures that the second point of Assump-
tion 1 is satisfied, i.e. ∀i, j ∈ E: pij ∈ (0, 1).
From [27], we know that this kind of design ensures convergence on av-
erage unless the underlying network is a regular bipartite graph.
For this particular case, computations will be shown in the next section
in order to ensure convergence. We can observe that if the graphG repre-
senting the given system is connected,Phasn real eigenvalues λP0 ≥ λ

P
1 ... ≥
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λPn−1 in the range [−1, 1].
The value of η∗ can be analytically computed as shown in the next propo-
sitions that are referring to the two different choices of P previously ex-
plained.

Proposition 2 (Metropolis weights based design) Givenamulti-agent
network represented by graph G, the optimal value η∗ is univocally deter-
mined as

η∗ =


ςM

ςM−1 ςM < 0
0 otherwise

(3.3)

where ςM := 1
2(λ

P
1 + λPn−1) ∈ R and P is the matrix, related to G, computed

as in Equation (3.2).

Note that the proposition just presented holds when applied to constant
topologies. If applied to time-varying models additional computation is
necessary in order to ensure stability and convergence.

3.1.2 Regular bipartite graphs: convergence

In Section 3.1.1 it is mentioned that the convergence is not ensured in
case of regular bipartite graph topology. The following reasoning is aimed
to show that the distributed spectral based solution proposed allows con-
vergence also in case of this particular topology.
Regular bipartite graphs refers to a topology that does not ensure con-
vergence because, differently from the others, the consensus matrix P in-
duced by these networks has at least two eigenvalues lying on the bound-
ary of the unit circle. Under the hypotesis of designing the matrix P
through theMetropolis weights, we have that P is symmetric and for this
reason it has only real eigenvalues λPi ∈ [−1, 1]. This fact tells us that, not
only the eigenvalues belong to the unit circle, but, in particular, they all
lie on the real axis. Furthermore, exploiting the distributed spectral based
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solution and the linearity of the spectrum we have that:

λPη(k)i = η(k) + (1− η(k))λPi , i = 0 . . .n− 1. (3.4)

This is a convex combination that, by definition, gives us as result an
absolute value for each one of the eigenvalues of Pη(k) smaller than the
corresponding of matrix P. In particular, we obtain |λPη(k)i | < 1 for all
i = 1...n − 1, thus ensuring convergence for this particular kind of topol-
ogy.

3.2 Handlingofthenetworkconstraints
In this section, it is presented the computation made in order to intro-
duce constraints on the consensusmodel just obtained in Equation (3.1).
Wewantour system to recognizenon-linear limits in information exchange
capacity. Pη(k) is in the form:

Pη(k) =


η(k) + (1− η(k))P11 (1− η(k))P12 ∗ (1− η(k))P1n

(1− η(k))P21 η(k) + (1− η(k))P22 ∗ (1− η(k))P2n
∗ ∗ ∗ ∗

(1− η(k))Pn1 (1− η(k))Pn2 ∗ η(k) + (1− η(k))Pnn

.
This fomulation allows us to exploit the consensus protocol and the pa-
rameter η(k) in order to obtain consensus on the average value. What the
model (3.1) does not take into account is the limits of information ex-
change between two connected nodes during every single iteration of the
algorithm. However, for this kind of algorithm, the exchanged informa-
tion may exceed the maximum flow capacity w.r.t. a single connection.
This issue is due to the fact that the algorithm is conceived to manage
and, possibly, to share all the state values during every iteration. This is
the reason why we need to introduce nonlinear constraints that are nec-
essary to take care of the water channel network under analysis. Such a
strategy is implemented through the network by exploiting the presence
of the tuning parameter η(k).
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In reality, the network links cannot physically exchange more than a pre-
defined amount of water; thus, the following condition will be consid-
ered as a violation for the proposed water distribution protocol:

||x(k)− x(k+ 1)||∞ > cmax(k) (3.5)

for some k ∈ N andwhere cmax : N→ R+ : k 7→ cmax(k) such that cmax(k) > 0
for all k = 0, 1,2, . . . is a piecewise constant function that represents the
maximum exchange capacity among all canals at each iteration. We do
not consider the case where cmax(k) = 0 which would describe a static
system, incapable of exchanging information between its nodes. Conse-
quently, we impose the following set of complementary constraints:

1. when in download condition, meaning the value of the state is de-
creasing in the next iteration, i.e. xi(k)− xi(k+ 1) > 0,

xi(k)− xi(k+ 1) ≤ cmax(k) download constraint (3.6)

2. when in upload condition, meaning the value of the state is increas-
ing in the next iteration xi(k+ 1)− xi(k) > 0,

xi(k+ 1)− xi(k) ≤ cmax(k) upload constraint (3.7)

3. when in equilibrium, meaning that there is no difference in consec-
utive iterations, we simply let:

xi(k+ 1)− xi(k) = 0 equilibrium regime (3.8)

The download constraint regulates the capacity of a node to exchange
information from its state to its neighbors. Constraint (3.6) holds for all
time instants k in which the state value at the next iteration xi(k + 1) de-
creases w.r.t. xi(k). On the other hand, the upload constraint does the
opposite, so the capacity to receive water of a node from its neighbour-
hood, for this reason constraint (3.7) holds for all time instants k inwhich
the state value at the next iteration xi(k) decreases w.r.t. xi(k+ 1).
For the sake of completeness, it is a must to specify the case relative to
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the equilibrium regime, i.e. xi(k + 1) = xi(k). The fact that this equality
holds means that state i is not changing from the current iteration to the
next one. This fact is true if and only if the protocol has reached an equi-
librium point. This said, it is fundamental to remind that the consensus
protocol has a singular equilibrium point that is reached as the number
of iterations grows: this means that the equality holds if and only if con-
sensus is reached.

3.2.1 Derivation of parameter η(k)
In deriving parameter η(k) it is important to remind that the model deals
with three different regimes. In particular, download and upload regimes
are meaningful for our purpose of derive this parameter. On the other
hand, equilibrium regime is reached only for k→∞, so the derivation in
this particular case will not be treated.
Download regime: we start the derivationofparameterη(k) substituting
xi(k+ 1) as in Equation (3.1) into equation (3.6) obtaining:

xi(k)− η(k)xi(k)−
n∑
j=1

pijxj(k) + η(k)
n∑
j=1

pijxj(k) ≤ cmax(k). (3.9)

η(k)(xi(k)−
n∑
j=1

pijxj(k)) ≥ xi(k)−
n∑
j=1

pijxj(k)− cmax(k). (3.10)

Now, we want to isolate η(k) in order to obtain the minimum value to
satisfy the inequality. To do this, some considerations follow.
In order to divide by the factor xi(k)−

∑n
j=1 pijxj(k)we need to make sure

this value is positive. Assuming that condition in (3.6) holds, one has the
following proposition:
Proposition 3 xi(k)−

∑n
j=1 pijxj(k) > 0 when in download case.

