
University of Padua

Department of Information Engineering

Master degree in Computer Engineering

Low Obstacles Avoidance for Lower Limb

Exoskeletons

Supervisor Candidate

Prof. Emanuele Menegatti Edoardo Trombin

Co-Supervisor

Dr. Stefano Tortora

July 18, 2022

Academic Year 2021-2022

Abstract

Powered lower limb exoskeletons (LLEs) are innovative wearable robots that

allow independent walking in people with severe gait impairments, or even

to augment lower limb capabilities of able-bodied users. Despite the recent

advancements, the use of this promising technology is still restricted to con-

trolled research/clinical settings; uptake in real-life conditions as a device to

promote user independence is still lacking. The main reason behind this lim-

itation can be traced back to the lack adaptability of LLEs to the different

walking conditions that may be encountered in real world settings: the ma-

jority of LLEs relies on predefined gait trajectories and is generally unaware

of the environment in which gait occurs. This means that the control bur-

den is entirely on the user, resulting in an increased physical and cognitive

workload.

This thesis aims at overcoming the aforementioned limitations by propos-

ing a novel approach to enhance the autonomy of the LLEs. In particular,

the proposed method has the purpose of estimating the optimal gait trajec-

tory of the exoskeleton in order to autonomously avoid low obstacles on the

ground. By using a depth camera coupled with a Computer Vision software

module, the environment is sensed to detect the ground plane and obstacles

that might interfere with the forward motion, in order to predict the follow-

ing foothold. Then, an iterative-based collision-free foot trajectory generator

ii

(CFFTG) algorithm is proposed to calculate the optimal foot motion and

the joints’ angles to be sent to the exoskeleton low-level controllers.

Experimental tests have been carried out in simulation to evaluate both the

CV module and the CFFTG based on real data, showing successful perfor-

mance in different scenarios. In addition, the assumptions that have been

considered in this work make the proposed approach compatible with the

majority of exoskeletons in research and on the market.

I believe that re-thinking exoskeletons as semi-autonomous agents will repre-

sent not only the cornerstone to promote a more symbiotic human-exoskeleton

interaction but may also pave the way for the use of this technology in the

everyday life.

Contents

Abstract . i

List of Figures . vi

List of Tables . vii

List of Acronyms . x

1 Background 1

1.1 What is an Exoskeleton . 1

1.2 History of Exoskeletons . 2

1.3 Lower Limb Exoskeletons . 6

1.4 Related Work . 16

1.5 Thesis Aims and Structure . 19

2 Methods 21

2.1 Problem Description . 21

2.2 Overview . 22

2.3 Computer Vision Module . 23

2.3.1 Input Point Cloud . 24

2.3.2 User Parameters . 25

2.3.3 Filtering . 26

2.3.4 Ground Plane Detection 27

2.3.5 Homogeneous Transformation 29

iv CONTENTS

2.3.6 FootHold Identification 34

2.3.7 Minimum Distance Parameter 40

2.4 Collision-Free Foot Trajectory Generator 41

2.5 Exoskeleton Kinematic Model 48

3 Experiments and Results 57

3.1 Experimental Setup . 57

3.2 Experiments . 61

3.3 Evaluated Metrics . 62

3.4 Results . 63

4 Discussion 81

5 Conclusions 87

References 89

Acknowledgements 101

List of Figures

1.1 Example of full-body Exoskeleton [1] 2

1.2 General classification model for exoskeletons [2] 3

1.3 Hardiman Suit [3] . 4

1.4 A temporal overview of LLEs research [4] 7

2.1 A general scheme of the proposed solution. 24

2.2 An example of input Point Cloud visualized in RViz 25

2.3 Transformations between frames 30

2.4 Functions involved in Tracks Evaluation 35

2.5 Example of CFFTG iterations 41

2.6 Simplified scheme of the kinematic model.

The swing leg is depicted in red, the support leg is depicted

in blue. 48

2.7 Crank Connecting Rod Scheme for support leg 51

2.8 Scheme used to calculate knee and heel position 53

3.1 Simplest type of LLE [5] . 57

3.2 Setup employed for the experiments 58

3.3 RGB Images of the experimental environments 64

3.4 Filtered Clouds (Sagittal Plane) 66

3.5 Filtered Clouds (Horizontal Plane) 67

vi LIST OF FIGURES

3.6 Clouds after Obstacle Detection and Homogeneous Transfor-

mation (Sagittal Plane) . 69

3.7 Clouds after Obstacle Detection and Homogeneous Transfor-

mation (Horizontal Plane) . 70

3.8 Clouds after the whole CV module is applied (Horizontal Plane). 72

3.9 Visualization of the expected step kinematics. The support

leg is depicted in blue, the swing leg is depicted in red. The

Y-axis is shifted to place the swing’s foot centroid in 0. 74

List of Tables

1.1 Assistive Lower Limb Exoskeletons 15

3.1 Experimental Data (a) . 75

3.2 Experimental Data (b) . 76

3.3 Experimental Data (c) . 77

3.4 Experimental Data (d) . 78

3.5 Experimental Data (e) . 79

3.6 Experimental Data (f) . 80

viii LIST OF TABLES

List of Acronyms

CFFTG Collision-Free Foot Trajectory Generator.

CoM Center of Mass.

CoP Center of Pressure.

CV Computer Vision.

DC Direct Current.

DoF Degrees of Freedom.

EEG Electroencephalography.

EMG Electromyography.

FSM Finite State Machine.

HT Homogeneous Transformation.

IMU Inertial Measurement Unit.

LLE Lower Limb Exoskeleton.

PCL Point Cloud Library.

x List of Acronyms

PID Proportional Integrative Derivative.

RANSAC Random Sample Consensus.

RGO Reciprocating Gait Orthosis.

ROS Robot Operating System.

1 | Background

1.1 What is an Exoskeleton

A powered exoskeleton is a robotic device that is worn over all, or part,

of the human body, powered by a system of electric motors, pneumatics,

levers, hydraulics or a combination of cybernetic technologies, to provide

ergonomic structural support, while allowing for sufficient limb movement

with increased strength and endurance [6]. The exoskeleton is designed to

provide better mechanical load tolerance, and its control system aims to

sense and synchronize with the user’s intended motion. In some applications,

exoskeletons are also used to protect the user’s shoulder, waist, back and

thigh against overload, and to stabilize movements when lifting and holding

heavy items [7]. An example of full-body exoskeleton developed to move the

limbs of users affected by tetraplegia is showed in figure 1.1.

A powered exoskeleton differs from a passive exoskeleton, as the latter

has no intrinsic actuator and relies completely on the user’s own muscles for

movements, adding more stress and making the user more prone to fatigue,

although it does provide mechanical benefits and protection to the user, since

it is usually designed using materials, springs or dampers with the ability to

store energy from human movements and release it when required. This also

explains the difference of an exoskeleton to orthotics, as orthosis mainly aims

2 Background

Figure 1.1 Example of full-body Exoskeleton [1]

to promote the progressively increased muscle work and, in the best case, re-

gain and improve existing muscle functions [8, 9].

The general categorization suggests several feasible exoskeleton categories.

Such categories have general classes (Figure 1.2), due to the wide quantity

of exoskeletons in existence, and are the structure, the body part focused

on, the action, the power technology, the purpose, and the application area

varying from one to another [10].

1.2 History of Exoskeletons

The earliest-known exoskeleton-like device was an apparatus for assisting

movement developed in 1890 by Russian engineer Nicholas Yagin. It used

1.2 History of Exoskeletons 3

Figure 1.2 General classification model for exoskeletons [2]

energy stored in compressed gas bags to assist in movement, although it was

passive and required human power [11]. In 1917, United States inventor Leslie

C. Kelley developed what he called a pedomotor, which operated on steam

power with artificial ligaments acting in parallel to the wearer’s movements.

This system was able to supplement human strength with external power

[12]. In the 1960s, the first true ’mobile machines’ integrated with human

movements began to appear. A suit called Hardiman [3] was co-developed

by General Electric and the US Armed Forces (Figure 1.3). The suit was

powered by hydraulics and electricity and amplified the wearer’s strength by

a factor of 25, so that lifting 110 kilograms (240 lb) would feel like lifting 4.5

kilograms (10 lb). A feature called force feedback enabled the wearer to feel

the forces and objects being manipulated.

The Hardiman had major limitations, including its 680-kilogram (1,500

lb) weight. It was also designed as a master-slave system: the operator was

4 Background

Figure 1.3 Hardiman Suit [3]

in a master suit surrounded by the exterior slave suit, which performed work

in response to the operator’s movements. The response time for the slave suit

was slow compared to a suit constructed of a single layer, and bugs caused

”violent and uncontrollable motion by the machine” when moving both legs

simultaneously. Hardiman’s slow walking speed of 0.76 metres per second

(2.5 ft/s or just under 2 mph) further limited practical uses, and the project

was not successful.

At about the same time, early active exoskeletons and humanoid robots

1.2 History of Exoskeletons 5

were developed at the Mihajlo Pupin Institute in Yugoslavia by a team led by

Prof. Miomir Vukobratović. Legged locomotion systems were developed first,

with the goal of assisting in the rehabilitation of paraplegics. In the course

of developing active exoskeletons, the Institute also developed theory to aid

in the analysis and control of the human gait. Some of this work informed

the development of modern high-performance humanoid robots. In 1972, an

active exoskeleton for rehabilitation of paraplegics that was pneumatically

powered and electronically programmed was tested at Belgrade Orthopedic

Clinic [13]. On the same page, ABLE [14], a device that keeps the user

standing upright while moving with wheels attached under the feet, was

introduced to address the issue of spine compression for wheelchair users.

Nonetheless, such simplification in human motion limited navigability. To

overcome this, the adaptability and robustness of bipedal walking had to be

retained. This required the development of assistive exoskeletons, wearable

biped robotic suits that enable paralyzed patients to move with human-like

gait patterns. Several lower limb exoskeletons have been developed to resolve

this issue and manage to have users walk independently [15, 16, 17, 18, 19,

20, 21, 22]. However, these exoskeletons still lack the full mobility of healthy

people, and the motion between the human and the exoskeleton is not yet

perfectly synchronized. The development of assistive exoskeletons can be

traced back to reciprocating gait orthosis (RGO) [23]. RGO is a passive

device that has only one degree of freedom (DoF) in each leg and mechanical

constraints that alternatively enable the DoFs. While it has aided users

with extra mobility, drawbacks such as long and difficult donning/doffing

time, overuse of patients’ upper limbs, and required supervision to avoid

falling have limited its usage. To address these issues, active walking assisting

devices, later known as assistive exoskeletons, were developed. Similar to

6 Background

RGOs, assistive exoskeletons provide stand-upright ability to users, but also

extra DoFs and embedded actuators that allow active control. This results

in smoother motion and less energy consumption of the upper limbs.

1.3 Lower Limb Exoskeletons

Lower Limb Exoskeletons (LLEs) are those exoskeletons who are concerned

with the movement of lower limbs. There are three major categories of lower

limb exoskeletons: augmentation exoskeletons, rehabilitation exoskeletons,

and assistive exoskeletons. Figure 1.4 lists many of the lower limb exoskele-

tons that have been developed in the last 20 years. The horizontal axis shows

the development date and the vertical axis the control methods. Each marker

shows the active/passive degrees of freedom and actuator types. Augmenta-

tion lower limb exoskeletons (augmentation exoskeletons) aim at enhancing

the physical abilities of healthy users [24]; their design concept can be sum-

marized in one statement: “making the user superhuman”. Practically, these

exoskeletons aim at reducing the user’s energy consumption during walking.

For healthy users, predefined trajectories are not necessary. Instead, control

algorithms that follow the user’s limb motion, such as admittance/impedance

control or even positive feedback sensitivity amplification control, are used.

Inaccurate but high power/weight ratio actuators, such as series elastic ac-

tuators (SEA) and pneumatic actuators, are more commonly used in this

category [4]. Rehabilitation exoskeletons, on the other hand, are designed

to restore abilities such that patients can live without the device. These ex-

oskeletons focus on “how the tasks are done.” In most designs, such systems

require online adjustments that only “help when necessary” (i.e., assistance-

as-needed approach) and reduce assistance as the user gradually improves

1.3 Lower Limb Exoskeletons 7

[25]. It is expected that the user will regain their lost ability via training

with decreasing assistance. The control of this kind of exoskeletons is usually

partially predefined since patients need guidance for correct motion profile,

but it also adjusts itself based on patient feedback. Portability is usually

not considered; the whole system may be fixed to a treadmill under the su-

pervision of a physician [26]. The last category is represented by Assistive

lower limb exoskeletons, which are those that help users to complete daily

activities that they are no longer able to do. For instance, they may assist

the user to walk when they are normally unable to due to spinal cord injury,

stroke, or age deterioration.

Figure 1.4 A temporal overview of LLEs research [4]

Assistive exoskeletons are mostly used by thoracic-level motor-complete

spinal cord injury (SCI) patients. Many of these patients permanently lose

the ability to walk and consequently use wheelchairs. However, the accessibil-

ity of the wheelchair is limited; common environments such as stairs are not

navigable or require extra assistance. Additionally, research has found that

remaining seated for long periods induces health issues. It is suggested that

8 Background

passive mechanical loading is necessary for maintaining bone mineral density

(BMD). BMD of long-time wheelchair users is statistically lower than that of

individuals who stand with assisting tools [27]. Wheelchair users also suffer

from pressure sores and ischial tuberosities since a high amount of pressure

is applied on the seating surface for long durations [28]. As a result, assist-

ing devices that keep users standing upright with better maneuverability, are

required.

