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Abstract (English version) 

Recognizing objects in images requires complex skills that involve 

knowledge about the context and the ability to identify the borders of 

the objects. In computer vision, this task is called semantic 

segmentation and it pertains to the classification of each pixel in an 

image. The task is of main importance in many real-life scenarios: in 

autonomous vehicles, it allows the identification of objects surrounding 

the vehicle; in medical diagnosis, it improves the ability of early 

detecting dangerous pathologies and thus to mitigate the risk of serious 

consequences. In this work, we propose a new ensemble method able 

to solve the semantic segmentation task. The model is based on 

convolutional neural networks (CNNs) and transformers. An ensemble 

uses many different models whose predictions are aggregated to form 

the output of the ensemble system. The performance and quality of the 

ensemble prediction are strongly connected with some factors, one of 

the most important is the diversity among individual models. In our 

approach, this is enforced by adopting different loss functions and 

testing different data augmentation. We developed the proposed 

method by combining DeepLabV3+, HarDNet-MSEG, and Pyramid 

Vision Transformers. The developed solution was then assessed 

through an extensive empirical evaluation in five different scenarios: 

polyp detection, skin detection, leukocytes recognition, environmental 

microorganism detection, and butterfly recognition. The model 

provides state-of-the-art results. All resources will be available online 

at https://github.com/AlbertoFormaggio1/Ensemble-Of-Segmentation. 
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Sommario (versione Italiana) 

Riconoscere oggetti all’interno delle immagini richiede delle abilità 

complesse che richiedono una conoscenza del contesto e la capacità di 

identificare i bordi degli oggetti stessi. Nel campo della computer 

vision, questo compito è chiamato segmentazione semantica e riguarda 

la classificazione di ogni pixel all’interno di un’immagine. Tale 

compito è di primaria importanza in molti scenari reali: nei veicoli 

autonomi, dove permette l’identificazione degli oggetti che circondano 

il veicolo, o nella diagnosi medica, in cui migliora la capacità di 

identificare patologie pericolose e quindi mitigare il rischio di serie 

conseguenze. In questo studio, proponiamo un nuovo modello per un 

multiclassificatore in grado di risolvere il compito di segmentazione 

semantica. Il modello si basa su reti neurali convoluzionali (CNN) e 

transformers. Un multiclassificatore usa diversi modelli le cui stime 

vengono aggregate così da ottenere l’output del sistema di 

multiclassificazione. Le prestazioni e la qualità delle previsioni 

dell’ensemble sono fortemente connessi ad alcuni fattori, tra cui il più 

importante è la diversità tra i singoli modelli. Nell’approccio qui 

proposto, abbiamo ottenuto questo risultato adottando diverse loss 

functions e testando con diversi metodi di data augmentation. Abbiamo 

sviluppato questo metodo combinando DeepLabV3+, HarDNet-MSEG 

e dei Pyramid Vision Transformers (PVT). La soluzione qui sviluppata 

è stata poi esaminata mediante un’ampia valutazione empirica in 5 

diversi scenari: rilevamento di polipi, rilevamento della pelle, 

riconoscimento di leucociti, rilevamento di microorganismi e 

riconoscimento di farfalle. Il modello fornisce dei risultati che sono allo 

stato dell’arte. Tutte le risorse sono disponibili online all’indirizzo 

https://github.com/AlbertoFormaggio1/Ensemble-Of-Segmentation. 
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Chapter 1 

Introduction 

 

Being able to recognize objects in images has been for a long time a prerogative of human 

beings. It has taken over 14 years to reach the level of an untrained human in the challenge of 

Imagenet. Things become more complex when the task requires not only to recognize the object 

in an image but also to identify its boundaries. This task is called semantic segmentation and in 

machine learning this entails the classification of each pixel in an image. Due to the 

improvements of performance related to the adoption of machine learning models, this task is 

applied to many real-life scenarios [1,2]: in clinical practice, it can be used to identify polyps, 

similarly, in skin and blood analysis the identification of objects may help to visually bound the 

presence of different types of diseases. In addition, it can be used in autonomous vehicles, to 

identify objects surrounding the vehicle, in classification of environmental microorganisms, 

and in many other contexts. 

The standard approach is to train a system composed of two modules: an encoder, and a 

decoder. The first module learns a low-dimensional representation of the input that describes 

semantics in the image. The second module learns to build the original input based on this low-

dimensional feature vector. This has been the approach adopted by U-Net [3], one of the first 

systems developed for semantic segmentation.  

Autoencoders [4] were also employed to resolve the task due to their ability to learn the 

semantics of low-level representations of an image through the encoder module as well as the 

ability to re-construct the original input from this reduced representation. Autoencoders 

performance and results are the reasons why many researchers and practitioners from the 

computer vision area have adopted them. 

The performance of autoencoders, as well as the ones of other classifier technologies, are 

strongly affected by architecture configurations, and other configurations often referred to as 
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hyper-parameters tuning. That consists in finding the best values of some attributes of the 

model. This is a context-specific task that requires domain knowledge as well as expertise with 

the adopted machine learning techniques, resulting in big efforts and time consumption. The 

well-known no-free lunch theorem for machine learning highlights that a single model that 

works well on all the datasets cannot exist. Based on this evidence, another approach consists 

in adopting sets of classifiers, often shallow or weak, whose predictions are aggregated to form 

the output of the system. These frameworks are called ensemble methods. Roughly speaking, 

each classifier can be viewed as a voter in an election who expresses its preference on a set of 

possible alternatives, then the one that gets the majority of the votes is the chosen one for that 

election. In an ensemble, individual classifiers are trained on the same dataset, in such a way 

each model should generalise differently in the training space. Ensembles provide state-of-the-

art results in many domains, but it is important to ensure some properties. One of them is to 

enforce some kind of diversity in the set of classifiers. 

 

 

Figure 1. The common ensemble architecture 

 

In this work, we propose a novel ensemble method for semantic segmentation. Our model is 

based on convolutional neural networks (CNNs) and transformers. Diversity among individual 

classifiers is enforced by adopting different loss functions and testing different data 

augmentation.  

The model has been developed by combining DeepLabV3+ [5], HarDNet-MSEG [6], and 

Pyramid Vision Transformers[7]. We tested our proposal in five real-world scenarios: polyp 

detection, skin detection, leukocytes recognition, environmental microorganism detection and 

butterfly recognition. The developed solution was then assessed through an extensive empirical 

evaluation that compares our proposal with state-of-the-art solutions highlighting promising 

results often better than the best approaches.  
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Due to improvements of the discipline, machine learning techniques are used and applied in 

many different areas, for instance in medical diagnosis or in biology. Convolutional neural 

networks (CNNs) and other classic predictors are adopted for assisting researchers and 

practitioners in better identifying objects in images. This is the case, for instance, of skin 

segmentation or butterfly identification. However, a drawback of this technology is that a huge 

amount of data is needed to train these systems, but labeled data is a scarce resource in many 

domains. This is one of the reasons why big efforts are spent building and publishing datasets 

in specific areas, such an example is Kvasir-SEG [8], a recent dataset that contains polyp images 

annotated at pixel level by a group of experts. 

A novel architecture came from the scope of natural language processing (NLP), where 

researchers study how to comprehend the semantic of texts with the purpose of automating 

tasks such as summarization or translation. This new model called Transformer is designed with 

a self-attention mechanism that enables the system to focus on specific part of the input. 

Transformers have also been applied to computer vision tasks, gaining performance comparable 

to or even better than CNNs. Once again, the main drawback of these models resides in the high 

demand of data useful to train a stable and performing system. TransFuse [9] and UACANet 

[10] are two recent approaches in the medical domain that combine different techniques: the 

first is a combination of CNN kernels and Transformers, while the second blends U-Net and a 

parallel axial attention autoencoder. No matter the architecture, the aim is to capture 

information at both local and global levels. 

