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Abstract

Keyword search is a technology that allows non-expert users to explore and
retrieve information and it is traditionally used for unstructured data, such as
in Web page searches. In the last decade, this search method has also become
popular for exploring structured data, such as relational databases or graphs.
Instead of using complex SQL or SPARQL queries and when the underlying
schema is known, the user writes a series of words(keywords) to search for what
he or she needs, getting as answers the ones more matching with the search.
Keyword search systems are challenged by two fundamental parameters, effi-
ciency and effectiveness. In fact, efficiency and effectiveness are two qualities
of a SPARQL, or SQL, query that returns an answer quickly and always accu-
rate even when operating on large amounts of data. The "virtual documents"
method allows keyword search systems to work also on large databases by gen-
erating answers to keyword queries in a reasonable time. This paper aims to
replicate the keyword search systems based on "virtual documents" TSA+BM25
and TSA+VDP for RDF graphs. In addition, two methods of update processing
in a keyword search system, will be presented and analyzed: BruteForce and
semiTSA. Although keyword search is a growing research matter, the topic of
updates on structured data, such as RDF data, had not yet been addressed in
the literature.





Sommario

Il keyword search è una tecnologia che permette ad utenti non esperti di esplo-
rare e ricavare informazioni ed è tradizionalmente usata per dati non strutturati,
come nelle ricerca di pagine Web. Nellultima decade questo metodo di ricerca
ha preso piede anche per esplorare dati strutturati, come database relazionali o
grafi. Invece di usare complesse query SQL o SPARQL e dovendone conoscere
lo schema sottostante, lutente scrive una serie di parole (keywords) per cercare
ciò di cui ha bisogno ottenendo delle risposte il più possibili aderenti alla ricerca.
I sistemi di keyword search devono confrontarsi con due parametri fondamen-
tali: efficienza e efficacia. Efficienza ed efficacia infatti sono due qualità che
consentono ad una query SPARQL, o SQL, di restituire una risposta in modo
veloce e sempre preciso anche operando su grandi quantità di dati. Il metodo
dei "documenti virtuali" permette ai sistemi di keyword search di lavorare anche
su database di grandi dimensioni generando risposte alle keyword query in un
tempo ragionevole. Questo lavoro ha lobiettivo di replicare i sistemi di keyword
search basati su "documenti virtuali" TSA+BM25 e TSA+VDP per grafi RDF.
Saranno, inoltre, presentati e analizzati due metodi di gestione degli aggiorna-
menti in un sistema di keyword search: BruteForce e semiTSA. Pur essendo il
keyword search un argomento di ricerca in espansione, il tema degli aggior-
namenti su dati strutturati, come i dati RDF, non era ancora stato affrontato in
letteratura
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1
Introduction

Keyword search is traditionally associated with the image of Web search en-
gines. Those engines offer the ability to explore a large amount of unstructured
data easily, be it texts, web pages, or pictures. Writing some words, called query,
to express the information need and having results in a matter of tenths of a
second is an operation done daily by everyone. With unstructured data, we can
refer to the texts of a blog or email messages of a company that therefore do not
have a well-defined and standard structure. Structured data, on the contrary,
have a well-defined schema on top of which data are organized. Usually, struc-
tured data are stored in relational databases, which is why this type of data is
generally called relational data.

The keyword search has gained more and more traction to allow easier access
to structured data to eliminate that barrier of knowledge and experience that
was previously required. Traditionally, to search a relational database, a user
must know the underlying schema in detail and create a query that meets its
requirements. In recent years new structured data are gaining popularity driven
by the growing mass of data produced by social networks and Web sites that
allow the user to have a personalized experience. This data is usually stored in
relational databases. Alongside these things has been the development of the
Web of Data or semantic web in the form of RDF data.

RDF (Resource Description Framework) is a schema-free standard to repre-
sent knowledge by defining relationships between objects and creating a graph.
In RDF, a concept can be expressed by a triple composed of three linked pieces:
subject, predicate and object. An RDF graph is composed of a series of triples,
joined like atoms. RDF allowed easier data sharing and integration thanks to the
absence of a schema. This is why it is the most used data model in the knowl-
edge graphs like DBPedia, Wikidata, DrugBank and OpenPHACTS. These are
examples of repositories where data can come from different sources collected
under a single roof where a schema can be present. Still, it is not always easy to
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understand. When the schema is known, it becomes critical for writing robust
and accurate SPARQL queries to explore the graph. A keyword search system
on RDF data allows the user to describe his information need through a bag of
words. A keyword query can be defined as a set 𝐾 = {𝑘1, 𝑘2, ..., 𝑘𝑛} of keywords.
Systems like DBXplorer, SPARK or the recent SQUIRREL rewrite the keywords
into a SQL queries. While the keyword search problem on relational data is
advantaged by the presence of an underlying schema in the RDF graph some
additional challenges open up for developers. If a user wanted to know how
many world titles Sebastian Vettel has won, he would write "world titles won
by Sebastian Vettel". Efficiency and effectiveness, together with correctly inter-
preting the user’s intentions and understanding how the words are related, are
the tasks to answer in the best possible way. Efficiency means that the answers
must be given in a congruous time and space, while effectiveness measures how
adherent to and relevant to the query the answers are. Dwelling on the result,
there are two possible types: the exact-match and the best-match. The former
is the paradigm of the precise and user-written SQL or SPARQL queries where
the result is only one; the latter will present to the user a ranking of the doc-
uments, or requested objects, where the most relevant results of the query are
placed, in the top positions, in a laddered fashion. We find many papers in the
literature on the best-match approach. Recently, Dosso and Silvello[6] proposed
two new keyword search systems based on the virtual document approach to
face the keyword search problem on structured data, focusing on graph data.
In a virtual document approach, already explored by others in [25],[22] and [9],
that represents state of the art, the RDF graph is clustered, and then the single
clusters are converted into text joining nodes and arcs with their metadata one
after the other to form an indexable text.

Specifically, Dosso and Silvello[6] presented two systems, TSA+BM25 and
TSA+VDP, where TSA stands for Topological Syntactical Aggregator. Both
methods are divided into two parts, offline and online phases. In the offline
part the RDF graph is analyzed to be divided into subgraphs following an ac-
curate algorithm that tries to create clusters around a single topic(seed), like a
movie if the dataset deals with cinema concepts. All the subgraphs are then
converted into a text collection. This collection will be indexed using state-of-
the-art techniques. While the offline part is common to both systems, the thing
that distinguishes them is the online part. In the online phase the user’s query
comes into play (query expressed as a series of single terms). TSA+BM25 uses
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CHAPTER 1. INTRODUCTION

well-known information retrieval techniques and it uses the BM25 function to
sort the documents. These documents are then used to propose to the user a
ranking of the subgraphs that answer the query. TSA+VDP, on the other hand,
proposes a more articulated idea that starts from the very results of BM25. The
subgraphs returned from BM25 are re-analyzed and cleaned of any incorrect
information to produce a more accurate response. In that paper they also pro-
posed a benchmark to evaluate keyword search systems on graphs to try to fill
a gap that exists in the field. They created a keyword search system for graph
data that scaled well and returned more accurate responses than state-of-the-art
systems.

This work describes our aim to run that source code and then replicate the
same experiments to get the same results. Therefore, we had to dive into their
Java code to understand how the TSA algorithm was physically implemented,
what auxiliary structures it relied on, and how the RDF graph was handled.
Among the datasets used there were IMDB and LinkedMDB. The IMDB is a re-
lational dataset, in fact it was transformed into an RDF graph. The LinkedMDB,
on the other hand, is known to be a native RDF dataset. We were able to repro-
duce the whole system, slightly improving the final results. The replicability
work was necessary to know deeply the two systems to study how the systems
would react in the presence of any updates. In a structured system, an update is
the insertion, modification, or removal of a piece of data. This can lead to some
questions and challenges: how does this alteration affect the keyword search
system’s response? Does it slow down the mechanism? Does it worsen the end
result? To what extent does the system function correctly? We looked for the
answers in the literature. Unfortunately, it seems that published literature has
no answers to these questions. So alongside the replicability work, we tried to
investigate the topic of updates in a keyword search system over graph data by
developing two different methods of handling them. In this work we consid-
ered as an update only the case of adding information. In detail, the update was
simulated by dividing the graph into two parts, of varying sizes, e.g. 90/10 or
80/20 this means that 10 or 20 percent of the dataset triples were removed and
then added later as if it were an actual update over the starting dataset.

The first method developed is called BruteForce. BruteForce is a very simple
method because it considers the triples of the update individually, once the
clustering operation is finished, which takes place in the first phase of the offline
part. The triples one by one are inserted into the correct cluster where the subject
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of the new triple and the cluster seed match. In the end, the original clusters
will grow in size by having new triples and, consequently, new information. If
a triple is not included in any cluster the system then proceeds with the TSA
algorithm, which starts from the subject of that triple. The TSA algorithm, in
this case, is confined to the dataset update. As the clustering is finished and
the update dataset is totally explored, the process continues as in the original
paper: the subgraphs are transformed into text and indexed, ready to accept
user queries.

The second strategy to handle an update is called semi-TSA. This second
method is based on the original algorithm and it follows the same logic by
considering the "update" dataset as a separate entity. The TSA algorithm acts
directly on this small dataset to create new clusters, in the same way they were
created in the "base" dataset. At this stage the original metadata, identified in
the "base" dataset, is preserved to improve the cluster in the update graph.

Because the changes were concentrated in the offline phase, the online part re-
mained the same as in the original paper with both the BM25 and VDP pipelines
handling the response to queries.

This work is organized as follows, in Chapter 2 we quickly summarize the
main concepts concerning RDF and the characteristics that make it suitable for
representing information on the World Wide Web. Then there will be a brief
presentation of how keyword search has been addressed in the literature. In the
same chapter there is also a summary of the basic operation of TSA+BM25 and
TSA+VDP. We focus on the evaluation metrics first introduced in the original
paper. In Chapter 3 you can find the details of how we could reproduce the
original TSA+BM25 and TSA+VDP systems correctly. A final table also shows
that our results are in line with the original results. In addition, there are
comments on how the code can be optimized to make the understanding of the
code easier. The two methods of update management are described in detail
in Chapter 4. In Chapter 5 there is a close analysis of the results obtained
from the two systems, which are compared against each other and in relation
to the original system. Chapter 6 contains the conclusions and some final
considerations.
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2
Background

2.1 RDF

RDF, or Resource Description Framework1, was introduced by the W3C organi-
zation as a graph model standard for representing information on the Web, more
specifically how resources or entities are defined and interact. This standard was
developed to ease the exchange of information between different applications
and to interlink data on the Web.

The basic idea behind RDF is to put in relationships two resources and then
expand it to other entities. In RDF the relationship between two entities is
expressed as a statement in the form of a triple: <subject> <predicate> <object>.
The two entities are <subject> and <object>, while the <predicate> identifies the
property of the relationship and the unique direction of reading. In fact, the
RDF graph is considered a directed labeled graph, where the set of nodes is the
set of subjects and objects; the set of arcs is the set of the couples (subject, object).
There can be three types of data in RDF statements or triples: IRIs, literals, and
blank nodes. An International Resource Identifier (IRI) is the unique, global
identifier of a resource, in fact one of its subsets is the URL that is commonly
used to surf the World Wide Web. A literal is simply a value like strings, names,
and numbers usually each literal is annotated with a precise datatype to aid
interpretation of the data. Finally, blank nodes are resources without a specific
IRI, used when a unique identifier is not required. With an IRI we can identify
each component of a triple, a subject, an object or a predicate. A literal instead
can only be an object. A blank node can serve as a subject or an object.

