UNIVERSITA ‘

DEGLI STUDI —) DIPARTIMENTO
DI PADOVA = DI INGEGNERIA
== DELL'INFORMAZIONE

MasteR THESIs IN COMPUTER ENGINEERING

Open Data for Italian Municipalities:
Ontology, Data and WebApps

MAasTER CANDIDATE SUPERVISOR

Luca Martinelli Prof. Gianmaria Silvello

Student ID 2005837 University of Padova

AcADEMIC YEAR
2021/2022

To my parents and friends,
who have supported (and put up with) me
all these years

Abstract

Linked Open Data will help transform eGovernment by enabling public admin-
istrations to define relationships between data of others. In addition, publishing
Linked Open Data creates new knowledge and encourages creativity and innova-
tion. Indeed, governments can activate smarter and more efficient public services
and applications, and organizations and citizens can develop new applications
and tools in order to work with, analyze, and make sense of the data. In this
context, this thesis will present the design and the development of an ontology to
model the data produced by municipalities. In addition, the thesis will present
the RDF Graph Builder, a software that aims to simplify the publication of re-
sources in the form of Linked Open Data, and Data Reports, a web application to
for viewing and consulting Linked Open Data through charts, tables and maps.

Sommario

I Linked Open Data contribuiranno a trasformare 1’eGovernment, consentendo
alle pubbliche amministrazioni di collegare i propri dati ai dati di altri soggetti.
Inoltre, la pubblicazione di Linked Open Data crea nuova conoscenza e incoraggia
la creativita e I'innovazione. In questo modo, infatti, i governi possono attivare
servizi piu efficienti e intelligenti e le organizzazioni e i cittadini possono svilup-
pare nuove applicazioni e strumenti per lavorare, analizzare e dare un senso ai dati
pubblici. In questo contesto, questa tesi presentera la progettazione e lo sviluppo
di un’ontologia per modellare i dati prodotti dai comuni. Inoltre, la tesi presen-
tera I'RDF Graph Builder, un software che mira a semplificare la pubblicazione
di risorse sotto forma di Linked Open Data, e Data Reports, un’applicazione web
per la visualizzazione e la consultazione dei Linked Open Data attraverso grafici,

tabelle e mappe.

List of Figures

List of Tables

List of Code Snippets
List of Acronyms

1 Introduction

1.1 Scope and organization of the thesis

2 Background

21 TheWebofData.................
2.2 Thefivestarsof OpenData

2.3 RDF OWL, and serialization formats

24 SPARQL
25 Protégé oL
26 Virtuoso oo
27 CKAN
28 OntoPiA

3 Related works

3.1 Italiancities

3.2 European and global cities

4 Requirements analysis

5 Description of the OntoIM Ontology

5.1 Overall design principles

5.1.1 Semanticareas

ix

Contents

xi
xiii
XV

xvii

CONTENTS

5.1.2 Controlled vocabularies 36

52 Area-by-Area 36
52.1 Demographic Observations and Events 37

5.2.2 Facilities and Cadastral Data 38

523 Organizations and Associations 39

524 Transparency 41

525 Roadsand Traffic 41

52,6 Schools 44

527 GreenZonesandPlants 45

528 Hospitals. oo 46

529 WasteProduction 46

6 RDF Graph Builder 55
6.1 OntoPiA-Py and OntoIM-Py libraries 56

6.2 Data mapping for different semanticareas 64
6.2.1 Addresses 66

6.22 Organizations 69

6.23 Schools e 71

7 Web Applications 75
71 CKAN . . e e 75

72 DataReports oo 78

8 Conclusions and Future Works 85
References 87
Acknowledgments 89

21

2.2

2.3
24
2.5

2.6
2.7
2.8

51
52
53
54
55
5.6
5.7
5.8
59

6.1

7.1
7.2
7.3

List of Figures

The structure of a triple, with two nodes and a predicate connecting

them. 9
The example of the Resource Description Framework (RDF) Graph

presented by World Wide Web Consortium (W3C). 10
A snapshot of the Protégé "Active ontology" tab. 16
A snapshot of the Protégé "Entities" tab. 17
A snapshot of the Virtuoso SPARQL Protocol and RDF Query Lan-

guage (SPARQL) endpoint. L 18
A snapshot of the "Quad Store Upload"tab. 18
Examples of CKAN Open Data governments portals. 20
The OntoPiA ontological stack. 22
Demographic Observations and Events semanticarea. 47
Facilities and Cadastral Data semanticarea. 48
Organizations and Associations semanticarea. 48
Transparency semanticarea. 49
Roads and Traffic semanticarea. 50
Schools semanticarea. 51
Green Zones and Plants semanticarea. 52
Hospitals semanticarea. 52
Waste Production semanticarea. 53
RDF Graph Builder architecture. 56
A snapshot of the Comune di Sona’s CKAN Open Data portal. . . . 76
A snapshot of the Data Reports home page. 79
Snapshots for different Data Reports’s pages. 81

xi

21
2.2
23

3.1

3.2

51

List of Tables

The main modeling constructs provided by RDF Schema. 11
A query result example from DBpedia. 14
Ontologies part of the OntoPiA network. 24
Analysis of Italian cities” Open Data Portals. The data reported in

this table was collected during April 2022. 26
Analysis of European and Global cities” Open Data Portals. The
data reported in this table was collected during April 2022. 28

The data collected as reference for designing the OntoIM ontology,
and theirsource. L Lo Lo 34

xiii

6.1

6.2

6.3

6.4

6.5

6.6

6.7

6.8
6.9

6.10

6.11

7.1

7.2

7.3

7.4

7.5

List of Code Snippets

Example of a config.ini file that defines sources for some semantic
ATAS. i i e e e e 55
Part of the ns.py file that contains the namespaces of OntoPiA’s

ontologies. L 57
Part of the __init__.py file that contains the two functions for creat-

ing and saving thegraph. 58
The ontopia-py’s Thing class. 60

The ontopia-py’s Sequence and Collection classes. Thanks to the

object-oriented programming inheritance it is possible to map on-

tology classes and properties into Python classes and attributes. . . 61
The ontopim-py’s Organization class. This class inherits the one
defined in ontopia-py, declaring the new attributes. 61
An example of the creation of an RDF Graph with the ontoim-py
and ontopia-py libraries. Lo L 63
The common functions in the utils package. 65
The part of the RDF Graph Builder that inserts the streets toponyms
into the graph, and the config.ini file relative to the addresses. . . . 68
The function that retrieve the street identifiers from the string of
theaddress. L 70
The part of the code that build the RDF Graph for demographic
observations on theschool. 72
Configuration template file for the CKAN Open Data portal. 77
"Associazioni" report page in Markdown. 80
The querySPARQL function. 81
The sunburst chart about the number of citizens by locality and
gender. 82
The DataReports configurationfile. 84

XV

List of Acronyms

AgID Agency for Digital Italy

API Application Programming Interface
ASCII American Standard Code for Information Interchange
CSS Cascade StyleSheet

CSV Comma Separated Values

DBMS DataBase Management System
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol

IRI International Resource Identifier

JSON JavaScript Object Notation

LOD Linked Open Data

OntoIM Ontology for Italian Municipalities
OWL Web Ontology Language

RDF Resource Description Framework
RDFa RDF in Attributes

RDFS RDF Schema

SEO Search Engine Optimization

SPARQL SPARQL Protocol and RDF Query Language

XVvil

LIST OF CODE SNIPPETS

SQL Structured Query Language
TSV Tab Separated Values

URI Uniform Resource Identifier
URL Uniform Resource Locator
W3C World Wide Web Consortium

XML eXtensible Markup Language

xviii

Introduction

Linked Open Data will help transform eGovernment by enabling public ad-
ministrations to define relationships between data of others. In addition, pub-
lishing Linked Open Data creates new knowledge and encourages creativity and
innovation. Indeed, governments can activate smarter and more efficient public
services and applications, and organizations and citizens can develop new ap-
plications and tools in order to work with, analyze, and make sense of the data
[ISA13].

In this context, the Ontology for Italian Municipalities (OntoIM) has the aim to
extend the Italian OntoPiA ontology in order to describe the main semantic areas
of a city, enabling it to publish the data as Linked Open Data. Such areas are:
Accommodation Facilities, Addresses and Civic Numbers, Cultural Heritage, De-
mographic Observations and Events, Facilities and Cadastral Data, Green Zones
and Plants, Hospitals, IoI' Events, Organizations and Associations, Point of In-
terests, Public Events, Public Services, Roads and Traffic, Schools, Transparency,
Projects, and Public Contracts, Waste Production.

The OntoIM ontology will also allow to link the data with other resources on
the web, from national agencies, and from other cities.

In addition to the OntoIM ontology, this thesis has the purpose to provide
tools and web applications with the purpose of simplifying on the one hand the
publication of Open Data and Linked Open Data by public administrations and
municipalities, and on the other hand making those data accessible through the
use of data visualization tools.

The project would have benefits: (1) for citizens, who will be able to more

1.1. SCOPE AND ORGANIZATION OF THE THESIS

easily access the data produced by the public administration, better understand
their local area, and obtain information on events or accommodations; (2) for
businesses, which will have data on the area that they can analyze, for example,
to make targeted marketing plans; and (3) for the public administration, which
would have data enriched with semantic meaning through the use of ontology;,
have the opportunity to be more transparent, could use the data to make and plan
more targeted projects, and provide smarter and more efficient public services
and applications.

Finally, a use case with data from the Comune di Sona! will also be shown in
this thesis. In fact, this project will be part of the Innovation Lab? project, a project
funded by the Regione Veneto that aims to spread digital and Open Data culture.

SCOPE AND ORGANIZATION OF THE THESIS
The goal of this thesis is to design and develop:

1. The first version of the OntoIM ontology;

2. Two Python libraries, ontoim-py and ontopia-py with the aim of simplify-
ing the creation of the RDF Graph;

3. A CKAN Open Data portal for publishing data on the web;

4. Data Reports, a web application to publish reports with charts, tables, and
maps using data obtained from the SPARQL endpoint.

The following chapters will focus on the various steps that were required to

achieve these goals, in detail:

Chapter 2: Background This chapter will present an introduction on the Seman-
tic Web, Linked Open Data, and its technologies such as RDF, OWL, serial-
ization formats, and SPARQL. This chapter will also introduce the tools used
for developing the ontology, and managing and publishing the resources:
Protégé, Virtuoso, and CKAN. Finally, the chapter will present OntoPiA, the
Italian ontology that the OntoIM ontology imports and extends.

Thttps://comune.sona.vr.it
2https://innovationlab.regione.veneto.it/

https://comune.sona.vr.it
https://innovationlab.regione.veneto.it/

CHAPTER 1. INTRODUCTION

Chapter 3 This chapter presents the results of an analysis conducted on Italian,
European and global cities regarding their approach to Open Data and in
particular Linked Open Data.

Chapter 4 This chapter will explain the ontology design approach, based on the
analysis of data collected, from the analysis on data published by Italian

cities, and from the needs and requirements of the Comune di Sona.

Chapter 5 This chapter will elaborate on the approach followed to design the on-
tology, and will describe in details the main classes and properties contained
in each of the semantic areas that compose the OntoIM ontology.

Chapter 6 This chapter covers the development of the Python libraries ontoim-
py and ontopia-py, and the use of these libraries to create the RDF Graph
using examples with data collected and published by the Comune di Sona.

Chapter 7 This chapter will present the design and the development of the CKAN
Open Data portal, and the Data Reports web application.

Chapter 8 This chapter presents the overall conclusions of the thesis, the results

achieved, and the future developments of the project.

Background

THE WEB OF DATA

The World Wide Web was originally designed to be a space where documents
are connected by links without semantic value, and most of these documents are
designed for humans to read, not for machines to process. For this reason, Tim
Berners-Lee in 2001 introduced the idea of the Semantic Web. In particular, the
Semantic Web is an enhancement of the current Web that aims to create a web
of data, in which information has a well-defined meaning and can be easily read
and processed by programs [BHLO1].

Due to this machine-comprehensible capacity, the Semantic Web has enormous
potential to automate daily tasks in our lives and is helping to advance scientific
and health care fields [Fei+07], such as drug discovery and clinical research, but
also in the automotive industry, in the enhancement of cultural heritage, etc.! In
this context, ontologies play a fundamental role in supporting interoperability and
common understanding between different web applications and services, solving

the problem of semantic heterogeneity [Tay10].

Although there are different definitions of "ontology" [Tay10], in computer
science, an ontology is defined as an "explicit and formal specification of a shared
conceptualization" [Gru95], where conceptualization means a simplified view of

Thttps://www.w3.0rg/2001/sw/sweo/public/UseCases/

https://www.w3.org/2001/sw/sweo/public/UseCases/

2.1. THE WEB OF DATA

the world we wish to represent. An ontology is made up of four main types of
components, which are (1) classes (or concepts), which describe concepts in the
domain; (2) instances of classes, which represent specific objects or elements of a
class; (3) properties (or slots), which are used to express relationships between a
tirst concept in the domain and a second concept in the range; (4) axioms (or role
restrictions), which are used to impose constraints on the values of instances and
classes [Tay1l0; NM+01]. In addition to the interoperability problem, ontologies

are also used to satisfy the following needs:

¢ To share common understanding of the structure of information among

people or software agents;

To enable reuse of domain knowledge;

To make domain assumptions explicit;

¢ To separate domain knowledge from the operational knowledge

To analyze domain knowledge [NM+01].

Along with ontologies, controlled vocabularies, taxonomies, and thesauri are
other resources used in different domains, in particular the medical one [IB14].
A controlled vocabulary is a closed list of named subjects, called terms, which is
usually used for classification. A taxonomy is a subject-based classification that
organizes terms in a controlled vocabulary into a hierarchy. Finally, a thesaurus
extends taxonomies, allowing making other statements about the subjects and

providing a much richer vocabulary [IB14].

In 2006, Tim Berners-Lee used for the first time the term Linked Data to describe
the structured and interlinked data that populate the Semantic Web [Ber06]. He
also introduced a set of rules, also known as the Linked Data Principles, to provide
some best practices for publishing and connecting data on the Web [BHB11]. These
principles, published by W3C, are the following:

1. Use URIs as names for things;
2. Use HTTP URIs so that people can look up those names;

3. When someone looks up URIs, provide useful information, using standards
such as RDF and SPARQL;

4. Include links to other URIs so that they can discover more things.

CHAPTER 2. BACKGROUND

The two main fundamental technologies for Linked Data are Uniform Resource
Identifiers (URIs) and HyperText Transfer Protocol (HTTP). In particular, URIs
are used to identify any entity that exists in the world, while HTTP provides a
simple and universal mechanism for retrieving the resources to which they refer.
These two technologies are integrated in RDF, which provides a graph-based
data model to structure and link data that describe entities in the world [BHB11].
Using HTTPs, URIs, and RDF, Linked Data builds on the architecture of the Web,
called the Web of Data. This means that the Web of Data shares many properties
with the traditional Web, which are:

* Web of Data can contain any type of data;
* Anyone can publish data on the Web of Data;

¢ Publishers are not restricted in the choice of vocabularies used to represent
the data;

* Entities are connected by RDF links [BHB11].

However, in addition to those of the traditional Web, the Web of Data also has
the following characteristics:

¢ Data are separated from formatting and presentational aspects;

Data is self-describing;

Data access is simplified by the use of the HTTP and RDF standards;

Web of Data is open, and new data sources can be discovered at run-time
by following RDF links [BHB11].

Semantic Web and Linked Data are empowered by technologies developed
by the World Wide Web Consortium such as RDF, OWL, serialization formats
(Section 2.3), and SPARQL (Section 2.4).2

THE FIVE STARS OF OPEN DATA

Linked Data does not have to be open and can be used internally, such as for
personal data. When Linked Data is released under an open license that does not

2https://www.w3.0rg/2001/sw/wiki/Main_Page

https://www.w3.org/2001/sw/wiki/Main_Page

2.3. RDF, OWL, AND SERIALIZATION FORMATS

impede its reuse for free, such as Creative Commons CC-BY?® or the Italian Open
Data License*, we can use the term Linked Open Data (LOD) [Ber(06]. In 2010 Tim
Berners-Lee developed a star rating system to define and classify Linked Open
Data, "in order to encourage people, especially government data owners, along
the road to good linked data" [Ber0O6]. The star rating system assigns a star if the
information is publicly available under an open license, even if the information
is a photo or an image scan of a table. The more stars the information gets, the

easier it will be for people (and machines) to use it [Ber06].

Available on the Web (any format) but with an open license to
be Open Data

Available as machine-readable structured data (e.g., Excel in-
stead of an image scan of a table)

Available in a non-proprietary format (e.g., CSV instead of
Excel)

Use URISs to identify things, so that people can point at your
stuff

Data are linked to other people’s data to provide context

However, as the information receives a greater number of stars, both the bene-
fits for consumers and the costs for the publisher increase. In particular, a five-stars
data let consumers discover new data of interest, access to the data schema, reuse
parts of the data, and link it to other places. They also do not have to pay for tools
in order to read the data (e.g., Excel), and they can download and export the data
into other formats and process them. On the other hand, to make these data avail-
able, publishers must invest time and resources in slicing and organizing the data,
assigning URIs to the data items, thinking about how to represent them, linking
the data with other data on the Web and making them discoverable [BK11].

RDF, OWL, AND SERIALIZATION FORMATS

The Resource Description Framework (RDF) is a W3C graph-based standard

model to represent information about resources on the Web (including documents,

Shttps://creativecommons.org/
‘https://www.dati.gov.it/content/italian-open-data-license-v20

https://creativecommons.org/
https://www.dati.gov.it/content/italian-open-data-license-v20

CHAPTER 2. BACKGROUND

people, physical objects, and abstract concepts). Using RDF, machines can process
information on the Web using common parsers and processing tools, and infor-
mation can be exchanged between different applications without losing meaning
[Con+14b]. In particular, in recent years RDF has become the de-facto standard for
publishing Linked Data on the Web. The core structure of the RDF syntax is a set of
statements, called triples, because they consist of three elements: a subject, a pred-
icate, and an object, following the structure <subject> <predicate> <object>,

which can be visually represented in Figure 2.1 [Con+14al].

Figure 2.1: The structure of a triple, with two nodes and a predicate connecting
them.

The subject and the object represent the two resources being related. The
relationship that goes from the subject to the object is called property, and its
nature is represented by the predicate. A set of statements generate a direct
graph, called RDF Graph, where subjects and objects are the nodes of the graph,
and the predicates form the arcs. For example, the set of triples below produces
the graph shown in Figure 2.2 [Con+14b].

