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Abstract

In this master thesis a framework for the identification of a low-order model of the

electric power system and the online tuning of Power System Stabilizers (PSSs) is pre-

sented. The goal is to improve the damping of power oscillations, i.e., active power

oscillations that emerge due to the interaction between the synchronous generators

present in a power system. If these oscillations are not dampened through proper

control action, they can become problematic, increasing the possibility of a total power

system collapse. The most used controller to damp these oscillations is the PSS, which

is installed in some of the large electric generators present in the grid. The standard

approach in the field is to deploy these controllers following a "set and forget" approach,

meaning that the controllers are tuned once during the initial power plant commis-

sioning, and almost never re-tuned during the lifetime of the generator. However, in

modern power systems the configuration of the system is not static, but continuously

changes over time, for example due to the installation of new power sources or due to

changes in grid topology. Even during normal operation there may be large variability,

for example due to different power generation profiles yielded by renewable sources.

Hence, in order to address these issues, the PSSs should be ideally adapted to the new

configuration in order to guarantee proper oscillation damping performance. To solve

this problem, we propose a solution based on a system identification procedure to first

identify a low-order linear system of the power system. Then we use this estimated

model to tune the PSSs on the current configuration. To validate the proposed method,

we perform simulations in Matlab and in Hypersim, a real-time power system simulator.
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1
Introduction

In this introductory chapter, we begin with a small introduction to the electricity

grid. Next, we present the problem we wish to solve in this work and the solution we

propose. We continue with the state of the art and conclude with our contribution.

1.1 Electric Power System

The electric power system is one of the most extensive and complex systems devel-

oped by humans. Its purpose is the production of the electric power that is needed

for our life and transport it from the power plant to the end consumers. The power

system can be divided into three areas: generation, transmission, and distribution.

Historically, the generation is composed of a relatively small number of large power

plants connected to the transmission grid. They are usually hydro or thermal power

plants where the mechanical energy generated by a turbine is converted into electrical

power. This conversion is carried out by synchronous generators, which are discussed

in details in the next chapters. These synchronous generators feed the produced elec-

tricity into the transmission system via a step-up transformer to increase the voltage to

the transmission voltage reference.

In recent years, with the development of renewable energy sources and their instal-

lation, the power system is becoming more and more complex and the control of the

entire system more challenging.

The transmission network connects the power plants and transmits the generated

power to the distribution grid. The connection of the generation units through the

transmission grid makes the system highly coupled and complex, in which each com-

ponent influences the rest of the components. So the transmission grid covers a crucial

role in the integrity of the entire system and appropriate controls are implemented

to ensure the stability of the system. Finally, the distribution brings power from the

transmission to the consumers.
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1.2. PROBLEM STATEMENT

We will work on the generation and transmission level, meanwhile, the distribution

grid is substituted with loads, which include all the consumers connected to a particular

node of the transmission grid.

1.2 Problem statement

Low-frequency power oscillations are active power oscillations that can appear in

a power system. If they are not correctly controlled and damped, they can diverge

and even cause the collapse of the system. They are intrinsic in the system dynamics,

but there are some factors that can increase their strength, e.g. long or highly loaded

tie-line between different areas of the system, generators with high power, and also fast

excitation systems used to control the voltage in the grid.

In [2], [3], [4] some analysis of this type of events that occurred in the real power

system are reported. In the next years, with the large integration of renewable energy

sources and the expansion of the grids, the power system could be more susceptible to

this type of events [5].

The low-frequency oscillation can be divided into different categories: local oscilla-

tion, in which one machine oscillates against the rest of the system; inter-area oscillation,

in which two machines from the same area oscillate one against the other; intra-area

oscillation, in which a group of generators in an area of the system oscillates against a

group from another area.

We think the combination of oscillation surveillance by analyzing the ambient data

collected from PMU [6] devices spread in the power grid [7] and the online adaptation

of the controllers can help to avoid unstable oscillations. In this work, we focus on

the second part of the solution, mainly how to adapt the controllers to evolving power

system configurations. We consider a specific type of controller, i.e. the power system

stabilizer, which is one of the most used controllers for oscillation damping purposes.

In particular, we have a fixed control structure, and we want to re-tune the parameters

to always guarantee the required performance. We use a model-free approach in which

a low-order linear model of the power system is identified from the data. This model

is used to design the new parameters of the PSS.

1.3 State of the Art

In the recent years, with the increasing deployment of PMUs, different methods for

the identification of the oscillations in power system have been presented. Different

type of data can be used for the identification, e.g., ambient data - collected during

the normal operation of the system and caused by the load variations, ring-down data
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CHAPTER 1. INTRODUCTION

- collected after a fault that excite the system, probing data - in which the system is

excited through injecting probing signals in the input of some controllers.

Each category has its advantages and disadvantages. Ambient data can be collected

in any moment but their spectrum is typically not "rich" enough for a correct identifi-

cation. Instead, ring-down data are usually richer of information but can be collected

only after an event. Finally, probing data can be collected in any moment and are also

rich of information, since one has the freedom to the design the probing signal. Instead,

the main disadvantage is that one needs to perturb the system and this is not always

possible.

Reference [8] is the first study on oscillation identification in which Prony’s method

is used to identify the frequency and damping factor of low-frequency oscillations.

It shows good results, but the method is highly susceptible to noise [9]. From this

initial study, different other methods has been applied, refining the Prony method

[10], or using other techniques as fast Fourier transform [11], matrix pencil method

[12], ARMAX transfer function model identification [13], subspace state-space and

stochastic subspace methods [14]. In all these works, both ambient and ring-down data

are used for the identification.

These methods are based on the assumption that the power system can be linearized

around the operating point and the estimation of a linear model can be used for

correct oscillations identification. Indeed, [15] shows that a linear system is a good

approximation of the non-linear power system also for large disturbances.

Moreover, in general ambient and ring-down data can be used for oscillations iden-

tification but not for deriving an input-output relation that can be used to design the

controller in the system. For this reason, the probing data-based method is the most

suitable for the online re-tuning of PSSs.

In [16], a review of different methods based on probing signals for different tasks is

presented. They are used not only for system identification but also for other scopes,

like inertia estimation [17] and impedance characterization [18]. Probing data are used

for oscillation identification in [19], [20], but only a few works [21],[22], [23] analyze the

problem of identifying a model of the system that can be used to design a controller,

especially for PSS re-tuning.

A similar approach to the one proposed by us in this thesis has been presented in

[24]. They use an ARMAX transfer function model for the power system identification

and a method based on linear matrix inequalities for tuning the PSS’s parameters. The

developments introduced by our work are presented in the next section.

1.4 Contributions

In the first part of the thesis, we compare different system identification methods

to find the one that gives the best accuracy for the studied problem. In particular, we
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1.4. CONTRIBUTIONS

consider both polynomial transfer function models (including also ARMAX used in

[24]) and state-space models. Different identification algorithms are implemented and

their performance compared. In the second part, we present a method to design the

PSSs parameters given the identified model and we validate both the identification and

the controller design with real-time simulation. Compared to [24], we find a better

identification method than the ARMAX model method and we validate the techniques

on larger and more complex power systems.
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2
Synchronous generators: model and

control

In this chapter, we present the synchronous generator and its control system. More-

over, we discuss the modal analysis that can be used to understand the oscillatory

behaviour of a power system.

2.1 Synchronous generator

The main component of a power system is the synchronous generator (SG), which

is the device that generates the electric power. SG transforms the mechanical power

generated by a turbine into electric power that is injected into the electric grid. It

is composed of a stator, the fixed part of the machine, and a rotor, the moving part

connected to the turbine shaft. In the rotor, we find the excitation system that generates

a rotating electromagnetic field that induces an electromotive force in the three-phase

stator winding.

The model of a SG is fairly complex, all the details can be find in [25]. In general, the

complete model is made of nine non-linear differential equations and three algebraic

equations that relate the stator and rotor fluxes with the terminal voltage, currents,

rotor angle, and speed of the machine.

If we consider an entire power system involving multiple SGs, transformers, the network

of lines and cables as well as other devices that may be present, the overall system is

highly dimensional and complex. Usually all the variables in a power system are

expressed in the Per-Unit system (p.u.) in which the variables are expressed as a

fraction of a base quantity. In this way, all the variables lie in the same range and it is

simpler doing the calculations when transformers are involved with different voltage

level, at the two sides.

The rotor speed, the electric power and the output voltage are usually regulated by
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2.1. SYNCHRONOUS GENERATOR
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Figure 2.1: Synchronous generator control diagram

proper controllers, briefly described in the next section. The control diagram of a SG is

shown in Fig. 2.1.

2.1.1 Turbine and Turbine Governor

In general, the synchronous generator is driven by either steam turbines, gas turbines

or hydro turbines. The turbine is equipped with a governor system to regulate the

output mechanical torque and operate at the required power. The governor consists of

a droop control, a simple proportional control that regulates the output power based on

the speed deviation of the generator. In particular, if the speed is less than the nominal

one, the governor will increase the generating power to balance the speed deviation.

Contrary, if the speed is larger than the nominal one, the governor will decrease the

generating power. In general, different models exist for the turbine and the governor,a

comprehensive list can be found in [26]. We report here the IEEE TGOV1 model, shown

in Fig. 2.2, that we used in the simulations. It is a simplified model of a steam turbine,

where 𝑅 is the droop coefficient, 𝑇1 is the time constant of the steam control valve, 𝑇2

and 𝑇3 model the motion of the steam through the reheater and turbine stages, 𝐷𝑡 is the

possible mechanical damping of the turbine and 𝑉𝑚𝑖𝑛 , 𝑉𝑚𝑎𝑥 represent the saturation of

the steam valve. The power reference is 𝑃𝑟𝑒 𝑓 , meanwhile 𝑃𝑚 is the output mechanical

power of the turbine that will be transformed in electrical power by the synchronous

machine.

2.1.2 Excitation circuit and Automatic Voltage Regulator

The excitation circuit is responsible for generating the electromagnetic field in the

SG rotor. The Automatic Voltage Regulator (AVR) controls the excitation current to

adjust the terminal voltage of the SG. Different models exist for this system, as listed in

[27]. We consider the Simple Exciter model of the excitation system (exciter and AVR)

represented in Fig. 2.3. The input is made by the difference between the reference
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Figure 2.2: IEEE TGOV1 model diagram
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Figure 2.3: Simple Exciter model

voltage 𝑉𝑟𝑒 𝑓 and the output voltage 𝑉𝑡 plus the power system stabilizer output 𝑉𝑃𝑆𝑆.

The first block represents the AVR, in which 𝑇𝑐 and 𝑇𝑏 are its time constants, while

the second one the exciter, in which 𝐾𝑎 and 𝑇𝑎 are respectively the gain and the time

constant of the exciter. The output is the exciter output voltage.

2.2 Power System Stabilizers

The Power System Stabilizer (PSS) is the most used approach to control and to damp

low-frequency oscillations. They introduce a component torque in the synchronous

machine through the excitation circuit that acts as a damping torque.