In the example of Figure 2.1, <Bob> is the subject, <is interested in> is the
predicate and <The Mona Lisa> is the object which in turn becomes the subject
if we look at the following triple <the Mona Lisa> <was painted by> <Leonardo Da

1https://www.w3.org/TR/2014/NOTE-rdf11-primer-20140624/
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2.2. KEYWORD SEARCH ON STRUCTURED DATA

Vinci>. The first statement describes the fact that Bob is interested in the Mona
Lisa portrait. In DBpedia, a big knowledge graph, the Mona Lisa painting is
identified as https://dbpedia.org/page/Mona_Lisa

Figure 2.1: Example of a dummy RDF graph provided by W3C com-
munity

2.1.1 SPARQL

SPARQL2 is another standard developed by W3C to query, extract and ma-
nipulate RDF graphs. A SPARQL query is defined by a set of triples that compose
a pattern to be found, or matched, on the RDF graph. In the set of triples defining
the pattern some of the resources might be unknown and substituted by aliases.
This pattern can be simple or complex; SPARQL provides advanced tools to let
the user look for pattern aggregations, use subqueries or grouping and sort the
results. The output of the query can vary based on the query type defined before
performing the search. A result can be a boolean value if the query type is ASK,
a complete RDF subgraph if it is used the CONSTRUCT type, or with the most
common SELECT, the results are composed only by the matched data triples

2.2 Keyword search on structured data

In general, we can define a keyword search problem as follows:

2https://www.w3.org/TR/2013/REC-sparql11-overview-20130321/
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Problem 1 Given a keyword query K and an RDF graph G, find an answer S for K
such that the subgraph 𝐺𝐴 found has the set of matched keywords 𝐾𝐺𝐴 ⊆ 𝐾 without
useless nodes or connections. This set induces another set, the matched triples that form
the answer[14].

In the literature, there exist two main approaches, one is where the keyword
query is translated into a SQL/SPARQL queries. It is usually a schema-based
method because it uses the knowledge of the schema of the dataset to formulate
a set of SQL/SPARQL queries that can answer the information need of the
user. The other method is graph-based, with traversal algorithms the graphs is
explored to find directly the answers.

For the relational dataset there are up to now two main paths, Candidate
Networks (CN) and Steiner Trees. One of the first papers to present CN were
DBXplorer[1] and DISCOVER [13], there the database is seen as many intercon-
nected tuples, then some networks centered in the query keywords are proposed
as solution. On the other hand BANKS system [3] use the concept of Steiner
Trees, where at the leaf node we find the keywords, so it considers the RDB
as a graph, then the algorithm produces top-k results where the answers are
connected subgraph. The Steiner approach and top-k answers open some criti-
cality to large graphs(it is a NP-problem). Studies like [4] developed a dynamic
programming algorithm to directly solve the Steiner Tree problem, successful
only with a single keyword. QUEST[2] is a recent system where using heuris-
tic rules, machine learning techniques and a Steiner tree they produce an SQL
query. A recent article [27] tries to overcome the limitation of Steiner trees using
parallel computing managing to fully utilize CPU and even GPU to speed up
the computation of the top-k answers graphs introducing the concept of Central
Graphs applied specifically to knowledge graphs. In RDB, a similar thing was
developed by [28] where using Map-Reduce the keyword search problem was
split in a distributed environment and performed in parallel. In [19] the authors
propose a system to help the user writing the next terms of the SQL query auto-
matically. The information extracted from the schema can be used to understand
the roles of the keywords, in [17] they try to grasp the user intent, then rank
join trees that cover the found keyword roles. Again considering schema-based
systems, we find SPARK[21] a keyword search system for relational databases
where keyword terms are enriched by Wordnet synonyms.

Another strategy to query RDB is [22], MRF-KS uses the virtual document
idea. The graph structure is derived from the relational database. The system
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then extracts support graphs and metadata. The nodes and literals are converted
into text documents, pruned and ranked when the user query is considered.

QUOIW[11] is a system that let the user explore both worlds: SQL and
SPARQL. They design some heuristic lower bounds and a bipartite graph matching-
based best-first search algorithm to build step-by-step the correct query via entity
and predicate blocks. There are some interesting studies for RDF. Specifically,
[29] propose a similar thing to the previous system, QUICK translate keyword-
based queries in SPARQL queries where the user select the next ranked "blocks"
proposed, again helped by the RDF schema. Then the prevalent approaches
build on indexing techniques and search algorithms to find substructures/sub-
graphs that connect the data elements matching the keywords. Graph summa-
rization was the method used in [24], [18], [31], [20] to produce SPARQL queries
without working on the entire RDF graph.

The virtual document idea of MRF-KS can be applied to graph data. RDF’s
most relevant keyword search system are SUMM[25] and SLM[9], systems that
exploit the virtual document idea to process the RDF graph to retrieve the query
answers. The former partitions with BFS the graph into blocks connected by
single nodes. In the phase where the query comes into play the subgraphs
are merged and pruned to produce a top-k ranking based on the weight of the
tree produced. The latter instead proposes to index each document created
for every single triple of the RDF graph, the documents are then indexed and
retrieved. The proposed ranking is based not only on the similarity of the text
with the query but also the structure of the subgraphs is taken into account. The
virtual document approach was found to be promising when exploring huge
RDF graphs.

Indexing the single triple is also the concept by [16], they created a web
application where, the query can be submitted by a REST API. The results of a
keyword query are presented in multiple ways. There they used Elasticsearch
to index and retrieve all the relevant triples.

Recently other methods were developed under the graph-based approach:
[14] used KMV synopses to compute set similarity during a single pass of the
RDF graph. Those allow the extraction of properties domain and class instances.
The final process is a precise SPARQL query. The semantic-driven approach
developed by [10] focuses on the semantic aspect to improve the final quality of
the answers by automatically finding subgraphs, with respect to the traditional
retrieving model. In [30] it is introduced KBCS system that is focused on the
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RDF structure, here the graph is converted into a more simple and small graph.
Then a community algorithm find subgraphs. Finally a mapping of the query
to the index create a set of ranked tree answers based on compactness.

A promising idea is presented by [23] proposes to transport the problem into
a vector space. Embeddings are computed for the graph entities and queries,
then the query is compared to the graph embeddings to retrieve the most similar
entities.

In this scenario, we could not find any work that considered and developed
ideas regarding updates in a keyword search system on RDF, so trying to explore
this aspect will be the core and the main contribution of this work.

2.3 TSA - Topological Syntactical Aggregator

The work present on this dissertation is entirely based on Topological Syntac-
tical Aggregator that is the name of the new keyword search system developed in
[6], [7], [8], [5]. Dosso and Silvello proposed a new way to search in RDF graphs
using the virtual document technique. This system falls into the graph-based
systems to retrieve data because it does not use any knowledge about the graph
schema. They even developed a new evaluation framework and introduced a
new metric to evaluate the system, because such framework did not exist. The
system follows the best-match paradigm: the user keyword query is answered
returning a ranked list of subgraphs. Opposed to the exact match approach
where after submitting a specific and unambiguous SQL query the result is only
one and precise. The system is divided into two parts to fulfill the task: offline
and online.

Figure 2.2 is taken directly from that paper it illustrates a running example
and all the different steps to reach the goal. In the offline part, the system
performs clustering on the RDF graph, in this way similar concepts will be
clustered together while dissimilar objects will be separated. For example, a
subgraph could focus on a specific film and its characteristics. The result is a set
of unique clusters called representative subgraphs. The operation is supported
by some metadata such as the in/out-degree of the nodes. All the subgraphs
are then converted into text documents by considering all their IRIs and literals.
In the online part the keyword query enters the game, in the figure we can see
that the text documents are retrieved by exploiting cutting-edge IR techniques
producing the first ranking. The documents are then transformed back into

9
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Figure 2.2: Running example of the TSA system, both BM25 and VDP
pipelines are shown

RDF graphs where with pruning and merging operations the final raking is
presented to the user, or can be refined to improve the quality of the response.

2.3.1 Offline phase

Algorithm 1 presents the steps to build representative subgraphs, the main
part of the offline phase. Before explain in detail we have to give some definitions:
In a RDF graph 𝒢, 𝑣 is a node;
𝛿−(𝑣) is the out degree of a node 𝑣 that is the number of out going links, that is
the cardinality of its neighbors𝒩−(𝑣) ;
𝛿+(𝑣) is the in degree of a node 𝑣 that is the number of in going links;
The source set 𝑆 is composed by all 𝑣 ∈ 𝒢 with 𝛿−(𝑣) > 𝜆𝑜𝑢𝑡 , whereas the
terminal set 𝑇 is all 𝑣 ∈ 𝒢 with 𝛿+(𝑣) > 𝜆𝑖𝑛 , with 𝜆𝑜𝑢𝑡 and 𝜆𝑖𝑛 two integer
thresholds values. There is also 𝜏 which is the radius of the final subgraph. ℒ
is the list of the top-k frequent predicates in 𝒢

The algorithm starts considering a source node 𝑠 as a starting point for a
subgraph, then performing a BFS approach it explores the neighborhood of 𝑠
adding all its literals. If terminal nodes are present, together with their liters
nodes, are inserted into the subgraph. Finally, the exploration moves to other
source nodes if the predicates are in the list ℒ and if the source nodes are

10
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there within a radius 𝜏. Every time a source node is explored it becomes black
and it will never be considered again; it easy to spot those terminal nodes can
be present in many subgraphs whereas a source node only in one. The next
iteration starts from the next available white source node.

By tweaking the various user-accessible parameters, it is possible to change
the final result. Increasing 𝜏 will result in bigger and fewer subgraphs causing
more source nodes to be clustered together. We can have fewer subgraphs if 𝜆𝑜𝑢𝑡
is too high because fewer source nodes will satisfy the constraint. If𝜆𝑖𝑛 is big then
fewer terminal nodes will be considered resulting in smaller subgraphs. Each
of the datasets considered to test the system had a different set of parameters,
with the exception of 𝜏 which is linked to the specific query structure.

2.3.2 Online phase

For the online part, they propose two different pipelines, BM25 and VDP, the
latter is always executed after BM25. The first is called BM25 because it is based
on the famous retrieval model and BM25 function to weigh the documents given
a query. The online part starts by considering the user keyword query creating a
ranking of the text documents. From this raking only the first 10000 positions are
considered and pass to the next process where the text documents are discarded
in favor of the corresponding RDF graphs, as we see in Figure 2.2. Those graphs
go through a merging function. There given a threshold the subgraphs are
compared and merged if the overlap is greater than the threshold(threshold
seen with respect to the smaller one). This new graph is then put in comparison
to the next graphs. The comparison proceeds for the first 𝑙 graphs of the raking
until the size of the new merged graph does not reach 1000 or 𝑙 is fully explored.
The new graphs are called Merged Graphs. Those merged graphs undergo a
second ranking ending BM25 pipeline.

The second pipeline starts from those ranked graphs considering only the top
𝑛 of that ranking. The graphs are considered as a whole in a set-based union.
From every source node present VDP starts a BFS with radius 𝜏 generating
new subgraphs, but those that do not contain all the keywords of the query
are discarded. In the figure those are the "best candidates". To remove any
noise present in the "best candidates", i.e., unnecessary triples that would lower
the final score, cleaning is performed starting with the triples farthest from the
center of the subgraph.

11
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The final ranking submitted to the user is based on a variation of Markov
Random Fields described in [22] that consider unigrams and bigrams. A uni-
gram is the single term of a sequence like The sky is blue, blue is a unigram; a
bigram is composed by two adjacent tokens, such as is blue. This part is full
of functions and definitions, which we briefly report and are crucial for later
understanding of the results. The TSA paper also presents a detailed section
in which they focus on system evaluation. In fact, the researchers have de-
fined a new metric, tb-DCG. Which incorporates and recalls the concepts of the
better-known nDCG, famous in the IR domain.

The score assigned to a graph is as follows where 𝑔 is the graph, and𝑄 is the
query. The score is the sum of two distinct sums one concerning the unigrams
𝑓𝑈 the other 𝑓𝐵 the bigrams, each term is considered within the specific graph 𝑔.

𝑠𝑐𝑜𝑟𝑒(𝑔, 𝑄) =
∑︂
𝑞𝑖∈𝑄

𝑓𝑈(𝑞𝑖 , 𝑔) +
∑︂

{𝑞𝑖 ,𝑞𝑖+1∈𝑄}
𝑓𝐵(𝑞𝑖 , 𝑞𝑖+1, 𝑔)

In the function 𝑓𝑈 we find 𝑔∗ that is the text document associated to graph
𝑔 and 𝐶 is the overall text collection; 𝛼𝑈 is the Dirichlet’s smoothing factor that
considers the average of the length of the document.