Proof 1 Recalling the download case:

xi(k) > xi(k+ 1) (3.11)
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where
xi(k+ 1) = η(k)xi(k) + (1− η(k))

n∑
j=1

pijxj(k) (3.12)

and substituting (3.12) in (3.9) we obtain

xi(k) > η(k)xi(k) + (1− η(k))
n∑
j=1

pijxj(k) (3.13)

(1− η(k))xi(k) > (1− η(k))
n∑
j=1

pijxj(k). (3.14)

Recalling that η(k) ∈ (0, 1)⇒ (1− η(k)) > 0, we get

xi(k) >
n∑
j=1

pijxj(k) (3.15)

xi(k)−
n∑
j=1

pijxj(k) > 0. □ (3.16)

Now we can isolate η(k) in (3.10) obtaining

η(k) >
xi(k)−

∑n
j=1 pijxj(k)− cmax(k)

xi(k)−
∑n

j=1 pijxj(k)
= 1− cmax(k)

xi(k)−
∑n

j=1 pijxj(k)
(3.17)

from which it follows that η(k) can be chosen through

η(k) > 1− cmax(k)
||x(k)− Px(k)||∞

. (3.18)

In an effort to pave the way for the calculation of next section, we set
η(k) = ηdownload(k)where ηdownload(k) is such that

ηdownload(k) ≥ 1−
cmax(k)

||In − P||∞||x(k)||∞
(3.19)
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where we exploit the fact that

||In − P||∞||x(k)||∞ ≥ ||x(k)− Px(k)||∞ (3.20)

The parameter ηdownload(k) just derived ensures the node not to exceed the
download maximum capacity, since it satisfies (3.18).
Upload regime: the derivation procedure of the upload parameter is sim-
ilar. By substituting as in the previous case, we obtain

η(k)xi(k) +
n∑
j=1

pijxj(k)− η(k)
n∑
j=1

pijxj(k)− xi(k) < cmax(k), (3.21)

isolating η(k)we get

η(k) >
∑n

j=1 pijxj(k)− xi(k)− cmax(k)∑n
j=1 pijxj(k)− xi(k)

= 1− cmax(k)∑n
j=1 pijxj(k)− xi(k)

(3.22)

where, by simmetry with the download case, we exploited the fact that in
the upload case it is true that∑n

j=1 pijxj(k) > xi(k).
We apply again the infinity norm to obtain

η(k) > 1− cmax(k)
||Px(k)− x(k)||∞

. (3.23)

Finally, it is set η(k) = ηupload(k)where ηupload(k) is such that

ηupload(k) ≥ 1−
cmax(k)

||P− In||∞||x(k)||∞
. (3.24)

The parameter ηupload(k) just derived ensure the system not to exceed the
upload maximum capacity, since it satisfies (3.23).
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3.2.2 Tuning of parameter η(k)
Assuming to deal with a general multi-agent network we may not have
access to global system information. This could be due to uncertainties,
in general or, more in particular, noises affecting the system. Clearly, this
fact leads to computational problems w.r.t. the parameter η(k). In this
case, we can manage this kind of issue by designing a decentralized cal-
culation that generalizes formulation in Subsection 3.2.1. We now have
η(k) as in inequality (3.19) that requires all the information about P to
solve ||In−P||∞. The value of ||In−P||∞ is obtainedwith the computation
presented in the following Lemma.

Lemma 8 Let ω := 2dM/(1+ dM). Then, for a matrix P raw-stochastic, it
holds that ||In − P||∞ ≤ ω.

Proof 2 One has

||In − P||∞ ≤ max
i
{|1− pii|+

∑
j̸=i
|pij|} = max

i
{1− pii +

∑
j ̸=i
−pij} (3.25)

= max
i
{1− 2pii + 1} = max

i
{2− 2pii} (3.26)

= 2max
i
{1− pii} = 2(1−min

i
{pii}) = ω, (3.27)

since min
i∈V
{pii} =

1
1+ dM

, as shown in Equation (A.4). □

Lemma 8 applied on (3.19) leads to a generalized and decentralized form
of η(k)

ηdownload(k) ≥ 1−
cmax(k)
ω||x(k)||∞

. (3.28)

Noticing that, in general, the value of 1 − cmax(k)
ω||x(k)||∞ might be negative, we

define:

ηL =

η∗ if η∗ > 0
ζ otherwise

(3.29)
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where η∗ is chosen as in (3.3) and ζ ∈ (0, 1) is an arbitrarily small constant.
Exploiting this new parameter we can now define:

η∗
download(k) = max

{
1− cmax(k)

ω||x(k)||∞
,ηL

}
(3.30)

By simmetry we get the same result for η∗
upload(k) if constant cmax(k) is

employed for both download and upload conditions, i.e. η∗
upload(k) =

max{1− cmax(k)
ω||x(k)||∞ ,ηL}.

In this particular case we can define:

η∗
constrained(k) := η∗

download(k) = η∗
updload(k) = max

{
1− cmax(k)

ω||x(k)||∞
,ηL

}
(3.31)

On the other hand, more in general, we can define the two parameters as

η∗
constrained,download(k) = max

{
1− cmax,download(k)

ω||x(k)||∞
,ηL

}
(3.32)

η∗
constrained,upload(k) = max

{
1−

cmax,upload(k)
ω||x(k)||∞

,ηL
}

(3.33)

where we highlight the different values for cmax,download(k) > 0 and
cmax,upload(k) > 0 can be chosen with the same definition as cmax(k).
This differentiation allows us to have a more versatile model able to rec-
ognize differences in capacity, respectively, in download or upload case.
Finally it is worth to note that, since the chosen model is structured as a
convex combination of the previous state, we obtain the following result:

max
k
{||x(k)||∞} = ||x(0)||∞ (3.34)

From the computation of η∗
constrained(k) just given and Equation (3.31),

we obtain a more precise domain for this parameter that results to be as
shown in the following:
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Proposition 4 One has

η∗
constrained(k) ∈ [ηL,ηU(k)] ⊆ (0, 1), (3.35)

where ηU(k) = max
{
ηL, 1−

min{cmax,download(k),cmax,upload(k)}
ω||x(0)||∞

}
Proof 3 From the definition of η∗

constrained(k) given in Equation (3.31) we
can deduce that:

η∗
constrained(k) ≥ ηL > 0 (3.36)

Regarding the upper-bound, Equation (3.34) implies

η∗
constrained(k) ≤ 1−

min
{
cmax,download(k), cmax,upload(k)

}
ω||x(0)||∞ < 1 ∀k = 1,2,3 . . .□

(3.37)

This is a direct consequence of the domain of cmax(k) being chosen to
represent a physical limit, meaning that this parameter is strictly positive.
Lastly, the only information needed to obtain η∗

constrained(k) is the value of
||x(k)||∞. The general solution to get the value of ||x(k)||∞ is presented in
Appendix A.2.
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4
Water distribution algorithm

In this chapter, we present the main contribution of this thesis, namely
a time-varying consensus-based water distribution algorithm, and illus-
trate an application example.

