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Abstract

In recent years, the interest of car manufacturers in the development of self-driving
vehicles has grown, and automated vehicles are expected to circulate in increasing
numbers in the next years. These predictions lead to the need to analyse how automated
vehicles will interface with conventional vehicles and existing infrastructure. Given the
small number of automated vehicles in circulation, the available literature proposes
various tools for modelling them within microsimulation software and shows results in
terms of system efficiency referring to highway scenarios. Few publications focus on
urban scenarios and no publication concentrates on the exclusive analysis of a lane
change maneuver. This thesis aims to close this gap in the literature by analyzing how
the lane change behaviour of automated vehicles impacts efficiency and safety within the
vehicular flow in an urban network. To achieve this goal, initially the urban network
of the city of Hannover, Germany, was modeled and two different demand profiles
were loaded. The first one refers to the profile of a typical working day, while the
second profile represents a fictitious demand, obtained by increasing and subsequently
decreasing the number of vehicles in circulation. An analysis of the available literature
was then carried out to find parameters with which to model both automated and
conventional vehicles. Eleven different scenarios are created, with the reference Scenario
0 consisting of the circulation of conventional vehicles only, in which the number of
autonomous vehicles in circulation is increased by 10% for each subsequent scenario.
The final scenario consists of only autonomous vehicles in circulation within the network.
The results and final considerations are presented in terms of efficiency, i.e. through the
analysis of travel times, average travel speeds and through the analysis of fundamental
network diagrams, and in terms of safety with reference to Scenario 0. The results show
a moderate but statistically significant worsening in both efficiency and safety. Results
presented in this thesis can form the basis for further research aimed at studying the
actual lane change behaviour of automated vehicles by developing ad-hoc models, or
aimed at improving the efficiency and safety of lane change manoeuvers of automated
vehicles.
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Sommario

Negli anni recenti è cresciuto l’interesse delle case automobilistiche nello sviluppo di
veicoli a guida autonoma e si prevede che veicoli autonomi circoleranno in numero sem-
pre crescente negli anni a venire. Da queste previsioni nasce l’esigenza di analizzare
come i veicoli autonomi si interfacceranno con i veicoli convenzionali e con le infras-
trutture esistenti. Data l’esiguità del numero di veicoli autonomi in circolazione, la
letteratura disponibile propone diversi strumenti per la modellazione dei veicoli au-
tonomi all’interno di software di microsimulazione e mostra risultati in termini di ef-
ficienza del sistema riferiti a scenari autostradali. Poche pubblicazioni si concentrano
sugli scenari urbani e nessuna pubblicazione concentra l’attenzione sull’analisi esclusiva
di una manovra di lane change. Il presente lavoro di tesi si prefigge di chiudere questo
gap della letteratura, analizzando come il comportamento di lane change dei veicoli
autonomi impatti in termini di efficienza e di sicurezza all’interno del deflusso veico-
lare in una rete di trasporto urbana. Per raggiungere l’obiettivo, inizialmente è stata
modellata la rete urbana della città di Hannover, in Germania, caricando su di essa
due diversi profili di domanda. Il primo si riferisce al profilo di una giornata lavorativa
tipo, mentre il secondo profilo rappresenta una domanda fittizia, ottenuta incremen-
tando e successivamente decrementando il numero di veicoli in circolazione. In seguito
si è effettuata un’analisi della letteratura disponibile per trovare i parametri con cui
modellare sia i veicoli autonomi sia i veicoli convenzionali. Si creano 11 diversi scenari,
con lo Scenario 0 di riferimento composto dalla circolazione di soli veicoli convenzionali,
in cui si incrementa del 10% il numero di veicoli autonomi in circolazione per ogni sce-
nario successivo. Lo scenario finale è composto da soli veicoli autonomi in circolazione
all’interno della rete. I risultati e le considerazioni finali sono presentati in termini di
efficienza, ovvero mediante l’analisi di tempi di percorrenza, di velocità medie di viag-
gio e tramite l’analisi dei diagrammi fondamentali di rete, e in termini di sicurezza con
riferimento allo Scenario 0. I risultati mostrano un peggioramento moderato ma statis-
ticamente significativo sia in termini di efficienza sia in termini di sicurezza. I risultati
qui presentati possono formare la base per ulteriori ricerche mirate a studiare il reale
comportamento di lane change dei veicoli autonomi, sviluppando dei modelli ad-hoc,
oppure mirate a migliorare l’efficienza e la sicurezza delle manovre di lane change dei
veicoli autonomi.
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Chapter 1

Literature Review

1.1 Overview of Lane Changing Models

The lane change model describes the lateral movement of vehicles and includes the
motivation for lane change and the choice of the destination lane. Most models classify
lane change behavior into two categories: mandatory and discretionary. To follow a
certain path, a vehicle has to perform mandatory lane change in order to avoid dead-end
lane, for example if the vehicle has to turn left in an intersection, the driver will have to
move in the turning lane in order to complete the maneuver. A desire to improve driving
conditions cause a discretionary lane change, for example by overtaking a slow vehicle
to gain speed. The execution of the maneuver is associated with the gap acceptance
theory. Depending on the vehicles involved, different types of gaps are distinguished
based on the decision to carry out the maneuver, as shown in Figure 1.1. The general
structure of the lane change model is shown in Figure 1.2.
In dense traffic conditions it is possible to observe two different lane change behaviors:
forced merging and cooperative merging. Forced merging occurs when there is no
acceptable size gap in the target lane and the next vehicle is forced to decelerate in
order to create a sufficiently large gap. Cooperative merging occurs when the next
vehicle changes lanes in order to facilitate the ego vehicle to perform a lane change.
Moridpour et al. (2010) [30] published a critical review regarding lane change models
and some of them are described below. According to their work there are two different
categories of lane changing models: stimulus response and discrete choice model. The
first category requires vehicles to decide to change lanes after evaluating the surrounding
traffic conditions; the first category includes the Gipps model (1986), the Wiedemann
and Reiter model (1992), the Hidas model (2002; 2005) and the Krajzewicz model
(2009). On the other hand the second category involves the use of probabilistic models
both for the choice of lane and for the choice of gaps in the selected lane. In accordance
with this thesis, it is considered appropriate to present the models belonging to the
stimulus response model category.
Gipps (1986) proposed a decision structure for the lane change model valid both in
the urban context and in the motorway context. Lane change is performed when three
factors occur: safety, necessity and desirability. Gipps also defines three zones that
characterize the intention to change lanes, based on the distance from the ego vehicle
to the exit point. In the farthest zone there is no need to change lanes and the driver
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EGO

(1) (2)

(3)

(1) Follower gap in the target lane;

(2) Leader gap in the target lane;

(3) Leader gap in the current lane.

Figure 1.1: Lane change scenario

focuses on the desired speed. In the intermediate zone the driver concentrates on driving
the vehicle to its final destination, ignoring the opportunities for speed gain. In the
closest zone, the driver feels the need to drive the vehicle to its final destination, without
any consideration of speed. The Gipps model, however, is based on some simplifications,
including the presence of a sufficiently large gap to carry out the maneuver. This means
that the model is not applicable in conditions of dense traffic, in which the mechanisms
of forced merging and cooperative merging come into play.
Wiedemann and Reiter (1992) developed a lane changing decision model that considers
the driver’s perception of surrounding vehicles. The perception of the surrounding traffic
is subjective, therefore in this model it is assumed that the drivers all have different
characteristics. Wiedemann and Reiter assume that lane changes should occur following
a speed gain. Therefore, they distinguish two different scenarios: lane change from the
slowest to the fastest lane and vice versa. The lane change to the faster lane is due
to the obstruction due to the presence of a slow vehicle. The obstruction is a function
of the difference in speed between the front vehicle speed and the ego vehicle driver’s
desired speed the lane change occurs after a certain threshold is exceeded. The lane
change to the slower lane takes place instead for the continuation of the path, to let the
overtaking lane be free and allow a faster vehicle to pass.
Hidas (2002; 2005) developed a lane change model based on the courtesy of the follower
vehicle in the target lane during the lane change maneuver. He also defined three
different types of lane change: free, cooperative and forced lane change. In the first
case, there are no variations in the gap between the leading vehicle and the follower
in the destination lane during the maneuver, while in the second and third cases, yes.
Forced lane change is based on the concept of the follower driver’s courtesy: driver’s
ego vehicle sends courtesy request signals to the follower vehicle through the use of
direction indicators. The follower vehicle’s driver can decide whether to accept or reject
the request: in case of acceptance, the follower vehicle’s driver moderates the speed in
order to create a large enough gap for the insertion of the ego vehicle. Cooperative lane
change is the result of two decisions: the willingness of the follower vehicle’s driver in
the target lane to slow down and the feasibility to slow down. The maneuver is feasible
if two conditions exist: the gap in the target lane is large enough for the ego vehicle to
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NO CHANGECHANGENO CHANGECHANGE NO CHANGE

GAP ACCEPT GAP ACCEPTGAP REJECT GAP REJECT

NOYES

DISCRETIONARY LANE CHANGE

- Cooperative change: a cooperative lane

change is initiated to facilitate a lane

change of another vehicle;

- Tactical change: a tactical change is

initiated in order to gain speed.

NOYES

- Strategic change: a strategic lane change is initiated to

avoid a dead-end lane;

- Regulatory change: a regulatory lane change is initiated

in order to clear the overtaking lane.

MANDATORY LANE CHANGE

Figure 1.2: Generic structure of lane changing models
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carry out the maneuver safely and the acceleration and deceleration components must
be acceptable.
Krajzewicz’s lane change model (2009) [20] is the model originally implemented within
the SUMO software. The model considers three different lane change motivations called
mandatory, tactical, cooperative lane change. Firstly, a valid route in the network is
calculated, consisting of a set of links that allow the vehicle to reach its final destination.
The lane change is carried out to continue within the valid route. Lane change occurs
if the remaining distance is less than the distance required to make a lane change.

dlc(t) =

{
v(t) · t1 + 2 · l if v(t) ≤ vthres

v(t) · t2 + 2 · l if v(t) > vthres

Where:

• v(t) is the current speed, in m/s;

• vthres is the threshold speed, which discriminates between urban and highway
environment, in m/s;

• t1 and t2 represent the time required to make a lane change maneuver, in s;

• l is the length of the vehicle, in m.

The method also considers the occupation of the target lane, so the situation of re-
maining in a dead-end lane due to a queque in the adjacent lane is avoided. Similar
considerations are made in case of leaving the valid lane in order to overtake a slow
vehicle: return to the valid lane must be possible within the remaining distance.
The lane change associated with the speed gain is associated with the benefit obtained.

blc(t) =
v(t, lc)− v(t,cl)

vmax(cl)
(1.1)

Where v(t, lc) and v(t,cl) are the speeds in the adjacent lane and at the current lane.
vmax(t,cl) is the maximum speed in the adjacent lane.
Using the benefit function, a memory variable is then created, whose numerical value
represents the benefit associated with the lane change and whose sign represents the
direction of the lane change. The maneuver is completed if the benefit exceeds a pre-
determined threshold.
When the lane change is not possible, the ego vehicle begins to interact with the other
vehicle-drivers, accelerating or decelerating as appropriate.

vnext(t) =


vdecel(t) if blocking/blocked at own back and front
vdecel(t) if blocking/blocked at own front
vaccel(t) if blocking/blocked at own back

Where vaccel(t) and vdecel(t) are the vehicle speed after accelerating or decelerating.
Paragraph 1.2 describes the lane changing model currently implemented in SUMO,
based on the described Krajzewicz model.
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A

B

C EGO

Figure 1.3: bestLaneOffset = −2 if the vehicle has to turn right

1.2 Overview of LC2013 Model

The LC2013 model is the default lane changing model implemented in SUMO. Based
on the model by Krajzewicz described above, LC2013 was developed by Erdmann [12].
The lane changing model is a special case of the gap acceptance theory: the vehicle-
driver, after making the decision to change lane, will have to accept, by carrying out
the maneuver, a sufficient size gap to complete the maneuver in safety conditions. The
paragraph describes the various reasons that lead the vehicle-driver to carry out the
maneuver. Referring to Figure 1.2 the mandatory lane change is divided in strategic
and regulatory, while the discretionary one is divided in cooperative and tactical.

1.2.1 Strategic Lane Change

A strategic lane change is initiated to avoid a dead-end lane. It is considered a manda-
tory lane change because it is necessary for the conclusion of the trip. Whenever a
vehicle-driver is on a dead-end lane, it must change its lane to reach the next edge of
its route. For example, the lane reserved for the right turn is considered a dead-end
lane for those who wish to continue straight or turn left.
Vehicles have to choose the sequence of lanes to follow, taking into consideration that
some of them are dead-end and that, if more lanes are possible, the choice must fall
on the best one. Each vehicle, for each simulation step, has a numerical parameter,
bestLaneOffset, which selects the possible lanes and takes into account the lane with
the lowest traffic density.

bestLaneOffset


> 1 if the best lane is on the left
= 0 if the current lane is the best lane
< 1 if the best lane is on the right

Referring to Figure 1.3, if the vehicle has to turn right, the lane A has a value of
bestLaneOffset = 0, the lane B has a bestLaneOffset = −1 and the current lane
has a bestLaneOffset = −2. This means that the sign is the direction in which to
change lanes and the numerical value the number of lanes to change. It is important
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A

B

EGO

miniGap

freeSpace

minGap

usableDist

Occupation

Figure 1.4: Urgent lane change, adapted from [29]

Table 1.1: SUMO parameters related to urgency for strategic lane-changing [8], [29]

Model parameters Description

myLookAheadSpeed Virtual speed used to calculate the ideal space
needed to perform a lane change maneuver, in m/s.
It increases proportionally as the speed of the ego
vehicle increases.

bestLaneOffset Indicates the number of lane changes required by
the ego vehicle to reach an advisable lane, described
above.

miniGap Safe bumper-to-bumper vehicle distance in a jam, in
m.

laneOccupation The sum of the individual occupations of the vehicles
in a line including their minigap downstream of the
ego vehicle, in m.

freeSpace The available free space on a lane downstream of the
ego vehicle.

usableDist The available distance between the vehicle and the
dead-end line, in m.

laDist The ideal longitudinal distance for the ego vehicle to
execute a lane change manoeuvre.
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Figure 1.5: Speed adjustment to support lane change

to evaluate the urgency of the lane change. A vehicle may not be able to carry out the
maneuver at the most appropriate moment, but doing it gradually closer to the dead-
end line. Table 1.1 shows the parameters related to an urgent strategic lane change.
Referring to Figure 1.4 a strategic lane change is defined urgent when the remaining
distance is less than the distance needed to make a lane change, i.e. if the following
inequality is true.

usableDist < laDist

d− laneOccupation < lookAheadSpeed× |bestLaneOffset| × f (1.2)

Whose parameters are already defined, except for d and f which represent the distance
to the end of the lane and the time tipically needed to perform a successfull change
maneuver respectively.
Two cases can be distinguished applied to a road consisting of two lanes in each direc-
tion.