Assistive exoskeletons are often controlled with predefined trajectories

triggered by the user’s moving intention [29, 30, 31, 15, 16, 17]. High pre-

cision control is required; most assistive exoskeletons are driven with DC

motors. The control is generally a combination of a high-level central con-

troller and low-level joints controllers. Since most assistive exoskeletons users

have lost the ability to move one or more limbs, the motion is entirely gen-

erated and carried out by the exoskeleton, while the user sends high-level

commands (e.g., sit, stand, move forward, stop, turn) to control the general

behaviour of the exoskeleton. To capture high-level commands, exoskeletons

need to estimate the user’s intention. The easiest method is having the users

manually input the command. A common design is placing a console besides

the user’s wrist. However, this will limit users’ upper limbs and cause de-

lay since commanding legs by hands is not intuitive. Direct estimation from

biological signals has been developed, yet biological signals are often noisy

and difficult to measure. More accessible signals such as EMG are not usable

because paralyzed patients have often lost the connection between the brain

and the limbs. Thus, indirect measurement has been introduced [19]. Addi-

tional sensors are added, such as inertial measurement unit (IMU) or ground

reaction force (GRF) sensors. It is known that the center of mass (COM)

velocity is highly related to the intention of motion [32]. For example, COM

1.3 Lower Limb Exoskeletons 9

forward movement is associated with walking forward. With IMU located

near the torso or force sensor under users’ feet, the motion of CoM can be

estimated. In addition, posture can also insinuate the moving intention. By

measuring the torso angle, the exoskeleton can tell whether the user wants

to initiate forward motion. These sensors do not need high sample frequency

or filtering since they only provide a rough estimation of human intention.

Some lower limb exoskeletons, such as ReWalk [15, 16], use a control panel

and tilt sensor. Others, such as Robin H1 [33], estimate the user’s intention

by measuring the center of pressure (CoP). To increase comfort and stability,

instead of developing the exoskeleton with a rigid human robot interface and

position control, Mina [17] and Indego [34, 35] add a compliant assisting

mode to partially preserve users’ walking ability. BioMot [36] developed a

novel variable stiffness actuator to further control the torque and stiffness at

each joint. After the task is determined, the exoskeleton will generate the

required joint force/position profile to accomplish the task. These trajecto-

ries are generally pre-programmed and linked to specific motions. In most

cases, trajectories are generated with a finite state machine. A finite state

machine is a controller that divides the single full motion cycle into different

phases. For each phase, the controller may have a different control scheme.

This is due to the natural discontinuity in lower limb motions such as bipedal

walking [37] because different phases of walking present different dynamics.

For example, the model of single support (with only one foot contacting the

ground) can be viewed as an inverted pendulum, while the double support

phase (both feet are on the ground) cannot. It is important to know that

the generated trajectory may not be identical to a healthy subject’s motion

profile, but it can still complete the task. For example, one feature that is

commonly seen in many assistive exoskeletons is passive or fixed ankle joints.

10 Background

While humans rely on ankle push-off torque as the main thrust during walk-

ing, researchers have shown that actuating only the hip joints can create

stable gaits for passive walkers [38, 39]. Thus, for individuals with complete

loss of motor skills, human-like gait patterns can be replaced with simpler

gait patterns and fewer actuated joints to reduce exoskeleton weight and com-

plexity. Despite the fact that the human lower limbs are 12-DoF mechanisms

(for each leg, three at the hip, one at the knee, and two at the ankle), most

assistive exoskeletons exclude the DoF in the transverse plane and active

DoF at the ankle. Instead of purely relying on predefined joint trajectories,

some assistive lower limb exoskeletons generate motion profiles with online

calculation. Wearable Power-Assist Locomotor (WPAL) [40, 41] generates

the trajectories based on “not falling back” and “provide ground clearance”.

Desired hip and toe positions are given, and trajectories are generated with

minimum jerk. MindWalker [42, 43] also applied a similar idea, but only

during the weight-shifting phase (double support phase), and the predefined

trajectories are corrected online if the exoskeleton senses imbalance. While

many lower limb exoskeletons control each joint individually, the relation-

ship between different joints has been studied. Researchers have found that

the motion of the knee and hip are coupled due to bi-articular muscle con-

nections. AUSTIN [31] takes advantage of this coupling and reduces the

requirement of actuation by using a single actuator for hip and knee joints.

Most assistive exoskeletons require extra support (e.g., crutches, rollator) to

maintain user’s balance during motion. MindWalker [42, 43] addresses this

issue by estimating the XCoM (the position of the center of mass combined

with momentum, during walking) to prevent falling, yet full self-balancing is

not accomplished. One of the exceptions is REX, a lower limb exoskeleton

developed by REX Bionics in New Zealand, which moves slowly to statically

1.3 Lower Limb Exoskeletons 11

balance itself with only two legs [18]. Nevertheless, for bipedal systems to

maintain dynamic balance, the properties of human limbs, such as center

of mass, inertia, and link length need to be precisely measured, which is

still a challenge with current technology. Table 1.1 summarizes the principal

features of the assistive Lower Limb Exoskeletons mentioned in this section.

A major challenge related with this category of Lower Limb Exoskele-

tons lies in the fact that assistive exoskeletons are supposed to help disabled

people in their daily activities, which are often carried out in uncontrolled

settings which may span through a plethora of different environments. In

addition, as previously mentioned, the user has little direct control on the

exoskeleton since its interactions are limited by its clinical condition. Thus,

to be effectively used in these conditions, assistive lower limb exoskeletons

should be able to adjust the gait pattern according to the different types of

environments, either fully or partially autonomously, e.g. by following addi-

tional high level commands given by the user. To overcome these limitations,

this thesis fits into a recent line of research that aims at enhancing the level of

autonomy of assistive Lower Limb Exoskeletons through methods and tech-

niques that are commonly employed in artificial intelligence and autonomous

robotics [44].

12 Background

Assistive Exoskeletons

Name Degrees of

Freedom

Intention Estimation

Method/Trajectory

Generation Method

Actuator

Type

eLEGS

[29]

6, 4 actuated

(hips and

knees), passive

ankle joints

1. Force sensors on

foot pads and crutches,

IMU on arms for

estimate the arm angle.

Measurements are fed

into finite state

machine to estimate

the walking stage.

2. Predefined joint

trajectories related to

the finite state machine

to assist bipedal

walking and

sit-to-stand.

DC motors

Ekso

[30]

6, 4 actuated,

2 hips and 2

knees. 2 passive

ankles

AUSTIN

[31]

4, 2 actuators,

hip and knee

joints are cou-

pled

Predefined joint trajec-

tories based on clinical

gait analysis

DC motors

ReWalk

[15, 16]

6, 4 actuated,

2 hips and 2

knees, passive

ankles

Function selector on

forearm and tilt sensor

on torso to trigger pre-

defined motion profile

DC motors

1.3 Lower Limb Exoskeletons 13

Assistive Exoskeletons

Name Degrees of

Freedom

Intention Estimation

Method/Trajectory

Generation Method

Actuator

Type

Mina

[17]

4, 2 hips and 2

knees

Predefined joint trajec-

tories based on healthy

subject wearing Mina.

Can switch between

rigid position control

mode and compliant

assist mode

DC motors

REX

[18]

5 actuated each

leg

N/A DC motors

HAL

[19, 45,

46]

4 actuated, 2

hip and 2 knees

1. Myoelectric sensors

2. Gyroscope and ac-

celerometer on torso/-

ground reaction force

(GRF) sensors

3. Assist sit-to-stand

motion, bipedal walking

4. Estimate walking

speed and generate de-

sired trajectories with

inverse kinematics

DC motors

ROBIN

H1 [33]

6, 4 actuated,

2 hips and 2

knees, 2 passive

ankles

IMU, encoders and foot

sensors (can be replace

with neural network-

based classifier with

IMU and encoders’

measurements)

DC motors

14 Background

Assistive Exoskeletons

Name Degrees of

Freedom

Intention Estimation

Method/Trajectory

Generation Method

Actuator

Type

WPAL

[40, 41]

6 actuated with

a walker

1. Trigger with angle-

acceleration sensor on

the walker and foot

pressure sensor

2. Calculate minimum

jerk trajectories with

desired toe position

DC motors

Mind

Walker

[42, 43,

47, 48]

6 actuated,

4 hips and 2

knees

1. Estimate CoM posi-

tion with IMU located

near hip

2. Swing stage: Mod-

ified joint trajectories

recorded from healthy

subjects and online

correction

3. Weight shifting:

Interpolation between

start and end points

DC motors

with series

elastic actu-

ators

Indego/

Van-

derbilt

[34, 35]

4 Actuated,

2 hips and 2

knees. Stan-

dard ankle

orthosis

Using joint angles to es-

timate the distance be-

tween CoP and forward

foot to trigger finite

state machine

DC motors

1.3 Lower Limb Exoskeletons 15

Assistive Exoskeletons

Name Degrees of

Freedom

Intention Estimation

Method/Trajectory

Generation Method

Actuator

Type

BioMot

[36]

6 actuated on

sagittal plane

(hips, knees,

and ankles)

1. During ankle push-

off and heel- off, actua-

tors provide fixed ramp

torque assistance

2. The rest of the time

the interacting force be-

tween the exo and the

user is minimized

Variable

stiffness

actuators

EXPOS

[49]

4 actuated

(hips and

knees), 2 pas-

sive (ankles),

flexible frame

for transverse,

frontal plane

motion

1. Pressure sensors

are installed at human-

exoskeleton interacting

points, the measure-

ment will increase due

to muscle contraction

2. Generate assis-

tive torque proportional

to the contact pressure

difference between the

front and rear sides of

the leg

Motor-

cable

driven

Table 1.1 Assistive Lower Limb Exoskeletons

16 Background

1.4 Related Work

This section will review some lower limbs exoskeletons’ projects that have

the goal of surpass the limits of assistive Lower Limb Exoskeletons presented

in the previous section. To overcome the limitation posed by the prede-

fined behaviours that are found in most commercially available exoskele-

tons, solutions that employ additional information sent by the users (mostly

high-level commands obtained by processing bio-signals) have been exploited.

[42, 43, 47, 48] focuses on the correct estimation of users’ intention thanks to

the combined use of electroencephalogram (EEG) and EMG signals with the

goal of producing customised online leg trajectories by using Model Predic-

tive Control (MPC) coupled with the high-level signals previously acquired.

In a similar fashion, [50] combines the use of EEG and EMG signals acquired

from the user to define a reliable set of high-level commands used to effec-

tively climb stairs. In this solution, EEG signals are used to determine the

leg that has to be controlled (left or right), while EMG signals are used to

determine the parameters of the stair (height and width of the steps). [51]

makes use of surface EMG (sEMG) signals sent by the user to determine the

step height during the gait, by classifying the signals through the use of a

back propagation neural network. [52] makes a step further in the direction

of the correct estimation of user’s intention through the use of sEMG sig-

nals collected from lower limbs. In this work, different classification methods

are evaluated with the goal of finding the one that gives the most accurate

predictions on the type of surrounding environment (level ground, ascending

and descending ramps and stairs). Also, changes in sEMG signals in presence

of muscle fatigue are studied, since these changes are an issue that is often

overlooked when developing an sEMG classifier.

1.4 Related Work 17

Although the solutions exploiting bio-signals seem to work well in most

cases, a lot of complications come with the correct estimation of users’ inten-

tion, as [52] has demonstrated in the specific case of muscle fatigue. Besides

the fact that, to control an exoskeleton in such a way, the user must be

trained for a fair amount of time, it also causes additional burden to the

user, which will have to be aware of the signals that he/she is consciously

and unconsciously sending to the exoskeleton.

A different approach to the problem of predefined behaviours lies in the

addition of exteroceptive sensors to the exoskeleton, that can collect informa-

tion about the environment, coupled with algorithms that produce specific

exoskeleton’s behaviours based on such information. [53] considers the prob-

lem of stair ascending for Lower Limb Exoskeletons by using a depth camera

and RANSAC to identify the stairs, and then calculate inverse kinematics

to compute the actual motion after the stairs’ geometry is computed. [54]

employs two time-of-flight laser range sensors placed on the feet and dynamic

movement primitives (DMP) theory to climb stairs. First, stairs are modeled

according to the range sensors’ measurements, and then DMP, which is a

bio-inspired method that models complex motion tasks in a simple and ele-

gant way, produces a trajectory by considering the horizontal surface of the

steps as goals, and step edges as obstacles. [55] considers the problem of ter-

rain classification by using a camera attached to the waist to collect images

that are then fed to a Convolutional Neural Network (CNN) that outputs

the prediction (level ground, inclined and declined stairs). [56] expands the

capabilities of the previously described work, since it also extracts additional

terrain-specific parameters (slope in the case of ramps, step height and width

in the case of stairs) that will then be used to produce a specific gait appro-

priate for the predicted terrain. While the results are quite promising, the

18 Background

major limitation of these approaches is the lack of generalization that is in-

troduced when focusing on specific models such as stairs or ramps, since the

models that have been used in the aforementioned cases are not capable of

dealing with all types of obstacles that can be stepped on, and have height

and width similar to stair steps; small obstacles that can be safely stepped

over are also not considered in these works. Nonetheless, a movement towards

generalized models can be noticed, since [56] already refers to the exploited

terrain models as ”specific types of obstacles”, which is an appropriate term

which implies an underlying general categorization that is the ultimate aim of

exoskeleton’s obstacle detection and terrain classification. VALOR [57] is one

of the latest researches which couples assistive LLEs and computer vision,

and aims at solving the task of low obstacle avoidance. The gait planning

problem in presence of low obstacles is divided in the following sub tasks of

obstacle detection and gait pattern planning. The first sub task is solved

through the use of a Computer Vision algorithm and with the assistance of a

depth camera, to find geometrical parameters of all obstacles, such as length,

width, height and distance from the exoskeleton (calculated with respect to

the nearest foot). The second sub task is solved by selecting the correct gait

phase, step length and height, and applying inverse kinematics to find the

joint angles that produce the desired trajectory, given obstacles information

obtained by solving the previous sub task. Even if this solution has many

advantages, like treating low obstacle avoidance in a simple and elegant way

and without adding unnecessary complexity to the task, it also poses some

limitations. For example, the trajectories computed for the foot that will step

over obstacles are fixed to have the maximum height in the middle between

initial and final position. This seems unnatural, since humans are able to

adapt the step trajectory in a much more unconstrained way. Additionally,

1.5 Thesis Aims and Structure 19

the obstacle detection routine extensively evaluates all obstacles, without

posing the problem of the distance between them and the exoskeleton, which

is considered later, when extensive geometric evaluations have already been

done for all obstacles. In a real walking situation, a human is only concerned

with those obstacles that will affect his motion; if an obstacle is too far away,

its importance becomes negligible.