4.1 Premise
This chapter is aimed to give the rationale that leads to the algorithm we
implement and solve the water distribution problem. The aim of this
approach is to evenly distribute and manage an amount of water in case
of uneven distribution in the given water channel system. Even distribu-
tion among states could bemeasured and described inmanyways, one of
which is by applying the following technique.
Define the max-min disagreement function: Vmax−min : Rn → R≥0 by

Vmax−min(x(k)) = maxxi(k)︸ ︷︷ ︸
i=1...n

−minxi(k)︸ ︷︷ ︸
i=1...n

= maxxi(k)− xj(k)︸ ︷︷ ︸
i,j=1...n

. (4.1)

Vmax−min(x(k)) ≥ 0 and Vmax−min(x(k)) = 0 if and only if x(k) is a con-
sensus vector. We will impose Vmax−min(x(k)) to decrease beneath an ar-
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bitrary small threshold γ > 0. Clearly our aim is to reach an agreement
on the mean of the network states in order to ensure even water distri-
bution. This minimization will be put in place by the execution of the
algorithm and will be stopped when the threshold is reached. Such an
approach can be generalized and applied for every graph-like system that
has even distribution of its states as main objective. The starting point of
this method is to collect information about the system topology that we
want to control.
This thesis deals with a water network, so what we need are descriptions
for the network of interest. In particular, we want to run the proposed
algorithm by first collecting the following data:

• x(0)or initial state: this vector describes the initial state of the system.
In our case, we want to know a measure of water filling about the
network canals. For instance, we could have xi(k) = 10 meaning
that the ith canal at iteration k has height of 10m. Each entry of this
vector is paired with the coordinates of its location;

• canal junctions (CJ) or location coordinates: CJ is a vector contain-
ing couples of coordinates describing the starting and ending points
of each canal. This feature allows us to associate the measures taken
with the relative position in the network. Moreover, the position
vector also describes the connections among the canals, meaning
that whenever the ending point of a canal matches with the starting
point of another one we identify a connection. This information is
fundamental to generate a graph by coupling the initial states and
their position;

• cmax(k) or maximum capacity: this information gives us the upper
bound limit in exchange capacity among nodes. This is an intrinsic
feature of the given system. Its unit of measurement reflects what it
is limiting, so for us it is a scalar value expressed in meter/iteration
[ms ], since what we are limiting is the height variation from an iter-
ation to the next one. We highlight the fact that, for the sake of
simplicity, we adopt; cmax(k) = cmax,download(k) = cmax,upload(k)

• γ or agreement threshold: this feature represents the threshold that
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has to be reached in order to satisfy the given specification about
water distribution. This valuewill be used as termination condition
in the proposed algorithm.

4.2 Description of the main algorithm
Having these four requirements, we illustrate and analyze the proposed
algorithm in this section, as shown in Algorithm 4.1.

Algorithm 4.1 Adapted consensus for water distribution
Require: connectivity ofG
Ensure: consensus on average

Input: CJ, x(0), cmax(k), γ
Output: x(k+ 1)

1: compute graph F induced by CJ and x(0)
2: computeG, i.e. the adjoint graph of F
3: compute ηL as in (3.29)
4: compute φG
5: k← 0
6: whileV(x(k)) > γ
7: xmax(k)←Maxconsensus(G,x(k),φG)

8: compute η as in (3.31)
9: x(k+ 1)← Pηx(k)
10: k← k+ 1
11: end while

As visible on the top of the pseudocode, we state an important require-
ment on our system. We require the system to be connected so to be able
to apply the consensus protocol properly for our aim.
Given this requirement coupled with Corollary 1, our protocol ensures
the system to achieve consensus on average on its final states.
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Thefirst six lines of the pseudocodedescribe the initializationof the given
input. Pairing the initial states x(0) and their positiondata, it is computed
the given graph F, where F is a graph that represents the canals as edges
with the relative water height associated. In order to apply the consensus
protocol, a representation for the dual version of the given topology is in-
deed required. Since the goal is balancing the water levels within the net-
work, we associate each canal height to the state component xi and treat
each node i associated with xi as a vertex in the adjoint graphGwhose in-
cident edges are determined by the canal junctions in F. For this reason,
what we do is to computeG, the adjoint graph of F.
At line 3 we compute the optimal value ηL, so to ensure the maximum
rate of convergence in a static scenario, i.e. with constant η.
The last step of the initialization is to compute the diameter of graph G
and set the counter variable k.
The algorithm is then characterized by a main while cycle whose termi-
nation condition is thementioned agreement threshold γ, that is the vari-
able representing the value to be reached in order to determine when we
are satisfied with the states heights.
It is worth to observe that V(x(t)) can be computed in a distributed fash-
ion leveraging the max-consensus protocols. After computing xmax ex-
ploiting the Max-consensus algorithm (see Algorithm A.1 presented in
Appendix A.2), we compute η∗

constrained(k). The algorithm then attempts
to update the model with the optimal* value ηL and by checking if the
limits are exceeded. If not, the execution proceeds by updating the states;
otherwise, the ensemble state is updated by exploiting Pη. At each itera-
tion, the updated state x(k + 1) can be returned. This is the information
needed in order to set the actuators in a real scenario.
The following section provides a numerical example to help the under-
standing of this algorithm.

*from the point of view of convergence rate in a static scenario
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4.3 Execution example on a regular bi-
partite graph

Here, we present a simple example of how the algorithm works. Table
4.1 reports the data of the state, starting and ending connections of a 4-
canal network representing a regular bipartite graph. The choice of this
topology is made in order to show the correctness of the protocol also in
this particular case (see Section 3.1.2)

STATE (m) START END
1 10 1 2
2 4 1 4
3 3 2 3
4 4 3 4

Table 4.1: Initial states of the given 4‐canal network

Table 4.1 shows a simple example of a 4-canal network where initial
stateswere randomly chosen. The aimof this example is to checkwhether
the algorithm converges to the average of the initial states that is 5.25m.
The valueof cmax(k) employed in this example is constant and set at cmax(k) =
1m/s and the threshold used as ending condition is γ = 10−4. From this
data we can draw graph F as in Figure 4.1.

Figure 4.1: 4‐canal graph F from Table 4.1 data (initial state)
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Figure 4.1 shows how the chosen 4-canal network looks like. We can
appreciate that the thickness of each edge reflects the height of the water
contained in the canal that is also specified just above each edge. Next is
the representation ofG, the adjoint graph of F.

Figure 4.2: 4‐canal adjoint graphG from Table 4.1 data

Figure 4.2 has nodes representing canals and highlights the height of
water present in each canal with different color. With this configura-
tion we can apply the consensus protocol. Within the while cycle, the
first instruction invokes max-Consensus algorithm (see Algorithm A.1
presented in Appendix A.2) to find the variable xmax(k), representing the
currentmaximumstate value. The computationof xmax(k) is necessary to
get the value of η∗

constrained(k) that is changing throughout the iterations.
After this computation, there is an attempt to update the system with
ηL by checking whether the download or upload constraints are not ex-
ceeded: if not, the system is updated through ηL; otherwise, it is updated
throught η∗

constrained(k), so to ensure suitable exchange capacity for the net-
work.
We highlight that the constraint check in Algorithm 4.1 is an ad hoc ver-
ification for the particular case in which it is set cmax = cmax,download =

cmax,upload. If different values for cmax,download and cmax,upload are employed,
it is necessary to inspect which one of the two constraints is exceeded and
the possibilities are the following:

• if both limits, shown in Equations (3.6) and (3.7), are exceeded we
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need to select

η∗
constrained(k) = max{η∗

constrained,download(k),η∗
constrained,upload(k)} (4.2)

• if only one of the constraints, shown in Equations (3.6) and (3.7), is
exceeded we select the corresponding constraint

• if none of them is exceeded ηL is selected.
The state trajectories computed through the iterations of the proposed

example are depicted in Figure 4.3.
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Figure 4.3: Adaptive consensus algorithm 4.1 applied on the proposed example.

Figure 4.3 shows the variation of the water height for each canal un-
til the agreement threshold γ is reached so that the algorithm stops. It is
also possible to notice a similar pattern for all the state trajectories; in par-
ticular, the trajectories are seemingly split into two parts: the first part,
characterized with a slower rate of convergence, is where η∗

constrained(k) is
employed and the second part, that begins on the 17th iteration until the
end, characterized with a faster rate of convergence, is where ηL is em-
ployed.
In Figure 4.4, it is worthy to notice how the constraint (3.6) and (3.7)
are satisfied for all the iteration of the algorithm, as the value of ||x(k +

1)− x(k)||∞ is always less than cmax(k). This is a simulation result that sup-
ports the correctness of the algorithm even in case of regular and bipartite
topology.
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Figure 4.4: Graphical comparison between cmax(k) and ||x(k+ 1)− x(k)||∞.