1. In the first case, the left lane is empty. The ego vehicle will make the lane change
when the relationship 1.2 is satisfied.

2. In the second case there are some vehicles in the left lane. The ego vehicle will
make the lane change when the distance required to make a lane change is less
than the sum of the spaces available downstream of the ego vehicle.

The two cases described take place thanks to the laneOccupation variable, by which
the vehicle-drivers check the surrounding traffic to be sure that there are no deadlocks.
If a lane change is not possible due to some vehicles that prevent the maneuver, the
ego vehicle can adjust its speed to be able to carry out the lane change maneuver in
the following phases. The speed adjustment is not exclusive to the ego vehicle, but also
to the surrounding vehicles which can adjust their speed after observing the direction
indicators of the ego vehicle. Since lane change is mandatory for the ego vehicle, it is
assumed that it adopts all the necessary precautions to complete the maneuver. Figure
1.5 shows how different situations can be distinguished, which are solved by comparing
the plannedSpeed variable with the speed of the leading vehicle.
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(a)

EGO

(b)

EGO

Figure 1.6: Cooperative lane change

(a) The ego vehicle is able of overtaking the leader. The leader must refrain from
accelerating to allow the ego vehicle to complete the maneuver.

(b) The ego vehicle is unable of overtaking the leader. The ego vehicle will have to
moderate its speed and position itself behind the leader.

(c) The ego vehicle is able of inserting itself before the follower. The follower will have
to refrain from accelerating if the gap between the two vehicles is wide enough,
or will have to moderate the speed to allow lane change if the gap is not wide
enough.

(d) The ego vehicle is unable to insert itself before the follower. The follower will
have to try to get past the ego vehicle quickly.

1.2.2 Cooperative Lane Change

In real situations, some vehicles decide to change lanes at the entry points to allow a
vehicle to make a mandatory lane change. The ego vehicle is informed to be a blocking
follower by observing the direction indicators of the vehicle being blocked. If there are
no strategic reasons to stay in the current lane, the ego vehicle may change lanes to
create a gap for the blocked vehicle. Figure 1.6 shows a multi-lane roundabout, an
example of cooperative lane change in an urban scenario. Given the short distances
involved, vehicles should be encouraged to use the outermost lane while traveling the
ring. Some of them, however, move to the innermost lane to allow vehicles on subsequent
approaches an easier entry. This behavior leads to an improvement in the performance
of the roundabout. As shown in the Figure 1.6 (a) the ego vehicle proceeds in the
outermost lane of the roundabout, but moves into the innermost lane (b) to allow a
vehicle to enter the roundabout more easily.
The follower vehicle which cannot change lane to facilitate the lane change maneuver
of the ego vehicle will have to moderate the speed to increase the probability that the
ego vehicle will be able to carry out the maneuver in the subsequent simulation steps.
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1.2.3 Tactical Lane Change

A tactical lane change is performed by the ego vehicle to overtake a blocking vehicle.
This lane change occurs only to allow the ego vehicle to gain speed. Lane change must
also be balanced with the need to keep the overtaking lane free as much as possible.
Otherwise, slow moving vehicles with minor speed differences might significantly block
traffic flow.
Each vehicle has a speedGainProbability variable which is updated at each simulation
step and which represents the utility associated with the lane change. If the magnitude
of this parameter exceeds a threshold value, a tactical lane change is desired: threshold
value is represented by the parameter speedGainProbabilityLeft for the left lane, and
speedGainProbabilityRight for the right one. Parameter speedGainProbability is
calculated by normalizing the difference in speed between the expected ego vehicle speed
in the case of lane change and the expected ego vehicle speed for remaining in current
lane.

speedGainProbability1 = ±
(
speedGainProbability0 +

v − u
v

)
(1.3)

Where:

• v is the speed in the adjacent lane;

• u is the speed in the current lane.

The sign of the variable indicates the direction of the lane change, > 1 if the maneuver
must be to the right and < 1 otherwise. If a lane change succeed, the value is reset to
0. The numerical value is associated with the utility that derives from the lane change.
The relationship between the SUMO parameters described in the paragraph 2.1 and
the variables described above is explained below. speedGainProbability is divided by
the parameter lcSpeedGain, as shown in the following Equation.

threshold =
speedGainProbability

lcSpeedGain
(1.4)

The higher the value of lcSpeedGain, the lower the threshold above which a tactical
lane change occurs.
Figures 1.7 shows tactical lane change behavior. (a) A slow vehicle precedes the ego
vehicle in lane A, while lane B is free. (b) The speedGainProbability parameter
increases until it exceeds the threshold value, at which time a tactical lane change is
made by vehicle ego (c).

1.2.4 Regulatory Lane Change

Legislation provides using of the left lanes for overtaking. These lanes must be cleared
once overtaking has been made and because of this the behavior described in this
paragraph is mandatory. As regarding Figure 1.8, each vehicle, for each simulation
step, has a numerical parameter called keepRightProbability which is decreased over
time and leads to a lane change maneuver when a tolerance threshold is reached. The
analyst can check the threshold value by acting on the lcKeepRight parameter, with the
foresight to use negative values in parallel with the variable described. The Formula for
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Figure 1.7: Tactical lane change, adapted from [29]



1.2. OVERVIEW OF LC2013 MODEL 11

calculating the keepRightProbability parameter prevents fluctuations due to frequent
lane changes due to continuous vehicle overruns. If a lane change succeed, the value is
reset to 0.

keepRightProbability1 = keepRightProbability0 −
t · L

V · v · T
(1.5)

Where:

• t is the time to spend in the fast lane before making the next overtaking;

• L is the speed limit;

• V is the ego vehicle’s maximum speed;

• v is the ego vehicle’s current speed;

• T is a parameter, currently set at T = 5.

Figure 1.8 shows a situation which calls for regulatory lane changing, also called keep
right lane changing. (a) The ego vehicle is overtaking a slow vehicle and the keepRight-
Probability value is low. (b) The ego vehicle is finishing overtaking the slow vehicle
but the conditions are not yet in place to return to lane A; the value of keepRight-
Probability is close to the threshold. (c) The ego vehicle can move into lane A in a
safe condition; the value of keepRightProbability is beyond the threshold. (d) The
ego vehicle has returned to lane A and the value of keepRightProbability is set to 0.

1.2.5 Gap Acceptance Theory

The gap acceptance theory is based on the evaluation of the gaps available on the target
lane. The vehicle-driver will choose to accept, by carrying out the maneuver, a gap of
sufficient size to complete the maneuver in safety conditions. To better understand the
application of the gap acceptance theory to the lane changing model, some fundamental
quantities are defined.
Lag is defined as the residual part of a gap, or the time interval between the decision
to make the lane change maneuver and the crossing of the first vehicle on the target
lane. Gap is defined as the net time interval between the arrival of two subsequent
vehicles. Very often the term gap is also used to indicate lag. Critical gap tc is defined
as the minimum gap considered acceptable by the driver to carry out the lane change
maneuver in safe conditions. Follow-up time tf is defined as the time interval between
the instant in which a vehicle performs the lane change maneuver and the instant in
which the maneuver itself is carried out by the following vehicle, in the hypothesis that
the same gap is used by both vehicles. The quantities introduced are measured in s.
There are several methods for estimating gap acceptance parameters [4]:

• Regression analysis between the number of users who accept a given range and
the size of the range itself;

• Estimation of the distributions of tf and tc which occurs independently using a
probabilistic approach.
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Figure 1.8: Regulatory lane change, adapted from [29]
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(1) followerMinGap;

(2) secureBackGap;

(3) Length;

(4) subjectMinGap;

(5) secureFrontGap.
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Figure 1.9: requiredGap parameter

It is possible to apply the gap acceptance theory in case of homogeneous drivers, with
similar characteristics, and in the case of coherent drivers, i.e. those who accept gaps
greater than all the gaps rejected.
The parameter through which the previously presented gap acceptance theory is inserted
into SUMO is lcAssertive: the requiredGap is divided by its value. The requiredGap
is an attribute calculated for each pair of vehicles for each simulation step and is given
by the sum of different components, as described in the following Equation.

requiredGap = secureBackGap + followerMinGap + length+

+subjectMinGap + secureFrontGap
(1.6)

Where secureBackGap and secureFrontGap are calculated according to the car fol-
lowing model, while the other parameters are defined within Figure 1.9.

gc =
requiredGap
lcAssertive

(1.7)

SUMO measures these parameters in m, so the name gc is used here instead of tc to
name the critical gap. Critical gap gc is then compared with the available gap in the
target lane. The lane change maneuver is carried out if the available gap is greater
than or at the same limit as the calculated critical gap. It is possible to notice how, by
increasing the value of the lcAssertive parameter, the vehicle-driver will accept lower
gap values, resulting in more aggressive driving behavior.

1.3 Overview of the
Macroscopic Fundamental Diagram

The Macroscopic Fundamental Diagram (MFD) describes the relationship between ac-
cumulation and production in a large urban area. Accumulation and production are
links’ length weighted average respectively of the densities and of the flows. The evi-
dence of the existence of MFD in a small network is thanks to Geroliminis and Daganzo
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(2007) [14], [9]. The authors demonstrated that there is a relationship between the ac-
cumulation and the trip completion rate. The accumulation is defined as the number of
vehicles within the network, while the trip completion rate is the rate at which vehicles
leave the network. The authors demonstrated that accumulation is predictable inde-
pendently of their O/D tables. The use of the MFD is an interesting result in terms of
assessing the network’s level of service and, consequently, planning traffic management
interventions in real time. The MFD as introduced by Geroliminis and Daganzo exists
under the hypothesis of homogeneity, i.e. with a level of demand that varies slowly over
time and space and with the network formed by links of a similar type. The authors
then showed the existence of MFD, under the hypotheses previously introduced, using
real data from the city of Yokohama, the second largest city in Japan.
Ji et al. (2010) [18] removed the hypotheses previously introduced by Geroliminis and
Daganzo to observe how the shape of the MFD changes as the demand for mobility and
the type of link changes. The observations were made within the Amsterdam network,
which consists of different types of roads: freeways, major urban roads and urban links.
The authors observed a decrease in the level of flow due to inefficient use of the network
following a rapid decrease in the demand for mobility.
Other factors affecting the shape of the MFD were summarized by Zhang et al. (2020)
[48], and classified into four types: traffic factors, network settings, control settings, and
route choice behaviors. It was also observed that the car is the mode of transport that
most influences the shape of the MFD, with a greater dispersion of the values observed
as the number of circulating vehicles increases. The capacity value is reached with lower
levels of density in case of high turning traffic flow and of shorter length links. Finally,
the authors observed a benefit due to signal coordination. The better the traffic light
coordination is and the better the quality of circulation.
As regards the functional form, the authors agreed in defining three different states
within the MFD, similar to what happens for the single link’s fundamental diagram.
Free flow condition occurs when there are few vehicles in the network and the flow is
low. As the number of vehicles in circulation increases, the flow increases accordingly
until a maximum value is reached. When the flow reaches its maximum value, the
corresponding critical density value is the weak point of the network. Exceeded this
value, as the number of vehicles in circulation increases, the drivers are delayed until
reaching the jam state, in which the vehicles block each other and the flow decreases.
To construct the MFD it is necessary to calculate the average network flow Q, density
K and speed V using the following equations proposed by Geroliminis and Daganzo [9].

K =

∑N
i=1 ki · li∑N
i=1 li

(1.8)

V =

∑N
i=1 qi · li∑N
i=1 ki · li

(1.9)

Q = K · V =

∑N
i=1 ki · li∑N
i=1 li

(1.10)

Where:

• K, V , Q are the average network density (in veh/km), speed (in km/h) and flow
(in veh/h);
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Figure 1.10: Traffic states in the Macroscopic Fundamental Diagram

• N is the total number of link i;

• li is the length of the single link i, in km;

• ki, qi are the density and flow on the single link i, in veh/km.

These formulas can be easily used in case of modeling with microsimulation software.
They are difficult to use in the case of field measurements, since detectors uniformly
distributed along all the links are required for their use. To overcome this problem,
Geroliminis and Daganzo [9] used data from both fixed sensors and data from mobile
sensors. The mobile sensors are represented by taxis that perform passenger service
within the network.
Geroliminis and Daganzo [9] proposed a method to approximate the MFD called “method
of cuts”. Three families of equations were presented to allow the approximation of the
MFD. Firstly the authors demonstrated how the MFD always stays below the limit
functions; they then reported the formulas of the families of equations. These formulas
derive from observations that are carried out near the most constraining intersections
and involve the following parameters: free-flow speed, backward wave speed, optimal
density, saturation flow, green time ratio and traffic light cycle time, distance between
intersections and number of intersections. In empirical settings those values might not
be identifiable as they are very hard to measure or to obtain.
Ambuhl et al. (2020) [2] proposed a mathematical formula of the MFD that contains
easily obtainable parameters of physical significance plus a λ parameter that must be
calibrated.

q(k) = −λ · ln
[
exp

(
−uf · k

λ

)
+ exp

(
−Q
λ

)
+ exp

(
−(κ− k) · w

λ

)]
(1.11)
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Where:

• uf is the free flow speed, in km/h;

• k is the density, in veh/km;

• Q is the intersection capacity, in veh/h;

• κ is the jam density, in veh/km;

• w is the backward wave speed, in km/h;

• λ is a parameter.

The λ parameter has a double physical meaning. The first meaning represents the
efficiency with which the network is used. Low values of λ increase the network capacity,
i.e. lead to more efficient use of the network. The greater efficiency is attributed to
less interference between vehicles. The second meaning of λ is obtained by observing
its variation over time. Variation of λ can be used as a measure of intra and inter day
heterogeneity. The proposed formula combines two different sources of information:
the availability of field measurements and the possibility of estimating the required
parameters. Based on this information, three different cases can occur.

1. In the first case both information are available. λ needs to be estimate, which has
also a robust physical meaning. In this case, a value of λ between 0.03 and 0.07
is observed.

2. In the second case it is possible to estimate the required parameters, without
having any field measurements. This may be the case in cities without traffic
monitoring systems, where the necessary measurements can be obtained from
historical data or with manual measurements. The authors indicate that this
estimate gives less information than case 1 and is less accurate than case 3.

3. In the third case, only field measurements are available, without the possibility of
estimating the required parameters. In this case the Equation 1.11 can be used
for a conventional curve fitting. This approach shows the best fit to the data due
to more degrees of freedom. However, the λ parameter loses its physical meaning.