1.5 Thesis Aims and Structure

To summarize the content of this chapter, exoskeletons are a break-through

technology for physically impaired persons, but still lack the synergy with

the user and the environment that would be required to allow a safe use

in unconstrained home environments. In the midst of this challenging sce-

nario, this thesis aims to overcome some of the aforementioned limitations

by proposing a novel vision-based autonomous control of lower limb exoskele-

tons with the specific purpose of traversing small obstacles. The work will be

carried with the idea of enhancing the autonomy of the exoskeleton, rather

than the perception of users’ signals or the estimation of users’ intention, in

order not to increase the burden on the user. In particular, in this thesis I

proposed and implemented:

• a light-weight computer vision-based algorithm to recognize low obsta-

cles crossing the walking path and to determine the most appropriate

foot position according to the current scenario;

• a novel Collision-Free Foot Trajectory Generator (CFFTG) algorithm

to compute the optimal gait trajectory to place the foot in the desired

position while avoiding collisions with the obstacle.

20 Background

a The proposed method has been tested in simulation with data acquired in

real-world scenario and a direct comparison has been done with respect to

VALOR’s proposed solution, since they both focuses on the same problem

and application.

The dissertation will continue as follow: Section 2 provides a detailed presen-

tation of the problem and the proposed solution, as well as the description

of the experimental setup for evaluation. The results of the experiments are

shown in Section 3 and discussed in Section 4. Finally, Section 5 provides

some conclusive remarks and future developments.

2 | Methods

2.1 Problem Description

As previously discussed, assistive Lower Limb Exoskeletons have the po-

tential to be a step ahead of other assistive devices, such as wheelchairs,

since they can expand the capabilities of disabled users to move more freely

and naturally throughout the environment. Nevertheless, almost all of the

current assistive Lower Limb Exoskeletons being developed still have huge

limitations, one of them lying in the predefined nature of the trajectories cho-

sen by the exoskeletons’ low-level controller. Although this may just seem

a reasonable way of solving the problem of motion, it poses a series of com-

plications, which include the users’ discomfort, given by the fact that these

trajectories are usually not physiological, and the inability to move efficiently

in complex environments. One of the goals of this thesis is to overcome such

limitation by providing customised trajectory that better fit the environmen-

tal condition in which the exoskeleton is moving, while considering the most

general type of assistive Lower Limb Exoskeletons, meaning that all the (nu-

merous) limitations mentioned in the previous chapter will be considered.

More specifically, the following assumptions will be made:

1. An assistive exoskeleton similar to the ones previously described in

section 1.3 will be used. It will come with crutches to maintain balance

22 Methods

and will only have PID controllers to interact with joints’ motors (other

hardware assumptions are discussed in section 3.1);

2. The exoskeleton will move inside an indoor environment;

3. The exoskeleton will be only concerned with the task of moving forward

(through bipedal locomotion). This assumption is made since turning

requires complex manoeuvres by the user, in contrast with forward

motion, that can be executed by the exoskeleton almost autonomously

(the only interaction needed in this case is a stop / start command that

can be sent by the user);

4. Availability of a depth camera that can be attached to the waist of the

user and will be used to perceive the surrounding environment.

In this specific context, the present work is concerned with the avoidance

of low obstacles that can be encountered during forward motion. Since is

”low obstacle” is not a quantitative definition, a reasonable assumption for

low obstacles is that their maximum height shouldn’t exceed the maximum

height of a stair step. Italian decree n. 236 enacted the 14th of June, 1989 [58]

defines a stair step height range between 16 and 20 cm. It will be therefore

assumed that the low obstacles mentioned in the present work will have an

height not exceeding 20 cm.

2.2 Overview

The pipeline developed to execute the task of low obstacle avoidance is the

following:

• Collect environmental information in the form of point clouds through

the use of the depth camera;

2.3 Computer Vision Module 23

• Detect obstacles, and based on the detection, select the best next step

length;

• Based on the output of the previous phase, a trajectory generation

algorithm will find a collision-free trajectory for the foot in the sagittal

plane;

• Given the foot trajectory, an inverse kinematics solver will find joint

angles and velocities that meet the kinematics costraints. These angles

and velocities will then be fed to the PID controllers to produce the

actual movement of the exoskeleton.

A scheme of the proposed solution is displayed in figure 2.1.

2.3 Computer Vision Module

In this subsection the proposed computer vision module will be discussed.

As mentioned in section 2.1, this module expects a point cloud as input,

and outputs parameters regarding the best length for the next step and the

obstacles between the current exoskeleton’s position and the chosen foothold

position. This will be done for each foot. The pipeline of the module is

detailed in Algorithm 1.

Algorithm 1 Computer Vision Module
Input: cloud, userP
Output: obstaclesShape, stepLength

filteredCloud ← downSampling(cloud)
modelCoeffs, plane, obstacles←groundPlaneDetection(filteredCloud)
homogeneousTransformation(modelCoeffs)
tracks, obstaclesShape ← tracksEvaluation(plane, obstacles, userP)
stepLength ← footHoldEvaluation(tracks, userP)
return obstaclesShape, stepLength

24 Methods

Figure 2.1 A general scheme of the proposed solution.

The following sections will follow module’s pipeline, from input to output.

2.3.1 Input Point Cloud

A point cloud, by definition, is a set of data points in space. This definition

implies that each point is expressed in 3D coordinates, and eventually some

2.3 Computer Vision Module 25

additional information. Figure 2.2 shows an example of input point cloud

visualized in RViz (one of ROS main visual tools, along with Gazebo).

Figure 2.2 An example of input Point Cloud visualized in RViz

2.3.2 User Parameters

User parameters are necessary to perform calculation involving foot place-

ment. This bundle of data must include:

• Maximum step length (in cm), defined as the maximum distance be-

tween the COM and the next step foothold that is being calculated;

• Distance between feet in the frontal plane, needed to perform Track

Evaluation (see section 8;

• Foot length and width;

• Duration of a step;

26 Methods

• A parameter safeDist that represents the minimum distance between

foot and obstacle. In the present work the parameter has been ex-

perimentally determined by tests on the Collision-Free Foot Trajectory

Generator Algorithm (more details on this function can be found in

section 2.3.7).

In pseudocode, user parameters will be referred to as userP, and will be

assumed that userP is a structure containing the aforementioned values.

2.3.3 Filtering

The point cloud comes as a very dense set of points, with most neighbouring

points having distance less than a centimeter (even considering that as the

distance from the camera increases, the distance between neighboring points

also increases). This condition happens to be excessive in the case of low

obstacles avoidance, since very small obstacles (with a volume ̸= 1 cm3) do

not have enough inertia to affect exoskeleton’s forward motion in a significant

way. It is also computationally more demanding to process such a huge set

of points. That’s why, before performing the actual computations, the point

cloud is down-sampled to output a smaller set, trying to lose as little informa-

tion as possible. To do so, a Voxel grid is created. In the same way a digital

photo is represented by a 2D Pixel grid, a Voxel grid is a 3D grid that can

discretize a point cloud. In practice, a set of points inside a Voxel (element

of the 3D grid, namely a cube, also called leaf) is approximated by a single

point by taking their centroid. In such a way, the size of the cloud is reduced

without losing much information about the original cloud. A Voxel edge

length of 2.5 cm has been experimentally chosen by observing the changes

of the cloud after the down-sampling . This value happened to provide a

significant reduction of the set, while maintaining a rich representation of

2.3 Computer Vision Module 27

the environment.

Algorithm 2 DownSampling
Input: cloud
Output: filteredCloud

voxelGrid ← createVoxelGrid(cloud)
setLeafSize(voxelGrid, 2.5)
filteredCloud ← filter(voxelGrid)
return filteredCloud

2.3.4 Ground Plane Detection

After down-sampling the point cloud, the next step consists of detecting the

ground plane points, so that we can distinguish them from the obstacle points.

The algorithm used to accomplish this task is Random Sample Consensus

(RANSAC) [59]. RANSAC is an iterative method to estimate parameters

of a mathematical model from a set of observed data that contains outliers,

when outliers do not influence the values that it estimates. Therefore, it can

also be interpreted as an outlier detection method [60].

A generic RANSAC algorithm is shown in Algorithm 3.

The functions CalculateParamsFromSet and CalculateError are selected

according to the specific problem, since they depend on the specific model

and loss function used.

In the case of an indoor ground plane, the set of points belonging to it would

form an ideal 3D plane, therefore the algorithm will look for a model with

equation ax + by + cz + d = 0, trying to find the values of a, b, c, d that

best fit the data set. In practice, the best values will be those that have

a sufficient number of points fitting the plane (inliers) with a small error.

The specific RANSAC implementation used for this thesis is the one found

in Point Cloud Library (PCL) [61]. The Ground Plane Detection function is

28 Methods

Algorithm 3 RANSAC
Input: dataset, model, maxIterations, threshold, initSetSize, minSetSize
Output: bestModelParams, bestInliers

iterations ← 0
bestModelParams ← NULL
bestModelError ← +∞
bestInliers ← { }
while iterations < maxIterations do
initialInliers ← {initSetSize points extracted at random from

dataset}
modelParams ← CalculateParamsFromSet(initialInliers)
additionalInliers ← { }
for every point in dataset not in initialInliers do
if CalculateError(point, modelParams) < threshold then
add point to additionalInliers

end if
end for
if size(initialInliers) > minSetSize then
inliers ←merge(initialInliers, additionalInliers)
updatedModelParams ← CalculateParamsFromSet(inliers)
modelError = CalculateError(inliers, updatedModelParams)
if modelError < bestModelError then
bestModelError ← modelError
bestModelParams ← updatedModelParams
bestInliers ← inliers

end if
end if
iterations ← iterations + 1

end while
return bestModelParams, bestInliers

2.3 Computer Vision Module 29

detailed in Algorithm 4.

Algorithm 4 groundPlaneDetection
Input: filteredCloud
Output: modelCoeffs, plane, obstacles

dataset ← filteredCloud
model ← ax+ by + cz + d
maxIterations ← 3000
threshold ← 2 cm
initialSetSize ← 3
minSetSize ← size(filteredCloud)/2
modelCoeffs, plane←RANSAC(dataset, model, maxIterations, threshold,
initSetSize, minSetSize)
obstacles ← filteredCloud \ inliers #set difference
return modelCoeffs, plane, obstacles

2.3.5 Homogeneous Transformation

An aspect that wasn’t addressed in the previous sections is that not every

point cloud can be used. When the exoskeleton performs bipedal walking, it

switches between double support phase (when both feet are in contact with

the ground) and single support phase (when a single foot is in contact with

the ground). In single support phase, the exoskeleton is executing a step,

and has no need to plan the next until it reaches the next double support

phase. It is therefore best to only use point clouds collected during double

support phases. The tilt angle (displayed in figure 2.3) measured at initial

conditions will be roughly the same measured in any double support phase,

so comparing the initial tilt angle (that we can consider given since it relies

one the same routine shown in this section) with the successive ones will give

us information about the support phase for every cloud. Apart from that,

there is a plethora of ways to acknowledge the fact that the exoskeleton is

in double support (contact sensors placed on the feet, IMU to measure the

30 Methods

Figure 2.3 Transformations between frames

velocity of the CoM, inverse kinematics, etc...) Therefore, in this work we will

always assume that the algorithm works when the exoskeleton is in double

support. After obtaining the tilt angle it is also useful to switch from camera

coordinate system (also called frame) in which cloud points are originally

represented, to robot coordinate system, which lies under the camera, where

exoskeleton’s feet and ground come in contact. Figure 2.3 shows all of the

principal elements involved:

• The red arrows represents the Z-axis and Y-axis of the camera coordi-

nate frame;

2.3 Computer Vision Module 31

• The green arrows represents the Z-axis and Y-axis of the camera coor-

dinate frame when rotated to be aligned with the robot frame;

• The brown arrows represents the Z-axis and Y-axis of the robot coor-

dinate frame;

• X-axis for all frames is orthogonal to the other two axis of that frame

and, although not shown in the picture, can be found by using the

right-hand rule.

• Camera frame is rotated about the X-axis with respect to the robot

frame. This is what was previously called tilt angle.

Given n⃗zc =
[
0 0 1

]
the Z-axis of the robot frame, and n⃗zr =

[
a b c

]
the normal vector to the ground plane previously detected in camera coordi-

nates. The value of n⃗zr has already been computed in the previous section,

and is stored inside the variable modelCoeffs. The dot product of n⃗zc and

n⃗zn can then be computed as:

dot = n⃗zc · n⃗zr = (0× a) + (0× b) + (1× c) = c (2.1)

Then the geometric definition of dot product can be applied to obtain the

tilt angle:

n⃗zc · n⃗zr = ∥n⃗zr∥∥n⃗zc∥ cos (tiltAngle) (2.2)

tiltAngle = arccos(
dot

∥n⃗zr∥∥n⃗zc∥
) = arccos(

c√
a2 + b2 + c2

) (2.3)

The cloud points coordinate system can be thus changed by using the

concept of Homogeneous Transformation (HT), a projective geometry con-

cept that allows to map points between different coordinate frames, when the

mathematical relationship between them can be represented as a combina-

32 Methods

tion of rotation and translation [62]. As already stated, the two frames differ

by a rotation about the X-axis; they also differ by a translation whose value

is the distance between camera and ground. Performing the homogeneous

transformation implies finding the 4 x 4 homogeneous transformation matrix

C
RT that represents the mapping between camera and robot frames. C

RT will

have the following form:

C
RT =


R11 R12 R13 t1

R21 R22 R23 t2

R31 R32 R33 t3

0 0 0 1

 =

R t

0 1

 (2.4)

where R is a 3 x 3 matrix(called rotation matrix), and t is a 3 x 1 vec-

tor(called translation vector). The transformation between cloud points in

camera coordinates p⃗c =
[
xc yc zc

]
and robot coordinates p⃗r =

[
xr yr zr

]
can then be expressed as: 

xr

yr

zr

1

 =C
R T ·


xc

yc

zc

1

 (2.5)

To simplify the problem, a property of homogeneous transformation has

been exploited: subsequent homogeneous transformations can be chained

by multiplying the two transformation matrices. The opposite is also true,

meaning that we can decompose a transformation into a chain of transforma-

tions that produce the original one when multiplied. The problem can then

be decomposed into two steps:

• Find the rotation matrix that aligns the vector normal to the ground

2.3 Computer Vision Module 33

plane to the Z-axis of the robot coordinate frame, then perform a

rotation-only transformation (expressed by T1);

• After performing the rotation-only transformation, calculate the trans-

lation vector between camera and robot frame coordinates and perform

a translation-only transformation (expressed by T2) to complete the

alignment.