 

As previously noticed, semantic segmentation becomes of main importance in many contexts. 

Autonomous vehicles, for instance, use semantic segmentation to identify objects in the 

environment surrounding the vehicle in order to make safe decisions[11]. In clinical practice, it 

helps reduce the exposure to serious risks by detecting pathologies in their early stages, such as 

polyps detection that may prevent the evolution of colorectal cancers [2]. Similarly, in skin 

detection, deep learning methods are employed in various areas, spanning from face detection 

to hand gesture recognition[12]. In this context, deep approaches have faced some difficulties, 

such as the clutter in the background that hinders the reliable detection of hand gestures in real-

world environments. 

CNNs have shown their appeal also in this context, two examples are the works by Roy et al. 

[13] and Arsalan et al. [14]. In the former work, authors suggest using a CNN based on skin 

detection techniques to enhance the hand detector output. The latter instead introduced a 

residual skip connections (OR-Skip-Net) CNN that decreases the computational effort of the 

network and at the same time tackles demanding skin segmentation tasks. The goal is achieved 
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by moving data to the last layer of the network directly from the initial layer. CNNs are also 

employed for automatically translate sign language [15]. 

A comparative analysis is reported in [12] through an extensive empirical evaluation of several 

leading technologies on a set of skin detection benchmarks.  

 

 

Figure 2: Example of a Convolutional Neural Network (CNN) 

 

Recently, deep learning has also been used for the automatic recognition and classification of 

leukocytes [16]. This practice helps medical practitioners diagnose various blood-related 

diseases. This can be done in many different ways: practitioners can analyse the percentages 

through the histogram-based technique [15] or iterative algorithms (such as GrabCut [17]) that 

segment white blood cells. 

 

Contribution: This paper proposes a new ensemble method based on DeepLabV3+, HarDNet-

MSEG, and Pyramid Vision Transformers backbones. The proposal is intended to deal with 

semantic segmentation. In this work, diversity among individual classifiers in the ensemble is 

enforced by adopting different loss functions and testing different data augmentation 

approaches. We tested the proposed method on five different scenarios and compared the results 

with the existing frameworks. The empirical evaluation highlights our results that are close to 

or even better than the state-of-the-art level. 
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Chapter 2 

Materials and Methods 

 

In this section, we will provide all the techniques and approaches used to generate our ensemble. 

In particular, we will report the mathematical formalisation of the loss functions adopted to 

design the networks. 

 

2.1   Deep Learning for Semantic Image Segmentation 

In literature, different deep learning models are proposed to address semantic segmentation 

problems.    

Semantic segmentation intends to identify objects in an image, with their corresponding 

boundaries. The main purpose is therefore to assign a class at the pixel level; a task achieved 

thanks to FCNs (Fully convolutional networks). FCNs have very high performance and unlike 

CNNs they use a fully convolutional last layer instead of a fully connected one [18]. 

In order to obtain deconvolutional networks, such as U-Net, FCNs and autoencoders are 

combined together. 

 

Figure 3. Semantic Segmentation of a 2D image 
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U-Net represents the first attempt to use autoencoders in an image segmentation task. Through 

the autoencoder it is possible to downsample the input and simultaneously increment the 

number of features used to describe the input space. We can find another symbolic example in 

SegNet [19]: here, the max pool indices of the relative encoder level feed the decoders, while 

VGG is used for encoding. This allows to reduce memory usage and also has a more promising 

segmentation. 

DeepLab [20] consists of a series of autoencoder models introduced by Google, which has 

shown excellent results in semantic segmentation applications [21]. These are some 

of the main features introduced to guarantee good performance: 

• A dilated convolution reduces the effects of pooling and stride, thereby greatly in-

creasing the resolution. 

• Through an Atrous Spatial Pyramid Pooling, information is obtained at various scales. 

• A union of CNNs and probabilistic graphic models makes it possible to detect the 

boundaries of objects. 

We find in DeepLabV3 two most important innovations: a 1x1 convolution in Atrous Spatial 

Pyramid Pooling and a batch normalisation: a set of modules placed in parallel and in cascade 

for convolutional dilation. DeepLabV3+ [5], an expansion of the family developed by Google, 

is adopted in this work. This expansion includes, among the most important features, a decoder 

with depth-wise convolutions and point-wise convolutions. The depth-wise works in the same 

location but with various channels, while the point-wise uses the same channel in various 

locations. In order to obtain different designs for a framework, we can consider other 

characteristics of the structure of a model.  

In this paper, we will investigate ResNet101 [22], a very famous CNN that acquires a residual 

function by referring to the block input ([33] is recommended for an exhaustive list of CNN 

structures). We adopt the ResNet101 network, pre-trained on the VOC segmentation dataset 

and then modulated through the parameters suggested1. These parameters have not been 

modified in order to prevent overfitting phenomena (i.e. same parameters in all the tested 

datasets): 

- initial learning rate = 0.01; 

- number of epoch = 10 (using the simple data augmentation approach) or 15 (using more 

complex data augmentation approach due to the slower convergence using this larger 

augmented training set); 

- momentum = 0.9; 

                                                            
1 https://github.com/matlab-deep-learning/pretrained-deeplabv3plus 
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- L2Regularization = 0.005; 

- Learning Rate Drop Period = 5; 

- Learning Rate Drop Factor = 0.2; 

- Shuffle training images every-epoch; 

- Optimizer = SGD (stochastic gradient descent). 

 

Firstly, we propose an ensemble of DeepLabV3+ models obtained by applying various loss and 

data augmentation methods, and then we combine the ensemble with HarDNet-MSEG [6], and 

Pyramid Vision Transformers (PVT) [7]. The HarD-Net-MSEG (Harmonic Densely Connected 

Network), a model influenced by Densely Connected Networks, allows the reduction of 

memory consumption in this way: it decreases most of the connection layers at the DenseNet 

level, in order to reduce the costs of concatenation. In addition, the input / output channel ratio 

is equalised thanks to the increase in the channel width of the layers (consequently to the 

increase in its connections). 

The PVT is a pure convolution-free transformer network which aims to acquire a high-

resolution representation starting from a fine-grained input. The computational cost of the 

model is decreased by a progressive pyramidal shrinkage, accompanied by the depth of the 

model. A spatial-reduction attention (SRA) layer is introduced to an additional reduction of the 

computational complexity of the system. 

In this work, both HarD-Net-MSEG and PVT have been trained using the same options in all 

the problems: batch size 15; number of epochs 100; initial learning rate 0.0001; decay 

rate=0.1; decay epoch=50.   

 

2.2   Loss functions 

The main goal of a neural network would be to map every item perfectly by using the perfect 

weights. However, this is not possible due to the presence of too many unknowns. 

The problem of learning is cast as an optimization where weights are modified little by little in 

order to make more accurate predictions. In a CNN, weights are learned by using the stochastic 

gradient descent algorithm. 

The gradient descent algorithm seeks the direction opposite to the gradient, hence the direction 

along which the loss function decreases the most. 

We can see neural networks as an optimization algorithm which wants to minimise the error (or 

the loss) of our mapping. The objective function is called loss function. 
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Figure 4. A loss function measures the quality of the output 

 

Some loss functions tested for designing the networks ensemble will be presented in this 

section, including the loss functions suggested in [24] (subsection 2.2.1-2.2.7) (tested also in 

[24]) and the new ones here proposed. 