The described MFD finds application in various fields of transport engineering, such as
in road pricing measurements. Road pricing provides the payment of a fee to access
an urban area, delimited by a fixed border. The rate can be fixed or dynamic, i.e.
increasing as the level of congestion increases. In the second case, the historical MFD
is compared with the real time data to decide which rate to apply for entry into the
area. This kind of measurements are introduced to reduce the effect of congestion,
environmental impacts and accidents within the area subject to the tariff.
The MFD can be used as a measure to compare the macroscopic performance of the
network with varying microscopic characteristics. Ji et al. (2010) [18] suggested the
use of the MFD to evaluate how the macroscopic characteristics of the network vary
with the introduction of automated vehicles and connected vehicles, having different
behaviors at a microscopic level compared to conventional vehicles.
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Table 1.2: Surrogate Safety Measures

SSM Unit of measure Description

Time to collision
(TTC)

s Expected time for two vehicles to collide if
they keep their current speed and path

Post encroach-
ment time (PET)

s Time lapse between end of encroachment of
the ego vehicle and the time that the foe
vehicle arrives at the potential point of col-
lision

Deceleration rate
to avoid collision
(DRAC)

m/s2 Deceleration rate for the follower vehicle to
avoid collision

1.4 Overview of Surrogate Safety Measures
Surrogate Safety Measures (SSM) allow to indirectly assess the probability of an acci-
dent by studying the conflicts between vehicles. These measures are proximity indica-
tors that can be used to identify conflicts between vehicles. Such conflicts occur more
frequently than accidents and allow the analyst to approximate the probability of an
accident: the higher the number of conflicts, the higher the probability of an accident.
As shown in Table 1.2, the following measures are presented as SSM:

• Time to collision (TTC);

• Post encroachment time (PET);

• Deceleration rate to avoid collision (DRAC).

The SSM presented can be used to measure the severity of the conflict [15]. The values
of TTC, PET and DRAC indicate the severity of the conflict event, which is related to
the probability that a collision could result from a conflict.

• A lower TTC indicates a higher probability of a collision;

• A lower PET indicates a higher probability of a collision;

• A higher DRAC indicates a higher probability of a collision.

Research on traffic conflicts techniques has started in 1960s at General Motors in the
USA. In 1967 General Motors published a study evaluating the basic causes of accidents
near the intersections [36]. Within the study, conflict is defined as “discrete, observable
events involving two or more road users, in which the action of one road user causes the
other road user to make an evasive maneuver to avoid a collision”. A development of
studies similar to those proposed by General Motors is observed between the 1980s and
1990s. The SSM proposed by the Federal Highway Administration (FHWA) [37] are
currently being used. FHWA defines safety as “the expected number of crashes, by type,
expected to occur at an entity in a certain period, per unit of time”. Authors define
crash as “unintended collisions between two or more motor vehicles”, which excludes
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single-vehicle crashes. FHWA also has a very similar definition of conflict as the one
presented by General Motors. The conflict is an interaction between two vehicles that
can lead to an accident (crash). It is necessary that the involved vehicles occupy the
same space at the same instant time to have a conflict. The FHWA defines three
different types of conflicts related to the angle at which vehicles approach the potential
point of collision.

1. Rear end conflict. The situation occurs for vehicles that occupy the same lane
and travel in the same direction. The conflict occurs when the first vehicle slows
or changes direction and it places the following vehicle in danger of a rear end col-
lision. The second vehicle brakes or swerves to avoid the collision, then continues
to proceed through the intersection area.

2. Crossing conflict. The situation occurs within the intersections for vehicles trav-
eling in different directions. The conflict occurs when a vehicle in the cross street
turns or crosses into the path of a second vehicle on the main street who has the
right of way and places the second vehicle in danger of collision. The second vehi-
cle brakes or swerves to avoid the collision, then proceeds through the intersection
area.

3. Lane change conflict. The situation occurs in roads composed by two or more
lanes, when a vehicle decides to change lane. Conflict occurs when a vehicle
performs a lane change maneuver, placing the vehicle in the adjacent lane in
danger of collision. The vehicle in the adjacent lane brakes or swerves to avoid
the collision, then proceeds through the intersection area.

The presented SSM can be collected by microsimulation software, together with infor-
mation on vehicle acceleration, deceleration, position as a substitute for field studies.
SUMO, the software used within this thesis, is able to generate the output concerning
the SSM, in which the three different types of conflict can be recognized.
The SSM introduced at the beginning of the paragraph are presented below.

1.4.1 Time to Collision

Time to Collision (TTC) is the expected time for two vehicles to collide if they keep
their current speed and path. The TTC value is defined for each time step during the
encounter and it can assume values ranging from 0 to +∞, where TTC= 0 indicates the
occurrence of an accident. The minimum value of TTC recorded during the encounter
is taken as an indicative value of the observed collision proximity.
There is a threshold value of TTC, called critical TTC, which is used to identify which
of the encounters are conflicts. Users’ danger perception is subjective and it can vary
depending on numerous factors. Therefore, in the literature it is possible to observe
different thresholds of critical TTC. In recent years, many researchers have looked for
critical TTC values to be implemented as a warning parameter within the lane change
warning system. Minderhoud et al. (2001) [28] and Wang et al. (2018) [43] published a
review on the critical TTC and some of which are reported below. Olsen et al. (2002)
[33] and Suzanne et al. (2004) [24] agree in split the collision urgency of lane change
into four point scale.
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Figure 1.11: TTC in the event of (a) rear end and (b) crossing/lane change conflict

• Non urgent, when TTC > 5.0 s;

• Urgent, when 3.0 < TTC < 5.0 s;

• Forced, when TTC < 3.0 s;

• Collision.

Hirst and Graham (1997), using data from a field test, found that a TTC of 4.0 s can
be used to distinguish between safe and unsafe lane change behavior. Authors also
discovered that the found threshold can lead to false alarms. A subsequent study by
Minderhoud (2001) shows how a TTC threshold value of 3.0 s leads to a decrease in
the number of false alarms. Some studies provide variable TTC thresholds on the ba-
sis of the relative speed between the vehicle ego and a target vehicle in the adjacent
lane. Other studies provide variable TTC thresholds on the basis of relative distance
between the vehicle ego and a target vehicle in the adjacent lane. These critical values
range between 2.5 s and 3.5 s. SUMO considers a critical TTC value equal to 3.0 s.
From the values presented, it can be seen that there is no unique TTC threshold for
identifying conflicts. More sophisticated probabilistic approaches are currently used for
this purpose [34], [39].
TTC can be calculated in the case of a rear end conflict and in the case of a cross-
ing/lane change conflict. Figure 1.11 (a) shows the case of rear end conflict. TTC
is calculated when the follower vehicle is moving faster than the leader vehicle, i.e.
when the likelihood of a conflict occurs. TTC is calculated by dividing the spatial gap
between vehicles by the speed difference between vehicles.

TTC =
g

vB − vA
(1.12)

Figure 1.11 (b) shows the case of crossing/lane change conflict. TTC is calculated only
if the expected exit time from the conflict area of vehicle A is greater than the expected
entry time from the conflict area of vehicle B.

TTC =
d

vB
(1.13)
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1.4.2 Post Encroachment Time

Post Encroachment Time (PET) is the minimum post invasion time observed during the
conflict, i.e. the time interval between the instant the first vehicle occupies a position
and the instant the second vehicle arrives at the same position. During the encounter,
a PET value is assigned to each time interval, which can assume values between 0 and
+∞, where PET= 0 indicates the occurrence of an accident. There is a threshold
value of PET, called critical PET, which is used to identify which of the encounters are
conflicts. SUMO considers a critical PET value equal to 2.0 s.
Referring to Figure 1.12, it is possible to calculate the PET value using the following
equation.

PET = t2 − t1 (1.14)
PET value is calculated for crossing conflicts only. If the vehicles occupy the same lane,
no PET value is calculated.

1.4.3 Deceleration Rate to Avoid Collision

Deceleration Rate to Avoid Collision (DRAC) is the initial deceleration rate of the fol-
lower vehicle to avoid collision. DRAC is recorded as the instantaneous deceleration
rate. If the follower vehicle reacts to the stimulus from the leader vehicle, DRAC is
the deceleration value recorded during the encounter. If the follower vehicle does not
react, DRAC is the smallest deceleration value recorded during the encounter. SUMO
considers a critical DRAC value of 3m/s2.
DRAC can be calculated in the case of a rear end conflict and in the case of a cross-
ing/lane change conflict. As for the TTC, Figure 1.11 shows (a) the case of rear end
conflict, and (b) the case of crossing/lane change conflict. For the rear end conflict,
DRAC is the deceleration rate for the vehicle B to avoid collision.

DRAC =
1

2
· (vB − vA)2

g
(1.15)

In the situation of crossing/lane change conflict, the DRAC is calculated only if the
expected conflict area exit time for the vehicle A is larger than the conflict area entry
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Table 1.3: Lane change model parameters by Lackey (2019) [23] and Kavas et al. (2021) [19]

Parameters Conventional Automated Vehicles
vehicles Level 2 Level 3 Level 4

speedFactor 1.0 normc(1, 0.1, normc(1, 0.1, normc(1, 0.1,
0.99, 1.01) 0.98, 1.02) 0.99, 1.1)

lcStrategic 1.0 1.2 1.6 3.0
lcCooperative 1.0 1.0 1.0 1.0
lcSpeedGain 1.0 1.2 1.6 5.0
lcKeepRight 1.0 2.0 1.8 1.2
lcAssertive 1.0 1.0 1.0 1.0
lcOpposite 1.0 0.23 1.0 1.0

lcLookAheadLeft 2.0 2.0 2.5 3.0
lcSpeedGainRight 0.1 0.1 0.1 0.1

time for the vehicle B.
DRAC = 2 ·

(
vB −

dB
tA

)
· 1

tA
(1.16)

Where tA is the expected conflict area exit time for the vehicle A, and dB is the distance
between the conflict point and the vehicle B.

1.5 Related Works

In the literature, the modeling of automated vehicles has become increasingly impor-
tant in order to study their impact on mobility. This paragraph will present some
works with this objective, with particular attention to the parameters used for model-
ing within SUMO, the microsimulation software presented in paragraph 2.1.
The UK Department of Transport has developed an automated vehicles modelling
within the Vissim software [38]. The objective of Lackey (2019) [23] and Kavas et
al. (2021) [19] was to adapt this automated vehicles modeling to the SUMO software.
Authors then evaluated the interaction between automated vehicles and conventional
vehicles and how average speeds, travel duration and time loss vary as the level of au-
tonomy increases. Table 1.3 shows the parameters of the SUMO lane change model
used. The parameters are different according to the different level of autonomy of the
vehicles. As reported in the Table, it is possible to see how automated vehicles have
been modeled to have more frequent lane change maneuver as the level of automation
increase. A strategic lane change occurs in advance for level 4 automated vehicles. They
are able to plan lane changes more and more in advance of the dead end point than
lower level vehicles. At the same time, the desire to gain speed also increases as the
level of autonomy increases. A level 4 automated vehicle will be more likely to overtake
a slow vehicle than a lower level automated vehicle. A low variability of vehicle speeds
can also be noted as automated vehicles are more likely to travel at the set speed limit,
with little variation. Authors also reported non-modified parameters with respect to
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the default values as they are considered to be relevant for the lane change behavior.
The parameterized model was applied in different situations, each of which foresees 40
simulative runs. The work was divided into two parts. In the first part, each simulation
run contains a share of vehicles of the same level of autonomy and the remaining part
of conventional vehicles. In the second part, automated vehicles of different levels of
autonomy and conventional vehicles are made to travel simultaneously. The used maps
make it possible to evaluate lane changes in different contexts: urban context, where
most of the interactions take place near intersections; motorway; freeway with frequent
lane changes inside it due to merge in and merge out ramps.
The first part of the work uses all three maps. The simulation was divided into four
parts according to the type of vehicle, each of which is characterized by 10 simulation
runs:

• “Solution 0”: 100% of conventional vehicles;

• 97.9% of conventional vehicles and 2.1% level 2 automated vehicles;

• 98.5% of conventional vehicles and 1.5% level 3 automated vehicles;

• 96.6% of conventional vehicles and 3.4% level 4 automated vehicles.

For each map the values of average speed, average trip duration and time loss were
compared with the “solution 0”. Authors note how automated vehicles bring benefits
to overall mobility. Including automated vehicles, the more the level of autonomy in-
creases, the more the average speed increases. Similarly, the more the level of autonomy
increases, the more trip duration and time loss decrease.
In the second part of the work, only the freeway was used in the simultaneous presence
of vehicles with different levels of autonomy and conventional vehicles. The penetration
rate of automated vehicles circulating in this case is 26.5%, divided by the different lev-
els of automation. In this case, lower speeds were observed than in the case of the same
level of autonomy, but higher than in the case of conventional vehicles only. Authors
made the same consideration as regards the values of average trip duration and time
loss, with a worsening compared to the case of homogeneous level of autonomy, and
with an improvement compared to the case of conventional vehicles only.
In any case, the authors noted benefits on global mobility following the inclusion of au-
tomated vehicles in traffic. However, it should be noted that the maximum percentage
of automated vehicles circulating in traffic is equal to 26.5%.
Mintsis et al. (2019) [29] modelled and calibrated the car following and lane change
models implemented in SUMO for both automated and conventional vehicles. With
reference to the lane change model only, a sensitivity analysis was carried out on four
SUMO’s parameters: lcStrategic, lcKeepRight, lcSpeedGain and lcAssertive.
The following output were considered as relevant:

• Safe longitudinal gap to leading vehicle in the ego lane;

• Safe longitudinal gap to leading vehicle in the target lane;

• Safe longitudinal gap to following vehicle in the target lane.
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Table 1.4: Lane change model parameters by Mintsis et al. (2019) [29]

Automated Vehicles
Parameter Conventional Conservative Moderate Aggressive

Vehicles behaviour behaviour behaviour

lcAssertive 1.3 normc(0.5, 0.1, normc(0.7, 0.1, normc(0.9, 0.1,
0.5, 0.6) 0.6, 0.8) 0.8, 1.0)