Different structures exist in the literature and on the market. They differ in the number

of inputs, in the signals used as inputs and in the control structure. A list can be found

in [27]. We consider the simpler one, called PSS1A and shown in Fig. 2.4, which

has only one input, the rotor speed deviation, and it is composed of a wash-out filter

and two lead-lag blocks for the phase compensation. The washout filter is needed to

filter low-frequency components leaving the steady state output unaltered. Usually,

the time constant 𝑇𝑤 takes values between 1 and 20 seconds. We set it to 10 seconds for

our simulations. The lead-lag blocks are the control part responsible for generating the

correct signal to introduce the damping torque and reduce the oscillations.

The parameters of the lead-lag blocks and the gain of the PSS are the fundamental

parameters that must be correctly tuned to obtain the desired performance. Various
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2.3. MODAL ANALYSIS
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Figure 2.4: PSS1A diagram

approaches for tuning these parameters exist in the literature. The classical methods

are the "GEP" method, the "P-Vr" method and the residue method [28]. In the first

method, the phase compensation parameters are computed from the transfer function

from the voltage reference to the terminal voltage. In the second, they are computed

from the transfer function from the voltage reference to the electric power when the

shaft dynamics of all machines are disabled. Finally, in the residue method, they are

computed by analysing the residue of the transfer function from the voltage reference

to the root speed. Since we will identify a model for this input-output relation, we will

use the last method to re-tune the parameters of the PSS.

2.3 Modal Analysis

The modal analysis [29] of the power system can be used to understand the oscilla-

tory behaviour of the system, that is mainly related to SGs dynamics.

Suppose we have a complete description of the power system, the equations of the

system can be written as in (2.1), where the first set of equations is the set of differential

equations and the second one is the set of algebraic equations. They are composed of

the equations of the synchronous machines, the control devices, the network, the loads

and in general all the devices that contribute to the dynamics of the system. The vector

x is the state vector containing for example the rotor angle and speed variables. The

vector y is the set of algebraic variables and the vector u contains the system input.




x¤ = f(x, y, u)
0 = g(x, y, u)

(2.1)

In general, they are highly non-linear but they can be linearised around the operating

point of the system and written as a linear state-space model as shown in (2.2). Then,

from the matrix A, we can study the dynamical behavior of the system, including the

identification of low-frequency oscillations. In particular, we can analyse the frequency

and damping of the oscillations and which machines are involved.

x¤ = Ax + Bu (2.2)
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CHAPTER 2. SYNCHRONOUS GENERATORS: MODEL AND CONTROL

The eigenvalues of the state matrix A are the scalar values 𝜆𝑖 ∈ C that solves equation

(2.3), for some eigenvector v𝑖 different from zero.

Av𝑖 = 𝜆𝑖v𝑖 (2.3)

Each complex eigenvalue of the system is associated with an oscillation mode. Let

𝜆 = 𝜎 + 𝑖𝜔 be a complex eigenvalue of the system, then the frequency 𝑓 and damping

coefficient 𝜉 of the associated mode are given in (2.4). The damping coefficient 𝜉 is

smaller than one and represents the oscillation decay. If it is close to zero then the

oscillation is badly damped and it takes a large time to disappear, instead if it is close

to one the oscillation is well damped. Usually, it is also expressed in percentage.

𝑓 =
𝜔

2𝜋
, 𝜉 =

−𝜎√
𝜎2 + 𝜔2

(2.4)

We suppose the matrix A can be diagonalized as shown in (2.5), where V is the eigen-

vector matrix V = [v1 . . . v𝑛] and Λ is a diagonal matrix whose elements are the

eigenvalues.

V−1AV = Λ (2.5)

We can also define the matrix W = [w1 . . . w𝑛]𝑇 = V−1, where the vectors w𝑖 are the

left eigenvectors of A, since they solve w𝑇
𝑖
A = w𝑇

𝑖
𝜆𝑖 .

Then, by defining the new state variable z = Wx, the state equation is as in (2.6). The

free evolution of z is given by z¤ = Λz, or component wise as 𝑧¤ 𝑖 = 𝜆𝑖𝑧𝑖 , where 𝑧𝑖 is the

i-th component of z, whose solution is 𝑧𝑖(𝑡) = 𝑒𝜆𝑖 𝑡𝑧𝑖(0).

z¤ = Λz + WBu (2.6)

In this way, each variable 𝑧𝑖 corresponds to a mode of the system characterized by the

eigenvalue 𝜆𝑖 . Therefore, coming back to the original state vector, obtainable from z as

x = Vz, each component 𝑥𝑘 is connected to the mode of the system through equation

(2.7). The coefficient 𝑣𝑘𝑖 of the right eigenvector v𝑘 gives information about how the

i-th mode is present in the k-th state. In particular, the higher the magnitude |𝑣𝑘𝑖 | is,

the more the i-th mode participates in the k-th state evolution. Moreover the angle

∠𝑣𝑘𝑖 gives the "direction" of the variation caused by the excitation of the mode. By

plotting the complex components related to the machine rotor speed state of the vector

v𝑖 , we can identify the type of oscillation and which machines are oscillating against the

others. In particular, if two machines have almost the same angle they are oscillating

together, instead if the angles differs by 180 degrees then they are oscillating one against

the other. For this reason, the right eigenvectors v𝑖 are also called mode shapes.

𝑥𝑘(𝑡) =
∑

𝑖

𝑣𝑘𝑖𝑧𝑖(𝑡) (2.7)
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2.3. MODAL ANALYSIS

We are not only interested from which state we can observe one mode, but also in the

reverse problem: which state can have an impact on a particular mode. Similar to (2.7),

we can write the reverse equation as in (2.8). In this case, the components 𝑤𝑖𝑘 of the

left eigenvector w𝑘 give the relation between the k-th state and the i-th mode.

𝑧𝑖(𝑡) =
∑

𝑘

𝑤𝑖𝑘𝑥𝑘(𝑡) (2.8)

Moreover, by combining the right and left eigenvectors, we can introduce the normal-

ized participation as in (2.9), which measures how much the i-th mode and the k-th

state variable are connected, considering both observability and controllability. For the

fixed i-th mode, we compare 𝑝𝑘𝑖 for the different states indexed by k. The higher par-

ticipation factor identifies the state, and the relative machine, that is more connected to

the mode, both considering the observability given by 𝑣𝑘𝑖 and the controllability given

by 𝑤𝑘𝑖 . This gives indication about where we can act the control a particular mode of

the system.

𝑝𝑘𝑖 =
|𝑣𝑘𝑖𝑤𝑘𝑖 |∑
𝑖 |𝑣𝑘𝑖𝑤𝑘𝑖 |

(2.9)

Finally, to understand if a mode is related to a low-frequency power oscillation we

compare the participation factor related to the rotor motion of the machine to their total

sum by defining the correlation ratio, as in (2.10). In the nominator, we have the sum of

the participation factors related to the rotor angle and rotor speed state. If 𝜂𝑖 ≈ 1 then

we can consider the relative mode as a low-frequency power oscillation mode.

𝜂𝑖 =
𝑝𝑘𝑖(𝑥𝑘 = 𝛿) + 𝑝𝑘𝑖(𝑥𝑘 = 𝜔)∑

𝑘 𝑝𝑘𝑖
(2.10)

To conclude, by performing this analysis, we can understand the oscillatory be-

haviour of the system. However, it requires a complete description of the power system

that is not always available. We apply this analysis to the test case in Chapter 4.
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3
System Identification

In this chapter the general system identification problem is presented and two differ-

ent approaches are considered. The first considers transfer function model structures

and we use the prediction error minimization (PEM) method to estimate the model

parameters. The second considers state-space model structure and we use different

subspace methods for the system identification.

3.1 Introduction

With system identification (SI) we mean the procedure to learn a model from data.

A model is a mathematical description of the system, establishing a relation between

some observable variables of the system. In general, there are two types of variables

that can be measured:

• exogenous variables or input 𝑢

• explained variables or output 𝑦.

There are three general ingredients in the system identification procedure:

• a model class, or model structure, containing the possible model that can explain
the relation between inputs and outputs,

• the data, inputs and outputs, collected in an experiment

• a criterion to choose the best model in the model class that can explain the relation
between the inputs and the outputs

In general, in a real system there are some other non observable variables that in-

fluence the relation between the input 𝑢 and the output 𝑦, and they can be modeled as

external disturbances.

11



3.1. INTRODUCTION

F(z)
u(t)

G(z)

H(z)

w(t) y(t)

e(t)

Figure 3.1: Model with feedback

We consider a general linear model with feedback to describe the system which equa-

tions are shown in (3.1).




𝑦(𝑡) = ℱ (𝑧)𝑢(𝑡) + G(𝑧)𝑒(𝑡)
𝑢(𝑡) = ℋ(𝑧)𝑦(𝑡) + 𝑤(𝑡)

(3.1)

Here ℱ (𝑧) models the plant to be identified, G(𝑧)𝑒(𝑡) models disturbances, and

ℋ(𝑧) is the feedback controller. Meanwhile, 𝑤(𝑡) is a reference signal to excite the

system, and 𝑢(𝑡) and 𝑦(𝑡) are the input and the output of system, respectively. The

diagram of this general model is reported in Fig. 3.1. ℱ (𝑧), G(𝑧) and ℋ(𝑧) are causal

transfer functions of the form (3.2), where 𝑧−1 is the backward shift operator.

A(𝑧) =
∞∑

𝑘=0

𝑎𝑘𝑧
−𝑘 , 𝑎𝑘 ∈ R (3.2)

It means that the multiplication between a transfer function A(𝑧) and a discrete time

signal 𝑥(𝑡) is equivalent to (3.3).

A(𝑧)𝑥(𝑡) =
∞∑

𝑘=0

𝑎𝑘𝑧
−𝑘𝑥(𝑡) =

∞∑

𝑘=0

𝑎𝑘𝑥(𝑡 − 𝑘) (3.3)

The system identification problem is to estimate the plant model ℱ (𝑧) and the distur-

bances model G(𝑧)𝑒(𝑡) from measurements of the input 𝑢(𝑡) and the output 𝑦(𝑡), while

the controller ℋ(𝑧) is assumed to be known and necessary to ensure that the plant

operates in safe conditions.

For a correct identification the input signal must be rich in term of frequency content

to excite all the dynamics of the system. The most used reference signals are gaussian

white noise, random binary signal and multi sines signal. A complete description can

be found in [30].

Another important step in the identification is the pre-processing of the input-output

data before applying the identification algorithms. Usually, it consists of filtering, dec-

12
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imation, and detrending. Filtering can be used to reduce high-frequency components

or to remove known dynamics. Decimation consists of the down-sampling of the data

to avoid numerical problems. Finally, detrending is used to remove offsets and trends.

After the identification, some techniques can be used to understand if the identified

model is good or instead we have to modify the experiment or change the model

structure and identification method. A simple validation is to compare the measured

output and the one predicted by the identification model. A more advanced technique

is the so call residual analysis [30], in which we check some properties of the residuals,

the errors between the measured and predicted output. If we have estimated a good

model, we expect that the residuals are close to white noise. So, through the auto-

correlation test, we check that the auto-correlation function is inside the confidence

interval of the corresponding estimates, meaning that the residuals are uncorrelated.

Moreover, using the cross-correlation test we check that the residuals are uncorrelated

to the past input as one can expect. Also in this test, we check that the cross-correlation

function is inside the confidence interval.

