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Abstract

Current social dynamics are strongly linked to what happens on Social Media. Opinions, emo-

tions, and how people perceive the world around them are strongly influenced by what they see

or read on Social Platforms. We can insert in this field Social Media phenomena like Fake News,

Hate Speech, Propaganda, Race and Gender biases. All these events are considered to be among

the most significant problems for social stability and one of the most effective means of influenc-

ing people. Much work has been done by researchers from different areas of Computer Science,

in particular from Natural Language Processing and Network Analysis, focusing on textual infor-

mation in the first case (articles, posts, comments, etc.) or graph structures and node activities in

the second (detection of malicious spreaders, polarization, etc.). In this thesis, we will clarify what

are the main problems in this area of research, known by most as Computational Social Science,

providing the theoretical basis of the most used tools. Then, we will go into specifics dealing with

the topic of the detection of toxic messages on Twitter at the level of the single tweet, comparing

different Deep Learning models, among which some innovative solutions proposed by us, trying to

answer the following question: can Natural Language syntax be useful in such task? Unlike, for

instance, Sentiment Analysis, we have not yet achieved high performance, especially because the

models typically used, given a sentence, turn out to focus a lot on the occurring words rather than

on the meaning of the sentence itself. Our idea starts from the assumption that exploiting syntactic

information can be effective to overcome this obstacle. In the end, we will provide the results of

our experiments and possible related interpretations, proposing scientific and ethical reflections, and

finally try to convince the reader on why research should invest efforts on this topic, and what future

scenarios we should focus on.

Keywords: Dependency trees, toxic language, Recursive Neural Networks.



Sommario

Le attuali dinamiche sociali sono strettamente legate a ciò che accade nei Social Media. Opin-

ioni, emozioni, ed il modo in cui le persone percepiscono il mondo attorno a loro sono fortemente

influenzati da ciò che vedono o leggono nelle piattaforme Social. Possiamo inserire in questo campo

fenomeni dei Social Media come: Fake News, contenuti d’odio, propaganda, bias di razza e genere.

Tutti questi eventi sono considerati tra i maggiori problemi per la stabilità sociale e uno dei mezzi

più efficaci per influenzare le persone. Molto lavoro è stato svolto dai ricercatori di diverse aree

delle Scienze Informatiche, in particolare dal Natural Language Processing e Network Analysis, fo-

calizzandosi sull’informazione testuale nel primo caso (articoli, post, commenti ecc.) o su strutture

a grafo e attività dei nodi nel secondo (rilevamento di propagatori nocivi, polarizzazione ecc.). In

questa tesi, andremo a chiarire quali sono i problemi principali in quest’area di ricerca, conosciuta

dai più come Scienze Sociali Computazionali, fornendo le basi teoriche degli strumenti più utilizzati.

Dopodiché andremo nello specifico trattando il tema del rilevamento di messaggi tossici in Twitter a

livello del singolo tweet, confrontando diversi modelli di Deep Learning, tra i quali alcuni totalmente

innovativi proposti da noi, tentando di rispondere alla seguente domanda: la sintassi del linguaggio

naturale può essere utile in questo task? A differenza, per esempio, del sentiment analysis, non abbi-

amo ancora raggiunto performance elevate, soprattutto perché i modelli utilizzati solitamente, data

una frase, risultano focalizzarsi molto sulle parole presenti più che al senso della frase stessa. La

nostra idea parte dal presupposto che per superare questo scoglio, sfruttare l’informazione sintattica

può risultare efficace. Alla fine forniremo i risultati dei nostri esperimenti e le possibili relative in-

terpretazioni, proponendo riflessioni di carattere scientifico e etico, provando infine a convincere il

lettore su come mai la ricerca dovrebbe investire sforzi in questo tema, e quali potrebbero essere gli

scenari futuri su cui puntare.

Parole chiave: Dependency trees, toxic language, Recursive Neural Networks.
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DISCLAIMER

This Thesis contains slur, offensive and abusive language, due to

the topics discussed and the experiments performed. To present the

results, this cannot be avoided. However, we have to assure the reader

that every possible offensive sentence is just a matter of research, and

there is no malicious intent.





Introduction

Social Media platforms have moved from being simple and intuitive means of

communication to being real “social squares”, where people can chat with friends

and strangers, share pieces of personal life, sell products and even their own image,

look for a job, keep up to date with what is happening in the world, watch and

participate to a kind of impromptu talk show, publicize political campaigns and

many more activities, all in the same virtual environment.

Nowadays, it is difficult to find someone who does not use at least one Social

Network like Facebook, Twitter, Instagram, TikTok, LinkedIn, Reddit, Youtube,

etc. Not using them has become almost impossible, since even institutions use

their official social pages to publish opportunities (for work or other reasons) and

send updates or clarifications (for instance during the COVID19 pandemic, with

instant lockdowns and health measures). Because of all these possible uses, people

exploit their own social personal page as a window (accurately managed) to make

new friends, spam projects or attract possible hiring companies in the work context.

Also finding the complete list of social contacts in a CV is standard nowadays1.

Now that the reader has seen the centrality of Social Networks in everyday life,

it is time to show the side effects. As we have reported, anyone can post any-

thing for any reason. This includes insults, slurs, harassment, disinformation, hate

speech, etc., with racist, misogynist, homophobic goals, and many others. All these

phenomena have no clear bounds (sometimes they overlap, sometimes not), so in

recent years it is typical to summarize all these terms under the name of online-

toxicity behavior. Only for what regards Fake News sometimes we have a clear

distinction, where given a claim we want to state if it is true or not, not looking at

the style, etc. However, typically disinformative content is delivered in a “provoca-

tive” style and therefore is included in the toxic set. It is also common to write

the term “hate speech” meaning the toxic definition. The community of Artificial

Intelligence (or more generally Computer Science) today finds itself constantly fac-

ing these problems, since a purely handcrafted treatment is impossible, due to the

enormous amount of data to work on and also for the subjectivity of the human op-

erators. From Natural Language Processing (NLP) techniques to detect toxic posts

to Computer Vision (CV) tools to find violent images/video, passing through Net-

work Analysis to retrieve and analyze communities and/or content spreading. The

1https://www.kickresume.com/en/help-center/how-include-your-social-media-resume/
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relevance of this topic and its importance are proven by the exponential growth of

publications in this field (Tontodimamma et al. [2021]), which follows the increase

of hate crimes and online hate speech (see Chaudhary et al. [2021]).

This dissertation is the result of an extremely broad exploration of current re-

search regarding Fake News and Toxic Messages, from the perspective of NLP and

Network Analysis. One major difficulty of working in this field from scratch is

the speed with which new articles are continually published, presenting new results

each time and proposing possible changes in the scenario. After a careful and ex-

tensive review of the latest publications, we have decided to focus on a basic (but

fundamental) problem: toxicity detection on tweets.

This is due to two fundamental reasons: (i) the detection of toxic or hate speech

messages on individual posts/tweets is still a difficult problem (unlike Sentiment

Analysis) and people take it for granted that Transformer-based models or Founda-

tion Models, in general, are the only possible solution, with a small preprocessing

step and “letting the model learn everything”; we propose a set of experiments to see

if smaller models but more structure-aware and explainable can have similar results,

in order to propose a new research direction; (ii) we are convinced that focusing on

the single message is weak in a practical scenario, and we believe that an effective

task can be the forecasting of conversational derailment towards toxic contents, but

to do this we need good models capable to capture useful textual information. This

is why we have focused on this basic but fundamental step for future research.

In Chapter 1 we will present the context in which the work develops, the re-

search field that deals with this environment, and a general introduction to online-

toxicity, providing also the formal definition for Toxicity Detection task. We then

move on to Chapter 2 where we report most of the literature on which our work is

based and also some other solutions proposed in the same context, but without a

direct connection with the main topic of the thesis, just to show the reader the great

variety of possible tasks in these problems. In Chapter 3 we will provide definitions

and terminologies used on Twitter, also explaining some social mechanisms, and

we will extensively present the datasets used in our experiments. Subsequently, in

Chapter 4 we present the historical “sequential” models (BiLSTM and BERT) that

we use as a baseline or for other comparisons, while in Chapter 5 we present our

new model that exploits dependency trees to perform toxicity classification, called

“Syntactic Encoder”. Chapter 6 is dedicated to describing our experimental setup

2



and results, discussed later in Chapter 7, with some ethical considerations. Finally,

we summarize the thesis and share our conclusions in Chapter 8.

3
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Contributions

We can summarize our research contributions in three main points:

• We propose a novel Recursive Neural Network (RecNN) that processes trees

both top-down and bottom-up, in a combined way. This can truly be seen as a

generalization to trees of traditional BiLSTM which process strings bidirec-

tionally. In addition, RecNN processes trees with unbounded node degrees

and in a way that accounts for children ordering at each node. This is in con-

trast to standard approaches in the literature, where children are processed as

bags, thereby dropping order information.

• We apply RecNN to so-called dependency trees, a popular syntactic repre-

sentation for natural language. This allows us to experimentally investigate

the effectiveness of syntax in toxicity detection on tweets. To the best of our

knowledge, this is the first time that dependency trees are exploited in this

task. We believe this draws an important direction for future research since in

online-toxicity we cannot rely on “trigger” words only. Taking into account

syntactic structure allows us to extract complex linguistic aspects, such as

rhetoric, style of writing, scope of negation, writer demographics, etc.

• Finally, we propose a novel test typology to verify to which extent a syntactic-

aware model makes effective use of syntactic features. This is based on the

idea of training the model on gold or silver syntactic trees, and then using

randomly constructed trees at test time. To the best of our knowledge, this

has not been considered so far in the specialized literature, even for tasks

other than toxicity detection that use syntactic representations, for instance

in sentiment analysis. We believe this is a useful methodology to spot cases

in which the model relies on trigger words only, even though it has been

exposed at training time to syntactic features. This can in turn happen for

specific datasets in which syntactic features are not of main relevance, such

as texts with very short and straight sentences.

5
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Chapter 1

Research Landscape

In this first Chapter, we will provide some ideas about the subject of the study

(Social Media and Toxic Language) and a brief introduction to a research field that

is becoming prominent in recent years: Computational Social Science. First of all,

we give the reader an idea of how Social Networks are pervasive in everyday life.

Then, we will report an overview of how computational methods can be exploited

to analyze Social Media. Finally, we will present the main topic of this thesis: the

detection of toxic tweets.

1.1 Social Networks: statistics

The term “Social Networks” usually refers to “Social Media Platforms”, online

applications typically used to share content (e.g., texts, images, videos, etc.) with

other people, from real-life friends to mere followers. This allows users to keep in

touch with each other easily and eventually to form a sort of personal social circle,

where discussions or content reflect their passions and preferences. Nowadays, such

platforms have become almost indispensable for many peoples, and just to name a

few: Facebook, Instagram, Twitter, Reddit, LinkedIn, more recently TikTok, etc.

According to www.datareportal.com1, in January 2022 there were 4.62 billion

users on Social Media, equal to 58.4% of the total world population. Out of all the

statistics reported in this article, we need to focus on three main points:

1https://datareportal.com/social-media-users
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1.2. COMPUTATIONAL SOCIAL SCIENCE AND SOCIAL MEDIA Chapter 1

• taking into account possible duplicates or restrictions for the subscription to

the platform, the users around are equivalent to almost 75% of the eligible

global population;

• users actively use or visit an average of 7.5 different social platforms each

month;

• among the main reasons for using social media we have: staying in touch with

friends; filling free time; reading news stories; finding content; seeing what

is being talked about; finding inspiration for things to do and buy; finding

products to buy; sharing and discussion of opinions; establish new contacts;

watch live streams; work-related networking and research; find like-minded

communities and interest groups; follow celebrities or influencers; post about

your life; avoiding losing things.

The large number of users and the actions carried out on the Social Platforms

make every possible “moderation” of the contents really challenging, both from a

technical and ethical point of view. Another observation is that all the activities

reported in the third point are carried out in the same platform/environment. This

causes a lot of confusion and chaos among users: news “sold” as stories to read,

opinions shared at first thought, unverified claims, and debates where the stronger

rant wins, not the one who proves that its positions are the better.

1.2 Computational Social Science and Social Media

Before talking about Toxic Language, we need to talk about the intersection be-

tween Computer Science (for quantitative analyses) and Social Science (to qualita-

tively describe social phenomena): Computational Social Science (CSS for short).

This is a huge field in which researchers develop computational methods for work-

ing on complex human behavioral data (from Lazer et al. [2020]), from spatial data

to social networks and human coding of text and images. Especially with the advent

of Big Data and Deep Learning, this field has gained a lot of interest, and many gen-

eral “computational fields” nowadays are exploited extensively in Social contexts,

especially Natural Language Processing, Network Analysis, and Complex Systems.

Still from Lazer et al. [2020], “whereas traditional quantitative social science

has focused on rows of cases and columns of variables, typically with assumptions

of independence among observations, CSS encompasses language, location and

8



Chapter 1 1.3. TOXICITY DETECTION ON TWEETS

movement, networks, images, and video, with the application of statistical models

that capture multifarious dependencies within data”.

In Social Media, there are some “topical” activities where CSS researchers are

involved. We can look at a single post/message, with different possible types of

classification, from sentiment analysis to detection of Fake News, Hate Speech, or

Toxic posts in general, but also topic detection (what the post is about), and message

generation (more advanced and ethically problematic).

Looking at the networks, there are other possible analyses, such as measuring

community polarization, bot detection, and echo chamber detection2.

All of these perspectives have found a challenging in combining messages and

network information into more advanced tasks. An example is conversation anal-

ysis, where we do not only analyze the single message but a combination of them,

also trying to grasp the “social context” in which a text appears and how these phe-

nomena evolve over time.

This variety of tasks (and their combination) requires advanced models and

tools to analyze large amounts of data, stimulating researchers to find new com-

putational solutions applicable to large-scale data, which are sometimes also useful

for other types of analysis in other research fields.

1.3 Toxicity Detection on Tweets

Finding an official definition of online-toxicity is not trivial. The literature uses the

adjective “toxic” sometimes interchangeably with “hate speech” (like in Zhou et al.

[2021]) or as “abusive” language (like in Pavlopoulos et al. [2017]). There is no

absolute alignment of researchers around the meaning of the term “toxic language”.

In our work we consider “toxic” all comments that can lead to intolerance,

incivility, or antisocial behaviors, similar to Chang and Danescu-Niculescu-Mizil

[2019], such as hate speech, disinformation, harassment, insults towards target pro-

tected groups, etc. However, there are also several problems in creating datasets for

these events, which prove to be biased depending on the personal characteristics of

the annotators (as mentioned in Zhou et al. [2021]). Another problematic aspect of

this task is that models easily focus on “toxic” keywords instead of generalizing into

2We call echo chambers particular communities where opinions, political leaning, or beliefs of

users on a topic get reinforced due to repeated interactions with peers or sources having similar

tendencies and attitudes, from Cinelli et al. [2021]
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1.3. TOXICITY DETECTION ON TWEETS Chapter 1

something like sentence understanding, and this backfires on minorities (as reported

by Sap et al. [2021]).

The idea behind using this super-definition to group a set of social phenomena

is not counterproductive. The goal of toxicity detection is to find content that can

lead to polarization of communities, make people hate each other because of race

or gender, and prevent political figures from creating a sort of “virtual army” with

attacks sometimes even coordinated by supporters towards enemies. All of these

phenomena have common ground and lead to similar effects on users, so we believe

finding a common solution is an effective path.