<Bob> <is a> <person>.

<Bob> <is a friend of> <Alice>.

<Bob> <is born on> <the 4th of July 1990>.

<Bob> <is interested in> <the Mona Lisa>.

<the Mona Lisa> <was created by> <Leonardo da Vinci>.

<the video ’La Joconde a Washington’> <is about> <the Mona Lisa>

In an RDF Graph, resources may be represented using an International Re-
source Identifier (IRI), a literal value or a blank node. An IRI is a generalization
of URI, where non-ASCII characters are allowed in the IRI character string. IRIs
identify resources, and can appear in all three positions of a triple. In the exam-
ple above, the IRI for Leonardo Da Vinci in DBpedia® is http://dbpedia.org/
resource/Leonardo_da_Vinci.

Shttps://www.dbpedia.org/

http://dbpedia.org/resource/Leonardo_da_Vinci
http://dbpedia.org/resource/Leonardo_da_Vinci
https://www.dbpedia.org/

2.3. RDF, OWL, AND SERIALIZATION FORMATS

Alice Leonardo Da Vinci

@ was created by

T is a friend of

is a

is interested in . ol is about
7 =

Bob

The Mona Lisa

is born on

\

Person 14 July 1990 La Joconde 4 Washington

Figure 2.2: The example of the RDF Graph presented by W3C.

Literals are basic values such as strings, dates, and numbers. In the RDF Graph
literals can only be used as objects, and consists of two or three elements, which
are: (1) the value itself; (2) an IRI that identifies the datatype (string, number, date,
etc); (3) if and only if the datatype is a rdf:1langString,® a language tag (such as
en, it, fr, etc) [Con+14a].

Finally, blank nodes can appear in the subject and object position of a triple
and are used to represent resources without using a IRI [Con+14b].

In Section 2.1 ontologies and vocabularies are presented as a core element for
creating the Semantic Web. The RDF data model does not provide semantic
information about the resources. For this reason, RDF provides the RDF Schema
(RDEFS) language, that allows to define semantic characteristics of data. RDF
Schema uses the notion of class to classify resources, while uses the type property
to define a relation between an instance and its class. RDF Schema also allows
defining type restrictions on subject and objects of particular triples through
domain and range restrictions. Finally, with RDF Schema it is also possible to
define hierarchies of classes and properties, using subClassOf and subPropertyOf

¢http://www.w3.0rg/1999/02/22-rdf-syntax-ns#langString

10

http://www.w3.org/1999/02/22-rdf-syntax-ns#langString

CHAPTER 2. BACKGROUND

predicates [Con+14b]. All of these modeling constructs provided by RDF Schema

are summarized in Table 2.1.

Construct Syntactic form Description
Class C rdf:type rdfs:Class Cis an RDF class
Property P rdf:type rdf:Property P is an RDF property
type I rdf:type C Iis an instance of C

subClassOf C1 rdfs:subClassOf C2 C1 is a subclass of C2

subPropertyOf | P1 rdfs:subPropertyOf P2 | P1 is a sub-property of P2

domain P rdfs:domain C domain of Pis C

range P rdfs:range C range of P is C

Table 2.1: The main modeling constructs provided by RDF Schema.

However, in 2004 the World Wide Web Consortium presented Web Ontology
Language (OWL), a more complete language for publishing and sharing ontolo-
gies on the Web [Bec+04], and replaced in 2009 and then in 2012 by OWL 2. OWL
2 is a Semantic Web language to represent rich and complex knowledge about
things, groups of things, and relations between things. In addition, since OWL
is a computational logic-based language, the knowledge expressed in OWL can
be reasoned with by computer programs either to verify the consistency of that
knowledge or to make implicit knowledge explicit. A OWL document, called
ontology, can be published in the World Wide Web and may refer to or be re-
ferred from other OWL ontologies [Hit+09]. In OWL 2 knowledge is represented
by statements, called axioms. Axioms normally refer to objects of the world and
describe them by putting them into categories or saying something about their
relation. In OWL 2 objects, categories and relations are called entities, and in
particular objects are denoted as individuals, categories as classes and relations as
properties. Moreover, properties are further subdivided into (1) object properties
that relate objects to objects; (2) datatype properties that assign data values to ob-
jects; (3) annotation properties that encode information about the ontology itself.
Finally, names of entities can be combined into expressions using constructors to

form complex descriptions from basic ones [Hit+09].

11

2.3. RDF, OWL, AND SERIALIZATION FORMATS

In order to publish RDF data on the Web, the RDF Graphs need to be seri-
alized. Today there are several serialization formats, but the most famous one
are: N-Triples, Turtle, RDF/XML, RDFa, and JSON-LD. These formats are briefly
described below, reporting as example of small excerpt of DBpedia’ is reported.

N-Triples® It’s one of the simplest formats, formed by sequences of RDF triples.

"nmn

Each statement is formed by the subject, predicate, object, and a ".", that are

separated by white space.

<http://dbpedia.org/page/Jotaro_Kujo>
<http://dbpedia.org/ontology/relative>
<http://dbpedia.org/page/Joseph_Joestar> .

Turtle® It’s a common data format for serializing RDF Graphs that introduces
some features to N-Triples language. In particular, it introduces the use of @base

IRI and relative IRIs, @prefix and prefixed names, predicate lists separated by ";",

mn

object lists separated by ",", and the representation of rdfs: type with the token a.

@prefix dbr: <http://dbpedia.org/page/> .
@prefix dbo: <http://dbpedia.org/ontology/> .

dbr:Jotaro_Kujo dbo:relative dbr:Joseph_Joestar .

RDE/XML™ Expresses RDF Graphs as an XML document. The nodes and pred-
icates are represented in XML terms: element names, attribute names, element

contents and attribute values.

<rdf:RDF xmlns:dbr="http://dbpedia.org/page/"
xmlns:dbo="http://dbpedia.org/ontology/"
xmlns:rdf="http://www.w3.0rg/1999/02/22-rdf-syntax-ns#"
xml :base="http://www.1ldf.fi/service/rdf-serializer/">
<rdf:Description
rdf:about="http://dbpedia.org/page/Jotaro_Kujo">

"https://www.dbpedia.org/
Shttps://www.w3.org/TR/n-triples/
‘https://www.w3.org/TR/turtle/
Whttps://www.w3.org/TR/rdf-syntax-grammar/

12

https://www.dbpedia.org/
https://www.w3.org/TR/n-triples/
https://www.w3.org/TR/turtle/
https://www.w3.org/TR/rdf-syntax-grammar/

CHAPTER 2. BACKGROUND

<dbo:relative
rdf:resource="http://dbpedia.org/page/Joseph_Joestar"/>
</rdf:Description>
</rdf:RDF>

RDF in Attributes (RDFa)* Provides a set of markup attributes to HTML pages
to augment the visual information on the Web with machine-readable hints.

<body
prefix="dbr: http://dbpedia.org/page/
dbo: http://dbpedia.org/ontology/">
<div about="dbr:Jotaro_Kujo'">
<div
rel="dbo:relative"
resource="dbr: Joseph_Joestar">
</div>
</div>
</body>

JSON-LD* Serializes RDF Graphs into JavaScript Object Notation (JSON). The
syntax is designed to easily integrate into deployed systems that already use
JSON. It’s intended to be a way to use Lined Data in Web-based programming
environments, to build interoperable Web services, and to store Linked Data in
JSON-based storage engines.

[

"@id": "http://dbpedia.org/page/Joseph_Joestar"

"@id": "http://dbpedia.org/page/Jotaro_Kujo",
"http://dbpedia.org/ontology/relative": [

{
"@id": "http://dbpedia.org/page/Joseph_Joestar"

Uhttps://www.w3.org/TR/rdfa-primer/
2https://www.w3.0org/TR/json-1d/

13

https://www.w3.org/TR/rdfa-primer/
https://www.w3.org/TR/json-ld/

2.4. SPARQL

SPARQL

SPARQL is a query language developed by W3C retrieve and manipulate RDF
Graph content on the Web or in an RDF store. A SPARQL query contains a set
of triple patterns called basic graph pattern. These patterns are like RDF triples
except that subjects, predicates and objects may be replaced by variables. The
basic graph pattern matches a subgraph of the RDF data and returns a new RDF
Graph in which the variables are replaced with the matched data. Queries are
usually processed by an HTTP service, called SPARQL endpoint. [Con+13]. The
example below shows a SPARQL query on DBpedia SPARQL endpoint,’®* while
Table 2.2 shows its result.

PREFIX dbr: <http://dbpedia.org/page/>
PREFIX dbo: <http://dbpedia.org/ontology/>
PREFIX dbp: <http://dbpedia.org/property/name/>

SELECT ?relative ?name WHERE {
dbr:Jotaro_Kujo dbo:relative ?relative .

?relative dbp:name 7name .

}
relative name
dbr:Dio_Brando "Dio Brando"@en
dbr:Joseph_Joestar "Joseph Joestar"@en
dbr:Jonathan_Joestar | "Jonathan Joestar"@en

Table 2.2: A query result example from DBpedia.

SPARQL queries supports features like union of patterns, nesting queries,

Bhttps://dbpedia.org/sparqgl

14

https://dbpedia.org/sparql

CHAPTER 2. BACKGROUND

optional patterns or filtering values. Once the RDF subgraph is computed, it’s
also possible to modify it by ordering, limiting and grouping the values.

Another important feature of SPARQL is the possibility to perform federated
queries, which explicitly delegates certain subqueries to different SPARQL end-
points, allowing to navigate through the Web of Data.

Finally, to return a more machine-readable form, SPARQL supports four com-
mon exchange formats, which are: eXtensible Markup Language (XML), JSON,
Comma Separated Values (CSV), and Tab Separated Values (TSV) [Con+13].

PROTEGE

Protégé* is the most popular free and open source'> ontology development
environment.’® The first version was developed by Mark Musen in 1987, and
has been so far by a team at Stanford University [Gen+03]. The latest version,
5.5.0, has been released in March 2019, and it is written in Java, making it a cross-
platform tool. In recent years, in addition to the desktop version, a web version,
called WebProtégé'” is also being developed, focused on collaborative viewing
and editing.

Protégé supports creation and editing of one or more ontologies, providing
a customizable graphic user interface. Among the several features available in
Protégé, the most relevant are the possibility to create, rename and delete entities,
add notations, merge ontologies, and more. It also includes a visualization tool
for interactive navigation of ontology relationships and different reasoners.

The two most important sections for creating and editing an ontology are
the "Active ontology" and "Entities" tabs. The first, that is opened by default, is
designed to view and edit the information of the ontology, such as its IR], its anno-
tations and the imported ontologies. On the right there is also a panel that reports
some metrics about the ontology, such as the total number of axioms, classes,
properties, and more. Figure 2.3 shows an example of the "Active ontology" tab.

The "Entities" tab is the most important section for creating an ontology. In-
deed, in this tab it is possible to manage the classes, the properties (object proper-

1https://protege.stanford.edu/
Bhttps://github.com/protegeproject/protege
thttps://protege.stanford.edu/shortcourse/
7https://webprotege.stanford.edu/

15

https://protege.stanford.edu/
https://github.com/protegeproject/protege
https://protege.stanford.edu/shortcourse/
https://webprotege.stanford.edu/

2.6. VIRTUOSO

ontoim (https://w3id.org/ontoim) : Jhome/luca/Protege/../githubjontoim/ontologylatest/OntolM.tt(] x

File Edit View Reasoner Tools Refactor Window Ontop Help

& ontoi

~ Search...

Active ontology x| Entities | Annotation properties | Individuals by class | DL Query x| Individual Hierarchy Tab

Ontology header: mmEmE J ontology metrics: [ENECE]

Ontology IR hitps:/msid.orglontoim Metrics
33

4004
877
526
570
05
306
64

Ontology Version IRI

Hidden GCI Count 3

Object property axioms

SubObjectPropertyof 126

InverseObjectProperties

20220024 FunctionalObjectProperty 9

Y gy cl
Imported ontologies: EECE

Figure 2.3: A snapshot of the Protégé "Active ontology" tab.

ties, data properties, and annotation properties), datatype and individuals. The
left part provides a navigation tool to select, add and deletes entities, while the
right part is focused on viewing and editing the selected entity by adding prop-
erties and axioms. Figure 2.4 shows an example of the "Entities" tab.

Of course, these were only the most relevant tools of Protégé, whose full

documentation is available at http://protegeproject.github.io/protege/.

VIRTUOSO

Virtuoso Universal Server,® often called just Virtuoso, or OpenLink Virtuoso,
at core is a high-performance object-relational SQL database. It was born in 1998
when OpenLink Software wanted to merge in a single solution its Universal Data
Access Middleware and Kubl DBMS."

Besides the database, Virtuoso has a built-in web server with support to Virtu-
0s0’s Web Language (VSP), and the most popular scripting languages such as PHP
or ASPNET. This same web server provides SOAP and REST access to Virtuoso

stored procedures, supporting a broad set of WS* protocols. Virtuoso has also a

18https://virtuoso.openlinksw.com/
Bhttps://vos.openlinksw.com/owiki/wiki/VOS/VOSHistory

16

http://protegeproject.github.io/protege/
https://virtuoso.openlinksw.com/
https://vos.openlinksw.com/owiki/wiki/VOS/VOSHistory

¢ Window Ontop Help

x| Individuals by dlass x

Classes | Object properties | Data properties | Annotation properties | Datatypes | Indwiduals.

ontoim (https://w3id.org/ontoim) : Jhome/luca/Protege/. /github/ontoim/ontology/latest/OntolM.tt(] x
o0

DLQuery x| Individual Hierarchy Tab x

CHAPTER 2. BACKGROUND

= ® Demographic Observation — i
Annotations | Usage

hsserted

rdfsilabel (language: e
Demographic Observation
rdfslabel flanguage: i

Osservazione Demografica

an entit, which can be the municipality, an organization, an event.

reference ofthe o
ulation of the municipalityin 2021, or the number of ialian citizens for a specific geographical area in 2020.

unentita. Iivalore definisce la auaniita di bersone o famialie osservate.

*has demographic reference’ max 1 (Family or Person)

ony

Figure 2.4:

A snapshot of the Protégé "Entities" tab.

built-in WebDAV repository to host static and dynamic web content and provide

versioning, making it a convenient and secure place for keeping files on the net.?

Since 2005, Virtuoso supports SPARQL for querying RDF data stored in its
Quad Store database. In particular, it supports the HTTP-based SPARQL Protocol,
SPARQL federated queries, different exchange formats such as HTML, CSV, TSV,
JSON, RDEF/XML, Turtle, N-Triples, and more. For this reasons Virtuoso has
become the most popular and efficient tool for serving a SPARQL endpoint, which
is usually located at http://{host}/sparql. Figure 2.5 shows an example of how

the endpoint looks like.

All the aspects of a Virtuoso instance can be managed through the Virtuoso

Conductor, that is located at http://{host}/conductor.

For example, from

"Linked Data" tab it is possible to add and remove RDF Graphs, import schemas,

declare persistent namespaces, generate statistics such as the number of classes,

triples, subjects, etc.

There are many methods to insert an RDF resource into the Virtuoso Quad

Store. Some of them are:

Virtuoso Conductor Using Virtuoso Conductor web interface, under "Linked
Data" and then "Quad Store Upload" tab it is possible to upload a RDF

Vhttps://vos.openlinksw.com/owiki/wiki/VOS/VOSIntro

17

https://vos.openlinksw.com/owiki/wiki/VOS/VOSIntro

2.6. VIRTUOSO

SPARQL Query Editor About Tables ~

Default Data Set Name (Graph IRI)

Query Text

select distinct ?Concept where (] a ?Concept) LIMIT 100

Results Format HTML
Execute Query [EEEES

Sponging Use only local data (including data retrieved before), but do not retrieve more

Execution timeout o = | miliseconds

Options + Strict checking of void variables

Log debug info at the end of output (has no effect on some queries and output formats)
Generate SPARQL compilation report (instead of executing the query)

Copyright © 2022 OpenL
Virtuoso version 07.20.3234 on Linux (xB5_64-ubuntu_bionic-linux-gnu) Sin

Figure 2.5: A snapshot of the Virtuoso SPARQL endpoint.

resource directly into the Virtuoso Quad Store. It is also possible to assign a
graph IRI where to upload the resource. A snapshot of this feature is shown

in Figure 2.6.

ULy vinruoso 5 "

é‘>(ONDUCTOR Blogged in as dba | Log out | &Home
© insroctesoLSqL | | Home | System Admin | Database | Replicatin. | Web Appication Server | XML | Wb Sences | Liked Data _ ANTP
Sl ———————— e

& Vinuoso Start Menu

=

Sz + Filer Sceltafile | nessun file selezionato

g""““"“’ &= Resource URL®

& Opent ik Sotare

O Greate graph expicity

Verion: 0720234 5

Bty 107022 Named Graph IRI* htps://w3id.orgfontoim

ety

Cancel | | Upload

Copyright © 1998-2022 OpenLink Sofware

Figure 2.6: A snapshot of the "Quad Store Upload" tab.

RDF Sink Folder WebDAV supports a special folder called rdf_sink. This folder

18

CHAPTER 2. BACKGROUND

can be used to upload RDF files from any WebDAV client, which are auto-
matically uploaded to the Virtuoso Quad Store.

HTTP PUT RDF files can be uploaded to a rdf_sink folder through the HTTP
PUT method. Using cURL, an example is:

curl -T foaf.rdf
http://localhost:8890/DAV/home/dba/rdf_sink/foaf.rdf
-u dba:dba

HTTP POST Virtuoso supports HTTP POST method to execute SPARQL /Update
language using Content-Type: application/sparql-query in the HTTP
request headers. Using cURL, an example is:

curl -i -d "INSERT {
<http://w3id.org/people/lucamartinelli>
<http://www.w3.0rg/1999/02/22-rdf-syntax-ns#type>
<http://xmlns.com/foaf/0.1/User>

}" -u "dba:dba"

-H "Content-Type: application/sparql-query"

http://localhost:8890/DAV/home/xx/yy

SPARQL endpoint If the user has the permission to insert graphs directly from
the SPARQL endpoint, using the SPARQL/Update language, as in the ex-
ample above.

These were just some features provided by Virtuoso Universal Server in order
touseitasa SPARQL endpoint and RDF data store system. The full documentation
on how to use Virtuoso is available at https://vos.openlinksw.com/owiki/
wiki/VOS.