Different loss functions influence the training phase and the performance of the model. In 

semantic segmentation tasks, pixel-wise-cross-entropy is one of the most widespread and 

adopted loss functions; this operates at the pixel level, verifying whether the predicted label of 

a given pixel coincides with the ground-truth. One of the main problems with this approach is 

the critical situation in which the dataset is unbalanced with respect to the labels, but it can be 

solved through the use of counterweights. The Dice loss function [25] aims to verify the overlap 

between the predicted segmented images and the ground-truth. This approach, which has also 

been used in this work, is widespread in semantic segmentation. 

An exhaustive overview of image segmentation and loss functions is available in a recent survey 

[25]. 
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2.2.1   Dice Loss 

A widely adopted metric for evaluating the performance of models used for semantic 

segmentation is the Dice Loss, obtained from the Sørensen-Dice coefficient. This coefficient 

made it possible to evaluate how similar two images are and their value span in the interval [0, 

1]. In [26] Generalized Dice Loss was introduced, a multiclass variant of Dice Loss.  

We denote the Generalized Dice Loss between the predictions Y and the training targets T as: 

𝐿𝐺𝐷(𝑌, 𝑇) = 1 −
2 ∗ ∑ 𝑤𝑘 ∗ ∑ 𝑌𝑘𝑚 ∗ 𝑇𝑘𝑚

𝑀
𝑚=1

𝐾
𝑘=1

∑ 𝑤𝑘 ∗ ∑ (𝑌𝑘𝑚
2 + 𝑇𝑘𝑚

2 )𝑀
𝑚=1

𝐾
𝑘=1

(1) 

         𝑤𝑘 =
1

(∑ 𝑇𝑘𝑚)
𝑀
𝑚=1

2    (2) 

Here, M represents the number of pixels, K represents the number of classes.  

The aim of the weighting factors 𝑤𝑘 is to facilitate the network to concentrate on a limited 

region (therefore it is inversely proportional to the labels frequency of a given class k). 

 

2.2.2   Tversky Loss 

A frequent issue in machine learning as well as in image segmentation is represented by 

unbalanced classes, i.e., the phenomenon whereby one class prevails over another. To solve this 

problem, Tversky Loss function was proposed [27]. The original formula of the Tversky index, 

an expansion of the Dice similarity coefficient that can help us formalise the loss function, is 

the following: 

𝑇𝐼𝑘(𝑌, 𝑇) =
∑ 𝑌𝑝𝑚𝑇𝑝𝑚
𝑀
𝑚=1

∑ 𝑌𝑝𝑚𝑇𝑝𝑚
𝑀
𝑚=1 + 𝛼∑ 𝑌𝑝𝑚𝑇𝑛𝑚

𝑀
𝑚=1 + 𝛽∑ 𝑌𝑛𝑚𝑇𝑝𝑚

𝑀
𝑚=1

 (3) 

 

Here, T represents the ground truth for a certain class k, Y represents the predictions; 𝛼 and 𝛽 

are two weighting factors used to handle a trade-off between false negatives and false positives; 

M indicates the total number of pixels, 𝑛 represents the negative class and 𝑝 the positive class. 

A particular case is when 𝛼 = 𝛽 = 0.5, we have that the Tversky Index boils down to the Dice 

Similarity coefficient.  

 

We can formalise, based on the aforementioned formula, the Tversky Loss as: 

𝐿𝑇(𝑌, 𝑇) =∑ (1 − 𝑇𝐼𝑘(𝑌, 𝑇))
𝐾

𝑘=1
 (4) 

Here, 𝐾 is the number of classes.  
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In our code, we fix 𝛼 = 0.3 and 𝛽 = 0.7. We use these values in order to focus on false 

negatives. 

 

2.2.3   Focal Tversky Loss 

The CE function (cross-entropy) intends to limit the dissimilarity between two probability 

distributions. Several versions of CE can be found in the literature, including for example focal 

loss [28] and binary cross entropy. The first, using a modulating factor 𝛾 > 0, consents the 

model to focus on hard samples instead of properly classified examples. The second is an 

adaptation of CE that must be applied to binary classification problems (i.e., only-two classes 

problems). 

Focal Tversky Loss is formalised as: 

𝐿𝐹𝑇(𝑌, 𝑇) = 𝐿𝑇(𝑌, 𝑇)
1
𝛾 (5) 

In our work, we choose 𝛾 = 4 3⁄ .  

 

2.2.4   Focal Generalized Dice Loss 

Moreover, the modulating factor was used in Generalized Dice Loss obtaining the  

Focal Generalized Dice Loss [29], a function that by focusing on very limited Regions of 

Interest allows to decrease the weight of common samples.  

𝐿𝐹𝐺𝐷(𝑌, 𝑇) = 𝐿𝐺𝐷(𝑌, 𝑇)
1
𝛾 (6) 

In our work, we choose 𝛾 = 4 3⁄  .  

 

2.2.5   Log-Cosh Type Losses 

By combining Dice Loss and Log-Cosh function we obtain Log-Cosh Dice Loss. Log-Cosh 

function is commonly applied with the purpose of smoothing the curve in regression 

applications. Actually, for small 𝑥, log (cosh(𝑥)) corresponds to 𝑥2 2⁄  and for large 𝑥 to |𝑥| −

log (2).  Log-Cosh Generalized Dice Loss is formalised as: 

 

𝐿𝑙𝑐𝐺𝐷(𝑌, 𝑇) = log(cosh(𝐿𝐺𝐷(𝑌, 𝑇))) (7) 

 

With the intention of smoothing their curves the same logic has been applied to other loss 

functions, e.g. the Log-Cosh Focal Tversky Loss, which we can formalised as:  

𝐿𝑙𝑐𝐹𝑇(𝑌, 𝑇) =  log(cosh(𝐿𝐹𝑇(𝑌, 𝑇))) (8) 
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2.2.6   SSIM Loss 

SSIM Loss [30] is obtained from the Structural similarity (SSIM) index [31], usually adopted 

to evaluate the quality of an image. SSIM index can be formalised as:  

𝑆𝑆𝑖𝑚(𝑥, 𝑦) =
(2𝜇𝑥𝜇𝑦 + 𝐶1)(2𝜎𝑥𝑦 + 𝐶2)

(𝜇𝑥
2 + 𝜇𝑦

2 + 𝐶1)(𝜎𝑥
2 + 𝜎𝑦

2 + 𝐶2)
(9) 

Here, 𝜇𝑥, 𝜇𝑦 are the local means, 𝜎𝑥, 𝜎𝑦, are the standard deviations, and 𝜎𝑥𝑦,  is the cross-

covariance for images x, y, while 𝐶1, 𝐶2 are regularization constants.  

The SSIM Loss between one prediction Y and the corresponding training target T is defined as: 

𝐿𝑆(𝑌, 𝑇) = 1 − 𝑆𝑆𝑖𝑚(𝑌, 𝑇) (10) 

 

Moreover, here we proposed 𝐿𝑀𝑆(𝑌, 𝑇), defined as 𝐿𝑆 but instead of SSIM we use the 

Multiscale structural similarity (MS-SSIM) index. 

 

2.2.7   Different Functions Combined Loss 

The possibility of obtaining high precision but low recall is frequent with unbalanced data. 

In Generalized Dice Loss a common strategy is applied to mitigate the effects of the class 

imbalance. We define as weight  𝑤𝑘 the inverse of the frequency of the label.  