The only distinction that we need to point out is between toxicity detection and

Fake News detection. The first, in fact, is based only on linguistics and on the single

tweet, while Fake News detection wants to verify the veracity of a sentence, so

there is also work on Information Retrieval. The sentence can only report incorrect

information without using abusive expressions. For our part, when we talk about

disinformation in the context of toxicity, we mean all the messages regarding false

news but also with an attempted attack (against individuals or groups). This is

similar to the Early Fake News Detection framework, where there is not enough data

to directly verify the veracity of a claim and we can exploit only textual/network

information, without retrieval work.

Given this brief introduction to the problem, we can provide a more formal def-

inition of the task. We will perform a “simple” (but not trivial) binary classification

task. Given a tweet t from a set T , our goal is to classify it with a label between 0

(non-toxic) and 1 (toxic). More formally:

Definition 1. Toxicity detection: assuming we have the universe T of all possible

tweets and a set of tweets T , toxicity detection is a binary classification task in

which, given a tweet t ∈ T , we have to predict if t is toxic (label 1) or non-toxic

(label 0) through a learnable function PT : T → {0, 1}, where PT is learned from

the set of tweets T .
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Chapter 2

Related Work

Research into online-toxicity detection and similar phenomena, such as Fake News

detection, community polarization analysis, and echo chamber detection, has been

extensively explored in recent years. As we said in Section 1.2, several methods

can be applied to solve these problems. In this Chapter, we provide the reader with

a broad overview of significant works that inspired our research, to give an idea of

which computational methodologies are exploited in this field, what is the current

state of the art, and where the main problems are located.

2.1 Detection and forecasting of online-toxicity

Online toxicity detection and forecasting are closely related, even though the second

is much more challenging (and has higher expectations of effectiveness in a real

application). By detection, we mean finding the target event after it has occurred.

Instead, forecasting means predicting its occurrence before it happens.

The detection of a single toxic message is critical to leverage the same tweet

modeling primarily to detect toxic conversation and, finally, forecast the emergence

of toxic content in conversations. As we will see in Section 2.1.1, current research

is focusing on models that tend to be biased on “toxic” keywords, but if we want to

shift our focus to forecasting, we need more general models, which capture some-

thing more than “trigger” words.
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2.1. DETECTION AND FORECASTING OF ONLINE-TOXICITY Chapter 2

2.1.1 Tweet level

By detecting toxicity at the tweet level, we usually mean models mainly focused on

the style and the content of a single message, possibly enriched with user meta-data

(username, provenience, profile description, age, etc.) and network information (we

will see some methodologies in Section 2.1.3).

Toxicity detection can be identified as a case of text (or sentence) classification.

Therefore, successful models in NLP for this task have been based on LSTM or

BiLSTM, although these are now considered baselines. With the birth of Large

Language Models, as expected, researchers have profoundly exploited models such

as BERT (from Devlin et al. [2019], we will present it in detail in Section 4.2)

and its variants such as RoBERTa (from Liu et al. [2019]) and BERTweet (from

Nguyen et al. [2020a]), which we will perform experiments on in Chapter 6. These

models appear to work well, but as reported by Yin and Zubiaga [2021], the model

performance had been grossly overestimated. When cross-dataset experiments are

performed, they all show a significant drop in performance, highlighting that the

test set of the same dataset does not realistically represent the distribution of unseen

data.

The same survey provides a history of models for detecting Hate Speech (or

Toxicity). Before 2019, the SoTA usually concerned Recurrent Neural Networks

(see Gröndahl et al. [2018]). But, with the introduction of BERT, this and its variants

have established new states-of-the-art, with a pipeline that is always similar: take a

model pre-trained on domain-general data, and fine-tune it on a target-classification

dataset. However, they maintain a lack of generalization (but less than LSTM and

BiLSTM). Some recent experiments have also tried to add hate-specific knowledge

from outside the fine-tuning dataset, retraining BERT on abusive online communi-

ties corpus (as in HateBERT from Caselli et al. [2021]) or providing lexical features

extracted from hate speech lexicon (as in HurtBERT, from Koufakou et al. [2020],

which exploit the lexicon HurtLex presented in Bassignana et al. [2018]). Another

idea by Vidgen et al. [2021] is to improve Hate Speech Detection by dynamically

generating datasets, through perturbations and fine-grained labels for the type and

target of hate.

Recently, models that make use of explicit syntactic information have been

tested for hate speech recognition. The idea behind this is that leveraging the syntac-

tic structure can help to overcome this word-bias, by providing topological features
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that can give information on the meaning of the sentence, the rhetoric, etc. In this

direction, Mastromattei et al. [2022] present a version of the KERMIT model (from

Zanzotto et al. [2020], which exploit constituency trees), called KERM-Hate. This

model shows to reduce the bias on words, providing explainable decisions with-

out decreasing the performances (indeed, it obtains better results than Transformer-

based models across multiple datasets). Our work follows this direction, and we

will give more details in Section 5.1.

Once we have our (trained) model, we can perform further analysis over the test

set of our dataset. We can exploit other tools suitable for functional tests, which

test the behavior of our models over particular linguistic structures and situations

where models struggle. An example is Röttger et al. [2021], who provide a collec-

tion of hateful and non-hateful examples carefully created to test the performance of

Hate Speech Detection systems over particular patterns (it can be seen as a “check-

list”). For example, we go from clearly hateful samples such as “[IDENTITY]

are scum.”, to non-hateful samples with “trigger” hate words like “Statements like

‘[IDENTITY] are scum’ are deeply hurtful.”, or statements with particular syntactic

structure as “I have met many [IDENTITY] and I hate every single one of them”.

We will use this tool for our experiments, and we will provide further information

about it in Section 3.2.3. Another similar test is the one proposed by Ribeiro et al.

[2020] (but regarding different fields like Sentiment Analysis), just to show how

this type of analysis is important not only in Hate Speech Detection but in general

on a broad range of NLP tasks.

2.1.2 Conversation level

When authors talk about online conversations in literature, there are two possible

meanings: (i) a single thread, where there is a “chain of messages” in temporal

order, assuming that the writer of a certain message has read all the messages before;

(ii) the conversation tree, where we consider the original post and all comment

threads, so whoever writes a message is aware of the messages in the same chain,

but we do not know if it reads the others.

The forecasting of toxic conversations (or their derailment) is possible because

we can see them as events that evolve over time. Instead, the detection can be

viewed as an “extension” of the single message classification.

When it comes to single threads, the usual pipeline is to embed each tweet in
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a kind of “tweet embedding”, then process those embeddings (as with a simple

LSTM) and predict whether the conversation derails or not. An example is pre-

sented by Chang and Danescu-Niculescu-Mizil [2019], which also makes use of a

“generative pre-training” objective to improve performance. Or more recently Ke-

mentchedjhieva and Søgaard [2021] try to confront the model presented by Chang

and Danescu-Niculescu-Mizil [2019] with other models that embed tweets thanks

to BERT. However, this specific topic has not been explored too much and further

research is needed.

More generally, researchers have tried to model these conversations from a

topological point of view (focusing on the tree), to predict dynamics (e.g., the size

or where the next node will appear in chronological order) as in Bollenbacher et al.

[2021], or to describe which people act as “catalyzers” in a conversation (as in

Saveski et al. [2021a]), or by proposing interesting ways to model the interactions

of the participants (in Zhang et al. [2018]).

In particular on toxicity analysis, researchers have presented both analytical re-

sults (as in Majó-Vázquez et al. [2020]) or they exploited only topological features

for the forecasting work (Saveski et al. [2021b]) or in combination with linguistic

features (Hessel and Lee [2019]).

All the publications cited in this section propose different possibilities for mod-

eling the interactions between participants, supports, responses, etc., without neces-

sarily resorting to Deep Learning techniques such as Graph Neural Networks (in the

next section we will report some examples of GNN solutions) but also handcrafted

features such as motifs, structural features of the graph, etc.

We believe that in the future a good (and generalizable) linguistic representa-

tion in combination with these topological features, that provide the “social dynam-

ics” in which a conversation takes place, is the effective answer to forecast online-

toxicity and respond with innovative solutions (see Section 2.3 for some examples).

2.1.3 Network level

Some problems related to online-toxicity are community polarization and echo

chambers. Indeed, there are relationships between toxicity (especially disinforma-

tion) and these “network” problems: toxic behaviors tend to increase the contrast

between opposing factions, users tend to group with like-minded people, creating

echo chambers, and here harmful (false, hateful, etc.) opinions and statements tend
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to spread without any opposition, increasing again the polarization of people, in a

continuous “positive feedback”.

One of the milestones in this field was proposed by Garimella et al. [2018], who

seek to quantify the controversy over a topic in Social Media, primarily by build-

ing retweet graphs, following graphs, contents graphs, and hybrid retweets/contents

graphs, and then testing different measures (from Random Walks to betweenness

scores) to see which controversial patterns the networks show. Instead, Kumar et al.

[2018] try to show how users from different opposing communities tend to interact

(with attackers against defenders). Other works also try to reduce polarization by

adding edges to the social graph and measuring the reduction (as in Haddadan et al.

[2021], who quantify polarization in terms of “bubble radius”).

The study of polarized communities and echo chambers can be effective be-

cause it allows researchers to design recommended systems adapted to depolarize

these networks. An example is to offer the user (non-harmful) content with differ-

ent positions from those of the user itself or to avoid exasperating the polarization

of users by recommending like-minded material (as unfortunately often happens

nowadays). However, due to company policies and ethical discussions, this direc-

tion has not yet been explored.

2.1.4 Work on different anti-social behaviors

Even though the adjective “toxic” can indicate a wide range of antisocial behaviors

(including disinformation), there are some special cases that should be treated dif-

ferently. Here we report a simple case study example, the solutions of which can

also be useful also in detecting online-toxicity: Fake News detection.

Fake News detection can be treated as a toxicity detection subtask if we just

consider the posts of a conversation and its users. However, sometimes we want to

go “outside” the Social Platform, mainly for three elements: (i) the original article,

(ii) the website of the newspaper, and (iii) a knowledge graph from which verify the

veracity of a news. More recent works effectively extract all these aspects of the

phenomenon, using Deep Learning models capable of embedding information and

mixing them together effectively, something that in online-toxicity detection still

missing (but we will definitely deal with it in future). We will report in this section

only this type of works. Shu et al. [2017] reported a thorough presentation of all

these aspects, also giving a definition for different approaches. We refer to it for

further information.
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In Shu et al. [2019] the reader can find one of the first solutions in which

someone combines source information, news/post information, and user informa-

tion, including also embedding of the relations among these entities (e.g., publish-

ing, spreading, social relation, etc.). In Shu et al. [2020], the proposed model is

based only on Social structure (such as those proposed for the toxicity task) and

on information from spreading statistics, extracting both linguistic and topological

features (such approach can be useful for Early Fake News detection task). Fi-

nally, we invite the reader to look at Nguyen et al. [2020b], who propose a similar

graph representation to Shu et al. [2019], but also embed the tweets in chrono-

logical order, extracting the stance of the single users, the title of the publication

website, the possible relationships among publishers, the social context, etc. This

work exploits Graph Neural Networks (i.e., GraphSage by Hamilton et al. [2017])

and Transformer-based models (i.e., RoBERTa) to extract topological and linguistic

features and then combine node representations. If the reader wants to look at some

examples of knowledge-based models, we refer to the works related to the FEVER

dataset (presented in Thorne et al. [2018]).

All of these works can be an inspiration for the future of online-toxicity detec-

tion, especially for their way of combining topological and linguistic features.

2.2 Technical problems of the field

This research field will be much more important in future. However, there are

serious technical problems that limit the possibility of working in this environment

and mixing a large amount of data from different domains. Despite the fact that

we have the potential to find effective models to represent a great variety of social

phenomena (especially Deep Learning models and their ability to extract features

automatically), we must take legal and ethical aspects into account.

Working on social data also means on private data. To retrieve them, people

need specific permissions (Twitter is the most used because it supports external

developers, researchers, etc.) and people cannot freely provide the data to allow re-

producibility of experiments or make datasets available for various tasks. The only

way to release the data is to either issue anonymized tokens that allow other users

with permissions to retrieve the same data or release complete but anonymized texts

in agreement with the Social Company.

Ethically, everyone with permission can look at each user’s private data as well.
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Furthermore, even if they do not release such information openly online, someone

can point out ethical issues (for example, I can also find information about people

I know, for personal interest). However, users are made aware of these risks when

they open an account.

Another problem is that, to remedy possible data leaks, even with a permit the

download rate is really low. There are only few researchers/institutions with the

potential to retrieve enough data to perform comprehensive experiments with topo-

logical information, linguistic information, user data, etc. This is a major bottleneck

that limits research activity, and we hope this will change in future.

2.3 Means of response to online-toxicity

Typically, social media companies have responded to toxicity-problems with cen-

sorship and content blocking. Although they seemed effective in the past, now we

realize they give rise to many side effects. Indeed, if a blocked post is inside an

echo chamber, either is about some polarizing topic, the users involved can see it

as an attack of political censorship by some enemy organization. Then, the result is

greater polarization and more distrust of the content blocking policy, legitimizing a

wide variety of problematic content, from conspiracy theories to racist and homo-

phobic ones.

Typically this content blocking was done via user reporting, followed by a quick

assessment by a responsible officer. But, due to the extreme subjectivity of the re-

ports, the slowness of the procedure, and the large number of cases to be verified

(in addition to the side effects just mentioned), this methodology is in crisis.

Twitter recently proposed an alternative, called Twitter Birdwatch1. Mainly

designed for the phenomenon of disinformation, with this tool users can identify

tweets with misleading information and add notes that provide informative context.

This is a first step towards a (potential) highly effective response: counter-speech or

counter-narrative.

The research community has also worked in this direction. Tekiroglu et al.

[2020] provide an overview of the research landscape, with datasets, methodologies,

and interpretations (focusing on the context of hate speech). The main focus is to

exploit Natural Language Generators (or NLGs, such as GPT-2, from Radford et al.

1https://blog.twitter.com/en us/topics/product/2021/introducing-birdwatch-a-community-based-

approach-to-misinformation
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[2019], a Transformer-based model) to generate counter-narrative responses auto-

matically. Even though the direction is promising, and several non-governmental

organizations (NGOs) have specialized operators who can help, we are still at an

initial stage of this topic, and the main problems are the lack and the quality of data

on which we train the models, which lead to generic/repetitive answers.

Counter-narrative combined with techniques for online-toxicity forecasting or

early detection has the potential to be an effective pipeline for contrasting toxicity

on Social Platforms. However, this must be done under the supervision of human

beings, in a human-shared paradigm. This allows models to overcome the limita-

tions of the single human operator, but also vice versa, preventing possible ethical

problems (such as bias in models) without sacrificing the efficiency of machines.
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Toxicity detection: Environment and

Data

3.1 Twitter and tweets

If we search for the question “What is Twitter?” the official answer1 is:

“Twitter is a service for friends, family, and coworkers to communicate

and stay connected through the exchange of quick, frequent messages.

People post Tweets, which may contain photos, videos, links, and text.

These messages are posted to your profile, sent to your followers, and

are searchable on Twitter search.”

From datareportal.com 2 we can analyze some important statistics from Twitter.

First, it provides 465.1 million users (by April 2022), and about 5.9% of all people

on Earth use it. It is mainly used in North America compared to other regions of

the world, and only 28.8% of Twitter’s global users are female. Unlike other Social

Media platforms, it is known to be the first platform to take a strong stand against

hate speech and disinformation by proposing solutions more or less ethical (in addi-

tion to simply blocking content, they have also activated the “birdwatch” function3

where users can make counter-narrative activities). The most famous decision in

1https://help.twitter.com/en/resources/new-user-faq
2https://datareportal.com/essential-twitter-stats
3https://help.twitter.com/en/resources/addressing-misleading-info
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this direction was the ban of the former US president Donald Trump4 on January

8th, 2021 after the January 6th attack on Capitol Hill.