3.2 Transfer function model structure and PEM method

In this approach, ℱ (𝑧) and G(𝑧) are parameterized as rational transfer functions

through the parameter 𝜃. This defines the model structure ℳ := {ℳ(𝜃), 𝜃 ∈ Θ},
where Θ is the parameter set that can be chosen to impose some constraints, like the

stability of the system. Different structures can be used, as described in the following

paragraphs.

ARX Model It is a simple input-output relation that can be obtained writing the

model as a linear difference equation, as shown in (3.4).

𝑦(𝑡)+𝑎1𝑦(𝑡 − 1) + · · · + 𝑎𝑛𝐴𝑦(𝑡 − 𝑛𝐴) = 𝑏0𝑢(𝑡 − 𝑛𝑘)
+ 𝑏1𝑢(𝑡 − 1 − 𝑛𝑘) + · · · + 𝑏𝑛𝐵−1𝑢(𝑡 − 𝑛𝐵 + 1 − 𝑛𝑘) + 𝑒(𝑡)

(3.4)

The parameters that define the model are 𝜃 = [𝑎1 . . . 𝑎𝑛𝐴𝑏0 . . . 𝑏𝑛𝐵−1], meanwhile 𝑛𝐴

and 𝑛𝐵 define the orders of the model, and 𝑛𝑘 is the input delay. Defining the transfer

functions shown in (3.5), the model structure can be written as in (3.6).

𝐴(𝑧) = 1 +
𝑛𝐴∑

𝑘=1

𝑎𝑘𝑧
−𝑘 𝐵(𝑧) =

𝑛𝐵−1∑

𝑘=0

𝑏𝑘𝑧
−𝑘 , (3.5)

ℳ(𝜃) : 𝐴(𝑧)𝑦(𝑡) = 𝐵(𝑧)𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡) (3.6)

ARMAX Model Further developing the previous model, we could add flexibility

to describe the properties of the disturbance term by assuming that the output at

13
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time instant 𝑡 depends also on the past disturbances. Therefore, the linear difference

equation can be written as in (3.7).

𝑦(𝑡)+𝑎1𝑦(𝑡 − 1) + · · · + 𝑎𝑛𝐴𝑦(𝑡 − 𝑛𝐴) = 𝑏0𝑢(𝑡 − 𝑛𝑘) + 𝑏1𝑢(𝑡 − 1 − 𝑛𝑘) + . . .
+ 𝑏𝑛𝐵−1𝑢(𝑡 − 𝑛𝐵 + 1 − 𝑛𝑘) + 𝑒(𝑡) + 𝑐1𝑒(𝑡 − 1) + · · · + 𝑐𝑛𝐶 𝑒(𝑡 − 𝑛𝐶)

(3.7)

The parameters that define the model are 𝜃 = [𝑎1 . . . 𝑎𝑛𝐴𝑏0 . . . 𝑏𝑛𝐵−1𝑐1 . . . 𝑐𝑛𝐶 ], with

𝑛𝐴,𝑛𝐵 and 𝑛𝐶 defining the orders of the model, and 𝑛𝑘 is the input delay. Defining the

transfer functions shown in (3.8), the model structure can be written as in (3.9).

𝐴(𝑧) = 1 +
𝑛𝐴∑

𝑘=1

𝑎𝑘𝑧
−𝑘 𝐵(𝑧) =

𝑛𝐵−1∑

𝑘=0

𝑏𝑘𝑧
−𝑘 𝐶(𝑧) = 1 +

𝑛𝐶∑

𝑘=1

𝑐𝑘𝑧
−𝑘 (3.8)

ℳ(𝜃) : 𝐴(𝑧)𝑦(𝑡) = 𝐵(𝑧)𝑢(𝑡 − 𝑛𝑘) + 𝐶(𝑧)𝑒(𝑡) (3.9)

Notice that the ARX model can be seen as a particular case of ARMAX model, with

𝑛𝐶 = 0.

Output-Error (OE) Model Another option is to assume that the disturbance does not

enter in the dynamics between the input and the output, but it consists of measurements

disturbance. In this case, defining the transfer functions shown in (3.10), the model

structure is shown in (3.11).

𝐵(𝑧) =
𝑛𝐵−1∑

𝑘=0

𝑏𝑘𝑧
−𝑘 𝐹(𝑧) = 1 +

𝑛𝐹∑

𝑘=1

𝑓𝑘𝑧
−𝑘 (3.10)

ℳ(𝜃) : 𝑦(𝑡) = 𝐵(𝑧)
𝐹(𝑧)𝑢(𝑡 − 𝑛𝑘) + 𝑒(𝑡) (3.11)

The parameters that define the model are 𝜃 = [ 𝑓1 . . . 𝑓𝑛𝐹𝑏0 . . . 𝑏𝑛𝐵−1], meanwhile 𝑛𝐹 and

𝑛𝐵 define the orders of the model, and 𝑛𝑘 is the input delay.

Box-Jenkins (BJ) Model The last model is derived from the OE model, assuming

a more complex model for the disturbance. Indeed, defining the transfer functions

shown in (3.12), the model structure is shown in (3.13).

𝐵(𝑧) =
𝑛𝐵−1∑

𝑘=0

𝑏𝑘𝑧
−𝑘 𝐹(𝑧) = 1 +

𝑛𝐹∑

𝑘=1

𝑓𝑘𝑧
−𝑘 𝐶(𝑧) = 1 +

𝑛𝐶∑

𝑘=1

𝑐𝑘𝑧
−𝑘 𝐷(𝑧) = 1 +

𝑛𝐷∑

𝑘=1

𝑑𝑘𝑧
−𝑘

(3.12)

ℳ(𝜃) : 𝑦(𝑡) = 𝐵(𝑧)
𝐹(𝑧)𝑢(𝑡 − 𝑛𝑘) +

𝐶(𝑧)
𝐷(𝑧) 𝑒(𝑡) (3.13)
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The parameters that define the model are 𝜃 = [ 𝑓1 . . . 𝑓𝑛𝐹𝑏0 . . . 𝑏𝑛𝐵−1, 𝑐1 . . . 𝑐𝑛𝐶𝑑1 . . . 𝑑𝑛𝐷 ],
with 𝑛𝐹,𝑛𝐵, 𝑛𝐶 and 𝑛𝐷 defining the orders of the model, and 𝑛𝑘 is the input delay. The

OE model can be seen as a BJ model with 𝑛𝐶 = 𝑛𝐷 = 0.

3.2.1 PEM method

The prediction error minimization (PEM) method is a method to identify the un-

known parameters of the system. Considering the general model structure shown in

(3.14), where the parametrization of the model can correspond to either BJ, OE, ARMAX

or ARX model structure.

ℳ(𝜃) : 𝑦(𝑡) = ℱ𝜃(𝑧)𝑢(𝑡) + G𝜃(𝑧)𝑒(𝑡), (3.14)

At time 𝑡 we have collected the past data {(𝑦(𝑠), 𝑢(𝑠)), 𝑠 < 𝑡}. Then, it can be shown

[31] that the minimum squared error prediction of 𝑦(𝑡) given by the past data is (3.15),

where G1,𝜃(𝑧) = G𝜃(𝑧) − 1. With minimum squared error prediction we mean the best

possible prediction of 𝑦(𝑡) from the past data with respect to the expectation of the

squared error between the measured and predicted output.

�̂�𝜃(𝑡 |𝑡 − 1) = G𝜃(𝑧)−1G1,𝜃(𝑧)𝑦(𝑡) + G𝜃(𝑧)−1ℱ𝜃(𝑧)𝑢(𝑡) (3.15)

We define the prediction error as 𝜖𝜃(𝑡) := 𝑦(𝑡) − �̂�𝜃(𝑡 |𝑡 − 1). Assuming to have collected

the data u𝑁 and y𝑁 (3.16), then the PEM estimate �̂�𝑃𝐸𝑀 is given by (3.17), by solving the

optimization problem which minimizes the mean square prediction error 𝑉𝑁 (𝜃) with

respect to the unknown parameters.

u𝑁 = [𝑢(1) . . . 𝑢(𝑁)]𝑇 , y𝑁 = [𝑦(1) . . . 𝑦(𝑁)]𝑇 (3.16)

�̂�𝑃𝐸𝑀(u𝑁 , y𝑁 ) = arg min
𝜃 ∈Θ

𝑉𝑁 (𝜃), 𝑉𝑁 (𝜃) =
1

𝑁

𝑁∑

𝑡=1

𝜖𝜃(𝑡)2 (3.17)

3.2.2 PEM method for ARX model structure

For the ARX model structure, the solution of the PEM estimate (3.17) can be written

in closed form since the minimum squared error predictor (3.15) is linear with respect

to the unknown parameters. Indeed, it can be written as in (3.18), where without loss

of generality we consider the input delay 𝑛𝑘 equal to one.

�̂�𝜃(𝑡 |𝑡 − 1) = −
𝑛𝐴∑

𝑘=1

𝑎𝑘𝑦(𝑡 − 𝑘) +
𝑛𝐵−1∑

𝑘=0

𝑏𝑘𝑢(𝑡 − 𝑘 − 1) (3.18)
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Defining the regression vector 𝜙(𝑡) (3.19), we have that (3.18) can be written as �̂�𝜃(𝑡 |𝑡 −
1) = 𝜙(𝑡)𝑇𝜃.

𝜙(𝑡) :=
[
−𝑦(𝑡 − 1) . . . −𝑦(𝑡 − 𝑛𝐴) 𝑢(𝑡 − 1) . . . 𝑢(𝑡 − 𝑛𝐵)

]𝑇
(3.19)

Assume to have collected the data u𝑁 , y𝑁 . Then we can define the regression matrix Φ

and the prediction error vector �̄�𝜃 as in (3.20). The cost function 𝑉𝑁 (𝜃) in (3.17) can be

written as (3.21).

Φ :=



𝜙(1)𝑇
...

𝜙(𝑁)𝑇


�̄�𝜃 :=



𝜖𝜃(1)
...

𝜖𝜃(𝑁)


= y𝑁 − Φ𝜃. (3.20)

𝑉𝑁 (𝜃) =
1

𝑁

𝑁∑

𝑡=1

𝜖𝜃(𝑡)2 =
1

𝑁
‖ �̄�𝜃‖2

=
1

𝑁
‖y𝑁 − Φ𝜃‖2 (3.21)

Therefore the prediction error estimate can be written as the solution of (3.22), which is

the standard least square error problem where the solution is given in (3.23), assuming

Φ has full column rank.

�̂�𝑃𝐸𝑀(y𝑁 , u𝑁 ) = arg min
𝜃 ∈Θ

‖y𝑁 − Φ𝜃‖2 (3.22)

�̂�𝑃𝐸𝑀(y𝑁 , u𝑁 ) = (Φ𝑇Φ)−1Φ𝑇y𝑁 (3.23)

3.2.3 PEM method for ARMAX, BJ and OE model structure

In this case, the predictor (3.15) is not linear with respect to the parameters, therefore

an analytic form of �̂�𝑃𝐸𝑀 is not obtainable. To solve the optimization problem (3.17),

different algorithms can be used to compute the solution, as for example gradient

descent method or Newton method. The discussion of these algorithms is out of the

scope of this thesis, but it can be found in [30].