𝑓𝑈(𝑞𝑖 , 𝑔) = 𝑙𝑛[(1 − 𝛼𝑈)𝑃(𝑞𝑖 |𝑔∗) + 𝛼𝑈𝑃(𝑞𝑖 |𝐶)]

The two probabilities are:

𝑃(𝑞𝑖 |𝑔∗) =
𝑤𝑡 𝑓 (𝑞𝑖 , 𝑔∗)∑︁
𝑑∈𝐶𝑤𝑡 𝑓 (𝑞𝑖 , 𝑑∗)

𝑃(𝑞𝑖 |𝐶) =
∑︁
𝑢∈𝐶𝑡 𝑓 (𝑞𝑖 , 𝑢∗)∑︁

𝑑∈𝐶,𝑤∈𝑢∗𝑡 𝑓 (𝑤, 𝑢∗)
with 𝑤𝑡 𝑓 we have the weighted term frequency that rates the frequency and

the position of the node in the graph with respect to the center whereas 𝑡 𝑓 is the
simple term frequency.

𝑤𝑡 𝑓 (𝑞𝑖 , 𝑔∗) =
∑︂
𝑣∈𝑔

𝑒
−(𝑤𝑠 (𝑔∗ ,𝑣)−𝑤𝑠 (𝑔∗ ,𝑠𝑔 ))

2𝜎2 𝑓 𝑡(𝑞𝑖 , 𝑣∗)

Here 𝑣 is a node in 𝑔, 𝑠𝑔 is the source node of the graph, and 𝜎 is the kernel
control spread, set to 1. The term 𝑤𝑠(𝑔∗, 𝑣) is the relative static weight of the
node 𝑣 in 𝑔, defined as the path with the minimum weight between all paths
from the origin to 𝑣:

𝑤𝑠(𝑔∗, 𝑣) = 𝑚𝑖𝑛𝑝𝑠𝑔→𝑣∈𝑔𝑤𝑠(𝑝𝑠𝑔→𝑣)
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The static weight is instead defined as follows:

𝑤𝑠(𝑝𝑠𝑔→𝑣) =
∑︂
𝑒∈𝑝

𝑤𝑒𝑠(𝑒) +
∑︂
𝑥∈𝑝

𝑤𝑛𝑠(𝑥)

where the edge weight of edge 𝑒 𝑤𝑒𝑠(𝑒) is set to 1; the static weight of the
node 𝑥 is:

𝑤𝑛𝑠(𝑥) =
1

𝑙𝑛(𝑒 + 𝛿−(𝑢))

2.3.3 Evaluation

The evaluation is a core component to determine the quality of the answers
produced by a system, in IR the most used framework is the Cranfield one, where
the documents in the pool are immutable, and the ground truth is hand-made
by the assessor how decides if a document is relevant for a specific topic. In the
keyword search over structured data things are a bit different because documents
are not fixed and can widely vary by intervening on various parameters. The
ground truth 𝐺𝑡𝑘 is constructed by transforming the user keyword query into a
construct SPARQL query to have in output a graph; then all the triples extracted
can be considered relevant.

The final ranking submitted to the user is characterized by the fact that at
the top are the most relevant documents with a higher ratio of useful to useless
triples, so we can say it is "top-heavy". The aim is to have documents down in
the rankings that do not have triples already contained in documents ranked
higher, penalizing those that have.

To reach the objective they defined some metrics that will be used later in
the experiment chapter[6].

The Signal-to-noise ratio given a topic 𝑡𝑘 , the corresponding ground truth
𝐺𝑡𝑘 , the set 𝑆 of all the relevant triples in 𝐺𝑖 ∈ 𝑅𝑘 with 𝑗 ∈ [1, 𝑖[ is:

𝑆𝑁𝑅(𝐺𝑖) =
|(𝐺𝑖 ∩ 𝐺𝑡𝑘 ) \ 𝑆 |

|𝐺𝑖 |

Suppose the SNR is greater than a value 𝜆, set between zero and one. In that
case, the graph is considered relevant because it represents the triples returned
for the first time, at the numerator, with respect to all the triples of the graph
measured at that moment. We will encounter other important metrics later,

13
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such as recall, precision, precision@c and the new tb-DCG. The recall is a value
that does not express the quality of the ranking but can give an idea about
the number of relevant triples found by the system and its effectiveness. On
the contrary, precision and precision@c tells us how pertinent many triples are
present in the ranking because it represents the ratio between relevant triple
and all the distinct triples returned by systems: precision can consider the noise
present in the final ranking. The value 𝑐 is the level at which we stop evaluating
the precision, most of the time the bar is set to 1, 5 and 10, in other words the
precision at the first, five or ten results. A high precision means that the system
can rank the graphs in an optimal way.

𝑟𝑒𝑐𝑎𝑙𝑙(𝑅𝑘) =
⋃︁
𝐺𝑖∈𝑅𝑘 |𝑆𝑁𝑅(𝐺𝑖 )⩾𝜆

(𝐺𝑖 ∩ 𝐺𝑡𝑘 )
|𝐺𝑖 |

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛(𝑅𝑘) =
⋃︁
𝐺𝑖∈𝑅𝑘 |𝑆𝑁𝑅(𝐺𝑖 )⩾𝜆

(𝐺𝑖 ∩ 𝐺𝑡𝑘 )
| ∪𝐺𝑖∈𝑅𝑘 𝐺𝑖 |

𝑝𝑟𝑒𝑐@𝑐(𝑅𝑘) =
|⋃︁𝐺𝑖∈𝑅𝑘 | 𝑆𝑁𝑅(𝐺𝑖 )⩾𝜆 ∧ 𝑖∈[1,𝑐](𝐺𝑖 ∩ 𝐺𝑡𝑘 )|

|⋃︁𝐺𝑖∈𝑅𝑘 | 𝑖∈[1,𝑐]
𝐺𝑖 |

In the IR domain, there is the Discounted Cumulative Gain [15] a measure
mostly used for evaluating web search engines with the hypothesis that highly
relevant documents are more useful to the user that will click them versus others
in the lower positions. Creating a gain that is cumulated at every position till a
point in which it starts to be discounted, each document does not bring the full
usefulness to the user. In [6] it is defined a new metric for the keyword search
in RDF filed, the triple based-DCG.

𝑡𝑏-𝐷𝐶𝐺𝑏(𝑅𝑘) =
𝑛∑︂
𝑖=1

𝑅𝐺𝐵(𝐺𝑖) 𝑅𝐺𝑏(𝐺𝑖) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
𝐺𝑅𝑊(𝐺𝑖) if 𝑖 ≤ 𝑏, 𝑆𝑁𝑅(𝐺𝑖) > 𝜆

𝐺𝑅𝑊(𝐺𝑖)
𝑙𝑜𝑔𝑏 𝑖

if 𝑖 > 𝑏, 𝑆𝑁𝑅(𝐺𝑖) > 𝜆

0 if 𝑆𝑁𝑅(𝐺𝑖) ≤ 𝜆

Each term 𝑅𝐺𝑏(𝐺𝑖) in the summation is the Relevance Gain of graph 𝐺𝑖 , and
depending on the position of the graph its relevance change, with 𝑏 set to 2 every
term beyond that position will be discounted by a specific factor. The value 𝜆

that we recall being the relevance parameter, sets the threshold at which a graph
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stops being relevant. 𝐺𝑅𝑊 is the last piece of this complex evaluation system. It
is the weighting function, similar to the SNR. Still, here at the denominator, we
have the cardinality of the ground truth, so it can be seen as a sort of attendance
to the truth, where graphs with unique, and first-time seen, triples are weighted
more heavily.

𝐺𝑅𝑊(𝐺𝑖) =
|(𝐺𝑖 ∩ 𝐺𝑡𝑘 ) \ 𝑆 |

𝐺𝑡𝑘
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Algorithm 1 TSA
Input: RDF graph 𝒢, source set 𝑆, terminal set 𝑇, list ℒ, integer radius 𝜏
Output: list 𝑠𝑏𝑔𝑟 of representative subgraphs

1: 𝑠𝑏𝑔𝑟 ← ⊘
2: 𝑄 ← ⊘
3: for each 𝑠 ∈ 𝑆 do
4: if 𝑠.𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then
5: 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑠)
6: 𝑠.𝜏← 𝜏
7: G← new Graph()
8: while 𝑄 ≠ ⊘ do
9: 𝑣 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()

10: 𝑣.𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

11: 𝑟𝑎𝑑𝑖𝑢𝑠 ← 𝑣.𝜏 − 1
12: for each 𝑢 ∈ 𝒩−(𝑠) do
13: if 𝑢 ∉ 𝑆 ∧ 𝑢 ∉ 𝑇 then
14: //Accessory node
15: G.addTriple((𝑠,𝑢))
16: end if
17: if 𝑢 ∈ 𝑇 then
18: // Terminal node
19: G.addTriple((𝑠,𝑢))
20: for each 𝑤 ∈ 𝒩−(𝑢) do
21: if 𝑤.𝑖𝑠𝐿𝑖𝑡𝑒𝑟𝑎𝑙() ∨ (𝑤 ∉ 𝑆 ∧ 𝑤 ∉ 𝑇) then
22: G.addTriple((𝑢,𝑤))
23: end if
24: end for
25: end if
26: if (𝑝(𝑠, 𝑢) ∈ ℒ) ∧ (𝑟𝑎𝑑𝑖𝑢𝑠 > 0) ∧ (𝑢.𝑐𝑜𝑙𝑜𝑟 ≠ 𝑏𝑙𝑎𝑐𝑘) then
27: if 𝑢 ∈ 𝑆 ∧ 𝑢 ∉ 𝑇 then
28: 𝑢.𝜏← 𝑟𝑎𝑑𝑖𝑢𝑠

29: 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑢)
30: G.addTriple((𝑣,𝑢))
31: end if
32: end if
33: end for
34: end while
35: 𝑠𝑏𝑔𝑟.add(G)
36: end if
37: end for
38: return 𝑠𝑏𝑔𝑟
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3
The Replicability work

In this chapter, I explain the methodology followed to reproduce and thor-
oughly understand the TSA system, the first of the two objectives of this thesis,
to develop later the update management concept that will be discussed in more
detail in the following chapter. Section 3.1 describes all the software and data
used to learn and test the system; Section 3.2 covers the logic path followed to
reach the objective. Finally Section 3.3 contains a quick summary of the tests
conducted tests to verify the system’s operability. Most of the work done in this
part was a sort of reverse engineering job.

3.1 Software and data

Here we present the software that was and still is being used in the study.

• PostgreSQL (version 14.0)1

• Blazegraph2

PostgreSQL is currently one of the most famous, reliable and flexible open-source
database; Blazegraph, instead is a native high-performance graph database to
surf and perform SPARQL queries. Unfortunately, the documentation of Blaze-
graph is poor and the only support you can find is limited to the GitHub page
within the small community. Because of that the learning curve has been steep,
but it gave me insight into a precious and powerful application.

3.1.1 Data processing

I started my journey into the system developed by Dosso and Silvello [6]
by downloading the dataset they used: the synthetic database LUBM (Lehigh

1https://www.postgresql.org/
2https://github.com/blazegraph/database/wiki/Main_Page
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University Benchmark)3, LinkedMDB4 and IMDB5.
LUBM is a synthetic database composed of fake and automatically generated

data based on user requests and following a pattern decided at an earlier stage
based on a well-defined ontology concerning the university domain, as can be
appreciated in the figure. The database is used as a test to evaluate and refine
Semantic Web repositories in a standard way. LUBM also comes with a set of 14
queries. The dataset is generated by choosing the number of universities. If we
set just one university, the result is 130 thousand triples. We created a dataset of
1 million triples considering ten universities.