From the sensitivity analysis conducted it emerges that the lcStrategic parameter
has a limited influence on the output. The parameters lcKeepRight and lcSpeedGain
affect the safe longitudinal gap between the leading vehicle in the target lane and ego
vehicle and the gap to leading vehicle on the target lane, respectively. The parameter
that affects all outputs is lcAssertive. Therefore, only this parameter was explicitly
modified for the parameterization of the lane change model, while all other values were
left by default.
Assuming that different car manufaturers design different automated vehicles, the be-
havior of lane change varies according to the vehicle considered. Data from the Hyundai
Motor Europe Technical Center were used in the study for the calibration of the
lcAssertive parameter. Based on the behavior of the test vehicles, the OEM pro-
vided gap data accepted by the automated vehicle for two distinct speed ranges: from 0
to 30 km/h and from 30 to 60 km/h. It has been observed that, as the speed increases,
the accepted gap grows linearly. Furthermore, a distinction was made between different
behaviors: aggressive, moderate and conservative. High values of lcAssertive indi-
cate a more aggressive behavior as the vehicle-driver will find itself accepting gradually
smaller gaps, while low values of lcAssertive indicate a more conservative behavior.
Furthermore, it was observed that higher gap values have a positive effect on safety but
a negative effect on traffic flow. Table 1.4 shows the values of the lcAssertive parame-
ter for both automated and conventional vehicles. The value for modeling conventional
vehicles derives from the experience gained by DLR, the Institute of Transportation
System at German Aerospace Center.
The parameterized model was applied in eight different scenarios, with different simula-
tion runs that provided simultaneous presence of automated and conventional vehicles
for different penetration rates. In some simulations heavy vehicles were included. Final
considerations were made in relation to the following SUMO outputs: travel time, mean
speed for selected cross section, mean flow for selected cross section, vehicle trajectory,
number of lane changes, CO2 emissions.
Regarding the lane change behavior, it was noted that automated vehicles have a more
prudent behavior than conventional vehicles. Since the scenarios considered are limited
in scope, no particular relationships could be observed between the different lane change
behavior of the vehicles and traffic efficiency.
Mintsis et al. (2019) [29] work, co-financed by the European Union, is taken as a refer-
ence by many other publications both in terms of the methodology used and in terms
of the values of the calibrated parameters.
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Lu et al. (2020) [25] investigated the impact of automated vehicles on the capacity of
an urban network through the use of the MFD. Two different scenarios were modeled
within the SUMO microsimulation software: a virtual grid network and a real-world
road system in Budapest. The virtual grid was built to simulate a network with char-
acteristics similar to the American urban centers, while the Budapest network was used
as an application of the theoretical foundations in a real case. Authors decided to eval-
uate the impact of automated vehicles on the capacity of the networks presented by
increasing their penetration rate by 10% at each subsequent configuration.
Automated vehicles were modeled using the previously described Lackey and Kavas pa-
rameters, while conventional vehicles were modeled using SUMO’s default parameters.
The demand was loaded into the network through the use of an O/D matrix, while the
choice of the path was left to the software. To view all states of outflow, from the free
flow conditions to jam, the demand was increased linearly with increasing time. Once
the state of network congestion is reached, the demand is decreased linearly.
The MFDs were built starting from the Equation 1.8, 1.9 and 1.10, while the polynomial
type was adopted as functional form for the representation of the MFDs. The output
data considered are edge-based, i.e. density, flows and average speeds of a single link.
The MFD was obtained by interpolating the SUMO output data through a polynomial.
The authors reported the MFDs relating to the situation of 0% and 100% of automated
vehicles in circulation, and the results of capacity and critical density for each pene-
tration rate. The authors observed an increase in the capacity of the entire network
equal to 16% compared to the situation of only automated vehicles in circulation, with
a linear increase in capacity as the penetration rate increases. This benefit was due
to shorter headway and less reaction time of automated vehicle. Benefits, even though
minor, were obtained even with low percentages of automated vehicles in circulation.
An increase in network capacity was already achieved with a penetration rate of 40%.
Benefits were also observed as regards the critical density, with an increase of 48% of
its value compared to the case of automated vehicles only in circulation.
Nippold et al. [31] evaluated the effects of automated vehicles in interrupted flow con-
ditions. Therefore, the urban network of Dusseldorf was modeled within SUMO, with
particular attention to the correct modeling of signal-controlled intersections. In the
second part of the work, the authors investigated the effects of automated vehicles
within a portion of the freeway to see their effect in the case of uninterrupted flow. The
results were based on the penetration rate of automated vehicles, which ranges from 0%
to 100%, with an increase of 10% for each scenario. The initial scenario was provided
by the presence of only conventional vehicles, while the final scenario provided for the
exclusive presence of automated vehicles. The authors evaluated how the capacity at
intersections and the flows in the freeway vary as the penetration rate of automated
vehicles increases.
The default parameters value of the SUMO software were adopted for modeling conven-
tional vehicles, while adapted parameters were used for modeling automated vehicles.
The authors decided to explicitly modify the acceleration and deceleration parameters
of the vehicles and parameters related to the car following model, without modifying
any parameters related to the lane change model.
As for the traffic light intersections, the authors observed a decrease in the capacity of
the intersection as the penetration rate of automated vehicles increases. A 10% decrease
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Table 1.5: Lane change model parameters by Berrazouane (2019) [6]

Parameters Original SUMO value Conventional Vehicles

speedFactor 1.0 1.193
speedDev 0.1 0.091

lcSpeedGain 1.0 0.887
lcKeepRight 1.0 0.835
lcAssertive 1.0 1.616

in capacity was observed compared to the case of conventional vehicles only.
Berrazouane et al. (2019) [6] aim was to compare traffic characteristics by analyzing
different scenarios. Two scenarios required the existence of homogeneous traffic, con-
sisting of only conventional vehicles or only automated vehicles, while the remaining
scenarios required conventional vehicles and automated vehicles to coexist in differ-
ent percentages. As regards the calibration of the lane change model for conventional
vehicles, direct measurements from an Austrian motorway were used. Flows, speeds,
occupancy, net time gaps and vehicle travel time between two consecutive motorway
sections were detected.
To calibrate the model parameters, a sensitivity analysis was carried out to understand
which parameters influence the lane change behavior the most. It has been observed
that the lcAssertive parameter influences its behavior more, with less contribution
from the lcSpeedGain parameter. The calibration was then performed on the travel
time value using the root mean square as measure of proximity, a procedure repeated
at each iteration until convergence. Table 1.5 shows the values of the parameters of the
lane change model referring to the behavior of conventional vehicles.
Regarding the modeling of automated vehicles, the authors used the calibrated values
from Mintsis et al.
The results were based on the automated vehicles’ penetration rate, which go from
0%, existence of conventional vehicles only, to 100%, presence of automated vehicles
only, with an increase rate of 10% for every scenario. Having built the fundamental
flow-density diagram for each scenario, authors noted that automated vehicles have a
more conservative behavior than conventional vehicles. In fact, the results show a de-
terioration in terms of maximum flow as the number of automated vehicles on the road
increases. This result, which seems to contradict what the literature states, is due to
the different modelling methodology for automated vehicles and the use of an ad hoc
calibration for conventional vehicles. These considerations are valid in the motorway
scenario investigated by Berrazouane.
Andreotti et al. (2021) [3] published a study on the impacts that automated vehicles
will have on urban mobility. In order to do that, they used real traffic data of Gothen-
burg city and they insert an increasing percentage of automated vehicles on the road
using a microsimulation software. SUMO was chosen as microsimulation software, in
which authors modified various car following and lane change parameters to model dif-
ferent behaviors of automated and conventional vehicles. Authors used the parameters
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available in the literature to model the different types of vehicles. Automated vehicles
have been modeled to have a shorter reaction time and faster speed than conventional
vehicles. Authors investigated the effects of the introduction of automated vehicles
in three different outputs: fundamental diagrams, number of lane changes, number of
conflicts.
As for the fundamental diagrams, the authors noted an improvement in the efficiency
of traffic flow, as vehicles drive faster on average as the penetration rate of automated
vehicles increase. Within the study, the authors considered the number of lane changes
carried out as a measure of dissatisfaction in free flow condition. In fact, being able
to change lanes means having the ability to reach the desired speed, something that
only uncongested traffic states could allow. Authors noted a greater number of lane
changes performed by automated vehicles as the penetration rate increases, due to a
significantly higher lcStrategic value for automated vehicles than conventional vehi-
cles. As for conflicts, 1% of vehicles were equipped with an SSM device. The thresholds
considered for recording the conflict were the same as suggested by SUMO, i.e. TTC
lower than 3.0 s, PET lower than 2.0 s and DRAC greater than 3.0 m/s2. Authors
identified lcStrategic as the parameter that most influences the number of conflicts,
therefore they made evaluations in two different cases: constant parameter and param-
eter that distributes according to normal distribution. In the first case they observed
a decrease in the number of conflicts and a better interaction between automated and
conventional vehicles in case of low values of the parameter. In the second case, no
significant differences are observed in the number of conflicts only for high penetration
rates of automated vehicles.
Authors concluded that, while the introduction of automated vehicles within the urban
traffic flow leads to an improvement in traffic efficiency, their introduction also leads to
an increase in conflicts between vehicles. A final consideration was made regarding the
parameters: the parameter that most affects traffic efficiency is tau, while the one that
most affects security is lcStrategic.

1.6 Aim of the Study
Some considerations can be made from the analysis of the available literature. Few
publications focus on the impacts of automated vehicles within an urban scenario and,
among these, no publication investigates the variation of the flow characteristics by
analyzing the automated vehicles’ lane change behavior. In other words, there are no
available publications that link the variation of the behavior of lane change with the
variation of the characteristics of the outflow.
The aim of this study is to close this gap. From the parameters found in the litera-
ture, different lane change behaviors of both automated and conventional vehicles are
modelled. These vehicles will then be placed in a real-world urban scenario, a por-
tion of the network Hannover city. The results of the study will be shown in terms
of system efficiency and safety. The results will be based on the penetration rate of
automated vehicles, which ranges from 0% to 100%, with 10% progressive increment
for each scenario.
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Methodology

2.1 SUMO Software

Investigating the effects of automated vehicles on the system performance in urban
areas would involve carrying out field measurements but, given the low number of such
vehicles in circulation, a simulation model is used. Simulation models are widely used
in literature as a substitute or when field tests are difficult to implement. Furthermore,
the use of a simulation model is very often chosen as it is considered less expensive and
faster than field implementation and testing.
There are three types of simulation models, which differ according to the level of detail
they represent the transport system with:

• Macroscopic models: average vehicle dynamics like traffic density are simulated;

• Microscopic models: each vehicle and its dynamics are modeled individually;

• Mesoscopic models: a mixture of macroscopic and microscopic model.

The advantage of macroscopic models lies in the speed of execution, while microscopic
models lies in precision. For the purposes of the thesis, we will focus on microscopic
simulation models.
Various simulation software are available to support model makers for research purposes.
Many of these software are commercial, i.e. available by purchasing a license, such as
Vissim and Paramics. Other software are open source, i.e. freely available on the
internet, such as MATSim and SUMO. The latter was used within this thesis.
SUMO (Simulation of Urban Mobility) is an open source software developed by the
Institute of Transportation Systems at German Aerospace Center (DLR in German) [1].
It is one of the most widely used microsimulation software in the research community,
with more than one hundred scientific papers referring to it.
In order to correctly simulate the traffic, the software requires the following items.
These three elements form a simulation scenario.

• Network data, i.e. data relating to the links and nodes that make up the road
network, including signs and traffic lights;

• Vehicles data, i.e. behavioral data of vehicles in circulation;

27
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Figure 2.1: Screenshot of SUMO traffic simulator

• Traffic demand, or the quantity of vehicles circulating over time.

SUMO network is made up of nodes and edges. The edges are unidirectional links that
connect two different nodes. Each link can represent a road, a cycle path, a pedestrian
path, a public transport line etc. Characteristics, such as speed limits, widths, types
of vehicles allowed are assigned to the road type links. Links with common character-
istics can be grouped within categories. Each node can represent a road intersection, a
stop of the public transport lines, or it can represent a fictitious point that separates
two links with different charateristics. Regarding an intersection, information about
allowed and prohibited maneuvers are assigned to the node. In the case of a signalized
intersection it is necessary to provide the software with the traffic lights. The network
can be generated from OpenStreetMap and converted into a file readable by SUMO
using the Netconvert tool. In case of discrepancies with the real network, the resulting
network can be further modified by hand through the use of Netedit.
SUMO allows the definition of different types of vehicles, by modifying numerous param-
eters for each vehicle type. The parameters are attributes of vType and are described
in the Table 2.1, with particular reference to the lane change parameters. It is possible
to notice how the parameters affect both the performance of the vehicles and the be-
havior of the drivers. For this reason, the term vehicle-driver combination is used in the
literature. The software, upon insertion of a vehicle into the network, randomly assigns
the characteristics of the vehicle. A vehicle type distribution can also be defined, which
allows the modeler to generate a vehicle of a given type while respecting the probability
distribution.
The SUMO demand can be generated via trips, flows and routes. The first type involves
defining each individual movement by specifying the time of departure, the beginning
and end link of the trip and any intermediate links. The second type involves defining
a set of flows for a given source and destination node. The last type provides for the
explicit definition of the path that must be followed. For each type it is possible to de-
fine the vehicle type explicitly or leaving the choice to SUMO, as described above. The
choice of the route, where possible, can be done through different assignment models:
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Table 2.1: SUMO parameters [8]

Parameters Default value Description

id Name of the vehicle type
accel 2.6 m/s2 The acceleration ability of the vehicles of

this type (in m/s2)
decel 4.5 m/s2 The deceleration ability of the vehicles of

this type (in m/s2)
length 5.0 m The length of the vehicles of this type (in

m)
minGap 2.5 m Empty space after leader vehicle in a jam

(in m)
maxSpeed 55.55 m/s The maximum speed of the vehicles of this

type (in m/s)
speedFactor 1.0 The multiplying factor of the maximum

speed
lcStrategic 1.0, range ]0,+∞] Eagerness for performing strategic lane

changes, with higher values resulting in ear-
lier lane-changing actions

lcCooperative 1.0, range ]0,+∞] Willingness to perform cooperative lane
changes, with low values indicating reduced
cooperation

lcSpeedGain 1.0, range ]0,+∞] Eagerness to make lane changes with the
sole purpose of gaining speed, with high val-
ues indicating a greater predisposition to
lane change

lcKeepRight 1.0, range ]0,+∞] Eagerness for following the obligation to
keep right, with higher values resulting in
earlier lane-changing actions

lcAssertive 1.0, range ]0,+∞] Willingness to accept reduced front and rear
gaps on the destination lane

lcOpposite 1.0, range ]0,+∞] Desire to overtake using the oncoming lane,
with higher values resulting in more lane-
changing actions

lcLookAheadLeft 2.0, range ]0,+∞] Probability of overtaking on the right in a
carriageway with multiple lanes in each di-
rection, with higher values resulting in more
lane-changing actions

lcSpeedGainRight 0.1, range ]0,+∞] Look ahead distance in vehicle’s left lane to
determine when to change lanes
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Figure 2.2: Screenshot of continuous lane changing

user equilibrium, stochastic user equilibrium or the fastest route at a given departure
time.
Once all the necessary inputs have been defined, it is possible to start the simulation.
As shown in Figure 2.1, the software allows the visualization of vehicles and their move-
ments within the network, allowing the modeler to identify abnormal vehicle behavior.
SUMO allows two different views of the lane changing model: discrete and continuous
lane changing. Discrete lane changing occurs when a vehicle, during the lane change
maneuver, instantaneously disappears from the former lane to appear on the desired
lane. This leads to an untrue representation of the real behavior of the vehicles. To
solve the problem, a continuous lane changing approach has been implemented which
allows to animate the translation between one lane and the adjacent lane, as shown in
Figure 2.2. This translation movement is linear and performed in one second.
To evaluate the simulation from a quantitative point of view, SUMO allows to generate
numerous outputs, which can be divided as follows:

• Traffic data collected from modeled detectors;

• Traffic data collected from the single vehicle, such as lane change, surrogate safety
measures, emissions, etc;

• Traffic data aggregated over edges (edge-based output);

• Traffic data aggregated over the whole trip of a vehicle.