3.3 Subspace methods for identification of state space

models

Subspace identification methods are a class of algorithms to identify the model

in state-space based on algebraic properties. Consider the discrete time state-space

system, shown in 3.24. Here x ∈ R𝑛 is the state vector, u ∈ R𝑚 is the input, y ∈ R𝑙 is the

output, w ∈ R𝑛 and v ∈ R𝑙 are the state and output disturbances, and A,B,C,D are the

state space matrices. The aim is to estimate the state space matrices from the collected
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data u𝑁 , y𝑁 .



x(𝑡 + 1) = Ax(𝑡) + Bu(𝑡) + w(𝑡)
y(𝑡) = Cx(𝑡) + Du(𝑡) + v(𝑡)

(3.24)

We present two different type of subspace methods, namely the Multivariable Output

Error State Space (MOESP) method [32] and the Canonical Variate Analysis (CVA)

method [33]. These methods can be unified in the same procedure and the only

difference is the choice of some weighting matrices [34]. These subspace algorithms

are based on the following steps:

• From the input-output data, the extended observability matrix defined in (3.25)
is estimated. The parameter 𝑟 is the prediction horizon.

O𝑟 =



C
CA
...

CA𝑟−1


(3.25)

• From the estimated of the observability matrix, namely Ô𝑟 , the matrices A and

C can be estimated: the estimate C is the first block row of Ô𝑟 , meanwhile the
estimate A can be computed by solving a least square problem.

• Finally, the estimate of the matrices B and D can be computed solving an other
least square problem given in equation (3.26), where the output predictor is given

in (3.27) that is computed knowing the estimate Ĉ and Â.

[B̂, D̂] = arg min
B,D

1

𝑁

𝑁∑

𝑡=1

| |y(𝑡) − ŷ(𝑡 |𝑡 − 1)| |2 (3.26)

ŷ(𝑡 |𝑡 − 1) = Ĉ(𝑧I − Â)−1Bu(𝑡) + Du(𝑡) (3.27)

The most critical part is the estimation of the observability matrix O𝑟 . We present

a brief summarize of the procedure of this step, meanwhile the detail of the other two

step can be found in [30]. We start by writing the output sequence from time 𝑡 to

𝑡 + 𝑟 − 1 as in (3.28), which is derived by iterating the state-space equation (3.24), where

the vector V(𝑡) collects all the factors given by the disturbances.



y(𝑡)
y(𝑡 + 1)

...

y(𝑡 + 𝑟 − 1)



=



C

CA
...

CA𝑟−1



x(𝑡) +



D 0 · · · 0

CB D · · · 0
...

. . . . . .
...

CA𝑟−2B · · · CB D





u(𝑡)
u(𝑡 + 1)

...

u(𝑡 + 𝑟 − 1)



+ V(𝑡) (3.28)

It can written in matrix form as (3.29), where the matrix are defined accordingly.

Y𝑟(𝑡) = O𝑟x(𝑡) + S𝑟U𝑟(𝑡) + V(𝑡) (3.29)

This last equation relates the input-output data through the matrices O𝑟 and S𝑟 and

in particular can be used to get the estimate Ô𝑟 . Assume to have collect the data
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u𝑁+𝑟−1, y𝑁+𝑟−1, then we stack the equations in (3.29) from 𝑡 equal to zero up to 𝑁 . The

resulting equation is shown in (3.30) where the matrices Y, U, X and V are defined in

(3.31)-(3.32).

Y = O𝑟X + S𝑟U + V (3.30)

Y =

[
Y𝑟(0) · · · Y𝑟(𝑁)

]
, X =

[
x(0) · · · x(𝑁)

]
(3.31)

U =

[
U𝑟(0) · · · U𝑟(𝑁)

]
, V =

[
V(0) · · · V(𝑁)

]
(3.32)

From this equation, we would like to isolate the matrix O𝑟 . The first step is to eliminate

the second term on the right side of the equation through the projection of the output

matrix Y into the orthogonal complement of the row subspace of U. This is equivalent

to multiply equation (3.30) on both side by the projection matrix Π defined in (3.33),

which is selected such that UΠ = 0.

Π = I − U𝑇(UU𝑇)−1U (3.33)

The resulting equation is shown in (3.34). Then, the next step is to eliminate the

disturbance term VΠ.

YΠ = O𝑟XΠ + VΠ (3.34)

We define another matrix Φ as in (3.35), where 𝜙𝑠(𝑡) is a vector of instrumental variables,

and a typical choice is shown in (3.36) where 𝑠1 ans 𝑠2 are the length of the past input

and output respectively.

Φ =

[
𝜙𝑠(1) 𝜙𝑠(2) · · · 𝜙𝑠(𝑁)

]
(3.35)

𝜙𝑠(𝑡) =



y(𝑡 − 1)
...

y(𝑡 − 𝑠1)
u(𝑡 − 1)

...

u(𝑡 − 𝑠2)



(3.36)

By multiplying equation (3.34) from the right by Φ𝑇 and normalizing by 𝑁 , the matrix

G is defined as (3.37).

G =
1

𝑁
YΠΦ𝑇

= O𝑟
1

𝑁
XΠΦ𝑇

︸    ︷︷    ︸
T𝑁

+ 1

𝑁
VΠΦ𝑇

︸    ︷︷    ︸
V𝑁

(3.37)

It can be shown that, if the data are collected in open-loop, hence the input is uncor-
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related with the disturbances, then for 𝑁 → ∞ the matrix V𝑁 converges to the zero

matrix and T𝑁 converges to a full rank matrix T. Therefore, considering to have col-

lected enough data such that we can approximate the two matrices with their limits

then we can write equation (3.38), in which G is equal to the product of the observ-

ability matrix O𝑟 and the invertible matrix T that is just a change of basis in the state

representation.

G = O𝑟T (3.38)

The matrix G has dimension 𝑟𝑙 × (𝑙𝑠1 + 𝑚𝑠2) and in general it is larger than the real

extended observability matrix that has dimension 𝑟𝑙 × 𝑛, where 𝑛 is the real order of

the system and it is unknown. To reduce the dimension and estimate the order of the

system we can resort to the Singular Value Decomposition (SVD). For more flexibility,

before applying the SVD we can multiply the matrix G by two weighting matrices W1

and W2. The SVD applied to the matrix after the multiplication is shown in (3.39),

where we have already exploited the partition of the matrices based on the selection of

the 𝑛most significant singular value. The coefficient 𝑛will be the order of the identified

model.

W1GW2 =

[
P P⊥

] [Σ𝑛 0

0 Σ

] [
Q

Q⊥

]
(3.39)

Finally the estimate of the extended observability matrix is given by (3.40), where R

is an arbitrary invertible matrix that will determine the coordinate basis of the state

representation.

Ô𝑟 = W−1
1 PR (3.40)

Coming back to the weighting matrices, the post-multiplication by W2 just corresponds

to an other change of basis, meanwhile the pre-multiplication by W1 is eliminated in

(3.40). They have an important role in the space spanned by P, and hence on the quality

of the estimates of the system matrices [30]. The MOESP method uses the weighting

matrices expressed in (3.41), meanwhile the CVA method uses (3.42).

MOESP : W1 = I, W2 =

(
1

𝑁
ΦΠΦ𝑇

)−1

ΦΠ (3.41)

CVA : W1 =

(
1

𝑁
YΠY

)−1/2

, W2 =

(
1

𝑁
ΦΠΦ𝑇

)−1/2

(3.42)

From the extended observability matrix we can get the state-space matrices by solving

two least square problem as said before.

We use this algorithm in the next chapter to identify a low-order model of the power

system. We use the Matlab implementation in the System Identification Toolbox [35]

where the Akaine Information Criterion (AIC) is used to find the best value for 𝑟, 𝑠1

and 𝑠2. Meanwhile, the order 𝑛 is selected manually from the SVD. To summarize, the
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START

Measurements uN−r+1, yN−r+1

Build matrices Y, Π, Φ

Compute matrix G = 1

N
YΠΦT

Apply SVD to W1GW2

Set Ôr = W−1

1 PR

From Ôr estimate Â and Ĉ

Estimate B̂ and D̂

RETURN

Figure 3.2: MOESP and CVA method flowchart

flowchart of the algorithms is shown in Fig. 3.2.

3.3.1 Predictor-Based Subspace Identification (PBSID) method

In the previous methods we have assumed that the disturbance and the input

are independent, but this is not true for closed loop systems. This implies that our

estimator will be biased [36]. To overcome this problem different approaches have been

developed in the literature. Here we present one of them, the so called Predictive-Based

Subspace IDentification (PBSID) method [37],[38]. We use the version based on VARX

estimations as illustrated in [39], from where the Matlab implementation has also been

taken. It uses a different procedure with respect to the subspace methods presented

above and it consist in two steps:

• First, it estimates the state sequence x(𝑡).

• Secondly, given the state estimate at instant 𝑡 and 𝑡+1, it computes the state space
matrices A, B, C, D solving a least square problem.
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We consider the equivalent Kalman predictor form of the state space system (3.24)

written as in (3.43), with Ã = A − KC and B̃ = B − KD.




x(𝑡 + 1) = Ãx(𝑡) + B̃u(𝑡) + Ky(𝑡)
y(𝑡) = Cx(𝑡) + Du(𝑡) + e(𝑡)

(3.43)

The matrix K is the Kalman gain and the random vector e(𝑡) models the disturbances

that are assumed to be white noise. Let us introduce the stacked vector Z𝑝(𝑡) defined

in (3.44), constructed by the input and output data from the time instant 𝑡 to 𝑡 + 𝑝 − 1,

where 𝑝 is the past time window.

Z𝑝(𝑡) =



z(𝑡)
z(𝑡 + 1)

...

z(𝑡 + 𝑝 − 1)



, z(𝑡) =
[
u(𝑡)
y(𝑡)

]
(3.44)

Moreover, we can collect the vector just defined, introducing the matrix Z as in (3.45),

where 𝑁 is the number of samples.

Z =

[
Z𝑝(1) . . . Z𝑝(𝑁 − 𝑝)

]
(3.45)

Finally, we define the extended controllability matrix and the extended observability

matrix in (3.46) and (3.47), where 𝑓 ≤ 𝑝 is the future time window.

K𝑝 =

[
Ã
𝑝−1

B̄ Ã
𝑝−2

B̄ . . . B̄
]
, B̄ =

[
B K

]
(3.46)

O 𝑓 =



C

CÃ
...

CÃ
𝑓−1



(3.47)

The first step of the algorithm is to reconstruct the state sequence. The main assumption

used in the PBSID method is to assume Ã
𝑗 ≈ 0 for all 𝑗 ≥ 𝑝. In [40] it is shown that

if the system is uniformly exponential stable, the approximation error can be made

arbitrary small by choosing 𝑝 large. With this assumption, the state at instant 𝑡 + 𝑝 can

be simplified as shown in (3.48).

x(𝑡 + 𝑝) = Ã
𝑝
x(𝑡) + K𝑝Z𝑝(𝑡) ≈ K𝑝Z𝑝(𝑡) (3.48)

Multiplying both side by the observability matrix O 𝑓 , we obtain the equation (3.49) that
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can be later used to compute the state sequence, provided O 𝑓K𝑝 is known.

O 𝑓 x(𝑡 + 𝑝) = O 𝑓K𝑝Z𝑝(𝑡) (3.49)

We expand the product O 𝑓K𝑝 as in (3.50), where we consider the fact that Ã
𝑗 ≈ 0 for 𝑗

greater or equal to 𝑝.