The following two figures, Figures 4.6 and 4.7, depict the fulfillment
of the consensus as the termination of the algorithm occurs. Figure 4.6
is a representation of the adjoint graph G that has reached the requested
agreement threshold γ; whereas, Figure 4.7 shows the starting graph F
with the final values written on edges. Note that, the final values are xi(k)
withk = 28, having amaximumdispersionVmax−min(x(28)) = (5.250006−
5.249992) = 0.000014m around the average value of the initial state.
The comparison betweenVmax−min(x(k)) and γ is reported in Figure 4.5.
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Figure 4.5: comparison betweenVmax−min(x(k)) and γ

The nodes color in Figure 4.6 and the edges thickness in Figure 4.7 are
almost equally depicted for this exact reason.
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Figure 4.6: Adjoint graphG result from Table 4.1

Figure 4.7: Table 4.1 graph F result

In addition, the final states are reported in Table 4.2.

STATE (m) START END
1 5.25 1 2
2 5.25 1 4
3 5.25 2 3
4 5.25 3 4

Table 4.2: Final states of the given 4‐canal network

From Table 4.2 we can appreciate that the final state values, rounded
up to the second decimal, are all very close to the average.
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5
Convergence analysis

In this section, a convergence analysis of the algorithm proposed is pre-
sented. All the theretical tools used in this chapter refer to [28]. In par-
ticular, the convergence is proven bymeans of Lyapunov-based theorems
and a formulation of a convergence rate is then proposed.

5.1 Max-min disagreement

In this chapter, the max-min disagreement function of Equation (4.1)
is recalled and its convergence proved by Lemma 9. This function will
be then exploited in Theorem 10 in order to propose a convergence rate
metric for system (3.1).

Definition 25 (1-coefficient of ergodicity) Given a row-stochastic ma-
trix P, let us define the 1-coefficient of ergodicity of P by one of the following
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equal expressions:

min
i,j=1...n

τ1(P) = max ||PTy||1︸ ︷︷ ︸
||y||1=1,y⊥1n

=
1
2 max
i,j=1...n

n∑
h=1
|pih − pjh| = 1− min

i,j=1...n

n∑
h=1

min{pih,pjh}.

The coefficient just defined allows us to express Lemma 9 that ensures
the convergence of the max-min disagreement function.

Lemma 9 (Convergence of max-min disagreement) Givena row-stochastic
primitive matrix P with associated digraph G,

1. for all x ∈ Rn, the max-min function satisfies

Vmax−min(Px) ≤ τ1(P)Vmax−min(x); (5.1)

2. τ1(P) < 1 if and only if P is scrambling, i.e., any two nodes have a
common out-neighbor in G;

3. if G contains a node that is globally reachable in h steps, then Ph is
scrambling and any solution to x(k+ 1) = Px(k) satisfies

Vmax−min(x(k)) ≤ τ1(Ph)⌊k/h⌋︸ ︷︷ ︸
<1

Vmax−min(x(0)) for all k ∈ N (5.2)

Note 1: under the conditions stated in the theorem, the max-min dis-
agreement diminishesmonotonically along each solution andwe say that
the functionVmax−min is a Lyapunov function for x(k+ 1) = Px(k).
Note 2: G contains a node that is globally reachable in h steps, for some
h (i.e., there exists h such that from each node there exists a directed path
of length h to the specific node) if and only ifG contains a globally reach-
able node and the strongly connected component of globally reachable
nodes is aperiodic.
Note 3: ifP is scrambling and eachof its non-zero entries is lowerbounded
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by pmin > 0, then statement 2 can be strenghtened to state that τ1(P) ≤
1− pmin.

Proof 4 (Proof of Lemma 9) Statement 1 is trivial ifmaxj∈1...nminj∈1...n pij =
0 e.g. . Hence let us prove the statement when maxj∈1...nminj∈1...n pij > 0.
We compute

Vmax−min(Px) = max
i

n∑
m=1

pimxm −min
i

n∑
m=1

pimxm

= max
i
(

n∑
m=1,m ̸=j

pimxm + aijxj)−min
i
(

n∑
m=1,m̸=j

pimxm + pijxj)

≤ max
i
(

n∑
m=1,m ̸=j

pimxmax + pijxj)−min
i
(

n∑
m=1,m̸=j

pimxmin + pijxj),

where, after using the bounds xmin ≤ xm ≤ xmax, we minimize the right
hand side as a function of j. From the latter equation we obtain

Vmax−min(Px) = min
j

max
i
((1− pij)xmax + pijxj)−min

j
max
i
((1− pij)xmin + pijxj)

(5.3)
and noting that minjmaxi(1− pij) = 1−maximinj pij = 1− pij,

Vmax−min(Px) = ((1− pij)xmax + pijxj)− ((1− pij)xmin + pijxj)
= (1− pij)(xmax − xmin) = (1− pij)Vmax−min(x)

Statement 2 is an immediate consequence of the definition of τ(P). Indeed
if each column j as an entry equal to 0 the the quantity bj = minpij = 0 and,
in turn τ(P) = maxj bj = 0. Regarding statement 3, if the jth node in G that
is globally reachable in h steps, then the jth column of Ph is strictly positive.
Therefore Ph is scrambling, since each node has the node j as common out-
neighbor in the digraph associated to Ph. The final bound follows from the
previous statements
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5.2 Convergenceovertime-varyingdigraphs
connected over time

The theorems presented in this chapter allow us to ensure convergence
for our model (3.1) and paves the way for the definition of a convergence
metric.

Theorem 10 (Consensus for time-varying algorithms) Let {P(k)}k∈Z≥0
be a sequence of row-stochasticmatriceswithassociateddigraphs {G(k)}k∈Z≥0.
Assume that

A1 each digraph G(k) has a self-loop at each node;

A2 each non-zero edge weight pij(k), including the self-loops weights pii(k),
is larger than a constant ε > 0; and

A3 there exists a duration δ ∈ N such that, for all times k ∈ Z ≥ 0, the
union digraph G(k)⋃ . . .

⋃G(k + δ − 1) contains a globally reachable
node.

Then

1. there exists a non-negative vectorw ∈ Rn normalized tow1+. . .+wn = 1
such that limk→∞P(k)P(k− 1) . . .P(0) = 1nwT;

2. the solution to x(k+ 1) = P(k)x(k) converges exponentially fast to
(wTx(0))1n

3. if additionally each matrix in the sequence is doubly-stochastic, then
w = 1

n1n so that
lim
k→∞

x(k) = average(x(0))1n (5.4)

Note 1: In a sequence with property 2, edges can appear and disappear,
but the weight of each edge (that appears an infinite number of times)
does not go to zero as k→∞.
Note 2: The existence of a globally reachable node is the connectivity re-
quirement.
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Note 3: Assumption A3 is a uniform connectivity requirement, that is,
any interval of length δ must have the connectivity property. In equiva-
lent words, the connectivity property holds for any contiguous interval
of duration δ.