On the official page1 the reader can find the official definition of:

• Tweet: “a Tweet is any message posted to Twitter which may contain photos,

videos, links, and text”.

• Retweet: “a Retweet is a Tweet that you forward to your followers”.

• Following: “following someone means you’ve chosen to subscribe to their

Twitter updates. When you follow someone, every time they post a new mes-

sage, it will appear on your Twitter Home timeline”.

• Reply: “A reply is a response to another person’s Tweet”.

What we are going to do is detect toxic Tweets, so we are going to focus on the

single message level. A Tweet has some important characteristics (imposed by the

Social Platform): (i) a Tweet cannot exceed 280 characters; (ii) a Tweet cannot be

edited once posted, only deleted. These features are fundamental (compared to other

Social Platform messages) because first of all a message cannot be too long and the

post we are going to analyze is the original one, with possible grammar errors or bad

writing. Also for this, it is essential once the single message is carefully modeled,

to move on to the full conversation. Indeed, if users need to write a long post they

usually publish a “chain” of messages with all the information or, if the user finds

an error in its original post, sometimes it prefers to correct itself in a subsequent

comment instead of deleting it.

3.2 Retrieval of data and datasets available

Most of the research on Social Platforms takes place on Twitter. This is because

it provides an easy way to access data with a dedicated platform called Twitter

API5. However, since we are working on private data, there are severe limitations

on the download rate and, above all, on the distribution of the data, and this is a

limit for those who want to experiment or replicate works on Twitter. If someone

wants to make Twitter data freely available, it can either distribute the IDs of tweets,

4https://blog.twitter.com/en us/topics/company/2020/suspension
5https://developer.twitter.com/en/docs/platform-overview
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users, etc., and everyone who has a Developer Account can retrieve the original

information from it, or it can anonymize the tweets and, once authorized, publish

the dataset. The first solution has some problems over time, because users and

tweets can be deleted, and therefore doing a good analysis can become difficult.

We will mainly work on three datasets:

• SemEval 2019 - Hateval: from Basile et al. [2019] (specifically the version

used by Barbieri et al. [2020]), which we will simply call Hateval. This is a

dataset for Hate Speech Detection, well tested in the past. This is also useful

to see how the models that we cannot test behave.

• Intolerance: this is a new dataset that we created, extracted from a corpus of

conversations annotated at the single message level, provided by an anony-

mous University6 in collaboration with Bocconi University. This allows us to

see if a model can learn useful information from a more realistic scenario.

• HateCheck: from Röttger et al. [2021], this is a dataset of functional tests in

order to identify where a model struggles and where it is successful in some

particular linguistic contexts. It allows us to perform even a simple overview

of error analysis.

3.2.1 SemEval2019 - Hateval

The first dataset we will use is a typical challenge dataset, with an already given

training set, validation set, and test set. As mentioned earlier, it was presented by

Basile et al. [2019], providing a total of 19600 tweets, 13000 for English and 6600

for Spanish, distributed on two main targets: immigrants (9091 tweets) and women

(10509), with classes “Hate” and “Non-Hate”. However, we used another version,

presented by Barbieri et al. [2020] for Hate Speech detection activity in English

only. The authors of this release provide 9000 training samples, 1000 validation

samples, and 2970 test samples, with the same balance between positive (hateful)

and negative (non-hateful) samples (the ratio of positive/negative samples is approx.

43/57). Details can be found in Table 3.1.

This dataset is critical to our research because it delivers the results for a large

number of models while also doing good hyperparameter optimization, which helped

6These conversations have been collected for future works with Bocconi University. We were

allowed to use it for our tests, but we cannot release the data or details about the annotators.
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us to interpret our results. The main evaluation metric is the Macro average F1 score

(M-F1) on the two labels.

Basile et al. [2019] report the SoTA to 65.1, while in Barbieri et al. [2020]

the top model reported is a solution based on BERTweet (details in Section 4.2.2)

that reaches the score of 56.47 . As we will see in our experiments, although we

use similar models, we will not reach such results with a typical BERTweet model

(but we will present a particular variant that works very well) because we have not

performed careful hyperparameter optimization. In any case, we are in line with

RoBERTa-based models, and two of our non-transformer-based models outperform

them (not reaching the SoTA unfortunately). Another note to be remarked is that

the SoTA regards a slightly different dataset from the one used by us.

3.2.2 Intolerance

This second dataset has never been presented (and cannot be openly distributed at

the time of writing), but it is meant to be a new and difficult dataset on which to test

our model, maintaining the same configuration and experimental setup.

This dataset was annotated by highly specialized annotators (social and politi-

cal researchers) on a collection of complete conversations, where every single post/

comment has been labeled with a great variety of toxic (or related) labels: profan-

ity, insults, character assassination, outrage, hateful speech, dehumanisation,

serious threat and harassment, discrimination, democratic threat or counter-

speech. Between these, a first group of labels (profanity, insults, character assassi-

nation, and outrage) can be grouped into a super set called incivility, while a second

group of labels (hateful speech, dehumanisation, serious threat and harassment, and

discrimination) can be grouped into another super set called intolerance.

From this initial collection of conversations, we have pulled a new dataset for

binary classification on the “super label” intolerance. We “destroyed” any conver-

sation relationship between tweets, generating training, validation, and test set by

sampling items at random, splitting the data between the three sets following the

60/20/20 division, and maintaining the same balance between labels in the different

sets. Table 3.1 shows that there are few positive samples (Toxic labels) compared to

the negative ones (Non-Toxic labels). Hence, this dataset gives us the opportunity

to:

7https://github.com/cardiffnlp/tweeteval
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• test our models on tweets with possibly different linguistic characteristics

compared to Hateval.

• Test our models on a more “realistic scenario”, where in conversation there

could be a great imbalance between the number of toxic messages and non-

toxic ones.

• Since even in terms of absolute representation, there are only a few hundred

positive samples, if our new model (the Syntactic Encoder, presented in Chap-

ter 5) can obtain some interesting results, probably not acceptable in a real ap-

plication but shows to capture some information in really difficult situations,

it can be a hint on its ability to embed useful information also in scarcity of

data.

3.2.3 HateCheck

Presented by Röttger et al. [2021], HateCheck is a functional test suite for hate

speech detection models. It tests 29 model functionalities, 18 for different expres-

sions of hate and 11 for expressions of non-hate (which however shares linguistic

features with hateful expressions), through: (i) different types of derogatory hate

speech; (ii) hate expressed through threatening language; (iii) hate expressed us-

ing slurs and profanity; (iv) hate expressed through pronoun reference negation and

phrasing variants (specifically questions and opinions); (v) hate containing spelling

variations such as missing characters or leet speak; (vi) non-hateful contrasts for

slurs (particularly slur homonyms and reclaimed slurs), as well as for profanity;

(vii) non-hateful contrasts that use negation (i.e. negated hate); (viii) non-hateful

contrasts around protected group identifiers; (ix) contrasts in which hate speech is

quoted or referenced to non-hateful effect, specifically counter speech (i.e. direct

responses to hate speech which seek to act against it); (x) non-hateful contrasts that

target out-of-scope entities such as objects rather than a protected group.

To generate test cases at scale, authors use templates, in which they substitute

tokens for protected group identifiers (e.g., “I hate [IDENTITY].”) and slurs (e.g.,

“You are just a [SLUR] to me.”), guaranteeing an equal number of cases addressed

to different protected groups. For this reason, this dataset is also useful for per-

forming other types of tests: (i) performance on individual functional tests, for the

terms “n*gga”, “f*g”, “f*ggot”, “q*eer” and “b*tch”, referring to “reclaimed slurs”
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Dataset Train-1 Train-0 Val-1 Val-0 Test-1 Test-0

Hateval 3783 5127 427 573 1252 1718

Intolerance 342 4335 1444 115 1444 115

Table 3.1: Number of positive (Hate/Toxic) and negative (Non-Hate/Non-Toxic)

samples on Training set, Validation set, and Test set on Hateval and Intolerance.

functional test by which slur is used in non-hateful case; (ii) performance among

target groups, specifically women, trans people, gay people, black people, disabled

people, Muslims, and immigrants, comparing the performance of the models on the

cases that target these groups.

In the end, Hatecheck provides 3,901 samples, 3,495 of which come from 460

templates, and the remaining 406 cases do not use a template.
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Tweet embeddings: sequential

models

Recursive Neural Networks (RecNN in short, which we will cover in detail in Chap-

ter 5), to the best of our knowledge, have never been exploited for hate speech de-

tection. Furthermore, in general, they have not been tested so much mostly due to

implementation difficulties and for the advancement of Transformer-based Models,

which has moved away researchers from testing them.

To make a correct analysis of the strengths of our model, we need well-known

solutions proposed in the past, in particular, a non-trivial baseline (the BiLSTM) and

a more advanced model that is hard to beat but that can be used as a reference for

our performances (BERTweet). In this chapter we will show the main characteristics

of these models, taking for granted the functioning of Recurrent Neural Networks

(RNN) and the functioning of Long Short-Term Memory mechanism (LSTM). The

reader can find further details in Goodfellow et al. [2016].

For a summary only, RNNs are a particular type of Neural Networks which

work on sequences (like sentences), applying the same processing at each step.

Due to the possibility of encountering long sequences, we can experience the phe-

nomenon of the so-called “vanishing gradient”, for which the inputs at the begin-

ning of the sequence have a minor effect on the final output (although they can be

important) and hardly affects the parameters training process. In response to that,

researchers designed LSTM cells, which thanks to a system of “gates” (input gate,
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output gate, update gate and forget gates) the system can learn to “forget” useless

information and “keep” useful information, computing a cell memory vector c and

a hidden states h. In this case, the most important aspect of system design is the

definition of the gate functions (and which vectors are used to calculate them).

This chapter is strongly inspired by Voita [2020], from which we have drawn

also diagrams to show how the different systems work. We highly recommend

visiting it for further explanations.

4.1 BiLSTM over GloVe embeddings

The model we used as a “baseline” is a BiLSTM on GloVe embeddings (in the next

section we will put all the related information). This type of model has been studied

extensively in the past, and it is one of the most used for sentence classification.

The idea behind it is to embed sentence information based on word order, left to

right and right to left. As expected, the words are replaced by embedding vectors

(taken from GloVe “as it is”, not fine-tuned) and attaching two special learnable

vectors, at the beginning a beginning-of-sequence vector (<BoS>) and at the end

an end-of-sequence vector (<EoS >). You can see a schematic view in Figure

4.1.

4.1.1 GloVe

GloVe (together with Word2Vec, from Mikolov et al. [2013]) is one of the typical

neural word embeddings exploited in NLP applications. Presented in Pennington

et al. [2014], its name is short for “Global Vectors” because the model is also based

on capturing global corpus statistics. It can be seen as a combination of count-based

methods and prediction methods (like Word2Vec). GloVe uses co-occurrence count

to measure the association between word w and context c (denoted N(w, c)) and

use them to construct the loss function (see Figure 4.2).

In this work, we will use a particular version of GloVe, trained on Twitter (there-

fore suitable for our objectives) on over 2 billion tweets, 27 billion tokens, 1.2 mil-

lion words in the vocabulary, uncased, 50 in vector dimension, published by Stan-

fordNLP1. We will use it as input both for the BiLSTM in this chapter and for the

new Syntactic Encoder, discussed in depth in Chapter 5.4. The size of the vector

1https://nlp.stanford.edu/projects/glove/
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Figure 4.1: Schematic view of a BiLSTM model for sentence classification, from

Voita [2020]

is not the maximum one (which is 200). However, since we want to show that the

syntactic structure is effective, we do not want huge word embedding vectors, to

make this task more difficult for our model.

4.1.2 BiLSTM

The BiLSTM is a particular type of bidirectional LSTM where, given an input

sequence {x1, x2, ..., xN}, we apply two separate LSTMs: one is called forward

LSTM which reads the sequence from left to right, and the other is called back-

Figure 4.2: Schematic view for the computation of GloVe loss function, from Voita

[2020]
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ward LSTM, which reads the sequence from right to left. What we output is a

sequence of forward hidden states {hf
1 , h

f
2 , .., h

f
N} and a sequence of backward hid-

den states {hb
1, h

b
2, ..., h

b
N}. Remember from the introduction of this section that we

have attached also the two learnable vectors <BoS>and <EoS>, and also from

them we calculate two final hidden states each (hb
BoS and hf

BoS for the first, hb
EoS

and hf
EoS for the second).

The final vector representing the embedding of our sentence is the concatenation

of hf
EoS with hb

BoS (formally, h = [hf
EoS|h

b
BoS]), which is essentially the concate-

nation of the last hidden vector calculated by each LSTM, as in Figure 4.1. Once

we have extracted this vector, we perform the prediction through a special FeedFor-

ward Network called Multi-Layer Perceptron (MLP for short), which is a sequence

of Fully Connected layers, each followed by a specific non-linear function. It re-

turns as output a probability distribution on the classes of the specific classification

task (binary in our case). The MLP applied to this vector is the same that will be

presented in Section 5.4.6 to make a fair comparison between these models based

on GloVe embeddings. We refer to that subsection for further details.

4.2 BERT-based solutions

In recent years, the NLP research has been dominated by Transformer-based so-

lutions2, giving rise to the so-called “Foundation Models” (also called Large Lan-

guage Models), which are (i) characterized by a huge number of parameters, (ii)

trained on broad data at scale and (iii) can be adapted to a wide range of down-

stream tasks (Bommasani et al. [2021] provided this definition).

The results achieved by these models are extremely high, but they are not free

from technical and ethical problems. The main point is that figuring out which

aspect of the language they are looking at is extremely difficult, and researchers

are still arguing (have they embedded some syntactic information? Do they just

observe word co-occurrences? Is it similar to Natural Language Understanding, or

is it more a really good pattern matching?). The 2021 year is recognized as the year

of Large Language Models due to the explosion of such works (companies invest a

lot in them), and for this, important researchers have taken a stand to make people

aware of the risk that such models pose (Bommasani et al. [2021]).

2Transformers were first presented by Vaswani et al. [2017] and they have brought about a turning

point in many computational fields
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Of all these models, we focus on the most famous one: BERT (from Devlin

et al. [2019]) and, more specifically, its variant BERTweet (Nguyen et al. [2020a]).

In the next subsection, we will briefly explain some technical details of these two

models (and the difference between BERTweet and BERT) and we will recall only

some notions of the Transformer mechanism. However, for the full picture we refer

to the original papers, or Voita [2020] (from which the images are also taken), or

Jurafsky and Martin [2021].

We perform experiments on BERT for various reasons. First of all, there are

various pre-trained versions available online, for example from the Hugging Face

library3, which can provide ready-to-fine-tune models which usually give good per-

formance. However, this is also due to the large number of parameters they provide.

We do not expect to reach BERT performance because our models are much smaller

(technical details in Chapter 6), but it can still be interesting to compare and under-

stand where a simple model can achieve comparable results to these huge models.

For example, BERT is recognized for struggling with negatives and small changes

in the syntactic structure which however lead to a total modification of the meaning

of the sentence.

4.2.1 BERT

BERT stands for “Bidirectional Encoder Representations from Transformers”. It

is essentially a Transformer’s encoder, which consists of a sequence of “encoder”

blocks as shown in Figure 4.3. Within these computational units, the self-attention

mechanism is widely exploited (for further information we refer to Vaswani et al.