O 𝑓K𝑝 =



CÃ
𝑝−1

B̄ CÃ
𝑝−2

B̄ . . . . . . . . . CB̄

0 CÃ
𝑝−1

B̄ . . . . . . . . . CÃB̄
...

. . . . . . . . . . . .
...

0 . . . 0 CÃ
𝑝−1

B̄ . . . CÃ
𝑓−1

B̄



(3.50)

Notice that the matrix can be obtained only from the elements of the first block row,

which is exactly equal to CK𝑝 , that will be estimated from the input-output data. By

taking the approximation (3.48) into the output equation in (3.43), the output can be

approximate as in (3.51), or in vector form as in (3.52) by stacking the measurements.

y(𝑡 + 𝑝) ≈ CK𝑝Z𝑝(𝑡) + Du(𝑡 + 𝑝) + e(𝑡 + 𝑝) (3.51)

Y = CK𝑝Z + DU + E, Y =



y(𝑝)
y(𝑝 + 1)

...

y(𝑁)



,U =



u(𝑝)
u(𝑝 + 1)

...

u(𝑁)



, E =



e(𝑝)
e(𝑝 + 1)

...

e(𝑁)



. (3.52)

Therefore, the matrix CK𝑝 , together with D, can be estimated by solving the linear

regression problem (3.53).

(ĈK𝑝 , D̂) = arg min
CK𝑝 ,D

| |Y − CK𝑝Z − DU| |2𝐹 (3.53)

Now, given the previous estimate, we can build the estimate �O 𝑓K𝑝 of the matrix (3.50).

Successively, we can compute the state sequence X̂ from (3.49) by solving the low-rank

approximation problem in (3.54), where Ô 𝑓 is an estimate of the observability matrix.

min | |(ÔK 𝑝)Z − Ô 𝑓 X̂| |𝐹 (3.54)

To solve this problem, we can resort to the Singular Value Decomposition(SVD), shown

in (3.55), to compute the low-rank approximation Ô 𝑓 X̂.

(ĈK 𝑝)Z =

[
P P⊥

] [Σ𝑛 0

0 Σ

] [
Q

Q⊥

]
(3.55)
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The matrix Σ𝑛 contains the 𝑛 largest singular values from which we can set the order

of the estimated model. The orthogonal matrix Q contains the corresponding row

space. By setting the remaining singular values to zero, the observability matrix and

the state-sequence can be estimated as in (3.56).

Ô 𝑓 = PΣ
1/2
𝑛 X̂ = Σ

1/2
𝑛 Q (3.56)

Finally, we can compute the matrices of the state-space system (3.24), solving the least

square problem (3.57) and (3.58), where E = Y− ĈX̂− D̂U, meanwhile the matrix D̂ has

been computed in (3.53).

Ĉ = arg min
C

| |Y − CX̂ − D̂U| |2𝐹 (3.57)

(Â, B̂, K̂) = arg min
A,B,K

| |Y − AX̂ − B̂U − KE| |2𝐹 (3.58)

Optimized Algorithm: PBSIDopt

In the optimized version of the PBSID algorithm, the elements that build the matrix

(3.50) are obtained from the estimation of a Vector AutoRegressive with eXogenous

inputs (VARX) model. The state-space model (3.43) can be re-written as a transfer

function model, as shown in (3.59), where the transfer functions are defined in (3.60).

The Markov parameters Ψ, described in (3.61), are exactly the elements of (3.50).

y(𝑘) = G(𝑧)u(𝑘) + (I − H(𝑧))y(𝑘) + e(𝑘)
G(𝑧) = D + C(𝑧I − Ã)−1B̃ (3.59)

H(𝑧) = I − C(𝑧I − Ã)−1K

G(𝑧,Ψ) = Ψ
𝑢
0 + 𝑧−1

Ψ
𝑢
1 + 𝑧−2

Ψ
𝑢
2 + . . .

H(𝑧,Ψ) = I − 𝑧−1
Ψ
𝑦

1
− 𝑧−2

Ψ
𝑦

2
− . . . (3.60)

Ψ
𝑢
𝑖 =




D for 𝑖 = 0

CÃ
𝑖−1

B̃ for 𝑖 > 0
Ψ
𝑦

𝑖
= CÃ

𝑖−1
K (3.61)

The series in (3.60) can be truncated to a finite number of elements corresponding to

the past window 𝑝. The approximated one-step ahead predictor is given by equation

(3.62) or can be re-written as (3.63).

�̂�(𝑡 |𝑡 − 1) = G𝑝(𝑧,Ψ)𝑢(𝑡) + (I − H𝑝(𝑧,Ψ)𝑦(𝑡) (3.62)
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�̂�(𝑡 |𝑡 − 1) =
[
Ψ𝑢
𝑝 Ψ

𝑦
𝑝 . . . Ψ

𝑢
1

Ψ
𝑦

1
Ψ
𝑢
0

]


z(𝑡 − 𝑝)
...

z(𝑡 − 1)
u(𝑡)



:= ΨΦ (3.63)

The unknown Markov parameters Ψ can be estimated by minimizing the prediction

error. That is equivalent to solve the least square problem in (3.64).

min
Ψ

| |Y − ΨΦ| |2𝐹 (3.64)

From the estimated parameters we can build the matrix (3.50) and have the estimate of

the matrix D that is equal to Ψ
𝑢
0
. The rest of the algorithm is the same as the standard

version of PBSID.

To summarize, the flowchart of both algorithms is shown in Fig. 3.3. This optimized ver-

sion of the PBSID method has lower computational complexity and it is recommended

in case of large MIMO system.

These methods do not use any assumption on the independence between input and

disturbance, hence they can be used effectively also for the identification of closed-loop

systems. In the next chapter, when we refer to the PBSID method we are considering

its optimized version PBSIDopt.

Finally, the PEM method can also applied to state-space models to optimize the esti-

mation and reduce the possible bias. After having choose a parametrization of the state

matrices, a problem similar to (3.17) can be built. As for ARMAX, OE and BJ models,

the problem is not linear and not convex and iterative algorithms are used to solve the

problem. Moreover, since the number of parameters is huge, a good initialization is

fundamental to get a proper identification. Usually, a subspace method is used for the

initialization, but it has to give already a good estimation so that the PEM method can

converge to the right solution and to reduce the computation time.

These algorithms will be used and their performance compared for the identification

of a low-order model of the power system, suitable for PSS tuning. Moreover, MOESP

method can be adapt to handle only output data, without any input, and it will be used

in the validation to identify the power oscillations frequencies and damping factor from

ambient data [14].
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START

Measurements uN , yN

PBSID

Build matrices Y, Z, U

Solve (3.53) to get ĈKp and D̂

From ĈKp build matrix ÔKp as (3.50)

PBSIDopt

Build matrices Y, Z, Φ

Solve (3.64) to get Ψ

From Ψ build matrix ÔKp as (3.50)

Apply SVD to ÔKpZ

Estimate the state sequence as X̂ = PΣ
1/2
n

Estimate matrix Â, B̂ ,Ĉ ,D̂ solving (3.57)-(3.58)

RETURN

Figure 3.3: PBSID method flowchart
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4
Power System Identification for PSS

tuning

In this chapter, we introduce the problem of identifing a low-order linear model

of the power system, which will be later used in Chapter 5 for the online tuning of

the PSSs. We compare the different system identification methods presented in the

previous chapter. We consider a modified version of the Two-Area Four-Generators

system [41] as test case.

4.1 Introduction

In general, a complete model of the power system is not always available and it

can change over time. For example, some lines can be added, the generation can be

re-dispatched and also renewable sources can generate power differently based on

the weather conditions. Therefore, the Power System Stabilizers may need to be re-

tuned based on the actual condition of the system in order to guarantee the required

performance. Taking into account that a system model is typically not available, the

system identification techniques presented in the previous chapter can be used to

identify a low-order model of the power system that can be used to compute the new

parameters of the PSSs.

To estimate a model, we need to perturb the system to excite the dynamics. In Fig.

3.1, it corresponds to excite the system with the reference signal 𝑤(𝑡) and collect the

data sequences 𝑢(𝑡), 𝑦(𝑡). The excitation signal, also called the probing signal, has to

be designed to excite the system only in the frequency range of interest but at the same

time to avoid large perturbation that in general are undesired. In our case the range of

low-frequency oscillations is the frequency range we are interested in.

Moreover, the identification of systems in close-loop is difficult for mainly two

reason. The first is that the feedback modifies the excitation signal making it less
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AVR + EX Generator Power system

PSS

u(t)w(t) = ∆Vref y(t)

d(t)System to be identified

Figure 4.1: Block diagram of the system. Highlighter in red the open loop system to
identify

rich of frequency component. The second it makes the input of the open-loop system

correlated with the disturbances. So, we test different methods, described in chapter 3,

to identify a suitable method that can deal with closed-loop identification and can give

a suitable model of the power system.

Let us consider the system diagram in Fig. 4.1. The system to be identified consists

in the Automatic Voltage Regulator (AVR), the exciter circuit (EX), the synchronous

generator where the PSS is installed and the remaining power system, composed by

the all the other devices: other synchronous generators, loads, FACTS, cable, etc.

The reference signal is the voltage reference of the AVR, where the PSS output is

added, resulting in the input signal 𝑢(𝑡). The input of the PSS is the speed deviation

of the synchronous generator. The disturbance signal 𝑑(𝑡), which enter in the power

system dynamics, models all the variations that happen in the power system around

the steady state configuration. By exciting the system through 𝑤(𝑡) and collecting

the input-output data 𝑢(𝑡), 𝑦(𝑡), we can identify, using the methods described in the

previous chapter, a low-order linear model of the system. We are not interested in the

identification of the complete model of the power system (that will be very difficult, if

not impossible), but just in a low-order model that can model the relation between the

selected input and output and can be used to tune the PSSs. The identification is carried

out in discrete time and then the model is transformed in continuous time through the

bilinear transformation.

4.2 Two-Area Four-Generator system

To validate and compare the identification methods, we consider a modified version

of the Two-Area Four-Generator power system [41], shown in Fig. 4.2. It is composed

of four generators, divided in two areas. Each generator is connected to the grid by

means of a transformer, which is modelled as an R-L impedance. There are two loads in

the system, one connected at bus 7 and the other at bus 9. The generators are modelled

with the complete model and they are equipped with the Simple Exciter and the IEEE

TGOV1 turbine/governor model, described in Section 2.1. Moreover, in generator 1
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G1

1

G2

2

G3

3

G4

4

5 6 7 8 9 10 11

L1 L2

AREA 1 AREA 2

Figure 4.2: Two-Area Four-Generator power system

(G1) a PSS is installed to damp the low-frequency oscillations.

4.2.1 Small Signals Analysis

Before going into the details of the system identification, the small signals analysis

is performed to understand the characteristic of this system. Given the parameters of

the system and the operation point, the linear system can be obtained in the form (4.1),

where x is the state vector made of 10 state variables for each generator for a total of 40

state variables. The input 𝑢 is the input made by the sum of the AVR voltage reference

and the PSS output at generator 1. The output 𝑦 is the rotor speed deviation of the

same generator, and 𝑑 is the load variation.




x¤(𝑡) = Ax(𝑡) + B𝑢(𝑡) + B𝑑𝑑(𝑡)
𝑦(𝑡) = Cx(𝑡) + D𝑢(𝑡) + D𝑑𝑑(𝑡)

(4.1)

Having a complete description of the power system, the linear state-space can be

obtained analytically as explained in [25]. We use the Power System Toolbox [42] to

perform this task and to obtain the state matrices of the power system. With the

linear model, we can compute the eigenvalues of A and perform the modal analysis as

described in Section 2.3.