19

https://vos.openlinksw.com/owiki/wiki/VOS
https://vos.openlinksw.com/owiki/wiki/VOS

2.7. CKAN

CKAN

The Comprehensive Knowledge Archive Network, or CKAN?!, is an open
source?? data management system. In particular, CKAN is the world’s leading tool
for making Open Data websites, helping to manage and publish collections of data.
It is mainly used by national and local governments, research institutions and
other organizations who collect data. Two examples are the U.S. Government’s
Open Data portal, shown in Figure 2.7a or the Roma Capitale’s Open Data portal,

shown in Figure 2.7b.

= DATA.GOV

Browse by category

(a) U.S. Government’s Open Data portal.” (b) Roma Capitale’s Open Data portal.*

Thttps://data.gov/ “https://dati.comune.roma.it/

Figure 2.7: Examples of CKAN Open Data governments portals.

In CKAN data is published in units called datasets. Each datasetis owned by an
organization and contains information about the data like the title, publisher, data
or the license; and one or more resources which are the data itself. For example,
a dataset can contain different files, like the data for different years, or the same
data in different formats. Any user can view, download, and search for public
datasets, but there is also the possibility to restrict the access of some datasets
only for registered and authorized users.

Despite the core version of CKAN has only few basic features, one of the
strengths of this tool is the possibility to add different plugins which extend
its functionalities and customize the user interface. The most popular plugins,
developed and maintained by CKAN itself, are: (1) different tools to visualize data
directly on the web page, such as tables, plots or maps; (2) DataStore extension

2lhttps://ckan.org/
2https://github.com/ckan/ckan

20

https://data.gov/
https://dati.comune.roma.it/
https://ckan.org/
https://github.com/ckan/ckan

CHAPTER 2. BACKGROUND

that provides an ad hoc database for storage of structured data from resources
and integrates them into CKAN API to return data in JSON format; (3) DCAT
extension that includes RDF serialization of datasets and harvesters to import
RDF resources into CKAN. An example of this feature can be seen in the Italian

Open Data portal?, that include the datasets from all the local governments.

ONTOPIA

The only ontology OntoIM imports is OntoPiA. OntoPiA?* is a network of on-
tologies and controlled vocabularies developed in 2017 by the Agency for Digital
Italy (AgID)? and the Italian Digital Transformation Team?® with the collabora-
tion of research entities (CNR) and other Italian public administrations (ISTAT,
Agenzia delle Entrate, Ministero della Cultura, etc). OntoPiA aims to facilitate
the process of data exchange between public administrations, standardize gov-
ernment data, and create the knowledge graph of Italian Public Administration
[Digl7b; Digl7a]. Actually the network is composed by 28 ontologies and 39 con-
trolled vocabularies. The OntoPiA ontological stack, shown in Figure 2.8, consists
of the following levels:

Foundation Level It'scomposed by the top-level ontology L0, which allows all the
ontologies to be linked, enabling the network of ontologies. This ontology
defines a few general concepts, such as Entity, Location, Activity, etc, which
are used by the ontologies of the upper levels;

Core Level It comprehends the core ontologies, which describes concepts used
by different datasets. In particular, the core level describes people, organi-

zations, and locations;

Supporting Level The third level is composed by supporting ontologies, which
describe concepts used in the other ontologies. These concepts are: time,
roles, measurement units, access conditions, tickets, social media and lan-

guages;

2https://www.dati.gov.it/
2https://github.com/italia/daf-ontologie-vocabolari-controllati/
Zhttps://www.agid.gov.it/

2%https://teamdigitale.governo.it/

21

https://www.dati.gov.it/
https://github.com/italia/daf-ontologie-vocabolari-controllati/
https://www.agid.gov.it/
https://teamdigitale.governo.it/

2.8. ONTOPIA

Domain Level The final level comprehends all the ontologies that describe spe-
cific domains such as accommodation facilities, events, public contracts,
etc.

In addiction, there are two metadata ontologies: (1) DCAT-AP_IT, an extension
of DCAT,?” and DCAT-AP? ontologies, that aims at facilitating the interoperability
between Italian data catalogs; (2) ADMS-AP_IT, based on ADMS?, it is used to
add metadata to all ontologies in the OntoPiA network. Table 2.3 describes all the
ontologies that are part of OntoPiA, with their URIs and prefixes.

Finally, in order to facilitate the interoperability of the data, and let ontology-
based application to work properly [EMS08], CPV-AP_IT, CLV-AP_IT, LO-AP_IT,
POI-AP_IT, ACCO-AP_IT, Lang-AP_IT, and COV-AP_IT ontologies are aligned with
some common ontologies, such as FOAF,* Org.3! or GeoSPARQL32

Domain ontologies
Accommodation Facilities, loT events, Public/
Domain Level Cultural Events, Cultural Heritage, Cultural Sites,
E Parking, Public Services, Public Contracts, Routes,
Atlas of Paths, Transparency

Supporting ontologies
Time, Roles, Measurement Units, Price/Offer/
Ticket,Social Media Internet, Point of Interest,
Language, Access Condition

Supporting Level

Core Ontologies
POL pattern - Person, Organization, Location/
Address

Core Level

Ol

Metadata ontologies
DCAT-API_IT, ADMS-AP_IT

Foundational Level Top Leve:OOntoIogy

Controlled Vocabularies
Educational Level, Ateco 2007, Cofog 2009,
Accommodation Typology, etc...

Figure 2.8: The OntoPiA ontological stack.

2https://www.w3.org/TR/vocab-dcat-2/
2http://data.europa.eu/r5r/
Yhttps://www.w3.org/TR/vocab-adms/
3http://xmlns.com/foaf/0.1
Sthttp://www.w3.org/ns/org#
32http://www.opengis.net/ont/geospargl

22

https://www.w3.org/TR/vocab-dcat-2/
http://data.europa.eu/r5r/
https://www.w3.org/TR/vocab-adms/
http://xmlns.com/foaf/0.1
http://www.w3.org/ns/org#
http://www.opengis.net/ont/geosparql

CHAPTER 2. BACKGROUND

Prefix URI Name
Foundation Level

10 https://w3id.org/italia/ Level-0

onto/10
Core Level

clvapit https://w3id.org/italia/ Address (Location)
onto/CLV

covapit https://w3id.org/italia/ Organization (Public or Private)
onto/COV

cpvapit https://w3id.org/italia/ Person
onto/CPV

Supporting Level

acapit https://w3id.org/italia/ Access Conditions
onto/AccessCondition

langapit https://w3id.org/italia/ Language
onto/Language

muapit https://w3id.org/italia/ Value and Measurement Unit
onto/MU

poiapit https://w3id.org/italia/ Points of Interest
onto/POI

potapit https://w3id.org/italia/ Price/Offer/Ticket
onto/POT

roapit https://w3id.org/italia/ Role
onto/RO

smapit https://w3id.org/italia/ Social Media/Contact and Inter-
onto/SM net

tiapit https://w3id.org/italia/ Time
onto/TI

Domain Level

accoapit https://w3id.org/italia/ Accommodation Facilities
onto/ACCO

aopapit https://w3id.org/italia/ Atlas of Paths
onto/AtlasOfPaths

chapit https://w3id.org/italia/ Cultural Heritage

onto/CulturalHeritage

23

https://w3id.org/italia/onto/l0
https://w3id.org/italia/onto/l0
https://w3id.org/italia/onto/CLV
https://w3id.org/italia/onto/CLV
https://w3id.org/italia/onto/COV
https://w3id.org/italia/onto/COV
https://w3id.org/italia/onto/CPV
https://w3id.org/italia/onto/CPV
https://w3id.org/italia/onto/AccessCondition
https://w3id.org/italia/onto/AccessCondition
https://w3id.org/italia/onto/Language
https://w3id.org/italia/onto/Language
https://w3id.org/italia/onto/MU
https://w3id.org/italia/onto/MU
https://w3id.org/italia/onto/POI
https://w3id.org/italia/onto/POI
https://w3id.org/italia/onto/POT
https://w3id.org/italia/onto/POT
https://w3id.org/italia/onto/RO
https://w3id.org/italia/onto/RO
https://w3id.org/italia/onto/SM
https://w3id.org/italia/onto/SM
https://w3id.org/italia/onto/TI
https://w3id.org/italia/onto/TI
https://w3id.org/italia/onto/ACCO
https://w3id.org/italia/onto/ACCO
https://w3id.org/italia/onto/AtlasOfPaths
https://w3id.org/italia/onto/AtlasOfPaths
https://w3id.org/italia/onto/CulturalHeritage
https://w3id.org/italia/onto/CulturalHeritage

2.8. ONTOPIA

Prefix URI Name

cis http://dati.beniculturali. Cultural Institute/Site and Cul-
it/cis tural Event

cpevapit https://w3id.org/italia/ Public Events
onto/CPEV

cpsvapit https://w3id.org/italia/ Public Services
onto/CPSV

herapit https://w3id.org/italia/ Higher Education and Research
onto/HER

indicator https://w3id.org/italia/ Indicator
onto/Indicator

iotapit https://w3id.org/italia/ IoT event
onto/IoT

parkapit https://w3id.org/italia/ Parking
onto/PARK

pcapit https://w3id.org/italia/ Public Contracts
onto/PublicContract

prjapit https://w3id.org/italia/ Project
onto/Project

rtapit https://w3id.org/italia/ Routes
onto/Route

trapit https://w3id.org/italia/ Transparency Obligations
onto/Transparency

Metadata

admsapit https://w3id.org/italia/ Asset Description Metadata
onto/ADMS Schema

dcatapit https://w3id.org/italia/ Data Catalog Vocabulary

onto/DCAT

Table 2.3: Ontologies part of the OntoPiA network.

24

http://dati.beniculturali.it/cis
http://dati.beniculturali.it/cis
https://w3id.org/italia/onto/CPEV
https://w3id.org/italia/onto/CPEV
https://w3id.org/italia/onto/CPSV
https://w3id.org/italia/onto/CPSV
https://w3id.org/italia/onto/HER
https://w3id.org/italia/onto/HER
https://w3id.org/italia/onto/Indicator
https://w3id.org/italia/onto/Indicator
https://w3id.org/italia/onto/IoT
https://w3id.org/italia/onto/IoT
https://w3id.org/italia/onto/PARK
https://w3id.org/italia/onto/PARK
https://w3id.org/italia/onto/PublicContract
https://w3id.org/italia/onto/PublicContract
https://w3id.org/italia/onto/Project
https://w3id.org/italia/onto/Project
https://w3id.org/italia/onto/Route
https://w3id.org/italia/onto/Route
https://w3id.org/italia/onto/Transparency
https://w3id.org/italia/onto/Transparency
https://w3id.org/italia/onto/ADMS
https://w3id.org/italia/onto/ADMS
https://w3id.org/italia/onto/DCAT
https://w3id.org/italia/onto/DCAT

Related works

As said in Chapter 1, the purpose of this thesis is to design an ontology
for Italian municipalities, facilitate the publication on the Web of Linked Open
Data, and develop a web application that makes this data easier for people to
comprehend and visualize. It is therefore interesting to understand how major
Italian, European, and global cities publish their data on the Web, and what data
they publish.

The next sections will show the information collected by Italian, European and
global cities about their Open Data portal, and in particular: (1) the number of
available datasets; (2) the most common data file types; (3) a score from 1 to 5
based on the five stars classification presented in Section 2.2. Since the score is
assigned to the entire data catalog and not to a single resource, only the types of

files most present in the portal were considered.

ITALIAN CITIES

For what concerns Italian cities, has been analyzed the most economically and
culturally relevant cities in northern, central, and southern Italy: Bologna, Firenze,
Genova, Milano, Napoli, Roma, Torino, and Venezia. The results, collected during
April 2022, are shown in Table 3.1. All the cities but Bologna scored three stars,
since data are mostly published in non-proprietary format, in particular CSV,
JSON, and Shapefile. Firenze and Bologna use API that serves the resources in
different formats. Firenze’s data can be accessed in JSON format or downloaded

25

3.1. ITALIAN CITIES

as a ZIP archive containing the CSV file and a metadata file. Bologna reached
four stars since it lets export resources in different formats, including RDF /XML,
JSON-LD, N-Triples, and Turtle. However, these resources are not accessible
through SPARQL, they’re not modeled using an ontology, and they’re not linked

to other data. For these reasons this catalog obtained four stars, and not five.

City | # Datasets | File type | Score Software
Firenze | 1902 Uses API |3 Drupal + CKAN
Bologna | 425 Uses API | 4 OpenDataSoft
Milano | 1618 CSV (1540) | 3 CKAN
Torino | 1954 CSV (1460) | 3 CKAN
Roma 319 CSV (230) |3 CKAN
Venezia | 248 Csv (179) |3 Drupal
Genova | 138 Csv (111) |3 DKAN
Napoli | 62 CSV (35) 3 Custom

Table 3.1: Analysis of Italian cities” Open Data Portals. The data reported in this
table was collected during April 2022.

All the Italian cities analyzed, except Napoli, follows the Linee guida nazionali
per la valorizzazione del patrimonio informativo pubblico.! Indeed, they provide their
entire catalog as Linked Open Data using the DCAT_AP-IT ontology for resource
metadata, like the access and download URL, the name and the file type of the
resource, the owner of the dataset, the frequency of updating the data, the theme,
and more. This approach aims to maintain the ease of publishing data (e.g. using
the CKAN portal), but at the same time allows resources to be more accessible,
provide additional information about the nature of the data, and enables the

ability to access resources from regional, national,? and European?® portals.

Moving on, an example of nearly five-star data comes from Roma, which pro-
vided the list and the information of accommodation facilities* using the OntoPiA
ontology described in Section 2.8. However, this data is provided as RDF files,
and not using a SPARQL endpoint.

Thttps://docs.italia.it/italia/daf/1lg-patrimonio-pubblico/
2https://dati.gov.it

Shttps://data.europa.eu
‘https://dati.comune.roma.it/catalog/dataset/suar2021

26

https://docs.italia.it/italia/daf/lg-patrimonio-pubblico/
https://dati.gov.it
https://data.europa.eu
https://dati.comune.roma.it/catalog/dataset/suar2021

CHAPTER 3. RELATED WORKS

Finally, some notable attempts to publish data as Linked Open Data come from
Milano and Bologna, which have respectively two portals (Roma?®, and Bologna®)
dedicated to Linked Open Data. Milano developed a custom ontology called
OntoMI” that partially extends OntoPiA, which is described in Section 2.8. In par-
ticular, the ontology describes six subject areas that represent a part of the services
offered by the City of Milano: libraries, administrative acts, kindergartens, con-
sumer price detection, sports facilities, and Area C entry detection. However, the
SPARQL endpoint is no longer available, and the data can no longer be accessed.
For what concerns Bologna, it also developed a custom ontology, called Onto
Municipality®, that describes districts, areas, streets, squares and other circulation
areas, civic numbering, places and people of interest, schools, and demographic
statistics. For the latter, Bologna uses an ontology developed by ISTAT as part of
the 2011 census® that is no longer maintained and accessible. Despite the SPARQL
endpoint, and the data are still accessible, the project has not been maintained

since 2016, making it currently useless.

EUROPEAN AND GLOBAL CITIES

As for Italian cities, it is interesting to analyze the approach to Open Data (and
Linked Open Data) of European and global cities. In particular, has been analyzed
the political and economic capitals of major European states, the United States,
Canada and Australia. The results, collected during April 2022, are shown in Table
3.2. All the cities except for Amsterdam and London scored three stars, since data
are mostly published in non-proprietary format, in particular CSV, JSON, and
GeoJSON. On the contrary, Amsterdam and London, despite publishing data
under an open license, most resources are available only in the proprietary Excel
format. Notice that Berlin, Brussels, Paris, The Hague, New York, Los Angeles,
Washington DC, Melbourne, and Sydney use APIs and let export the data in
different formats. Brussels, and Paris, which use the same software as Bologna,
and New York, Los Angeles, and Melbourne, also allow resources to be exported
in RDF format, but without a SPARQL endpoint, without following an ontology;,

Shttps://dati.comune.milano.it/sparql/home.html
¢http://linkeddata.comune.bologna.it
’https://dati.comune.milano.it/sparql/onthdoc.html
8http://linkeddata.comune.bologna.it/ontologies/2014/04/onto-municipality/
https://www.istat.it/it/archivio/160039

27

https://dati.comune.milano.it/sparql/home.html
http://linkeddata.comune.bologna.it
https://dati.comune.milano.it/sparql/onthdoc.html
http://linkeddata.comune.bologna.it/ontologies/2014/04/onto-municipality/
https://www.istat.it/it/archivio/160039

3.2. EUROPEAN AND GLOBAL CITIES

and without links to other data, so the same considerations about Bologna made

in Section 3.1 apply.

City # Datasets File type Score Software
European cities
Berlin 2470 Uses API 3 Drupal + CKAN
London 1047 XLSX (644) 2 DataPress
Zurich 683 CSV (463) 3 Custom
Vienna 560 CSV (477) 3 CKAN
Brussels 550 Uses API 4 OpenDataSoft
Barcelona 525 CSV (471) 3 CKAN
Lisbon 359 Geo]SON (206) | 3 CKAN
Prague 354 CSV (194) 3 CKAN
Amsterdam 327 XLSX (n.d.) 2 Custom
Paris 321 Uses API 4 OpenDataSoft
The Hague 308 Uses API 3 Dataplatform
Madrid 195 JSON (138) 3 CKAN
Munich 176 CSV (175) 3 CKAN
Global cities

New York 3541 Uses API 4 Socrata
Los Angeles 1635 Uses API 4 Socrata
Washington DC | 1333 Uses API 3 ArcGIS Hub
Toronto 425 CSV (175) 3 WordPress + CKAN
Montreal 320 CSV (227) 3 CKAN
Melbourne 221 Uses API 4 Socrata
Sydney 176 Uses API 3 ArcGIS Hub

Table 3.2: Analysis of European and Global cities” Open Data Portals. The data
reported in this table was collected during April 2022.

As for Italian cities, all cities belonging to European Union provides their
catalog as Linked Open Data using the DCAT_AP ontology for metadata, in order
to make the resources accessible through the European portal.

A similar approach applies to U.S., Canadian and Australian cities, whose
catalog of data is collected using the local government API and is made available

also in the central government data portal.