[2017]).

We give in input to BERT the tokenized sentence (with the related embeddings)

by adding two particular tokens:

• [CLS] token: this is a special token placed at the beginning.

• [SEP] token: called also token-separator, we put this token between different

sentences.

3https://huggingface.co/docs/transformers/index
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In addition to token embeddings we also put positional embeddings to keep

track of word order and segment embeddings, to allow the model to easily distin-

guish between different sentences (we show this in Figure 4.4). During training, we

give in input to BERT a pair of sentences, so what BERT sees is a [CLS] token,

followed by the tokens of the first sentence tokens, then a [SEP] token followed by

the tokens of the second sentence and finally another [SEP] token.

Some of the new features introduced in BERT are the training objectives from

unlabeled data. In detail, they are called:

• Next Sentence Prediction Objective (NSP): this is a binary classification

task in which, from the final layer, we extract the final representation of the

[CLS] token to predict whether the two input sentences given are consecutive

or not (in the original texts). In training, 50% of examples are positive and

50% are negative. This task teaches the model to understand relationships be-

tween sentences or, as we will do, also to reason on the sentence and execute

text classification.

• Masked Language Modeling Objective (MLM): in MLM objective, at each

step, we (i) select some tokens with probability p = 0.15, (ii) then replace

them either with a special token called [MASK] with probability p = 0.8, or

with a random token with probability p = 0.1 or with the original token with

probability p = 0.1, and (iii) finally predict the original token (see Figure 4.5

for a schematic view).

Of these two, the most important objective is MLM. This is because it allows

BERT to produce a “contextual” word embedding for each word after learning

(thanks to the self-attention mechanism, looking at the whole sentence), which can

be used for the same activities in the same way we use “static” word embeddings,

such as Word2Vec or GloVe. Unlike the static ones, we can also fine-tune BERT to

learn embeddings suitable for the task we want to carry out, giving a great power of

representation.

After this step called pre-training4 it’s time to fine-tune it for downstream tasks.

In Figure 4.6 the reader can see a schematic view of the pre-training step followed

4Usually the available models are already pre-trained because this step requires an enormous

amount of computational power, time, and data
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Figure 4.3: Transformer’s encoder block representation, from Vaswani et al. [2017].

Figure 4.4: BERT’s input format, from Devlin et al. [2019].

by fine-tuning, as presented in the original paper.

Toxicity detection can be seen as a particular type of sentence classification.

What we do is to “attach” an MLP layer, providing as input the final representation

of the [CLS] token and then backpropagate both on the MLP parameters and on the

BERT parameters (with regularization tricks).

4.2.2 BERTweet

Now that we have briefly introduced the BERT model, it’s time to talk about its

tweet-adapted variant: BERTweet. Presented by Nguyen et al. [2020a], BERTweet

is a model with the same architecture as BERT but uses RoBERTa’s pre-training

procedure. RoBERTa is an optimized version of BERT proposed by Liu et al.

[2019], where the authors carefully chose the model hyperparameters showing that

the original BERT was extremely undertrained.

BERTweet is trained over a corpus of 850 million tweets in English, where each

tweet has at least 10 word tokens and a maximum of 64. We will work on sequences

31



4.2. BERT-BASED SOLUTIONS Chapter 4

Figure 4.5: Schematic view of BERT’s pre-training through MLM objective, from

Voita [2020].

Figure 4.6: Pre-training and fine-tuning schematic representation, from Devlin et al.

[2019].
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of up to 130 tokens, and this could lead to generalization problems that should be

analyzed in future works.

The authors proved that BERTweet is capable of outperforming its baselines

RoBERTa and XML-R (from Conneau et al. [2020]) and beating the previous SoTA

models in three downstream Tweet NLP tasks: POS tagging, NER (Named Entity

Recognition), and text classification. For all these reasons, we believe that this

model is also suitable for achieving good performance in our task and keep it as a

reference for our work.
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Chapter 5

Tweet embeddings: syntactic models

Until now we have presented models that work on word sequences. What they can

capture is typically considered semantic/contextual information and currently, there

is a strong debate about their capacity of capturing syntactic information. Especially

for BERT, the research community agrees Transformer-based models can capture

some sort of syntactic features, but we do not have clear yet what they can repre-

sent. Furthermore, some works show that it has strong limitations in generalizing

this syntactic knowledge (as in Weissenhorn et al. [2022]). So, we are trying to

exploit the syntactic structure as much as possible, with models that provide fewer

parameters than BERT but can reach good performance, and have the possibility

to keep track of syntactic features. We want to show that making use of explicit

syntactic information can be a direction for future research.

5.1 Syntactic-aware models

The comparison between semantic/contextual models and syntactic ones has re-

cently gained interest in the research community, because of the uncertainty on how

Transformer-based models work and the will of including in modern tools also pre-

DL solutions, leading to more guided and explainable models.

KERMIT by Zanzotto et al. [2020] deeply inspired our work, and it has been

also tested in the context of Hate Speech Recognition (HSR) by Mastromattei et al.

[2022]. KERMIT is a model for sentence embedding (exploited in the task of sen-

tence classification) where, given a sentence, it extracts a “semantic” representation
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thanks to a Transformer-based model and a “syntactic” one, embedding the rela-

tive Phrase Structure Tree in a vector exploiting tree kernels technology. Finally,

they concatenate these two vectors and perform the classification passing through a

Multi-Layer Perceptron.

Mastromattei et al. [2022] present its variant KERM-HATE, used as said above

for HSR, where they showed that syntactic-aware models can outperform BERT-

based models and reduce possible biases since it focuses on structural features,

which are “ethically unbiased”. However, they finally show that even syntax-based

models absorb prejudice from data. They also perform a post hoc explanation,

which confirms our previous assumption that syntax-based models provide more

explainable decisions.

Though this is the main work that inspired us, our solution is different. First of

all, we focus on dependency trees, where the structure itself is represented by words

and their relations. Then, our model is simpler, with a smaller final syntactic vec-

tor (for instance KERM-HATE provides in output a syntactic vector of dimension

d = 4000, but in our experiments, we will output a vector of dimension d = 100).

Finally, we do not combine any semantic vector. Although we agree a complete

work should combine syntactic and semantic vectors, in our investigation we want

to find clear syntactic-based models, without exploiting a huge number of param-

eters, and show that they can capture some interesting aspects of the language, on

which researchers can base future works in this direction, with much more complex

and accurate models.

5.2 Dependency Trees and Tweebo Parser

This theoretical overview about dependency trees is taken from Jurafsky and Martin

[2021]. For further information, we suggest the reader to take it for reference.

Dependency grammars are an important family of grammar formalism, where

the syntactic structure of a sentence is described in terms of binary relationships

among words. Such relations are described by directed arcs from heads to depen-

dents (possibly labeled), with a particular root node, which explicitly marks the root

of the tree. But what do these relations mean?

As introduced before, for each dependency relation we have a head and a de-

pendent, and the head-dependent relationship is made explicit by directly linking
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heads to words that are directly dependent on them. We have also the possibility to

define the type of relation (but we haven’t exploited this case in our work).

More formally, a general dependency structure is a graph G = (V,E) where

the set of nodes V corresponds to words and the set of arcs E corresponds to the

head-dependent relations. In the specific case of the dependency tree, we have a

directed graph where (i) there is a single designated root with no incoming arcs and

(ii) each vertex has one incoming arc (except the root node).

Concerning models applied to a sequence of words (e.g., BiLSTM on word

embeddings), dependency trees give us the possibility to work on another type of

structure. This permits to extract possible information about the style of writing,

rhetorics, and also to combine word embeddings in a “syntactic-style” way. To do

so, we have exploited the Tweebo parser proposed in Kong et al. [2014], presented

as the first syntactic dependency parser designed explicitly for English tweets, and

freely available online1. The reader can see an example of a tree obtained from this

parser in Figure 5.1

Tweebo parser combines a second-order Turbo parser (as proposed by Martins

et al. [2013]) and the POS-tagger by Owoputi et al. [2013], producing a depen-

dency tree for each sentence in the tweet with labeled nodes (the POS tag of the

corresponding word) and unlabeled arcs. The possible POS tags are reported in

Table 5.1. Some words are not assigned to any dependency tree (like user tags,

hashtags, and punctuation, which have no relevant syntactic roles) and, as we will

see in the experiments, also this filtering work can be effective, even if we ignore

the syntactic trees.

5.3 Recursive Neural Networks

Embedding structural information into a vector is not a trivial step. Since we are

working on trees, we aim to translate each dependency tree into a “tree embedding”,

trying to force the model to visit such a structure and learn to exploit topological

information.

Recursive Neural Networks (RecNN, not to be confused with Recurrent Neural

Networks) are a specific family of Deep Neural Networks that can be useful in

1http://www. ark.cs.cmu.edu/TweetNLP
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N common noun

O pronoun (personal, not possessive)

ˆ proper noun

S nominal + possessive

Z proper noun + possessive

V verb including copula, auxiliares

L nominal + verbal or vice versa

M proper noun + verbal

A adjective

R adverb

! interjection

D determiner

P pre- or postposition, or subordinating conjuction

& coordinating conjuction

T verb particle

X existential there, predeterminers

Y X + verbal

# hashtag (indicates topic/category for tweet)

@ at-mention (indicates a user as a recipient of a tweet)

˜ discourse marker, indications of continuation across multiple tweets

U URL or email address

E emoticon

$ numeral

, punctuation

G other abbreviations, foreign words, possessive endings, symbols, garbage

Table 5.1: POS tags from Owoputi et al. [2013]
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Figure 5.1: Example of dependency trees obtained from the tweet: “@user This is

a bandaid! Americans want total immigration reform and to build the wall! Get

going Congress and do the right thing! #BuildThatWall #ImmigrationReform”

this direction. The idea behind is to apply the same processing recursively over a

particular structure, and in this way, the goal is to extract a sort of structure-based

representation.

To start our research we have taken strong inspiration from Socher et al. [2013]

and especially Tai et al. [2015]. In the last one, the authors proposed two possible

variants of Tree LSTM models (a RecNN for trees, using LSTM units), one for a

fixed number of children, called N-ary Tree LSTMs, and the other for a variable

number of children, called Child-Sum Tree LSTMs (Figure 5.2), where, given a

parent p and its children C(p), to compute the hidden state of p they apply a set

of weights to p and C(p), combined. Since we are working with dependency trees

where every node has a variable number of children, we report here in detail how the

Child-Sum version works, which can be seen as a simplified version of the model

proposed in Section 5.4.

As a classic LSTM unit, we compute input gate i, forget gate f , output gate

o and update gate u. Assuming we have a node j and its children set C(j), we

compute these gates based on:

• the node representation xj;

• the “cumulative” hidden representation h̃j of C(j)
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Figure 5.2: Original representation of the Tree-LSTM, from Tai et al. [2015]

Then we compute the new cell memory cj and new hidden representation hj also

according to a “cumulative value” of all ck, where k ∈ C(j). In formulas:

h̃j =
∑

k∈C(j)

hk, (5.1)

ij = σ(W (i)xj + U (i)h̃j + b(i)), (5.2)

fjk = σ(W (f)xj + U (f)hk + b(f)), (5.3)

oj = σ(W (o)xj + U (o)h̃j + b(o)), (5.4)

uj = σ(W (u)xj + U (o)h̃j + b(u)), (5.5)

cj = ij ⊙ uj +
∑

k∈C(j)

fjk ⊙ ck, (5.6)

hj = oj ⊙ tanh(cj) (5.7)

Notice that we have a specific forget gate for each child. The function ⊙ represents

an element-wise product between vectors.

This model does not take count of the order in which children appear and per-

forms a simple sum of the hidden representations to compute the gates and a sort of

weighted sum for the new memory cell. For us, this is a relevant weakness since we

believe that such an order is important, and we are going to account for this in the

next Section.

5.4 Syntactic Encoder

We now present in detail our new model and the idea behind it. We can divide it

into four steps:

• given a tweet, create the associated dependency trees (one per each sentence)
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using the Tweebo parser and apply minimal preprocessing to “clean” the

words.

• Apply a BiLSTM to mix the word embeddings concatenated with their rela-

tive POS tags, obtaining a new contextual representation for each word.

• Perform a top-down filtering to carry information from ancestors to descen-

dants with an LSTM over each path root-leaf.

• Wrap up information according to a well-defined bottom-up procedure (sub-

section 5.4.4).

• Run a standard LSTM over the tree embeddings and apply a final MLP with

softmax to perform the prediction

We are going to dedicate a subsection to each step, to let the reader understand in

deep how this system works. The strength points of this model are:

• its ability to distribute information depending on the word-ordering (BiL-

STM) and on the tree structure, from ancestors to descendants and vice versa.

• We have no assumptions on the number of children of each node, so it applies

to general trees.

• taken the node j and its children set C(j), we process the elements in C(j)

maintaining the relative order in the sentence and performing a more accurate

computation with respect to the simple sum.

Those ideas have been also proposed in the past, like in Teng and Zhang [2016]

and Chen et al. [2017]. But, to the best of our knowledge, this is the first time

that someone tries to perform an exploration of the syntax tree so carefully, taking

account of both ascendants, descendants, and previous siblings.

5.4.1 Tweet parsing and preprocessing

As described in Section 5.2, we pass all the tweets to Tweebo Parser, which gives

in output the corresponding dependency trees and the POS tag of each word. After

this, we need to find a vectorial representation for each word.
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Figure 5.3: Upper (a): example of dependency tree and POS tags obtained from a

sentence. Lower (b): example of sequence of embeddings

To do so we use GloVe embeddings trained on tweets from StanfordNLP2 (we

have talked about this in Section 4.1.1). To reduce the number of unknown words,

we have divided the common abbreviations (e.g., I’m → I am, You’ll → You will,

etc.) managing accurately also the dependency tree (we divide the two words and

add an arc from the first word to the second). If a word is totally unknown, we assign

to it the average of the word embeddings present in the same sentence. On the other

side, we represent the POS tag as a one-hot vector (we have 25 possible tags, so

we use a vector of 25 dimensions). After this process, we have “clean” words and

tweets divided into sentences/dependency trees (the reader can observe a schematic

representation of the embeddings and their relations in a single sentence/tree in

Figure 5.3).

5.4.2 BiLSTM

After the first step, we are ready for the first processing. We run on each sentence

a BiLSTM to extract information not only from the single word but also from the

2https://nlp.stanford.edu/projects/glove/
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Figure 5.4: Graphical representation of the BiLSTM step

context. The input given to the BiLSTM is a concatenation of word embedding

and POS tag of the type [word|POS]. As usual, for each word we concatenate the

forward representation and the backward one (Figure 5.4). Differently from the

classic BiLSTM we do not add a <BoS> and an <EoS> vectors, since we are not

extracting a sentence embedding. It could be interesting in the future to exploit such

a trick.

5.4.3 Top-down filtering

We now present our first “exploration” of the tree. Essentially we run an LSTM on

each root-leaf path. If two paths share a portion, let’s say until node j, we do not run

two separate procedures, but we perform a unique process until node j, and then we

“split” the LSTM between j’s children. In this way, we obtain for each node a new

representation that depends only on the node representation and its ancestors (taking

into account the different relations head-dependent and higher-order relations).

More formally, for each word j we obtain a new vector sj by running an LSTM

on the unique path from the root r of the parse tree to node j, in a top-down fashion,

assigning to each node k in the path from r to j the hidden state sk. So for input
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gate, output gate, forget gate, update gate, and hidden state we have to learn two

matrices of parameters A and B, plus bias b. In Figure 5.5 the reader can see an

example with only two children, but the system can work with an arbitrary number.