To reduce the network probability of missing lesions, in certain contexts it is advisable to weight 

false positives lower than false negatives. With the intention of emphasising the benefits of both 

loss functions and increasing the capacity of the model to focus on difficult samples, we 

combine Focal Tversky Loss and Generalized Dice Loss. The formula of the combination is: 

𝐶𝑜𝑚𝑏1 (𝑌, 𝑇) = 𝐿𝐹𝐺𝐷(𝑌, 𝑇) + 𝐿𝐹𝑇(𝑌, 𝑇) (11) 

 

In the same way, combining Log-Cosh Dice Loss, Focal Generalized Dice Loss, and Log-Cosh 

Focal Tversky Loss allows to reduce the weight of simple samples. Furthermore, we control 

the non-convex behavior of the curve by adopting the Log-Cosh function: 

 

𝐶𝑜𝑚𝑏2(𝑌, 𝑇) = 𝐿𝑙𝑐𝐺𝐷(𝑌, 𝑇) + 𝐿𝐹𝐺𝐷(𝑌, 𝑇) + 𝐿𝑙𝑐𝐹𝑇(𝑌, 𝑇) (12) 

 

In our experiments we also tried to combine Generalized Dice Loss and the SSIM Loss: 

𝐶𝑜𝑚𝑏3 (𝑌, 𝑇) = 𝐿𝑆(𝑌, 𝑇) + 𝐿𝐺𝐷(𝑌, 𝑇) (13) 
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2.2.8   Cross Entropy 

The cross-entropy (CE) loss function provides us with a measure of the difference between two 

probability distributions. The goal is to minimize this difference and, in doing so, it has no bias 

between small or large regions. 

This could be an issue when dealing with imbalanced datasets. Hence, the weighted cross-

entropy loss was introduced and it resulted in well-balanced classifiers for imbalanced scenarios 

[32]. 

The formula for weighted binary cross entropy is presented in (14). In this equation, 𝑇 refers to 

the ground truth label image, while 𝑇𝑖𝑘 is the true value for the pixel 𝑖 and it can be equal to 

either 0 or 1. It is equal to 1 if the pixel 𝑖 belongs to the class 𝑘, 0 otherwise. 

𝑃 is the prediction for the output image and 𝑃𝑖𝑘 is the probability of the 𝑖-th pixel to belong to 

the 𝑘-th class obtained by using the sigmoid activation function. For P we used the softmax 

activation function, which returns probabilities. 

𝑤𝑖𝑘 is the weight given to the 𝑖-th pixel of the image for the class 𝑘. These weights were 

calculated by using an average pooling over the mask with a kernel 31x31 and a stride of 1 in 

order to consider also nonmaximal activations.  

𝐿𝑊𝐵𝐶𝐸 = −∑ ∑ 𝑤𝑖𝑘 ∗ 𝑇𝑖𝑘 ∗ log(𝑃𝑖𝑘)
𝑁

𝑖=1

𝐾

𝑘=1
(14) 

Where 𝐾 is the number of classes and 𝑁 the number of pixels.  

 

2.2.9   Weighted Intersection over Union 

Another well-known loss function is Intersection over Union (IoU) loss, which was introduced 

for the first time in [33]. The original formula was: 

𝐼𝑜𝑈 =
|𝑃 ∩ 𝑇|

|𝑃 ∪ 𝑇|
 (15) 

  

As mentioned earlier, 𝑇 is the truth label image and 𝑃 is the prediction for the output image. 

Unfortunately, the set symbols for Intersection and Union are not differentiable because 𝑃 and 

𝑇 have to be either 0s or 1s. This is not true for 𝑃, so the formula was then approximated with 

the following: 

𝐼𝑜𝑈′ =
|𝑃 × 𝑇|

|𝑃 + 𝑇 − 𝑃 × 𝑇|
 (16) 
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Where 𝑃 × 𝑇 is the element-wise multiplication of 𝑇 and 𝑃. For what concerns the denominator, 

we subtract the “intersection” between 𝑃 and 𝑇 because we do not want to consider the 

intersection twice. 

Once the set operators have been converted into arithmetic ones, the formula is differentiable 

and it is possible to evaluate the gradient.  

However, 𝐼𝑜𝑈 is an evaluation metrics used for evaluating the goodness of the prediction. 

Hence, a value of 1 is equivalent to a perfect prediction. For this reason, the loss function will 

be: 

𝐿𝐼𝑜𝑈 = 1 − 𝐼𝑜𝑈
′ (17) 

 

Unfortunately, this function has to face the same problem of CE in inferring the label of the 

boundary of each object, therefore, as suggested in [34], we use the weighted Intersect over 

Union (wIoU), instead of the standard IoU. 

The formula of the weighted Intersect over Union loss will be: 

𝐿𝑤𝐼𝑜𝑈 = 1 −
|𝑤 ∗ 𝑃 ∗ 𝑇|

|𝑤 ∗ (𝑃 + 𝑇) − 𝑤 ∗ 𝑃 ∗ 𝑇|
= 1 −

∑ 𝑤𝑖𝑘 ∗ ∑ 𝑇𝑖𝑘 ∗ 𝑌𝑖𝑘
𝐾
𝑘=1

𝑁
𝑖=1 + 1

∑ ∑ 𝑤𝑖𝑘(𝑇𝑖𝑘 + 𝑌𝑖𝑘 −
𝐾
𝑘=1

𝑁
𝑖=1 𝑇𝑖𝑘 ∗ 𝑌𝑖𝑘) + 1

 (18) 

  

Where 𝑁 is the number of pixel and 𝐾 is the number of classes. The weights 𝑤𝑖𝑘 are calculated 

as said previously. 𝑇𝑖𝑘 and 𝑌𝑖𝑘 are, respectively, the ground truth value and the prediction value 

for the pixel 𝑖 belonging to the class 𝑘. We added 1 to both the numerator and the denominator 

in order to prevent the undefined division 
0

0
. 

 

2.2.10   Structure Loss 

Now, based on the intuition in [6], weighted Intersect over Union and weighted binary-crossed 

entropy are considered together. 

𝐿′𝑆𝑇𝑅 = 𝐿𝑤𝐼𝑜𝑈 + 𝐿𝑤𝑏𝑐𝑒 (19) 

 

We decided to change the proposed loss in the following way: 

Instead of applying an avgpool over the mask, we have done this over the predictions to improve 

the diversity in the deep neural network. 

Then, we want to give more importance to the binary-crossed entropy loss, so we use a weight 

of 2 for that one. 

We obtain the final loss, which is: 
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𝐿𝑆𝑇𝑅 = 𝐿𝑤𝐼𝑜𝑈 + 2𝐿𝑤𝑏𝑐𝑒 (20) 

2.2.11   BoundExpStructure 

We decided to combine Structure Loss, Boundary Loss and Exponential Logarithmic Loss in 

order to have better performances on the small structures of a highly imbalanced dataset and, 

at the same time, have better identification of the boundaries of the image. 

𝐿𝐵𝑜𝑢𝑛𝑑𝐸𝑥𝑝𝑆 = 𝐿𝐵𝑜𝑢𝑛𝑑 + 𝐿𝐸𝑥𝑝 + 𝐿𝑆𝑡𝑟 (21) 

 

2.2.12   Boundary Enhancement Loss 

The Boundary Enhancement Loss is a loss proposed in [35] which explicitly focus on the 

boundary areas during training.  

This loss has very good performance as it requires neither any pre- nor post-processing of the 

image nor a particular net in order to work.  

The Laplacian filter ℒ(·) is the milestone of this loss as it generates strong responses around 

the boundaries and zero everywhere else. When applying the laplacian filter to a mask 𝑆, the 

result is: 

ℒ(x, y) =
∂2𝑆

𝜕𝑥2
+
𝜕2𝑆

𝜕𝑦2
 (22) 

 

The positive aspect about using the Laplacian filter, is that it can be achieved quite easily 

through a series of convolution operations. As a result, the idea is to evaluate the difference 

between the filtered output of ground truth labels and the filtered output of the predictions.  