Figure 3.1: Original schema upon which the LUBM data are generated.
there are two distinct schemes

LinkedMDB and IMDB are datasets concerning film and movies and all the
entities that revolve around them, below there is an example. LinkedMDB [12]
is a native RDF dataset part of the expanding universe of the Linked Open Data
concept, it also contains some links to the IMDB dataset. This RDF graph is
composed of 6.1 million triples. IMDB, the biggest movie database, is shared as
a relational dataset, so we start from this to illustrate the brief data processing
we performed, below there is the ER schema[26]. First of all, we used only a
subset of the data that IMDB of what is made available:

• title.basic contains the feature of a product, like the primary title, the
language, genre etc...

3http://swat.cse.lehigh.edu/projects/lubm/
4https://www.cs.toronto.edu/~oktie/linkedmdb/
5https://www.imdb.com/interfaces/
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Figure 3.2: ER Schema of the IMDB dataset

• name.basics include the name, birth and death year and the principal
works a person is known for.

• title.principals contains cast/crew for titles.

• title.crew has director and writer of the title.

These two datasets came with a list of 50 construct queries each, half for the
training and the other for testing.

The relational database was converted into an RDF graph seeing the column
names as predicates, except for the first one, always the primary or foreign key,
that acted as the subject. The objects were the content of the adjacent cells. As of
today, November 5, 2022, considering only those files the RDF database counts
more than 300 million triples. Because of the size, we developed a Java class to
reduce the size without losing the original structure. we sampled some subjects
in a random way from which to run a BFS, with a radius equal to 3, leading to a
final size of one-tenth the original size obtaining a more manageable dataset.

3.2 The recipe

The original system was developed entirely in Java, and it is
available at the following URL: https://bitbucket.org/account/user/
keywordsearchrdfproject/projects/TSAC.

The first thing to notice is how it is very well structured, there are 6 mod-
ules: efficient backtracking, rdf_blanco, yosi_rdf, terrier_custom,
rum and offline_rdf_clustering. The latter is the core of the whole
TSA+BM25 and TSA+VDP systems and the one that we studied to present this
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Figure 3.3: Sample of a LinkedMDB entities

research. The other consist in the rewrite of other RDF search systems: SLM[9]
SUMM[25] and MRF-KS[22].

The import of those modules into the IDE was easy and the wizard process
was straightforward. The first thing done was to understand how the different
modules were interconnected; in particular offline_rdf_clustering exten-
sively uses many of the classes in rum, which stands for RDF Useful Methods. In
rumwe find most of the classes that initialize the interface with the SQL database
or the RDF one. In this case there is a specific class that eases the import of the
RDF data(in the format of TURTLE or NTRIPLES) inside a Blazegraph RDF
repository; we also have classes, that define all the objects created from scratch
used in the project, such as the notion of a triple. Finally, there is everything
necessary for the generation of the final assessment of a complete run. The
abundance of code and classes proved to be a double-edged sword; many times
we found myself going through the tree of exceptions to identify the real cause
of the error, sometimes it was a minor oversight, and other times it gave me an
insight of how the system structure was set.

In Figure 3.4 we have summarized the most important processes executed by
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Figure 3.4: Schema of the TSA processes and elements the interact
with

TSA system, arranged chronologically. Those are divided into two categories,
the ones for the offline part and others for the online one; as already explained in
detail in the previous chapter. We started the analysis of the code from Process
1: Statistical computation. Here the program analyzes the SQL dataset to set all
the nodes and labels metadata. In this phase we have figured out how to build
the SQL tables to simulate and RDF environment, specifically with the triple
store table that recall the RDF concept of the s, p, o structure where we have a
column for the subject, one for the predicate and a last one for the object. The
program makes use of two other auxiliary tables: one for the labels ℒ, the set
in which the predicates label are put together with their frequency; and one for
the nodes, a table that stores the statistical information required to perform the
TSA algorithm, the in and out degree for each node. Below are the codes used to
make the tables. The SQL database is later used by the VDP pipeline to explore
the neighborhood of a node in the search of all the query terms.

1 CREATE TABLE triple_store (id_ SERIAL,

2 subject_ VARCHAR(600), predicate_ VARCHAR(600), object_ VARCHAR(600))

Code 3.1: SQL command create the triple store

Then we created one index for the subject column and another for the id. As
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explained in the previous chapter, those are the most accessed fields during the
computation. All of this allowed us to cut down on execution time drastically.

1 CREATE TABLE label (label_name VARCHAR(600), frequency INTEGER)

Code 3.2: SQL command create label table

1 CREATE TABLE node (id_ SERIAL, node_name VARCHAR(600), in_degree REAL

, out_degree REAL, iri_out_degree REAL)

Code 3.3: SQL command create the node table

The second thing to consider and that was under my direct control was
the ground truths production, inside Blazegraph we needed to perform all
the SPARQL queries to retrieve all the triples that answer correctly to a query.
In an Information Retrieval domain those are considered the relevant triples.
Blazegraph is not included in the system figure because it was used almost
behind the curtain to get the system ready to start. Given the fact that the
system returns RDF graphs as answers, the queries where in the construct
type. The queries were shared without the prefixes, single words that act as
alias shortening the URIs; those are necessary to run the SPARQL queries, so we
looked into the RDF graph performing some generic and exploratory queries to
find the correct ones.

Here we report an example: the query asks for some characteristic of the
works of a director, for instance Michael Bay.

Figure 3.5: Query example: here the information need is to find all
Michael Bay’s works, their type, title and genre

Blazegraph works with one repository at a time, so to manipulate the three
datasets we had to work with them separately. After uploading the RDF graph
into Blazegraph, in rum we found a class to read the triples from the repository
and to insert them inside the RDB. Unfortunately, the method had some design
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Figure 3.6: The answer (partial) to the query in Fig. 3.5, here the results
is reported as an RDF graph in TURTLE format

choices that were not optimal: the entire RDF graph was loaded into the main
memory. As a consequence during the import of IMDB the system crashed. To
give you an idea, the Blazegraph repository of LinkedMDB was 1.3 gigabytes,
and the IMDB one was 32.3 gigabytes. So we made some refinements in a way
to explore the graph incrementally. This workaround carried out the load into
PostgreSQL in a matter of minutes.

The third process is one of the core processes, together with the sixth, it
generates the clusters, the subgraph around a specific topic, following the TSA
approach. Here some parameters could be tweaked, for instance the threshold
for in and out-degree to discern between source and terminal nodes. Processes 4
and 5 are autonomous and revolve around the TREC documents produced from
the cluster and than indexed using a Terrier implementation. Process 6 is in
charge of all the online parts of the TSA system, in there we have both pipelines,
BM25 and VDP. VDP because of its nature, explores the graph and so makes
many calls to the RDB, that we have stated before recreates and fully replaces
the RDF graph by Blazegraph. The keyword search assessment is done inside
process 7; here, there is a comparison between the retrieved query answers and
the ground truths. All the ground truths needed to be saved in one folder
ordered from 1 to n.

Figure 3.7: Logic schema followed to reproduce the report data

The study of the code resulted in me identifying the flowchart in Figure 3.7 to
fully execute the system and make a run for a dataset. Given the fact that LUBM
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dataset can be both a small dataset and a large one without any additional work,
we used it in two different sizes, 1 and 10 million, it was my choice, along with
LinkedMDB to conduct some of the final tests done before we could claim full
mastery of the system and try to process IMDB.

3.3 Testing

In this section we report my final test results comparing them with the one
from [6].

Dataset percentage Systems tb-DCG recall prec@1 prec@5of update

LUBM 1 M
BM25 My run 0.292 0.361 0.112 0.120

Original 0.284±0.06 0.344±0.07 0.120±0.04 0.131±0.05

VDP My run 0.260 0.101 0.225 0.299
Original 0.243±0.05 0.091±0.04 0.224±0.06 0.306±0.05

LUBM 10 M
BM25 My run 0.288 0.489 0.077 0.110

Original 0.281±0.07 0.505±0.07 0.082±0.04 0.111±0.05

VDP My run 0.350 0.387 0.021 0.021
Original 0.343±0.06 0.394±0.06 0.025±0.06 0.022±0.06

LinkedMDB
BM25 My run 0.183 0.855 0.000 0.006

Original 0.171±0.01 0.916±0.02 0.060±0.00 0.003±0.06

VDP My run 0.537 0.861 0.034 0.032
Original 0.429±0.04 0.458±0.08 0.037±0.00 0.036±0.00

IMDB
BM25 My run 0.152 0.317 0.121 0.061

Original 0.067±0.01 0.273±0.36 0.011±0.00 0.009±0.00

VDP My run 0.255 0.281 0.031 0.016
Original 0.308±0.04 0.363±0.06 0.006±0.00 0.006±0.00

Table 3.1: Results obtained in my attempt to replicate the TSA+BM25
and TSA+VDP systems

Dataset Systems tb-DCG recall prec@1 prec@5

LUBM 1 M BM25 0.008 (+2.8%) 0.017 (+4.9%) -0.008 (-6.7%) -0.011 (-8.4%)
VDP 0.017 (+7.0%) 0.010 (+11.0%) 0.001 (+0.4%) -0.007 (-2.3%)

LUBM 10 M BM25 0.007 (+2.5%) -0.016 (-3.2%) -0.005 (-6.1%) -0.001 (+0.9%)
VDP 0.007 (+2.0%) -0.007 (-1.8%) -0.004 (-16.0%) -0.001 (-4.5%)

LinkedMDB BM25 0.012 (+7.0%) -0.061 (-6.7%) -0.060 (-100%) 0.003 (+100%)
VDP 0.108 (+25.2%) 0.403 (+88.0%) -0.003 (-8.1%) -0.004 (-11.1%)

IMDB BM25 0.085 (+126.9%) 0.044 (+16.1%) 0.110 (+1000%) 0.052 (+577.8%)
VDP -0.053 (-17.2%) -0.082 (-22.6%) 0.025 (416,7%) 0.010 (+166,7%)

Table 3.2: Raw and percentage differences in my replicability work
results.

We can observe from Table 3.1 and Table 3.2 that at the end of the multiple
tests, in almost all metrics, we was able to improve sometimes on the original
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results by playing with the available parameters such as the number of graphs
considered by BM25 or VDP at the beginning of their execution or the percentage
of overlapping. The results on the LUBM synthetic dataset are closer to the
original ones in all the metrics, in both the dimension tested, 1 million and 10
million triples. The difference ranges from BM25 and VDP performed a little
better on tb-DCG. In particular, for VDP we raised 250 to 400 the number of
graphs considered before starting the pruning phase. As we can see, the tb-
DCG and recall values went up; even precision@1 was marginally better, but
this falls within the margin of error.

For LinkedMDB, the gain obtained for the tb-DCG metric was not repeated
for recall which had slightly lower results. In this case, we modified the maxi-
mum number of graphs BM25 tries to analyze for the merging. In my test, this
value was 15, while in the baseline was only 5. The cutoff for the overlapping
remained fixed at 20, we even tried to change it to different values like 15 or 12
but the final results were always similar to the ones reported in the table. With
this dataset, we can see that BM25 in the precision cases did not perform well.
In particular in the prec@1 case it never returned a relevant answer. VDP, on the
other hand, had the most significant improvements, especially in the recall. For
LMDB and IMDB we decided to increase the number of graphs considered by
VDP for query-graph creation: from 100 we raised it to 120. As a result, the first
120 BM25 ranking graphs were merged into one large graph from which VDP
then proceeded with the center selection phase and the elimination of unneces-
sary and noisy triples. VDP then worked by having many more triples available.
So with this little change, VDP retrieved many more relevant triples and ranked
them better than the baseline. The relevant graphs retrieved were even higher
than my BM25 results. Finally, we can say that VDP in LinkedMDB obtained
good results improving in every major aspect, in the precision values the results
obtained were compared with the baseline ones.

Separate discussion for IMDB. Since it could not be reconstructed faithfully
to the original and having been reduced for practical matters, this dataset has
generated great results nevertheless. Compared to the baseline BM25 in all
the cases had higher results, while VDP got a bit lower results, especially in
tb-DCG and recall. In contrast, the precision values are similar to those in the
original paper. Those results may be poisoned by the fact that the overall noise,
composed by irrelevant triples is less than in the older dataset: the work of BM25
is simplified, and therefore it can retrieve answers in a better way. As already
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observed in [6] BM25 retrieves more graphs, but in my run, VDP cannot fully
take advantage of that.