Assuming we are processing the node j, given p its parent node, and g is a

general non-linear function, the equations obtained for the TD-LSTM (Top-Down

LSTM) are:

ij = σ(A(i)sp +B(i)wj + b(i)) (5.8)

fj = σ(A(f)sp +B(f)wj + b(f)) (5.9)

oj = σ(A(o)sp +B(o)wj + b(o)) (5.10)

uj = g(A(u)sp +B(u)wj + b(u)) (5.11)

cj = ij ⊙ uj + fj ⊙ cp (5.12)

sj = oj ⊙ g(cj) (5.13)

After the computation is made over all the nodes (i.e., for each node j we have the

relative hidden state sj) we perform the bottom-up process as in Section 5.4.4.

Assuming the root r with a dummy parent pr, the initial LSTM vectors spr and

cpr are imposed to be null vectors (spr = 0̄, cpr = 0̄).

5.4.4 Bottom-up processing

We now want to obtain a final tree embedding, processing the different node vec-

tors taking into account:

• the structure of the tree;

• the relation parent-child and higher-order;

• the node order between children of the same parent.

Let p be an internal node of a tree, and let 1, 2, . . . , N be its children nodes.

We write sp, s1, s2, ..., sN to denote node vectors obtained from the TD-LSTM in

Section 5.4.3, associated to the above nodes.

Let Tj be the subtree rooted at child node j. When we process node j as a child

of p, we already have available:

• a hidden state hj−1 and a cell memory value cj−1 representing the processing

of all of the left siblings of j;
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Figure 5.5: Schematic view of how the top-down LSTM processes the tree. Upper

(a): computation of the s vector for a node and its children (assuming it has two

children). Lower (b): representation of the path covered by the LSTM in its top-

down traversal. It takes in input the yellow and green vectors (from the BiLSTM) of

the node and the blue one of the parent, returning the blue vector of the node. The

black arrows show the order of computation (it follows the dependency tree edges).
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• a hidden state xj representing the processing of the entire subtree Tj;

• the embedding sp at parent node p from the TD-LSTM.

Essentially, this system produces two hidden states for each node:

• hj , which is associated with the sequential processing of the LSTM from the

left siblings of node j;

• xj , which is the hidden state resulting from the bottom-up procedure after the

processing of the whole subtree rooted in j.

The idea is as follows: taken the node p, we run the LSTM over the sequence of

its children from left to right. Once we have computed the last child representation

hN , we apply a specialized neural network (with a specific learnable matrix X and

non linear function gx) and compute xp associated to the node p:

xp = gx(XhN) (5.14)

After that, p is ready to be processed with its siblings to compute the representation

of its parent.

For each gate we have three learnable matrices: U for hj−1, Y for xj and Z for

sp, plus the bias vector b, and g is a general non linear function.

ij = σ(U (i)hj−1 + Y (i)xj + Z(i)sp + b(i)) (5.15)

fj = σ(U (f)hj−1 + Y (f)xj + Z(f)sp + b(f)) (5.16)

oj = σ(U (o)hj−1 + Y (o)xj + Z(o)sp + b(o)) (5.17)

uj = g(U (u)hj−1 + Y (u)xj + Z(u)sp + b(u)) (5.18)

cj = ij ⊙ uj + fj ⊙ cj−1 (5.19)

hj = oj ⊙ g(cj) (5.20)

Also here we need to treat some “particular” cases. Specifically:

• for what concerns the leaves, which have no children, assuming we have the

leaf node l, we compute the relative BU (bottom-up) embedding xl with a

specific neural network, with learnable matrix L and non-linear function gl

giving in input the TD embedding sl:

xl = gl(Lsl) (5.21)
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• Given a children sequence 1, 2, ..., N , we initialize h0 and c0 as null vectors

(as before, h0 = 0̄, c0 = 0̄).

The last trick regards the embedding associated with the root word. We want

to make “explicit” that a specific node is the final one. To do so, we apply another

neural network with learnable matrix R and non-linearity gr with its BU embedding

as input, to find the final tree-embedding:

r = gr(Rxr) (5.22)

The reader can view a schematic representation of the bottom-up process pre-

sented above in Figure 5.6.

5.4.5 LSTM over tree embeddings

As mentioned in Section 5.2, from each tweet we can extract several sentences

and a dependency tree for each sentence. Once we have embedded all the trees,

we must combine them in a meaningful way. To do so, we use a classic LSTM,

run sequentially over the tree embeddings, keeping the relative order between the

roots in the original tweet. From this LSTM we take the hidden representation

corresponding to the last tree and give it in input to the MLP layer, described in

5.4.6.

More formally, assuming to have the tree embeddings (ordered) {r1, r2, ..., rT},

we run a LSTM over this sequence with initial vectors hr
0 = 0̄ and cr0 = 0̄. What we

give in input to the final MLP layer is hr
T .

5.4.6 Final MLP layer

Finally, we need an MLP which, given in input a vector, outputs two values on

which we base our final classification, through the SoftMax function. This structure

has been thought as a simplified version of the MLP presented in the implementation

of KERM-HATE3.

What we propose is an Autoencoder-style structure, with fully connected lay-

ers, which pass from dimension d to dimension d/2, back to d, and finally pass to

3https://github.com/ART-Group-it/HateSpeechKermit
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Figure 5.6: Schematic view of how the bottom-up LSTM works. Upper (a): com-

putation of the x vector for a node through the LSTM run over its children (we show

also all the hidden states); the red arrow represents the separate computation of the

xp vector (with a dedicated NN) after its children processing. Lower (b): represen-

tation of the path covered by the Tree-LSTM in its bottom-up traversal, where the

blue vector represents the s vector of each node and the orange vector represents

the x one. For the leaves (suppose to have the node l as a leaf): the orange vector

(xl) is computed directly from sl.
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Figure 5.7: Final LSTM processing over tree embeddings, followed by the MLP

structure plus SoftMax to predict the label.

dimension 2, with the last activation function Tanh and in the other cases ReLU.

More formally, given in input xi:

xh1 = ReLU(H1xi) (5.23)

xh2 = ReLU(H2xh1) (5.24)

xf = tanh(Fxh2) (5.25)

y = SoftMax(xf ) (5.26)

The SoftMax outputs a probability distribution over a binary random variable (let’s

say 0 and 1). What we do is keep the component with the highest score. This MLP is

the same applied to the sentence embedding extracted from 4.1 in our experiments.

We show the steps described in these two last sections in Figure 5.7.

5.5 Discussion about the syntax

Though we are working on syntax trees, it is not trivial to demonstrate that a Tree-

LSTM (in a specific task) is exploiting topological features. There is an intense

debate in the NLP community regarding the existence of syntactic and non-syntactic

tasks, and if models based on syntactic features are necessarily better than models

working only on words or word-ordering.

Even on the usefulness of word-ordering there is an intense debate. Focusing

on the “Transformer” framework, Sinha et al. [2021] show that masked language

models (MLM) pre-trained on shuffle words when fine-tuned on some downstream

task achieve high accuracy (comparable to the ones pre-trained on non-shuffled sen-

tence), even in tasks designed to be hard for models which ignore word-ordering.
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On the other side, Ravishankar et al. [2022] provide a different explanation. Authors

affirm there are different effects between shuffling before subword-tokenization and

after since the first case retains some semblance of information about word order

because of the statistical dependencies between sentence length and unigram prob-

abilities. But surprisingly, even language models trained on text shuffled after sub-

word segmentation retain some semblance of word order information.

Also regarding syntactic trees, there are several debates. Since Scheible and

Schütze [2013] and Williams et al. [2018], it has been shown that models we be-

lieve founded on syntactic representation finally reveals not to be. Thanks to this

suggestion, we will make analyses also in this direction to verify if our model relies

on topological features or not.

Finally, Glavas and Vulic [2021] pose an interesting question: is leveraging

formalized syntactic structures in state-of-the-art neural language models useful for

downstream language understanding (LU) tasks? The answer is negative, but the

type of analysis is different from ours since they pre-train Language Models on

syntactic parsing tasks and then fine-tune on LU tasks, whereas we are explicitly

forcing the models to work on the syntax.
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Experiments

All the models presented in Chapter 4 and Chapter 5 will be exploited to perform

a series of experiments on the datasets presented in Section 3.2. More precisely,

we will train and test each model (we will provide more information in the next

sections) on Hateval (Section 3.2.1) and Intolerance (Section 3.2.2) 30 times, each

with different random seed and we will report the mean and the standard devia-

tion of each score over the 30 runs. As for HateCheck (Section 3.2.3), we have

performed functional tests only on models trained on Hateval. The reason for this

choice will be explained in Section 6.2.5.

In order to make fair comparisons between the models, it is necessary to clar-

ify our perspectives: BERTweet-based models have many more parameters than our

BiLSTMs (we will present two different versions) and our Syntactic Encoder, so we

do not expect to outperform them. However, testing such powerful models is also

useful because it gives an idea of what results we can achieve and they represent a

typical pipeline of this period for online-toxicity detection. Our goal is to (signif-

icantly) outperform the BiLSTMs models’ results (significantly) and demonstrate

that adding “structural” information can help to beat similar sequential models.

6.1 Settings

Given a model, we use Cross-entropy loss for training. In Hateval, we use un-

weighted loss as the imbalance between classes in terms of samples is acceptable.

On the other hand, in Intolerance the imbalance is very high, so we have to weigh
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the loss (0.54 for Non-Toxic class and 6.84 for Toxic class). We will use early

stopping (with patience in terms of epochs for the simpler models and of steps for

Transformer-based models), using the AdamW optimizer and we will select learn-

ing rates and patience with a simple handcrafted hyperparameter selection. The

batch size used is 30 for Transformer-based models and 15 for the others.

We are aware that, for optimizing performance and a complete evaluation of

the models, careful optimization of the hyperparameters would be necessary. But,

since (i) past results can be used as reference (in the first dataset), (ii) we have no

intention to achieve maximum results but only to see if a model is able to extract

useful information, and (iii) the task is difficult enough that, only for a little range

of learning rates and patience parameters, it does not overfit or remain stuck at

the “one-answer only” model, we can see our results as a good approximation of

what researchers can expect in general. We prefer to perform a large number of

experiments on each model in order to give affordable results in mean and variance,

on which our discussions will be based.

We now dedicate a separate subsection for each type of model, to quantitatively

describe the size of the vectors, activation functions, input format, etc. For the other

hyperparameters, we refer to Table 6.1.

6.1.1 BiLSTM: with POS tag and not

The first two models have the same structure except for the input, which follows

the same architecture presented in Section 4.1. We input not the full original tweet,

but the “elaborate tweet” which keeps only the words assigned to a dependency

tree from the parser, with the same preprocessing presented in Section 5.4.1, and

eliminating the others. The GloVe embeddings have dimension d = 50.

The first BiLSTM model receives these processed tweets in input, generates

forward and hidden states of dimension d, and then performs classification with an

MLP as in Section 5.4.6.

The second one, called BiLSTM+POS, is the same except for the input, in

which we give the word embeddings concatenated with one-hot vectors of dimen-

sion d′ = 25 representing the POS tags. So, the new tokens’ embeddings in input

have dimension d+ d′, but hidden states of dimension d are always returned.
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6.1.2 Syntactic Encoder

The Syntactic Encoder follows the same structure presented in 5.4. In this section,

we only give the technical details of what is not defined in the relevant section.

We input GloVe embeddings (dimension d = 50) concatenated with the one-

hot vectors for POS tags (dimension d′ = 25). From the BiLSTM, we extract a

sort of “contextual” word embeddings of dimensions 2d. TD-LSTM, BU-LSTM,

and LSTM on tree embeddings receive in input vectors of dimension 2d and output

vectors of dimension 2d too (both hidden state and cell memory). The applied

non-linearities are all tanh functions. Even though we have presented our general

method with possible bias, in our experiments we did not add bias. This could be

an aspect to be tested in future experiments.

Finally, also here we apply the MLP presented in 5.4.6.

6.1.3 BERTweet-based models

We have fine-tuned BERTweet (the pre-trained version provided by Hugging Face1),

on two different types of input: the first which uses the full tweet, replaces only

the usernames with a @user token and links with a http token (as published by

CardiffNLP on Hugging Face2); the second which inputs the “clean” tweet as for the

BiLSTMs in Section 6.1.1, to test the effectiveness of this “clean” version on huge

models (which are capable of capturing information also from elements not syn-

tactically meaningful). We call these two versions of the experiments BERTweet

and BERTweet-Clean (the reader needs to keep in mind that the model structure

is the same). For both, taking the final [CLS] vector representation as output, of

dimension dBERT = 768, we give it as input to a very simple MLP with a first

Fully Connected layer from dimension dBERT to dimension 2d with ReLU activa-

tion function, and finally from dimension 2d to dimension 2 (number of classes)

with tanh activation function (so all our models have a last stage 2d −→ 2 with

tanh function).

6.1.4 Metrics and evaluation

For each experiment, we report Precision, Recall, and F1 score on the Non-Hate/Non-

Toxic (label 0) class, Hate/Toxic (label 1) class, and Macro average. In general, once

1https://huggingface.co/vinai/bertweet-base
2https://huggingface.co/cardiffnlp/twitter-roberta-base-2021-124m
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Model LR Patience Number of Parameters

BiLSTM 0.0001 3 epochs 50× 10
3

BiLSTM+POS 0.0001 3 epochs 60× 10
3

SyntEnc 0.0002 3/4 epochs 370× 10
3

BERTweet 0.00001 60 steps 135× 10
6

BERTweet-Clean 0.00001 60 steps 135× 10
6

Table 6.1: Model details: learning rates, patience (in terms of epochs for simpler

models and terms of steps for BERTweet-based ones), and the number of parame-

ters. Note that for SyntEnc we report two different patience values. This is because

in Intolerance, 3 epochs of patience often lead the model to get stuck at the begin-

ning, and we overcome this limitation by adding one epoch of patience.

we have tested our model on a test set, we count the number of True Positives (TP ),

False Positives (FP ), and False Negatives (FN ) on each class. Then, Precision P ,

Recall R and F1 score are computed as:

P =
TP

TP + FP
(6.1)

R =
TP

TP + FN
(6.2)

F1 = 2
P ∗R

P +R
(6.3)

For Macro average of a score S we mean the average of the score between the

two classes. Assuming S0 value of the score for class 0 and S1 value of the score

for class 1, we compute the Macro average as:

MS =
S0 + S1

2
(6.4)

Differently, the Weighted average takes count also of the number of samples for

each label (let’s call them w0 and w1). Then:

WS =
w0S0 + w1S1

w0 + w1

(6.5)

We do not report the Weighted averages as, in our opinion, they are not useful

for our goals. We are more interested in having good performance in both classes or

even better on the less represented one, instead of only doing well on the most rep-

resented class and worse in the other (which could lead to weighted good scores). In

general terms (and in the literature) the most important result is the Macro average

F1 score (M-F1 score in short). However, in our opinion, looking at it alone is too

limited to get an idea of how the different models work.
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6.2 Results

In this Section, we will show the results on the two main datasets, the functional

tests on HateCheck and some significance tests on Hateval and Intolerance. We

leave the discussion and interpretation to Chapter 7. Here we limit ourselves to

describing what can be seen at a first glance at the tables, without giving an in-

depth explanation of why this happens.