C
RT will be then decomposed as:

C
RT = T1 · T2 =

RT 0

0 1

 ·
I tT

0 1

 (2.6)

To find the rotation matrix RT that rotates n⃗zc into n⃗zr , it is necessary

to:

• Calculate dot (already done) and

⃗cross = n⃗zc × n⃗zr =
[
b −a 0

]
by applying the definition of cross product;

• Define the skew-symmetric cross-product matrix of ⃗cross:

S =


0 −cross3 cross2

cross3 0 −cross1
−cross2 cross1 0

 (2.7)

• Obtain rotation matrix RT as:

RT = I + S +
S2

1 + dot
(2.8)

34 Methods

At this point the rotation-only transformation can be performed, rotating

n⃗zc onto n⃗zr . The last step is the translation-only transformation needed to

set the origin of the frame on the ground. In this case it is enough to take a

random point stored inside the plane array (which will already be rotated)

and measure its Z coordinate, tZ . Its absolute value will be the height of the

camera with respect to the ground.

The translation vector tT will then be tT =


0

0

−tZ

.
The pseudo-code implementation is shown in Algorithm 5.

Algorithm 5 homogeneousTransformation
Input: modelCoeffs
Output: tiltAngle

dot ← modelCoeffs[2]
tiltAngle ← arccos(dot / norm(modelCoeffs))
cross ← {modelCoeffs[1], -modelCoeffs[0], 0}
S ← createSkewMatrix(cross)
RT ← assembleRotationMatrix(skewMatrix, dot)
tT ← {0, 0, 0}
T1 ← createHTMatrix(RT , tT)
applyHT(T1, {plane, obstacles})
randPoint ← { random point extracted from plane}
tZ ← randPoint[2]
tT [2]← -tZ
T2 ← createHTMatrix(I , tT)
applyHT(T2, {plane, obstacles})
return tiltAngle

2.3.6 FootHold Identification

After processing the point cloud from the camera, the pipeline will give a

score to all possible foothold points on the ground plane. Since we are in-

2.3 Computer Vision Module 35

Figure 2.4 Functions involved in Tracks Evaluation

terested in a forward motion without turns, the possible foothold points will

have a double-track shape, with one track for each foot. This evaluation will

be mainly affected by the distance with respect to the nearest obstacle point

and the step length (privileging steps of medium length) (see image 2.4).

As mentioned in section 2.3.2, a function is used to relate the obstacle height

and the minimum distance required to step over it safely. This implies that

we have to evaluate obstacle points nearby each track first, and then decide

the appropriate minimum distance. In this way, we can also produce a sagit-

tal plane (Y-Z plane) image of the obstacle points inside each track (variable

obstacles_shape). This object will then be fed into the Collision-Free Foot

36 Methods

Trajectory Generator algorithm to find the optimal foot motion. This routine

is computed for each of the two tracks, each one representing one foot. Even

if in the actual gait, only one of the two tracks is evaluated at each iteration

of the Computer Vision algorithm (successive steps clearly alternate between

feet), we assume to always be in the ”worst” case, which is the first step.

When planning the first step, we can start with either foot, so the evaluation

has to be computed for both tracks. Nonetheless, the algorithm can be easily

modified to alternate between tracks after the first step.

The implementation of the function is shown below (Algorithm 6). First off,

each obstacle point is evaluated. Function insideTracks verifies that a point

is in possible collision with one of the two feet by measuring the X and Y

coordinates of the point.

Algorithm 6 insideTracks
Input: point, userP
Output: type

if point.y < userP.maxStepLength and
userP.distBtFeet/2 < ∥ point.x ∥ < userP.distBtFeet/2 + userP.footWidth
then
if point.x < 0 then
type ← 0 #left track

else
type ← 1 #right track

end if
else
type ← -1 #outside tracks

end if
return type

Then, the obstacle Y-Z discrete function is created for each track, by

storing Y-Z pairs. If two points have the same Y, the one with the highest

Z coordinate is stored. The maximum obstacle height for each track is also

evaluated.

2.3 Computer Vision Module 37

Afterwards, the minimum distance for each track is set (setMinDist) by eval-

uating the function stored inside userP (section 2.3.2) which relates minimum

distance and maximum obstacle height. The last and most crucial part of this

routine is the score evaluation for each plane point inside the tracks. This

calculation only takes place if the maximum obstacle height for each track

is lower than 20 cm. As mentioned in section 2.1, an obstacle is considered

low when its height is lower than 20 cm, so detecting an obstacle taller than

that automatically makes the next steps unfeasible. It doesn’t matter if the

subsequent step is actually feasible, since the forward motion will eventually

require to step over the obstacle after few steps at most.

Score calculation for a point is detailed below (Algorithm 7), and the func-

tions involved can be seen in figure 2.4. Initially, a maximum distance is

calculated to add 5 cm of additional distance with respect to the minimum

distance. This just privileges additional distance, but points between the

minimum and maximum distance are still valid, although they have a lower

score. Then the gaussian component parameters (mean and standard de-

viation) are set up. These two parameters (standard deviation in partic-

ular) have been mainly chosen experimentally to spread evenly across the

track without penalizing points at the edge of the track too much, while

privileging the middle of the track, which is the same as saying that steps

of mid length are privileged. After calculating the gaussian component on

the Y axis thanks to the notorious gaussian probability density function

(gaussianDensity in the algorithm), the algorithm evaluates obstacle points

on the track to understand which one is the nearest to the evaluated point.

Based on this distance value, the initial score is computed through a trun-

cated linear equation that gives a score of 0 if an obstacle is closer than the

minimum distance, 1 if further than the maximum distance, and between 0

38 Methods

and 1 if between minimum and maximum distance. A careful reader might

notice that there’s a huge gap between a point at minimum distance and a

point slightly closer to an obstacle. The reason is that a smoother function

should give a very close to zero in the first instance, and zero in the second.

But while the second point has to be discarded, the first has to be taken into

account, and having a value too close to zero would discard it too in practice.

That’s why the actual function has a big gap that allows point at minimum

distance to be kept in consideration when calculating the next step. The

gaussian component is then multiplied to the initial score to obtain the final

score.

Algorithm 7 calculateScore

Input: point, obstaclesShape[type], userP, minDist[type]
Output: tracks, obstaclesShape

maxDist ← minDist[type] + 5 cm
mean ← userP.maxStepLength/2
stdDev ← 30 cm
gaussianComp ← gaussianDensity(point.y, mean, stdDev)
nearestObs ← +∞
for each obsPoint in obstaclesShape[type] do
if ∥ obsPoint.y - point.y ∥ < maxDist then
nearestObs ← ∥ obsPoint.y - point.y ∥

end if
end for
if nearestObs < minDist[type] then
score ← 0

else if nearestObs > maxDist then
score ← 1

else
score ← nearestObs / maxDist

end if
score ← score · gaussianComp
return score

The last function of the Computer Vision module is the one that will

2.3 Computer Vision Module 39

Algorithm 8 tracksEvaluation
Input: plane, obstacles, userP
Output: tracks, obstaclesShape

maxObstacleHeight ← { 0, 0 }
for each point of obstacles do
type ← insideTracks(point, userP)
if type ̸= -1 then
if obstaclesShape[type][point.y] doesn’t exists
or obstaclesShape[type][point.y] < point.z then
obstaclesShape[type][point.y] ← point.z
if maxObstacleHeight[type] < point.z then
maxObstacleHeight[type] ← point.z

end if
end if

end if
end for
if maxObstacleHeight[0] and maxObstacleHeight[1] < 20 cm then
minDist ← setMinDist(maxObstacleHeight, userP)
for each point of plane do
type ← insideTracks(point)
if type ̸= -1 then
score ← calculateScore(point, obstaclesShape[type], userP,
minDist[type])
tracks[type] ← tracks[type] + {point,score}

end if
end for

end if
return tracks, obstaclesShape

40 Methods

output the optimal step length for each track. The algorithm is detailed

below (Algorithm 9). The actual implementation relies on a sliding window

(based on foot dimensions) calculation that will calculate the mean score

of the points inside it. If a point inside a window has score equal to zero

(which means that the point is closer than the minimum obstacle distance)

the whole window will be discarded. The step length returned as output will

be shifted so that the returned position will correspond to the centroid of the

foot calculated on the Y axis.

2.3.7 Minimum Distance Parameter

Based on human walking bio-mechanics literature [63, 64], a minimum dis-

tance function has been developed to ensure that the selected footholds don’t

result in collisions with obstacles when executing the steps, since it has been

demonstrated that the distance between foot and obstacles that ensures the

avoidance of collisions depends on the height of such obstacle. This constraint

can be formulated by the following equation with respect to the centroid of

the foot:

minDistc = maxObstacleHeight+ safeDist (2.9)

and, by translating the equation so that it relates to the edges of the foot

(heel or tiptoe), the equation becomes:

minDistc = maxObstacleHeight+ safeDist− footLength

2
(2.10)

Parameter safeDist has been empirically set at 10 cm , but can be mod-

ified to bring the feet closer to obstacles, for example in the case of environ-

ments cluttered by obstacles, where very precise feet positioning is required

2.4 Collision-Free Foot Trajectory Generator 41

to ensure the traversability. This parameter is the one that has been saved

inside userP object (section 2.3.2.

2.4 Collision-Free Foot Trajectory Generator

Figure 2.5 Example of CFFTG iterations

After obtaining obstacles’ shape and step length, the Collision-Free Foot

Trajectory Generator (CFFTG) has the goal of finding a feasible foot tra-

jectory that avoids collisions with the detected obstacle points. Since the

obstacles_shape object contains a function in the Y-Z plane z = f(y),

CFFTG has to find another function z = g(y) representing the motion of the

42 Methods

Algorithm 9 footHoldEvaluation
Input: tracks, userP
Output: stepLength

windowPosition ← 0
stepLength ← { { }, { } }
bestScore ← { 0, 0 }
while windowPosition <= userP.maxStepLength - userP.footLength do
for each of the two tracks do
valid ← true
tempScore ← 0
nPoints ← 0
while valid = true do
for each index j of track i that satisfies:
windowPosition < tracks[i][j].point.y < windowPosition +
userP.footLength do
if tracks[i][j].score ̸= 0 then
tempScore ← tempScore + tracks[i][j].score
nPoints ← nPoints + 1

else
tempScore ← 0
valid ← false

end if
end for

end while
if nPoints ̸= 0 then
tempScore ← tempScore / nPoints

end if
if tempScore > bestScore[i] then
bestScore[i] ← tempScore
stepLength[i] ← windowPosition + userP.footLength / 2

end if
end for
windowPosition ← windowPosition + 1 cm

end while
return stepLength

2.4 Collision-Free Foot Trajectory Generator 43

centroid of the foot, such that

g(y) > f(y) ∀y ̸= 0 (2.11)

which amounts to say that the the centroid of the foot will pass over the

obstacle. Also, g(y) has to respect some constraints:

• Z value cannot exceed the maximum step height. In this thesis the

value has been set to 40 cm;

• Since function g(y) represents the motion of the centroid of the foot, it

has to keep some distance with respect to the obstacle points.

To solve the aforementioned problem, I have employed a cubic polyno-

mial function to describe the foot motion trajectory. To find the polyno-

mial coefficients, at least three points are needed, but in the case of robots’

kinematics, is not enough. In the case of the actual implementation, the

function cubicPolyTraj provided by MATLAB also needs the time at which

those points are reached, in order to return velocities, acceleration and po-

sitions for the entire foot motion during the step. After having understood

that three Y-Z points and the related timestamps are needed, the problem

can be formulated as follows: two points (the initial position of the foot,

and the final position returned by the Computer Vision Module) and two

timestamps (the initial timestamp is zero, the final depends on step duration

and can be heuristically chosen within safe and reasonable limits, namely

finalT imeStamp = initialT imeStamp + stepDuration) are already avail-

able. This is already enough to compute the Y-axis positions, velocities and

accelerations, since in that axis the motion can be uniform without loss of

generality. The foot trajectory algorithm will then provide the mid-swing

44 Methods

point Z coordinate (which amounts to the maximum step height) and times-

tamp. In practice, the value of the timestamp will affect the time in which the

foot reaches the maximum height during the step. The value of the middle

timestamp can then be written as:

middleT imeStamp =
finalT imeStamp− initialT imeStamp

mult
(2.12)

so that the value of middleT imeStamp only depends on mult (remember

that initial and final timestamps can be considered as given).

After having assessed what values are needed, we have to formulate the afore-

mentioned constraints. The first one, related to height, is easily defined as:

stepHeight < maxStepHeight (2.13)

The second one requires more reasoning, since it is important to model

the physics behind collisions in a simple yet comprehensive way, to allow the

algorithm to perform correctly in a reasonable time. A very well-known and

simple obstacle avoidance method used in robotics is obstacle enlargement

[65], which consist of increasing the dimensions of the detected obstacles

based on the shape of the robot. In this way, we can plan robot’s movement

thinking of it as a point (usually the point coincides with its center of mass)

[66] , and while the point doesn’t collide with the enlarged obstacles, the

actual robot won’t collide with the real obstacles. It’s important to note

that each dimension of the obstacle will be enlarged by a different value in

general, which depend on the robot’s shape and the poses that it can assume.

The values of enlargement for this thesis have been decided based on [66],

which tracks the foot pitch angle of healthy subjects while walking. The

highest absolute angle value tracked in the paper’s experiments has been

2.4 Collision-Free Foot Trajectory Generator 45

about 50°, but it has to be considered that in these experiment the ankle was

not restricted in any way, while the Lower Limb Exoskeleton that’s assumed

to be used in this thesis has no Degrees of Freedom on the ankle. That’s why

it has been chosen to assume a foot’s maximum tilt angle of 45° during its

motion. This reasoning implies that we can compute obstacles’ enlargement

in the following way:

• At 0° of tilt, the foot extends from its centroid in both directions of the

Y-axis of footLength
2

cm (based on the geometric definition of centroid).