The electromechanical modes are summarized in Table 4.1 and are plotted in Fig.

4.3 . We can notice that the system has a badly damped mode at frequency 0.63 Hz,

which is the inter-area mode between the two areas. Moreover, the system has two

intra-area modes, one in area 1 and one in area 2, at frequency 1.08 Hz and 1.13 Hz

respectively. The participation factors of these modes are computed together with the

mode shapes. For each of the three electromechanical oscillation modes, Fig. 4.4 shows

the participation factor, meanwhile, Fig. 4.5 shows the mode shape.

As already mentioned, we can see that there is an inter-area mode that includes all

the generators where generators 1 and 2 oscillate against generators 3 and 4. Moreover,
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Figure 4.3: Eigenvalues of the Two-Area Four-Generators linearized system

Type Eigenvalue Frequency Damping Correlation factor Gen. involved

Inter-area −0.062 ± 3.954𝑖 0.63 Hz 1.55 % 1 G1-2 vs G3-4
Intra-area −1.054 ± 6.806𝑖 1.08 Hz 15.31 % 0.9498 G1 vs G2
Intra-area −0.545 ± 7.125𝑖 1.13 Hz 7.63 % 0.9053 G3 vs G4

Table 4.1: Electromechanical modes of the Two-Area Four-Generators system

G1 G2 G3 G4
0

0.5

1 Inter-area
Intra-area 1
Intra-area 2

Figure 4.4: Participation factors of the electromechanical modes in the Two-Area Four-
Generators system
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Figure 4.5: Mode shape of the electromechanical modes in the Two-Area Four-
Generators system

there is an intra-area mode between generators 1 and 2, and another one between

generators 3 and 4. From these plots, we also deduce that the PSS installed at generator

1 can influence the inter-area mode and the intra-area mode of area 1, but not the one

of area 2. Moreover, we expect to not be able to identify the oscillation mode in area 2

from local measurements in area 1.

4.2.2 System Identification

A first test is carried out to understand the feasibility of the identification methods

and compare them. We excite the system at the reference voltage of the AVR of generator

1, and collect this signal together with the PSS output. We sum them to obtain the input

signal 𝑢(𝑡).
As excitation signal we choose a multi-sine signal, as in (4.2)-(4.3), with frequencies

in the [0.1, 2]Hz range. This excites the system in the frequency range where the low-

frequency oscillations are expected. The phases 𝜙𝑘 are chosen as (4.3) to minimize the

crest factor [30] and to avoid large perturbations. The amplitude of the sines is chosen

to avoid rotor speed deviations greater than 10 mHz.

𝑤(𝑡) =
20∑

𝑘=0

0.0025 sin(𝜔𝑘𝑡 + 𝜙𝑘) (4.2)

𝜔𝑘 = 0.1 + 1.9

20
𝑘, 𝜙𝑘 = − 𝑘(𝑘 + 1)

21
𝜋 (4.3)

The length of the signals, and of the experiment, is 120s. This time window gives

satisfactory results but further analysis can be carried out to understand if it can be

decreased.

We select as outputΔ𝜔1, the speed deviation of generator 1. To the measured output

gaussian white noise with a standard deviation of 10−5 Hz is added.

The disturbance signals consist in a random load modulation of the two loads with

a standard deviation of 10 MW filtered with a 2 Hz low-pass filter. The simulation of
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the complete non-linear system is performed using the Power System Toolbox (PST)

[35] in Matlab. The data are down-sampled at 10 samples per second, after filtering

them through an anti-aliasing filter. Finally, they are scaled so that the returned signals

have unitary variance. The input and output data are shown in Fig. 4.6 and 4.7.

The system identification methods, or model structures, considered are the follow-

ing:

• ARMAX

• BOX-JENKING (BJ)

• PBSID

• MOESP

• CVA

We do not consider ARX and OE model structure because the disturbance model is

too simple to describe the disturbances that appear in a power system. For each method,

a model of the power system is identified using the input-output data presented above.

The order of the model is chosen based on the SVD for subspace methods, while for

transfer function models a trial-and-error procedure has been applied until the result

was satisfactory. The orders of the models are reported in Table 4.2. To evaluate the

performance of the identified models we consider several metrics.

First of all, how well the predicted response of the identified model matches the

measured data. Moreover, we consider the normalize root mean square error computed

as in (4.4), where y is the output of the system and �̂� is the one-step ahead predictor

given by the identified model.

𝐸𝑅𝑅𝑦 =
| |𝑦 − �̂� | |

| |𝑦 − mean(𝑦)| | (4.4)

Secondly, the ability of the methods to identify the dominant eigenvalues of the

system. We evaluate the normalized euclidean distance on the complex plane (4.5),

between the identified eigenvalues �̂�𝑖 and the ones of the linearized system 𝜆𝑖 . The set

𝐼 is the set of low-frequency oscillation modes that we are interested in estimating, i.e.

the inter-area and intra-area 1 eigenvalues.

𝐸𝑅𝑅𝐸𝐼𝐺 =

∑

𝑖∈𝐼

| |𝜆𝑖 − �̂�𝑖 | |
| |𝜆𝑖 | |

(4.5)

Thirdly, the comparison between the frequency response of the identified model

and the linearize one. To have a index of this performance, we consider the normalized

root mean square error between the frequency responses of the linearized system𝐻(𝑗𝜔)
and the one of the estimated model 𝐻(𝑗𝜔), defined in equation (4.6).

𝐸𝑅𝑅𝜔 =

𝜔2∑

𝜔=𝜔1

| |𝐻(𝑗𝜔) − 𝐻(𝑗𝜔)| |
| |𝐻(𝑗𝜔)| | , 𝜔1 = 0.1 Hz, 𝜔2 = 2 Hz (4.6)
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Figure 4.6: Inputs of the system before filtering and down-sampling
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Figure 4.7: Output of the system before filtering and down-sampling

Finally, we perform the auto-correlation and cross-correlation tests briefly described

in Section 3.1.

The comparison of the predicted response is shown in Fig. 4.8 compared to the

measured output. Meanwhile, in Table 4.2 the error (4.4). All the methods can predict

well the output response and have comparable error. In Fig. 4.10 and Fig. 4.11 the

eigenvalues are compared and in Table 4.2 the error (4.5) is shown. The MOESP and

CVA method are the ones with the worst performance, and PBSID seems to be the more

accurate. Moreover, we can notice that not all the eigenvalues are identified but this

will not compromise a good design of the PSS based on the identified model. Finally,

in Fig. 4.9, the identified frequency response in shown and compared to the one of the

linearize system and the error (4.6) is reported in Table 4.2. Also in this case, PBSID

has better estimation of the real system, but also ARMAX and BJ performs well. From

the eigenvalues and the frequency response, ARMAX and BJ are almost equivalent but

the ARMAX is to prefer since it has a simpler model structure. Also MOESP and CVA

methods are almost equivalent but CVA gives slightly better results.

For ARMAX and PBSID we perform the residue test, shown in Fig. 4.12. For PBSID

both the auto-correlation and the cross-correlation are inside the confidence intervals.

Instead the ARMAX model fail the auto-correlation test. This means that this type of

model structure can not estimate a good model of the noise and suggests to reject this

type of model, as they might have larger sensitivity to noise.

However, to have a better understanding of the statistical properties of the methods,

we collect the data from fifty different simulations obtained from different disturbance

and noise realizations. We considered the PBSID, ARMAX, CVA methods, that have

shown the best performance for each method class, and also we considered the PEM

method applied to the estimated model from the PBSID method. In Fig. 4.15 we
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Figure 4.8: Predicted output of the identified system using various methods.
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Figure 4.9: Frequency response of the identified system using various methods. (LS =
Linearized system, ID = Identified system)

36



CHAPTER 4. POWER SYSTEM IDENTIFICATION FOR PSS TUNING

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Real

Im
ag

ARMAX

LS
ID

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Real

BJ

LS
ID

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Real

Im
ag

MOESP

LS
ID

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Real

CVA

LS
ID

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Real

Im
ag

PBSID

LS
ID

Figure 4.10: Eigenvalues of the identified system using various methods. (LS = Lin-
earized system, ID = Identified system)
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Method Order 𝐸𝑅𝑅𝑦 𝐸𝑅𝑅𝐸𝐼𝐺 𝐸𝑅𝑅𝜔

ARMAX [8, 7, 8, 1] 0.1198 0.0181 0.4766
BJ [9, 6, 6, 9, 1] 0.1201 0.0184 0.4748
MOESP 6 0.1302 0.0304 0.6737
CVA 6 0.1298 0.0300 0.6411
PBSID 8 0.1216 0.0132 0.4268

Table 4.2: System identification methods: order and performance. For BJ the order is
referred to [𝑛𝐹 , 𝑛𝐶 , 𝑛𝐷 , 𝑛𝐵 , 𝑛𝑘] and for ARMAX to [𝑛𝐴 , 𝑛𝐵 , 𝑛𝐶 , 𝑛𝑘]

report the eigenvalues of all the simulations and in Fig. 4.13 and Fig. 4.14 we show

the box plot of the low-frequency oscillation frequency and damping estimation error.

For each method, we show the median error, the upper and lower quartile, and the

maximum and minimum error. The compare the methods we have to look how much

the median is closed to zero and how the error is spread around it. As expected

CVA has again the worst accuracy, and PBSID has smaller error compared to ARMAX.

In Fig. 4.16 we compare the frequency response and in Fig. 4.17 we show the box

plot of the magnitude error. We can confirm that PBSID is the method with the best

performance and in general the PEM method improves the accuracy of the accuracy

of the estimation, but the PBSID itself gives good results and moreover it has lower

computational complexity.

We conclude that PBSID, and eventuality an optimization with PEM, is the best

method to obtain a low-order model of the power system between the ones we have

considered in this thesis and it is the method that we will use in the next chapter to

identify a model of the power system for the re-tuning of the PSSs.
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Figure 4.13: Box plot frequency error

39



4.2. TWO-AREA FOUR-GENERATOR SYSTEM

PBSID PEM ARMAX CVA
−3

−2

−1

0

1

·10
−2

Er
ro

r
Inter-area

PBSID PEM ARMAX CVA

−2

−1

0

1

2
·10

−2
Intra-area 1

Figure 4.14: Box plot damping factor error

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Real

Im
ag

PBSID

LS
ID

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Real

Im
ag

PBSID+PEM

LS
ID

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Real

Im
ag

ARMAX

LS
ID

−1.4 −1.2 −1 −0.8 −0.6 −0.4 −0.2 0
−10

−5

0

5

10

Real

Im
ag

CVA

LS
ID

Figure 4.15: Eigenvalues of the identified systems from 50 simulations with different
disturbance/noise realization
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5
PSS tuning

In this chapter we illustrate the techniques used for the design of the Power System

Stabilizers(PSSs). The design is based on the residue analysis and on the root locus

methods. We applied the techniques to the identified low-order the power system

model and we validate the method trough MATLAB simulations.