Lemma 11 (Global reachability over time) Givena sequence of digraphs
{G(k)}k∈Z≥ such that each digraph G(k) has a self-loop at each node, the fol-
lowing two properties are equivalent:

• there exists a duration δ ∈ N such that, for all times k ∈ Z ≥, the union
digraph G(k)⋃ ···⋃G(k+ δ− 1) contains a directed spanning tree;

• there exists a duration δ ∈ N such that, for all times k ∈ Z ≥, there
exists a node j = j(k) that reaches all nodes i ∈ 1, . . . ,n over the interval
{k,k + δ − 1} in the following sense: there exists a sequence of nodes
{j,h1, . . . ,hδ−1, i} such that (j,h1) is an edge at time k, (h1,h2) is an edge
at time k + 1, . . . , (hδ−2,hδ−1) is an edge at time k + δ − 2, and (hδ−1, i)
is an edge at time k+ δ− 1;
or, equivalently, for the reverse digraph,

• exists a duration δ ∈ N such that, for all times k ∈ Z ≥ 0, the union
digraph G(k)⋃ . . .

⋃G(k+ δ− 1) contains a globally reachable node;

• there exists a duration δ ∈ N such that, for all times k ∈ Z ≥ 0, there
exists a node j reachable from all nodes i ∈ 1, . . . ,n over the interval
{k,k + δ − 1} in the following sense: there exists a sequence of nodes
{j,h1, . . . ,hδ−1, i} such that (j,h1) is an edge at time k, (h1,h2) is an edge
at time k + 1, . . . , (hδ−2,hδ−1) is an edge at time k + δ − 2, and (hδ−1, i)
is an edge at time k+ δ− 1;

Proof 5 (Theorem 10: the max-min function is exponentially decreasing)
We start by noting that Assumptions A1 and A3 imply property of Lemma
11 about the existence of a duration δ with certain properties. Next, with-
out loss of generality, we assume that at some time hδ, for some h ∈ N,
the solution x(hδ) is not equal to a multiple of 1n and, therefore, satisfies
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Vmax−min(x(hδ)) > 0. Clearly,

x((h+ 1)δ) = P((h+ 1)δ− 1) . . .P(hδ+ 1)P(hδ)x(hδ)
= Px(hδ).

By Assumption A3, we know that there exists a node j reachable from all
nodes i over the interval {hδ, (h+ 1)δ− 1} in the following sense: there exists
a sequence of nodes {j,h1, . . . ,hδ−1, i} such that all following edges exist in the
sequence of digraphs: (h1, j) at time hδ, (h2,h1) at time hδ + 1, . . . , (i,hδ− 1)
at time (h+ 1)δ− 1. Therefore, assumption A2 implies

ph1,j(hδ) ≥ ε, ph2,h1(hδ+ 1) ≥ ε . . .phi,hδ−1
((h+ 1)δ− 1) ≥ ε, (5.5)

and therefore their product satisfies

phi,hδ−1
((h+1)δ−1)phδ−1,hδ−2

((h+1)δ−2) . . .ph2,h1(hδ+1)ph1,hj(hδ) ≥ ε
δ. (5.6)

Remarkably, this product is one term in the (i, j) entry of the row-stochastic
matrix P = P((h + 1)δ − 1) . . .A(hδ). In summary, Assumption 3 implies
that there exists a node j such that, for all i, Pij ≥ εδ or, in other words, the
row-stochastic matrix P has a positive column lower bounded by ε1δ1n.
Wenow invokeLemma9 to obtain that the row-stochasticmatrixP is scram-
bling with τ1(P) ≤ 1 − εδ and that the max-min disagreement function
decreases according to

Vmax−min(x((h+ 1)δ)) ≤ (1− εδ)Vmax−min(x(hδ)) (5.7)

This inequality proves exponential convergence of the cost function
k→ Vmax−min(x(k)) to zero and, together with the positive definiteness prop-
erty of the Vmax−min function, convergence of x(k) to a multiple of 1n. We
leave the other statements in Theorem 10 to the reader and refer to [29]
and [30] for further details. □
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5.3 Induced convergence metric
In this section, we exploit Theorem 10 in order to define a convergence
metric for Algorithm A.1. To do so, we need to check if all the assump-
tions needed are satisfied by our model.
AssumptionsA1 andA3ofTheorem10 are are trivially satisfiedbymodel
in Equation (3.1), respectively by having a self-loop at each node and for
δ = 1. Assumption A2 needs some reasoning to be checked.
The non-zero edges in our model can only be of two different types:

1. η∗
constrained(k) + (1− η∗

constrained(k))pii for the diagonal entries;

2. (1− η∗
constrained(k))pij for all the other entries.

Let us define the following set of functions:

Definition 26 Let be gij : (0, 1) → (0, 1),η∗
constrained(k) 7→ [Pη(k)]ij to all ele-

ments (i, j) ∈ E. In particular, ∀(i, j) ∈ E

gij(η∗
constrained(k)) =

η∗
constrained(k) + (1− η∗

constrained(k))pii i = j
(1− η∗

constrained(k))pij i 6= j
(5.8)

Note that

g′ij(η∗
constrained(k)) =

1− pii i = j
−pij i 6= j

(5.9)

hence

min
k
{gij(η∗

constrained(k))} =
mink{η∗

constrained(k)}(1− pii) + pii i = j
(1−maxk{η∗

constrained(k)})pij i 6= j
(5.10)

and

max
k
{gij(η∗

constrained(k))} =
maxk{η∗

constrained(k)}(1− pii) + pii i = j
(1−mink{η∗

constrained(k)})pij i 6= j
. (5.11)
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Recall that by Proposition 3.35 for all k it holds:

ηL ≤ min
k
{η∗

constrained(k)} ≤ max
k
{η∗

constrained(k)} ≤ ηU(k) (5.12)

therefore, defining ∀(i, j) ∈ E

pL,D = min
i
pii (5.13)

pU,D = max
i
pii with 0 < pL,D ≤ pU,D < 1 (5.14)

pL,O = min
i̸=j

pij (5.15)

pU,O = max
i̸=j

pij with 0 < pL,O ≤ pU,O < 1 (5.16)

one has

[Pη(k)]ii ∈ [ηL(1− pL,D) + pL,D,ηU(k)(1− pU,D) + pU,D] (5.17)
[Pη(k)]ij ∈ [(1− ηU(k))pL,O, (1− ηL)pU,O]with i 6= j. (5.18)

Considering that

ηL(1− pL,D) + pL,D > (1− ηU(k))pL,O (5.19)
ηL(1− pL,D)︸ ︷︷ ︸

>0

+pL,D − pL,O︸ ︷︷ ︸
=0

> −ηU(k)pL,O︸ ︷︷ ︸
<0

, (5.20)

where, for pL,D = pL,O, we exploited the computation presents in Ap-
pendix A.1. Therefore the minimum entry of Pη all over k is such that

min
k
[Pη(k)]ij ≥ (1− η̄U)pL,O ∀(i, j) ∈ E, (5.21)

where η̄U := maxk ηU(k), which is computedby leveragingmink cmax(k). There-
fore, we get a minimum entry greater than zero for matrix Pη. Having a
lower bound greater than zero, also Assumption A2 is satisfied.
Now, we can exploit Theorem 10 and define a convergence metric r as
follows:

r := 1− ε, (5.22)
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where ε turns out to be ε = (1 − η̄U)pL,O by exploiting Equation (5.21).
More precisely, ε can be written in the following form:

ε = ξ
(
1−max

{
ηL, 1−

c̄
ω||x(0)||∞

})
= ξmin

{ c̄
ω||x(0)||∞ , 1− ηL

}
, (5.23)

where ξ = 1/(1+ dM) is defined as in (A.3) and
c̄ = mink{cmax,download(k), cmax,upload(k)}. Finally, we can express the value of
r depending on the parameters present as:

r = 1− (1− ηL)pL,O, (5.24)

in the case where ηL > 1− c̄
ω||x(0)||∞ , or, alternatively:

r = 1− c̄
ω||x(0)||∞ min

i,j
pij, (5.25)

in the case where 1− c̄
ω||x(0)||∞ > ηL. The two cases, depicted by Equations

(5.24) and (5.25), are representative of themodel in both constrained and
unconstrained cases. This is expressed by the presence of the term ηL in
the unconstrained case and the term 1 − c̄

ω||x(0)||∞ in the constrained case.
In a more compact form we can express r as follows.

r = 1− ξmin
{ c̄
ω||x(0)||∞ , 1− ηL

}
(5.26)

It is worth to notice that, reasonably, the convergence rate r is increasing*
as the capacity value c̄ diminishes in the constrained case. On the other
hand, r is depending only on topological factors in the unconstrained
case.