28

CHAPTER 3. RELATED WORKS

To conclude the analysis on Italian, European and global cities” approach to
Open Data, we can definitely see that no cities publish Linked Open Data, but they
prefer publish resources in using non-proprietary (and in some cases proprietary)
format, reaching a score of three or fewer stars. This is probably due to the
fact that convert and publishing data as Linked Open Data has a greater cost
in terms of time and economic resources [BK11]. The examples of Milano and
Bologna, which have stopped investing in Linked Open Data, are proof of this.
However, these costs can be covered by states, ministries, government institutions,
or regions, which instead publish a portion of their data as Linked Open Data.
Some examples are the Europeana project,'?, Ministero della Cultura,'* ISPRA, 2
Regione Veneto,'® or Regione Sicilia.!*

Of interest is the approach of Italian and EU cities in publishing the catalog
in RDF format using the DCAT metadata profile, which allows them to provide
some semantic information to the datasets, such as the owner of the data, the
frequency of update, or the topic to which the data refer.

Finally, it is also interesting to analyze the choices of different cities regarding
the software chosen to publish Open Data. The most popular tool is CKAN (14
out of 28 cities), especially for Italian and European cities (12 out of 21 cities) use
CKAN for their data portal. The reasons for this choice certainly lie in the potential
offered by CKAN, which, as explained in Section 2.7, is highly customizable and
expandable with plugins, is an open source program and easily installed, and
offers the possibility of sharing the catalog in RDF with the DCAT metadata
profile, facilitating the interoperability with the central governments.

Ohttps://www.europeana.eu

https://dati.cultura.gov.it/

2http://dati.isprambiente.it/

Bhttps://www.culturaveneto.it/it/
“4https://dati.regione.sicilia.it/i-1linked-open-data-nel-catalogo-regionale/

29

https://www.europeana.eu
https://dati.cultura.gov.it/
http://dati.isprambiente.it/
https://www.culturaveneto.it/it/
https://dati.regione.sicilia.it/i-linked-open-data-nel-catalogo-regionale/

Requirements analysis

As introduced in Chapter 1, this thesis aims to facilitate the publication and
dissemination of Open Data, and in particular Linked Open Data, by Italian
municipalities by designing and developing an ontology to describe the data, and
to develop a web application to make it usable for local government, citizens and
businesses to consult the data. In particular, the ontology and the web applications
are designed taking in consideration the needs and the data of the Comune di
Sona!l, as part of the Innovation Lab? project, a project financed by Regione Veneto

that aims to spread digital and Open Data culture.

One of the best practices in designing an ontology is to reuse, where possible,
existing ontologies [NM+01]. Following this principle, the OntoIM ontology im-
ports the ontologies of the OntoPiA network. As described in Section 2.8, OntoPiA
is maintained by AgID and the Italian Digital Transformation Team, and aims to
describe different domains of the Italian public administrations, and in particu-
lar: people, public and private organizations, addresses and locations, point of
interests, accommodation facilities, paths, cultural heritage, cultural events, pub-
lic services, parking, public contracts, transparency obligations, projects, routes,
IoT events, indicators, and higher education and research. Where possible, these
ontologies are also aligned with existing ontologies on the web.

The OntoIM ontology was therefore designed and developed as an extension

Thttps://comune.sona.vr.it/
2https://innovationlab.regione.veneto.it/

31

https://comune.sona.vr.it/
https://innovationlab.regione.veneto.it/

of the existing OntoPiA ontology, and with the aim that it would become an
integral part of the network.

The first part of the design phase involved not only analyzing the data provided
by the Comune di Sona, but also analyzing which data the major Italian cities share
on their Open Data portals. This choice is due to the fact that we want to create an
ontology that can also be reused by other administrations, and takes into account
possible future extensions. The work described in Chapter 3, therefore, served
not only to analyze how data are made public by various cities, but also what data
is available. In addition, some data have been collected from Italian government
portals or public agencies, such as Camera di Commercio, ISTAT or Agenzia delle
Entrate, to have uniformly structured data across cities.

The data collected comprehends: private organizations, associations, munic-
ipal offices, events, cultural heritage, point of interests, accommodation facili-
ties, street directory, traffic and road accidents, municipal heritage, concession
acts, waste production, schools and courses organized by private organizations,
and demographic statistics (which also includes statistics on tourism, association
members, students, and event attendance). In addition to these requests, to make
an ontology that is adaptable to other municipalities as well, the census of plants,
green areas and street signs, and hospitals were added. Of course, since this is
Government Open Data, the privacy of organizations and citizens must also be

guaranteed.

Once the data were collected, it was necessary to understand how well OntoPiA
ontologies could describe the areas involved. After that, we proceeded to design
the ontology by adding the missing classes and properties, and going on to modify

the existing ones where necessary.

32

Description of the OntoIM Ontology

The next two sections will describe more in details the OntoIM ontology,
designed to describe the semantic areas presented in Chapter 4. In particular,
Section 5.1 presents the choices made in developing the ontology, while Section
5.2 will describe the main semantic areas and will present the principal classes in
each of them.

OVERALL DESIGN PRINCIPLES

The design of the ontology started analyzing the data collected from Comune
di Sona, and public agencies. Table 5.1 shows what data were collected and where
they were collected from.

As said in Chapter 4, the best practice of using existing ontologies where
possible was followed. The next step then was to figure out which areas were
already described by OntoPiA ontologies and which, instead, needed to be created
orimported. The new classes created, moreover, following the design principles of
OntoPiA, are subclasses of others existing in OntoPiA ontologies and, in particular,
the top-level ontology L0®. Indeed, as said in Section 2.8, this ontology allows all
the ontologies to be linked, enabling the network of ontologies. The next sections
of this thesis will focus on the classes and properties that are strictly part of the
OntoIM ontology, while excluding those that are part of the OntoPiA ontology.

The first version of OntoIM ontology is composed of 526 classes, 569 object
properties, 405 data properties. The URI of the ontology, the controlled vocabu-

33

5.1. OVERALL DESIGN PRINCIPLES

Data Source

Demographic statistics (citizens by location and | Comune di Sona
year, citizenship of foreigners, statistics on names

and surnames)

Associations Comune di Sona

Civil status events (births, deaths, emigrations, | Comune di Sona

immigrations, marriages, civil unions, divorces)

Concession acts Comune di Sona

Cultural events Comune di Sona

List of majors Comune di Sona
Municipal heritage Comune di Sona

Museums and cultural heritage Comune di Sona

Point of Interests Comune di Sona

Popular University (courses and subscribers) Comune di Sona

Traffic observations Local police
Accommodation facilities Regione Veneto and Co-

mune di Sona

Tourism (arrivals and presences by nationali- | Regione Veneto

ty /region)

Private organizations Camera di Commercio
Addresses and civic numbers Agenzia delle Entrate
Municipal offices IPA (AgID)

Waste production ISPRA

Road accidents ISTAT

Schools Ministero dell’Istruzione

Table 5.1: The data collected as reference for designing the OntoIM ontology, and
their source.

laries and the resources are secure and permanent by using the W3 Permanent
Identifier Community Group, which let create permanent Uniform Resource Lo-
cators (URLs) that redirects to defined locations on the Web. Moreover, thanks
to this service it was possible to implement a content negotiation mechanisms, to
return serialized resources and ontologies in different formats (such as RDF/XML

or Turtle), or its visualization/documentation, depending on the request.

The persistent URI, for the OntoIM ontology is https://w3id.org/ontoim,

34

https://w3id.org/ontoim

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

while its prefix is ontoim.

Finally, all the files, and the documentation of the ontologies and the controlled
vocabularies are open source and available on a GitHub repository?!, which also
allows for a permanent location to place the serialization and documentation of

the ontology and the other resources.

SEMANTIC AREAS

The OntoIM ontology that extends OntoPiA is divided into nine semantic
areas, which describe seven specific domains about the municipality and the local
territory. The semantic areas are as follows, and will be explored individually in
Section 5.2:

Demographic Observations and Events This semantic area is used to describe
not only the number of citizens by year, by geographic area, and by different
properties, but also the number of employees that work in an organization,
the members part of an association, the number of tourists, the number of
subscribers to an event, and so on. It also includes the number of civic
status events, like births or deaths, and singular events, like a subscription
to an event, to an accommodation facility or a single civil status event, like

a marriage;

Facilities and Cadastral Data The entities of this area describe general facilities

and their cadastral data;

Organizations and Associations This semantic area extends the CLV_AP-IT on-
tology of OntoPiA. It describes the private and public organizations, adding
information such as the enterprises’ life cycle events, the typology of the
organizations, and the heritage. This semantic area comprehends also asso-

ciations, which are treated as private organizations;

Transparency This semantic area includes concession acts and payments from

organizations (generally public administrations) to other beneficiaries;

Roads and Traffic The entities of this area describe traffic observations, road sig-

nals, and road accidents;

Thttps://github.com/luca-martinelli-09/ontoim

35

https://github.com/luca-martinelli-09/ontoim

5.2. AREA-BY-AREA

Schools This semantic area describes public and private schools, comprehensive

institutes, and courses organized by public or private organizations;

Green Zones and Plants This area describes green zones, with their information,
and the plants with their status;

Hospitals Entities in this area are used to describe hospitals, and hospital depart-

ments;

Waste Production It is the area that describes the observations on waste produc-

tion by year, by waste category and by geographic area.

CONTROLLED VOCABULARIES

For some classes it was necessary to introduce categories or types to classify
them. Some examples are the type of civil status event, the category of an as-
sociation, the type of traffic signal etc. Instead of introducing numerous named
individuals into the ontology, some controlled vocabularies and, in particular,
taxonomies were chosen. This makes it easier to modify and keep up-to-date the
possible categories and types of the various classes, and it was also possible to
define hierarchies and subcategories (e.g., a wedding can be religious wedding or
civil wedding).

In three cases, named individuals within the ontology were used instead: for
traffic direction, for tourist type, and for plant status. Indeed, in these cases, it
was not necessary to define a hierarchy, and the types will remain unchanged over
time.

To distinguish controlled vocabularies from the entities of the ontology, the
URI prefix https://w3id.org/ontoim/controlled-vocabulary/ has been used.

AREA-BY-AREA

In this section, each of the semantic areas introduced in Section 5.1.1 will be
explored in depth and, in particular, the main elements that comprise it will be
described. Bold font will be used to indicate classes, monospaced font for URIs,
and italic font for properties. The prefixes in Table 2.3 will be used for URIs.

36

https://w3id.org/ontoim/controlled-vocabulary/

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

DemoGrAPHIC OBSERVATIONS AND EVENTS

This semantic area is represented in Figure 5.1, and comprehends the classes
and the properties that describe demographic observations and events for the
domains of demographic statistics, civil status, tourism, events, schools, and
organizations.

There are two main classes in this area. The Demographic Observation class
(:DemographicObservation), and the Demographic Event (:DemographicEvent)
class. This makes it possible to represent data either in aggregate form (e.g., the
number of marriages in a year) or, where possible, as individual events (e.g., a
wedding occurred on a particular day).

The class Demographic Observation, which is a subclass of the Activity class
(10:Activity)hasthe data property observationValue (xsd:nonNegativeInteger),
which represents the quantity of the observation (e.g. the number of citizens).
Through the properties hasTemporalEntity and hasSpatialCoverage, Demograph-
icObservation is connected to TemporalEntity (tiapit:TemporalEntity) and
Feature (clvapit:Feature) respectively. In this way it is possible to define the
time and space to which the observation refers. To get more accurate statistics, it
may be useful to distinguish observations by gender, citizenship or other charac-
teristics. Instead of adding different properties for each of these characteristics,
you can use the hasDemographicReference property, which connects Demograph-
icObservation to a Person (cpvapit:Person) class or Family (cpvapit:Family)
class for observations about families. These classes then reference the observed
characteristics.

Different type of observations are modeled using subclasses of the class De-

mographicObservation. The main subclasses are:

Tourists (:Tourists) To describe observations about the number of tourists. We
can distinguish two type of observations about tourism: arrivals and pres-
ences. The hasTouristType property connect Tourists to the enumerated class
TouristType (TouristiType), which can be :Arrival or Presence;

CivilStatus (:CivilStatus) To describe the number of civil status events (e.g.
births, deaths, marriages, etc). The typology of the event is defined through
the class CivilStatusCategory (:CivilStatusCategory), connected by the
property hasCivilStatusCategory. The available categories are defined in a

37

5.2. AREA-BY-AREA

controlled vocabulary following the entries in the ISTAT D.7.A model? of

civil status statistics.

Subscribers (:Subscribers) This subclass is used to describe observations about

subscribers to events, school, and courses.

The remaining subclasses, which doesn’t have additional properties, are: Em-
ployees (:Employees), Members (:Members), Citizens (:Citizens), and Book-
ings (:Bookings). They describe respectively: (1) the number of employees that
works in a organization; (2) the number of members of an association; (3) demo-
graphic observation on the population; (4) the number of bookings in a accom-

modation facility.

The DemographicEvent class is similar to DemographicObservation, but, as
said before, is used to represent singular events. It shares with the latter the
hasDemographicReference and hasSpatialCoverage properties, but it has the property
date, which defines the date on which the event occurred. Different subclasses
are used to model specific types of events. In particular, such subclasses are: (1)
CivilStatusEvent (:CivilStatusEvent), which is the equivalent of CivilStats for
the observations; (2) Subscriber (: Subscriber), to model a single registration to
an event, school or course; (3) Booking (:Booking), to describe a single reservation

to an accommodation facility.

FaciLities AND CADASTRAL DATA

Figure 5.2 represent the semantic area of facilities and cadastral data, which
are used to describe schools, hospitals, green zones etc.

The main class is Facility (:Facility), which is a subclass of the POI-AP_IT’s
PointOfInterest class (poiapit:PointOfInterest), and from which it inher-
its all the properties. The properties hasOnlineContactPoint, hasPhysicalContact-
Point, and hasAccessConditions connect the Facility class respectively to: (1) On-
lineContactPoint (smapit:OnlineContactPoint), which defines online contact
points such as emails, social network usernames, websites, and telephones; (2)
PhysicalContactPoint (smapit:PhysicalContactPoint), which describes the ad-

dress or the Point of Interest where the facility is located; (3) AccessCondition

2https://purl.archive.org/istat-d7a-sona-2021

38

https://purl.archive.org/istat-d7a-sona-2021

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

(acapit:AccessCondition), which defines the facility opening hours. The OS-
DFeature class (accoapit:0SDFeature) is connected through the property hasOf-
feredService, and it is used to describe services and features that the facility offers
(e.g. air conditioning, food service, parking, etc).

A facility can be owned by an organization, but can be granted for use to
another organization or to a person through a deed of grant. This situation is
described by the property ownedBy, which connect the facility to the Organiza-
tion class that represents its owner; the property concessedWithAct and the class
ConcessionAct (: ConcessionAct), which is described in Section 5.2.4.

Finally, a facility is identified in the land registry by one or more cadastral
data. The class CadastralData (:CadastralData) stores this information, and
it is connected to the Facility class through the hasCadastralData property. A
facility has also a cadastral category, defined by the class CadastralCategory
(:CadastralCategory). The elements of this class must be defined according to a
controlled vocabulary that store the available cadastral categories.3

ORGANIZATIONS AND ASSOCIATIONS

This semantic area is represented in Figure 5.3, and covers the domains of pub-
lic and private organizations, and associations. The area was designed following
the structure of the data provided by the Camera di Commercio.*

Three data properties concerning events in the life cycle of an organization
have been added to the COV-AP_IT’s Organization class (covapit:0rganization).
These properties, of type xsd:date, are endActivityDate, bankruptcyDate, and lig-
uidationDate.

The property hasLocallnitAddress connects the Organization class to an Ad-
dress class (clvapit:Address), and itis used to store the addresses of one or more
local units of the organization. It should also be specified that an organization
may have its primary address in another city and a local unit in the municipality
concerned. In that case, the Camera di Commercio provides only the address of
the latter, specifying that it is a local unit.

An organization may also have real estate assets. Since there can be different

Shttps://purl.archive.org/age-categorie-catastali
‘https://www.mn.camcom.gov.it/files/RegistroImprese/Legenda-elenchi.pdf

39

https://purl.archive.org/age-categorie-catastali
https://www.mn.camcom.gov.it/files/RegistroImprese/Legenda-elenchi.pdf

5.2. AREA-BY-AREA

types of heritage, such as unavailable heritage or state property, the structures
owned by the organization are grouped, through the property hasFacility, in the
Heritage class (:Heritage), to which its type defined by the HeritageType class
(:HeritageType) is linked, through the property hasHeritageType, and whose ele-

ments are defined in a controlled vocabulary.

For what concern demographic observations, as specified in Section 5.2.1, the
Employees class describes the number of employees that works in the organiza-

tion.

This semantic area also extends the COV-AP_IT’s PrivateOrganization class
(covapit:PrivateOrganization), which is a subclass of an Organization. The
property hasOrganizationSection connect the company to the OrganizationSec-
tion class (:OrganizationSection). The elements of this class are defined in
a controlled vocabulary created from the sections provided by the Camera di
Commercio. Another controlled vocabulary defines the elements that must be
used for the CompanyDemographicCategory class (:CompanyDemographicCat-
egory), which defines whether the enterprise is a youth, female or foreign en-
terprise. Finally, artisan organizations are described by the class ArtisanOrga-
nization (:ArtisanOrganization), which has the two data properties artisanReg-
isterCode (rdfs:Literal), which define the identifier of the organization in the
register of artisans, and artisanRegistrationDate (xsd:date), which define the date

when the organization was registered.

Associations are treated as private organizations. Indeed, the Association class
(:Association)is a subclass of the PrivateOrganization class. The data property
associationRegisterCode (rdfs:Literal) defines the identifier of the association in
the register of associations. The other two data properties, associationRegistra-
tionDate, and associationRemovalFromRegisterDate, define the life cycle events for
an association. The class AssociationCategory (:AssociationCategory), con-
nected through the property hasAssociationCategory, define the category of the
association (such as ONLUS, cultural association, etc). The elements of this class
must be defined according to a controlled vocabulary.

Finally, as specified in Section 5.2.1, the Members class is used to describe de-
mographic observations on the members of the association, while the Subscriber

class is used to describe singular membership events.

40

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

TRANSPARENCY

This semantic area contains classes that extend the Transparency-AP_IT on-
tology for transparency obligation. These classes are graphically represented in
Figure 5.4.

The main class is ConcessionAct (:ConcessionAct), which defines a deed
of concession from an organization to another organization or person, and it is
used either to grant the management of a facility, or to send a payment. The
data properties of the ConcessionAct class are: (1) actTitle (xsd:string), which
defines the title of the act; (2) actNumber (xsd:string), which defines the code
number of the act; (3) paymentAmount (xsd: float), which defines the amount of
the payment; (4) actDate (xsd:date), which defines the date of the act.