Therefore obstacles have to be enlarged of footLength
2

cm on the Y-axis;

• At 45° of tilt, the foot extends from its centroid in decreasing direc-

tion of the Z-axis (namely towards the ground) of footLength·sin (45◦)
2

cm.

Therefore obstacles have to be enlarged of footLength·sin (45◦)
2

cm on the

Z-axis;

Let f2(y) the enlarged obstacles’ function. Thanks to obstacle enlarge-

ment, now the only constraints needed to solve the problem are:

g(y) > f2(y) ∀y ̸= 0 (2.14)

g(y) ≤ maxStepHeight ∀y (2.15)

As it can be deduced from the previous reasoning, the problem amounts

to finding two values, mult and stepHeight, that will make possible to obtain

the Z-coordinate and timestamp needed to calculate positions, velocities and

accelerations on the Z-axis.

The method chosen to solve the problem is a randomized iterative search

[67]. The algorithm can be summarised as follows:

1. mult and stepHeight are drawn from two different gaussian random

46 Methods

variables with initial means and standard deviations. Initial mean for

mult is set as 2, which represents a step which reaches the maximum

height at stepLength
2

. This values ensures that the first iteration has equal

probability of ”moving” the curve to the left and to the right. Initial

mean for stepHeight is set as maxObsHeight+ footLength·sin (45◦)
2

, which

represents the minimum distance that the centroid has to keep to ensure

no collisions on the Z-axis. Initial standard deviations are set as 2 for

mult and 0.03 cm for stepHeight, and have been found experimentally

to return a small number of iterations;

2. The trajectory for such values is computed and a score is given to the

trajectory based on the minimum euclidean distance between points of

g(y) and f2(y);

3. Point 2 is iterated again and new mult, stepHeight and score are com-

puted;

4. If the score is higher than the previous one, the new values of mult and

stepHeight become the updated means of the two gaussians random

variables, and the standard deviations are reduced by a scaling factor.

The scaling factor has been experimentally set as 2 for mult and 1.5

for stepHeight;

5. Point 3 is repeated until a trajectory score ≥ 0 is found, or the maimum

number of iteration is reached in case of failure.

The pseudocode for the proposed CFFTG is described in Algorithm 10.

2.5 Exoskeleton Kinematic Model 47

Algorithm 10 collisionFreeFootTrajectoryGenerator
Input: obstaclesShape, maxObsHeight, userP, stepLength, varianceMult,

varianceHeight, initialTimeStamp
Output: trajectory

safeDist ← (userP.footLength / 2) + 1 cm
mult ← 2
bestMult ← mult
stepHeight ← maxObsHeight + safeDist · sin (45)
bestHeight ← stepHeight
enlargeObstacles(safeDist)
score ← 0
bestScore← −∞
while score ≤ 0 do
score ← +∞
waypointsY ← {0, stepLength }
timeStampsY ← {0, userP.stepDuration }
middleTimeStamp ← userP.stepDuration / mult
middleZ ← stepHeight
waypointsZ ← {0, middleZ, 0 }
timeStampsZ ← {initialTimeStamp, middleTimeStamp, initialTimeS-
tamp + userP.stepDuration}
trajectory ← cubicPolyTraj(waypointsY, timeStampsY, waypointsZ,
timeStampsZ)
for each tPoint of trajectory do
oPoint ← obstaclesShape[tPoint.y]
if tPoint.z ≤ oPoint.z then
tempScore ← - ∥ (tPoint - oPoint) ∥

else
tempScore ← + ∥ (tPoint - oPoint) ∥

end if
if tempScore < score then
score ← tempScore

end if
end for
if bestScore < score then
bestScore ← score
bestMult ← mult
bestHeight ← stepHeight
varianceMult ← varianceMult / 2
varianceHeight ← varianceHeight / 2

end if
mult ← randomGaussian(bestMult, varianceMult)
stepHeight ← randomGaussian(bestheight, varianceHeight)

end while
return trajectory

48 Methods

Figure 2.6 Simplified scheme of the kinematic model.
The swing leg is depicted in red, the support leg is depicted in blue.

2.5 Exoskeleton Kinematic Model

After finding an appropriate trajectory for the foot, a kinematic model is

needed to compute the joint angles that will be then fed to the PIDs to

produce the actual motion of the exoskeleton. A simplified scheme of the

chosen kinematic model is shown in figure 2.6:

• Fs1 and Fs2 represent the swing foot’s centroid initial and final positions

during a step; the orange arrow represents the trajectory computed in

the previous section;

• H1 and H2 represent hip initial and final positions during a step; the

green arrow represents the hip trajectory;

• Fp represents the position of the pivot foot’s heel, which is related to

2.5 Exoskeleton Kinematic Model 49

the leg that will stay in support during the swing.

After modeling an appropriate trajectory for the hip, the only unknown

quantities needed to calculate the joint angles of this model are the position

of the knees for swing and pivot legs, Kp and Ks, and the position of the heel

Fh with respect to the centroid of the swing foot Fs; all of these quantities

can be calculated using trigonometry.

To model hip trajectory, the following assumptions have been made:

• Thigh and shank length, L1 and L2 are known parameters;

• H1.z = H2.z = H.z can be fixed for each different user, based on the

hip height that make the walk most comfortable for them. The only

constraints that must be kept in mind are:

H.z ≤ L1 + L2 (2.16)

H.z ≥ 10%(L1 + L2) (2.17)

The first condition represents the fact that the hip can’t reach an height

higher than the fully extended leg. The second represents the intuitive

idea that, if the hip is too close to the ground, the knee will excessively

bend, that does not represent a physiological walking;

• H1.y and H2.y can be found by calculating the mid point between the

two feet. Since in double support heel and centroid of the foot lies on

the Y-axis, the two values can be computed as:

H1.y =
Fp − (Fs1 − footLength

2
)

2
(2.18)

50 Methods

H2.y =
(Fs2 − footLength

2
)− Fp

2
(2.19)

• The trajectory will be modeled as a cubic polynomial that reaches a

minimum when y = Fp [68];

• The minimum mentioned above will be found using the piston motion

equations [69].

Since it has been chosen to model hip trajectory with a cubic polyno-

mial, we need timestamps and waypoints to compute the trajectory, as it

has been done in section 10. Since we already have H1 and H2 Y-axis and

Z-axis coordinates, the trajectory on the Y-axis can be computed by model-

ing it as uniform, as previously done in section 10, with timeStamp(H1) =

initialT imeStamp and timeStamp(H2) = initialT imeStamp+stepDuration.

we just need to find the timestamp timeStamp(Hmin), at which the mini-

mum of the hip trajectory occurs, and the Z coordinate of Hmin, to calculate

the trajectory on the Z-axis.

The percentage of the step duration at which the minimum occurs is then

given by:

step% =
Fp −H1.y

H2.y −H1.y
(2.20)

Then, the time at which the minimum occurs will be:

timeStamp(Hmin) = step% · (H2.y −H1.y) (2.21)

To find the Z coordinate of Hmin the piston motion equations can be

used, in particular the ones related to the crank connecting rod mechanism.

Figure 2.7 shows the time at which the minimum occurs, which happens to

be when the hip Y-axis position and the pivot foot Y-axis position have the

2.5 Exoskeleton Kinematic Model 51

Figure 2.7 Crank Connecting Rod Scheme for support leg

same value.

From Crank Connecting Rod equation [69], it can be showed that:

s = L1 + L2 − (L1 · cos (β) + L2 · cos (α)) (2.22)

δ, which is the knee bending angle, will be considered as given, and the

ultimate goal is to find the value of s, which will be subtracted to H.z to

obtain Hmin.z.

Figure 2.7 also highlights some useful relationships:

52 Methods

δ = 180◦ − θ − γ = α + β (2.23)

L2 sinα = L1 sin β → β = arcsin(
L2

L1

· sin (α)) (2.24)

Then we can find α with respect to β:

α = δ − β = δ − arcsin(
L2

L1

· sin (α)) (2.25)

arcsin(
L2

L1

· sin (α)) = δ − α (2.26)

L2

L1

· sin (α) = sin (δ − α) = sin δ · cos(α)− cos(δ) · sinα (2.27)

(cos (δ) +
L2

L1

) · sin (α) = sin δ · cos(α) (2.28)

tan(α) =
sin (α)

cos (α)
=

sin (δ)

(cos (δ) + L2

L1
)

(2.29)

α = arctan(
sin (δ)

cos (δ) + L2

L1

) (2.30)

At this point all quantities are defined (remember that δ can be fixed)

and s can be computed using 2.22. In this work δ = 20◦ has been chosen,

although a different value might be used after assessing the most comfortable

knee bending for the user.

After defining hip trajectory, we can proceed to the actual inverse kine-

matics computation of the leg angles that will be then fed into the PIDs. It’s

2.5 Exoskeleton Kinematic Model 53

Figure 2.8 Scheme used to calculate knee and heel position

worth mentioning that heel position of the support leg Fp is known, since the

foot completely lies on the Y-axis, but generally the position of the heel F

for the swing leg isn’t known, and is necessary to obtain the correct angles.

The goal is to find positions H (hip) , K (knee) and F (heel) for each leg.

Then the angles will be obtained as [57]:

θH = arctan(
H.z −K.z

K.y −H.y
) (2.31)

θK = θH − arctan(
K.z − F.z

F.y −K.y
) (2.32)

54 Methods

(Note that, for the support leg, F = Fp).

The procedure below will compute K for the swing leg, to obtain K for

the support leg is sufficient to use Fp instead of Fs and L2 instead of L′
2.

To compute K with respect to H and foot centroid Fs, we first compute L′
2,

which amounts to:

L′
2 =

√
L2
2 + ∥(Fs − F)∥2 =

√
L2
2 + (

footLength

2
)2 (2.33)

since the distance between heel and centroid of the foot is footLength
2

by

definition of centroid.

After computing M = ∥(Fs−H)∥, we can use the Cosine Rule to find λ:

cos (λ) =
M2 + L2

1 − L2
2

2ML1

(2.34)

λ = arccos(
M2 + L2

1 − L2
2

2ML1

) (2.35)

We also need ε which represents the rotation of the triangle △HKFs:

ε = arcsin(
Fs.y −H.y

M
) (2.36)

At this point position K can be computed as:

K.y = H.y + L1 sin(λ+ ε) (2.37)

K.z = H.z − L1 cos(λ+ ε) (2.38)

At this point, every quantity needed to compute angles for the support leg

has been calculated. An additional computation is needed for the swing leg,

since we don’t have the heel position F . To find it, a similar procedure with

respect to the computation of K can be exploited. Note that the following

2.5 Exoskeleton Kinematic Model 55

computation will work under the simplified assumption of a fixed / passive

joint for the ankle that keeps the angle between the shank and the foot at

90°, at least when the leg is swinging.

First, angles ω and ρ can be computed as:

ω = arcsin(
Fs.y −K.y

L′
2

) (2.39)

ρ = arcsin(
footLength

2

L′
2

) (2.40)

Finally, after assessing that µ = ρ− ω position F can be computed as:

F.y = Fs.y −
footLength

2
· cos(µ) (2.41)

F.z = Fs.z +
footLength

2
· sin(µ) (2.42)

At this point the computed values can be fed to 2.31 and 2.32 to obtain

the angles.

56 Methods

3 | Experiments and Results

3.1 Experimental Setup

Figure 3.1 Simplest type of LLE [5]

The experiments to validate the proposed model are based on the ac-

quisition of different real-world scenarios (i.e., obstacles of different shape

and positions) and on the evaluation of the exoskeleton kinematics in these

58 Experiments and Results

conditions. To sense the environment and detect the obstacles, an Intel® Re-

alSense™ D455 stereo depth camera was adopted and supposed to be rigidly

fixed at the exoskeleton pelvis. Detailed information, including camera’s

datasheet, are available at [70]. Figure 3.2 shows the experimental setup.

Figure 3.2 Setup employed for the experiments

This type of camera relies on Time of Flight and Stereo technologies,

and can produce high quality 3D point clouds that can then be processed to

3.1 Experimental Setup 59

extract huge amount of visual information. The reader can take a look at

[71] and [72] to better understand these technologies. The reason why this

component has been chosen is mainly the precision of the sensor (less than 2%

of depth error at 4 meters of distance) and the high acquisition rate (namely

90 FPS), which is fundamental when dealing with real-time tasks, such as

locomotion. Furthermore, since this camera measures infrared radiation but

doesn’t always project it (it uses any light to measure depth, and project

it only if necessary), it can work perfectly both indoor and outdoor, and

with negligible cross-talk with other similar devices. It is also worth noting

that the D455 camera comes with an Inertial Measurement Unit (IMU),

therefore providing additional information about the pose of the camera such

as rotation, acceleration and magnetic field.

Another important aspect relates to the framework that will be used to create

those software modules. The framework that has been chosen to implement

the computer vision module is Robot Operating System (ROS), an open-

source framework that helps researchers and developers build and reuse code

between robotics applications. This framework has many advantages, to

name a few:

• Software modules come in form of packages, allowing cross-collaboration

between developers without having to reinvent the wheel every time;

• Algorithms can be coded in many different languages, the main ones

being C++ and Python;

• A simple communication structure based on processes (nodes) which

can broadcast messages (topic publishers) or listen to them (topic sub-

scribers). Ideally, there should be a node for each sub task that the

robotic system has to complete in order to solve the whole task;

60 Experiments and Results

• Allows to simulate the task execution before deploying the solution on

the real robotic system.

For more detailed information about ROS the reader is advised to have

a look at [73] and [74]. The ROS distribution that was used in this work is

Noetic.