*meaning the consensus convergence is slowing down
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6
Numerical results

In this chapter, we provide some numerical results from the simulation
resting on a real case scenario. In particular, we applyAlgorithmA.1 on a
graph-basedmodel of theCavallinoTreporti drainagewater network and
some consideration on the results and the convergence metric are given.

6.1 Real scenario simulationwith iden-
tical constraint values

In this section,we applyAlgorithmA.1 to a simplifiedgraph-basedmodel
of the Cavallino Treporti drainage water network. In Figure 6.1 we can
appreciate a satellite viewof the area of interestwherewehavehighlighted
the canals interested by our study.

65



Figure 6.1: Satellite view of Cavallino‐Treporti with highlighted canal network
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In Figure 6.1 it is also interesting to notice that each canal junction is
enumerated to satisfy one of the four requirements, i.e. the CJ vector,
needed to run the algorithm. So, we model as canal every connection
between two junctions present in the vector CJ. In particular, this rep-
resentation accounts for 22 junctions that are composing a total of 26
canals. This just described is a semplification of theCavallinoTreporti ac-
tual canal network. Here, an equivalent topological framework is taken
into account, meaning that we consider as a single canal for each couple
of consecutive canals connected to other canals both at the beginning of
the first one and at the end of the second one, without any other junc-
tion, if not between them. This choice was made for the sake of simplic-
ity and without loss of generality w.r.t. the applied algorithm. After get-
ting the CJ vector, we need the vector representing the initial state of the
system, x(0). This vector, that in a real life scenario is meant to be mea-
sured, is randomly initialized inMATLAB environement and has values
included between 1 and 10. This satisfies the first of the two require-
ments of Assumption 1, that require the system not to be empty and
gives us a random starting point. The values for the parameter cmax(k), se-
lected in order to represent a reasonable exchange capacity limit, is then
set to cmax(k) = cmax = 1m/s, meaning that the system actuators are al-
lowed to increase or decrease the height of each canal for each iteration at
most by 1m. The agreement threshold γ, that can be selected arbitrarily
small, is set to γ = 10−1, so to obtain a difference of height between canals
smaller than 10cm. All the information just mentioned are contained in
the following in Table 6.1:
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CANAL STATE (m) START END cmax(k) γ
1 7 1 2 1 0.1
2 2 2 3
3 2 2 22
4 5 3 4
5 10 3 5
6 4 3 14
7 6 5 6
8 3 5 13
9 8 6 7
10 3 6 10
11 6 7 8
12 7 7 9
13 9 7 10
14 10 10 11
15 6 11 12
16 2 11 13
17 2 13 14
18 3 14 15
19 9 15 16
20 3 15 17
21 9 16 18
22 3 17 18
23 10 18 19
24 4 19 20
25 2 19 22
26 3 21 22

Table 6.1: Initial informations of the Cavallino‐Treporti water network

Figure 6.2 shows how the simplified model of the Cavallino water net-
work looks like. The information on canal heights are also reported just
above each canal representation that is proportional to its thickness.
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Figure 6.2: Simplified model of the Cavallino‐Treporti canal network with canal heights from
Table 6.1

Running the water distribution algorithm with this setup gives us the
following result, depicted in Figure 6.3, that reports the variation of the
canal heights over all the iterations:
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Figure 6.3: Adaptive consensus algorithm applied on the Cavallino‐Treporti canal network

In Figure 6.3, it is possible to observe that the consensus protocol con-
verges, according to the agreement threshold γ, in 103 iterations. Wehigh-
light the fact that, at iteration 11, it is possible to notice that all the trajec-
tories converge faster to the average. This is due to the fact that from
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iteration 11, the algorithm is selecting η = ηL, which ensures a higher rate
of convergence. What justmentioned is depicted in Figure 6.4, where are
highlited the trajecories around iteration 11, and Table 6.2, that summa-
rizes the choices of η selected over all the iterations.
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Figure 6.4: Adaptive consensus algorithm applied on the Cavallino‐Treporti canal network,
highlight on iteration 11

η selected over the iterations
iter 1 2 3 4 5 6 7
η 0.863 0.856 0.848 0.840 0.835 0.831 0.827
iter 8 9 10 11 12 . . . 103
η 0.822 0.818 0.815 ζ ζ . . . ζ

Table 6.2: η selection

As expected, before being selected until the end as ζ, the value of η is
decreasing throughout the first iterations confirming the convex combi-
nation property of the model structure. Also, note that ζ has to be used
as ςM = 0.3845 ≥ 0, see Equations (3.29) and (3.3). After iteration 11,
the value assigned to η is η = ηL = ζ = 0.001. In this particular numeri-
cal simulation the rate of convergence, computed as in Equation (5.22),
is r = 1 − ε = 0.9958. It is worthy to observe that this value of r, being
close to 1 describes a slow rate of convergence. This is due to the fact that
the system, in the particular case taken as example, has strict limits of ex-
change capacity that slow down the convergence rate. For this reason, we
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can say that, this high value of r, supports the correctness of the solution
presented in this thesis. To underline the latter statement, in Figure 6.5
it is shown the comparison between ||x(k + 1) − x(k)||∞ and cmax. As can
be notice in Figure 6.5, the value of ||x(k+ 1)−x(k)||∞ remains below cmax
for all the simulation time. On top of that, it is possible to notice a peak
at iteration 11 that represents the point in time where ηL is chosen and
keeps to be chosen until the algorithm stops.
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Figure 6.5: Graphical comparison between cmax and ||x(k+ 1)− x(k)||∞.

The final result of this simulation is reported in Figure 6.6

Figure 6.6: Simplified model of the Cavallino‐Treporti canal network with final states
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Thefinal states are summarized inTable 6.3. Themaximumdispersion
Vmax−min(x(103)) = (5.359 − 5.263) = 0.096m around the average value
of the initial state that is 5.31m. The comparison betweenVmax−min(x(k))
and γ is reported in Figure 6.7.