The hasBeneficiary property connects the ConcessionAct to the Agent class
(10:Agent), which can be both an organization or a person. The organization that
sign the concession act is connected by the hasOrganization property.

The signed document of the concession act can be stored as a Transparen-
cyResource element (transapit:TransparencyResource).

The referent of the organization that sign the concession act is defined by a
TimeIndexedRole class (roapit:TimelndexedRole) through the property hasAc-
tReferent.

Finally, the typology of the concession act is defined by the ConcessionAct-
Type class (:ConcessionActType), whose elements are defined in a controlled

vocabulary.

RoaDps AND TRAFFIC

This semantic area, which is represented in 5.5, extends the OntoPiA ontology
regarding the traffics flow observations, and contains classes that describe the
road signals and the road accidents.

For what concerns the traffic flow observations, the I0T-AP_IT’s TrafficFlow
class (ioapit:TrafficFlow) is connected through the property hasTrafficFlowD:i-
rection to the TrafficFlowDirection class (: TrafficFlowDirection). This class
represents the direction of the flow respect to the sensor, and is thus an enumerated
class that can have individual :In or individual :0ut as its elements. The Road-
Segment (:RoadSegment) class, which define the feature of interest for the obser-
vation, is connected through the property hasStreet Toponym to the name of the road

41

5.2. AREA-BY-AREA

observed, represented by the StreetToponym class (clvapit:StreetToponym). Fi-
nally, the observations can be enriched with the category of vehicle observed. This
can be done through the property hasVehicleCategory that connects TrafficFlow to
the VehicleCategory class (:VehicleCategory). The elements of this class are
in a controlled vocabulary, whose elements are defined following the road code

classification.®

It is also useful for a city to keep track of the status and location of street signs
to aid their maintenance. The class RoadSignal (RoadSignal) describes a street
sign, and is a subclass of the PointOfInterest class (poiapit:PointOfInterest).
In addition to those inherited from the PointOfInterest class (such as the loca-
tion), the RoadSignal class has three more data properties: (1) installationDate
(xsd:date), which defines the date when the signal was installed; (2) removalDate
(xsd:date), which defines the date when the signal was removed; (3) signalValue,
which defines the value on the signal (e.g. the speed for a speed limit signal). The
typology of the road signal is defined through the property hasSignalType, which
connects it to the class RoadSignalType (:RoadSignalType). The elements of this
class are defined in a controlled vocabulary generated from the list of road signs

in Italy.

The last subarea is dedicated to road accidents, and was developed following
the ISTAT model used to collect road accidents, both to design the ontology and
to define the controlled vocabularies.”

The main class is RoadAccident (:RoadAccident), which is a subclass of L8’s
EventOrSituation (10:EventOrSituation). The date and time when the incident
occurred are defined by the data property date (xsd:dateTime). The Geometry
class (clvapit:Geometry) describe the geographical location of the accident.

The property detected By connects Road Accident with the class RelevationUnit
(:RelevationUnit), defining who recorded the incident (e.g., police, carabinieri,
etc). The elements of the latter class are defined in a controlled vocabulary.
The class AccidentType (:AccidentType) defines the nature of the accident (e.g.
head-on collision, pedestrian investment, etc), and its elements are also defined

Shttps://www.polizialocaleterredifrontiera.com/codice-della-strada/veicoli/
¢https://it.wikipedia.org/wiki/Segnaletica_stradale_in_Italia
"https://purl.archive.org/istat-incidenti-stradali-2018

42

https://www.polizialocaleterredifrontiera.com/codice-della-strada/veicoli/
https://it.wikipedia.org/wiki/Segnaletica_stradale_in_Italia
https://purl.archive.org/istat-incidenti-stradali-2018

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

in a controlled vocabulary. Another class whose elements are defined in a con-
trolled vocabulary is WeatherCondition (:WeatherCondition), which defines the
weather conditions at the time of the accident.

The Road (:Road) class is used to store information about the road and its
status at the time of the accident. The address where the location happened is
defined by the Address class (clvapit:Address) through the property hasAddress.
Then, there are several classes that defines the context and the status of the road
during the accident. The elements of these classes must all be defined according
to the relative controlled vocabularies. Such classes are:

RoadCategory (:RoadCategory), which defines whether the road is a municipal
road, a state road, a highway, etc;

RoadType (:RoadType), which defines whether the road is single- or multi-lane

Or one-way,

PavementType (:PavementType), which defines whether the road is paved or

uneven;

RoadContext (:RoadContext), which defines whether the accident occurred at

an intersection, traffic circle, on a straight road, etc;

RoadbedStatus (:RoadbedStatus), which defines the status of the roadbed (e.g.

dry, wet, frozen, etc);

RoadSignalPresence (:RoadSignalPresence), which defines whether the road
signals are present or not, or what type of signals are present.

Finally, there are some classes that describe the entities involved (obstacles, per-
sons, vehicles) in the accident. These entities are described by the class Involve-
dEntity (:InvolvedEntity). The property hasAccidentCirumstance connects this
class to the AccidentCircumstance class (:AccidentCircumstance), which de-
fines what the entity involved was doing during the accident (e.g., the pedestrian
was crossing the street, or the car was proceeding at high speed). The elements of
this class are defined in a controlled vocabulary. To define whether the entity is
a vehicle, an obstacle, or a person, the InvolvedEntity class has three subclasses:
InvolvedVehicle (: InvolvedVehicle), InvolvedPerson (: InvolvedPerson), and
InvolvedObstacle (: InvolvedObstacle). The InvolvedPerson class inherits also
the properties of the CPV-AP_IT’s Person class (cpvapit:Person), so it is possible

43

5.2. AREA-BY-AREA

to define the sex and age of the person involved. The status of the person involved
(e.g. wounded, uninjured, dead, etc) in the accident is described using the class
InvolvedPersonStatus (: InvolvedPersonStatus), whose elements are defined in
a controlled vocabulary. For what concerns the vehicle, the class Involved Vehicle
has the properties hasFrontPassenger, hasBackPassenger, and hasConducent, which
are sub-properties of hasConducent, and defines the person involved that was
inside the vehicle. The InvolvedVehicle is also a subclass of the Vehicle class
(:Vehicle). This class, which represents a vehicle, has the data properties license-
Plate (xsd:string), registrationYear (xsd:gYear), brand, model, and color, which
defines the characteristics of the vehicle. The properties hasEngineDisplacement,
hasLength, hasWidth, hasHeight, and hasHeight are used to describe the sizes of
the vehicle, using the class Value (muapit:Value). The category of the vehicle
is described by the VehicleCategory class. The registration country is defined
through the property hasRegistrationCountry, which connects the Vehicle class to
the Country class (clvapit:Country).

Note that it was still chosen to include properties that in the Open Data envi-
ronment would not be used for privacy reasons (e.g., the license plate or name of
the people involved). This is because in this way the ontology can also be used
internally to describe traffic accidents using Linked Data.

ScHoots

The classes of this area describes the school, comprehensive institutes, and
courses organized by schools. It should also be specified that in this ontology
schools also include training institutions, music schools, sports associations, pop-
ular universities, etc. Figure 5.6 shows the graphical representation of these
classes.

For what concern schools, the class School (:School) is the core part of the
area, and it inherits the properties from the Facility class. The data property
schoolCode represents the MIURS identifier for the school. The class SchoolType
(:SchoolType) defines the typology of the school (e.g. primary school, high
school, etc) and its elements must be defined according to a controlled vo-
cabulary. The subclasses PublicSchool (:PublicSchool), and PrivateSchool
(:PrivateSchool) are used to distinguish private and public schools. In Italy,

8https://www.miur.gov.it/

44

https://www.miur.gov.it/

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

schools are part of comprehensive schools. This situation is described by the

Comprehensivelnstitute class (: ComprehensiveInstitute), and the property in-

cludesSchool, which links comprehensive institutes to the schools they include.
As said in Section 5.2.1, the classes Subscribers and Subscriber are used to

describe demographic observations on schoolchildren and enrollment events.

For what concern courses, the core class of this subarea is Course (:Course).
The main information of the course are defined by the data properties cour-
seCode, which is the identifier of the course, name, description, durationHours,
and by the properties: (1) atTime, which connects it to a TimelInterval class
(tiapit:TimeInterval) to define the period in which the course is provided;
(2) hasPriceSpecification, which connects Course to the class PriceSpecification
(potapit:PriceSpecification) to define the cost of the course, if any; (3) hasAca-
demicDiscipline, which connects the Course class to the AcademicDiscipline class
(:herapit:AcademicDiscipline) to define the school discipline of the course.

The location (phisical or virtual) of the course is specified by the Classroom
class (:Classroom) through the property situatedInClassroom. The subclass Phys-
icalClassroom (:PhysicalClassroom) defines a physical classroom with an ad-
dress defined by the class Address. On the other hand, if a course is provided
using a video communication service, the classroom can be described as a Virtu-
alClassroom, specifying also the service used through the class VideoCommuni-
cationService (:VideoCommunicationService), which describes the name of the
service (e.g. Zoom, Google Meet), and its URL.

GREEN ZONES AND PLANTS

Figure 5.7 represent this semantic area, which describes green zones (e.g.
parks, flowerbeds, gardens), and plants.

A green zone is treated as a facility. Indeed, the class GreenZone (: GreenZone)
is a subclass of the class Facility, from which it inherits the properties. The size
of the green zone is defined by the property hasSurface, which connects the class
to a Value class. A green area may have plants within it, so the hasPlant property

connects a green area with trees within it.

The class Plant (:Plant) contains the main immutable information about the

plant: (1) plantCode is the identifier; (2) commonName the common name of the

45

5.2. AREA-BY-AREA

plant; (3) species its species; (4) birtYear (xsd:gYear) the birth year; (5) plantingDate
(xsd:DateTime) the planting date and time. It also inherits the properties from the
class PointOfInterest, such as the geographical location of the plant. Finally, it is
useful to keep track of the state of the plant over time. The class PlantStatusInTime
(:PlantStatusInTime) do this, storing information about the dimensions of the
plant, with the properties hasDiameter, and hasHeight, and the health status, using
the enumerated class PlantHealthStatus (:PlantHealthStatus).

HospitaLs

Figure 5.8 represents the hospitals.

The main class is Hospital (:Hospital), which is a subclass of the Facility class,
and form which it inherits the properties. The data property totalNumberOfBeds
defines the beds available in the hospital. The two subclasses PublicHospital
(:PublicHospital), and PrivateHospital (:PrivateHospital) are used to specify
the typology of the hospital.

Finally, as for school and comprehensive institutes, the class HospitalDepart-
ment (:HospitalDepartment) is treated as a hospital and describes the various

departments into which a hospital is divided.

Waste ProDUCTION

This semantic area is represented in Figure 5.9, and defines observations on
waste production.

This semantic area is structured as demographic observation. The main class
WasteProduction (:WasteProduction) is connected to a TemporalEntity class,
and a Feature class, which define the space and time to which the observation
refers. The value of the observation is defined by the class Value, for which you
can also define the unit of measurement (e.g. kg or t). To indicate an observation
made on only one type of waste, the WasteCategory (:WasteCategory) class can
be used, whose elements are defined in a controlled vocabulary populated with
the categories defined by ISPRA.°

https://www.isprambiente.gov.it/it

46

https://www.isprambiente.gov.it/it

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

"BaTE DIJUBLIDS SJULAH pue suorearasqQ dnyderows(q :1°g ainSig

Awey Au3zjelodwar Ay
<«qidendd»| «iden» «op

uosiad ainjea, uonen)ISIoIUaAT
«qdendd»| «op>

dduaseeydIydelbowsgsey Anuzjesodws)sey:yden ddualeeydIydelbowsgsey abesano)enedssey:denpd duaIseydIydelbowagsey obesanodlenedssey:denp) Josse|Pgns:sypl

1J0SsePans:spJ| J0SsePaNs:spJ|

2oudsald
|eALy ajeq :21ep

19631u] :3aNjRAUOIIRAISSAO

uonensasqoolydesfowaqg Kioba3e)snieis|inD

adAL3snoL uaA3dIydesbowsg

«paRRIBUINUS»

/

JOSsepans:syps JOSSePaNs:sypa adApisunolsey / Jossepans:sjpl

JOSsePans:syps JOSsePans:sypi| JOSSePAns:spl\ JOSSePans:sipl

JOssepans:syps ;pommm_ug:m_m%‘; AKioB3edsmels|inDsey Jossepanssips . Alobajedsmersjinnsey

[f f
[| [| [[[

) i)))
To:_v_oo& TcmN_u_& T‘_wnEmL Tww%_nEL T_mntumn:my

]
1
?:_V_Sm_ Twn_bmn:m_ Taﬁm_si JUSAISMEISIIAD

47

5.2. AREA-BY-AREA

OnlineContactPoint PhysicalContactPoint

smapit:hasOnlineContactPoint

«smapit> «smapit>

«clvapit>
Address

smapit:hasPhysicalContactPoint

acapit:hasAccessCondition

«acapit>
AccessCondition

CadastralData

«poiapit> «accoapits -
PointOfinterest OSDFeature M‘

L]

rdfs:subclassOf

sheet
map
subordinate

CadastralCategory

hasCadastralCategory

rdfs:subclassOf

Topic

Figure 5.2: Facilities and Cadastral Data semantic area.

rdfs:subclassOf

«covapit»
Organization

ArtisanOrganization

artisanRegisterCode
artisanRegistrationDate: Date

endActivityDate: Date
bankruptcyDate: Date
liquidationDate: Date

hasLocalUnitAddress | hasEmployees

|

|

rdfs:subclassOf | hasHeritageType

«l0»
Collection

hasHeritage

rdfs:subclassOf

«covapit»
PrivateOrganization

hasFacility rdfs:subclassOf

hasOrganizationSection

Association

associationRegisterCode
associationRegistrationDate: Date
associationRemovalFromRegisterDate: Date

rdfs:subclassOf [hasReferent hasAssociationCategory

<«cpvapit»|
Person

hasDemographicCategory

rdfs:subclassOf

rdfs:subclassOf

CompanyDemographicCategory
| |
C]

rdfs:subclassOf

hasMembers

Figure 5.3: Organizations and Associations semantic area.

48

_hasSubscriber

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

ConcessionAct

actTitle: String
actNumber: String
paymentAmount: Float
actDate: Date

rdfs:subclassOf / hasBeneficiary [hasTransparencyResource \ hasActReferent hasConcessionActType hasOrganization

«l0» «l0» «transapit» «roapit» C ionACET; 0 oot
Activity Agent TransparencyResource TimelndexedRole oncessionActlype rganization
rdfs:subclassOf
L
«l0»
Topic

Figure 5.4: Transparency semantic area.

49

5.2. AREA-BY-AREA

efssubclassOr

RasinvolvedObstacle / hasteathercondiion

Figure 5

5

ssubclassOf vapithasseomety detectedty

.§

[Accidentrype]

) mw

fofssubclassor

Roads and Traffic semantic area.

Ea,%igm.;sé
G| [

50

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

JOSsePans:sipl

14N “THNROINISS
[weu

92IAIBSUONEIIUNWIOD0PIA

‘Bale dnjuewos SJO0YDS 9°g vhswm—

Jossepans:syp.|

——
sweu —

»|49qLdsqgn
woossa |

921AIBSUONEIIUNUILLO; 10

Wo0ISSe|D[eNMIA|

| Jossepansisyps woosse|oulpaIenyis

uondudsanssey

wooisse|)|edisAyd

«

uondussanssey

JOSSePANS:S)PI

[) [) [

)

| [)

auydpsigoiwapedy| uopeoyadsedld

«qdesay> «dejod «den»

_mzwuc_ws_._.; E

suydpsiaowapesyseydesay\ uoeaydadsedudsey | awiizeyden

19633 :sinoHuoneinp
uonduosap

aweu

9poDsIN0d

351n0)

asinopsapinoid

Jossepans:sypi

|00Y2533eALd

——
sIaquIsqnssey |
| adALjo0yds

3poDjooyds |

10045

JOSSePansIspl | JOSSePANs:syp)

100U3521and

| adAyooydssey | jossepansisps /

/

IsaJ33uy0IuIodRldnINN
«idejod»

JooydssapNPUI

J0SsEPANSISIPI

sImnsupAIsUaYRIdWo)

51

5.2. AREA-BY-AREA

GreenZone
I~

rdfs:subclassOf “\ hasPlant
\

\

N

Plant

plantCode

Facility commonName
species
plantingDate: DateTime
birthYear: gYear

hasSurface hasStatusinTime \rdfs:subclassOf

«poiapit»>

PlantStatusInTime PointOfinterest

hasDiameter ltiapit:hasTemporalEntity \\\hasHeaIthStatus rdfs:subclassOf

N
«enumerated»
PlantHealthStatus

«muapit»| «tiapit» Good «l0»
Value TemporalEntity Fair EventOrSituation
Bad
Stump
Dead

Figure 5.7: Green Zones and Plants semantic area.

PublicHospital PrivateHospital

&s:subclass%s:subclassm

Hospital

totalNumberOfBeds: Integer

irdfs:subclassOf %IiosptalDepartment rdfs:subclassOf

Facility HospitalDepartment

Figure 5.8: Hospitals semantic area.

52

CHAPTER 5. DESCRIPTION OF THE ONTOIM ONTOLOGY

WasteProduction

rdfs:subclassOf / clvapit:hasSpatialCoverage [tiapit:hasTemporalEntity hasWasteCategory

«l0» «clvapit>» «tiapit» «muapit>
Activity Feature TemporalEntity Value WasteCategory
rdfs:subclassOf
Y
«I0»
Topic

Figure 5.9: Waste Production semantic area.

53

RDF Graph Builder

A fundamental part for providing Linked Open Data on the Web is to build
the RDF Graph from the available data. The main obstacle in this project is the
fact that different municipalities and public organizations may model the data
in different ways, thus making the process of mapping the data into an RDF
Graph in accordance with the OntoIM and OntoPiA ontologies difficult. The
main idea, as shown in Figure 6.1, is to collect and process data from different
sources: the city’s CKAN portal, offline files, and Open Data published by state
and regional agencies. Thus, two libraries were made in Python to simplify graph
creation through object-oriented programming by converting ontology classes
into Python classes, and related properties into attributes. This makes data entry
from the various sources easier and code reading more understandable. Both
the Python libraries and the RDF Graph builder also make use of well-known
libraries such as pandas and rdflib for data manipulation and reading, and
graph creation and serialization. Finally, the sources of the various resources and
other configurations are all defined in a single conf.ini file to allow for better
control and easier editing. An example of this file is shown in Code 6.1.