The boundary enhancement loss, as proposed in [35] is: 

𝐿𝐵𝐸 = ||ℒ(𝑇) − ℒ(𝑌)||2 = ||
∂2(𝑇 − 𝑌)

𝜕𝑥2
+
𝜕2(𝑇 − 𝑌)

𝜕𝑦2
||

2

 (23) 

 

Where || ∙ ||2 is the 𝑙2 norm. This can be easily achieved as already described in the original 

paper [35]. 

Based on the idea of the same paper, we used Dice Loss and Boundary Enhancement loss 

together, weighted appropriately, and the Structure Loss: 

𝐿𝐷𝑖𝑐𝑒𝐵𝐸𝑆 = 𝜆1𝐿𝐷𝑖𝑐𝑒 + 𝜆2𝐿𝐵𝐸 + 𝐿𝑆𝑡𝑟 (24) 

 

The best results were achieved by using 𝜆1 = 1 and 𝜆2 = 0.01 
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2.2.13   Contour-aware Loss 

Contour-aware Loss was proposed for the first time in [74]. It consists in a weighted binary 

cross-entropy loss where the weights are obtained with the aim of giving more importance to 

the borders of the image. 

In the loss a morphological gradient edge detector was employed. Basically, the difference 

between the dilated and the eroded label map is evaluated. For smoothing purposes, the 

Gaussian blur was later applied. This spatial weight map can be formulated as: 

𝑀𝐶 = 𝐺𝑎𝑢𝑠𝑠 (𝐾 ∙ (𝑑𝑖𝑙𝑎𝑡𝑒(𝑇) − 𝑒𝑟𝑜𝑑𝑒(𝑇))) + 𝟙 (25) 

 

here 𝑑𝑖𝑙𝑎𝑡𝑒(𝑇) and 𝑒𝑟𝑜𝑑𝑒(𝑇) are dilation and erosion operations with a 5 × 5 kernel. K is a 

hyperparameter for assigning the high value to contour pixels which was set to 5 empirically. 𝟙 

is the matrix with 1 in every position. 

We can formalise now the new loss: 

𝐿𝐶 = −∑ 𝑀𝑖
𝐶 ∗ (𝑇𝑖 ∗ log(𝑌𝑖) + (1 − 𝑇𝑖) ∗ log(1 − 𝑌𝑖))

𝑁

𝑖=1
 (26) 

 

Finally, the we are going to use in our ensembles is: 

𝐿𝐶𝑆 = 𝐿𝐶 + 𝐿𝑆𝑡𝑟 (27) 

 

2.3   Data Augmentation 

The training phase of a classifier and the resulting performance of the system are strongly 

influenced by the size of the dataset. This is also true for an ensemble method. Thus, to increase 

the amount of data that can be used to train the system, several techniques may be applied to 

the original dataset. In the next paragraphs, we shall describe the different techniques adopted 

with the purpose of data augmentation. We employ these techniques on the training set, both 

on the input samples and their mask. We leave the test set unchanged. 

Two different data augmentation approaches are tested: 

• DA1, base data augmentation consisting in horizontal and vertical flip, 90° rotation. 

• DA2, the following operations are performed: 

1. The image is displaced to the right or the left. 

2. The image is displaced up or down. 

3. The image is rotated by an angle randomly selected from the range [0°, 180°]. 

4. Horizontal or vertical shear by using the Matlab function randomAffine2d(). 
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5. Horizontal or vertical flip. 

6. Change in the brightness levels by adding the same value (random value be-

tween 25 and 50) to each RGB channel. 

7. Change in the brightness levels by adding different values (random value be-

tween 25 and 50) to each RGB channel. 

8. Add speckle noise, it adds multiplicative noise to the image I adding a value n×I, 

where n is uniformly distributed random noise with mean 0 and variance 0.05.  

9. Application of the technique “Contrast and Motion Blur”, described below.  

10. Application of the technique “Shadows”, described below.  

11. Application of the technique “Color Mapping”, described below. 

 

Some artificial images (DA2 approach) contain only background pixels; to discard them we 

simply delete all the images where there are less than 10 pixels that belong to the foreground 

class. 

 

Figure 5: Data Augmentation DA2 

2.3.1   Shadows 

New image samples can be obtained by creating shadows in the original set of images. Shadows 

may be created randomly to the left or to the right of the original image. We use the following 

criteria to decide the intensity of the shadow (direction = 1: right; direction = 0: left):  

 

𝑦 =

{
 
 

 
 𝑚𝑖𝑛 {0.2 + 0.8√

𝑥

0.5
,   1} 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 1

𝑚𝑖𝑛 {0.2 + 0.8√
1 − 𝑥

0.5
,   1} 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 = 0

(28) 
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2.3.2   Contrast and Motion Blur 

Another technique for data augmentation that allows to derive new samples from an original 

dataset is based on the combination of contrast and motion blur. The first one increases or 

decreases the original contrast, the second one simulates the movement of the camera taking 

the image. We developed two different contrast function and each time we choose one of them 

at random.  

The first function is defined as follows: 

𝑦 =
(𝑥 −

1
2
)√1 −

𝑘
4

√1 − 𝑘(𝑥 −
1
2
)2 
+ 0.5, 𝑘 ≤ 4 (29) 

The parameter 𝑘 controls the contrast. Specifically: The contrast is increased when 𝑘 < 0; it is 

decreased when 0 < 𝑘 ≤ 4; the image is unchanged when 𝑘 = 0.  

The value of the parameter is drawn at random in the following range: 

𝒰(2.8, 3.8) → Hard decrease in contrast; 

𝒰(1.5, 2.5) → Soft decrease in contrast; 

𝒰(−2,−1) → Soft increase in contrast; 

𝒰(−5,−3) → Hard increase in contrast. 

 

The second function is defined as follows: 

𝑦 =

{
 
 

 
 1

2
(
𝑥

0.5
) 𝛼                                     0 ≤ 𝑥 <

1

2
 

1 −
1

2
(
1 − 𝑥

0.5
)𝛼                          

1

2
≤ 𝑥 ≤ 1

  (30) 

 

The parameter 𝛼 controls the contrast. In particular, the contrast is increased when 𝛼 > 1; it is 

decreased when 0 < 𝛼 < 1; if 𝛼 = 1, then the image is left unchanged.  

The parameter is chosen randomly from four possible ranges: 

𝒰(0.25, 0.5) → Hard decrease in contrast; 

𝒰(0.6, 0.9)  → Soft decrease in contrast; 

𝒰(1.2, 1.7) → Soft increase in contrast; 

𝒰(1.8, 2.3) → Hard increase in contrast; 

The blurring effect that mimics the movement of the camera is applied right after the contrast 

adjustment. We use the MATLAB function fspecial(’motion’, len, theta). 
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2.3.3   Color Mapping 

Changing the color map of the image produces a new image. In particular, it is possible to map 

the color of an image to the one of another image. We generated a pair of images by coupling 

any image in the original training set with another randomly selected image in the same set. We 

adopted the Stain Normalization toolbox2 which provides this functionality in three different 

versions: 

 RGB Histogram Specification 

 Reinhard 

 Macenko 

 

                                                            
2 The toolbox is authored by Nicholas Trahearn and Adnan Khan and available online at 

https://warwick.ac.uk/fac/cross_fac/tia/software/sntoolbox/ 
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Chapter 3 

Results 

 

We run an extensive empirical evaluation with the aim of measuring the performance of our 

ensemble. We comprehend a comparison with several state-of-the-art models for a more 

exhaustive evaluation of our system. The empirical evaluation is carried out on five real-world 

scenarios: polyp segmentation, skin segmentation, leukocyte identification, butterfly and 

microorganism identification. 

 

3.1   Metrics 

The system has been evaluated using two standard metrics: Dice score and Intersection over 

Union (IoU). In the following formulae, TP, TN, FP, FN correspond to the true positives, true 

negatives, false positives, and false negatives, respectively. A is the predicted mask (TP+FP) 

and B is the ground truth map (TP+FN). 