6.2.1 Performance on Hateval

In Table 6.2 we report all the results obtained in mean and standard deviation. As

the reader notes, the Syntactic Encoder outperforms the BiLSTM-based models on

all evaluation metrics (except for the Recall in the Hate class in BiLSTM+POS),

with a relative improvement in terms of M-F1 score of 2.25% compared to the

best BiLSTM. Between BiLSTM-based models, BiLSTM consistently outperforms

BiLSTM+POS. This is surprising from our point of view, because (in this dataset)

the POS tag leads to worst results while adding that information usually leads to

better results.

The BERTweet model is surprisingly the worst on Macro average F1 score. The

results reported in literature3 show that even a well fine-tuned BERTweet model

reaches a lower M-F1 score compared to our BiLSTM and Syntactic Encoder.

Surprisingly, BERTweet-Clean achieves the best result in terms of Macro aver-

age F1 score and in general is always among the best. It outperforms also the best

“historical” BERTweet.

6.2.2 Performance on Intolerance

Table 6.3 shows interesting results on Intolerance dataset. First of all, we can con-

firm that Syntactic Encoder outperforms BiLSTM models in most of the results (but

for the Recall on Toxic Class and in Macro average, BiLSTM models are better, with

a “peak” in BiLSTM+POS). The differences between BiLSTM and BiLSTM+POS

are narrower.

For the Transformer-based models, we can see that they generally get better

results compared to other models. However, Syntactic Encoder is the best on

3https://github.com/cardiffnlp/tweeteval
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HATEVAL Non-Hate Hate

Model P R F1 P R F1

BiLSTM 72.80±0.87 44.40±5.27 54.95±4.11 50.37±1.34 77.17±3.31 60.89±0.52

BiLSTM+POS 72.84±1.00 34.95±4.48 47.05±4.09 47.95±0.97 82.07±2.70 60.50±0.46

SyntEnc 73.71±1.20
46.32±4.39

56.74±3.24 51.25±1.25 77.26±3.01 61.57±0.77

BERTweet 85.92±2.41 23.04±3.60 36.18±4.40 47.32±0.96
94.77±1.37 63.11±0.75

BERTweet-Clean 82.39±1.61 43.43±4.81 56.73±4.27
53.01±1.83 87.27±1.80

65.92±1.27

M-AVG P M-AVG R M-AVG F1

BiLSTM 61.59±0.68 60.78±1.14 57.92±2.08

BiLSTM+POS 60.39±0.69 58.51±1.06 53.77±2.10

SyntEnc 62.48±0.85 61.79±1.09 59.16±1.70

BERTweet 66.62±1.35 58.90±1.41 49.64±2.52

BERTweet-Clean 67.70±1.45
65.35±1.96

61.32±2.71

Table 6.2: Performance of the models on Hateval

INTOLER. Non-Toxic Toxic

Model P R F1 P R F1

BiLSTM 94.85±0.61 87.60±5.34 90.97±2.81 24.24±2.89 39.77±10.40 26.91±1.99

BiLSTM+POS 95.58±0.30 82.62±3.54 88.58±1.97 19.54±2.01 51.91±4.97 28.22±1.79

SyntEnc 94.56±0.61
93.24±3.80

93.84±1.87
28.23±7.62 32.35±10.03 29.32±6.96

BERTweet 96.68±0.58 84.11±7.38 89.77±5.03 25.81±4.96 63.88±5.73 36.42±5.58

BERTweet-Clean 96.86±0.54 85.63±3.52 90.85±1.91 27.02±3.57
64.96±7.12

37.88±3.54

M-AVG P M-AVG R M-AVG F1

BiLSTM 58.04±1.30 63.68±2.78 58.94±1.79

BiLSTM+POS 57.56±0.96 67.27±1.30 58.40±1.77

SyntEnc 61.39±3.94 62.79±3.80 61.58±3.60

BERTweet 61.25±2.64 74.00±4.05 63.09±5.14

BERTweet-Clean 61.94±1.78
75.29±2.65

64.37±2.52

Table 6.3: Performance of the models on Intolerance

Recall and F1 score for the Non-Toxic class and Precision for Toxic class. Fi-

nally, BERTweet-Clean again outperforms BERT (with limited improvements in

this case).

6.2.3 Test on Random trees

We decided to run some tests to evaluate if our Syntactic Encoder looks at the syn-

tactic structure. We compare the test evaluation on the original dependency trees

with a test evaluation in which we take the original dependency trees and we gener-

ate new “random” trees (we keep the same nodes but we generate “random arcs”),

using the same models trained on Hateval and Intolerance on original dependency

trees. The results are visible in Table 6.4 and Table 6.5. To the best of our knowl-

edge, this is the first time that such a type of experiment is proposed to evaluate how

much syntax is involved in the decision process of the model.
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HATEVAL Non-Hate Hate

Model P R F1 P R F1

SyntEnc 73.71±1.20 46.32±4.39 56.74±3.24 51.25±1.25
77.26±3.01

61.57±0.77

Random 72.16±1.40
51.96±4.24

60.28±2.63
52.39±1.21 72.36±3.74 60.71±1.10

M-AVG P M-AVG R M-AVG F1

SyntEnc 62.48±0.85 61.79±1.09 59.16±1.70

Random 62.27±0.87
62.16±0.94

60.50±1.27

Table 6.4: Test performance on dependency trees and random trees, from Hateval

INTOLER. Non-Toxic Toxic

Model P R F1 P R F1

SyntEnc 94.56±0.61 93.24±3.80 93.84±1.87
28.23±7.62

32.35±10.03
29.32±6.96

Random 94.39±0.66
93.64±4.21

93.95±2.05 28.02±7.05 29.74±11.07 27.67±6.51

M-AVG P M-AVG R M-AVG F1

SyntEnc 61.39±3.94
62.79±3.80

61.58±3.60

Random 61.20±3.60 61.69±3.95 60.81±3.27

Table 6.5: Test performance on dependency trees and random trees, from Intoler-

ance

Surprisingly the Macro average F1 score does not significantly decrease, and

in Hateval it improves. However, there is a clear pattern: the Recall on the less

represented class (Hate/Toxic) dropped from 77.3 to 72.4 in Hateval and from 32.3

to 29.7 with an increasing recall in the most represented class (most pronounced in

Hateval, which results in an increasing Macro average F1 score). We refer to the

next Chapter for our interpretation of these interesting results.

6.2.4 Significance tests between BiLSTM and Syntactic Encoder

To validate our results and confirm our hypothesis that the Syntactic Encoder achieves

better results compared to our baselines (BiLSTM models), we have performed two

statistical significance tests between the best BiLSTM model and the Syntactic En-

coder: Wilcoxon’s signed rank test and T-test for the means of two independent

samples of scores. We give a brief introduction to each test and report all the re-

sults.

Wilcoxon’s Signed Rank Test

To evaluate general performance assuming to “match” the results based on the set

random seed (on the 30 experiments, the models share the “sequence” of ran-

dom seeds used), we can use two paired non-parametric tests: the sign test and

Wilcoxon’s signed rank test. In the first case, given a measure, we count how many
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Measure Hateval p-value Intolerance p-value

P-Non-Hate/Non-Toxic 2× 10
−3∗∗

9× 10
−2

R-Non-Hate/Non-Toxic 2× 10
−1

3× 10
−4∗∗

F1-Non-Hate/Non-Toxic 9× 10
−2

2× 10
−4∗∗

P-Hate/Toxic 2× 10
−2∗

3× 10
−4∗∗

R-Hate/Toxic 9× 10
−1

2× 10
−2∗

F1-Hate/Toxic 4× 10
−4∗∗

2× 10
−3∗∗

P-M Avg 4× 10
−4∗∗

4× 10
−4∗∗

R-M Avg 3× 10
−3∗∗

3× 10
−1

F1-M Avg 4× 10
−2∗

1× 10
−3∗∗

Table 6.6: The p-values of Wilcoxon’s signed rank test for the different evaluation

metrics, on both Hateval and Intolerance. We highlight with a single “*” the scores

that passed the test with p ≤ 0.05 and with two “**” those with p ≤ 0.01

times the first model is better than the second and vice versa. The second also pays

attention to the extent of the differences in the different tests. We decided to use

Wilcoxon’s test, and for a more theoretical explanation, we refer to Imam et al.

[2014]. We consider the null hypothesis rejected (“there is no significant difference

in the distribution of the results between the two models”) if p < α, with α = 0.05

Looking at the results in Table 6.6 the difference is significant for Precision

in Non-Hate class, Hate class, and Macro average, then in the F1 score on Hate

class and Macro average regarding Hateval. Instead, in Intolerance, the difference

is significant everywhere except for the Precision on Non-Toxic Class and Recall in

Macro average.

T-test

One criticism of Wilcoxon’s signed rank test is that the assumption on the “paired”

test is too strong. So, to answer that, we perform a parametric test called T-test,

which eliminates this hypothesis and verifies that the distribution between two data

sequences (regardless of the order) is significantly different.

The T-test (also called one-sample t-test) is a parametric test for the null hy-

pothesis “the two independent samples have an identical average (expected values)”.

The standard T-test assumes that the two samples have the same variance. However,

since we are not sure whether this hypothesis is satisfied, there is a variant called

Welch’s T-test which eliminates this assumption. Then the t-statistic is computed
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Measure Hateval p-value Intolerance p-value

P-Non-Hate/Non-Toxic 2× 10
−3∗∗

8× 10
−2

R-Non-Hate/Non-Toxic 1× 10
−1

2× 10
−5∗∗

F1-Non-Hate/Non-Toxic 7× 10
−2

3× 10
−5∗∗

P-Hate/Toxic 1× 10
−2∗

4× 10
−5∗∗

R-Hate/Toxic 9× 10
−1

8× 10
−3∗∗

F1-Hate/Toxic 2× 10
−4∗∗

8× 10
−2

P-M Avg 5× 10
−5∗∗

1× 10
−4∗∗

R-M Avg 1× 10
−3∗∗

3× 10
−1

F1-M Avg 2× 10
−2∗

1× 10
−3∗∗

Table 6.7: The p-values of T-test for the different evaluation metrics, on both Hat-

eval and Intolerance. We highlight with a single “*” the scores that passed the test

with p ≤ 0.05 and with two “**” those with p ≤ 0.01

as

t =
X̄1 − X̄2

√

s2
X̄1

+ s2
X̄1

(6.6)

where X̄i is the mean of random variable Xi and s2
X̄i

is its variance. We retain

the null hypothesis rejected if p < α, with α = 0.05

Looking at the results in Table 6.7, most of the results confirm what we have

seen from Wilcoxon’s signed rank test results. The only difference is in the F1 score

for the Toxic class in Intolerance dataset, which passes Wilcoxon’s test but not the

T-test. The results are also very similar in terms of p-values.

6.2.5 HateCheck

In this section we report the results of the tests proposed by the HateCheck authors

(Röttger et al. [2021]), whose code is publicly available4. We have already detailed

the dataset and its tests in Section 3.2.3. The accuracy of the random predictor,

for all the tests, is considered at 50%. We consider the value of 50% accuracy

as sufficiency threshold, and lower accuracies are considered insufficient. All the

results are reported on average.

4https://github.com/paul-rottger/hatecheck-data
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Functional tests

Looking at Table 6.8, we focused on the functions where some models achieve (also

slightly) sufficient results and the others insufficient. In this category we can see

(we indicate the functions with a format Label/Class/Function): (i) Hate/Deroga-

tion/Negative Attributes, (ii) Hate/Derogation/Dehumanisation, (iii) Hate/Threaten-

ing/As Normative statement, (iv) Hate/Profanity/Hate using profanity, (v) Hate/Pro-

noun Reference/Reference Subsequent Sentence, (vi) Hate/Threatening/Direct Threat.

In (i), the Syntactic Encoder is the only model to achieve sufficiency and in (ii) Syn-

tactic Encoder and BERTweet-Clean reach sufficiency (with the first best). How-

ever, it is difficult to understand whether this is due to the practical ability of the

models to perform correct classification or whether it is just a lucky random choice

(we are near the “random predictor” baseline). In (iii) BERTweet slightly reaches

sufficiency, while Syntactic Encoder and BERTweet-Clean get good results. In (iv)

the Syntactic Encoder is the only one to achieve good results. Finally, in (v) only

the Syntactic Encoder reaches sufficiency, and in (vi) only BERTweet-Clean goes

above sufficiency.

Another observation is that all models go above sufficiency on all the Non-

Hate tasks, and all sequential models do better than the Syntactic Encoder (which,

however, almost always achieves good results) and BERTweet trained on “unclean

inputs” works better than BERTweet-Clean.

In the Hate class (even without considering whether the model reaches suffi-

ciency or not), sequential models struggle more than the Syntactic encoder in al-

most all the tests. BiLSTMs are always outperformed by the Syntactic Encoder,

BERTweet only beats the Syntactic Encoder in one test (Hate/Threatening/Direct

Threat) while BERTweet-Clean outperforms the Syntactic Encoder in 9 tests over

18. Note that in the tasks that can be identified as more “syntax-based” such as those

in Pronoun reference and Phrasing, the Syntactic Encoder has better performance

compared to the others.

Identity and Slur accuracy

Regarding the accuracy on identity groups (from Table 6.9), BiLSTM-based models

do not achieve sufficiency in any of the target groups, while the Syntactic Encoder

performs well in Gay people, Black people, and Immigrants. BERTweet only gets

good results on women, and BERTweet-Clean gets good results on women, Mus-
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Label Class Function #
BiLSTM

+POS
BiLSTM SyntEnc BERTweet

BERTweet

-Clean

Hate

Derogation

Negative Emotion 140 5.1 2.5 25.5 11.8 27.1

Negative Attributes 140 14.0 11.4 52.6 17.1 35.4

Dehumanisation 140 14.3 13.7 52.9 25.6 51.1

Implicit Derog. 140 8.5 7.3 27.0 26.0 39.3

Threatening
Direct threat 133 2.9 1.4 27.2 31.1 59.5

As Normative stat. 140 19.9 13.4 68.8 55.5 81.2

Slur Hate using slur 144 13.5 11.4 38.8 25.2 46.7

Profanity Hate using prof. 140 44.6 41.1 60.5 34.1 43.8

Pronoun

Reference

Ref. in sebseq. clauses 140 25.8 20.4 48.5 29.9 46.5

Ref. in subseq. sent. 133 29.2 25.4 55.2 28.7 46.9

Negation Neg. positive stat. 140 9.9 6.8 40.1 17.7 31.7

Phrasing
Question 140 13.6 11.2 38.0 20.1 31.9

Opinion 133 10.4 6.2 41.3 27.2 39.5

Spelling

Variations

Swaps adjac. char. 133 5.1 3.7 34.0 14.3 35.8

Missing char. 140 9.4 9.6 41.4 21.7 36.2

Missing word bound. 141 3.9 4.1 36.0 22.3 46.0

Add spaces betw. char. 173 2.3 2.2 22.2 10.1 38.2

Leet Speak spellings 173 6.4 5.6 30.9 17.6 38.2

Non-

Hate

Slur
Homonyms of slurs 30 79.0 80.2 56.9 75.9 70.6

Reclaimed slurs 81 76.5 79.9 58.0 86.7 85.0

Profanity Non hate use of prof. 100 94.9 95.2 84.9 95.8 93.5

Negation Neg. hateful stat. 133 91.5 93.7 53.9 93.5 85.2

Group

Identity

Neutral stat. using ident. 126 100.0 100.0 95.0 97.8 93.5

Positive stat. using ident. 189 94.1 96.1 70.6 90.5 85.5

Counter

Speech

Denounce that quote 173 86.1 85.2 65.8 93.0 87.5

Denounce with direct ref. 141 79.8 82.3 60.8 97.6 95.4

Abuse

Target objects 65 94.9 97.4 68.4 98.7 88.8

Target individuals 65 98.7 97.7 79.7 94.7 77.3

Target non-prot. groups 62 93.0 93.4 72.6 91.7 70.6

Table 6.8: Functional test results in HateCheck

lims, and immigrants, where it is the best model (in Black people it obtains slightly

sufficiency and it is outperformed by the Syntactic Encoder).