These output files can then be analyzed using third parts applications, such as Python
or Matlab, or tools provided by SUMO developers.

2.2 Network Setup

The network is part of the road system in the Vahrenwald-List neighborhood of the
Hannover city, the capital of the Land Niedersachsen in Germany. The neighborhood is
located northeast of the center of Hannover and is made up of the districts Vahrenwald,
which occupies the west part, and List, which occupies the east part. With 71,173 in-
habitants, the Vahrenwald-List neighborhood is the most populous district of Hannover
[45].
The Vahrenwald district is crossed by the Vahrenwalder Straße, one of the largest traffic
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Figure 2.3: Real world Hannover Vahrenwald-List traffic network

Table 2.2: SUMO network charateristics

Description Value

Area 5.88 km2

Total length of the links 117.45 km
Number of signalized intersections 46

axes in the city of Hannover. It is a street made up of two to three lanes in each direc-
tion with a limit of 50 km/h. This street acts as a link between the city center and the
A2 motorway. The Continental and ContiTech companies, respectively manufacturers
of tires, plastic and rubber products, face this road.
The List district is crossed by Podbielskistraße, another major street with a speed limit
of 50 km/h formed for most of its development by two lanes in each direction. It con-
nects the city center with the neighborhoods located in the northeast area.
The streets Hamburger Allee, Celler Straße, Wedekindstraße and Bodekerstraße, lo-
cated to the south, connect the two main arteries first mentioned.
There are also two other main streets within the district, Lister Kirchweg, Ferdinand-
Wallbrecht-Straße and Niedersachsenring. These are roads with a speed limit of 50
km/h and one lane in each direction. Near the intersections they have specialized lanes
for turns. The minor roads are local arteries with a speed limit of 50 km/h and one lane
in each direction. Local roads with a speed limit of 30 km/h may also be encountered.
Figure 2.3 shows the network schematized in SUMO and superimposed on a satellite
image of the Vahrenwald-List neighborhood, while Figure 2.4 shows the number of lanes
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Figure 2.4: Number of lanes in the real world Hannover Vahrenwald-List traffic network

of the neighborhood streets. The network has an area of 5.88 km2 and consists of 189
links, for a total length of 117.45 km. The total number of nodes is 84 and, among
these, the total number of traffic light intersections is 46. The city of Hannover provided
the data to define the traffic light plans. Table 2.2 summarizes the main characteristics
of the network used in SUMO.

2.3 Vehicles Modeling

This paragraph describes the reasons for choosing the parameters for modeling both
automated and conventional vehicles. The vehicle type distribution is used to define
the percentage of automated vehicles. The penetration rate of automated vehicles
is indicated through the parameter probability. The generation of a vehicle with
certain characteristics is then left to SUMO in accordance with the indicated probability
parameter.

2.3.1 Automated Vehicles

Definitions and standards concerning automated driving vehicles are provided by the
Society of Automotive Engineers (SAE), an organization that deals with enacting tech-
nical standards for motorized vehicles of any category. SAE defines automated vehicle
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as a “vehicle equipped with automated driving systems that perform part or all of the
dynamic driving task” [5]. Two main actors contribute to the description of the auto-
mated aehicles: human user and ADS. SAE defines six automation levels, from level 0
(no driving automation) to level 5 (full driving automation), based on the roles of the
two actors. Through these levels it is possible to describe all the automation ranges
present in the motor vehicles. From level 0 to level 2 the vehicles are called “tradi-
tional”, as driving is entirely controlled by the driver. From level 3 the guide begins
to be partialy or totally performed by the vehicle. The culmination of automation is
achieved with level 5, in which the vehicle can drive autonomously on any type of road,
at any speed and for any environmental condition.
Automated Driving Systems (ADS) are the set of hardware and software that are able
to perform the entire DDT. The term ADS is mainly used in the description of level
3, 4 and 5 automated vehicles. Dynamic Driving Task (DDT) are all those real time
operational and tactical functions required to conduct a vehicle within the vehicular
traffic. Note that strategic functions, such as route destination timing and selection,
are not included within the definition. As regarding the operational functions, DDT
include:

• Lateral vehicle motion control via steering;

• Longitudinal vehicle motion control via acceleration and deceleration;

• Monitoring the driving environmant via object and event detection and response
preparation (OEDR).

As regarding the tactical functions, DDT include:

• Object and event response execution;

• Maneuver planning;

• Enhancing conspicuity via lighting, signaling and gesturing.

Figure 2.5 shows the schematic view of driving task showing DDT portion. As for DDT
performance, level 1 and 2 vehicles incorporate partly or all of the functionality of the
innermost loop, while the level 3, 4 and 5 encompass automation of both inner loops.
In case of request for intervention by the system, i.e. because of a mechanical failure,
the driver can take control of the vehicle. This possibility is defined as DDT fallback.
While in the lowest automation levels the intervention of the human driver is required, at
levels 4 and 5, the ADS must be capable of performing the DDT fallback and achieving
a minimal risk condition.
According to the definitions, SAE defines six levels of automation based on respective
roles of the human driver and the ADS in relation to each other. Level 0 refer to cases
in which the human driver performs the entire DDT. A Level 0 automated vehicle is
called conventional vehicle, as it is designed to be operated by a human driver during
part or all of every trip. Level 1 and level 2 automated vehicles refer to cases in which
the human driver continues to perform part of DDT while the ADS is engaged. The
term driver support system is used for these two automation levels as the autonomous
driving equipment support, without replacing, the driver. Level 3 automated vehicles
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Figure 2.5: Schematic view of driving task showing DDT portion [5]

refer to cases in which the ADS performs the entire DDT. However, if a DDT fallback
is expected to take over the DDT, then that user is expected to be receptive and able to
resume DDT performance when alerted to the need to do so. Level 4 and 5 automated
vehicles refer to cases in which ADS can perform the entire DDT and DDT fallback,
and any users present in the vehicle while the ADS is engaged are passengers. Studies
indicate that the introduction of automated level 5 vehicles may take place gradually
in the time interval between 2025 and 2040 [27]. Table 2.3 shows the various levels of
automation, with a detailed description of each of them.
Some considerations can be made regarding the introduction of automated vehicles in
road traffic [27], [42].

• 90% of accidents occur as a result of human errors. With a high percentage of
automated vehicles in circulation, a decrease in accidents is expected following
the decrease in the possibility of human error occurring, up to a minimum value.

• With the introduction of automated vehicles, an improvement in road traffic is
expected. Automated vehicles in fact have a more deterministic behavior and are
prone to have fewer headways when compared with conventional vehicles.

• Driving license update for driving automated vehicles, as the driver will also need
to know how the vehicle’s on-board technology works, as well as knowing the rules
of the road.

• Introduction of vehicles with a high level of automation requires specific legislation
regarding civil and criminal liability in the event of an accident. It remains to be
established whether any liability should fall on the driver or on the manufacturer
of the vehicle that caused the accident. Many legislators are adjusting the laws
in a view of introducing automated vehicles, even if automated vehicles of level 5
remain excluded from the most advanced legislation.
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Table 2.4: Automated Vehicles sensors

(1) (2) (3) (4) (5)

Camera Yes With low precision Yes Yes Yes
Radar Yes Yes No No No
Ultrasonic No Only distances No No No
Lidar Yes Yes Yes No Only weather

(1) Can detect objects far away?
(2) Can quantify distances and speeds of objects?
(3) Can classify different types of objects?
(4) Can interpret traffic signs and road markings?
(5) Is affected by light and weather conditions?

• Attention must be paid to security and privacy issues, which must also be pro-
tected following the introduction of automated vehicles. The right of users to
maintain control over their data and the commitment of car manufacturers, soft-
ware developers, authorities, etc. to protect data from hackers and terrorists are
indisputable requirements.

Automated vehicles are equipped with numerous sensors for a correct real time survey
of the surrounding environment. The sensors installed on all automated vehicles of
higher level are LIDAR, cameras, radar and ultrasonic sensors, as shown in Table 2.4.
LIDAR (Light Detection and Ranging) is a remote sensing technique that allows the ve-
hicle to determine the distance to an object or surface using a laser pulse. The distance
of the object is determined by measuring the time elapsed between the emission of an
impulse and the reception of the diffused signal. The LIDAR sensor is able to measure
distances in all directions in order to create a three-dimensional map of the surround-
ing environment. The ultraviolet wavelengths allow the vehicle to locate and obtain
information on very small objects and have the advantage of operating regardless of the
lighting conditions. The LIDAR sensor is not able to recognize colors, therefore it is
combined with a series of cameras for the recognition of road signs and lane markings.
The sensor is very large, therefore it is usually installed on the roof of cars. Vehicles
are also equipped with high resolution cameras, able to recognize colors and contrasts
in order to read road signs even in rainy weather. In case of low visibility, i.e. in case
of fog, the cameras could have problems in interpreting the signals correctly. Being
small objects, they can be installed in any position of the vehicle. RADAR sensor uses
electromagnetic waves that allow optimal operation even in adverse weather conditions,
i.e. with the presence of fog, rain or snow. Due to their operation, RADAR sensors
work well with metal surfaces, with pedestrians essentially invisible. RADAR sensors
are widely used on automated vehicles due to their low cost and small size. Ultrasonic
sensors are able to recognize an object regardless of the material and are not affected by
weather and visibility conditions. However, they have a low range and cannot recognize
colors.
As described, the DDT cannot be performed using information from a single sensor.
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Figure 2.6: Level 5 Automated Vehicle sensors

The sensors are coupled and synchronized with each other in order to use all the ad-
vantages. As an example, the Level 5 autonomous vehicles used by Lyft are equipped
with 3 LIDARs, 5 RADARs and 7 cameras [17]. As shown in Figure 2.6, one LIDAR
is on the roof of the vehicle and two of them are on the front bumper. Four RADARs
are installed on the roof and one RADAR is placed on the front bumper.
To obtain information on the behavior of automated vehicles, numerous datasets are
available online. Two of the available datasets were analyzed: Level 5 dataset and Ar-
goverse dataset.
Level 5 dataset is a dataset detected from a fleet of level 5 vehicles on a suburban
location in Palo Alto, California. The dataset is divided into two parts: a static part,
consisting of the semantic map and the aerial map, and a dynamic part, consisting of
driving data. The semantic map was created manually and contains useful informa-
tion for driving, including number and width of lanes, speed limits, position of signs
and traffic lights. The very high definition aerial map captures the area of Palo Alto.
The driving data consists of frames, scenes, agents and traffic light faces. Each frame
contains the timestrap, information on traffic lights, the indices of each agent and the
position and direction of the ego vehicle. A scene consists of several frames, it con-
tains information about the frames and the start and end time. Argoverse dataset is
a dataset collected from a fleet of level 4 automated vehicles in the American cities of
Miami and Pittsburgh, chosen because they differ in their different local driving habits.
The dataset consists of two main parts: a static part and a dynamic part. The static
part consists of the semantic vector map, which contains useful information on lanes,
as lane centerlines, traffic direction, and intersection annotations. The dynamic part is
made up of driving data, which can be viewed as vehicle trajectories superimposed on
the semantic vector map. Figure 2.7 shows the graphic display of a scene for the (a)
Level 5 and (b) Argoverse dataset.
Analyzing the scenes extracted from the Level 5 dataset it emerged that no lane change
behavior occurs in any case. However detailed and complete, the analysis and use of
this dataset becomes useless for the purposes of this thesis. As regards the use of the
Argoverse dataset, it was observed that the data relating to lane change were difficult
to extract and difficult to process. As useful as it is, it was decided not to analyze this
dataset as it is complicated.
Given the impossibility of using the datasets as sources for an ad hoc parameter calibra-
tion, it was decided to use the parameter values found in the literature [19], [23], [29],
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(a) (b)

Figure 2.7: Scene for the (a) Level 5 and (b) Argoverse dataset

Table 2.5: Parameter set for modeling Automated Vehicles

Parameter Value
Conservative Moderate Aggressive

lcStrategic 3.0 3.0 3.0
lcCooperative 1.0 1.0 1.0
lcSpeedGain 5.0 5.0 5.0
lcKeepRight 1.2 1.2 1.2
lcAssertive 0.5 0.7 0.9

and described in the paragraph 1.5. Table 2.5 shows the parameters used to describe
the lane change behavior of automated vehicles. Default values have been left for the
parameters that do not appear in the Table. By comparing the values used with the
default values shown in the Table 2.1, some considerations can be made.

• Higher values of the lcStrategic parameter result in an earlier lane change. This
means that compared to the default values, automated vehicles change lanes in
advance of the dead-end point.

• Higher values of the lcSpeedGain parameter result in more lane changes. This
means that compared to the default values automated vehicles have a lower thresh-
old value that will make them change lanes more often to obtain a speed gain.

• Higher values of the lcKeepRight parameter result in an early lane change. This
means that compared to the default values, automated vehicles have a lower
threshold value that will make their lane change early with the aim of leaving the
fast lane free.
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Table 2.6: Parameter set for modeling Conventional Vehicles

Parameter Value
Conservative Moderate Aggressive

lcStrategic 1.0 1.0 1.0
lcCooperative 1.0 1.0 1.0
lcSpeedGain 1.0 1.0 1.0
lcKeepRight 1.0 1.0 1.0
lcAssertive 1.0 1.3 1.6

• Lower values of the lcAssertive parameter result in an increase in the accepted
gap value on the destination lane. This means more prudent behavior of auto-
mated vehicles than the default values.

The different values of the lcAssertive parameter aim to describe the behavior of
automated vehicles of different car manufacturers. It is realistic to think that the
traffic is made up of automated vehicles of different brands.

2.3.2 Conventional Vehicles

A conventional vehicle is “a vehicle designed to be operated by a conventional driver
during part or all of every trip” [5]. A conventional vehicle corresponds to level 0 of the
classification proposed by SAE. To model conventional vehicles, the software default
parameters are used. The SUMO default parameters are calibrated by software devel-
opers on the basis of their experience. Default parameters are well suited to the most
common scenarios. This choice is made in accordance with the available literature, in
which the authors who modify the parameters do so for a motorway scenario. Exception
is for the lcAssertive parameter, which has an explicit parameterization available in
the literature [29]. Table 2.6 shows the parameters used to describe the lane change
behavior of conventional vehicles.
Considerations can only be made regarding the lcAssertive parameter. The increas-
ing values of the parameter indicate a greater predisposition to accept lower gaps on
the destination lane by the drivers. Higher values of this parameter lead to more ag-
gressive behavior of drivers. The three values considered aim to describe the behavior
of different types of drivers: aggressive, conservative or moderate behavior.

2.4 Demand Modeling

For the purposes of this thesis, two demand profiles are evaluated. The first profile,
called real traffic flow, is derived from actual traffic counts provided by the City of
Hannover Traffic Management Center. The second profile, called intensified flow, is
created to observe the network in congested conditions and it is obtained by gradually
increasing the demand.