CANAL STATE (m) START END cmax(k) γ
1 5.28 1 2 1 0.1
2 5.30 2 3
3 5.28 2 22
4 5.30 3 4
5 5.31 3 5
6 5.30 3 14
7 5.34 5 6
8 5.33 5 13
9 5.35 6 7
10 5.35 6 10
11 5.36 7 8
12 5.36 7 9
13 5.35 7 10
14 5.35 10 11
15 5.34 11 12
16 5.33 11 13
17 5.31 13 14
18 5.29 14 15
19 5.28 15 16
20 5.28 15 17
21 5.27 16 18
22 5.27 17 18
23 5.27 18 19
24 5.26 19 20
25 5.27 19 22
26 5.27 21 22

Table 6.3: Final states of the Cavallino‐Treporti water network
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Figure 6.7: comparison betweenVmax−min(x(k)) and γ

6.2 Realscenariosimulationwithdiffer-
ent constraint values

In this section, we apply AlgorithmA.1 within the same framework as in
Section6.1with constantbutdifferent values for theparameters cmax,download
and cmax,upload. We set the same initial information given in Table 6.1 with
the exception for cmax(k). In this simulationwewill consider cmax,download =

1 and cmax,upload = 0.5. Running the algorithmwith this setup gives us the
following result, depicted in Figure 6.8, that reports the variation of the
canal heights over the iterations.
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Figure 6.8: Adaptive consensus algorithm applied on the Cavallino‐Treporti canal network
with cmax,download > cmax,upload

In Figure 6.8, it is shown how the trajectories converge in case of differ-
ent values for cmax,download and cmax,upload. The shape of the trajectories, as
the previous case, highlight that the selection changes from η∗

constrained(k)
to ηL that happens at iteration 31. In particular, since for this particular
simulation cmax,download > cmax,upload, η∗

constrained,upload(k) is selected as η be-
cause this represents the tightest constraint applied. This just mentioned
is summarized in Table 6.4, where the choice of η throughout all the iter-
ations are reported.

η selected through the iterations
iter 1 . . . 30
η η∗

constrained,upload(1) =0.932 . . . η∗
constrained,upload(30) =0.902

iter 31 . . . 122
η ζ . . . ζ

Table 6.4: η selection in cmax,download > cmax,upload case

In Figure 6.9, it is possible to appreciate that ||x(k + 1) − x(k)||∞ satis-
fies the tightest constraint, represented by cmax,upload, throughout all the
iterations.

74



0 20 40 60 80 100 120

iteration

0

0.5

1

1.5

m
/s

Capacity constraints with c
max,upload

=0.5 and c
max,download

=1

||x(k+1)-x(k)||

c
max,upload

c
max,download

Figure 6.9: Graphical comparison between cmax,upload, cmax,download and ||x(k+ 1)− x(k)||∞.

Also, in this case, the agreement is reached and the final states situation
is depicted in Figure 6.11. The maximum dispersionVmax−min(x(122)) =
(5.358 − 5.263) = 0.095m around the average value of the initial state
that is 5.31m. The comparison between Vmax−min(x(k)) and γ is reported
in Figure 6.10.
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Figure 6.10: comparison betweenVmax−min(x(k)) and γ

The convergence rate for this simulation results to be r = 1−ε = 0.9989.
It is interesting to notice that it is a higher value that in Section 6.1, con-
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firming the dependence on the parameter cmax,upload as, for this particular
case, it is set at a smaller value than Section 6.1. Remarkably, the compar-
ison is meaningful just because we voluntarily adopted the same initial
conditions for the two case considered in Sections 6.1 and 6.2.

Figure 6.11: Simplified model of the Cavallino‐Treporti canal network with final states: differ‐
ent constraints case

6.3 Real scenario simulationwith vari-
able constraint values

In this section, we apply Algorithm A.1 within the same framework as
in Section 6.1 with variable values for the parameters cmax,download(k) and
cmax,upload(k). We consider the same initial information given in Table 6.1
with the exception for the constraints. In this simulationwewill consider
the following values for cmax,download(k) and cmax,upload(k):

• for 0 ≤ k ≤ 49, cmax,download(k) = 0.1 and cmax,upload(k) = 0.1

• for 50 ≤ k ≤ 99, cmax,download(k) = 0.15 and cmax,upload(k) = 0.2

• for 100 ≤ k ≤ 349, cmax,download(k) = 0.1 and cmax,upload(k) = 0.1

• for 350 ≤ k ≤ 399, cmax,download(k) = 0.05 and cmax,upload(k) = 0.075
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• for 400 ≤ k ≤ 486, cmax,download(k) = 0.1 and cmax,upload(k) = 0.1.

The values of k that determine the constraints are chosen are just for
explanation purposes and without loss of generality. In particular, con-
sidering 0.1 as standard constraint value for this particular case, we want
to showhow the algorithmbehaves bothwithhigher and smaller capacity
values during one application. This could describe a real case scenario in
which, for some reason (e.g. an actuator fault, Acqua alta phenomenon,
tides...), it occurs for the system increasing the capability of exchanging
information (for 50 ≤ k ≤ 99), or decreasing the capability of exchang-
ing information (for 350 ≤ k ≤ 399). Running the algorithm with this
setup gives us the following result, depicted in Figure 6.12, that reports
the variation of the canal heights over the iterations.
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Figure 6.12: Adaptive consensus algorithm applied on the Cavallino‐Treporti canal network
with variable constraints

In Figure 6.12 it is shown how the trajectories converge in case of vari-
able values for cmax,download(k) and cmax,upload(k). The agreement is reached
also in this case, at iteration k = 509, and the final states situation is de-
picted in Figure 6.14. The maximum dispersion is
Vmax−min(x(509)) = (5.358−5.263) = 0.095m around the average value of
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the initial state that is, as previous cases, 5.31m. The comparison between
Vmax−min(x(k)) and γ is reported in Figure 6.13.
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Figure 6.13: comparison betweenVmax−min(x(k)) and γ

Theconvergence rate for this simulation results tobe r = 1−ε = 0.99995.
Again, this value is related to the choicemade for cmax,download(k) and cmax,upload(k),
which are set relatively small w.r.t. to 1.

Figure 6.14: Simplified model of the Cavallino‐Treporti canal network with final states: vari‐
able constraints case
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In Figure 6.15 it is possible to appreciate that, also in this case with
variability of parameters, ||x(k + 1) − x(k)||∞ satisfies for all k = 0, 1,2, . . .
the tightest constraint throughout all the iterations. It is also worthy to
notice that this simulation supports the robustness of the solution pro-
posed. In fact, the system successfullymanaged to increase or decrease its
exchange capability relatively to different requirements given as input.
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Figure 6.15: Graphical comparison between cmax,upload(k), cmax,download(k) and ||x(k + 1) −
x(k)||∞.
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7
Conclusions

In this thesis, it is proposed an automated solution towatermanagement
in a water network. In particular, focusing on the Cavallino di Venezia
drainage network, our aim is to distribute evenly the water throughout
the whole network with the presence of water exchange capacity limits.
We have interpreted the network as a graph, and designed a model tak-
ing into account the main physical constraints that intrinsically charac-
terize a generic water network. Then, we have derived the expression of a
time-varying parameter that can control the capacity of water exchanged
between nodes and can be autonomously set to satisfy possible limits in
capacity flow. The approach used allows us to provide a distributed pro-
tocol with some degree of versatility, meaning that it can be applied on
every network modelled as connected graph having the same kind of re-
quirements to satisfy. The presented algorithm is iterative and after ob-
taining some initialization information as input, it provides the informa-
tion relative to the feasible variation of the system states according to the
imposed flow constraints. This information can be used, for example, to
set the actuators that are responsible for the mechanical actions needed.
In addition, we propose a convergence analysis resting upon Lyapunov-
based theorems, which is presented in order to suggest a convergencemet-
ric. The latter has been used as measure of how quick the protocol and
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the constraints enforced allow the states to converge towards the mean
of the initial values. Finally, some numerical simulations are proposed
to test a simplified model of the Cavallino di Venezia drainage network.
The simulations take into consideration different constraint conditions:
equal and constant constraint values, different and constant constraint
values and variable constraint values. In each case the protocol success-
fully reached an agreement value for all the states, within the given rela-
tive agreement threshold. Furthermore, the proposed convergence met-
ric indicates a slow rate of convergence, confirming the correctness, ro-
bustness and reliability of the protocol that is ensured not to overcome
the imposed limits.
The next research direction could be pointed to various aspects inher-
ent to this thesis. Clearly, the main problem that can be faced from our
perspective is evaluating the physical and mechanical implementation is-
sues that the proposed protocol requires. However, this solution is not
claimed tobeunique relatively to the assessedwater distributionproblem.
Furthermore, some improvements canbe achieved also in the same frame-
work of the solution proposed in this thesis. For example, onemight con-
sider also negative values for the parameter η∗, defined in Equation (3.3),
and try to derive one feasible solution for time-varying models.
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A
Appendix