[ANNCSU]
streets = anncsu/streets.csv
civics = anncsu/civics.csv

census_sections = anncsu/census_sections.kml
post_code = 37060

[ORGANIZATIONS]

organizations = organizations/organizations.csv

55

6.1. ONTOPIA-PY AND ONTOIM-PY LIBRARIES

10 [WASTE]
11 waste_production = waste/waste_production.csv

Code 6.1: Example of a config.ini file that defines sources for some semantic areas.

Resources will be grouped into datasets defined as dcat:Dataset, and, for
the specific case of the Comune di Sona, will be identified by URLs formatted as

follows:
https://w3id.org/sona/data/{dataset_id}/.../{resource_id}

The dataset_id is the identifier of the dataset (e.g. schools, demographic-
observations, etc), while the resource_id is the identifier of the resource, which is
generated following different formats depending on the resource. Some support-
ing resources (e.g., geographic locations or time intervals) may also be located in

additional paths that define the resource type (e.g. geo or ti).

N

CKAN
portal

3 LA S

Offline
files

Q) _

Government
APIs

RDF Graph Serialized
Builder RDF Graph

Figure 6.1: RDF Graph Builder architecture.

Section 6.1 will describe the Python libraries developed to facilitate the creation
of the RDF Graph, while Section 6.2 will present some examples of data mapping
for different data and semantic areas.

ONTOP1A-PY AND ONTOIM-PY LIBRARIES

To simplify and facilitate the process of creating the RDF Graph and make

the program more understandable, two libraries were created that allow the cre-

56

1

2

3

CHAPTER 6. RDF GRAPH BUILDER

ation of resources and the assignment of properties using the object-oriented
programming paradigm. These libraries are called ontopia-py and ontoim-py,
for OntoPiA and OntoIM ontologies, respectively. Following the OntoIM ontol-
ogy, the ontoim-py library imports the ontopia-py library. The two libraries are
also available under an open source license on GitHub'?, and can be installed
through the Python PyPI3 package manager, with the command:

pip install ontopia_py ontoim_py

The ontopia-py package is organized as follows, while the ontoim-py package

follows a similar structure:

/

. _ontopia_py

. _accesscondition
__init__.py
AccessCondition.py
AdmissionType.py
Booking.py
OpeningHoursSpecification.py
TemporaryClosure.py

Lflv

| __init__.py

. Dataset.py

. ns.py

. Thing.py

. setup.py

This directory ontopia_py holds the directories of the OntoPiA’s ontologies.
Each of these subdirectory holds the files that represent the classes of the ontol-
ogy. The ns.py file contains the namespaces of both ontologies and controlled

vocabularies, as shown in Code 6.2.

from rdflib import Namespace

L® = Namespace("https://w3id.org/italia/onto/10/")

Thttps://github.com/luca-martinelli-09/ontoim-py
2https://github.com/luca-martinelli-09/ontopia-py
Shttps://pypi.org/

57

https://github.com/luca-martinelli-09/ontoim-py
https://github.com/luca-martinelli-09/ontopia-py
https://pypi.org/

10

11

12

13

16

17

18

20

21

22

23

24

25

26

27

28

29

1

2

3

6.1. ONTOPIA-PY AND ONTOIM-PY LIBRARIES

TRANSP = Namespace("https://w3id.org/italia/onto/Transparency/")
TI = Namespace("https://w3id.org/italia/onto/TI/")

SM = Namespace("https://w3id.org/italia/onto/SM/")

ROUTE = Namespace("https://w3id.org/italia/onto/Route/")

RO = Namespace("https://w3id.org/italia/onto/R0O/")

PUBC = Namespace("https://w3id.org/italia/onto/PublicContract/")
PROJ = Namespace("https://w3id.org/italia/onto/Project/")

POT = Namespace("https://w3id.org/italia/onto/POT/")

POI = Namespace("https://w3id.org/italia/onto/POI/")

PARK = Namespace("https://w3id.org/italia/onto/PARK/")

MU = Namespace("https://w3id.org/italia/onto/MU/")

LANG = Namespace("https://w3id.org/italia/onto/Language/")

IOT = Namespace("https://w3id.org/italia/onto/IoT/")

INDIC = Namespace("https://w3id.org/italia/onto/Indicator/")

HER = Namespace("https://w3id.org/italia/onto/HER/")

CULTHER = Namespace("https://w3id.org/italia/onto/CulturalHeritage/")
CPV = Namespace("https://w3id.org/italia/onto/CPV/")

CPSV = Namespace("https://w3id.org/italia/onto/CPSV/")

CPEV = Namespace("https://w3id.org/italia/onto/CPEV/")

COV = Namespace("https://w3id.org/italia/onto/COV/")

CLV = Namespace("https://w3id.org/italia/onto/CLV/")

PATHS = Namespace("https://w3id.org/italia/onto/AtlasOfPaths/")
ACOND = Namespace("https://w3id.org/italia/onto/AccessCondition/")
ACCO Namespace("https://w3id.org/italia/onto/ACCO/")

ADMS Namespace("https://w3id.org/italia/onto/ADMS/")

CIS = Namespace("http://dati.beniculturali.it/cis/")

Code 6.2: Part of the ns.py file that contains the namespaces of OntoPiA’s

ontologies.

The file __init__.py contains the library’s main information, like the version
number, the description, and the author. Two functions are also defined in this
file:

createGraph Initializes the RDF Graph and binds the main namespaces (XSD,
SKOS, DCAT, etc) and those declared in the ns. py file;

saveGraph Serializes the graph in the different formats.

These two functions are the one showed in Code 6.3.

def createGraph():
g = Graph(Q)

58

20

21

22

23

24

25

26

28

29

30

31

32

CHAPTER 6. RDF GRAPH BUILDER

g.bind("xsd", XSD)
g.bind("foaf", FOAF)
g.bind("owl", OWL)
g.bind("dc", DC)
g.bind("xml", XMLNS)
g.bind("dct", DCTERMS)
g.bind("rdf", RDF)
g.bind("rdfs", RDFS)
g.bind("dcat", DCAT)
g.bind("prov", PROV)
g.bind("skos", SKOS)
g.bind("10", LO®)
g.bind("trapit", TRANSP)
g.bind("tiapit", TI)
g.bind("smapit", SM)
g.bind("rtapit", ROUTE)
return g

def saveGraph(g: Graph, fileName: str):

formats = [
{"ext": "ttl", "fmt": "turtle"},
{"ext": "rdf", "fmt": "zml"}

]

for format in formats:
ext = format["ext"]
fmt = format["fmt"]

with open("{}.{}".format(fileName, ext), "w", encoding="utf-8") as
fp:
fp.write(g.serialize(format=£fmt))
Code 6.3: Part of the __init__.py file that contains the two functions for creating

and saving the graph.

The most important file, that initialize a resource, is Thing.py, and all the
other classes extends the class Thing. The class Thing initialize the resource, add
the labels and, if specified, connect the resource to a dcat:Dataset. In this way,

the functions that are responsible for entering the main properties, common to all

59

6.1. ONTOPIA-PY AND ONTOIM-PY LIBRARIES

resources, are handled by the Thing class. The subclasses then only have to deal

with defining the attributes, which correspond to the properties to be inserted

into the graph.
1 class Thing:
2 _dataset: URIRef = None
3 _titles: List[Literal] = []

4 uriRef: URIRef = None

6 def __init__(self, id: str, baseUri: Namespace, dataset: Dataset =
None, titles: List[Literal] = []):

7 self._dataset = dataset
8 self._titles = titles
9 self.uriRef = URIRef(baseUri[id])

11 def _addProperties(self, g: Graph):

12 pass

14 def addToGraph(self, g: Graph, isTopConcept=False, onlyProperties=

False):
15 if not onlyProperties:
16 g.add((self.uriRef, RDF.type, self.__type__))
17 for title in self._titles:
18 g.add((self.uriRef, DC.title, title))
19
20 if self._dataset:
21 g.add((self.uriRef, SKOS.inScheme, self._dataset.uriRef))
22
23 if isTopConcept:
24 g.add((self._dataset.uriRef, SKOS.hasTopConcept, self.uriRef))
25
26 self._addProperties(g)

Code 6.4: The ontopia-py’s Thing class.

Finally, the rdfs:subclassOf property is handled through object-oriented
programming inheritance. In the Code 6.5 example, the Sequence class, defined
in the LO ontology, inherits the properties of the Collection class, which inherits
those of the Entity class, which is a subclass of Thing. This way it is not necessary
to consult the ontology documentation to trace back all the properties that a given
class admits, and it is more difficult to make mistakes in creating the graph. In
addition, the class type, which is mapped to the rdf: type property, is defined by
each class in the __type__ attribute, which defines the URI of the ontology class.

60

1 # Sequence.py
2> class Sequence(Collection):
3 __type__ = LO["Sequence"]

4

5 hasFirstMember: Entity = None

6 hasLastMember: Entity = None

CHAPTER 6. RDF GRAPH BUILDER

8 def _addProperties(self, g: Graph):

9 super () ._addProperties(g)

10

11 if self.hasFirstMember:

12 g.add((self.uriRef, LO["hasFirstMember"], self.hasFirstMember.
uriRef))

13

14 if self.hasLastMember:

15 g.add((self.uriRef, LO["hasLastMember"], self.hasLastMember.
uriRef))

Collection.py

-
N

18 class Collection(Entity):
9 __type__ = LO["Collection"]

21 hasMember: List[Entity] = None

23 def _addProperties(self, g: Graph):

24 super () ._addProperties(g)

25

26 if self.hasMember:

27 for hasMember in self.hasMember:

28 g.add((self.uriRef, LO["hasMember"], hasMember.uriRef))

Code 6.5: The ontopia-py’s Sequence and Collection classes. Thanks to the object-

oriented programming inheritance it is possible to map ontology classes and

properties into Python classes and attributes.

Regarding ontoim-py library, the structure is the same as that of ontopia-py.

The ns.py file imports all the OntoPiA’s namespaces, and declares the OntoIM

one. The __init__.py file imports the ontopia-py’s saveGraph function, and

extends the createGraph function adding the new bindings. Classes such as

Organization, whose declaration is shown in Code 6.6, for example, which extend

the OntoPiA ontology class, inherit attributes and functions from the ontopia-py

library, adding the new ones declared in OntoIM.

61

6.1. ONTOPIA-PY AND ONTOIM-PY LIBRARIES

1 from ontopia_py.cov.Organization import Organization
2

3 class Organization(Organization):

4 __type__ = ONTOIM["Organization"]

6 hasEmployees: List[Employees] = None

7 hasHeritage: List[Heritage] = None

8 hasLocalUnitAddress: List[Address] = None
9 endActivityDate: Literal = None

10 liquidationDate: Literal = None

11 bankruptcyDate: Literal = None

13 def _addProperties(self, g: Graph):

14 super () ._addProperties(g)

15

16 if self.hasEmployees:

17 for hasEmployees in self.hasEmployees:

18 g.add((self.uriRef, ONTOIM["hasEmployees"], hasEmployees.
uriRef))

19

20 if self.hasHeritage:

21 for hasHeritage in self.hasHeritage:

2 g.add((self.uriRef, ONTOIM["hasHeritage"], hasHeritage.uriRef))

23

24 if self.hasLocalUnitAddress:

25 for hasLocalUnitAddress in self.hasLocalUnitAddress:

26 g.add((self.uriRef, ONTOIM["hasLocalUnitAddress"],

hasLocalUnitAddress.uriRef))

27

28 if self.endActivityDate:

29 g.add((self.uriRef, ONTOIM["endActivityDate"], self.
endActivityDate))

30

31 if self.liquidationDate:

3 g.add((self.uriRef, ONTOIM["liquidationDate"], self.
liquidationDate))

33

34 if self.bankruptcyDate:

35 g.add((self.uriRef, ONTOIM["bankruptcyDate"], self.bankruptcyDate

))
Code 6.6: The ontopim-py’s Organization class. This class inherits the one defined
in ontopia-py, declaring the new attributes.

62

-

CHAPTER 6. RDF GRAPH BUILDER

The process of creating and saving an RDF Graph using these two libraries is

the following one:

1. Initialize the graph with the function createGraph;

2. Create a dcat:Dataset object using the class Dataset, specifying its URI
and adding properties like the name or the author of the Dataset;

3. Add the dataset to the graph calling the function addToGraph;

4. Initialize the object that must be inserted into the graph, specifying the
identifier of the resource, the base URI, the dataset into which it is to be

inserted, and the name of the resource;

5. Add the properties to the resource declaring the attributes of the object
created in the step before;

6. Add the resource to the graph calling the function addToGraph;

7. Save the graph using the function saveGraph, specifying the filename where

to save it.

The example code of Code 6.7 creates an RDF Graph with the ANNCSU dataset,

into which a resource of type StreetToponym is inserted.

from rdflib import XSD, Graph, Literal, Namespace

3 from ontopia_py import Dataset, createGraph
+ from ontopia_py.clv import StreetToponym

Set namespace for data
DATA: Namespace = Namespace("https://w3id.org/sona/data/")
ANNCSU: Namespace = Namespace('https://w3id.org/sona/data/ANNCSU/")

9

10

11

12

Create the graph and bind the namespace
createGraph()
g.bind("anncsu", ANNCSU)

Create the concept scheme
ANNCSU_DATASET: Dataset = Dataset (DATA["ANNCSU"])
ANNCSU_DATASET.label = [

Literal ("Numeri civici e strade urbane", lang="it"),

Literal("Civic Addressing and Street Naming", lang="en")

63

21

22

23

24

26

27

28

29

30

31

32

33

34

35

6.2. DATA MAPPING FOR DIFFERENT SEMANTIC AREAS

Add to graph
ANNCSU_DATASET . addToGraph(g)

Create the street toponym
streetToponym: StreetToponym = StreetToponym(
id="street-1",
baseUri=ANNCSU,
dataset=ANNCSU_DATASET,
titles=[Literal("Via Roma", datatype=XSD.string)]

)
streetToponym. toponymQualifier = "Via"
streetToponym.officialStreetName = "Roma"

Add to graph
streetToponym.addToGraph(g)
Code 6.7: An example of the creation of an RDF Graph with the ontoim-py and

ontopia-py libraries.

IDATA MAPPING FOR DIFFERENT SEMANTIC AREAS

After presenting and describing the ontopia-py and ontoim-py libraries, the
next sections will show how the data entry of the Comune di Sona took place for
the following semantic areas: Addresses, Organizations, and Schools. Indeed,
these three semantic area are respectively examples of data mapping from the
CKAN Open Data Portal, offline file, and government Open Data portals.

All written programs make use of common functions grouped in a package
called utils. These functions are: (1) getConfig, to retrieve the configuration
file; (2) getOpenData, to retrieve data from the three different sources presented
in Chapter 6 and return it in the form of pandas DataFrame; (3) standardizeName,
which transforms strings into a standard format where only initials are capitalized,
and apostrophe characters are converted to the relevant accented characters; (4)
genNameForID, which generates an identifier from the name, removing special
characters and using a hyphen as a separator. This function is used only in some
cases where the name is known to be unique, such as for localities. In other cases,

it is preferable to use identifiers such as vat number or a sequence number.

64

1

2

3

4

5

17

18

19

20

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

CHAPTER 6. RDF GRAPH BUILDER

The full code of the RDF Graph Builder for the Comune di Sona is available on
GitHub at https://github.com/luca-martinelli-09/sona-1od.
def getConfig(fileName):

config = configparser.ConfigParser()
config.read(fileName)

return config
def getOpenData(resID, baseURL=None, whereSQL="", rawData=False, dtype=

None, strip=True):
config = getConfig(’../../conf.ini’)

offline = False if baseURL else config.getboolean("API", "use_offline
"y

baseURL = baseURL if baseURL else config.get("API", "base_url")

dataURI = "{}/api/3/action/datastore_search_sql?sql=SELECT * FROM

\"{}\" {}".format(baseURL, resID, whereSQL) if not offline else "
../../off_data/{}".format(resID)

if resID.startswith("http"):
offline = False
dataURI = resID

if rawData:
if offline:
return dataURI

getDataRequest = urlopen(dataURI)

return getDataRequest

df = None

if offline:
df = pd.read_csv(dataURI, dtype=dtype)
else:
if resID.endswith("csv"):
df = pd.read_csv(dataURI, dtype=dtype)
else:
tries = 0
res = {"success": False}
while not res["success"] and tries < 20:

65

https://github.com/luca-martinelli-09/sona-lod

6.2. DATA MAPPING FOR DIFFERENT SEMANTIC AREAS

38 res = requests.get(dataURI).json()

39 if res["success"]:

40 df = pd.DataFrame(res["result"]["records"], dtype=dtype)
41 break

2 tries += 1

43

44 if strip and not df is None:

5 df = df.applymap(lambda x: x.strip() if type(x) == str else x)
46

47 return df

48

149 def standardizeName (name):

50 name = name.lower().title()

52 if name.endswith("a’"):
53 name = name.removesuffix("a’") + "a

55 return name.strip()
56

57 def genNameForID (name):
58 nameID = ""

59

60 name.replace("’", ")

61 name = unidecode.unidecode (name.lower())

62

63 for char in name:

64 nameID += char if char.isalnum() else "-"

65

66 return nameID

Code 6.8: The common functions in the utils package.

ADDRESSES

The addresses (streets and civic numbers) is the only semantic area that re-
lies exclusively on the OntoPiA ontology. In particular, the address ontology is
CLV_AP-IT, and was created in collaboration with ISTAT and the Agenzia delle
Entrate. The ontology was developed to describe the data collected in the Na-
tional Archive of Urban Street Numbers, or ANNCSU*, a computerized repository

‘https://purl.archive.org/anncsu

66

https://purl.archive.org/anncsu

CHAPTER 6. RDF GRAPH BUILDER

containing the street and house numbers of all Italian municipalities. Access to
the archive should be public, but at the moment it is possible to download a mu-
nicipality’s data only through the dedicated portal of the Agenzia delle Entrate
and reserved for the municipal contact person for toponymy, who is responsible
for managing the updating of the data. From this dedicated portal it is possible
to download the list of streets and the list of house numbers. The files are in
CSV format, and follows a specific structure designed by the two agencies®. The
information about the census sections are available on the ISTAT website, as kml
file that defines the geographic geometries of each section.