5.1 PSS Tuning based on residues and root locus

Consider the control diagram in Fig. 5.1, where 𝑃(𝑠) is the estimated model of the

power system and 𝐶𝑃𝑆𝑆(𝑠) is the PSS transfer function as in (5.1) that includes only the

gain and lead-lag blocks, meanwhile the washout block is included in 𝑃(𝑠).

P (s)

CPSS(s)

∆VREF (t) ∆ω(t)

VPSS(t)

Figure 5.1: System control scheme

𝐶𝑃𝑆𝑆(𝑠) = 𝐾𝑃𝑆𝑆
1 + 𝑠𝑇1

1 + 𝑠𝑇2

1 + 𝑠𝑇3

1 + 𝑠𝑇4
(5.1)

The open-loop transfer function 𝑃(𝑠) can be expanded in partial fraction, as shown in

(5.2). The residue 𝑅𝑖 can be computed from the state-state representation (3.24) of the

identified model as in (5.3), where v𝑖 and w𝑖 are respectively right and left eigenvector

associated to the eigenvalue 𝜆𝑖 .

𝑃(𝑠) =
𝑁∑

𝑖=1

𝑅𝑖
𝑠 − 𝜆𝑖

(5.2)
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𝑅𝑖 = Cv𝑖w
𝑇
𝑖 B (5.3)

The residue gives the sensitivity of the associated eigenvalue to a static feedback

and hence the direction in which the eigenvalue will move in the complex plane. Since

our aim is to move the poorly damped eigenvalues to the left part of the complex plane,

we have to tune the parameters of the PSS such that this happens. We select the least

damped eigenvalue 𝜆∗ = 𝜎 + 𝑖𝜔 and the PSS is designed for this specific eigenvalue. It

can be shown [43] that the eigenvalue deviation is given by equation (5.4) and we can

set the controller parameters to satisfy (5.5). That is equivalent to say that the controller

has to introduce a phase compensation of 𝜙 degree at the frequency 𝜔.

Δ𝜆∗
= 𝑅∗𝐶𝑃𝑆𝑆(𝜆∗) (5.4)

180◦ = ∠𝑅∗ + ∠𝐶𝑃𝑆𝑆(𝜆∗) or ∠𝐶𝑃𝑆𝑆(𝜆∗) = 180◦ − ∠𝑅∗ := 𝜙 (5.5)

Based on the required phase compensation we can select the time constants 𝑇𝑖 of the

lead-lag blocks and then the gain 𝐾𝑃𝑆𝑆 to move the eigenvalue as much as possible to

the left or to satisfy some other performance requirement. To design the time constants

we simplify the transfer function of the PSS, as shown in (5.6), in which the two lead-lag

blocks are identical.

𝐶𝑃𝑆𝑆(𝑠) = 𝐾𝑃𝑆𝑆

(
1 + 𝑠𝑇

1 + 𝑠𝛼𝑇

)2

(5.6)

To select the time constant𝑇 and the constant 𝛼 in (5.6), we use the formula in (5.7), that

can be obtained by imposing the maximum phase shift in 𝜔 and such that the phase

compensation in 𝜔 is exactly the angle 𝜙.

𝛼 =
1 − sin 𝜙

1 + sin 𝜙
, 𝑇 =

1

𝜔
√
𝛼

(5.7)

Instead, for the gain 𝐾𝑃𝑆𝑆 we solve the optimization problem in (5.8), where we maxi-

mize the minimum damping factor over all the eigenvalues. This is done because the

lead-lag blocks are designed for the most undampened mode and then it can happen

that the other modes will move too far to the right and compromise the overall perfor-

mance. Moreover, we add a regularization factor 𝜇𝐾 to avoid large gains as a solution.

𝐾𝑃𝑆𝑆 = arg max
𝐾

[
min
𝑖

(𝜉𝑖(𝐾)) − 𝜇𝐾

]
(5.8)

This problem does not have an analytic solution. However, we are not interested in

the precise optimal solution but rather in a solution that satisfies the requirement. We

compute the cost function min𝑖 (𝜉𝑖(𝐾)) + 𝜇𝐾 for a finite set of gains and we select the

one that maximises it. The algorithm is summarised in the Fig. 5.2.
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START

Compute the eigenvalues λi of A

Select the eigenvalue λ∗ with minimum damping

Compute the associate residue R∗

Compute the phase compensation ϕ = 180◦ −
̸ R∗

Compute the parameters of the lead-lag blocks as (5.7)

Compute the gain KPSS solving (5.8)

RETURN

Figure 5.2: PSS design method flowchart

5.2 Validation

We consider the Two-Area Four-Generators power system described in Chapter 4.

We suppose the PSS on generator 1 has to be retuned because the performance is not

satisfactory.

We collect input-output data and we identify a low-order linear model with the PBSID

method plus the PEM method to optimize the estimated model. We compute the low-

frequency oscillation eigenvalues for the open-loop system which are reported in Table

5.1. We select the less damped mode that is 𝜆∗ = −0.066 ± 4.007𝑖 and we compute the

parameters of the lead-lag blocks accordingly to equations (5.5) and (5.6).

In Fig. 5.3 is reported the root locus of the system with the phase compensation.
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Eigenvalue Frequency [Hz] Damping

Open-loop
−0.066 ± 4.007𝑖 0.64 1.62 %
−1.182 ± 7.044𝑖 1.12 16.54 %

Closed-loop −0.443 ± 4.115𝑖 0.65 10.70 %
(Tuned) −5.718 ± 10.629𝑖 1.69 47.37 %

Closed-loop −0.173 ± 4.177𝑖 0.66 4.14 %
(Old) −0.759 ± 7.716𝑖 1.23 9.79 %

Table 5.1: Electromechanical modes of the Two-Area Four-Generators system in open-
loop and in closed-loop with the old PSS and the tuned one (computed from the
identified model)

Eigenvalue Frequency [Hz] Damping

Closed-loop −0.405 ± 4.062𝑖 0.65 9.91 %
(Tuned) −5.718 ± 10.629𝑖 1.66 42.35 %

Closed-loop −0.161 ± 4.119𝑖 0.66 3.89 %
(Old) −0.652 ± 7.411𝑖 1.18 8.77 %

Table 5.2: Electromechanical modes of the Two-Area Four-Generators system in open-
loop and in closed-loop with the old PSS and the tuned one (computed by linearizing
the system)

For a small gain, the selected eigenvalue, highlighted in red, is moving horizontally to

the left increasing the damping factor. In the figure are reported also the 10% damping

bounds. That it is the performance requirement that the design has to satisfy.

Then, we compute the cost function in (5.8) with 𝜇 = 0.1 for 𝐾 varying from 0 to 50

with a step of one. The optimal value is 𝐾 = 37. In Fig. 5.3 and in Table 5.1 we report the

new eigenvalues of the closed loop system with the tuned PSS. We can see that the less

damped eigenvalue is moved inside the region with damping coefficient larger than

10% but also all the others eigenvalues are still in that region. For comparison, in Table

5.2 we report the eigenvalues of the closed-loop system obtained from the linearization

of the system. Despite the small differences between the eigenvalues obtained from

the identified system and the one obtained from the linearization, we can increase the

overall performance of the system through the re-tuning of the PSS.

Finally, to validate the methods, we simulate the power system in Matlab using the

Power System Toolbox. To excite the dynamic and the oscillations we simulate a three

phase to ground fault at bus 8 and the disconnection of the lines between bus 7 and 9

after 0.05 seconds. In Fig. 5.4 are reported the rotor speed of the first generator and the

tie-line power evolution without the PSS, with the badly tuned PSS and with the one

tuned with the proposed method. As expected, without the PSS the system presents

badly damped oscillations. With the old PSS the oscillations are more damped but after

20s they are still present. Meanwhile, with the tuned PSS they almost disappear after
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Figure 5.3: Root locus of the system with phase compensation. The root locus of the
eigenvalue with minimum damping is highlighted in red. The right plot is the zoomed
version of the left one.

0 2 4 6 8 10 12 14 16 18 20

0

0.05

0.1

∆
ω
1

[H
z]

w/o PSS
old PSS

tuned PSS

0 2 4 6 8 10 12 14 16 18 20

−50

0

50

t [s]

T
ie

-li
ne

po
we

r
[M

W
]

Figure 5.4: Fault simulation w/o PSS, with the improperly tuned PSS and with the
tuned one

47



5.2. VALIDATION

10s.

We can conclude that the low-order model identified with the PBSID method and

then optimized with the PEM method is adequate for the tuning of the PSSs parameters

and the technique based on the residue and root locus can be used to compute the

parameters that guarantee the desired performance.
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6
Real-Time Validation

In this chapter, we report the real-time validation of the method proposed for the

identification of a low-order linear model of a power system to be used for the PSSs

tuning. In the first section we briefly present Hypersim, the simulation software, that

we used for the validation. In the next sections, we first report the validation that was

carried out using the Two-Area Four-Generator system, presented also in the previous

chapters. Then we approach a larger system, namely the New England 68-Bus System.

6.1 Validation framework

Hypersim by OPAL-RT is a high-performance simulator software for power sys-

tems. It has a rich library of components that can be used to model power grids. We

used this software to perform the real-time validation of the proposed methods.

In Hypersim we design the power system models in our local PC, which is connected

via the local network to the external high-performance machine, the OPAL-RT OP 5700,

where the real-time simulation is processed. From Hypersim we can run and stop the

simulation, and acquire the needed measurements. Moreover, a peculiarity of Hyper-

sim is that we can change the parameters of the model during the running simulation.

This has been very useful because we can modify online the parameters of the PSSs

without stopping and restart the simulation.

Hypersim also has a Python API that has been used to manage and coordinate the

simulation flow trough a Python script. Finally, since the scripts for the system identi-

fication has been developed in Matlab, we used the API Matlab Engine for Python to

call the Matlab functions and process the data acquired from Hypersim.

The resuming diagram of the simulation framework is shown in Fig. 6.1.
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Figure 6.3: 2A4G - Simulation for PSSs retuning

starting the simulation, we collect 60s of ambient data recording the two rotor speed

deviations. This is used to analyse the oscillations in the system.

If an undamped mode is detected in the ambient data, we activate the excitation

signal and we record for 120s the input-output data to identify the low-order model

seen from generator 1. We compute the new parameters for the PSS and we update

them in the running simulation. Afterwords, we do the same for generator 3. Finally,

we analyse 60s of ambient data to see if we have improved the overall damping.

Before the tuning of the PSSs there is a mode at frequency 𝑓 = 0.61 Hz with a

damping factor of 𝜉 = 3.7%. This means that the stability margin is small and changes

in the power system may bring the system into an unstable configuration. After the

retuning, the least damped mode is at frequency 𝑓 = 0.63 Hz but we have increased the

damping to 𝜉 = 18.8%.

Notice that the perturbation introduced by the probing signals during the identi-

fication is comparable with the natural load variation meaning that low-level probing

signals can be used effectively to identify a model of the power system.

The frequency response of the identified model for generator 1 and 3 are reported

in Fig. 6.4. Unfortunately, from the Hypersim model we are not able to extract a linear

model of the system to validate the identified model. Hence, we resort to the residual

analysis to approve or reject the model. In Fig. 6.5 we show the root locus used to

design the PSS parameters, where we compare the eigenvalues before and after the

retuning. In Table 6.1 we report the PSSs parameters.