40 CHAPTER 2. METHODOLOGY

0 5 10 15 20 25
Time (h)

0

200

400

600

800

1000

1200
Ve

hi
cl

es
 (#

)

0 5 10 15 20 25
Time (h)

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

Ve
hi

cl
es

 (#
)

(a)

(b)

Figure 2.8: Demand profile: (a) real traffic flow and (b) intensified flow
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Figure 2.8 (a) shows the demand profile obtained from real traffic counts. Data from the
detector counts are used for the calibration of traffic demand. The the City of Hannover
Traffic Management Center has made traffic counts available for the period from the
beginning of 2018 to February 2020. It is of interest to obtain the representative demand
of a typical working day, therefore, only the days Tuesday to Thursday are considered
in the preparation of the data, as Monday and Friday have different traffic patterns due
to weekend commuters. Furthermore, public holidays are not considered. The demand
patterns thus filtered were then grouped to obtain the real traffic demand. Within the
demand profile, an initial peak in demand can be seen within the time slot from 8 to 9
am time slot. In the late morning and early afternoon there is a decrease in demand.
The second peack time is reached between 6 and 7 pm. Both peaks are due to the
effect of home-to-work or home-to-school commuting. Demand remains at a low level
at night.
The routing of vehicles takes place using the SUMO trip file to form the traveling
demand. For each trip, the start time, the source and destination link of the movement
are defined. An entire list of links to be followed is not provided, but the software
calculates the fastest route in accordance with the surrounding traffic conditions through
the use of the A* algorithm.
Figure 2.8 (b) shows the intensified demand profile obtained by varying the demand
level, including situations from the free flow to the rush hours flow. This demand profile
is created for the purpose of MFD estimation only. At the beginning of the simulation,
the level of demand is kept low and made to grow by adding each time an increasing
number of vehicles in the network in order to arrive at a congested situation. Upon
reaching saturation, the demand profile started to progressively decrease.
The routing of vehicles takes place through the use of flow to form the traveling demand.
The network has been divided into five zones, which generate and attract vehicles. For
each hour, the number of generated vehicles, the start and the end flow’s zones are
defined. The departure and arrival links, as well as the path to be followed within the
network, are left to the software. The calculated route is the fastest route in accordance
with traffic conditions calculated through the A* algorithm. Both demand profiles have
a 24 hours duration.
A* is a graph-based routing and optimization algorithm. In the application to transport
networks, given an origin and a destination point, the algorithm is used to determine
the shortest path [47]. The shortest path is the minimum cost path formed by all the
links that connect the origin with the destination point. It uses travel time as primary
measurement and the lower bound is given by the air distance between the origin and
the destination point divided by the maximum achievable speed in the network. The
maximum speed depends on the maximum vehicle’s speed or on the speed factor of a
given vehicle type.
The assignment of vehicles to the network is dynamic. The dynamic routing assignment
was chosen for two main reasons.

• No enough time to wait for the dynamic user equilibrium;

• Vehicles need to adapt their route while running.

All vehicles have been equipped to be able to re-compute the route periodically. The
travel time is defined as the weight of the edges and is collected for each edge during
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Table 2.7: Minimum number of runs [10]

Desired range Desired confidence Number of runs
CI
σ

1− α N

0.5 99% 130
0.5 95% 83
0.5 90% 64

1.0 99% 36
1.0 95% 23
1.0 90% 18

1.5 99% 18
1.5 95% 12
1.5 90% 9

2.0 99% 12
2.0 95% 8
2.0 90% 6

the simulation. If a vehicle needs to be rerouted, then it will choose the fastest route
based on present travel times. The updating of the weights of each link is not carried
out simply by overwriting the old value, but by making a weighted average of the last
measured values. Since updating the weights of edges requires a significant computa-
tional effort, the greater the number of vehicles in circulation, the slower the simulation
will be.

2.5 Simulation Runs

The simulation is carried out by executing several simulation runs using the parame-
ters described above. Each simulation run is characterized by a random number, called
seed, which is responsible for vehicles generation process, their followed path and their
behavior within the network. Between two consecutive runs, the type of vehicle gener-
ated may vary. Consequently, its aggressiveness and the followed path vary. The final
result of the simulation depends on these choices and it is not possible to completely
describe all the field conditions through a single simulation run. Evaluating the model
on the basis of a single simulation run would be wrong since two simulation runs with
two different seeds can lead to results that differ from each other by up to 25% [10].
The number of repetitions is determined by the iterative procedure based on statistical
considerations proposed by the Federal Highway Administration (FHWA) [10]. Figure
2.9 shows the general procedure to determine the minimum number of simulation runs.
The procedure begins with the execution of four model runs repetition, each using a
different seed. Once the indicator used to evaluate the goodness of the model has been
chosen, it is possible to determine the standard deviation between the subsequent runs.
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Figure 2.9: Number of run of the simulation model, adapted from [10]
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Table 2.8: Number of runs per each scenario

Automated vehicles Number of runs
penetration rate Real traffic flow Intensified flow

0% Scenario 0 20 25
10% 20 25
20% 20 25
30% 20 25
40% 20 25
50% 20 25
60% 20 25
70% 20 25
80% 20 25
90% 20 25
100% 20 25

σ2 =

∑N
m=1(xm − x̄)2

N − 1
(2.1)

Where:

• xm is the output value for each simulation run m;

• x̄ is the average output value for all runs;

• N is the number of runs.

Initially, the analyst must choose the desired confidence level (1 − α), i.e. the prob-
ability that the true mean lies within the target confidence interval. Usually a 95%
confidence level value is used, i.e. it is possible to be 95% sure that each given repeti-
tion produces an interval that contains the true value of the indicator. Values greater
than the confidence level require the execution of a greater number of runs. The an-
alyst must also choose the value of the confidence interval length (CI), i.e. the range
of values within which the true mean value may lie. The length of the interval is at
the discretion of the analyst and may vary according to the purposes for which the
results will be used. Values smaller than the confidence level require the execution of a
greater number of runs. The number of simulation runs required is calculated as follows.

N =

(
2 · t1−α

2
,N−1 · σ

CI1−α

)2

(2.2)

Where:

• t1−α
2
,N−1 is a parameter of the Student distribution that allows calculating the

confidence interval of the mean value of a sample within which the mean of the
total population will be distributed. Its value depends on α and on the N − 1
degrees of freedom;
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• σ is the standard deviation;

• CI1−α is the confidence interval for the true mean, where α equals the probability
of the true mean not lying within the confidence interval.

The use of the formulas described leads to an iterative process. The number of runs
resulting from the Equation 2.2 must be less than, or at the same limit, the number
of runs actually performed and used for the calculation of the standard deviation.
Otherwise, a new run must be performed until convergence is achieved.
Table 2.7 shows the solutions to the above Equation in terms of the minimum number
of repetitions for various desired confidence intervals and desired degrees of confidence.
The Table can be read in the following way, taking into consideration the average
delay as indicator with which to evaluate the goodness of the model. Having chosen
a confidence interval of 3.0 s, if the analyst obtains a standard deviation equal to 1.5
s with a confidence level of 95%, then it is possible to perform 8 simulation runs to
obtain the average delay with a error of ±1.5 s.
This thesis focuses on 11 different scenarios, each of which is characterized by a different
penetration rate of automated vehicles within the network. The initial situation in
which the traffic is composed of conventional vehicles only is defined Scenario 0 and
is taken as a reference to understand whether the different behavior of lane change
of automated vehicles brings beneficial or non-beneficial effects on traffic. For each
subsequent scenario there is an increase of 10% of automated vehicles in circulation. The
number of vehicles circulating in each scenario is the same and reflects what is reported
in paragraph 2.4, the changes lie in the type of vehicles involved, as reported in the
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paragraph 2.3. Table 2.8 shows the different scenarios analyzed and the corresponding
number of runs.
The average speed parameter is chosen as indicator to evaluate the goodness of the
model. As for the real traffic flow, 20 runs are performed for each scenario, modifying
the seed associated with the simulation. With 20 runs we get a desired range of 0.77.
In the most stringent scenario, i.e. the scenario corresponding to a penetration rate of
90%, with a confidence level of 95% and a standard deviation of 0.20 km/h, a confidence
interval of 0.15 km/h is obtained to get the average speed with an error of ±0.08 km/h
(±0.25%). As regards the enhanced flow, we decide to use a lower confidence interval to
have greater precision in the determination of MFD. Therefore, 25 runs are performed
for each scenario, with a desired range of 0.67. Considering all the scenarios analyzed,
a total of 475 simulation runs are conducted.
Considering the 50% automated vehicle penetration rate scenario, a sensitivity analysis
on the number of runs is conducted. In this regard, a total of 83 simulation runs
have been created for this scenario. The sensitivity analysis, the results of which are
shown in Figure 2.10, aims to observe how the desired range varies as the number of
runs increases with our values, similar to what the FHWA did. It is observed that the
results obtained with our values allow to perform a lower number of runs to obtain the
same desired range than the FHWA method. That is, once a desired range has been
set, in this thesis work it is possible to perform a lower number of runs compared to
the general method of the FHWA.



Chapter 3

Results

Within this chapter, the results of the simulations carried out and described in the
previous chapters will be presented. As mentioned in paragraph 1.6, the final goal of
the thesis is to observe how the different lane change vehicle’s microscopic behavior
impacts on traffic efficiency and safety. Initially, the results relating to the lane change
maneuvers are presented. The results are then presented in terms of efficiency and
safety of the system. Within the chapter, the methodologies adopted to obtain the
results are also shown. As for efficiency, the travel time, speed and MFD analysis will
be shown. As for safety, the analysis of conflicts based on SSM will be shown.
As previously reported, Scenario 0 is defined as the scenario in which only conventional
vehicles circulate in the network. For each subsequent scenario, the automated vehicles
in circulation increase by 10%, until reaching a penetration rate of 100%. The assess-
ments in terms of efficiency and safety are carried out by comparing each scenario with
Scenario 0, taken as a reference for the analyses.

Table 3.1: Number of inserted vehicles for the real traffic flow demand profile

Automated vehicles Conventional Automated Total
penetration rate vehicles vehicles number

0 % 152403 0 152403
10 % 137163 15240 152403
20 % 121922 30481 152403
30 % 106682 45721 152403
40 % 91442 60961 152403
50 % 76202 76202 152403
60 % 60961 91442 152403
70 % 45721 106682 152403
80 % 30481 121922 152403
90 % 15240 137163 152403
100 % 0 152403 152403

47
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Table 3.2: SUMO lane change measures

Output name Unit of measure Description

id Name of the vehicle involved
vType Type of vehicle involved
time s The simulation time at which the lane change

took place
pos m The position at which the lane change took place
reason The reason for changing lane
speed m/s The speed at which the lane change took place
leaderGap m The gap between the ego and the leader vehicle

in the target lane
followerGap m The gap between the ego and the follower vehicle

in the target lane
origLeaderGap m The gap between the ego and the leader vehicle

in the current lane

3.1 About Lane Changes

SUMO lane change output was collected in order to count and identify the lane change
maneuvers carried out by the vehicles. In this regard, the number of vehicles inserted
within the simulation for each scenario are shown in Table 3.1 and the results obtained
from the analysis of the lane change outputs are presented below.
A lane change event is recorded when a vehicle moves sideways from the current lane
to the adjacent lane. As reported in Table 3.2, the output generated by SUMO allows
to identify the type of vehicle involved, i.e. whether conventional or automated vehicle,
and its behavior, i.e. whether conservative, moderate or aggressive vehicle. For each
registered lane change maneuver, it is possible to obtain information on the motivation
behind the maneuver, as reported in the paragraph 1.2. The reasons for a lane change
maneuver are:

• Speed gain, in order to allow the ego vehicle to gain speed;

• Strategic, in order to avoid a dead-end lane;

• Cooperative, in order to allow another vehicle to make a mandatory lane change;

• Keep right, in order to clear the left lane used to overtake a vehicle.

As reported in paragraph 2.1, a continuous lane change is implemented. This means
that the vehicle performs a continuous lane change maneuver from one lane to the adja-
cent one instead of disappearing from the current lane and reappearing in the adjacent
lane.
Table 3.3 shows the number of lane changes made by conventional and automated vehi-
cles. A high number of lane changes indicates greater freedom of movement by vehicles
as it allows, for example, to reach the desired speed without being blocked by a slower
vehicle. On the other hand, a high number of lane changes cause greater situations of
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Table 3.3: Number of lane change maneuver

Automated vehicles Conventional Automated Total Change in number
penetration rate vehicles vehicles number of lane change

from Scenario 0

0 % 355025 0 355025 0.0 %
10 % 306360 30835 337194 −5.0 %
20 % 280586 51938 332524 −6.3 %
30 % 245761 77402 323163 −9.0 %
40 % 213406 103462 316869 −10.7 %
50 % 179409 134324 313733 −11.6 %
60 % 144942 155051 299993 −15.5 %
70 % 109960 181071 291031 −18.0 %
80 % 73640 207118 280758 −20.9 %
90 % 37124 233142 270266 −23.9 %
100 % 0 259528 259528 −26.9 %
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Figure 3.1: Change in number of lane change maneuver from Scenario 0
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Figure 3.2: Automated vehicle’s lane change maneuver

conflict between vehicles, which can lead to a greater probability of crash. The graph
shown in Figure 3.1 represents the percentage change in the number of total lane change
maneuvers from Scenario 0, taken as reference. It is noted how the total number of
maneuvers decreases as the automated vehicles penetration rate increases, up to a de-
crease of 26.9 %.
For each scenario, the graph in Figure 3.2 shows the percentage of automated vehicles
in circulation and the percentage of lane change maneuvers performed by automated
vehicles. The line relating to the percentage of automated vehicles is arranged on the
diagonal of the graph, while the line relating to the lane change maneuvers performed
by automated vehicles follows another trend. For example, considering a penetration
rate of 50 % it results that the lane change maneuvers carried out by automated vehi-
cles are only 42.8 %, while the remaining 57.2 % of the maneuvers are carried out by
conventional vehicles. That is, for each penetration rate, it appears that automated ve-
hicles proportionally perform fewer lane change maneuvers than conventional vehicles.
From the two graphs described, it can be deducted that the lcAssertive parameter
is the one that most influences the lane change maneuvers, determining for automated
vehicles a more precautionary behavior in lane change maneuvers. The decreasing num-
ber of maneuvers performed could be therefore attributable to a smaller gap accepted
by automated vehicles.
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Table 3.4: SUMO edge-based measures

Output name Unit of measure Description

period s Measurement aggregation period
Edge id Name of the reported link
entered The number of vehicles that entered the link

within the reported period
sampledSeconds s The sum of the travel times required by the vehi-

cles to travel the generic link within the reported
period

speed m/s Average space speed in the generic link within
the reported period. The average velocity in
space is then averaged over time, so it is defined
as space-mean-speed

laneDensity veh/km/ln Density of vehicles in the generic link per lane
within the reported period

3.2 About Travel Time and Speed
SUMO edge-based measures were collected to determine the travel time and the average
speed of vehicles within the network. Referring to the SUMO output values described
in Table 3.4, the description of the procedure adopted for the calculation of travel
times and average speeds is presented. Results concerning mean travel time and speed
are made at the network level. Therefore, it will be necessary to analyse network
variables by aggregating the edge-based outputs from the simulation. As presented in
the literature review section, many authors aggregate edge variables to obtain network
measures. Examples of this are the works of Geroliminis and Daganzo (2007) [9] and
Lu et al. (2020) [25], in which procedures for obtaining network measurements from
edge outputs are presented.
The edge-based values are recorded for each fixed period for each link. It was decided to
use a fixed interval equal to 15 minutes, that is the period that guarantees the validity
of the stationary flow conditions [32].
Travel time is defined as the total time that vehicles spend within the network. This
value is obtained by adding all the values of sampledSeconds. The average travel time
that a vehicle spends within the network is then obtained by dividing the total time by
the total number of vehicles. This data will be referred to below as mean travel time.

t̄ =

∑N
i=1 sampledSeconds

Nv

(3.1)

Where:

• t̄ is the mean travel time that a vehicle spends within the network, in s;

• N is the total number of link i;

•
∑N

i=1 sampledSeconds is the total time that vehicles spend within the network,
in s;



52 CHAPTER 3. RESULTS

• Nv is the total number of vehicles, in this case study equal to 152,403 veh.