The URL of the ANNCSU Dataset for the Comune di Sona is https://w3id.
org/sona/data/ANNCSU/, so the resources will be organized in this Dataset and
that URL will be their namespace. In detail:

Sona Is the municipality, for which owl:sameAs properties have been defined
that link it to external resources concerning the city, such as dbpedia, ISPRA,
and the Ministry of Cultural Heritage. The URL of this resource ishttps://
w3id.org/sona/data/ANNCSU/023083, where 023083 is the ISTAT identifier
for the city;

Census Sections The file of the census sections has been processed thanks to the
pykml Python library, thanks to which it is possible to retrieve the section
number and its geographic geometry. The URL of the resources is formatted
ashttps://w3id.org/sona/data/ANNCSU/cs/{id}, where id is the number
of the census section. The URL of the geometry resource that defines the
geographical polygon of the census section is instead formatted as https:
//w3id.org/sona/data/ANNCSU/gsc/{id};

Streets Names The street names are retrieved from the file of the streets pro-
vided by the Agenzia delle Entrate. The URL of the resources is formatted
ashttps://w3id.org/sona/data/ANNCSU/street/{id_street}, where the
id_street is the national identifier for the street, which can be retrieved by
the field PROGR_NAZIONALE in the CSV file;

Civic Numbers As for street names, the civic numbers are retrieved from the file
of house numbers provided by the Agenzia delle Entrate. The resources are

Shttps://purl.archive.org/age-anncsu-specifiche

67

https://w3id.org/sona/data/ANNCSU/
https://w3id.org/sona/data/ANNCSU/
https://w3id.org/sona/data/ANNCSU/023083
https://w3id.org/sona/data/ANNCSU/023083
https://purl.archive.org/age-anncsu-specifiche

6.2. DATA MAPPING FOR DIFFERENT SEMANTIC AREAS

located at https://w3id.org/sona/data/ANNCSU/civic/{id_num}, where
id_num in this case is the field PROGR_CIVICO, and it is the national identifier
of the house number;

Addresses Addresses are combination of street names and civic numbers. These
are the resources part of the ANNCSU dataset, and their URLs are format-
ted as https://w3id.org/sona/data/ANNCSU/ad-{id_street}-{id_num}.
For each street, in addition to house numbers, an address with id_num
equals to snc is created, indicating the absence of a house number. Fi-
nally, for some addresses, thanks to OpenStreetMap®, it was possible to
estimate the location, which is described in geometry resources located at
https://w3id.org/sona/data/ANNCSU/gcn/{id_num}.

Code 6.9 shows the part of the config.ini file relative to the ANNCSU, and
the part of the RDF Graph Builder that inserts the streets toponyms into the graph.

1 # config.ini

> [ANNCSU]

3 streets = 7b3401e5-7235-43d4-b8ed-8ellf30ec404

4+ civics = e22af300-c934-4d7e-b84a-3f58e0862e4c

5 census_sections = 1£929641-0aa5-49b7-b012-6ea29ceca759
¢ post_code = 37060

s # rdf_builder_anncsu.py

9 config = getConfig("conf.ini")

10

11 anncsuAddresses = getOpenData(config.get("ANNCSU", "streets'"))
12 anncsuAddresses.set_index ("PROGR_NAZIONALE", inplace=True)

14 for streetID, address in anncsuAddresses.iterrows():

15 dugName = standardizeName (address["DUG"])

16 streetName = standardizeName (address["DENOM_COMPLETA"])
17

18 fullName = "{} {}".format(

19 standardizeName (address["DUG"]),

20 standardizeName (address["DENOM_COMPLETA"]1))

21

22 streetToponym = StreetToponym(

23 id="street/" + str(streetlD),

¢https://www.openstreetmap.org

68

https://www.openstreetmap.org

29

30

CHAPTER 6. RDF GRAPH BUILDER

baseUri=ANNCSU,
dataset=ANNCSU_DATASET,
titles=[Literal (fullName, datatype=XSD.string)])

streetToponym. toponymQualifier = [Literal (dugName, datatype=XSD.
string)]

streetToponym.officialStreetName = [Literal(streetName, datatype=XSD.
string)]

streetToponym.addToGraph(g)

Code 6.9: The part of the RDF Graph Builder that inserts the streets toponyms

into the graph, and the config.ini file relative to the addresses.

ORGANIZATIONS

As specified in Table 5.1, the information on private organizations comes from
the Camera di Commercio. Some of this information, for privacy reasons, such as
the tax code, cannot be published. However, thanks to the tax code it is possible
to categorize businesses into women’s, youth and foreign businesses, as specified
in Section 5.2.3. It is therefore necessary, in this case, to retrieve the data from an
offline file that contains all the information, and publish the censored version on
Open Data portals.

The URL of the dataset of organizations situated in the Comune di Sona
is https://w3id.org/sona/data/organization/, so the resources will be or-
ganized in this Dataset and that URL will be their namespace. Resources are
identified by their vat number, which is unique to each enterprise. Only in the
case of individuals for whom no vat number is indicated, the tax number is used.

In addition to enterprises, instances describing the online contact points of
organizations have as their URL https://w3id.org/sona/data/organization/
ocp/{vat_num}, which in turn link back to pecs located at URL https://w3id.
org/sona/data/organization/pec/{id_pec}, where id_pec is generated with
the genNameForID function described in Section 6.2.

As said in Section 5.2.3, the Camera di Commercio provides a list of all the
organizations present in the city, both if they are local units and if they are the
head office. The typology is specified in the CSV file in the field UL-SEDE. All
the main offices of the organizations are then entered first. Next, the enterprises
indicated as local units are processed and, if already present in the graph, the

69

https://w3id.org/sona/data/organization/

1

2

3

4

6

10

11

12

6.2. DATA MAPPING FOR DIFFERENT SEMANTIC AREAS

hasLocalUnitAddress property is added along with their address. Otherwise,
the organization is inserted without specifying the hasPrimaryAddress property,
but only hasLocalUnitAddress.

Another problem encountered at this stage concerns the addresses of organi-
zations, but also of other resources in other semantic areas, such as associations,
schools, and municipal offices. The addresses, in fact, are present in text format
and, often, do not correspond to the official addresses in the national archive
(e.g., "Via Francesco Petrarca" is listed as "Via Petrarca") and do not have standard
formatting. This is due to the fact that the address is given by the company and
is not normalized by the Camera di Commercio. The goal is to retrieve from each
address the street identifier and that of the house number (if any). To do this, the
program makes use of the function shown in Code 6.10. This function retrieves the
street directory from the files presented in Section 6.2.1, and compares the address
to be searched against this list, returning a ranking of the most similar results.
The extract function of the rapidfuzz library is used for this part. From here,
the desired address must be manually selected, and the two searched identifiers

will be returned.

def queryStreetCode(q):
config = getConfig(’../../conf.ini’)

streetsDF = getOpenData(config.get("ANNCSU", "streets")).set_index(["
PROGR_NAZIONALE"])
civicsDF = getOpenData(config.get("ANNCSU", "civics")).set_index(["

PROGR_CIVICO"])

streetsForSearchIDs = [(c["PROGR_NAZIONALE"], progrCivico) for
progrCivico, c¢ in civicsDF.iterrows()]

streetsForSearch = ["{} {} {}{} {}".format(
streetsDF.loc[c["PROGR_NAZIONALE"J]["DUG"],
streetsDF.loc[c["PROGR_NAZIONALE"]]["DENOM_COMPLETA"],
c["CIVICO"],
"" if pd.isna(c["ESPONENTE"]) else c["ESPONENTE"],
streetsDF.loc[c["PROGR_NAZIONALE"]J]J["LOCALITA’ "],

).lower() for _, c in civicsDF.iterrows()]

streetsForSearchIDs.extend ([(progrNazionale, None) for progrNazionale
, _ 1in streetsDF.iterrows()])

streetsForSearch.extend(["{} {} {}".format(s["DUG"], s["
DENOM_COMPLETA"], s["LOCALITA’"]).lower() for _, s in streetsDF.

70

18

19

20

21

23

24

25

26

27

28

29

30

32

CHAPTER 6. RDF GRAPH BUILDER

iterrows()1])

searchResults = process.extract(q.lower(), streetsForSearch,
fuzz.WRatio, limit=10)

print (£"\n\n[RESULTS FOR] {q}'")
for res, val, i in searchResults:
print(£"{i}) {res} ({val}d")

selectedResult = input("Choose one or type custom search: ")

if selectedResult.isnumeric():

return streetsForSearchIDs[int(selectedResult)]
elif selectedResult == "":
return None, None

else:

scorer=

return queryStreetCode(selectedResult)

Code 6.10: The function that retrieve the street identifiers from the string of the
address.

The function is then used as follows:

address = organizationInfo["INDIRIZZO"]
progrNazionale, progrCivico = queryStreetCode(address) if not pd.isna(
address) else (None, None)

ScHooLs

The list of schools present in the municipality is directly taken from the official
data portal of the Ministero dell’Istruzione’. In this way, as with businesses, the
data structure is standard nationwide, and the code can be easily reused without
making further changes. From the portal are available both public and private
schools, and the relative comprehensive institutes, for which the comprehensive
institute code is the same as the school code. Other information regards the
address, the email, and the website of the schools.

The URL of the dataset of schools situated in the Comune di Sona is https://
w3id.org/sona/data/school/, so the resources will be organized in this Dataset

and that URL will be their namespace. Resources are identified by the code

’https://dati.istruzione.it/opendata/

71

https://w3id.org/sona/data/school/
https://w3id.org/sona/data/school/
https://dati.istruzione.it/opendata/

1

2

10

11

12

6.2. DATA MAPPING FOR DIFFERENT SEMANTIC AREAS

assigned by the Ministero dell’ Istruzione, which is unique to each school. As for
organizations, the online contact point are located at https://w3id.org/sona/
data/school/ocp/{id_school}, while the email, the certified email, and the
website are located at https://w3id.org/sona/data/school/{contact_type}/
{id_c}, where contact_type is respectively email, pec, and web, and id_c is an
identifier generated by the genNameForID function.

The same address considerations made for organizations in Section 6.2.2 also
apply.

Finally, the typology of the school are mapped using a Python dictionary into
the relatively identifiers of the controlled vocabulary described in Section 5.2.6

For what concerns demographic observations on the schoolchildren, the Minis-
tero dell'Istruzione provides, for the public schools, information about the number
of the children, both categorized by gender, by course, and by age.

In this case, the URLs of the observations resources are defined as follows:
https://w3id.org/sona/data/school/statistics/{id}, where id is the se-
quence number of the data inserted. The demographic references are located
at https://w3id.org/sona/data/demographic-references/{id}. In this case
the id can be M for males, F for females, or age-{age} for the age. For what con-
cerns the temporal entity that defines the period to which the observation refers,
the resources of type TemporalEntity are located at https://w3id.org/sona/
data/ti/{sy}-{ey}, where sy stands for the beginning year of the academic
year, and ey for the end. Since in this case the temporal entity represents a period,
the start date is fixed to {sy}-09-01, and the end date to {ey}-07-01.

Code 6.11 shows the part of the code that build the RDF Graph for demographic
observations on the schools” schoolchildren.

for (schoolCode, academicYear), statsInfo in sumDataDF.iterrows():
academicYear = int(str(academicYear)[:4])

school = School(
id=schoolCode,
baseUri=SCHOOL_DATA

schoolInfo = schoolsDF.loc[schoolCode]

temporalEntity = TimeInterval(
id="ti/{}-{}".format (academicYear, academicYear + 1),

72

13

14

18

20

21

23

24

25

26

27

28

30

31

32

33

34

35

36

37

38

39

40

2

43

44

45

46

47

48

49

50

51

CHAPTER 6. RDF GRAPH BUILDER

baseUri=SCHOOL_DATA,
dataset=SCHOOL_DATASET,
titles=[Literal("{}/{}".format(academicYear, academicYear + 1),
datatype=XSD.string)]
)
temporalEntity.startTime = Literal(str(academicYear) + "-09-01",
datatype=XSD.date)
temporalEntity.endTime = Literal(str(academicYear + 1) + "-07-01",
datatype=XSD.date)
temporalEntity.addToGraph(g)

for sexCode in ["M", "F"]:
subscribers = Subscribers(
id="statistics/{}-{}-{}".format(schoolCode, sexCode, academicYear
),
baseUri=SCHOOL_DATA,
dataset=SCHOOL_DATASET,
titles=[
Literal("{} - {} - A.A. {}/{}".format(
"Alunni (maschi)" if sexCode == "M" else "Alunne (femmine)",
standardizeName (schoolInfo["DENOMINAZIONESCUOLA"]),
academicYear,
academicYear + 1
), datatype=XSD.string)

demReference = AlivePerson(
id="demographic-reference/" + sexCode,
baseUri=SCHOOL_DATA,
dataset=SCHOOL_DATASET,

titles=[
Literal("Male" if sexCode == "M" else "Female", lang="en"),
Literal("Maschio" if sexCode == "M" else "Femmina", lang="it")
]

)
demReference.hasSex = Sex(id=sexCode, baseUri=PERSON_SEX)
demReference.addToGraph(g)

subscribers.hasDemographicReference = demReference
subscribers.hasTemporalEntity = temporalEntity

subscribers.observationValue = Literal(statsInfo["ALUNNI" + ("

73

52

54

55

56

6.2. DATA MAPPING FOR DIFFERENT SEMANTIC AREAS

MASCHI" if sexCode ==

positivelInteger)

"M" else "FEMMINE")],

subscribers.addToGraph(g)

school .hasSubscribers
school.addToGraph(g,

Code 6.11: The part of the code that build the RDF Graph for demographic

observations on the school.

= [subscribers]
onlyProperties=True)

74

datatype=XSD.

Web Applications

The third and final key part of this thesis project concerns the web applications
that allow on the one hand to download and, for the municipality, upload Open
Data, and on the other hand to visualize Linked Open Data clearly through
summary tables and graphs. The first web application is CKAN, and it is described
in Section7.1. In this case, the work was to configure the open source portal CKAN,
described in Section 7.1, with the necessary plugins and extensions to follow the
Linee Guida Nazionali per la Valorizzazione del Patrimonio Informativo Pubblico. The
second web application, described in Section 7.2, was built from scratch and is
intended to retrieve data from the SPARQL endpoint and display it graphically in
the form of graphs, maps and tables.

CKAN

As said in Chapter 6, the RDF Graph Builder get the data from three different
sources, and one of these sources is the CKAN Open Data Portal of the city
(Comune di Sona in this case). The main idea is to use this open source portal
in order to facilitate the publication of data on the web and be aligned with
other Italian and foreign cities. At the same time, this portal provides the catalog
compliant with the DCAT-AP_IT metadata profile, and this allows published data

to be made available in regional, national and European portals as well. In

Thttps://docs.italia.it/italia/daf/1g-patrimonio-pubblico/it/stabile

75

https://docs.italia.it/italia/daf/lg-patrimonio-pubblico/it/stabile

7.1. CKAN

addition, the presence of data in Linked Open Data format does not preclude the
use of the CKAN portal, despite the fact that the latter’s data achieve a three-star
rating according to Tim Berners-Lee’s classification introduced in Section 2.2. In
fact, in addition to having a lower management cost [BK11], this portal allows the
publication of data that in Linked Open Data format would not be publishable, or
for which an ontology describing them has not yet been developed. It also allows
original resources to be reused for other tasks, either by the municipality or by

companies or citizens.

The entire project is available under an open source license on GitHub at the link
https://github.com/luca-martinelli-09/ckan. The final result built for the
Comune di Sona is shown in Figure 7.1. For ease of installation and deployment,

moreover, the portal has been containerized to produce a Docker? image.

a

A Comune di Sona

Sona Open Data

Temi del dataset

paVoy == A LN

Figure 7.1: A snapshot of the Comune di Sona’s CKAN Open Data portal.

The Open Data portal extends the CKAN 2.9 Docker image provided by the
Open Knowledge Foundation,® installing the required plugins. Such plugins are:

2https://www.docker.com/
Shttps://github.com/okfn/docker-ckan

76

https://github.com/luca-martinelli-09/ckan
https://www.docker.com/
https://github.com/okfn/docker-ckan

CHAPTER 7. WEB APPLICATIONS

View, DataStore, and DataPusher These are the default plugins provided by
CKAN. The View plugin is used to show a preview of the resources in
form of tables or images. DataStore and DataPusher are two plugins that
process CSV files and enable the ability to use APIs to access data in JSON
format. Thanks to these plugins, it is also possible to filter data using the
SQL language;

Spatial This plugin adds geospatial capabilities to CKAN, adding a spatial field
to the dataset schema;

GeoView This extension is used together with the spatial plugin, and contains

view plugins to display geospatial files in CKAN;

Harvest It provides a harvesting framework that allows data and catalogs to be

imported from external APIs, DCAT catalogs, or other CKAN portals;

Multilang This extension provides a way to localize the CKAN’s title and de-
scription contents for Dataset, Resources, Tags, Organizations, and Groups;

DCAT and DCAT-AP_IT These two plugins expose the data catalog as RDF doc-
ument serialized using the DCAT and DCAT-AP_IT profiles.

To further simplify the process of setting up the portal, there is a .env con-
tiguration file that allows the main portal information to be specified, such as
the account and password and administrator, the name, description and logo of
the site, the email and vat number of the public administration that manages the
portal, and a possible configuration of the email server for sending notifications.
Code 7.1 shows the configuration template file.

CKAN_SITE_URL # URL of the custom CKAN’s portal
CKAN_SYSADMIN_NAME # Name of the sysadmin account
CKAN_SYSADMIN_PASSWORD # Password for the sysadmin account

CKAN_SYSADMIN_EMAIL # Email for the sysadmin account

CKAN_ORG_VAT # IPA/VAT/IVA of the organization
CKAN_ORG_EMAIL # Email of the organization

CKAN__DATAPUSHER__CALLBACK_URL_BASE # Same as CKAN_SITE_URL

Core

77

21

22

23

24

25

26

27

28

7.2. DATA REPORTS

CKAN__SITE_TITLE # The website title (usually the P.A. name)
CKAN__SITE_DESCRIPTION # Website description
CKAN__SITE_ABOUT # Website long description

CKAN__SITE_LOGO # Url for the logo

CKAN__FAVICON # Url for the favicon

Email setup
CKAN_SMTP_SERVER
CKAN_SMTP_STARTTLS
CKAN_SMTP_USER
CKAN_SMTP_PASSWORD
CKAN_SMTP_MAIL_FROM

CKANEXT__DCAT__BASE_URI # Same as CKAN_SITE_URL

GEONAMES__USERNAME # Follow the guide for geosolutions-it/ckanext-

dcatapit extension

Code 7.1: Configuration template file for the CKAN Open Data portal.