These results suggest that we could achieve the objective and reproduce the
system. Many of the results are within 1 to 8% with respect to the original
paper, but in some cases, the increment is up to 50% in the LMDB dataset or
more than 126% if we consider BM25 in the IMDB dataset. The original paper
also included some tables with the offline execution time, but those were left
behind: the systems have proven to be significantly faster on my machine.

26



4
Update idea

In this chapter, we will describe the main idea behind this work and how it
was developed. An update on a graph is the addition, modification, or removal
of one or more triples that make up that graph. The goal is to add, remove
or modify information. After noticing that the issue of updates on an RDF
system had not yet been considered, we thought we might modify the already
developed system in [6] that could consider this aspect. More specifically, we
focused on adding new information, or new triples.

The update was constructed by removing graph fragments close to each
other. First selecting random subjects, called seeds, and then performing a BFS
with radius = 3. The resulting graph is composed not necessarily of connected
components. The update’s size depends on the starting graph’s overall size
because it is the result of a percentage factor, such as 10%, 20%, etc... At the end
the starting dataset will be stripped of a part of it to be later added again. In this
way we simulate a proper update.

Base graph Subgraphs
selection

Base graph

Update graph

Figure 4.1: Visual representation of how the dataset to be considered
as an update was created.
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The selected triples are then marked and removed from the base triple store
to be placed in another table called updated triple store. By base triple store we
refer to the table representing the base graph, and by updated triple store the set of
triples representing the new information, this table will act as the update graph.
In the following section we will present the two approaches followed to reach
the objective of this study. Section 4.1 will describe the first idea that came to
mind, while Section 4.2 will present a different idea of handling updates based
on the TSA algorithm.

4.1 Brute force approach

Before explaining Algorithm 2, some changes were applied to the original
algorithm (Algorithm 1). More specifically lines of code have been added to cre-
ate an auxiliary map to save the seed of a subgraph, that is the URI of the subject
considered, together with the serial number of the cluster (𝑈𝑅𝐼𝑖 , 𝑐𝑙𝑢𝑠𝑡𝑒𝑟𝑖), i.e.
(< ℎ𝑡𝑡𝑝 : //𝑑𝑎𝑡𝑎.𝑙𝑖𝑛𝑘𝑒𝑑𝑚𝑑𝑏.𝑜𝑟𝑔/𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒/ 𝑓 𝑖𝑙𝑚/1374 >, 455) this means that
specific film is the seed of the cluster nř 455. In this way, we can precisely
pinpoint the subgraph to add new data.

Figure 4.2: Overview of the brute force approach to handle the update
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Figure 4.3: An example of how the BruteForce method works on an
entity such as Spike Lee

Figure 4.2 represents the schema of the brute force method, the changes to
the original system are highlighted: the first thing is to process the base dataset
to generate the representative subgraphs, and after that the update dataset is
considered. Alongside these new subgraphs are some essential metadata with
which the subgraphs were produced, namely the couple (𝑐𝑙𝑢𝑠𝑡𝑒𝑟, 𝑛𝑢𝑚𝑏𝑒𝑟𝑜 𝑓 𝑡ℎ𝑒𝑐𝑙𝑢𝑠𝑡𝑒𝑟).

The second step involves considering the triples of the update. The triples
inside the RDF graph are scanned one after the other and can follow two different
paths. The first path involves a triple being added to a subgraph. This is because
it shares the same subject as the seed node of that specific subgraph. The other
path is the traditional one where a subgraph following the TSA algorithm is
generated from that triple, more precisely from the subject of that triple. In this
way, a syntactical cluster will be generated around the central seed, similar to
what happened during the first graph base analysis.

In Figure 4.3 we can appreciate how the BruteForce algorithm works on a
valid example. Graph 1 is the subgraph of a director with the label Spike Lee
exacted by the TSA algorithm from the base graph. Then we have a subset of the
triples in which the subject is equal to the seed of the Graph 1, namely d-8478.
When the BruteForce algorithm analyzes those triples it adds them to Graph 1
liking the new properties to the central seed. In this example, the graph grows
by 6 units: node d-8478 gains four new directed statements, so 4 new films; then
to the central node gains the property type and the property name.

The resulting graph has more information than the starting one, we now
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know that director d-8478 is a person and its name is Spike Lee, this fact could
also have been inferred from the first graph but having a new property that
directly specifies the name removes all doubt.

<DOCNO>383213</DOCNO> 8478 type director 8478 label Spike Lee (Di-
rector) 8478 made 11726 8478 made 1374 8478 made 2524 8478 made 715
11726 initial release date 2004-09-16 11726 title Sucker Free City 1374 initial
release date 1990-08-03 1374 actor 19832 1374 actor 19833 1374 title Mo’
Better Blues 2524 initial release date 1986-08-08 2524 title She’s Gotta Have
It 715 initial release date 1992-11-18 715 actor 31302 715 actor 75075 19832
name Denzel Washington 19833 name Wesley Snipes 31302 name Albert
Hall 75075 name Christoper Plummer </DOC>

<DOCNO>383213</DOCNO> 8478 type director 8478 label Spike Lee (Di-
rector) 8478 made 11726 8478 made 1374 8478 made 2524 8478 made 715
11726 initial release date 2004-09-16 11726 title Sucker Free City 1374 initial
release date 1990-08-03 1374 actor 19832 1374 actor 19833 1374 title Mo’
Better Blues 2524 initial release date 1986-08-08 2524 title She’s Gotta Have
It 715 initial release date 1992-11-18 715 actor 31302 715 actor 75075 19832
name Denzel Washington 19833 name Wesley Snipes 31302 name Albert
Hall 75075 name Christoper Plummer
8478 type Person 8478 director name Spike Lee 8478 made 6351 8478 made
1289 8478 made 44028 8478 made 46866 </DOC>

The system then proceeds to convert the subgraphs into text documents,
and finally the keyword query is considered to retrieve the answers. The text
on the left is what comes out after the graph-text conversion. The document
lacks some relevant information, which is present in the right-hand document.
Information such as the director’s name, which is added later allows the right-
hand document to gain a few positions in the final ranking since it is more
relevant than the query.

The whole idea revolves around the concept in which a new triple 𝑡 or a
group of triples (𝑡1, 𝑡2, 𝑡3, ..., 𝑡𝑛), from the update dataset, can bring new infor-
mation to a subject 𝑠, which may already be present in the base graph 𝐵 and
thus be part of an already constructed subgraph 𝑠𝑏𝑔𝑟. If the subgraph is not
found this triple 𝑡 becomes the starting point of a new subgraph, following the
strategy of Alg. 1. The RDF subgraphs collection found in the base dataset can
be enhanced by the new triples, but not all the subgraphs may be affected; at
the same time new RDF graphs are produced from the triples left out. Brute-
Force iterates over all triples 𝑡 in the RDF graph 𝑈 , that represent the update,
then it takes the subject 𝑠 and searches it in the map ℒ where all the previ-
ous source nodes used by TSA (Alg. 1) are saved together with their serial
cluster number, the cluster in which TSA placed them, for example if the node
" http://data.linkedmdb.org/resource/director/8478 " that is Spike Lee
is inside cluster 383213 than all the new triples regarding the director will be
routed to that cluster. If the source node is found the cluster is modified adding
the triple 𝑡. Otherwise, the source node becomes a new entry in the map ℒ and
a subgraph is created following the strategy of the TSA algorithm.

It is easy to spot the big drawback of this approach, the for cycle scans all
the triple and in doing so there is the risk of spending more time in the update

30



CHAPTER 4. UPDATE IDEA

processing than processing the base dataset. This suspicion is confirmed by the
experimental data available in the next chapter.

The changes were applied only to the offline phase of the TSA algorithm,
where the virtual documents are produced; the online phase, the part where the
queries enter the process remained as the original one.
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Algorithm 2 BruteForce
Input: RDF graph 𝐵, RDF graph𝑈 , map 𝐿, old 𝑠𝑏𝑔𝑟𝑜𝑙𝑑,
Output: new representative subgraphs 𝑠𝑏𝑔𝑟𝑛𝑒𝑤

1: 𝑠𝑏𝑔𝑟𝑛𝑒𝑤 ← ⊘
2: for triple 𝑡 in𝑈 do
3: 𝑠 ← 𝑡.getSubject()
4: if 𝑠 is in 𝐿 then
5: cluster 𝑅← 𝐿.get(𝑠) {𝑅 takes the value mapped to 𝑠}
6: 𝑅.add(𝑡)
7: else
8: 𝑐 ← 𝑐 + 1
9: 𝐿.add(𝑠,𝑐)

10: 𝐵′← new Graph()
11: while 𝑄 ≠ ⊘ do
12: 𝑣 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()
13: 𝑣.𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

14: 𝑟𝑎𝑑𝑖𝑢𝑠 ← 𝑣.𝜏 − 1
15: for each 𝑢 ∈ 𝒩−(𝑠) do
16: if 𝑢 ∉ 𝑆 ∧ 𝑢 ∉ 𝑇 then
17: //Accessory node
18: G.addTriple((𝑠,𝑢))
19: end if
20: if 𝑢 ∈ 𝑇 then
21: // Terminal node
22: G.addTriple((𝑠,𝑢))
23: for each 𝑤 ∈ 𝒩−(𝑢) do
24: if 𝑤.𝑖𝑠𝐿𝑖𝑡𝑒𝑟𝑎𝑙() ∨ (𝑤 ∉ 𝑆 ∧ 𝑤 ∉ 𝑇) then
25: G.addTriple((𝑢,𝑤))
26: end if
27: end for
28: end if
29: if (𝑝(𝑠, 𝑢) ∈ ℒ) ∧ (𝑟𝑎𝑑𝑖𝑢𝑠 > 0) ∧ (𝑢.𝑐𝑜𝑙𝑜𝑟 ≠ 𝑏𝑙𝑎𝑐𝑘) then
30: if 𝑢 ∈ 𝑆 ∧ 𝑢 ∉ 𝑇 then
31: 𝑢.𝜏← 𝑟𝑎𝑑𝑖𝑢𝑠

32: 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑢)
33: G.addTriple((𝑣,𝑢))
34: end if
35: end if
36: end for
37: end while
38: 𝑠𝑏𝑔𝑟𝑛𝑒𝑤 .add(𝐵′)
39: all the triples in 𝐵′ are marked as visited and removed from𝑈

40: end if
41: end for
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4.2 Semi TSA approach

This approach was designed as an alternative to BruteForce. The idea was
to use what had already been developed for the original TSA system and apply
it directly to the dataset used as an update. Algorithm 3 shows how the system
detects subgraphs. It starts by tanking in input the RDF graph𝑈 , the graph that
acts as the update. The statistics about the source and terminal set calculated in
the base graph 𝐵 processing are reused here. This is done to ensure that a node
is classified in one of the two sets, source or terminal, with a higher probability
and that as a result the node is used for the creation of the virtual documents.
On the other hand, that precious information might have been lost.

Another critical detail is defining the neighbors of a node extracted from
the queue Q. The search for the neighbors is also extended to the base graph
and is not confined to just the update graph. Any duplication generated, which
is almost certain since the neighbor search is extended beyond the boundaries
of the update graph, will be eliminated in the online phase of BM25 and VDP
where only useful triples remain and duplicates are suppressed.

Figure 4.4: Overview of the Semi TSA approach to process the update
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Figure 4.4 shows how this system works: the computation done for the base
graph 𝐵 is replicated here. This also includes the source and terminal node
computation part, because in this way we are able to capture the new data
present in the update, like new actors, film or additional data to enrich the base
graph. The subgraphs produced by the update dataset are converted and added
to the text document collection. The next steps are the same as those followed
in the original paper [6]. In the online part, the search will be performed on all
documents produced, either in those built from the base graph and those new
ones introduced by the update analysis.