Speed is defined as the average space speed in the network. It is calculated by dividing
the total distance traveled by the total time of vehicles within the network, or calculated
by weighting the average space speed of a link by the number of vehicles in circulation
[25]. This data will be referred to below as mean speed.

v̄ =

∑N
i=1Ni · vi∑N
i=1Ni

· 3.6 (3.2)

Where:

• v̄ is the mean space speed in the network, in km/h;

• N is the total number of link i;

• vi is the mean space speed in the generic link i, in m/s;

• Ni is the number of circulating vehicles in the generic link i.

The number of vehicles circulating in the generic link i is not an output data of the
software, but it can be indirectly calculated by dividing the sampledSeconds attribute
by the period attribute.

Ni =
sampledSeconds

period
(3.3)

Where period is the time interval chosen to collect the output, equal to 15 min (900
s). Using this definition, it is possible to write the Equation 3.2 as follow.

v̄ =

∑N
i=1 speed · sampledSeconds∑N

i=1 sampledSeconds
· 3.6 (3.4)

The equation obtained represents average weighted space speed in the network and is
equivalent to the Equation 1.9 expressed through the outputs of the SUMO software.
For each data presented, the associated error is also calculated, as described in the
paragraph 2.5.
The results are presented in terms of percentage change from the Scenario 0, taken as
reference. Tables 3.5 and 3.6 show the results of mean travel time and mean speed for
all vehicles in circulation, while Tables 3.7 and 3.8 show the same results divided by
conventional vehicles and automated vehicles. The graphs relating to the tables shown
in Figure 3.3 and 3.4.
Some partial considerations can be made in relation to mean travel time and mean
speed. As regarding the mean travel time, it can be observed how, in each scenario
considered, automated vehicles show a mean travel time that is always higher than
conventional vehicles. Furthermore, as the penetration rate of automated vehicles in-
creases, the mean travel time increases more and more, up to an increase of 7.35 %
compared to Scenario 0. Specularly, as regarding the mean speed, it can be observed
how, in each scenario considered, automated vehicles travel with an average speed lower
than conventional vehicles. There is also a decrease in the average travel speed as the
penetration rate of automated vehicles increases, up to a decrease of 6.17 % average
speed compared to Scenario 0.
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Table 3.5: Change in mean travel time from Scenario 0 for all vehicles

Automated vehicles Mean travel Change in mean travel
penetration rate time (s) time from Scenario 0

0 % 297 0.00 % ± 0.15 %
10 % 299 0.79 % ± 0.12 %
20 % 301 1.47 % ± 0.16 %
30 % 302 1.59 % ± 0.16 %
40 % 304 2.32 % ± 0.14 %
50 % 308 3.73 % ± 0.24 %
60 % 310 4.41 % ± 0.13 %
70 % 312 5.22 % ± 0.17 %
80 % 314 5.79 % ± 0.17 %
90 % 316 6.61 % ± 0.27 %
100 % 319 7.35 % ± 0.26 %

0%

1%

2%

3%

4%

5%

6%

7%

8%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pe
rc

en
ta

ge
 c

ha
ng

e 
in

 m
ea

n 
tra

ve
l t

im
e 

fro
m

 S
ce

na
rio

 0

Penetration rate

Conventional vehicles Automated vehicles Mean value

Figure 3.3: Change in mean travel time from Scenario 0
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Table 3.6: Change in mean speed from Scenario 0 for all vehicles

Automated vehicles Mean speed Change in mean speed
penetration rate (km/h) from Scenario 0

0 % 32.23 0.00 % ± 0.13 %
10 % 32.01 −0.67 % ± 0.11 %
20 % 31.83 −1.23 % ± 0.15 %
30 % 31.78 −1.37 % ± 0.15 %
40 % 31.58 −2.00 % ± 0.14 %
50 % 31.21 −3.15 % ± 0.23 %
60 % 31.03 −3.72 % ± 0.12 %
70 % 30.81 −4.41 % ± 0.16 %
80 % 30.66 −4.87 % ± 0.15 %
90 % 30.44 −5.54 % ± 0.25 %
100 % 30.24 −6.17 % ± 0.24 %

-8%

-7%

-6%

-5%

-4%

-3%

-2%

-1%

0%
0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Pe
rc

en
ta

ge
 c

ha
ng

e 
in

 m
ea

n 
sp

ee
d 

fro
m

 S
ce

na
rio

 0

Penetration rate

Conventional vehicles Automated vehicles Mean value

Figure 3.4: Change in mean speed from Scenario 0
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3.3 About Macroscopic Fundamental Diagram

SUMO edge-based measures were collected to obtain speed, flow, and link density mea-
surements, as reported in Table 3.4. To build the fundamental network diagrams, it
is necessary to have network measurements instead of edge measurements. It will be
necessary to aggregate the edge measurements to obtain the network data of speed,
flow and density. The procedure for calculating these values and constructing the MFD
is described in paragraph 1.3.
The edge-based values are recorded for each fixed period for each link. As reported in
the previous paragraph, a period of 15 min was chosen, within which the stationary
flow conditions apply. Under stationarity flow conditions, the fundamental law of traffic
flow applies [32].

qi = ki · vi (3.5)

Where:

• i represents the generic link of the network;

• qi is the flow, number of vehicles passing through a lane section in a given time;

• ki is the density, attribute laneDensity, number of vehicles that at a given instant
are contained in a given lane length;

• vi is the spatial average speed, attribute speed, spatial average of the instanta-
neous speeds of vehicles that are contained in a given lane length at instant of
time.

Under the assumption of stationary flow conditions, the flow does not depend on posi-
tion and the density does not depend on time.
As the flow is a value not directly recorded by SUMO, the fundamental law of traffic
flow, Equation 3.5, is valid within the given period for each individual link in the net-
work.
The aggregation of edge variables into network variables using the outputs of microsim-
ulation software is described in the work of Lu et Al. (2020) [25]. Average network flow
Q, density K and speed V can be determined with the following Equations.

K =

∑N
i=1Nvi∑N
i=1 li

(3.6)

V =

∑N
i=1 vi ·Nvi∑N
i=1Nvi

· 3.6 (3.7)

Q =
N∑
i=1

vi · ki · 3.6 (3.8)

Where:

• K, V , Q are the average network density (in veh/km), speed (in km/h) and flow
(in veh/h);
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Table 3.9: MFD: maximum flow, optimum density and optimum speed

Automated vehicles Qmax K0 V0
penetration rate (veh/h/ln) (veh/km) (km/h)

0% 392.98 15.96 24.81
10% 390.83 15.63 25.13
20% 385.55 16.00 24.22
30% 387.34 15.93 24.47
40% 388.98 15.76 24.76
50% 385.22 15.68 24.76
60% 383.13 16.10 23.98
70% 379.72 15.75 24.27
80% 378.86 15.75 24.18
90% 377.40 15.33 24.89
100% 378.62 15.64 24.46

• N is the total number of link i;

• Nvi is the total number of vehicles passing through the generic link i;

• li is the length of the generic link i, in km;

• vi is the average space speed of the generic link i, in m/s;

• ki is the density of the generic link i, in veh/km.

Using these formulas is equivalent to using the general Equations 1.8, 1.9 and 1.10 pro-
posed by Geroliminis and Daganzo (2007).
Regarding the demand profile, using the real traffic flow profile no critical points ap-
pear in the MFD. Therefore, as reported in the paragraph 2.4, it was decided to use an
intensified flow demand for the construction of the MFD, so that both the free flow area
and the unstable area of the diagram are covered. In the intensified flow demand, flow
increases initially, until the network congestion situation is reached, then the demand
starts to decrease. The tern of points obtained from using the above Equations is in-
serted into the flow-density diagram. Figure 3.5 shows the MFD for a 50% penetration
rate. Figure 3.5 (a) shows the experimental points obtained from a single run, corre-
sponding to seed 1, while Figure 3.5 (b) shows the experimental points from all runs
considered. There are no significant deviations in the shape of the fundamental diagram
between one run and the following ones. The diagrams obtained show a considerable
dispersion of values, especially in the congested part of the diagram. The presence of
two sets of parallel points in the congested part of the diagram can be seen. The first
set of points is located in the upper part of the diagram, while the second set of points is
located in the lower part of the diagram, parallel to the first. To better investigate the
cause of the phenomenon, it is decided to plot the points of the fundamental diagram
in chronological order, as shown in Figure 3.6 (a). From the analysis of the Figure, the
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Figure 3.5: 50% penetration rate Macroscopic Fundamental Diagram. (a) Plot of the
seed 1 simulation and (b) plot of all 25 seeds
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Figure 3.6: Hysteresis cycle in the seed 1 simulation, 50% penetration rate Macroscopic
Fundamental Diagram. (a) Plot of the Macroscopic Fundamental Diagram and (b)
demand profile
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Table 3.10: MFD: linear regression analysis

Qmax K0 V0

t-test −7.284 −1.203 −6.872 exp−15
p-value <0.001 0.230 1.000

occurrence of a hysteresis loop within the unstable area of the diagram is evident.
In the presence of a hysteresis loop, a splitting of the curve is obtained: if travelled from
left to right, one path is obtained; if travelled in the opposite direction, another path
is obtained. Within the congested branch of the diagram, the congestion loading phase
follows one path, while the congestion unloading phase follows another path. In particu-
lar, the congestion unloading branch occurs with a lower flow than the loading branch,
at the same density. This can be explained by the non-homogeneity of the demand
distribution within the network, i.e. by the fact that demand takes a certain amount
of time to settle evenly. The result observed within the diagrams is in accordance
with Geroliminis and Daganzo (2007) [9] and reported in Chapter 1, which predicted
MFD with little scattered values in case of homogeneous conditions. The observation
of a hysteresis loop within an MFD in the presence of spatially non-homogeneous den-
sity within the network is also due to Buisson and Ladier (2009) [7] and Zhang et Al.
(2020) [48]. A weakly dispersed fundamental diagram could be obtained by dividing
the network into uniformly congested parts, i.e. into parts where the spatial evolution
of demand is similar. The uniform density condition requires all roads in the network
to be either congested or in the low-density state. The observations made so far for the
scenario corresponding to a 50% penetration rate are also valid for all other scenarios
analyzed. This can be seen by observing the MFD for each analysed scenario, reported
in the Appendix.
The MFD analysis is useful for determining the flow, density and speed parameters that
identify the critical point of the diagram. The critical point is the weak point of the
network, which divides the free flow condition from the congested condition. Several
methods for determining these points were shown in Chapter 1: “method of cuts” [9] or
Ambuhl’s mathematical formula [2]. However, it was decided not to use the proposed
methods, but to adopt an empirical procedure based on direct observation of the pa-
rameters of interest, as the aim is to estimate the values that characterize the critical
point of the diagram rather than the entire function. Therefore, for each run of each
scenario considered, the maximum flow value Qmax and the corresponding optimum
density value K0 are observed. Figure 3.5 (a) shows the values of maximum flow and
optimal density (seed 1, 50% penetration rate). The optimum speed value Vfree−flow is
obtained by applying the fundamental law of traffic flow, Equation 3.5. For each sce-
nario the values of maximum flow, optimum density and optimum speed are obtained
by averaging the values of each individual run, given in Table 3.9. The maximum flow
measurements obtained are similar to those available in the literature for cities and
contexts similar to the city of Hannover. In particular, a maximum flow value of 530
veh/h/ln was observed in the cities of Marseille (France) and Zurich (Switzerland) [2]
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Figure 3.7: Change in maximum flow from Scenario 0

and a value of 600 veh/km/ln was observed in the city of Toulouse (France) [7]. It can
be seen that the authors used portions of the city involving the presence of suburban
roads and highways, as well as urban roads.
In order to evaluate whether the observed parameters show a statistically significant
variation from the Scenario 0, a linear regression analysis is performed. A confidence
level of 95%, i.e. α = 5%, is defined and a linear regression analysis of the values of
maximum flow, optimum density and optimum speed at varying penetration rates is
performed. Table 3.10 shows the results of the statistical analysis performed. The null
hypothesis states that the regrassion line coefficient is equal to zero, which, in physical
terms, means that the penetration rate has no effects on the dependent variable ana-
lyzed. The p-value is the observed significance level, the lower its value the stronger its
evidence against the null hypothesis. The t-test is a parameter of the Student distribu-
tion. The null hypothesis is rejected if p-value < α, while it is not rejected otherwise.
From the results obtained, it is evident that the only value with a statistically signifi-
cant variation is the maximum flow Qmax. The graph in Figure 3.7 shows how, as the
penetration rate increases, a decrease in maximum flow is expected. The maximum flow
value changes from 392.98 veh/h/ln for an automated vehicles penetration rate of 0%
to 378.62 veh/h/ln for an automated vehicles penetration rate of 100%. The decrease
in percentage terms is 3%.
The values of optimum density and optimum speed, on the other hand, show no statisti-
cally significant change as the penetration rate of automated vehicles increases. Despite
this, graphs of the trend in optimum density and optimum speed as the number of au-
tonomous vehicles on the road increases are shown in Figures 3.8 and 3.9.
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Figure 3.8: Change in optimum density from Scenario 0
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Figure 3.9: Change in optimum speed from Scenario 0
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Table 3.11: SUMO SSM measures

Output name Unit of measure Description

pos m The position at which the lane change took place
begin s The simulation time at which the conflict begins
end s The simulation time at which the conflict end
ego Name of the ego vehicle
foe Name of the foe vehicle
DRAC type Type code of the corresponding encounter type
DRAC value m/s2 The maximum value of DRAC measured within

the conflict time interval
TTC type Type code of the corresponding encounter type
TTC value s The minimum value of TTC measured within

the conflict time interval
PET type Type code of the corresponding encroachment

type
PET value s The value of PET measured within the conflict

time interval

3.4 About Surrogate Safety Measures
SUMO surrogate safety measures output was collected in order to count and identify
the conflicts that occur between vehicles. The software allows a percentage of vehicles
to be equipped with a device capable of obtaining information on conflicts, called the
SSM device. It was decided to equip 10 % of vehicles with an SSM device. We therefore
expect to obtain a number of conflicts equal to 1/10 compared to the real one. Ac-
cording to the software documentation, SUMO records a conflict if one of the following
conditions is satisfied:

• TTC < 3.0 s;

• PET < 2.0 s;

• DRAC > 3.0 m/s2.