Finally, a theme was developed for CKAN, which is installed on par with
an extension, to apply graphical customization to the portal. The theme is
also available under an open source license on GitHub at https://github.com/

luca-martinelli-09/ckanext-cdstheme/.

DAtA REPORTS

The second web application, called Data Reports, aims to retrieve, through
preset SPARQL queries, the Linked Open Data uploaded in the phase described
in Chapter 6, process them and display them in an understandable way by means
of tables, graphs and maps. In fact, the basic idea is to create an online journal
where different data are displayed and commented on for each article and grouped
by semantic area.

As for the CKAN portal described in Section 7.1, the application is container-
ized in a Docker image to simplify its installation and adoption. The appli-
cation is open source, and it is available on GitHub at https://github.com/
luca-martinelli-09/ontoim-webapp. A snapshot of the web application’s home
page configured for the Comune di Sona is shown in Figure 7.2.

78

https://github.com/luca-martinelli-09/ckanext-cdstheme/
https://github.com/luca-martinelli-09/ckanext-cdstheme/
https://github.com/luca-martinelli-09/ontoim-webapp
https://github.com/luca-martinelli-09/ontoim-webapp

CHAPTER 7. WEB APPLICATIONS

Data Reports

Associazioni . w
22222222 Sk %

Dati demografici

Y
22222222 HisTiERR

=5

N T A T

B N

Figure 7.2: A snapshot of the Data Reports home page.

Data Reports was developed using Svelte,* and SvelteKit,> a modern JavaScript
framework for building fast and SEO friendly web applications. Unlike other
frameworks such as Vue® or React,” in fact, Svelte produces all the files necessary
for the site to function at the compile step. In addition, Svelte, being a JavaScript
framework, can be integrated with numerous ready-made packages available on
the npm?® package manager. Svelte also supports the creation of components,
which are small pieces of code that can be imported and reused on multiple
pages. Some of these packages are called preprocessors, which Svelte uses to
compile code and produce web pages. Some of these, for example, create SEO
friendly links, others compact HTML code, and others generate CSS. The full
documentation of all the features of Svelte is available at https://kit.svelte.
dev/docs/introduction.

Data Reports uses several packages and preprocessors, the most relevant of

which are:

TailwindCSS and PostCSS They provide a modern CSS framework that aims to

4https://svelte.dev/
Shttps://kit.svelte.dev/
¢https://vuejs.org/
’https://reactjs.org/
8https://www.npmjs.com/

79

https://kit.svelte.dev/docs/introduction
https://kit.svelte.dev/docs/introduction
https://svelte.dev/
https://kit.svelte.dev/
https://vuejs.org/
https://reactjs.org/
https://www.npmjs.com/

7.2. DATA REPORTS

speed up website development, easy to customize, adaptable, and using CSS
best practices;

MDsveX It is a preprocessor for Svelte that process Markdown files and convert
them to HTML. It also supports Svelte components, scripts, HTML tags, and
YAML headers, which let add information to the pages, like the publication
date or the title;

Apache ECharts It is an open source library for data visualization. It allows you

to easily create interactive charts, maps, and more;

Leaflet It is the leading open source library for creating interactive maps using
OpenStreetMap?.

Each page/report is therefore a Markdown file that contains a YAML header
which specifies the title of the report, the publishing date, a URL for the thumbnail
image, and some tags used for classification. Then, the text (e.g. description of
the data, some comments on them), is written in Markdown in the body of the
page. Code 7.2 shows the Markdown page that displays the list of associations
registered in the Comune di Sona, the map where these associations are located,
and a pie chart on the number of associations by type. Figure 7.3 shows the pages
related to demographic statistics and citizenship of foreign citizens. To increment
the readability and reusability of the code, each part of the page involved in
retrieving and displaying data was converted into a Svelte component that could
be embedded.

title: Associazioni

date: 2022-09-04

fixed: true

thumb: /reports/thumb-associations.png
keywords:

- associazioni

<script>
import TabellaAssociazioni from "../data/associazioni/

TabellaAssociazioni.svelte";

‘https://www.openstreetmap.org/

80

https://www.openstreetmap.org/

1

2

3

4

o

CHAPTER 7. WEB APPLICATIONS

import MappaAssociazioni from "../data/associazioni/MappaAssociazioni

.svelte";

import TipologiaAssociazioni from "../data/associazioni/
TipologiaAssociazioni.svelte";

</script>
In questa sezione e possibile consultare 1’albo delle associazioni del
Comune di Sona, con le relative informazioni.

<TabellaAssociazioni />

Di seguito la mappa delle associazioni
<MappaAssociazioni />

Tipologia di associazioni

3 <TipologiaAssociazioni />

Code 7.2: "Associazioni" report page in Markdown.

Cittadini stranieri

Dati demografici
==

Lo o] o) o] o e] R
Distribuzione della popolazione U 7
[i e o e e | (ae R
(' I
—
(a) "Dati demografici" report. (b) "Flussi migratori e cittadinanza" report.

Figure 7.3: Snapshots for different Data Reports’s pages.

Each of these components is responsible for running a SPARQL query to the
endpoint, and processing the result, in [SON format, to constitute the config-
uration that generates the charts, tables and maps. The function that execute
the SPARQL query, called querySPARQL, is common to all components, so it was
defined in a utils script that is imported. Code 7.3 shows the querySPARQL
function.
export const querySPARQL = async (options) => {

const urlParams = new URLSearchParams ({
infer: true,
sameAs: true,

format: "application/sparql-results+json",

query: options.query,

81

7.2. DATA REPORTS

7B

9 const response = await fetch(import.meta.env.VITE_SPARQL_ENDPOINT + "

?" 4+ urlParams.toString());

11 if (response.ok) {

12 let res = await response.json()

13 options.success(options.raw ? res : res.results.bindings)
14 } else {

15 if (options.error) f{

16 options.error(response)

Code 7.3: The querySPARQL function.

Instead, Code 7.4 shows the Svelte component that produces the sunburst
chart visible in Figure 7.3a about the number of citizens by locality and gender.

1 <script>
]

2 const query =
3 prefix tiapit: <https://w3id.org/italia/onto/TI/>

4 prefix clvapit: <https://w3id.org/italia/onto/CLV/>
5 prefix ontoim: <https://w3id.org/ontoim/>
6 prefix cpvapit: <https://w3id.org/italia/onto/CPV/>

7 prefix sex: <https://w3id.org/italia/controlled-vocabulary/
classifications-for-people/sex/>
8 prefix dc: <http://purl.org/dc/elements/1.1/>

10 select ?Localita (sum(?Maschi) as ?Maschi) (sum(?Femmine) as ?

Femmine) (sum(?Totale) as ?Totale) where {

11 {

12 select ?te ?spatialCoverage ?Maschi where {

13 ?popM tiapit:hasTemporalEntity ?te ;

14 clvapit:hasSpatialCoverage ?spatialCoverage ;
15 ontoim:hasDemographicReference ?7df ;

16 ontoim:observationValue ?Maschi

17 ?df cpvapit:hasSex sex:M

18 }

19 } union {

20 select ?te ?spatialCoverage ?Femmine where {

21 ?popF tiapit:hasTemporalEntity ?te ;

2 clvapit:hasSpatialCoverage ?spatialCoverage ;

ontoim:hasDemographicReference ?df ;

N
@

82

CHAPTER 7. WEB APPLICATIONS

24 ontoim:observationValue ?Femmine

25 ?df cpvapit:hasSex sex:F

2 }

27 }

28 ?te tiapit:year "2021"AAxsd:gYear.

29 ?spatialCoverage dc:title ?Localita

30

31 bind ((coalesce(?Maschi, ®) + coalesce(?Femmine, ®)) as ?Totale)
32 } group by ?Localita order by asc(?Localita) ‘;

33
34 let data;
35

36 querySPARQL ({

37 query: query,
38 success: (res) => {

39 data = sparqlToArray(res);
40 }

a 1)

© </script>

u {#if data}

45 <Graph

46 option={{

47 series: {

48 type: "sunburst",

49 data: data

50 .map((el) => {

51 return {

52 name: el["Localita"],

53 value: parseInt(el.Totale),

54 children: [

55 { name: "Maschi", value: parseInt(el.Maschi) 1},
56 { name: "Femmine", value: parseInt(el.Femmine) },
57 i

58 };

59 b,

60 3,

61 1}

62 />

s {/if}

Code 7.4: The sunburst chart about the number of citizens by locality and gender.

Finally, as for the CKAN Open Data portal, a configuration file is used to

83

7.2. DATA REPORTS

contain the main constants such as the SPARQL endpoint URL, and the main
information about the municipality. Code 7.5 shows this . env configuration file.

VITE_SPARQL_ENDPOINT # SPARQL endpoint URL
VITE_PA_NAME # Public Administration name

3 VITE_PA_URL # Public Administration website

+ VITE_PA_CF # Public Administration tax code
VITE_PA_ADDRESS # Public Administration address
VITE_OPEN_DATA_URL = # CKAN Open Data portal URL
VITE_LODVIEW_HOMEURL = # Eventual LodView main page URL

Code 7.5: The DataReports configuration file.

84

Conclusions and Future Works

The goal of this thesis is to document the design and the development of the
first version of the OntoIM ontology, the RDF Graph Builder, and the Data Reports
and CKAN web applications. The goal is to simplify and encourage the adoption
by Italian municipalities of technologies to publish data produced by the public
administration in Linked Open Data format, and make it more understandable
for citizens, businesses, and the administration itself to consult this data.

The OntoIM ontology was designed as an extension of OntoPiA, the Italian
ontology developed by AgID, Italian Digital Transformation Team, in cooperation
with other national agencies. In particular, the OntoIM was designed in order to
describe the data collected from the Comune di Sona, Agenzia delle Entrate, Cam-
era di Commercio, ISPRA, ISTAT, Ministero dell’Istruzione, and after an analysis
on the data published by Italian, and global cities. The result is an ontology that
describes different domains of a city, such as demographic observations, schools,
hospitals, waste production, private organizations, associations, etc., so that it is
possible to describe as many aspects of a city as possible, and to be able to publish
that data in Linked Open Data format. The first version of the OntoIM ontology,
and its documentation, can be found at https://w3id.org/ontoim.

The second part of the project was the development of two Python libraries,
ontopia-py,! and ontoim-py.? These libraries allow an RDF Graph to be created
using the object-oriented programming paradigm, converting ontology classes

Thttps://github.com/luca-martinelli-09/ontopia-py
2https://github.com/luca-martinelli-09/ontoim-py

85

https://w3id.org/ontoim
https://github.com/luca-martinelli-09/ontopia-py
https://github.com/luca-martinelli-09/ontoim-py

to Python classes, and properties to attributes. This makes it possible to insert
resources more easily, resulting in more readable code, and following ontology
rules. These libraries were used to build the RDF Graph of the Comune di Sona by
importing data from three different sources: the CKAN Open Data portal, from
offline files, and government APIs. The RDF Builder for the Comune di Sona is
available on GitHub at https://github.com/luca-martinelli-09/sona-1od.
The third and final part of the project was the development of two web
applications. The first one is the configuration of a CKAN Open Data portal
for the Italian municipalities that follows the Linee guida nazionali per la val-
orizzazione del patrimonio informativo pubblico.® The second one is Data Reports
a web application built from scratch, using the Svelte JavaScript framework.
Data Reports has been designed as an online journal where each article can
contain text, and charts, maps, and tables built using the data retrieved by
SPARQL queries. The goal is to have a portal where citizens, businesses and
the administration can consult data in an easy and understandable way, with
comments on the data and results. The two projects are available respectively
athttps://github.com/luca-martinelli-09/ckan, and https://github.com/

luca-martinelli-09/ontoim-webapps.

As future works, the OntoIM ontology will be subdivided into different on-
tologies, one for each semantic area, to follow the principle of modularity of the
Italian OntoPiA ontology, and with the goal of becoming part of it.

For what concerns the RDF Builder, the future project is to develop a universal
and easy-to-setup mapper to convert data from different sources into Linked Open
Data, according to the OntoIM and OntoPiA ontologies.

Finally, the Data Reports web application will be improved so that it can be
maintained through a private area that allows adding and creating charts directly

from the web interface.

Shttps://docs.italia.it/italia/daf/lg-patrimonio-pubblico/

86

https://github.com/luca-martinelli-09/sona-lod
https://github.com/luca-martinelli-09/ckan
https://github.com/luca-martinelli-09/ontoim-webapps
https://github.com/luca-martinelli-09/ontoim-webapps
https://docs.italia.it/italia/daf/lg-patrimonio-pubblico/

[Gru95]

[BHLO1]

[NM-+01]

[Gen+03]

[Bec+04]

[Ber06]

[Fei+07]

[EMS08]

[Hit+09]

[Tay10]

[BK11]

References

Thomas R Gruber. “Toward principles for the design of ontolo-
gies used for knowledge sharing?” In: International journal of human-
computer studies 43.5-6 (1995), pp. 907-928.

Tim Berners-Lee, James Hendler, and Ora Lassila. “The semantic
web”. In: Scientific american 284.5 (2001), pp. 34-43.

Natalya F Noy, Deborah L McGuinness, et al. Ontology development
101: A guide to creating your first ontology. 2001.

John H Gennari et al. “The evolution of Protégé: an environment for
knowledge-based systems development”. In: International Journal of
Human-computer studies 58.1 (2003), pp. 89-123.

Sean Bechhofer et al. “OWL web ontology language reference”. In:
W3C recommendation 10.2 (2004), pp. 1-53.

Tim Berners-Lee. “Linked Data - Design Issues”. In: (July 2006). urL:
http://www.w3.org/DesignIssues/LinkedData.html.

Lee Feigenbaum et al. “The semantic web in action”. In: Scientific
American 297.6 (2007), pp. 90-97.

Jérome Euzenat, Adrian Mocan, and Frangois Scharffe. “Ontology
alignments”. In: Ontology Management. Springer, 2008, pp. 177-206.

Pascal Hitzler et al. “OWL 2 web ontology language primer”. In: W3C
recommendation 27.1 (2009), p. 123.

Mohammad Mustafa Taye. “Understanding semantic web and on-
tologies: Theory and applications”. In: arXiv preprint arXiv:1006.4567
(2010).

Florian Bauer and Martin Kaltenbock. “Linked Open Data: The es-

sentials”. In: Edition mono/monochrom, Vienna 710 (2011).

87

http://www.w3.org/DesignIssues/LinkedData.html

REFERENCES

[BHB11]

[Con+13]

[I[SA13]

[Con+14a]

[Con+14b]

[1B14]

[Digl7a]

[Dig17b]

Christian Bizer, Tom Heath, and Tim Berners-Lee. “Linked data: The
story so far”. In: Semantic services, interoperability and web applications:

emerging concepts. IGI global, 2011, pp. 205-227.

World Wide Web Consortium et al. “SPARQL 1.1 Overview”. In:
(Mar. 2013). urL: https://www.w3.org/TR/sparqlll-overview/.

ISA Programme. How Linked Data is transforming eGovernment. 2013.
URL: https://joinup.ec.europa.eu/node/61404.

World Wide Web Consortium et al. RDF 1.1 Concepts and Abstract
Syntax. Feb. 2014. urL: https://www.w3.org/TR/rdf11-concepts/.

World Wide Web Consortium et al. “RDF 1.1 Primer”. In: (June 2014).
URL: https://www.w3.0rg/TR/rdfl1-primer/.

Mirjana Ivanovi¢ and Zoran Budimac. “An overview of ontologies
and data resources in medical domains”. In: Expert Systems with Ap-
plications 41.11 (2014), pp. 5158-5166.

Agenzia per I'ltalia Digitale. “Linee guida nazionali per la valoriz-
zazione del patrimonio informativo pubblico”. In: (2017). urL: https:
//docs.italia.it/italia/daf/lg-patrimonio-pubblico/.

Agenzia per I'Italia Digitale. “Piano triennale per l'informatica nella
Pubblica amministrazione 2017-2019”. In: (2017). urL: https: //
docs.italia.it/italia/piano-triennale-ict/pianotriennale-
ict-doc/it/2017-2019/.

88

https://www.w3.org/TR/sparql11-overview/
https://joinup.ec.europa.eu/node/61404
https://www.w3.org/TR/rdf11-concepts/
https://www.w3.org/TR/rdf11-primer/
https://docs.italia.it/italia/daf/lg-patrimonio-pubblico/
https://docs.italia.it/italia/daf/lg-patrimonio-pubblico/
https://docs.italia.it/italia/piano-triennale-ict/pianotriennale-ict-doc/it/2017-2019/
https://docs.italia.it/italia/piano-triennale-ict/pianotriennale-ict-doc/it/2017-2019/
https://docs.italia.it/italia/piano-triennale-ict/pianotriennale-ict-doc/it/2017-2019/

Acknowledgments

First, I would like to thank my parents, Fabiana and Renato, who have guided
me and allowed me to get this far, supporting me both emotionally and financially
throughout my growth.

I also want to thank my friends, who have always been by my side during these
years, with whom I have shared unforgettable experiences, and who have put up
with me even and especially during the most difficult times, and without whom

I probably would not be the person I am now.

I would also like to thank Prof. Silvello, who believed in this project from the
very beginning, and guided me to enable me to bring it to fruition.

Finally, a thought also goes out to the administration, the mayor, the aldermen,
and the City of Sona officials, for their willingness, their help, and without whom

this project would never have been possible.

To everyone, a heartfelt “Thank You”.

89

	List of Figures
	List of Tables
	List of Code Snippets
	List of Acronyms
	Introduction
	Scope and organization of the thesis

	Background
	The Web of Data
	The five stars of Open Data
	RDF, OWL, and serialization formats
	SPARQL
	Protégé
	Virtuoso
	CKAN
	OntoPiA

	Related works
	Italian cities
	European and global cities

	Requirements analysis
	Description of the OntoIM Ontology
	Overall design principles
	Semantic areas
	Controlled vocabularies

	Area-by-Area
	Demographic Observations and Events
	Facilities and Cadastral Data
	Organizations and Associations
	Transparency
	Roads and Traffic
	Schools
	Green Zones and Plants
	Hospitals
	Waste Production

	RDF Graph Builder
	OntoPiA-Py and OntoIM-Py libraries
	Data mapping for different semantic areas
	Addresses
	Organizations
	Schools

	Web Applications
	CKAN
	Data Reports

	Conclusions and Future Works
	References
	Acknowledgments