Due to the unavailability of a fully functional exoskeleton to test the proposed

method, all the experimental evaluation have been carried out on a virtual

exoskeleton model implemented in MATLAB. The model consists of two

thigh, shank and foot links, two hip and knee active joints, and two ankle

passive joints that have been assumed fixed at a 90° angle with respect to the

shank during the swing motion (the kinematics of a possible spring joint for

the ankle has not been considered, since its relevance would mostly emerge

when the feet is in contact with the ground, while this thesis is concerned with

the behaviour of the foot during the swing motion). This results in a model

with 4 active DoF and 6 joints, and it’s use is validated by the fact that the

majority of assistive lower limb exoskeletons are characterized by at least 6

joints, as shown in figure 3.1, 4 of which are generally actuated by DC motors

(i.e., hip and knee pitch joints). Some LLEs also comprise active ankle joints

(i.e., ankle dorsiflexion) and/or hip roll joints (i.e., leg abduction/adduction)

for balancing against gravity. However, since they are not commonly adopted

and I assume that balancing is maintained with crutches, or other passive

tools, I didn’t consider these additional joints in the exoskeleton model. The

most common type of actuator for the active joints is by far the DC motor,

as it could be noticed in table 1.1; since this work doesn’t pose emphasis on

the specific hardware actuation but it aims at generalizing to a variety of

exoskeletons in the market or in research, I assumed that a standard model

comprising a DC motor along with an encoder and a low-level PID controller

3.2 Experiments 61

to control any active joint. The abstraction of a general bipedal robot with

respect to an assistive Lower Limb Exoskeleton is based on the assumption

the user’s leg are completely passive and do not interfere with the exoskeleton

dynamic.

3.2 Experiments

I made six experiments in different conditions (labeled from (a) to (f)), so

that the robustness of the proposed method could be tested with different

obstacle configurations. Since the algorithm is supposed to evaluate footholds

for one foot at a time, the right leg has been chosen as the swing leg for all

experiments without loss of generality. The position of the single-support

(pivot) foot was supposed to be known (e.g., from the previous step and

exoskeleton encoders) and it is assumed to be compliant with the constraint

of the CV module (e.g., at least minDist from surrounding obstacles).

Experiment (a) represents one of the most common situations, where the

obstacle is one-sided with respect to the two legs, and the support leg is

positioned quite ahead of the camera (the left leg has more freedom in this

case, since no obstacle is present on that track).

Experiment (b) shows a slightly more challenging situation. In this case, the

obstacle occupies both tracks, and the support foot can no longer be placed

as arbitrarily as before.

Experiment (c) shows a situation where the obstacle is far from the subject’s

footholds.

Experiment (d) shows a situation where the swing foot initial position is at

minimum safe distance with respect to the obstacle.

Experiment (e) depicts a very challenging situation, where two obstacle are

62 Experiments and Results

present on the same track, and the space between them is the minimum

required to position the foot.

Experiment (f) depicts the robot in double support with feet at the same

Y-axis position (symmetrical with respect to the X-axis), a situation that

wasn’t considered in the previous experiments.

3.3 Evaluated Metrics

For each experiment, a table containing the notable measurements has been

produced. The real measurements have been collected by using a measuring

tape in the case of distances, and time measuring software tools such as the

clock object in C++ and functions tic/toc in MATLAB; on the other hand,

estimated measurements are those directly output by the CV and CFFTG

modules. The table comprises:

• Geometric features of the detected obstacles (distance with respect to

the camera, height and length);

• Support foot placement (which, together with the fact that the camera

is assumed to be placed in the origin, allows to calculate initial swing

foot position thanks to the kinematic model described in section 2.5);

• swing foot final placement (main output of the CV module);

• Total execution time of CV and CFFTG module;

• Values ofmult and stepHeight for the trajectory output by the CFFTG

module (explained in section 10);

• Number of iterations of the CFFTG module.

3.4 Results 63

3.4 Results

This section contains the experimental data collected to evaluate the perfor-

mance of the whole pipeline, from filtered cloud to the simulated kinematics

of the exoskeleton.

Figure 3.3 shows the RGB images of the experimental environments, seen

from the camera’s point of view.

64 Experiments and Results

(a) (b)

(c) (d)

(e) (f)

Figure 3.3 RGB Images of the experimental environments

3.4 Results 65

Figure 3.4 to 3.8 shows the point clouds from the experiments, displayed

with respect to the robot frame. Figure 3.4 shows the filtered point clouds of

experiments (a) to (f) displayed in the sagittal plane, while figure 3.5 shows

the filtered point clouds in the horizontal plane (bird-eye view).

66 Experiments and Results

(a) (b)

(c) (d)

(e) (f)

Figure 3.4 Filtered Clouds (Sagittal Plane)

3.4 Results 67

(a) (b)

(c) (d)

(e) (f)

Figure 3.5 Filtered Clouds (Horizontal Plane)

Figure 3.6 shows the point clouds after ground plane detection and ho-

mogeneous transformation are applied, displayed in the sagittal plane of the

68 Experiments and Results

robot frame, while figure 3.7 shows the same point clouds in the horizontal

plane; detected obstacle points are highlighted in green. It can be clearly

seen that the CV module is able to correctly align the point cloud with the

robot frame.

3.4 Results 69

(a) (b)

(c) (d)

(e) (f)

Figure 3.6 Clouds after Obstacle Detection and Homogeneous Transformation (Sagit-

tal Plane)

70 Experiments and Results

(a) (b)

(c) (d)

(e) (f)

Figure 3.7 Clouds after Obstacle Detection and Homogeneous Transformation (Hor-

izontal Plane)

Figure 3.8 shows the final point clouds after the whole CV is applied,

3.4 Results 71

shown in the horizontal plane. In this case, it is sufficient to show the bird-

eye view, since the sagittal view would be identical to figure 3.6. The two

tracks representing feet’s forward motion can be easily distinguished and have

different colors, and the brightness of the tracks’ points represents the proba-

bility of it being chosen for the foothold. The selected footholds, represented

by squares inside the tracks, are highlighted in green. Notice that obstacle

points inside the tracks are colored in black.

72 Experiments and Results

(a) (b)

(c) (d)

(e) (f)

Figure 3.8 Clouds after the whole CV module is applied (Horizontal Plane).

Figure 3.9 represent the kinematic simulations comprising the swing (de-

picted in red) and support leg (depicted in blue), along with foot centroid

3.4 Results 73

trajectory (depicted in light blue), hip trajectory (depicted in green) and de-

tected obstacles. The reader might notice that the feet goes under the X-Y

plane in some parts of the aforementioned figures. In a real situation, the

passive ankle joint would change its angle so that the feet can fully lay on

the ground, but since that condition doesn’t affect the experiment, which is

focused on the traversability of the obstacles, this behaviour has not been

modeled.

74 Experiments and Results

(a) (b)

(c) (d)

(e) (f)

Figure 3.9 Visualization of the expected step kinematics. The support leg is depicted

in blue, the swing leg is depicted in red. The Y-axis is shifted to place the swing’s foot

centroid in 0.

3.4 Results 75

Tables 3.1 to 3.6 contains the evaluated metrics (detailed in the previous

section) for each experiment.

Value Real Measure Estimated

Measure

Obstacle 1 Distance 15 cm 15.57 cm

Obstacle 1 Length 17 cm 17.32 cm

Obstacle 1 Height 17 cm 17.23 cm

Support’s Foot Placement

(Heel)

- 23.5 cm

Swing’s Foot Final Placement

(Centroid)

- 62.5 cm

Total Execution Time (CV

Module)

36.4 ms -

Mult Value (CFFTG) - 2.19

Step Height Value (CFFTG) - 33.9 cm

Number of Iterations

(CFFTG)

- 9

Total Execution Time

(CFFTG)

90 ms -

Table 3.1 Experimental Data (a)

76 Experiments and Results

Value Real Measure Estimated

Measure

Obstacle 1 Distance 15 cm 15.3 cm

Obstacle 1 Length 17 cm 17.44 cm

Obstacle 1 Height 17 cm 17.16 cm

Support’s Foot Placement

(Heel)

- 47 cm

Swing’s Foot Final Placement

(Centroid)

- 63.5 cm

Total Execution Time (CV

Module)

77.6 ms -

Mult Value (CFFTG) - 2.41

Step Height Value (CFFTG) - 35.8 cm

Number of Iterations

(CFFTG)

- 17

Total Execution Time

(CFFTG)

150 ms -

Table 3.2 Experimental Data (b)

3.4 Results 77

Value Real Measure Estimated

Measure

Obstacle 1 Distance 55 cm 55.2 cm

Obstacle 1 Length 17 cm 17.13 cm

Obstacle 1 Height 17 cm 17.48 cm

Support’s Foot Placement

(Heel)

- 5 cm

Swing’s Foot Final Placement

(Centroid)

- 27.5 cm

Total Execution Time (CV

Module)

76.2 ms -

Mult Value (CFFTG) - 2

Step Height Value (CFFTG) - 9.5 cm

Number of Iterations

(CFFTG)

- 1

Total Execution Time

(CFFTG)

100 ms -

Table 3.3 Experimental Data (c)

78 Experiments and Results

Value Real Measure Estimated

Measure

Obstacle 1 Distance 7.5 cm 7.66 cm

Obstacle 1 Length 17 cm 17.09 cm

Obstacle 1 Height 5 cm 3.88 cm

Support’s Foot Placement

(Heel)

- 16 cm

Swing’s Foot Final Placement

(Centroid)

- 51.5 cm

Total Execution Time (CV

Module)

54 ms -

Mult Value (CFFTG) - 1.91

Step Height Value (CFFTG) - 23.7 cm

Number of Iterations

(CFFTG)

- 28

Total Execution Time

(CFFTG)

340 ms -

Table 3.4 Experimental Data (d)

3.4 Results 79

Value Real Measure Estimated

Measure

Obstacle 1 Distance 12 cm 12.16 cm

Obstacle 1 Length 10 cm 10.33 cm

Obstacle 1 Height 10 cm 9.87 cm

Obstacle 2 Distance 79 cm 79.6 cm

Obstacle 2 Length 17 cm 17.2 cm

Obstacle 2 Height 17 cm 17.72 cm

Support’s Foot Placement

(Heel)

- 22 cm

Swing’s Foot Final Placement

(Centroid)

- 51.5 cm

Total Execution Time (CV

Module)

83.9 ms -

Mult Value (CFFTG) - 1.94

Step Height Value (CFFTG) - 32.7 cm

Number of Iterations

(CFFTG)

- 15

Total Execution Time

(CFFTG)

800 ms -

Table 3.5 Experimental Data (e)

80 Experiments and Results

Value Real Measure Estimated

Measure

Obstacle 1 Distance 32.5 cm 32.71 cm

Obstacle 1 Length 10 cm 10.62 cm

Obstacle 1 Height 10 cm 10.22 cm

Support’s Foot Placement

(Heel)

- 0 cm

Swing’s Foot Final Placement

(Centroid)

- 62.5 cm

Total Execution Time (CV

Module)

40.8 ms -

Mult Value (CFFTG) - 1.76

Step Height Value (CFFTG) - 30 cm

Number of Iterations

(CFFTG)

- 14

Total Execution Time

(CFFTG)

410 ms -

Table 3.6 Experimental Data (f)

4 | Discussion

This chapter will discuss the performance of the pipeline with respect to the

results displayed in the previous chapter. It can be easily assessed that the

CV module reaches a very good precision when it comes to the geometric

evaluation of the obstacles, with a mean error of 0.43 cm between real and

estimated measurements. This value is very similar to the one reached by

VALOR [57] in its experimental results. It is also clear that the ground

plane is present and easily distinguishable, since the clouds obtained after

ground plane detection and homogeneous transformation (shown in figures

3.7 , 3.6) are aligned with the Z-axis, in contrast with clouds shown in fig-

ures 3.5 and 3.4, which were captured beforehand. This is reasonable, since

it was assumed in section 2.1 that the exoskeleton will operate in an indoor

environment. This doesn’t mean that the algorithm would never be able to

recognize the ground plane of an outdoor environment, but the variety of

terrains that can be encountered outdoor makes the recognition more chal-

lenging. Therefore a more comprehensive and complex approach would be

needed to find an accurate solution in that case [75].

The mean execution time of the CV module implemented in C++ is 61.5

ms and, in general, as the size and number of obstacles increases, this time

increases as well. Indeed, it can be noted that the computational complexity

82 Discussion

of the CV module is dominated by the Track Evaluation function, which has

a complexity of O(n2) since the score of every point on the tracks is evalu-

ated by comparing the minimum distance between the point and all obstacle

points. Even if the execution time happens to be small with respect to the

double support time encountered in most walking gaits [76], is still possible to

optimize the Track Evaluation in many ways so that this time becomes even

smaller. One of the simplest ways to tackle this problem could be the use of a

simple 2-approximation algorithm that takes one random point and measures

the minimum distance between it and all other points [77]; this would reduce

the computational complexity from O(n2) to O(n). On the other hand, this

would return a distance which could be double of the minimum distance re-

turned by the exact solution in the worst case. In the context of cluttered

environments, this solution may risk to worsen the performance. A better

way to optimize such algorithm would be to produce a 2-D projection of the

obstacles on the X-Y plane, and then take only contour points. In such way,

the algorithm would have a reduction in the number of points which could

be huge in some cases, for example ”long and thin obstacles” that occupy a

small surface on the X-Y plane, without losing any information regarding the

distance between obstacles and possible footholds.

The mean execution time of the CFFTG module implemented in MATLAB

is 315 ms. With these values at hand, the maximum double support time can

also be evaluated by taking the maximum value of T (CV)+T (CFFTG). It

is clear that such value is the one occurring in experiment (e), with a total

execution time of 884 ms. This means that, in that case, the exoskeleton

will take at least 884 ms between the step depicted in the experiment and

the next one. This number is almost surely influenced by the fact that the

MATLAB language was not designed with the goal of being time-efficient

83

and by the complexity of the simulated exoskeleton model. Nevertheless, it

is worth highlighting that the complexity of the CFFTG module is O(n2),

as the CV module, and the number of iterations performed is usually small

(on average 14 iterations in all the experimental conditions). Thus, I believe

that a more time-efficient implementation of the CFFTG module in C++

under ROS will result in execution time of this algorithm compliant with the

real-time application.

All experiments except (c) showed that the proposed solution is able to

surpass an obstacle in one step; experiment (c), on the other hand, showed

that the proposed solution is also able to select smaller steps when the ob-

stacle is too far away to be surpassed, which is the correct behaviour for such

situations. In general, obstacles which lies on the closer half of the track

with respect to the Y-axis will be stepped over, since the CV module sets

its standard foothold in the middle of the track. This can be easily seen in

experiment (c), since in that case the CV module decides not to step over

the obstacle due to its position on the further half of the track. In this case

the CV module decides to place the swing foot at the minimum safe distance

from the obstacle. In this way, the next step will have the support foot in

the optimal position to step over the obstacle.