The main idea is to create new virtual documents by considering the update
as an addition to the original system, which is effectively the nature of the update
itself. The update is a starting point for creating new documents that are richer
in information than those created using only the base graph. This is because the
neighboring nodes, and any literals, that will make up the cluster come from
both the base graph and the update graph. Here the statistical computation is
confined only to the update, this enables a quicker processing time and reduced
complexity. The total complexity, however, remains very similar to the original
complexity obtained by running the TSA+BM25 or TSA+VDP algorithm on the
complete graph.
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Figure 4.5: An example of how the semiTSA method works on an
entity such as Spike Lee
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In Figure 4.5 there is a concrete example of how the semiTSA system works.
The situation is the same as in the example considered earlier to illustrate the
operation of the BruteForce system. Consider the case in which the triples of the
update to be analyzed include the same 6 seen before. This system, as can be
appreciated from the figure, produces a second graph, Graph 2, independent of
Graph 1. Observing the algorithm 3 it seems that this fact is missing but Graph2
is the graph that would be created if we restricted the TSA algorithm only to the
update database 𝑈 . Instead, by allowing freedom to explore the base graph B
again the results is the union of the two because the triples of graph B are again
explored in the same way as the original algorithm.

This new graph looks very similar to Graph 1. Looking at this graph we can
immediately conclude that the seed is node d-8478, it is a person type entity and
it is named Spike Lee. Around him other nodes develop, the same ones we had
in the BruteForce case. Compared with BruteForce, the red nodes are explored
again with a technique similar to BFS. There is much more information here: the
title of each thing Spike Lee directed, when the product or movie was released,
and which actors, with their names, participated in the work. There are also
some durations of the movies. All this new information is then transformed
into a text document. Then Graph 1 and Graph 2 are merged together and the
resulting graph becomes part of the set of representative subgraphs, to later be
converted into a text document.

<DOCNO>383213</DOCNO> 8478 type director 8478 label Spike Lee (Di-
rector) 8478 made 11726 8478 made 1374 8478 made 2524 8478 made 715
11726 initial release date 2004-09-16 11726 title Sucker Free City 1374 initial
release date 1990-08-03 1374 actor 19832 1374 actor 19833 1374 title Mo’
Better Blues 2524 initial release date 1986-08-08 2524 title She’s Gotta Have
It 715 initial release date 1992-11-18 715 actor 31302 715 actor 75075 19832
name Denzel Washington 19833 name Wesley Snipes 31302 name Albert
Hall 75075 name Christoper Plummer </DOC>

<DOCNO>383213</DOCNO> 8478 type director 8478 label Spike Lee (Di-
rector) 8478 made 11726 8478 made 1374 8478 made 2524 8478 made 715
11726 initial release date 2004-09-16 11726 title Sucker Free City 1374 initial
release date 1990-08-03 1374 actor 19832 1374 actor 19833 1374 title Mo’
Better Blues 2524 initial release date 1986-08-08 2524 title She’s Gotta Have
It 715 initial release date 1992-11-18 715 actor 31302 715 actor 75075 19832
name Denzel Washington 19833 name Wesley Snipes 31302 name Albert
Hall 75075 name Christoper Plummer
8478 type Person 8478 director name Spike Lee 8478 made 6351 6351 title
Clockers 6351 initial release date 1995-09-13 6351 runtime 125 6351 actor
81747 81747 name Isaiah Washington 8478 made 1289 1289 initial release
date 2002-12-16 1289 title 25th Hour 1289 runtime 135 8478 made 44028
44028 initial release date 1988-02-12 44028 type Film 44028 actor 41066
44028 composer 138 44028 title School Daze 44028 actor 29873 44028 pro-
ducer 29873 name Samuel L.Jackson 138 name Bill Lee 41066 Giancarlo
Esposito 8478 made 46866 46866 composer 5891 5891 name Terence Blan-
chard 46866 initial release date 1996-10-16 46866 title Get on the Bus 46866
actor 32708 32708 name Bernie Mac 46866 actor 31302 31302 name Albert
Hall </DOC>

The information that the new graph brings to the system is superior to that
generated by the BruteForce algorithm. Here are the titles of the films and the
names of the actors who worked on them. To a possible question "What movie
has Spike Lee directed?" The documents produced by the semi-TSA algorithm
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are more accurate than those of BruteForce because they contain all the keywords
required to answer the question. As a result, they are ranked higher in the final
ranking.
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Algorithm 3 Semi TSA
Input: RDF graph 𝐵, RDF graph𝑈 , map 𝐿𝑛𝑒𝑤 , source set 𝑆𝑛𝑒𝑤 , terminal set 𝑇𝑛𝑒𝑤 , source

set 𝑆𝑜𝑙𝑑, terminal set 𝑇𝑜𝑙𝑑
Output: new representative subgraphs 𝑠𝑏𝑔𝑟𝑛𝑒𝑤

1: 𝑠𝑏𝑔𝑟𝑛𝑒𝑤 ← ⊘
2: 𝑄 ← ⊘
3: for each 𝑠 ∈ 𝑆 do
4: if 𝑠.𝑐𝑜𝑙𝑜𝑟 = 𝑤ℎ𝑖𝑡𝑒 then
5: 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑠)
6: 𝑠.𝜏← 𝜏
7: G← new Graph()
8: while 𝑄 ≠ ⊘ do
9: 𝑣 ← 𝑄.𝑑𝑒𝑞𝑢𝑒𝑢𝑒()

10: 𝑣.𝑐𝑜𝑙𝑜𝑟 ← 𝑏𝑙𝑎𝑐𝑘

11: 𝑟𝑎𝑑𝑖𝑢𝑠 ← 𝑣.𝜏 − 1
12: //search in both graph 𝐵 and graph𝑈
13: for each 𝑢 ∈ 𝒩−(𝑠) do
14: if 𝑢 ∉ 𝑆 ∧ 𝑢 ∉ 𝑇 then
15: //Accessory node
16: G.addTriple((𝑠,𝑢))
17: end if
18: if 𝑢 ∈ 𝑇 then
19: // Terminal node
20: G.addTriple((𝑠,𝑢))
21: //search in both graph 𝐵 and graph𝑈
22: for each 𝑤 ∈ 𝒩−(𝑢) do
23: if 𝑤.𝑖𝑠𝐿𝑖𝑡𝑒𝑟𝑎𝑙() ∨ (𝑤 ∉ 𝑆 ∧ 𝑤 ∉ 𝑇) then
24: G.addTriple((𝑢,𝑤))
25: end if
26: end for
27: end if
28: if (𝑝(𝑠, 𝑢) ∈ ℒ) ∧ (𝑟𝑎𝑑𝑖𝑢𝑠 > 0) ∧ (𝑢.𝑐𝑜𝑙𝑜𝑟 ≠ 𝑏𝑙𝑎𝑐𝑘) then
29: if 𝑢 ∈ 𝑆 ∧ 𝑢 ∉ 𝑇 then
30: 𝑢.𝜏← 𝑟𝑎𝑑𝑖𝑢𝑠

31: 𝑄.𝑒𝑛𝑞𝑢𝑒𝑢𝑒(𝑢)
32: G.addTriple((𝑣,𝑢))
33: end if
34: end if
35: end for
36: end while
37: 𝑠𝑏𝑔𝑟.add(G)
38: end if
39: end for
40: return 𝑠𝑏𝑔𝑟
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5
Analysis

In this chapter we report and reason about the experimental results of the
modified TSA+BM25 and TSA+VDP to handle updates, described in chapter 4,
comparing them with the ones from Dosso e Silvello[6].
The experiments were performed on two databases, LinkedMDB and a subset of
IMDB. Only LinkedMDB(or LMDB) is a native RDF dataset, IMDB is shared as
a relational database, so it was converted into a RDF dataset. Both are datasets
about movies or shows and everything that revolves around them. LinkedMDB
is composed by more then 6 million triples, whereas the size of the IMDB subset
is 30 million. To ensure that the answers to our queries were there, ground
truth triples were added to the subset. All tests were performed on a laptop
equipped with Windows 11, i7-10850H @ 4.00 GHz, 32GB of RAM. The datasets
were imported in PostgreSQL, creating a table with three columns, "subject",
"predicate" and "object" and auxiliary indexes. Blazegraph, a native application
to manage RDF graphs, was used to generate only the ground truths. Thanks
to the available computing power and system efficiency a few parameters have
been changed over the original system. In particular the value 𝑙 of the first
ranked graphs that are passed to the merging function, and the value 𝑛 of the
VDP pipeline to build the big query graph to retrieve the answers.

The following performance results, referring to the four different update
percentages, are the average of three distinct runs, trying to create each time
a unique update set for the experiment. The term baseline in the following
chapter will represent the run and numerical results obtained using the original
TSA+BM25 and TSA+VDP systems. Section 5.2 will present results obtained
with a brute force technique, while section 5.3 has results obtained considering
the update as a separate thing using a more quick virtual document mechanism.
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5.1 Update construction

The update was constructed by relying entirely on PostgreSQL, specifically
the BFS exploration was performed on subjects selected at regular intervals in
the triple_store table. Below we have reported the code. The first question mark
allows you to choose the sampling interval; the second one limits the results.
With DISTINCTwe are sure to generate a set. This could be seen as a suboptimal
method of selecting nodes, but after several attempts, this strategy was adopted
to reach the necessary number of triples to be excluded. This does not preclude
alternative mechanisms from being used in the future.

1 SELECT DISTINCT t.subject_ , t.id_ FROM

2 (

3 SELECT subject_, id_, ROW_NUMBER() OVER (ORDER BY id_) AS rownum

4 FROM this.schema.triple_store_base

5 ) AS t

6 WHERE t.rownum % ? = 0

7 ORDER BY t.id_ limit ?;

Code 5.1: SQL command to select the subject seeds

Database name Dimension Num of queries

LinkedMDB 6.1 millions 50

IMDB 30 millions 50

Table 5.1: Name of the dataset used and their dimension

5.2 Brute force strategy

Table 5.2 shows my first attempt at handling the update the basic and brute
force mechanism on both datasets. The poor results of tb-DCG highlight how the
technique adopted is not very effective. In LinkedMDB, at 10% the loss compared
to the baseline is 36% and gets worse as the overall update percentage is increased
on both BM25 and VDP systems. Such results could be explained by the fact that
the update triples were not inserted as well as they could have been by processing
the whole graph at once, this led to a decrease in the relevance of the graph and
a consequent reduction in the overall tb-DCG. Since tb-DCG is affected by the
size of the ground truth, we can infer that the resulting graph on average is
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Dataset percentage Systems tb-DCG recall prec@1 prec@5 num
of update of clusters

LinkedMDB

0 % BM25 0.183 0.855 0.000 0.006 471.0 kVDP 0.537 0.861 0.034 0.032

10 % BM25 0.117 0.591 0.000 0.003 518.1 kVDP 0.343 0.394 0.025 0.022

20 % BM25 0.113 0.569 0.000 0.002 536.6 kVDP 0.315 0.345 0.038 0.023

30 % BM25 0.107 0.545 0.002 0.000 544.8 kVDP 0.388 0.424 0.063 0.046

40 % BM25 0.118 0.588 0.000 0.000 538.6 kVDP 0.439 0.487 0.053 0.048

IMDB

0 % BM25 0.152 0.317 0.121 0.061 933.9 kVDP 0.255 0.281 0.031 0.016

10 % BM25 0.057 0.126 0.066 0.013 917.5 kVDP 0.224 0.234 0.024 0.013

20 % BM25 0.049 0.095 0.026 0.005 897.0 kVDP 0.251 0.258 0.034 0.022

30 % BM25 0.037 0.072 0.040 0.006 878.5 kVDP 0.196 0.205 0.026 0.016

40 % BM25 0.034 0.067 0.023 0.006 866.3 kVDP 0.161 0.177 0.022 0.018

Table 5.2: Results obtained with the brute force approach

smaller than it should be. This may be combined with a consequential difficulty
for BM25 to sort the graphs by relevance. Here the precision performance is
very similar to the baseline in both BM25 and VDP, and a little better in prec@5
with VDP in the case of 30% and 40%. Maybe those numbers may be affected by
the number of clusters which is steadily increasing as the update rate increases.