 

Dice score (which is equivalent to F1score in binary classification tasks) is a weighted average 

of precision and recall. Formally, it is defined as: 

𝐹1𝑠𝑐𝑜𝑟𝑒 = 𝐷𝑖𝑐𝑒 =
 |𝐴 ∩  𝐵|

|𝐴| + |𝐵|
=  

2 ∙ TP

2 ∙ TP +  FP +  FN
(31) 

Intersection over Union (IoU) defines the shared area between two masks, divided by the area 

of the union between the two maps. Formally, it is defined as: 

𝐼𝑜𝑈 =  
 |𝐴 ∩  𝐵|

|𝐴 ∪  𝐵|
=

TP

TP +  FP +  FN
(32) 

 

In the experiments, images size has been modified due to the input size of the models. In these 

cases, the predicted masks have always been changed back to their original dimension. 
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3.2   Datasets and testing protocols 

Some examples for images and masks, from each of the five datasets, are displayed in Figure 

6. It is clear that they are very different segmentation problems. 

 

     

     

Figure 6. Samples from polyp segmentation, skin segmentation, leukocyte identification, 

butterfly and microorganism identification (images and masks). 

 

3.2.1   Polyp segmentation (POLYP) 

Polyp segmentation from colonoscopy is a challenging task requiring a two-class classification 

between the low contrast colon background and polyp foreground pixels.  

We present experimental results according to a very popular benchmark [6] available on 

GitHub3 and including five datasets for polyp segmentation (i.e. Kvasir [37], ColonDB [38], 

CVC-T [39] and ETIS [40], ClinicalDB [41])): the training set is made by 1450 images (from 

the largest datasets, i.e. 900 images from Kvasir and 550 images from ClinicalDB) the others 

are for the test set (100 images from Kvasir, 380 from ColonDB, 60 from CVC-T, 196 from 

ETIS and 62 from ClinicalDB), as usually done in the literature. In these datasets we use resized 

images of size 352×352. 

 

  

                                                            
3 https://github.com/james128333/HarDNet-MSEG 
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3.2.2   Skin segmentation (SKIN) 

The segmentation task in skin detection consists in recognizing the image portions that 

represent "skin" and "no skin": as a result, it is a binary classification problem. We use the 

framework proposed in [12] in this paper, which includes a small training set of 2000 images 

from the ECU dataset [42] and ten datasets very different to each other, see Table 1. According 

to the original testing protocol [12], dice (i.e. F1-score) is calculated at the pixel level and not 

at the image level and averaged for the whole dataset. In these datasets we use resized images 

of size 352×352. 

 

Table 1. Test skin datasets. ECU dataset is split: 2000 images for training and 2000 for test. 

ShortName Name #Samples Ref. 

Prat Pratheepan 78 [43] 

MCG MCG-skin 1000 [44] 

UC UChile DB-skin 103 [45] 

CMQ Compaq 4675 [46] 

SFA SFA 1118 [47] 

HGR Hand Gesture Recognition 1558 [48] 

Sch Schmugge dataset 845 [49] 

VMD Human activity recognition 285 [50] 

ECU ECU Face and Skin Detection 2000 [42] 

VT VT-AAST 66 [51] 

 

 

3.2.3   Leukocyte segmentation (LEUKO) 

Leukocyte recognition is the task of segmenting the white blood cells from the background, 

with the aim of diagnosing many diseases such as leukemia and infections. In our experiment 

we used the freely available4 LISC database [16], a collection of 250 hematological images 

extracted from the peripheral blood of eight healthy people. Images have been acquired at high 

resolution (720×576 pixels) and manually labelled to segment 10 different types of leukocytes. 

In this work, we do not perform classification, therefore we consider only segmentation 

performance. The testing protocol, as suggested by the authors of the dataset, is a 10-fold cross 

                                                            
4 http://users.cecs.anu.edu.au/~hrezatofighi/Data/Leukocyte%20Data.htm 
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validation: Dice results are calculated at image level and averaged for each fold and then on the 

10 folds. In this dataset we use resized images of size 513×513. 

 

3.2.4   Butterfly identification (BFLY) 

As already done in the literature, for butterfly identification we adopted the public dataset5 [52]. 

For a fair comparison we used the same testing protocol proposed by the authors of the dataset: 

4-fold cross validation, each fold includes 208 test images and 624 training images. In this 

dataset we use resized images of size 513×513. 

 

3.2.5   Microorganism identification (EMICRO) 

EMicro [53] is a public dataset6 of Environmental Microorganism Image Dataset Sixth Version 

(EMDS-6). It is composed of 840 images: following the original paper we split the dataset and 

the 37.5% of the images belongs to the test set.  

In this dataset we use resized images of size 513×513. 

 

3.3   Experiments 

3.3.1   Baseline ensembles 

As the aim of this paper is to study approaches to increase diversity of ensembles, we report in 

Table 2 the performance of some baseline classifiers and ensembles based on different network 

architectures (all combined with the data augmentation DA1, see section 2.3). The tests reported 

in section 3.3.1 are all based only on the Dice loss; moreover, for sake of space, for the polyp 

and skin datasets we report only the average performance value among the set of datasets. Each 

ensemble is made up of N models (N=1 denotes a stand-alone model) which differ only for the 

randomization in the training process: 

 RN18 a stand-alone DeepLabV3+ segmentator with backbone Resnet18 (pretrained in 

ImageNet); 

 ERN18(N) is an ensemble of N RN18 networks (pretrained in ImageNet); 

 RN50 a stand-alone DeepLabV3+ segmentators with backbone Resnet50 (pretrained in 

ImageNet); 

 ERN50(N) is an ensemble of N RN50 networks; 

                                                            
5 http://www.josiahwang.com/dataset/leedsbutterfly/ 

6 https://figshare.com/articles/dataset/EMDS-6/17125025/1 

 



24   Results 

 

 
 

 RN101 a stand-alone DeepLabV3+ segmentators with backbone Resnet101 (pretrained 

as detailed in the above section 2.1); 

 ERN101(N) is an ensemble of N RN101 networks. 

 

Table 2. Performance (Dice) of the proposed ensembles in the five benchmark datasets, the last 

column AVG reports the average performance. 

 Polyp Skin Leuko Bfly EMicro Avg 

RN18 0.806 0.865 0.897 0.960 0.908 0.887 

RN50 0.802 0.871 0.895 0.968 0.909 0.889 

RN101 0.808 0.871 0.915 0.976 0.918 0.898 

ERN18(10) 0.821 0.866 0.913 0.963 0.913 0.895 

ERN50(10) 0.807 0.872 0.897 0.969 0.918 0.893 

ERN101(10) 0.834 0.878 0.925 0.978 0.919 0.907 

 

The results in Table 2 show that, although the overall performance increases when switching 

from the stand-alone version to an ensemble, the improvement is not as high as one might 

expect, indicating that the individual approaches are quite stable. Maybe this result is related to 

the architecture of the DeepLabV3+ network: its internal modules apply atrous convolutions in 

cascade or in parallel to capture multi-scale context by adopting several atrous rates. This 

solution, which has been designed to solve the problem of segmenting objects at multiple scales, 

also mimics an ensemble approach thanks to the fusion of activations taken at different levels 

of the encoder, making the resulting segmentation quite stable. 

The best method is to use ResNet101 as backbone. 
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Figure 7. A building block of a ResNet (Residual Network). Several of these blocks are stack 

on top of one another. The innovation here is the presence of the  ‘skip connection’ (on the 

right-hand side) which resulted in networks with better accuracy than networks with plain 

layers as the output is the result of the input both unchanged and multiplied by the weights.  