In accordance with the requirements of the FHWA, reported in paragraph 1.4, SUMO
allows the modeler to identify three types of conflict: rear-end, crossing and merg-
ing/lane change conflict. In this case, conflict analysis focuses on the type of merg-
ing/lane change conflict, excluding the other types. The goal behind this choice is to
analyze the impacts that the different lane change vehicle’s microscopic behavior has
on safety.
Merging/lane change conflicts involve only one of the security measures presented, the
TTC. We choose to analyze conflicts that have a TTC value lower than 3.0 s. The
chosen value, although very high, is supported by the relevant literature, reported in
Chapter 1.
A further condition is set for the analysis of the results: the type of vehicles involved
in a conflict situation. We decide to consider only the cases in which human error is
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Table 3.12: Number of conflicts

AV Number of Change in number of Number of Number of
penetration rate CV CV conflicts mixed total

conflicts from Scenario 0 conflicts conflicts

0 % 1832 100.00% 0 1832
10 % 1423 77.70% 193 1616
20 % 1180 64.41% 288 1467
30 % 901 49.20% 387 1288
40 % 670 36.59% 448 1118
50 % 466 25.45% 465 931
60 % 302 16.50% 450 752
70 % 174 9.50% 394 568
80 % 74 4.05% 299 373
90 % 18 1.00% 171 189
100 % 0 0.00% 0 0

possible, excluding the possibility of failure of automated vehicles, or assuming that
automated vehicles are designed to fail as little as possible. As shown in the Table 3.11,
the type of vehicle involved is not explicitly reported in the output file, while only the
name is reported. To get the data of interest, we use the values generated by the trip
output, which contains both the list of vehicles and the vehicle type associated. Con-
flicts are therefore considered between conventional vehicles and between conventional
and automated vehicles, i.e. mixed vehicles conflicts, but only when the conventional
vehicle has to react to a lane change maneuver of the automated vehicle, not vice versa.
The remaining cases are excluded from the analysis.
A conflict thus described is shown in the Figure 3.10. The conflict occurs between the
two purple vehicles, with the first vehicle, the leader vehicle, making a lane change
maneuver to move into the leftmost lane (a). The second vehicle, the follower vehicle
needs to perform the same maneuver as the leader vehicle and activates the direction
indicators to move to the left lane (b). Realizing that it has a too small TTC, the
follower vehicle brakes (c) and aborts the lane change (d), turning off the direction
indicators and staying in the current lane. The maneuver will be completed by the fol-
lower vehicle at a later time (e), i.e. when there are safety conditions to carry out the
maneuver. The minimum TTC value recorded during the encounter is the one relating
to point (c). This value is compared with the TTC threshold value in order to verify
the actual occurrence of a conflict.
Table 3.12 shows the number of conflicts between conventional vehicles and mixed vehi-
cles as described above. The number of conflicts between conventional vehicles decreases
as the penetration rate increases, while the number of conflicts increases as the pene-
tration rate increases, up to 50 % of autonomous vehicles in circulation. From the 50
% penetration rate, the number of mixed conflicts begins to decrease as the number of
conventional vehicles in circulation decreases. However, observing the total of conflicts,
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(a) (b)

(c) (d)

(e) (f)

Figure 3.10: Screenshot of a lane change conflict between vehicles. The conflict occurs
between the two purple vehicles: (a) The leader vehicle performs a lane change maneu-
ver; (b) The follower vehicle needs to perform the same maneuver as the leader; (c) The
follower vehicle has too small TTC value so it brakes; (d) The follower vehicle refuses
changing lanes; (e) The follower vehicle changes lanes at a later time, safely.
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Figure 3.11: Change in the ratio conflicts/lane changes from Scenario 0
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Figure 3.12: Change in the ratio conflicts/conventional vehicles from Scenario 0
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Table 3.13: Change in number of conflicts from Scenario 0

Automated vehicles Change in the ratio Change in the ratio
penetration rate conflicts/lane changes conflicts/conventional vehicles

From Scenario 0 From Scenario 0

0 % 0.00% 0.00%
10 % −7.12% −1.98%
20 % −14.47% 0.14%
30 % −22.74% 0.46%
40 % −31.60% 1.74%
50 % −42.47% 1.68%
60 % −51.39% 2.69%
70 % −62.19% 3.30%
80 % −74.27% 1.73%
90 % −86.46% 3.10%
100 % −100.00%

it can be seen that this also decreases as the penetration rate increases.
Making observations exclusively based on these results can lead to data interpretation
errors, as conventional vehicles decrease as the penetration rate of automated vehicles
increases, and therefore it is expected that the total number of conflicts decreases. To
avoid wrong considerations, the following ratios have been calculated.

Conflicts
Lane changes

(3.9)

Conflicts
Conventional vehicles

(3.10)

The ratio 3.9 is visible in Table 3.13 and in the graph in Figure 3.11. The decreasing
trend occurs despite both the numerator and the denominator of the fraction being
decreasing. This means that conflicts decrease more than proportionally with respect
to lane change maneuvers. Limited to lane change maneuvers, an increase in safety is
therefore expected.
The ratio 3.10 is visible in Table 3.13 and in the graph in Figure 3.12. The increasing
trend occurs despite the fact that both the numerator and the denominator of the
fraction are decreasing. Limited to this ratio, to assess whether the variation with
respect to Scenario 0 is statistically significant, a linear regression analysis is conducted.
Defined at a confidence level of 95%, i.e. α = 5%, a linear regression analysis of the
ratio 3.10 is performed as the penetration rate of automated vehicles increases. Table
3.14 shows the results of the statistical analysis performed. The null hypothesis requires
the coefficient of the line to be 0, i.e. no statistically significant variation between the
values. The observed p-value less than 0.001 leads to the rejection of the null hypothesis.
The p-value is very small, which means that the inferential conclusion is very strong. It
can be stated that the penetration rate has a statistically significant effect on the ratio
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Table 3.14: Conflicts/conventional vehicles: linear regression analysis

Conflicts
Conventional vehicles

t-test 3.895
p-value <0.001

3.10.
The observed growing trend means that the conflicts attributed to a single conventional
vehicle increase as the automated vehicle’s penetration rate increases, i.e. as the number
of conventional vehicles in circulation decreases. This leads to the observation of a
worsening of safety conditions, although minimal and limited to a 3% compared to
Scenario 0. The worsening is due to the fact that, as the penetration rate of autonomous
vehicles increases, conventional vehicles are more likely to create conflict situations.



Chapter 4

Discussion and Future Outlook

This thesis investigates the impact that the introduction of automated vehicles in an
urban network will have in terms of efficiency and safety in vehicle flow. In particular,
the aim of the thesis is to analyse how the lane change behavior of different vehicles im-
pacts on travel time, speed and safety. Few publications on the subject focus on urban
scenarios, while much literature is available on the evaluation of impacts on highways,
both with theoretical references and with analyses using micro and macro-simulation
tools. Furthermore, there are no publications exclusively analysing the impacts of lane
change behavior. The present work aims to close this gap in the literature.
To achieve this goal, the urban network of the city of Hannover (Germany) was mod-
elled and two different demand profiles were loaded. The first demand profile, real
traffic flow, relates to a typical working day, while the second profile considered, in-
tensified flow, is a fictitious demand profile obtained by increasing traffic demand until
a saturation is reached and decreasing it thereafter. Then, in order to include both
conventional and automated vehicles within the vehicle traffic, a literature review was
performed to identify the parameters that best describe the behavior of each type of
vehicle. Scenario 0 is characterised by the presence of conventional vehicles only. Each
subsequent scenario is created by increasing the percentage of automated vehicles on
the road by 10%. For each scenario, multiple simulation runs are performed. The re-
sults are discussed by comparing the subsequent scenarios with the reference Scenario
0.

4.1 About Efficiency

As far as efficiency, the measurements of travel time and average speed were used, in
addition to the use of macroscopic fundamental diagrams. Mean travel time is defined
as the average time a vehicle takes within the network, while mean speed is defined
as the average spatial speed within the network. Fundamental network diagrams were
used to determine maximum flow, optimum density and optimum speed. From the
analysis of the presented parameters, considerations are made regarding travel time,
mean speed and maximum flow. As can be seen from the graph shown in Figure 4.1
and from the results shown in Table 3.9, a general worsening of the system’s perfor-
mance is observed as the automated vehicles penetration rate increases. The general
deterioration in terms of efficiency is likely explainable by the more cautious behavior
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of automated vehicles compared to conventional vehicles. The latter are inclined to ac-
cept smaller gaps to perform a lane change maneuver when compared to conventional
vehicles. The parameter that most influences the behaviour of these vehicles is the one
concerning gap acceptance theory. The fact that automated vehicles accept higher gap
values than conventional vehicles makes them more cautious in their behaviour.
These conclusions contrast to what is observed in the literature, where a general im-
provement in performance is expected as the number of automated vehicles on the road
increases. It should be noted that the authors modify both vehicle’s behavioural pa-
rameters, i.e. headway held by vehicles and minimum space maintained by vehicles in
jam conditions, and lane change and car following behavior. Lu et. Al [25] observed
an improvement in maximum flow by 16% from the scenario with only conventional
vehicles to the scenario with only automated vehicles, while Friedrich [13] observed an
improvement in maximum flow by 40% from the same scenarios. The authors agree
in attributing the improved performance of the lower headway observed between auto-
mated vehicles and the smaller gap that automated vehicles maintain in jam conditions.
However, having modified both behavioural parameters, lane change and car following
parameters, the effects of individual behaviours are not visible, but an overall effect is
observed due to the sum of individual behaviours.
We can conclude that the lane change behavior of automated vehicles, performed in a
more cautious way, lead to a reduction in system performance. The performance im-
provement found in the literature could be attributed to other models governing vehicle
motion, such as the car following model, or to driver behavioural parameters, such as
headways or gaps manteined in jam conditions. It has been shown that the parameters
that most influence MFD are the headways held by vehicles and the minimum space
maintained by vehicles in jam conditions, which are not the subject of analysis in this
thesis. Observing only the lane change behavior, it can be seen that the car following
model and the behavioural parameters lead to an improvement in performance that can
absorb the deterioration due to lane change behavior.

4.2 About Safety

As far as safety is concerned, a conflict analysis was carried out through the use of
surrogate safety measures. The 10% of the circulating vehicles were equipped with an
SSM device, in order to record encounters and, consequently, conflicts by comparing
the recorded SSM values with the corresponding threshold values. Analyses and con-
siderations are made with regard to lane change maneuvers, only in the case where a
conventional vehicle has to react to a maneuver of an automated vehicle. Indeed, it is
assumed that automated vehicles are designed to fail as little as possible.
The analysis of conflict results is made with regard to lane change maneuvers and to
the presence of conventional vehicles in the network. With regard to lane change ma-
neuvers, an increase in safety is expected. Analysis of the data shows that conflicts
decrease more than proportionally with respect to lane change manoeuvres as the pen-
etration rate of automated vehicles increases. The expected decrease in the number of
lane changes leads to a more than proportional decrease in the number of conflicts.
As far as the presence of conventional vehicles is concerned, their decrease does not lead
to any apparent improvement in safety within the network. An analysis of the data
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Figure 4.1: Change from the Scenario 0 of mean travel time and speed

shows that conventional vehicles show a greater propensity to generate conflicts as the
penetration rate increases. The safety deterioration achieved, however, at 3%, is low.
The final situation with a penetration rate of 90%, i.e. a circulation of 10% conventional
vehicles, can be considered comparable to Scenario 0 in terms of the number of conflicts
generated by conventional vehicles.
Studying the conflicts generated by the interaction between conventional and auto-
mated vehicles is important since automated vehicles will be circulating in increasing
numbers in the near future. The results presented are aimed at closing this gap, limited
to the analysis of lane change maneuvers.

4.3 Future Outlook

The results presented and discussed are based on models built and tested for conven-
tional vehicles, i.e. the LC2013 model in SUMO. Furthermore, the parameters for con-
ventional vehicles were assumed constant as the penetration rate increases, i.e. always
assuming the same behavior of the drivers as the penetration rate increases. Future
studies could close this gap by calibrating the parameters for conventional vehicles for
each scenario. There could be an adjustment of the driving style of drivers of conven-
tional vehicles to the driving style of automated vehicles, making conventional vehicles
more prudent as the penetration rate increases.
One possible improvement of SUMO’s models concerns the actual maneuvers of au-
tomated vehicles. The development of models specifically built on the behavior of
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automated vehicles with dedicated parameters is expected. Such models should take
into account both the different driving styles and the different equipment possessed by
automated vehicles.
Further studies are needed within urban contexts other than the one considered, i.e.
in cities other than European cities, as well as considering road networks composed of
roads of different categories. In urban contexts, it is also necessary to study the effects
of the introduction of automated vehicles on traffic by modifying all vehicle behavioral
parameters.



Appendix A

Macroscopic Fundamental Diagram

Graphs of the Macroscopic Fundamental Diagrams for the different scenarios analised
are given in this Appendix. Each scenario is is characterised by a different penetration
rates of automated vehicles within traffic. The Scenario 0 refers to a scenario where
traffic is composed of conventional vehicles only. For each subsequent scenario there is
an increase of 10% of automated vehicles in circulation, with the final scenario composed
by only automated vehicles in circulation.

Figure A.1: MFD of the 0% automated vehicles penetration rate, Scenario 0
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Figure A.2: MFD of the 10% automated vehicles penetration rate

Figure A.3: MFD of the 20% automated vehicles penetration rate
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Figure A.4: MFD of the 30% automated vehicles penetration rate

Figure A.5: MFD of the 40% automated vehicles penetration rate
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Figure A.6: MFD of the 50% automated vehicles penetration rate

Figure A.7: MFD of the 60% automated vehicles penetration rate
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Figure A.8: MFD of the 70% automated vehicles penetration rate

Figure A.9: MFD of the 80% automated vehicles penetration rate
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Figure A.10: MFD of the 90% automated vehicles penetration rate

Figure A.11: MFD of the 100% automated vehicles penetration rate
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