With VDP at 30% and 40% tb-DCG values are a little higher but the main
reason could be the dimension of the update: the new clusters are more precise,
with fewer useless triples, and are ranked better. The recall cannot come close to
the excellent result obtained by the baseline, but it did not change, increasing the
update percentage, meaning that at least half of the triples are retrieved with the
BM25 pipeline. VDP because it only considers the first 120 results from BM25
gets better tb-DCG, thanks to the embedded pruning and re-ranking process
but lower recall, in line with baseline outcome.

Shifting to IMDB, we notice a difference in the results with this dataset; the
results on the LinkedMDB are relatively close to the baseline and so a little
unexpected, for a such simple strategy, the ones obtained on IMDB shows that
this method is not suited for handling updates on a RDF keyword search system
on that particular dataset structure. Looking at tb-DCG the loss with respect
to the BM25 baseline, at 10%, is 62.5%, at other percentage levels the value
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gradually decreases; the difference between 30% and 40% is marginal. VDP
demonstrates how the ranking and results obtained at BM25 stage are crucial
for tb-DCG: from 20% onward we can see how progressively more than 30 points
are lost at each step. This means that the ranking of BM25 is sub-optimal and
gets worse as the update rate increases, plus the generated graphs carry many
irrelevant triples. One thing to notice is how the recall in the VDP pipeline
continues to have good results until 30%, then it gets worse.

Precision values are low but constant throughout the update percentages.
With some surprise, the recall values of VDP are higher than BM25, this can
be explained by the approach of VDP and the nature of the database. Here the
pruning increase the SNR and the retrieved graphs are bigger and contain more
relevant triples, but the lower performance of recall compared to the baseline
may be due to the high connectivity of the dataset and also one of the key factor
that differentiate the progression in the number of clusters between the two
datasets: while in LinkedMDB there is an increase of the number of the cluster
as the percentage grows, in IMDB the number decreases significantly, many
triples are inserted in already created cluster penalizing the creation of new and
more accurate subgraphs, as previous results show. The rate at which we find
a relevant, or partially relevant, result in the first position is consistent with the
baseline and in all update cases.

In IMDB, the loss in performance moving from 10% update to 40% update
is greater than 34%, which also happens in LMDB where the difference is 35%.
Recall sinks heavily relative to the baseline, in particular in IMDB.
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5.3 Semi TSA strategy

5.3.1 Single update

Dataset percentage Systems tb-DCG recall prec@1 prec@5 num
of update of clusters

LinkedMDB

0 % BM25 0.183 0.855 0.000 0.006 471.0 kVDP 0.537 0.861 0.034 0.032

10 % BM25 0.128 0.642 0.002 0.003 495.6 kVDP 0.485 0.517 0.021 0.021

20 % BM25 0.135 0.703 0.000 0.002 499.7 kVDP 0.499 0.538 0.022 0.020

30 % BM25 0.141 0.721 0.000 0.004 505.8 kVDP 0.553 0.581 0.025 0.022

40 % BM25 0.160 0.733 0.000 0.005 499.7 kVDP 0.520 0.572 0.021 0.020

IMDB

0 % BM25 0.152 0.317 0.121 0.061 933.9 kVDP 0.255 0.281 0.031 0.016

10 % BM25 0.118 0.294 0.083 0.014 929.8 kVDP 0.228 0.247 0.041 0.025

20 % BM25 0.095 0.287 0.041 0.011 923.6 kVDP 0.228 0.262 0.039 0.025

30 % BM25 0.109 0.307 0.045 0.012 919.5 kVDP 0.198 0.235 0.037 0.032

40 % BM25 0.116 0.316 0.045 0.017 915.4 kVDP 0.188 0.231 0.036 0.023

Table 5.3: Results obtained with TSA pipelines and a variable update
percentage

Table 5.3 shows the results obtained by the system under various conditions by
the two modified pipelines. Starting with LMDB, it is clear how the two systems
behave in different ways, the drop in performance with tb-DCG is less with
VDP than with BM25. With an update of 10% VDP loses only 10% compared
to the 30% of BM25 relative to the baseline. This could be explained by the
increase in the number of clusters; more clusters mean that the information is
more scattered, so the BM25 pipeline has a hard time merging and ranking the
solution graphs.
We can observe a strange behavior, tb-DCG value increases as the percentage of
the update increase; at 40% the value is only 12% less than the baseline. The
same thing is replicated by VDP, at 40% surprisingly the value is even higher
than the baseline. The same effect appears considering recall, but here the results
tend to stay on the same level or rise a little on every update percentage level.
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The improvement could be due to the effect of "new" information brought by the
update, with the latter being big enough to create "virtual documents" similar
to the baseline. Considering an update as a single entity, virtually separated
from the base dataset, it produces more virtual documents and thus the number
of clusters. Still, it remains more or less constant in every situation, despite
increasing the triples being considered an update. The number of clusters
directly influences the online phase, we noticed that some queries, during the
VDP pipeline, had a bigger query graph, the graph from which the system starts
a BFS and retrieves the best candidates to be passed to the following method.
For instance, query 1 "Francis Ford Coppola director title" of LinkedMDB had a
query graph size(number of triples), which is generated in VDP before pruning,
of 5738 with an update of 10%, obtaining 0.63 as tb-DCG; the query graph size
grew at 6646, 7378 and 7626 for the following percentages and in all those cases
tb-DCG was equal to 1, the identical metric value obtained from the baseline. In
this case, we can assume that in the 20% update and above, the graphs are closer
to their baseline counterparts. In all cases, all the relevant triples are retrieved
but in the first update case those are not ranked in the first two positions (then
it starts the discounted mechanism) and so the value is lowered a bit.

The variability of the dimension of the graph size is confirmed by query 23
"actor director title Dennis Hopper" where the values ranges from 1295 at 10% to
2560 at 40%. Still, at the end, the tb-DCG value is maximum while the precision
is only 0.03 similar to the baseline.

Looking at recall, we observe a decrease we expected. Here BM25 is the
top-performing system, at 10% the recall loss compared to the baseline is over
23% and regain some points as the update percentage increase. We may think
that this is due to more precise and less noisy clusters that TSA can build, with
higher percentages of updates, we get closer and closer to the initial condition
in fact, at 40% BM25 obtains 20% more points compared to the 10% update.
A similar thing happens with VDP after the difference between 10% and 40%
settles to 10% with the advantage of the latter.

As we can see from the table, precision values are closer to the baseline on
all occasions, this suggests that the new subgraph may not be optimal to have
a good performance in the other metrics but here they maintain useful triples
and are placed in the top positions.

Moving to IMDB the conclusions are similar, VDP is the system that retains
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more performance over all updates scenarios. The pruning and re-ranking
techniques seem to be effective, but as already observed by Dosso and Silvello
[6], the structure and nature of the database have an impact on the results. Here
tb-DCG decreases moving from 10% to 40%, compared to LinkedMDB where
there was an opposite trend. The loss of BM25 compared to the baseline is
around 27% at 10% and does not improve as the update percentage increases.
VDP has the same behavior, until 20% tb-DCG the loss is around 10% but then
it increases till 26%. The decreasing number of clusters evidences the features
of IMDB as the update rate increases even with respect to the baseline, contrary
to what we would expect. Presumably the update separated the database in a
way that favored higher connectivity so the subjects cluster more easily.

Recall instead have comparable outcomes during all tests and with some
surprise the results are near the baseline; a complete different results compared
to LinkedMDB. Closer to the baseline are the results obtained in the precision
area especially with VDP. BM25 instead loses only 7.2% from a 10% update but
it increases a bit when the update size increases. Here VDP has lower results
compared to BM25.

Looking at the precision@1 values BM25 loses up to 66% at 20%; VDP, thanks
to the re-ranking approach and intermediate steps with the query graphs, man-
ages to have higher and stable results in all the occasions, superior to the baseline.
Prec@5 proposes the same trend observed above, the VDP is the system that gets
the best results.

The same thing happens in IMDB where despite queries have a query graph
each time of a different dimension, the results are constant, like in query 12
"name Orson Welles profession director known for titles cast actor". At 10% the query
graph size is 1116, then in the other cases 1426, 1519 and finally 1267. The
difference of the dimensions of the query graphs is a signal of how the virtual
document selected by the BM25 part are bigger and probably how they retain
needless triples that are removed in the next step.

5.4 Comparison between methods

Here we compare the two different approaches, BruteForce and TSA. As
seen in the previous sections, IMDB enhances the differences between methods,
mostly caused by its dimension and structure. Considering tb-DCG in Figure 5.1
it is visible how semi-TSA, in green, with the BM25 pipeline, with a 10% update,
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manages to find an answer that in most of the cases is higher or even the only
one available compared to the first system. Not in all queries the results are
great, the queries in the second half get good values, and you see the advantage
of the second approach. From Figure 5.2, which represents the difference in
performance in the two systems for each query, we can appreciate that only four
times BruteForce is capable of finding a better solution with an advantage of less
than 0.2 points. In some query reach 0.4 points. When there are no bars it means
that the two systems are equivalent. On the other hand, this image highlights
the excellent results obtained by semi-TSA. In general we can say that semi-TSA
it is best suited to handle this case.

The differences are more clear looking at higher update percentages of 20%
or 40%. Figures 5.3 and 5.4 highlight the deteriorating performance of the first
strategy. Values from tables 5.2 and 5.3 confirm this aspect. For instance, at 40%
queries like 28, 43 or 46 flipped in favor of semiTSA. The semi-TSA gains more
than three times in tb-DCG with respect to the BruteForce approach looking
at the 40% update values in BM25, but also at other levels the advantage of
semi-TSA is clear.

VDP instead shows a slightly different situation. Here the differences be-
tween updates are already evident starting between 10% and 20% updates as
depicted in Figures 5.7 and 5.8. If at one level of the 10% BruteForce and semi-
TSA seem to perform in the same way, in fact the numerical difference is minimal,
because the advantages on some queries are eliminated on others. In the case
of 20% BruteForce surprises and gets a better result than semi-TSA. From the
query-to-query graph in Figure 5.8 the advantage is in queries 15, 16, 17, 41, 45,
46. The particular advantage on these queries is maintained also in the following
percentages, but the values in the other queries drop, so semi-TSA regains first
place. Differences in VDP pipeline do not stand out, tb-DCG values are more
constant and higher in the semi-TSA approach, at 40% update semi-TSA gains
roughly 15%; the result of BruteForce at 20% is impressive.

Recall is the second metric that we want to compare, both Figures 5.9 and 5.10
show the values under BM25, there it is highlighted how BruteForce method
practically always loses. We can see from Figure 5.10 that with 20% semi-TSA
method is the top one in all queries in particular in the last twenty and differences
from 10% are substantial. The brute force strategy reveals its limit and it is not
well suited to process and scale updates in an RDF environment, at least with
this implementation. The brute-force method loses up to 67% compared to
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semi-TSA in the same 20% update situation and in the other cases it does not
have great results. Recall in BruteForce VDP degrades as the update increases,
semi-TSA on the other hand proves much more flexible and even improves by a
few points. The performance delta is not as sharp as with BM25. VDP has the
characteristic of decreasing the differences between the two systems noticeably,
and this is inferred by the previous graphs about VDP. One example is given in
Figure 5.11, the advantage of VDP is only 8 queries.

In both approaches the precision is a metric greatly affected by the update
size. In both cases above an update size of 10% the precision@1 is halved. Semi-
TSA, in the VDP pipeline, performs better than the baseline, whereas BruteForce
stands at lower values.

BruteForce produces lower number of cluster compared to TSA, while semi-
TSA has a little variability, BruteForce instead steadily reduces the value.