A ResNet101 has 101 weight layers. 

 

3.3.2   Ablation studies 

The first ablation study is related to the evaluation of different loss functions to increase the 

diversity of the models and improve the performance of the ensemble. In Table 3 the 

performance of RN101, with the different loss functions here tested/proposed, is reported and 

compared to  the dice loss as baseline and DA1 as data augmentation method. For sake of space, 

for the polyp and skin datasets we report only the average performance value among the set of 

datasets. The stand-alone networks are later fused, always using the sum rule, in some 

ensembles: 

 ELoss101(10) is an ensemble, combined by sum rule, of 10 RN101 each coupled with 

data augmentation DA1 and a given loss function, the final fusion is given by: 2×LGD+ 

2×LT+ 2× Comb1 + 2× Comb2+2×Comb3; where with 2×LGD we mean two RN101 

trained using LGD loss function.  

 ELossMix(10) is an ensemble similar to the previous one, but here data augmentation 

is used to increase diversity: the networks coupled with the loss used in ELoss101(10) 

(LGD, LT, Comb1,  Comb2, Comb3) are trained one time using DA1 and another time 

using DA2 (i.e. 5 networks each trained twice, hence we have an ensemble of 10 

networks); 

 ELossLarge(10) is an ensemble of 10 networks, the networks trained using (LGD, LT, 

Comb1, Comb2, Comb3) use DA2 as augmented training set, while the networks trained 
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considering the new loss functions tested in this work (LSTR, LBoundExpS, LDiceBES, LMS, 

LCS) are coupled with DA1. 

 

Table 3. Performance (Dice) of some stand-alone methods and ensembles in the five 

benchmark datasets when varying the loss function, the last column AVG reports the average 

performance. 

 LOSS Polyp Skin Leuko BFly EMicro Avg 

RN101 LGD 0.808 0.871 0.915 0.976 0.918 0.898 

RN101 LSTR 0.809 0.869 0.930 0.964 0.901 0.895 

RN101 LBoundExpS 0.803 0.874 0.928 0.978 0.901 0.897 

RN101 LDiceBES 0.819 0.869 0.922 0.969 0.904 0.897 

RN101 LMS 0.813 0.860 0.920 0.972 0.920 0.897 

RN101 LCS 0.823 0.873 0.917 0.967 0.911 0.898 

ERN101(10) LGD 0.834 0.878 0.925 0.978 0.919 0.907 

ELoss101(10) Many loss 0.842 0.880 0.925 0.980 0.921 0.910 

ELossMix(10) Many loss 0.851 0.883 0.936 0.983 0.924 0.915 

ELossLarge(10) Many loss 0.848 0.883 0.944 0.984 0.922 0.916 

 

The results reported in Table 3 show that the proposed new loss functions gain performance 

similar to Dice and can be considered a useful starting point for the design of an ensemble. In 

fact, the good performance of ELoss101 and ELossLarge with respect to ERN101(10) proves 

that the including networks trained by different loss functions are useful for the creation of an 

ensemble: this observation is even more evident considering that it is validated on very different 

problems.  

We should not overlook the value of altering the training set, in this case through the use of 

different data augmentation: this seems to be the winning strategy when combined with 

different loss functions (ELossMix). Finally, we can notice that ELossMix and ELossLarge 

obtain similar performances. 
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Figure 8: Comparison of the output of the network after setting the weights with 2 different 

losses: Generalized Dice Loss (baseline loss) and Contour Aware Structure Loss (one of the 

proposed loss functions). 

 

The second ablation study is related to the evaluation of different architectures. Performance of 

the above cited methods coupled with different data augmentation strategies are reported in 

Table 4. The names DA1 and DA2 refer to the strategies explained in section 2.3, while DA1/2 

denotes that the given ensemble is obtained by the fusion of networks based on DA1 and 

networks based on DA2.  

HardNet-MSEG is trained with two different optimizers: SGD denoted as H_S and Adam 

denoted as H_A. The ensemble FH is the fusion of HarDNet-MSEG trained with different 

optimizers. PVT is trained using AdamW optimizer (as suggested in the original paper where 

PVT has been proposed). The loss function for both HarDNet-MSEG and PVT is the same of 

the original papers.  

Some further ensembles are reported in table 4: 

 PVT(2), sum rule between PVT combined with DA1 and PVT combined with DA2; 

 FH(2), sum rule among two H_S (one combined with DA1, the latter with DA2) and 

two H_A (one combined with DA1, the latter with DA2);   

 FH(2)+2×PVT(2), weighted sum rule between PVT(2) and FH(2), the weight of PVT(2) 

is assigned so that its importance in the ensemble is the same of FH(2) (notice that FH(2) 

consists of four networks while PVT(2) is built by only two networks). 

 ELossMix(10)+(10/4)×FH(2)+(10/2)×PVT(2), weighted sum rule among 

ElossMix(10), FH(2) and PVT(2), as in the previous ensemble, the weights are assigned 
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so that each ensemble member has the same importance (notice that ElossMix(10) is the 

fusion by sum rule of 10 DeepLabV3+).  

 

Table 4. Performance (Dice) of some stand-alone methods and ensembles in the five 

benchmark datasets. 

 DA Polyp Skin Leuko BFly EMicro Avg 

ELossMix(10) DA1/2 0.851 0.883 0.936 0.983 0.924 0.915 

H_A DA1 0.840 0.867 0.923 0.977 0.914 0.904 

H_A DA2 0.854 0.871 0.945 0.982 0.912 0.913 

H_S DA1 0.816 0.872 0.889 0.969 0.894 0.880 

H_S DA2 0.847 0.870 0.917 0.976 0.901 0.902 

FH DA1 0.859 0.879 0.913 0.980 0.915 0.909 

FH(2) DA1/2 0.862 0.885 0.934 0.982 0.916 0.916 

PVT DA1 0.854 0.878 0.954 0.975 0.920 0.916 

PVT DA2 0.855 0.879 0.954 0.984 0.919 0.918 

PVT(2) DA1/2 0.855 0.883 0.957 0.984 0.922 0.920 

FH(2)+2×PVT(2) DA1/2 0.875 0.892 0.955 0.985 0.924 0.926 

ELossMix(10)+(10/4)×FH(2)+(10/2)×PVT(2) DA1/2 0.875 0.893 0.953 0.985 0.926 0.926 

 

The results reported in Table 4 permit to draw the following conclusions: 

 PVT(2), FH(2) and ElossMix(10) obtain very similar performance, only in Leuko the 

performance of PVT(2) is better than FH(2) and ElossMix(10); 

 PVT(2) permits to obtain a very slight performance improvement with respect to stand-

alone PVT, even the improvement of FH(2) with respect to the best stand-alone HardNet 

(i.e. H_A combined with DA2). 

 Combining different architectures permits to obtain the best performance, the best trade-

off “complexity vs performance” is given by “FH(2)+2×PVT(2)”. 

 

3.3.3   Comparison with the literature 

For comparison with other approaches in the literature, the results of our best ensembles are 

reported in full in the different datasets of Polyp segmentation (Table 5) and skin detection 

(Table 6). The following tests clearly show that FH(2)+2×PVT(2) obtains state-of-the-art 

performance.  
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Table 5. Performance (Dice and IoU) in the polyp segmentation problem. 