Instead, observing the accuracy on slurs, Table 6.10 shows that on B*tch all

models struggle (only BiLSTM slightly exceeds 50%), and the Syntactic Encoder

is the only model to show weakness towards another slur (N*gga). Generally,

BERTweet-based models are the best, followed by BiLSTM-based models. The

Syntactic Encoder is always the worst. However, this is expected since this test

regards the Non-Hate/Slur/Reclaimed slurs test, where the Syntactic Encoder is the

only one to struggle.

Identity
BiLSTM

+POS
BiLSTM SyntEnc BERTweet

BERTweet

-Clean

Women 28.8 27.0 42.6 70.0 79.8

Trans people 25.6 24.9 35.5 28.2 33.5

Gay people 38.4 35.6 56.5 34.8 45.2

Black people 37.8 33.7 55.7 35.9 51.8

Disabled people 26.7 26.4 27.2 31.1 37.7

Muslims 26.8 26.2 50.4 40.6 60.1

Immigrants 34.6 33.8 58.1 47.6 63.4

Table 6.9: Identity accuracy results on HateCheck.
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Slur
BiLSTM

+POS
BiLSTM SyntEnc BERTweet

BERTweet

-Clean

N*gga 59.1 64.2 40.2 100.0 99.8

F*g 93.1 92.9 74.8 100.0 99.4

F*ggot 95.6 94.2 71.0 100.0 99.8

Q*eer 98.9 98.0 79.1 100.0 100.0

B*tch 38.2 52.4 27.6 28.2 20.2

Table 6.10: Slur accuracy results on HateCheck.
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Discussion

In this Chapter we report our interpretations of the results, dividing them into two

sections: in the first, we give our conclusions from the experiments and possible

interpretations, in the second we highlight our opinions and more general consider-

ations. Finally, we provide some ethical considerations.

7.1 Interpretation of the results

In this Section, we provide our interpretations for the results presented in Chapter

6. In Section 7.1.1 we present the comparison between the Syntactic Encoder and

its baselines. Then, in Section 7.1.2 we discuss the results around the random trees

test (presented in Section 6.2.3). Finally, we will discuss the effect of tweet prepro-

cessing in BERT (Section 7.1.3) and the reflections from the results on HateCheck

tests (Section 7.1.4).

7.1.1 Comparison BiLSTMs and Syntactic Encoder

From the results reported in Table 6.2, Table 6.3 and from the significance tests in

Table 6.6 and Table 6.7 one conclusion is clear: the Syntactic Encoder has better

performance compared to BiLSTM-based models in terms of F1 score, relative to

each class and in Macro average (for M-F1 score, the relative improvement from

BiLSTM to Syntactic Encoder is 2.1% in Hateval and 4.5% in Intolerance). This

holds across both datasets, and the significance tests show that this improvement is

significant (in distributive terms), except for F1 score in Non-Hate class in Hateval
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and F1 score in Hate class in Intolerance (however, they still have low p-values).

These results suggest that the exploitation of the syntactic tree is effective in ex-

tracting information for toxicity detection. However, the Syntactic Encoder has

approximately from 5 to 6 times more parameters than BiLSTMs models, so we

need more testing to confirm that the Syntactic Encoder actually is focusing on the

syntactic information (Section 7.1.2) or that the models are focusing on different

aspects of the language (Section 7.1.4). This last point is particularly useful for the

future, to think about how to combine the strengths of different models which per-

form well in tasks that the others struggle with.

From the results on Intolerance (Section 6.2.2), Syntactic Encoder seems to

work best in the case of training on datasets with few “Toxic” samples, consistently

outperforming both BiLSTM models on each class. This suggests that in case of

scarce data, the Syntactic Encoder is able to find useful information to perform the

classification task. However, due to the very low results that all models get on the

Toxic class (we remind the reader that this dataset provides only a few hundred

examples of Toxic tweets) more tests are needed.

Between the BiLSTMs, it is interesting to see that the addition of the POS tag

information leads to worse results. This is much more evident in Hateval’s results

with respect to Intolerance, with a relative decrease of 7.1% in the first and 0.92%

in the second one. This result suggests two points: (i) the improvement on the

syntactic encoder is not due to POS tags; (ii) the POS tag can probably lead the

model to overfit over a combination of word-POS, and therefore performs worse in

generalization than the base BiLSTM.

Finally, in Hateval, BERTweet model (without cleaning) both in our experiment

and in the ranking reported by third party1 is consistently outperformed (the relative

improvement is 19.2% from our BERTweet version to Syntactic Encoder and 4.9%

to the third-party BERTweet), despite BERTweet has about 103 times more param-

eters. However, the cleaning activity led BERTweet to beat the Syntactic Encoder

(3.7% relative improvement). This is an interesting result which suggests that, es-

pecially on this dataset, the removal of the elements in the tweets not assigned to

any dependency tree is a very effective procedure. We will discuss more about this

in Section 7.1.3.

1https://github.com/cardiffnlp/tweeteval
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7.1.2 Considerations on Syntax

In Section 6.2.3 we presented a test to see if our model is relying on topological

features or not, inspired by discussions on the subject (we talked about this problem

in Section 5.5). As we have reported, the results are surprising and there is no single

interpretation. We can identify three main hypotheses:

• the dependency parser makes many mistakes. In this case, the model is forced

to overcome such a noise and still leads to good results if we pass in input

random trees and not dependency ones.

• The syntax does not matter in this task. However, due to the differences in

results, the model seems to base decisions on topology.

• When we input a random tree and the model is “confused” by the topology, it

tends to output the most represented class (Non-Hate/Non-Toxic).

We believe that the third answer is the right one for several observations. First

of all, in both datasets, we can see a decrease in the Recall of the Hate/Toxic class

and an increase in the Recall of the Non-Hate/Non-Toxic class, with a decrease as

well in the Precision in the latter class. The model decision, in this way, could

be based more on the “distribution” of data instead of being based on topological

features. This also leads (across both datasets) to an increasing F1 score on the Non-

Hate/Non-Toxic class and a decrease in the Hate/Toxic one. We agree however that

in this case, looking only at the Macro average F1 score is an understatement.

To verify this, we need further analyses. One idea may be to exploit datasets

where we know that specific different syntactic structures are present, for example,

derived from minority dialectical variations (such as African American English),

which are known to be harmed by classic Hate Speech Detection systems (as re-

ported by Sap et al. [2019]) and check if we are able with the syntax to overcome

such obstacles and repeat this test.

To the best of our knowledge, we are the first to perform such a test. In the

future, it can be a standard test to see if a model is based on syntactic structures for

the task we intend to perform. The risk deriving from not performing these tests is

to invest time and effort in the design of models capable of processing the syntactic

structure, even obtaining good results, and then to discover that they do not exploit

this structure and simpler models (e.g., sequential ones with particular adjustments)

can achieve the same results.
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7.1.3 Clean inputs for BERT

Another surprising result we noticed in both Section 6.2.1 and Section 6.2.2 is that

the BERTweet trained on clean inputs (by the dependency parser, as explained in

Section 6.1.3) always outperforms BERTweet trained on the entire tweet, with a

tremendous improvement on Hateval. Here too there are several possible inter-

pretations, but despite the fact we are removing elements that may contain useful

information (e.g., hashtags, reactions, punctuation, etc.) the results are better. This

is promising for the future, where we can apply a Syntactic Encoder over BERTweet

embeddings (more on this in Section 8.1).

One possibility is that hashtags and other non-syntactic elements (like emojis)

work as “triggers” for detecting hate speech, leading to overfitting very quickly.

Removing them allows BERTweet to rely only on linguistic elements and generalize

better.

7.1.4 Analysis on HateCheck

From Hatecheck we have the most important demonstration that the Syntactic En-

coder looks at the linguistic aspect differently than the other four sequential models

(BiLSTM, BiLSTM+POS, BERTweet, BERTweet-Clean). The two BiLSTMs be-

have similarly and in the Hate category, BERTweet is always noticeably beaten

by BERTweet-Clean. The Syntactic Encoder shows very different results than the

others as outlined in Section 6.2.5. Similar considerations can be made in the Non-

Hate category (only BERTweet-Clean has a different behavior from BERTweet on

the functional tests of the Abuse class).

The results suggest that Sequential Models perform very well in detecting Non-

Hate samples and struggle on the Hate samples. On the other hand, Syntactic

Encoder hardly achieves results above 80% in Non-Hate (only in two cases) but

rarely reaches results below 30% in the Hate Class. Also in HateCheck, the best

compromise comes from BERTweet-Clean. However, it is interesting to see a pos-

sible future model able to combine the advantages of the Syntactic Encoder and

BERTweet-Clean has the potential to achieve relevant scores. Further analyses are

also needed to understand whether sequential models can predict Non-Hate sam-

ples for a particular capability or if they are just lucky cases (and less lucky in the

Non-Hate category).

66



Chapter 7 7.2. HIGHLIGHTS

Another point to highlight is that relating to the more “syntactic” (intuitively)

tasks, which are (i) the tests from the Pronoun Reference class, with test sentences

like “I have met many [IDENTITY] and I hate every single one of them” and “Of

course they are stupid. They are just [IDENTITY] after all”, (ii) the tests from

Negation tests, with tests like “[IDENTITY] lives do not matter.” for Hate tests and

“No [IDENTITY] deserves to die.” for Non-Hate Case, (iii), Phrasing tests, such

as “Why is it that all [IDENTITY] are repulsive?” and “I think that [IDENTITY]

should all be killed.”, and finally (iv) Counter Speech with a quote like “Statements

like “[IDENTITY] are scum” are deeply hurtful.” In all these “syntactical” tests

based on Hate samples, the Syntactic Encoder outperforms all other models, in-

stead as pointed out above in the Non-Hate Class it is the worst (always being above

50%), struggling in Negation/Negate hateful statement and with a fairly good score

in Counter Speech with a quote (one of its best on Non-Hate Class).

To understand why Syntactic Encoder struggles with Non-Hate/Negation/ Negate

hateful statement, we have looked at the single predictions in the different runs, and

we can identify some specific patterns over which the models almost always predict

the wrong labels. These are templates of the type “ We must not let [IDENTITY]

be attacked any longer.” and “[IDENTITY] do not deserve to be tortured like that.”.

However, as the reader can see in Figure 7.1, the parser does not seem to produce

wrong dependency trees, so the problem relies on the level of the classifier (proba-

bly not enough examples in the training set similar to these cases).

We can generally interpret these results as a clear effect of observing the syntax

(5 of the 9 Hate tests in which Syntactic Encoder is the best are the “syntactic” Hate

tests). However, we need further analyses in the future, possibly with heatmaps on

trees or other solutions from the interpretability framework.

7.2 Highlights

In this Section we briefly report the “take home” messages of our experiments. We

are aware that this is only a first step in the Toxic Language problem with Syntactic

information. But the variety of experiments presented and the open directions will

be fundamental for future works.
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Figure 7.1: Dependency trees obtained from HateCheck templates that Syntactic

Encoder mostly classified wrongly, from Non-Hate/Negation/Negate hateful state-

ment class.

7.2.1 Does syntax provide useful information?

In our opinion, one result is clear: the model trained on dependency trees with

the ability to explore tree structures works better than our baselines (the BiLSTMs).

The question which now we cannot answer (or at least prove) is: is such information

which improves the results coming from the syntax? In our opinion, yes, especially

because of HateCheck test results.

However, the Random trees test leaves us with some doubts, and further anal-

yses are needed, with datasets that can provide us with a clear picture of the phe-

nomena and test different syntax-based models. The fact that possibly our Syntactic

Encoder turns out not to rely on the syntax does not mean that syntax is useless in

Toxicity Detection, but only that our model is unable to capture this linguistic as-

pect. Denying the utility of syntax is a strong statement that needs more experiments

and more variety of models.

7.2.2 Number of parameters

We have not focused too much on comparing BERTweet models to the BiLSTM

models and Syntactic Encoder for two main reasons: the number of parameters
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(BERTweet provides approx. 103 times more parameters than other models) and

due to pre-training (so BERTweet has already learned how to represent words and

sentences thanks to the Masked Language Modeling and Next Sentence Prediction

tasks). Our goal in running experiments with BERTweet was to provide results

from a model that we already know has the potential to work very well on a wide

range of tasks with minimal changes. Given the results of the Syntactic Encoder, a

question naturally arises: what can happen if we create a Syntactic Encoder with a

comparable amount of parameters?

We would like to underline that, despite the fact we do not reach excellent

scores, the amount of parameters is really low (everyone can train such a model

on basic machines). We are therefore satisfied with our results, and with careful

hyperparameter optimization, we think we can even improve this model.

7.2.3 BERT alone is not enough

Once again we want to emphasize here the amazing result that just cleaning the input

is enough to improve the performance of the BERTweet model. A little preprocess-

ing step lead to a huge improvement on a well-known dataset that we are already

aware of that BERTweet struggles (Hateval), without much effort on hyperparam-

eter optimization. This suggests that instead of just focusing on hyperparameters

for training BERTweet (learning rates, batch sizes, etc.), input processing or other

processes outside of the “BERT system” can be effective, especially in tasks where

BERT-based models struggle too. We hope in this way to give a direction for future

research.

7.3 Ethical aspects

Toxicity Detection is full of “side effects” from an ethical point of view (and we

have already shown some of these problems). The idea behind the exploitation

of syntactic trees arises also as a response to the problems that come from the

widespread use of Transformer-based models. The BiLSTM provides us with more

interpretable models (the matrices are relatively small and this allows us to do dif-

ferent analyses, for example, see the output at each step, etc.), but the main risk

of BiLSTM is that they can act as a “trigger model”, where as soon as a specific

word or group of consecutive words appears, the decision is made. The Syntactic

69



7.3. ETHICAL ASPECTS Chapter 7

Encoder has the potential to not work in this way because it moves on two dimen-

sions (word order and syntactic tree), allowing for a more interesting process of the

sentence. However, to make sure the syntax is exploited, we have to analyze how

the classification is done, not only during the design of the model (as pointed out

in Section 7.1.2) but also in a possible real application. We have the potential to

tell which tweets are toxic and why, just by examining whether there is a particular

syntactic interpretation (which serves as a representation of the meaning) that led

our classifier to label that specific tweet as toxic and deliver it to the user (who has

a direct explanation) or to a human operator, who confirms or rejects the classifier

decision also based on the explanation of the model.

Especially the second option is really interesting. We cannot fully rely on Deep

Learning models to detect toxic and non-toxic messages, but we need a human being

supervisor aware of social aspects (e.g., language used within minorities, satirical

posts, etc.) to understand if a model is becoming obsolete or not. Another point

is that if we block any content detected as toxic we can fall into the problem of

censorship and cause polarization, and distrust, as if there was an entity that controls

every single post. This has several psychological and social effects that we need to

address. The Counter-narrative (Section 2.3) might be an effective response, but the

research is still in an early stage. So at the moment, we have to decide what to do:

block every single toxic message (even with human supervision) or let some (minor)

toxic messages circulate on the Social Platform, believing that other users will carry

out the counter-speech activity (deciding not to block such posts on the base of

toxicity scores, Social context, etc.). This is a very challenging aspect without a

“right answer”, but we are aware that the “do nothing” solution is among the worst.
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Conclusion

This Thesis provides some interesting suggestions for future research. We have just

scratched the first layer of what could be a research topic with high potential. So, in

this final chapter, we will first provide some ideas for future work to answer some

questions that have arisen in previous chapters and a brief summary of what we

have done, seen, and explained.