In Fig, 6.6 we show the response of the power system after a three-phase to ground
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Figure 6.4: 2A4G - Frequency response of the identified models

Generator PSS 𝐾𝑃𝑆𝑆 𝑇1, 𝑇3 [s] 𝑇2, 𝑇4 [s]

G1
Old 10 0.080 0.015

Tuned 32 0.290 0.222

G3
Old 10 0.080 0.015

Tuned 28 0.238 0.240

Table 6.1: 2A4G - PSSs parameters

fault at bus 8 and the disconnection of the line between bus 7 and 9 after 0.05 seconds to

isolate the fault. Moreover, we show also the re-connection of the line after the clearing

of the fault. From both cases we can see that after the retuning of the PSSs we have

overall better performance with regard to the oscillation damping. From tie-line power

evolution, we can see how the oscillation are much more damped. In particular, in the

re-connection of the line, with the old PSSs the oscillation lasts for 20− 25s meanwhile,

after the retuning they disappear after only 10s. Moreover, we can see that we can

remarkably reduce the frequency deviation peaks of the two generators.

We can conclude that the proposed method works as expected also online in real-

time simulations and it can be applied online during the normal activity of the power

system.
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Figure 6.5: 2A4G - Root locus for PSSs retuning

6.3 New England 68-Bus system (NE)

To validate the proposed method in a more complex power system, we consider

the New England 68-Bus test system [44]. We used this model because is one of the

standard system used for oscillation analysis and PSS tuning test. The data of the

model can be downloaded from [45] in PSS/E format ans then imported in Hypersim.

However, in order to obtain a model with which one can work, the model diagram has

to be manually routed. In Fig. 6.7 and in Fig. 6.8 we show the power system diagram.

It is composed of 16 synchronous generators, 68 buses and 35 loads. Ir represent a

reduced order equivalent model of the New England test system (containing G1 to G9)

interconnected to the New York power system (containing G10 to G13). In the original

model the generators G14, G15 and G16 represent the connection to the neighboring

areas. Meanwhile, in this work they are treated as standard generators. Each machine

is equipped with the TGOV1 governor/turbine system model and with the SCRX

excitation system. Its model is equivalent to the Simple Exciter model presented in

Chapter 2 but also has negative current logic circuit at the output. However, it can be

disabled.

6.3.1 Scenario 1: Retuning of PSSs

The first validation scenario that we have carried out is to see if the proposed

algorithm can work also in this more complex system. Suppose the PSS at generators

3 and 13 are not properly tuned (we set manually bad parameters) and we try to tune

them to improve the performance. As done previously, we excite the system through
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Figure 6.7: New England power system diagram

the probing signals and we collect the input-output data to identify a low-order model

of the system. In Fig. 6.9 is reported the Bode plot of the identified model for the two

generators. Meanwhile, in Fig. 6.10 the root locus used to design the controllers is

shown. The two models present different oscillation modes. In particular, generator

3 (G3) is involved in three oscillation modes. The higher frequency mode is slightly

observable, there is almost a zero-pole cancellation, and is also not controllable, since

through the feedback we cannot move it. This eigenvalue could be a actual mode of

the system or just an artefact introduced in the identification to fit the data. Moreover,

we have to pay particular attention when we design the gain of the PSS. Following the

procedure in which we maximize the damping, this eigenvalue will limit the gain since

we can not move it. To solve this problem, the gain can be set manually by looking at

the root locus or this particular eigenvalue could be excluded from the object function

when we maximize the damping. The model presents two other oscillation modes.

One has large controllability and we can increase considerably the damping by moving

it. The other one at a lower frequency, has less controllability. However, we can bring

it inside the 10% damping region. From experience, the first one is related to a local

mode, instead, the second probably is related to an intra- or inter-area mode and to

increase the damping we also have to act, i.e. retune the PSS, on the other machines

involved in this mode.

For generator 13 (G13), instead, the model has only one mode that is not adequately

dampened, but through re-tuning, we can increase the damping even if we can not

reach the 10% bound. Also for this mode, we can expect it to be an intra/inter area

mode and we have to act also on the other machines.

Finally, to validate the methods we look at the transient response of the system after
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a fault, shown in Fig. 6.11. The fault is a three-phases to ground fault at bus 60. We

can conclude that also with more a complex model, the proposed method can identify

a correct model that can be used to design the parameters of the PSSs and the new

controller can improve the damping of the low-frequency oscillations.

6.3.2 Scenario 2: increasing in renewable generation

We build a scenario in which we present a real use case of the proposed method in

which we show that the retuning of the PSSs can save the power system from instability

when the configuration changes. In particular, we add several PQ generator buses in

the model to simulate the integration of renewable sources. The power rating of the

generators and the added PQ buses are listed in Table 6.2.

Generator 16 is the swing bus and the power is given by the load flow solution.

We have three configurations: initial, tuning and final. We suppose that the PSSs

are properly tuned for the initial configuration. Then bring the system to the final

configuration by increasing the power of the PQ buses and decreasing the one of the

generators until reaching the final configuration. In this new configuration the system
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becomes unstable: starting from the equilibrium point given by the load flow solution,

the system starts to oscillate until we lose the synchronization between the group of

generators 1-9 and the group 10-16, as shown in Fig 6.12.

Instead, if during the increasing of the PQ power when we reach the tuning con-

figuration, we re-tune the PSSs in generators 3, 6, 9, 14, 15 we can maintain the power

system in a stable configuration. The general idea is to be able to detect the reduction

of the stability margin and the need to retune the PSSs using the ambient data. In our

case, we are not able to estimate correctly the modes of the system. The problem with

a larger system is a large number of modes that makes the estimation more difficult

and also it is harder to understand in which machine one has to retune the PSS. Since

the mode estimation from ambient data is not the main focus of this work, we did not

dig into it. The tuning configuration was chosen manually setting the added PQ buses

power to the 85% with respect to the final configuration. Also the generators where

retuning the PSS were chosen manually. After having identify a model for each of

them, we selected the one with modes closed to be unstable.

To see the behaviour of the system in the final configuration with the PSSs tuned

in the tuning configuration, we simulate the disconnection of a 50 MW load at bus 53.

The result of the simulation are shown in Fig. 6.13. We can see that the oscillations do

not diverge and the retuning can guarantee good performance also in the final config-

uration. The frequency deviations are not diverging, they converging towards steady

state value. Since the system in general is slow to compensate load variations, it takes

more than the 20s plotted in the figure to reach the steady state.

In conclusion, we validated the proposed method in two different models. In the

first model, namely the Two-Area Four-Generator system, we validated the applicability

of the method in real-time simulation and tested the entire chain: oscillation detection,

model identification, PSSs returning, oscillation damping check. The method for iden-

tification and PSS retunig works as expected, we are able to identify a proper model
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Figure 6.13: NE - Validation scenario 2 - using the final configuration of the generators
and added PQ buses, but after retuning of PSSs in G3, G6, G9, G14, G15.

and to retune the PSSs to satisfy the required performance. Therefore, we are confident

that it can also be used in a real system. In the second model, namely New England

68-Bus system, we tested our solution in a larger model. Despite the higher complexity,

the proposed method is capable of increasing the system performance. Finally, we

present a use case in which we show that the retuning of the PSSs based on system

identification can prevent the system from becoming unstable.
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Power [MW]
Initial Tuning Final

G1 140 128 117
G2 508 466 424
G3 519 476 433
G4 614 563 512
G5 292 268 244
G6 546 500 455
G7 600 550 500
G8 463 424 386
G9 560 513 467
G10 624 572 520
G11 1186 1087 989
G12 735 674 613
G13 4309 3950 3591
G14 1302 1195 1085
G15 1200 1100 1000
G16 - - -

BUS19 254 432 509
BUS22 303 515 606
BUS24 155 264 301
BUS28 446 768 892
BUS64 507 861 1014
BUS68 468 795 936

Table 6.2: NE - Validation scenario 2 - Generation power for generators and added PQ
buses in the initial, tuning and final configuration.
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7
Conclusions and Future Work

In this chapter we summarise the work of the thesis and we present some possible

future work.

7.1 Conclusions

In this thesis, we presented a framework for online automatic tuning of PSS based

on the identification of power system model. Note that the entire procedure can be

performed without disabling the PSS. In this regard, while keeping the PSS online, the

system identification is done in closed-loop. This generally makes identification more

complicated. For this reason, several methods were compared in order to identify the

most suitable one. The method with the best performance was the PBSID method,

which identifies the model in state space. In addition, it can be further optimised using

the PEM method, if necessary.

For the PSS tuning, a method based on residuals and root locus was used. Specif-

ically, from the identified model, the eigenvalue with the lowest damping is selected

and its residual is computed. From it, the parameters of the lead-lag blocks can be

derived. Subsequently, the gain is calculated by maximising the minimum damping

among all eigenvalues.

After developing and testing the methods in Matlab, we validated the entire proce-

dure in real-time simulation, using Hypersym. Two different systems were considered:

the Two-Area Four-Generator System and the New England 68-bus test system. In the

first case, we validated the entire process in which the retuning procedure is triggered

by detecting the presense of low-frequency oscillation from the ambient data. In the

second, we validated the proposed method in a more complex system and then demon-

strated through simulations how retuning of PSSs can save the system from instability.

In both cases, we were able to identify a model of the system and re-tune the PSSs

to increase the system damping performance. Therefore, we think that the proposed
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method can be applied and improve the ability of power system operators to control

the power system even in critical situations.

7.2 Future work

The work developed in this paper can be further developed in several directions.

Some of them are reported in the following paragraphs.

Input selection and SNR analysis A proper selection of the input is important for the

correct identification of the system. In this thesis, we use a multi-sine signal because

we considered it was the most appropriate for our scope. Nevertheless, one can further

investigate the role of the input and understand if there is a better choice.

Moreover, we did not dwell on the time window length of the recorded data. That

can be further investigated together with its relation with the Signal-to-Noise Ratio

(SNR). In general, we expect that the smaller the SNR (i.e., bigger impact of noise and

disturbances on data quality) the more data we need for the correct model identification.

Field tests From real-time simulations, we think that the proposed method can also

be directly applied in a real electrical power system. Field tests should be carried out

to fully validate the method and assess its applicability.

Different PSS structure and different tuning methods In this work, we considered

a simple structure for the PSS with only one input, namely the generator rotor speed.

The same techniques presented can be applied also for different types of input and for

multi-input PSSs. The proposed state-space system identification method can be easily

adapted to a multi-input multi-output system. Moreover, different tuning methods

can be investigated. In particular, optimal and robust control design [46] would be of

particular interest.

Coordinate PSS design and Wide-area control In the proposed work, the PSSs are

retuned one at a time based on local measurements. It will be interesting to consider

the case of a coordinated design of PSSs. In this case, identifying a multi-input multi-

output model is needed. To obtain the model, the system has to be excited in different

locations spread around the system and this could be challenging. Moreover, as PSS

input, one can consider not only local measurement, but also signals from different

sensors in the grid.

Application to HVDC and FACTS Finally, the same system identification methods

can be applied for the identification of a power system model for different control

devices, such as HVDC and FACTS
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