Method 

Kvasir ClinicalDB ColonDB ETIS CVC-T Average   

IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice IoU Dice   

FH(2)+2×PVT(2) 0.874 0.920 0.894 0.937 0.751 0.826 0.717 0.787 0.842 0.904 0.816 0.875   

Ensemble in [24] 0.871 0.917 0.886 0.931 0.697 0.769 0.663 0.740 0.829 0.901 0.790 0.852   

HarDNet-MSEG [6] 0.857 0.912 0.882 0.932 0.66 0.731 0.613 0.677 0.821 0.887 0.767 0.828   

PraNet (from [6]) 0.84 0.898 0.849 0.899 0.64 0.709 0.567 0.628 0.797 0.871 0.739 0.801   

SFA (from [6]) 0.611 0.723 0.607 0.700 0.347 0.469 0.217 0.297 0.329 0.467 0.422 0.531   

U-Net++ (from [6]) 0.743 0.821 0.729 0.794 0.41 0.483 0.344 0.401 0.624 0.707 0.570 0.641   

U-Net (from [6]) 0.746 0.818 0.755 0.823 0.444 0.512 0.335 0.398 0.627 0.710 0.581 0.652   

SETR [21] 0.854 0.911 0.885 0.934 0.69 0.773 0.646 0.726 0.814 0.889 0.778 0.847   

TransUnet [54] 0.857 0.913 0.887 0.935 0.699 0.781 0.66 0.731 0.824 0.893 0.785 0.851   

TransFuse [9] 0.870 0.920 0.897 0.942 0.706 0.781 0.663 0.737 0.826 0.894 0.792 0.855   

UACANet [10] 0.859 0.912 0.88 0.926 0.678 0.751 0.678 0.751 0.849 0.910 0.789 0.850   

SANet [55] 0.847 0.904 0.859 0.916 0.670 0.753 0.654 0.750 0.815 0.888 0.769 0.842   

MSNet [56] 0.862 0.907 0.879 0.921 0.678 0.755 0.664 0.719 0.807 0.869 0.778 0.834   

PVT [7] 0.864 0.917 0.889 0.937 0.727 0.808 0.706 0.787 0.833 0.900 0.804 0.869   

SwinE-Net [57] 0.870 0.920 0.892 0.938 0.725 0.804 0.687 0.758 0.842 0.906 0.803 0.865   

AMNet [58] 0.865 0.912 0.888 0.936 0.690 0.762 0.679 0.756 --- --- --- ---   

 

 

Table 6. Performance (Dice=F1-score) in the skin detection problem. 

 DA Prat MCG UC CMQ SFA HGR Sch VMD ECU VT Avg 

ERN101(1) DA1 0.922 0.887 0.923 0.823 0.948 0.969 0.750 0.748 0.948 0.796 0.871 

ERN101(10) DA1 0.924 0.887 0.920 0.845 0.952 0.971 0.778 0.754 0.950 0.794 0.878 

ELoss101(10) DA1 0.926 0.892 0.923 0.844 0.956 0.971 0.777 0.751 0.953 0.807 0.880 

ELossMix(10) DA1/DA2 0.924 0.893 0.929 0.850 0.956 0.970 0.789 0.739 0.952 0.829 0.883 

H_S DA1 0.903 0.880 0.903 0.838 0.947 0.964 0.793 0.744 0.941 0.810 0.872 

H_A DA1 0.913 0.880 0.900 0.809 0.951 0.967 0.792 0.717 0.945 0.799 0.867 

PVT DA1 0.920 0.888 0.925 0.851 0.951 0.966 0.792 0.709 0.951 0.828 0.878 

FH(2)+2×PVT(2) DA1/DA2 0.927 0.894 0.932 0.868 0.954 0.971 0.797 0.767 0.955 0.853 0.893 

[79] DA1 0.926 0.888 0.916 0.842 0.955 0.971 0.799 0.764 0.952 0.820 0.883 
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In LEUKO the authors of the dataset report an IoU of 0.842, FH(2)+2×PVT(2) obtains an higher 

IoU of 0.916. 

In EMicro the authors of the dataset report a Dice score of 0.884, FH(2)+2×PVT(2) obtains an 

higher Dice of 0.924. 

    In the BFLY many approaches have been tested (see [59]) the two best methods reported in 

the literature are: 

a) [59] that reports an IoU of 0.950; 

b) [60] that reports an IoU of 0.945. 

Our suggested ensemble (i.e. FH(2)+2×PVT(2)) strongly outperforms the previous state of the 

art obtaining an IoU of 0.970. 

Clearly the ensemble boosts the performance of the best stand-alone network (PVT combined 

with DA2) 

The main drawback of this approach is that the best ensemble is composed by 6 networks, this 

means 6x RAM requirements and 6x inference time. Anyway, the inference time is very low 

also using an ensemble, with the current GPU architectures it is not an issue in many problems 

(obviously it could become one in some applications such as autonomous drive, but not in the 

segmentation problems faced in this paper). 

E.g. a single HarDNet-MSEG runs at 86.7 / second on a GeForce RTX 2080 Ti GPU.  

 

We have performed a further experiment to select the optimal set of models to be included in 

the final ensemble. We have extracted a validation set to select the best set of networks: we 

have considered only the two problems including many test sets: i.e. polyp and skin 

segmentation. In the polyp problem, the Kvasir test set has been chosen as validation set; in the 

skin application problem the ECU test set has been used as validation set. We have used 

sequential forward floating selection (SFFS) [61] for retaining the subset of networks that 

maximize Dice performance indicator in the validation set.  

The performance of both ensembles was lower than we expected and in both datasets our best 

approach (i.e. FH(2)+2×PVT(2)) gained higher performance. In both cases we have faced an 

overfitting problem: the images in test sets are very different among each other, therefore a 

larger validation set, and more comprehensive of the different variations that can occur to an 

image, is needed for a reliable network selection. 

 

Finally, we performed some tests using Q-statistic for further validation of our idea to build 

ensembles. Yule’s Q-statistic [62] was conducted to demonstrate the relationship of diversity 

https://doi.org/10.1016/j.ecoinf.2022.101553
https://doi.org/10.1016/j.ecoinf.2022.101553
https://doi.org/10.1016/j.compag.2020.105739
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among the networks that belong to the ensemble. After calculation, the range of Q-statistic 

varies from -1 to 1. For statistically independent classifiers, Q-statistic is equal to zero.  

In Table 7, we report the average Q-statistic among the network of the proposed ensemble: 

clearly ELossMix allows for a set of networks with greater diversity than Eloss101 and 

ERN101. Moreover, also FH(2)+2×PVT(2) is built by a set of quite different segmentators.  

 

Table 7. Average Q-statistic. 

 

 

 

 

  

Ensembles Average Q-Statistic 

ERN101(10) 0.975 

ELOSS101(10) 0.952 

ELOSSMIX(10) 0.921 

FH(2)+2×PVT(2) 0.925 
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Chapter 4 

Conclusions 

In computer vision, we called semantic segmentation the task that involves the classification of 

each pixel in an image. 

This is a very important task in in several fields, e.g. in autonomous vehicles, it allows the 

identification of objects surrounding the vehicle; in medical diagnosis, it improves the ability 

of early detecting dangerous pathologies and thus to mitigate the risk of serious consequences. 

Here we obtain state-of-the-art performances proposing different ensemble of segmentation 

approaches. We have tested: 

 Different loss functions; 

 Different data augmentation approaches; 

 Different network topologies, i.e. convolutional neural networks and transformer 

(namely DeepLabV3+, HarDNet-MSEG, and Pyramid Vision Transformers); 

Finally, the ensemble is combined by sum rule.  

Our proposed ensemble has been tested, providing state-of-the-art results, in five benchmark 

datasets: polyp detection, skin detection, leukocytes recognition, environmental microorganism 

detection, and butterfly recognition. 

As future work, our aim - through techniques such as pruning, quantization, low-ranking 

factorization and distillation - is to decrease the complexity of ensembles. 

All resources are available online at: 

https://github.com/AlbertoFormaggio1/Ensemble-Of-Segmentation. 
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