A.1 On the minimum entry of the
Metropolis-Hasting matrix

Here we provide more details on the computations for the minimum en-
try of a Metropolis-Hasting matrix.

Lemma 12 Function f : R→ R : x 7→ x
1+ x is strictly increasing for all

Proof 6 The first derivative of f(x) is computed as

f′(x) = 1
(1+ x)2 . (A.1)

Since f′(x) > 0 for all x ∈ R \ {−1}, the proof is concluded. □

Proposition 5 Let us consider an undirected and connected graph G =

(V,E). Denote with Ni =
{j ∈ V | (i, j) ∈ E} and di = |Ni| the i-th neighbor-

hood and i-th degree, respectively, for all vertices i = 1, . . . ,n in V. Let us
also define theMetropolis-Hasting matrix P ∈ stoch2(Rn×n) associated to G
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as

[P]ij = pij =



1
1+max(di,dj)

, ∀j ∈Ni;

0, ∀j /∈Ni ∪ {i} ;
1− ∑

j∈Ni

pij, otherwise.
(A.2)

Then, the smallest nonzero entry ξ = min
pij>0
{pij} of P is yielded by

ξ = min
(i,j)∈E

{pij} = min
i∈V
{pii} =

1
1+ dM

, (A.3)

where dM = max
1,...,n
{di} denotes the maximum degree of G.

Proof 7 The proof is divided into two parts, dealing with the off-diagonal
elements and diagonal elements of P in (i) and (ii), respectively.
(i) Firstly, we show that

min
i∈V
{pii} =

1
1+ dM

. (A.4)

Equality in (A.4) can be verified by recalling that, for all (i, j) ∈ E, pij =
(1+max(di,dj))−1 is defined as in (A.2). Noting that, generally, one has

max(di,dj) ≤ dM, ∀(i, j) ∈ E, (A.5)

and observing that there exist some (i, j) ∈ E for which the equality in (A.5)
holds, then claim (A.4) is trivially proven.
(ii) Secondly, we show that

min
(i,j)∈E

{pij} =
1

1+ dM
. (A.6)
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Consider the following chain of inequalities for all i = 1, . . . ,n:

∑
j∈Ni

1
1+max(di,dj)

≤
∑
j∈Ni

1
1+ min

j∈Ni

{
max(di,dj)

} ≤ di
1+ min

j∈Ni

{
max(di,dj)

} .

(A.7)

From the last expression of (A.7), assign δi := min
j∈Ni

{
max(di,dj)

}
and consider

the following inequality:

di
1+ δi

≤

di + δi
2

1+ di + δi
2

. (A.8)

After easy calculations, expression in (A.8) can be rewritten as

di + d2i ≤ δi + δ2i . (A.9)

Since 1 ≤ di ≤ δi holds true by the connectivity assumption and the def-
inition of δi, it can be concluded that (A.8)-(A.9) is an identity for all
i = 1, . . . ,n.
From the r.h.s. of (A.8), let us also assign d̄i = (di + δi)/2. Recalling (A.7),
the following inequality can be now deduced:

∑
j∈Ni

1
1+max(di,dj)

≤ d̄i
1+ d̄i

, ∀i = 1, . . . ,n. (A.10)

We now resort to the fact that ∀(z1, z2), with z1, z2 6= −1, if z1 ≤ z2 then it
holds that z1/(1 + z1) ≤ z2/(1 + z2). In particular, observing that d̄i ≤ dM,
as both di ≤ dM and δi ≤ dM, this allows us to find an upper bound for the
r.h.s. of (A.10), implying that

∑
j∈Ni

1
1+max(di,dj)

≤ dM
1+ dM

, ∀i = 1, . . . ,n. (A.11)
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From (A.11) and the definition of the diagonal entries pii in (A.2) one has

pii = 1−
∑
j∈Ni

1
1+max(di,dj)

≥ 1− dM
1+ dM

=
1

1+ dM
, ∀i = 1, . . . ,n. (A.12)

Noting that there exists some i ∈ Vforwhich equality in (A.12)holds, claim
(A.6) is satisfied and thus the proof is concluded. □

A.2 Distributed computation of
∥∥∥x(k)∥∥∥

∞

To compute
∥∥∥x(k)∥∥∥

∞
in a distributed fashion themax-consensus protocol

is generally exploited. In particular, this graph-based algorithm ensures
the distributed computation of the maximummagnitude of the state en-
tries xi(k)within a connected graph in finite time. The hypothesis of con-
nectivity is fundamental to guarantee correct outcome (see Theorem 2),
due to the fact that such a protocol is based on the information exchange
among neighboring nodes.

InAlgorithmA.1, thepseudocodeof theprotocol inquestion, exploited
to compute

∥∥∥x(k)∥∥∥
∞
, is reported. This protocol converges over any given

undirected and connected topology G and returns the maximum value
in at most a time proportional to the diameter φG. This fact occurs be-
cause the value of each auxiliary state zi is updated through its highest
neighbor’s value zj, j ∈Ni, and backing variables sati are employed. Thus,
in the worst case scenario*, the propagation of the information being ex-
changed about the maximum value maxi{|xi(k)|} clearly spreads among
all nodes within at most φG steps. It is also worth to note that, since in
this peculiar setting we are dealing with only positive values of the state
vector x, line 2 can be actually simplified and rewritten as zi(k) ← xi(k).
Lastly, under the assumption that AlgorithmA.1 can be invoked and ter-
minated within the time interval [k,k + 1], the computation of

∥∥∥x(k)∥∥∥
∞

*Represented by the line graph.
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is returned as xmax and can be used to guarantee the correct execution of
the main algorithm presented in Section 4.2. To this aim, each update of
zi is regularly spaced in time of an interval ΔφG ∈ (0,φ−1

G ).

Algorithm A.1Distributed computation of
∥∥∥x(k)∥∥∥

∞

Require: G = (V,E), connectivity ofG, φG, ΔφG ∈ (0,φ−1
G ), x(k)

Ensure: distributed value of
∥∥∥x(k)∥∥∥

∞
1: for each i ∈ V
2: zi(k)← |xi(k)|
3: end for
4: for t = 0, . . . ,φG − 1
5: for each i ∈ V
6: sati ← zi(k+ tΔφG)

7: for each j ∈Ni
8: if zj(k+ tΔφG) > sati
9: sati ← zj(k+ tΔφG)

10: end if
11: end for
12: zi(k+ (t+ 1)ΔφG)← sati
13: end for
14: end for
15: return zi(k+φGΔφG), for any i ∈ V
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