Experiments (a) and (b) shows that the CV module is successful in the pres-

ence of obstacles on one or both tracks. Experiment (d) is the one where the

error on obstacle’s height was larger, measuring it as 1.12 cm smaller than its

real height (5 cm). Nonetheless, the pipeline was able to correctly surpass the

obstacle. Experiment (e) highlights a conservative feature of the CV module:

evaluation of the minimum distance is based on the detected maximum ob-

stacle height, meaning that smaller obstacles will be treated like the biggest

84 Discussion

obstacle on the track. That’s why, in the aforementioned experiment, the

nearest obstacle, which has an height of 10 cm, is treated in the same way

as the further obstacle, which has an height 17 cm, in the minimum distance

evaluation phase. Although this behaviour doesn’t pose collision problems,

in the case of cluttered environments it would most likely discard some fea-

sible footholds. An effective solution to this problem is the segmentation of

obstacles, so that every obstacle point is related to a specific obstacle and the

minimum distance can be effectively computed for that obstacle only. In this

way, the conservative behaviour of the current solution can be relaxed. To

effectively segment the obstacle a simple solution is Clustering, which relies

on the concept of distance between points (in this case Euclidean) to label

them. Early tests on obstacle point clouds already show that this could be

an effective way to solve the aforementioned problem. Experiment (f) shows

that, even when starting with legs in symmetrical position with respect to

the X-axis , condition that shouldn’t happen since at least one hard-coded

step is needed to correctly position the COM, the solution is able to surpass

the obstacle. Although it is not shown during the experiments, another im-

provement lies in the planning of the next steps, which is not part of the

current solution, that plans only one step at a time. Since humans and

animals naturally move through obstacles planning multiple steps to select

the best footholds, so it should be for a Lower Limb Exoskeleton that mim-

ics human locomotion. In this sense, the enhanced solution should output

multiple footholds related to the next steps, and evaluate the trajectories

between them. This solution would bring more autonomy to the Lower Limb

Exoskeleton, which is the ultimate goal of this work.

All experiments show that the trajectories have different mid points and,

85

in this sense, the proposed approach improves the method used by VALOR

based on fixed cubic polynomial trajectories. In the case of VALOR, step

length and height are the only parameters used to modify the standard gait

pattern. Therefore, the trajectory of the foot during the step is almost the

same in every condition. Although this method seems adequate enough to

traverse obstacles, humans and animals use very different trajectories based

on the shape of the obstacle they have to traverse. Additionally, the implicit

limitation imposed by VALOR to surpass an obstacle in more than one step

(first the foot is placed at minimum distance, then the next step surpasses

the obstacle) is removed for most situations, except when the obstacle is too

far to surpass it in one step, as in experiment (c). In addition, my approach

allows the exoskeleton to surpass a sequence of obstacles on the foot tracks

as soon as they are at a minimum distance from each other (distance which

depends on the foot length and the safeDist parameter). On the contrary,

VALOR’s approach assumes that there is at most one obstacle in the for-

ward motion, and that this obstacle is visible at least three steps ahead of

the current exoskeleton position.

Another improvement lies in the fact that, in contrast with VALOR’s ap-

proach, obstacles that don’t lie in the tracks have little impact on the exe-

cution time, as can be seen in experiment (d). In that case, an additional

obstacle appears in the right-most part of the cloud, but the execution time

is similar with respect to experiment (a), which has a similar number of

obstacle points inside the tracks, as the right-most obstacle is disregarded.

On the other hand, VALOR extensively evaluates all obstacle points before

considering only those which will actively affect the next steps. This seems

unnecessary, since, for example, an obstacle which is placed to the side of the

exoskeleton has no effect on its forward motion. Since [57] did not comprise

86 Discussion

execution times, those quantities couldn’t be compared.

The degree of generalization introduced with respect to the exoskeleton model

(section 3.1) allows the use of the proposed solution without loss of generality

with respect to the kinematic chain of the specific exoskeleton that will be

used for the real implementation.

5 | Conclusions

In this thesis, I proposed and implemented a novel software method to al-

low powered Lower Limb Exoskeletons to autonomously avoid low obstacles,

based on Artificial Intelligence and Computer Vision techniques. This ap-

proach allows to overcome the main limitation of current exoskeletons, which

are generally driven by pre-defined gait trajectories with no capabilities of

context awareness. The proposed solution has showed to be effective in the

task of obstacle avoidance, since all simulated experiments have been carried

out successfully without collisions. It is also worth highlighting that the ex-

oskeleton model and the assumptions that has been considered in this work

allows the portability of the proposed solution to the majority of Lower Limb

Exoskeletons on the market or in research, as long as the basic requirements

described in sections 2.1 and 3.1 are met. Given the promising results of

this thesis, in future work the method will be implemented and tested with

a real Lower Limb Exoskeleton worn both with healthy subjects and end-

users. I believe that introduction of autonomous behaviors into Lower Limb

Exoskeletons may significantly expand their use outside laboratory environ-

ments and clinical settings, hopefully increasing their diffusion in daily-living

settings and thus enhancing the independence of paraplegic people.

88 Conclusions

Bibliography

[1] “Paralysed man walks using mind-controlled exoskele-

ton.” https://www.theguardian.com/world/2019/oct/04/

paralysed-man-walks-using-mind-controlled-exoskeleton,

2022.

[2] J. A. de la Tejera, R. Bustamante-Bello, R. A. Ramirez-Mendoza, and

J. Izquierdo-Reyes, “Systematic review of exoskeletons towards a general

categorization model proposal,” Applied Sciences, vol. 11, no. 1, p. 76,

2020.

[3] “Hardiman wikipedia page.” https://en.wikipedia.org/wiki/

Hardiman.

[4] H. Lee, P. W. Ferguson, and J. Rosen, Wearable Robotics, ch. 11.

[5] Y. He, J. Liu, F. Li, W. Cao, and X. Wu, “Design and analysis of

a lightweight lower extremity exoskeleton with novel compliant ankle

joints,”Technology and Health Care, no. Preprint, pp. 1–14, 2021.

[6] B. McGowan, “Industrial exoskeletons: What you’re not

hearing.” https://ohsonline.com/articles/2018/10/01/

industrial-exoskeletons-what-youre-not-hearing.aspx, 2018.

https://www.theguardian.com/world/2019/oct/04/paralysed-man-walks-using-mind-controlled-exoskeleton
https://www.theguardian.com/world/2019/oct/04/paralysed-man-walks-using-mind-controlled-exoskeleton
https://en.wikipedia.org/wiki/Hardiman
https://en.wikipedia.org/wiki/Hardiman
https://ohsonline.com/articles/2018/10/01/industrial-exoskeletons-what-youre-not-hearing.aspx
https://ohsonline.com/articles/2018/10/01/industrial-exoskeletons-what-youre-not-hearing.aspx

90 BIBLIOGRAPHY

[7] R. Y. M. Li and D. P. L. Ng, “Wearable robotics, industrial robots and

construction workers safety and health,”Advances in Intelligent Systems

and Computing, pp. 31–36, 2017.

[8] A. S. Koopman, I. Kingma, G. S. Faber, M. P. de Looze, and J. H.

van Dien, “Effects of a passive exoskeleton on the mechanical loading of

the low back in static holding tasks,” Journal of Biomechanics, vol. 83,

pp. 97–103, 2019.

[9] T. Bosch, J. van Eck, K. Knitel, and M. de Looze, “The effects of a

passive exoskeleton on muscle activity, discomfort and endurance time

in forward bending work,” Applied Ergonomics, vol. 54, pp. 212–217,

2016.

[10] J. A. de la Tejera, R. Bustamante-Bello, R. A. Ramirez-Mendoza, and

J. Izquierdo-Reyes, “Systematic review of exoskeletons towards a general

categorization model proposal,” Applied Sciences, vol. 11, no. 1, p. 76,

2020.

[11] N. Yagin, “Apparatus for facilitating walking.” https://patents.

google.com/patent/US440684. U.S. Patent.

[12] L. C. Kelley, “Pedomotor.” https://patents.google.com/patent/

US1308675. U.S. Patent.

[13] R. G. Baldovino and R. S. Jamisola, “A survey in the different designs

and control systems of powered exoskeleton for lower extremities,” Jour-

nal of Mechanical Engineering and Biomechanics, vol. 1, no. 4, pp. 103–

115, 2017.

https://patents.google.com/patent/US440684
https://patents.google.com/patent/US440684
https://patents.google.com/patent/US1308675
https://patents.google.com/patent/US1308675

BIBLIOGRAPHY 91

[14] Y. Mori, J. Okada, and K. Takayama, “Development of a standing style

transfer system ”able” for disabled lower limbs,” IEEE/ASME Transac-

tions on Mechatronics, vol. 11, no. 4, pp. 372–380, 2006.

[15] A. Esquenazi, M. Talaty, A. Packel, and M. Saulino, “The rewalk pow-

ered exoskeleton to restore ambulatory function to individuals with

thoracic-level motor-complete spinal cord injury,” American journal of

physical medicine & rehabilitation, vol. 91, no. 11, pp. 911–921, 2012.

[16] M. Talaty, A. Esquenazi, and J. E. Briceno, “Differentiating ability in

users of the rewalk tm powered exoskeleton: An analysis of walking

kinematics,” in 2013 IEEE 13th international conference on rehabilita-

tion robotics (ICORR), pp. 1–5, IEEE, 2013.

[17] P. D. Neuhaus, J. H. Noorden, T. J. Craig, T. Torres, J. Kirschbaum,

and J. E. Pratt, “Design and evaluation of mina: A robotic orthosis for

paraplegics,” in 2011 IEEE international conference on rehabilitation

robotics, pp. 1–8, IEEE, 2011.

[18] “Rex bionics website.” https://www.rexbionics.com/.

[19] K. Suzuki, Y. Kawamura, T. Hayashi, T. Sakurai, Y. Hasegawa, and

Y. Sankai, “Intention-based walking support for paraplegia patient,” in

2005 IEEE International Conference on Systems, Man and Cybernetics,

vol. 3, pp. 2707–2713, IEEE, 2005.

[20] C. L. Dembia, A. Silder, T. K. Uchida, J. L. Hicks, and S. L. Delp,

“Simulating ideal assistive devices to reduce the metabolic cost of walk-

ing with heavy loads,” PLOS ONE, vol. 12, no. 7, p. e0180320, 2017.

[21] K. A. Witte, J. Zhang, R. W. Jackson, and S. H. Collins, “Design of

two lightweight, high-bandwidth torque-controlled ankle exoskeletons,”

https://www.rexbionics.com/

92 BIBLIOGRAPHY

in 2015 IEEE International Conference on Robotics and Automation

(ICRA), pp. 1223–1228, 2015.

[22] J. R. Koller, C. David Remy, and D. P. Ferris, “Comparing neural con-

trol and mechanically intrinsic control of powered ankle exoskeletons,”

in 2017 International Conference on Rehabilitation Robotics (ICORR),

pp. 294–299, 2017.

[23] A. Esquenazi, M. Talaty, and A. Jayaraman, “Powered exoskeletons for

walking assistance in persons with central nervous system injuries: A

narrative review,” PM&R, vol. 9, no. 1, pp. 46–62, 2016.

[24] H. Kazerooni, “Exoskeletons for human power augmentation,” in 2005

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 3459–3464, 2005.

[25] J. L. Emken, R. Benitez, and D. J. Reinkensmeyer, “Human-robot co-

operative movement training: Learning a novel sensory motor transfor-

mation during walking with robotic assistance-as-needed,” Journal of

NeuroEngineering and Rehabilitation, vol. 4, no. 1, 2007.

[26] G. Carpino, D. Accoto, N. Tagliamonte, G. Ghilardi, and

E. Guglielmelli, “Lower limb wearable robots for physiological gait

restoration: state of the art and motivations,” MEDIC Methodology &

Education for Clinical Innovation, vol. 21, pp. 72–80, 12 2013.

[27] S. Goemaere, M. Van Laere, P. De Neve, and J. M. Kaufman, “Bone

mineral status in paraplegic patients who do or do not perform standing,”

Osteoporosis International, vol. 4, no. 3, pp. 138–143, 1994.

[28] T. Sumiya, K. Kawamura, A. Tokuhiro, H. Takechi, and H. Ogata,

“A survey of wheelchair use by paraplegic individuals in japan. part 2:

BIBLIOGRAPHY 93

Prevalence of pressure sores,” Spinal Cord, vol. 35, no. 9, pp. 595–598,

1997.

[29] K. A. Strausser, T. A. Swift, A. B. Zoss, H. Kazerooni, and B. C. Ben-

nett, “Mobile exoskeleton for spinal cord injury: Development and test-

ing,” in Dynamic Systems and Control Conference, vol. 54761, pp. 419–

425, 2011.

[30] “Ekso website.” https://eksobionics.com/.

[31] W. Y.-W. Tung, M. McKinley, M. V. Pillai, J. Reid, and H. Kazerooni,

“Design of a minimally actuated medical exoskeleton with mechanical

swing-phase gait generation and sit-stand assistance,” in Dynamic Sys-

tems and Control Conference, vol. 56130, p. V002T28A004, American

Society of Mechanical Engineers, 2013.

[32] E. WS, “Center of mass of the human body helps in analysis of balance

and movement,”MOJ Applied Bionics and Biomechanics, vol. 2, no. 2,

2018.

[33] J.-Y. Jung, W. Heo, H. Yang, and H. Park, “A neural network-based

gait phase classification method using sensors equipped on lower limb

exoskeleton robots,” Sensors, vol. 15, no. 11, pp. 27738–27759, 2015.

[34] H. A. Quintero, R. J. Farris, and M. Goldfarb, “Control and implemen-

tation of a powered lower limb orthosis to aid walking in paraplegic

individuals,” in 2011 IEEE International Conference on Rehabilitation

Robotics, pp. 1–6, IEEE, 2011.