8.1 Future work

Our experiments still leave some questions. First of all, does syntax matter? For

this problem, we need a lot more experiments and curated data on which to base our

future interpretations. Finding an answer to this question is fundamental because

the debate in the community is still alive (and forms real “schools of thought”).

Another future direction of this work is to perform a more careful hyperpa-

rameter optimization step, possibly focusing only on three models (e.g., BiLSTM,

Syntactic Encoder, BERTweet-Clean) or more extensive experiments with more re-

sources (human, time, and computational resources).

One of the biggest problems in our Syntactic Encoder is also the use of static

word embeddings and “handcrafted” preprocessing, which is weak in the context of

Social Networks communications. Since we have shown here that the tree structure

can lead to a useful representation, we need to test a version based on BERTweet

embeddings. We have high expectations of such a model, because of the results of

Syntactic Encoder and BERTweet-Clean, and we can overcome possible errors due

to unknown words, etc.
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Finally, we must perform the interpretation of the decisions of the classifier.

This can be made using “heatmaps” on the syntactic trees (as in Mastromattei et al.

[2022]), for both technical aspects (what our classifier looks at) and ethical (why

this tweet is toxic).

8.2 Summary

In this work, we tried to leverage Recursive Neural Networks (RecNN) on depen-

dency trees for online-toxicity detection on Twitter, by creating a new model from

scratch, and by doing that we now have the technical ability to perform a broad

range of experiments. Here we have reported some simple (but effective) tests on

two datasets (one for hate speech only, the other for toxic/intolerant language) with

some simple baselines (BiLSTMs) and more advanced models (BERTweet-based),

showing that our model significantly outperforms the baselines (in terms of Macro

average F1 score) in both datasets tested, and further analysis on HateCheck con-

firms that the Syntactic Encoder gives different results in different “linguistic con-

text” compared to the model that works on sequential representations. On the other

hand, we cannot guarantee that what gives improvements and interesting results

to the model is the syntactic information because of our experiments on Random

Trees. To the best of our knowledge, we are the first to propose this type of analy-

sis, which is important to understand how syntactic models work, in our opinion.

We have proposed an analysis pipeline that can be followed in the future to test

other variants of syntax-based models, to show the performance on hate speech/

toxicity detection, and to perform a first step of interpretability.

Given all these considerations, more than “exploiting dependency trees in tox-

icity detection is effective” our claim is “exploiting models trained on dependency

trees in toxicity detection is effective”. The first consideration is much more general

than the second and needs more results than “simple” scores on datasets. However,

if in the future anyone will show that syntax is an important feature in this task,

a new research scenario would open up. We believe the answer lies in the combi-

nation of more advanced models (Transformer-based), really powerful but difficult

to interpret, with more “guided” solutions (such as our RecNN, which has to tra-

verse dependency trees, from root to leaves and then bottom-up from leaves to root),

mixing the benefits of the two approaches.
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Appendix A

Code implementation

A.1 Dataset

We attach the code to create the dataset for the Syntactic Encoder. Several func-

tions are needed to do padding procedures and manage the data for parallelization

purposes. In input, we give GloVe embeddings’ vocabulary, sequence of words (di-

vided in trees), POS tags (corresponding to the words), the maximum dimension of

a dependency tree (in terms of nodes), the maximum number of trees for a single

tweet, the original tweets (for visualization purpose) and the labels. We need to

explicitly define the order for visiting the trees and keep track of the parent of each

node. An important trick is to, given a node n, represent in “reverse order” n’s chil-

dren in the visiting order, in this way we can exploit the same “visit order” vectors

both for the top-down procedure and bottom-up one.

import torch

from torch.utils.data import Dataset

import utils_proc

class TweetStructure(Dataset):

def __init__(self, glove, words, poss, parents, max_len_tree, max_roots, tweets, labels):

#input to TreeLSTM

visit_order, parent_visit_order = utils_proc.visit_tree(parents) #take vectors for order of visiting

#preprocess step, padding: same number of trees for each tweet, same number of nodes for each tree

self.words, self.poss, self.visit_order, self.parent_visit_order, self.pad_mask_trees, self.

pad_glove_phrase = \

utils_proc.preprocess(words, poss, visit_order, parent_visit_order, max_len_tree, max_roots)

w_emb = glove #take glove dictionary

pad = torch.Tensor.zero_(torch.Tensor(2, 50))

#add two dummy vectors to glove, because of padding indeces (-1)

self.glove = torch.cat((w_emb, pad), dim=0)

#keep list of tweets, for further analysis

self.tweets = list()

for t in tweets:

self.tweets.append(preprocess(t))

#labels
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self.labels = labels

def __len__(self):

return len(self.tweets)

def __getitem__(self, idx):

#take tweet

tweet = str(self.tweets[idx])

#initialize embeddings

emb = []

#keep list of words with no glove embedding associated. We decided to replace it with the avg of

embeddings

unk = list()

#for each tree

for tree in self.words[idx]:

emb_tree = []

#initialize avg value

avg = self.glove[0] * 0

count = 0

#for each word inside the tree

for word_idx in range(len(tree)):

#append the embedding from glove. Thanks to two dummy dimensions added previously, if a word

has no GloVe embeddings it takes a Zero Tensor

emb_tree.append(self.glove[tree[word_idx]])

#collect sum over the phrase

avg += self.glove[tree[word_idx]]

#if index == -1 (no embedding associated), take trace of its index

if tree[word_idx] == -1:

unk.append(word_idx)

else:

count +=1 #otherwise count the value

for w in unk: #replace embeddings of unknown words with the avg of other embeddings

emb_tree[w] = avg/count

#"Stack everything"

emb_tree = torch.stack(emb_tree)

emb.append(emb_tree)

emb = torch.stack(emb)

return{

’tweet_text’: tweet, #original tweet

’emb’: emb, #embeddings

’poss’: torch.Tensor(self.poss[idx]), #POS tags

’pad_glove_phrase’: torch.Tensor(self.pad_glove_phrase[idx]), #"mask" for recognizing pad values

from not pad values (like attention mask in BERT)

’visit_order’: torch.Tensor(self.visit_order[idx]), #extract visit order

’parent_visit_order’: torch.Tensor(self.parent_visit_order[idx]), #parent of node visited

’pad_mask_trees’: torch.Tensor(self.pad_mask_trees[idx]), #pad mask for trees

’labels’: torch.Tensor([self.labels[idx]]) #labels

}

A.2 Syntactic Encoder

We report here the code for the Syntactic Encoder implementation. The elements in

input are the ones shown in the previous Section.
import torch as torch

import torch.nn as nn

import torch.nn.functional as F

class TweetToxicityClassifier(nn.Module):

def __init__(self,

size,

num_classes,

vocab,

device,

):

82



Appendix A A.2. SYNTACTIC ENCODER

super(TweetToxicityClassifier, self).__init__()

#TreeLSTM structure

self.size = size #size of input embeddings

self.device = device #cuda or cpu

#BiLSTM parameters run at the very beginning

self.forward_bilstm = torch.nn.LSTMCell(size+25, size, bias=False).to(self.device)

self.backward_bilstm = torch.nn.LSTMCell(size+25, size, bias=False).to(self.device)

#LSTM from root to leaves

self.cell_topdown = torch.nn.LSTMCell(2*size, 2*size, bias=False).to(self.device)

#LSTM over children of the same parent

self.cell_bottomup = torch.nn.LSTMCell(4*size, 2*size, bias=False).to(self.device)

# "move up" parameters, which take last vectors of the children sequence to the parent

self.move_up = nn.Linear(2*size, 2*size, bias=False).to(self.device)

self.move_up_init = nn.Linear(2*size, 2*size, bias=False).to(self.device)

self.act_move_up = nn.Tanh()

#final LSTM, over different tree embeddings of the same tweet

self.act_root = nn.ReLU()

self.root_to_sent = nn.Linear(2*size, 2*size, bias=False)

self.sentence_lstm = torch.nn.LSTMCell(2*size, 2*size, bias=False).to(self.device)

#for POS tagging, 25 one-hot vectors [0,24] + a zero tensor, as padding value

self.one_hot_pos = torch.cat((F.one_hot(torch.Tensor(range(25)).long(), num_classes=25), torch.Tensor.

zero_(torch.Tensor(1, 25)))).to(self.device)

#final linear transformation, before softmax (our MLP)

self.drop = nn.Dropout(p=0.1)

self.act_mlp = nn.ReLU()

self.act_mlp2 = nn.Tanh()

self.linear1 = nn.Linear(2 * size, 50)

self.linear2 = nn.Linear(50, 100)

self.linear3 = nn.Linear(100, 2)

self.softmax = nn.Softmax(dim=1).to(self.device)

def forward_syntax(self, batch_size, n_trees, n_tokens, word, pos, visit_order, parent_visit_order,

pad_mask_trees, pad_phrase):

#initialize tensor to store final representation

syntax_vector = torch.Tensor.zero_(torch.Tensor(batch_size, 2 * self.size)).to(self.device)

#from [tweet, tweet_trees, node] to [trees, node], for each type of data

word = word.reshape(batch_size * n_trees, n_tokens, self.size)

pos = pos.reshape(batch_size * n_trees, n_tokens)

visit_order = visit_order.reshape(batch_size * n_trees, n_tokens)

parent_visit_order = parent_visit_order.reshape(batch_size * n_trees, n_tokens)

pad_phrase = pad_phrase.reshape(batch_size*n_trees, n_tokens)

#tensor to access to different items

std = torch.Tensor(range(len(word))).long().to(self.device)

#initialize BiLSTM vectors, where to store "processed" vectors

#two more tensor at the end because of padding (-2 and -1 are padding values, for root and parent of

pad nodes)

e_vect_forw = torch.Tensor.zero_(torch.Tensor(len(word), len(word[0]) + 2, self.size)).to(

self.device)

e_vect_back = torch.Tensor.zero_(torch.Tensor(len(word), len(word[0]) + 2, self.size)).to(

self.device)

# HERE I PUT THE BiLSTM PROCEDURE

#initialize cell memory and h vector

h = torch.Tensor.zero_(torch.Tensor(len(word), self.size)).to(self.device)

c = torch.Tensor.zero_(torch.Tensor(len(word), self.size)).to(self.device)

#FORWARD LSTM

for i in range(len(word[0])):

83



A.2. SYNTACTIC ENCODER Appendix A

input = torch.cat((word[:, i, :], self.one_hot_pos[pos[:, i].long()]), dim=1) #concat [word_embed,

pos_embed]

h, c = self.forward_bilstm(input, (h, c))

p = pad_phrase[:,i].reshape(batch_size * n_trees, 1)

# if it is padding value, drop to zero h and c

h = h * p.expand(-1, h.size()[1])

c = c * p.expand(-1, c.size()[1])

#store h value in the relative position

e_vect_forw[:, i] = h

#initialize cell memory and h vector

h = torch.Tensor.zero_(torch.Tensor(len(word), self.size)).to(self.device)

c = torch.Tensor.zero_(torch.Tensor(len(word), self.size)).to(self.device)

#BACKWARD LSTM

for i in reversed(range(len(word[0]))):

input = torch.cat((word[:, i, :], self.one_hot_pos[pos[:, i].long()]), dim=1)

h, c = self.backward_bilstm(input, (h, c))

p = pad_phrase[:,i].reshape(batch_size * n_trees, 1)

h = h * p.expand(-1, h.size()[1])

c = c * p.expand(-1, c.size()[1])

e_vect_back[:, i] = h

#concat FORWARD RESULT and BACKWARD RESULT

e_vect = torch.cat((e_vect_forw, e_vect_back), dim=2).to(self.device)

# TOP-DOWN-FILTERING

# resulting representation for each word from TOP-DOWN filtering

# 2 dummy vectors, useful for PAD elements and "parent of the root" and parent of pad nodes.

s_vect = torch.Tensor.zero_(torch.Tensor(len(word), len(word[0]) + 2, 2 * self.size)).to(

self.device)

# tensor to save memory-cells in the RecNN for each word from TOP-DOWN filtering

c_vect = torch.Tensor.zero_(torch.Tensor(len(word), len(word[0]) + 2, 2 * self.size)).to(self.device)

#follow visit ordering fixed in the dataset, previous state is stored in the parent position (for both

s and c)

for i in range(len(word[0])):

vo = visit_order[:, i].long()

pvo = parent_visit_order[:, i].long()

s_vect[std, vo], c_vect[std, vo] = self.cell_topdown(e_vect[std, vo], (s_vect[std, pvo], c_vect[

std, pvo]))

#initialize vectors for BOTTOM-UP procedure

h_vect = torch.Tensor.zero_(torch.Tensor(len(word), len(word[0]) + 2, 2 * self.size)).to(

self.device)

c_vect = torch.Tensor.zero_(torch.Tensor(len(word), len(word[0]) + 2, 2 * self.size)).to(self.device)

pad = torch.Tensor.zero_(torch.Tensor(len(word), 2, 2 * self.size)).to(self.device)

#first initialization: take vector from TOP-DOWN procedure and pass all to the "move up" network: in

this way, leaves are initialized

x_init_vect = self.act_move_up(self.move_up_init(torch.cat((s_vect.clone(), pad), dim=1)))

x_vect = x_init_vect.clone()

# BOTTOM-UP PROCEDURE

#visit in "reverse" order

for i in reversed(range(len(word[0]) - 1)):

vo = visit_order[:, i + 1].long()

pvo = parent_visit_order[:, i + 1].long()

#take h and c from previous child in children chain (store in father position), take x from the

child in exam

h_vect[std, pvo], c_vect[std, pvo] = self.cell_bottomup(torch.cat((s_vect[std, pvo], x_vect[std,

vo]), dim=1),

(h_vect[std, pvo], c_vect[std, pvo]))

#update x every time

x_vect[std, pvo] = self.act_move_up(self.move_up(h_vect[std, pvo]))

# OUTPUT: x vector assigned to the #batch_size roots

x = x_vect[std, visit_order[:, 0].long()]

# transform from [trees, vector] to [tweets, tweet_trees, vector]

x = x.reshape(batch_size, n_trees, 2 * self.size)

#Final LSTM!

c = torch.Tensor.zero_(torch.Tensor(x.size()[0], 2 * self.size)).to(self.device)
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for i in range(x.size()[1]):

syntax_vector, c = self.sentence_lstm(self.act_root(self.root_to_sent(x[:, i, :])), (syntax_vector

, c))

syntax_vector = syntax_vector * pad_mask_trees[:, i].expand(x.size()[0], 2 * self.size)

c = c * pad_mask_trees[:, i].expand(x.size()[0], 2 * self.size)

return syntax_vector

def forward(self, word, pos, visit_order, parent_visit_order, pad_mask_trees, pad_phrase):

# EXTRACT TREE EMBEDDING

# index for each element of the batch

#size of the single BATCH

batch_size = word.size()[0]

#number of trees for each tweet

n_trees = word.size()[1]

#number of tokens for each tree

n_tokens = word.size()[2]

#extract tweet "syntactic" embedding and give it in input to final MLP

class_vector = self.forward_syntax(batch_size, n_trees, n_tokens, word, pos, visit_order,

parent_visit_order, pad_mask_trees, pad_phrase)

output1 = self.drop(self.act_mlp(self.linear1(class_vector)))

output2 = self.drop(self.act_mlp(self.linear2(output1)))

logits = self.act_mlp2(self.linear3(output2))

return self.softmax(logits)
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