Proceeding with an analysis similar to that done for IMDB we examine
LinkedMDB. In LMDB, the brute-force strategy is not effective, the tb-DCG loss
compared to the semi-TSA is more than 24%, at 30% with BM25 and in the
Figure 5.13 this difference is clear with minor exceptions. Strangely, while in
BruteForce there is a decrease in values as the percentage increases, in semi-TSA
the opposite happens. VDP pipeline even shows how the differences between
the two approaches, in this case with a 30% approach, there are no intermediate
measures: either the system perfectly detects the answer, so with a value of 1, it
fails, or as happens here specifically the two systems are equivalent like we see
in Figure 5.14 and 5.15. VDP with the Semi-TSA approach performs more than
43% better than BruteForce in these conditions. With an update size of 10% the
advantage is similar, 41%. With this database VDP pipeline outperforms BM25.

Looking at the recall semi-TSA maintains an excellent level of performance.
BM25 proves to be the better system of the two under update conditions if
we aim to optimize this parameter. In fact, the scores never fall below 60%.
The final values improve, as the size of the update increases, up to 14%. In
contrast, BruteForce does not scale correctly and gets worse as the size of the
update increases. The loss transitioning from BM25 to VDP is similar for the
two methods but in the end it is still semi-TSA to maintain first place. Here we
find the characteristics of the query-by-query analysis seen for IMDB; values of
VDP like those seen before in IMDB confirm its trend. We will not report other
update size analysis because all the graphs will be similar to each other and they
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would not bring any further insight.
The precision in the LMDB is extremely similar in both approaches. Perhaps

the update handling is not optimal and should be revised to improve this aspect,
BM25 in nearly all cases do not have any relevant document in the first position.
Some things change for VDP but this it is primarily thanks to the second ranking
done in the pipeline.

In VDP the advantage ranges from 12 up to 42%(when considering an update
of 30%) The recall performance of semi-TSA is significantly higher than brute-
force in every scenario.

5.4.1 Execution times

Looking at the execution times reported in table 5.4 we notice how the
semiTSA approach is quicker in every situation, and constant with respect to
the BruteForce algorithm and the advantage grows as the size of the update
becomes larger. The BruteForce approach is greatly affected by the increase in
triples as the update ratio grows, because it does not create a new virtual docu-
ment immediately but instead, it tries to look for a premade document in which
to insert the additional information, this observation is valid in both datasets.
In fact we can see that even at 10% the update processing time is higher than
the base; the fact remains valid for all the conditions, giving us a hint that this
idea not only performs worse than its counterpart. It is also worth mentioning
that most of the offline time is spent on the updating time as the percentage of
the update increases, the other parts like document creation and indexing tend
to be constant because they use state of art techniques. Focusing to semiTSA
we can see that in LMDB until 30% the time to handle the update is lower than
the base, while it is superior at 40%. In IMDB the moment in which the update
processing time is greater than the base processing, happens with 30%. The
difference might be due to the size but also because IMDB has a more connected
structure in which semiTSA, inheriting everything from the original system, has
to dive. Looking at Figure 5.18 one thing to note in BruteForce is the distinct
increase in running time in the transition from 20% to 30% in both datasets;
again in either dataset we can point that the execution time for semi-TSA at 40%
is even lower than BruteForce at 10% . semiTSA instead maintains a stable and
linear execution time in every situation doubling the size of the dataset also
duplicates the execution time. The table shows the two trends: the semi-TSA
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maintains a reasonable processing time for the update set in both datasets, while
BruteForce takes 4 to 5 times as long. From those data semiTSA seems to be a
scalable strategy and it is the right one to process big data. The fact should not
be surprising and confirms how this innovative approach holds great potential
in the field of keyword search by fitting into the dense picture presented.

Dataset percentage Systems Total time Base Update
of update (min) (min) (min)

LinkedMDB

0 % Baseline 23 10 /

10 % Brute force 32.71 10.47 10.76
semiTSA 25.11 2.39

20 % Brute force 36.20 9.68 16.68
semiTSA 26.12 4.28

30 % Brute force 45.04 8.80 25.55
semiTSA 26.32 7.00

40 % Brute force 48.47 6.32 33.04
semiTSA 23.25 8.25

IMDB

0 % Baseline 102 50 /

10 % Brute force 144 39.49 55.30
semiTSA 96 10.12

20 % Brute force 168 34.10 93.14
semiTSA 96 20.78

30 % Brute force 204 27.25 140.75
semiTSA 90 30.21

40 % Brute force 240 22.82 184.78
semiTSA 96 42.52

Table 5.4: Offline time execution of the different systems
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Figure 5.1: Comparison between methods using BM25 in IMDB tb-
DCG at 10%
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Figure 5.2: Differences in tb-DCG between BruteForce and semi-TSA
in IMDB 10% update using BM25 pipeline

Figure 5.3: Differences in tb-DCG between BruteForce and semi-TSA
in IMDB 20% update using BM25 pipeline
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Figure 5.4: Differences in tb-DCG between BruteForce and semi-TSA
in IMDB 40% update using BM25 pipeline
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Figure 5.5: Comparison between methods using BM25 in IMDB tb-
DCG at 40%
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Figure 5.6: Comparison between methods using VDP in IMDB tb-
DCG at 10%

54



CHAPTER 5. ANALYSIS

Figure 5.7: Differences in tb-DCG between BruteForce and semi-TSA
in IMDB 10% update using VDP pipeline

Figure 5.8: Differences in tb-DCG between BruteForce and semi-TSA
in IMDB 20% update using VDP pipeline
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Figure 5.9: Differences in Recall between BruteForce and semi-TSA in
IMDB 10% update using BM25 pipeline

Figure 5.10: Differences in Recall between BruteForce and semi-TSA
in IMDB 20% update using BM25 pipeline
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Figure 5.11: Differences in Recall between BruteForce and semi-TSA
in IMDB 10% update using VDP pipeline
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Figure 5.12: Comparison between methods using BM25 in IMDB tb-
DCG at 10%
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Figure 5.13: Differences in tb-DCG between BruteForce and semi-TSA
in LinkedMDB 30% update using BM25 pipeline
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Figure 5.14: Comparison between methods using VDP in LinkedMDB
tb-DCG at 30%
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Figure 5.15: Differences in tb-DCG between BruteForce and semi-TSA
in LinkedMDB 30% update using VDP pipeline

Figure 5.16: Differences in recall between BruteForce and semi-TSA in
LinkedMDB 10% update using BM25 pipeline
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Figure 5.17: Differences in recall between BruteForce and semi-TSA in
LinkedMDB 10% update using VDP pipeline

Figure 5.18: Processing time of the different update percentages be-
tween BruteForce and TSA
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5.5 Multiple updates

Dataset percentage Systems tb-DCG recall prec@1 prec@5 num
of update of clusters

LinkedMDB

0 % BM25 0.183 0.855 0.000 0.006 471.0 kVDP 0.537 0.861 0.034 0.032

10 % BM25 0.126 0.583 0.002 0.008 514.0 kVDP 0.364 0.395 0.052 0.044

20 % BM25 0.118 0.589 0.005 0.004 538.6 kVDP 0.437 0.467 0.020 0.019

30 % BM25 0.140 0.518 0.001 0.002 561.2 kVDP 0.567 0.436 0.027 0.026

40 % BM25 0.161 0.485 0.002 0.002 579.6 kVDP 0.534 0.413 0.031 0.029

Table 5.5: Results obtained with update split in 5

Why not stress the system and see if there are any drops in the performance? This is
the question we asked ourselves and tried to answer by dividing each update
into five pieces to represent five different updates, performed one after the other.
To be clear, an update of 30% has become 5 updates of roughly 360 thousand
triples each. Previous experiments showed that the BruteForce system was
not suitable for handling updates, so it was excluded. Mainly due to the high
execution time and its overall low performance, such as tb-DCG or recall.

The experiments were conducted only on LinkedMDB because of its dimen-
sion. Table 5.5 shows that despite what we were expecting, so a degradation
in performance, the results with LinkedMDB are quite good. There are even
improvements over the single update, like in the 30% case. At 10% the number
of new triples is 120 thousand, tb-DCG level is slightly worse than the single
update, maybe this is connected to the fact that some triples are excluded and so
split in more documents, which would not have happened having all the triples
available at the same time. BM25 seems to perform fine in this situation as well.
There is no noticeable difference with a whole update. This may be due to the
characteristic of the database: the interconnections between the various clusters
are clearly evident when considering the entire database, because tb-DCG is
higher and the relevant triples are more similar to the ground truth, but when
the single update is generated and triples are taken out then the few connections
that were there between the subgraphs, such as director who directed multiple
films or actor who participated in multiple films, are missing and are in such
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Figure 5.19: (a) tb-DCG results with multiple updates compared to a
single one. e.g. 20% means 5 updates of 4% each, and the other
percentages follow the same pattern. (b) Recall performance
between a single and a multiple update.

numbers that the performance is lowered a bit, but not so much that the per-
formance is worse in the case of multiple updates. TSA on the original dataset
would have been able to capture this subgraph completely. Something else that
perhaps helps in these results is the merging that occurs in the last steps of BM25
and is apparently useful.

Different story for VDP, which suffers from the inaccurate ranking of BM25
and the fact that it only works on the first 120 ranking results. Here the per-
formance is lower with the smaller updates from 2% and 4%. In contrast, the
performance is even better in the 6% and 8% cases. A larger update brings
more triples, not only relevant but also noisy, which, however, VDP successfully
eliminates by increasing the final SNR and yielding a better ranking.

Looking at recall, the differences are striking and clear in both pipelines,
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around 20% less with respect to a single big update. In every update condition
the single update generates a higher recall. As the rate of a single update
increases both pipelines manage to increase the recall rate; with a fragmented
update the recall drops visibly with BM25 approaching VDP levels, never before
achieved in this dataset. The worst achievements are again with the small 2%
updates(10%) like it was observed in the tb-DCG metric. The difference becomes
important and marked by looking at the rightmost part of the two graphs, where
with 5 updates with a size of 8 percent each the performance compared to a single
update is truly remarkable. However, with the same percentage, the systems
limit the damage and generate a very good ranking with the few retrieved
documents.
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6
Conclusions

The goals mentioned in the introduction of this paper have been achieved.
We were able to reproduce the TSA+BM25 and TSA+VDP systems, in fact, we
obtained results in line with those of the original paper. In some cases, the final
results were better than the ones of the original paper due to a more accurate
parameter setting. In this work, we also focused on developing two systems
to manage updates in a keyword search over graph data system: BruteForce
and semiTSA. The topic of updates on a keyword search system on an RDF
graph had not yet been addressed in the literature, so we made our small
contribution to open up a possible path for further research. An update was
constructed by removing a certain amount of subgraphs from an RDF graph
based on the size of the starting dataset. In order to evaluate the response of
the two developed systems, different situations have been settled considering
various update conditions. The changes to process updates were limited to the
offline phase of the original TSA system, the online part remained the same
as in the original paper, with both the BM25 and VDP pipelines handling the
response to queries.

BruteForce has proven to be an inefficient and ineffective system compared
to semiTSA. In all the performed tests on the two datasets considered, IMDB and
LinkedMDB, BruteForce scored lower. In particularly tb-DCG metric was the
one in which BruteForce did not perform well. tb-DCG is a measure that mimics
the better-known DCG or nDCG metric in the IR landscape and expresses the
system’s ability to produce a good ranking. BruteForce also has the highest
execution time and ends up analyzing the few triples in the update in a longer
time than those in the base dataset. This fact, combined with the disappointing
performance, suggests that the strategy adopted was not optimal.

On the other hand, semiTSA has shown to be the winning strategy among
the two systems to handle a variable size update. Many times only semi-TSA
was able to provide an answer to a query, and this suggests that improvements
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could be made. In particular, it is evident that recall is the parameter that drops
the most relative to the standard situation, where the entire dataset is available
from the start. The two new systems cannot find all the triples useful to answer
the user’s query. This fact suggests that useful information was not perfectly
reconstructed as in the baseline situation but remained separate, and only a
portion of relevant triples were retrieved.

In the future, the update management approach could be improved by eval-
uating the use of separate parameters for creating subgraphs and the related
documents between the base dataset and the update dataset. In addition, it re-
mains to be addressed how to handle the cases of removal of triples or eventual
spot changes, maybe relying on possible metadata.
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