[35] R. J. Farris, H. A. Quintero, and M. Goldfarb, “Performance evaluation

of a lower limb exoskeleton for stair ascent and descent with paraple-

https://eksobionics.com/

94 BIBLIOGRAPHY

gia,” in 2012 Annual international conference of the IEEE engineering

in medicine and biology society, pp. 1908–1911, IEEE, 2012.

[36] T. Bacek, M. Moltedo, K. Langlois, G. A. Prieto, M. C. Sanchez-

Villamañan, J. Gonzalez-Vargas, B. Vanderborght, D. Lefeber, and J. C.

Moreno, “Biomot exoskeleton—towards a smart wearable robot for sym-

biotic human-robot interaction,” in 2017 International Conference on

Rehabilitation Robotics (ICORR), pp. 1666–1671, IEEE, 2017.

[37] D. Winter, “Human balance and posture control during standing and

walking,”Gait & Posture, vol. 3, no. 4, pp. 193–214, 1995.

[38] S. Collins, A. Ruina, R. Tedrake, and M. Wisse, “Efficient bipedal robots

based on passive-dynamic walkers,”Science, vol. 307, no. 5712, pp. 1082–

1085, 2005.

[39] T. McGeer, “Passive dynamic walking,” The International Journal of

Robotics Research, vol. 9, no. 2, pp. 62–82, 1990.

[40] T. Kagawa and Y. Uno, “Gait pattern generation for a power-assist de-

vice of paraplegic gait,” in RO-MAN 2009-The 18th IEEE International

Symposium on Robot and Human Interactive Communication, pp. 633–

638, IEEE, 2009.

[41] T. Kagawa and Y. Uno, “A human interface for stride control on a wear-

able robot,” in 2009 IEEE/RSJ International Conference on Intelligent

Robots and Systems, pp. 4067–4072, IEEE, 2009.

[42] S. Wang, L. Wang, C. Meijneke, E. Van Asseldonk, T. Hoellinger,

G. Cheron, Y. Ivanenko, V. La Scaleia, F. Sylos-Labini, M. Molinari,

BIBLIOGRAPHY 95

et al., “Design and control of the mindwalker exoskeleton,” IEEE trans-

actions on neural systems and rehabilitation engineering, vol. 23, no. 2,

pp. 277–286, 2014.

[43] L. Wang, S. Wang, E. H. van Asseldonk, and H. van der Kooij, “Actively

controlled lateral gait assistance in a lower limb exoskeleton,” in 2013

IEEE/RSJ International Conference on Intelligent Robots and Systems,

pp. 965–970, IEEE, 2013.

[44] R. Kolaghassi, M. K. Al-Hares, and K. Sirlantzis, “Systematic review

of intelligent algorithms in gait analysis and prediction for lower limb

robotic systems,” IEEE Access, 2021.

[45] Y. Sankai, “Hal: Hybrid assistive limb based on cybernics,” in Robotics

research, pp. 25–34, Springer, 2010.

[46] A. Tsukahara, Y. Hasegawa, K. Eguchi, and Y. Sankai, “Restoration of

gait for spinal cord injury patients using hal with intention estimator

for preferable swing speed,” IEEE Transactions on neural systems and

rehabilitation engineering, vol. 23, no. 2, pp. 308–318, 2014.

[47] S. Wang, W. Van Dijk, and H. van der Kooij, “Spring uses in exoskeleton

actuation design,” in 2011 IEEE International Conference on Rehabili-

tation Robotics, pp. 1–6, IEEE, 2011.

[48] F. Sylos-Labini, V. La Scaleia, A. d’Avella, I. Pisotta, F. Tamburella,

G. Scivoletto, M. Molinari, S. Wang, L. Wang, E. van Asseldonk, et al.,

“Emg patterns during assisted walking in the exoskeleton,” Frontiers in

human neuroscience, vol. 8, p. 423, 2014.

96 BIBLIOGRAPHY

[49] K. Kong and D. Jeon, “Design and control of an exoskeleton for the el-

derly and patients,” IEEE/ASME Transactions on mechatronics, vol. 11,

no. 4, pp. 428–432, 2006.

[50] Z. Li, Y. Yuan, L. Luo, W. Su, K. Zhao, C. Xu, J. Huang, and M. Pi,

“Hybrid brain/muscle signals powered wearable walking exoskeleton en-

hancing motor ability in climbing stairs activity,” IEEE Transactions on

Medical Robotics and Bionics, vol. 1, no. 4, pp. 218–227, 2019.

[51] S. Guo, Y. Ding, and J. Guo, “Control of a lower limb exoskeleton robot

by upper limb semg signal,” in 2021 IEEE International Conference on

Mechatronics and Automation (ICMA), pp. 1113–1118, IEEE, 2021.

[52] S. Kyeong, J. Feng, J. K. Ryu, J. J. Park, K. H. Lee, and J. Kim,“Surface

electromyography characteristics for motion intention recognition and

implementation issues in lower-limb exoskeletons,” International Journal

of Control, Automation and Systems, vol. 20, no. 3, pp. 1018–1028, 2022.

[53] X. Zhao, W.-H. Chen, B. Li, X. Wu, and J. Wang, “An adaptive stair-

ascending gait generation approach based on depth camera for lower limb

exoskeleton,”Review of Scientific Instruments, vol. 90, no. 12, p. 125112,

2019.

[54] F. Xu, R. Huang, H. Cheng, J. Qiu, S. Xiang, C. Shi, and W. Ma,

“Stair-ascent strategies and performance evaluation for a lower limb ex-

oskeleton,” International Journal of Intelligent Robotics and Applica-

tions, vol. 4, no. 3, pp. 278–293, 2020.

[55] B. Laschowski, W. McNally, A. Wong, and J. McPhee, “Preliminary de-

sign of an environment recognition system for controlling robotic lower-

BIBLIOGRAPHY 97

limb prostheses and exoskeletons,” in 2019 IEEE 16th international con-

ference on rehabilitation robotics (ICORR), pp. 868–873, IEEE, 2019.

[56] K. Struebig, N. Ganter, L. Freiberg, and T. C. Lueth, “Stair and ramp

recognition for powered lower limb exoskeletons,” in 2021 IEEE Inter-

national Conference on Robotics and Biomimetics (ROBIO), pp. 1270–

1276, IEEE, 2021.

[57] D.-X. Liu, J. Xu, C. Chen, X. Long, D. Tao, and X. Wu,“Vision-assisted

autonomous lower-limb exoskeleton robot,” IEEE Transactions on Sys-

tems, Man, and Cybernetics: Systems, vol. 51, pp. 3759–3770, 2021.

[58] “Decree of june 14th 1989: Italian version.” https://www.

bosettiegatti.eu/info/norme/statali/1989_0236.htm#08.1.10.

[59] K. G. Derpanis, “Overview of the ransac algorithm,” Image Rochester

NY, vol. 4, no. 1, pp. 2–3, 2010.

[60] T. Strutz, Data fitting and uncertainty. 2016.

[61] R. B. Rusu and S. Cousins, “3d is here: Point cloud library (pcl),” in

2011 IEEE international conference on robotics and automation, pp. 1–

4, IEEE, 2011.

[62] S. M. LaValle, “Homogeneous transformation matrices.” http://

planning.cs.uiuc.edu/node111.html. Cambridge University.

[63] L.-S. Chou and L. F. Draganich, “Placing the trailing foot closer to an

obstacle reduces flexion of the hip, knee, and ankle to increase the risk

of tripping,” Journal of biomechanics, vol. 31, no. 8, pp. 685–691, 1998.

https://www.bosettiegatti.eu/info/norme/statali/1989_0236.htm#08.1.10
https://www.bosettiegatti.eu/info/norme/statali/1989_0236.htm#08.1.10
http://planning.cs.uiuc.edu/node111.html
http://planning.cs.uiuc.edu/node111.html

98 BIBLIOGRAPHY

[64] L.-S. Chou, K. R. Kaufman, R. H. Brey, and L. F. Draganich, “Motion of

the whole body’s center of mass when stepping over obstacles of different

heights,”Gait & Posture, vol. 13, no. 1, pp. 17–26, 2001.

[65] A. Tsoularis and C. Kambhampati, “On-line planning for collision avoid-

ance on the nominal path,” Journal of Intelligent and Robotic Systems,

vol. 21, pp. 327–371, 04 1998.

[66] S. Sharif Bidabadi, I. Murray, and G. Y. F. Lee, “Validation of foot

pitch angle estimation using inertial measurement unit against marker-

based optical 3d motion capture system,” Biomedical Engineering Let-

ters, vol. 8, no. 3, pp. 283–290, 2018.

[67] H. H. Hoos and E. Tsang, “Chapter 5 - local search methods,” in Hand-

book of Constraint Programming (F. Rossi, P. van Beek, and T. Walsh,

eds.), vol. 2 of Foundations of Artificial Intelligence, pp. 135–167, Else-

vier, 2006.

[68] J. Carpentier, M. Benallegue, and J.-P. Laumond, “On the centre of

mass motion in human walking,” International Journal of Automation

and Computing, vol. 14, no. 5, pp. 542–551, 2017.

[69] “Crank connecting rod equations.” https://www.istitutopesenti.

edu.it/dipartimenti/meccanica/meccanica/biella.pdf.

[70] “Intel realsense d455 web page.” https://www.intelrealsense.com/

depth-camera-d455/.

[71] B. Siciliano and O. Khatib, Springer Headbook of Robotics, ch. 22.

[72] “Intel realsense beginners guide to depth.” https://www.

intelrealsense.com/beginners-guide-to-depth/.

https://www.istitutopesenti.edu.it/dipartimenti/meccanica/meccanica/biella.pdf
https://www.istitutopesenti.edu.it/dipartimenti/meccanica/meccanica/biella.pdf
https://www.intelrealsense.com/depth-camera-d455/
https://www.intelrealsense.com/depth-camera-d455/
https://www.intelrealsense.com/beginners-guide-to-depth/
https://www.intelrealsense.com/beginners-guide-to-depth/

BIBLIOGRAPHY 99

[73] “What is ros?.” https://ubuntu.com/robotics/what-is-ros.

[74] “Ros wiki.” https://wiki.ros.org/ROS/Tutorials.

[75] A. A. Rafique, A. Jalal, and K. Kim, “Statistical multi-objects segmen-

tation for indoor/outdoor scene detection and classification via depth

images,” in 2020 17th International Bhurban Conference on Applied Sci-

ences and Technology (IBCAST), pp. 271–276, IEEE, 2020.

[76] A. Kharb, V. Saini, Y. Jain, and S. Dhiman, “A review of gait cycle

and its parameters,” IJCEM International Journal of Computational

Engineering & Management, vol. 13, pp. 78–83, 2011.

[77] M. Dalirrooyfard, V. V. Williams, N. Vyas, N. Wein, Y. Xu, and Y. Yu,

“Approximation algorithms for min-distance problems,” 2019.

[78] L.-F. Zhang, Y. Ma, C. Wang, Z. Yan, and X. Wu, “A method for

arm motions classification and a lower-limb exoskeleton control based on

semg signals,” in 2019 IEEE 4th International Conference on Advanced

Robotics and Mechatronics (ICARM), pp. 118–123, 2019.

[79] A. A. Bakri, M. Y. Lezzar, M. Alzinati, K. Mortazavi, W. Shehieb,

and T. Sharif, “Intelligent exoskeleton for patients with paralysis,” in

2018 IEEE 9th Annual Information Technology, Electronics and Mobile

Communication Conference (IEMCON), pp. 189–193, 2018.

[80] I. Tijjani, S. Kumar, and M. Boukheddimi, “A survey on design and

control of lower extremity exoskeleton for bipedal walking,”Applied Sci-

ences.

[81] “Intel realsense d455 camera sdk.” https://github.com/

IntelRealSense/librealsense/releases/tag/v2.50.0.

https://ubuntu.com/robotics/what-is-ros
https://wiki.ros.org/ROS/Tutorials
https://github.com/IntelRealSense/librealsense/releases/tag/v2.50.0
https://github.com/IntelRealSense/librealsense/releases/tag/v2.50.0

100 BIBLIOGRAPHY

[82] “Intel realsense ros package.” https://github.com/IntelRealSense/

realsense-ros.

[83] K. Junius, B. Brackx, V. Grosu, H. Cuypers, J. Geeroms, M. Moltedo,

B. Vanderborght, and D. Lefeber, “Mechatronic design of a sit-to-stance

exoskeleton,” in 5th IEEE RAS/EMBS International Conference on

Biomedical Robotics and Biomechatronics, pp. 945–950, 2014.

[84] M. K. Shepherd and E. J. Rouse, “Design and validation of a torque-

controllable knee exoskeleton for sit-to-stand assistance,” IEEE/ASME

Transactions on Mechatronics, vol. 22, no. 4, pp. 1695–1704, 2017.

[85] “What is matlab?.” https://it.mathworks.com/discovery/

what-is-matlab.html.

[86] “Matlab walking robot repository.” https://github.com/

mathworks-robotics/msra-walking-robot.

https://github.com/IntelRealSense/realsense-ros
https://github.com/IntelRealSense/realsense-ros
https://it.mathworks.com/discovery/what-is-matlab.html
https://it.mathworks.com/discovery/what-is-matlab.html
https://github.com/mathworks-robotics/msra-walking-robot
https://github.com/mathworks-robotics/msra-walking-robot

Acknowledgements

I’d like to thank my family and my friends for sticking with me during this

journey, during the highs and the lows. I also thank Prof. Menegatti, Dr.

Tortora and the University of Padua for giving me the opportunity to expand

my knowledge and giving me the tools to produce this thesis. Without them,

all of this couldn’t have been possible.

	Abstract
	List of Figures
	List of Tables
	List of Acronyms
	Background
	What is an Exoskeleton
	History of Exoskeletons
	Lower Limb Exoskeletons
	Related Work
	Thesis Aims and Structure

	Methods
	Problem Description
	Overview
	Computer Vision Module
	Input Point Cloud
	User Parameters
	Filtering
	Ground Plane Detection
	Homogeneous Transformation
	FootHold Identification
	Minimum Distance Parameter

	Collision-Free Foot Trajectory Generator
	Exoskeleton Kinematic Model

	Experiments and Results
	Experimental Setup
	Experiments
	Evaluated Metrics
	Results

	Discussion
	Conclusions
	References
	Acknowledgements

