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Abstract

A possible way to study many-body multi-dimensional quantum systems is by sim-
ulating them. In order to simulate many-body quantum systems on a classical
computer, it is necessary to use an approximation: tensor network method repre-
sent a possible procedure. In some cases, multi-dimensional simulations need to be
mapped to one dimension: one can achieve this mapping through the Hilbert curve
of up to 8 x 8 x 8 qubits, i.e. 512 qubits.

In this thesis, the focus is to implement a Hilbert curve generator to study the
ground state quantum critical point of the quantum Ising model by using tensor
network methods, while transitioning from a two-dimensional system to a three-
dimensional one.

Un modo possibile per studiare i sistemi a multicorpi a pit dimensioni ¢ simulan-
doli. Per simulare questi sistemi a multi-corpi in un computer classico € necessario
approssimarli: i tensor network method sono una procedura possibile. In alcuni
casi, le simulazioni multi-dimensionali devono essere mappate in una dimensione: si
puo ottentere questa mappatura tramite la curva di Hilbert fino a 8 x 8 x 8 qubit,
cioe 512 qubit.

In questa tesi, lo scopo e quello di implementare un generatore di curve di Hilbert
per studiare il punto critico quantistico dello stato fondamentale del modello di
Ising quantistico tramite 1'utilizzo di metodi di tensor network, il tutto transizio-
nando da un sistema a due dimensioni ad uno a tre dimensioni.
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1 Introduction

The transverse-field Ising model, or quantum Ising model, is one of the most pop-
ular quantum models in terms of research, as it represents meaningful physics in
a relatively accessible way. The transverse-field Ising model describes the prop-
erties of a system made of multiple particles disposed in a lattice, as it considers
the spins of the particles projected on the z-axis and studies the energy associated
with the agreeing or disagreeing of the two nearest-neighbour interactions’ spins
projections. The Hamiltonian describing the model includes the case in which
there is an external magnetic field perpendicular to the z-axis that interacts with
spins projections along the x-axis.

The d-dimensional transverse-field Ising model can be mapped to the (d + 1)-
dimensional anisotropic classical Ising model: this equivalence is convenient as the
classical Ising model has Ising’s exact analytic solution for the one-dimensional
case and Onsager’s exact solution for the two-dimensional case [1]. On the one
hand, this model’s simplicity marks it as the best candidate for studying new the-
ories applicable to other models, such as the Bose-Hubbard one, as shown in some
recent studies [2, 3], and can be used to study long-range interactions [4]. On the
other hand, the study of the quantum Ising model has great importance for the
development of quantum information technologies in the last years [5, 6]. For ex-
ample, the Ising model’s simplicity can be used to study the effects of high-order
correlation functions on the decoherence of qubits, comparing the results with the
analytical solutions [7].

In order to properly study the properties of this model, we implemented a code

to simulate the system and its Hamiltonian. However, such simulations require a
simulation time that increases exponentially with the system’s number of sites:
this property did not allow us to simulate three-dimensional systems bigger than
2 X 2 x 2 sites, without using an approximation. The solution relies on tensor net-
work method [8-10]: we introduce the Tree Tensor Network (T'TN) approximation,
that keeps the simulation time under one week for systems up to 512 sites, i.e. an
8 x 8 x 8 system. The system’s sides length must be a power of two: in fact, the
algorithm we use relies on the binary TTN method, which consists in continuous
subdivisions of each tensor into two tensors.

With the aim to study and simulate this model in high-dimensions, we map the 2D
and 3D coordinates of the lattice’s sites into a one-dimensional curve. The curve
we choose for this purpose is the Hilbert curve. The Hilbert curve is used in sev-
eral cases among different fields, ranging from image rendering [11], to cosmology
[12], and to medical studies [13].



This thesis will be focusing on the study of the quantum Ising Model transitioning
from a two-dimensional to a three-dimensional lattice, allowing to study the quan-
tum critical point of systems that have more than two dimensions. We confirm
the idea that, being the three-dimensional systems described by more interactions
between sites, the quantum critical point shifts into regions with bigger magnetic
field strength. As a consequence, we study how properties such as the magnetic
behaviour and the magnetization value change depending on the system’s lattice
arrangement and dimension.

Chapter 2 explains the underlying concepts of the tensor network methods, Chap-
ter 3 talks about the Hilbert curve and the coding process, Chapter 4 describes
the transverse-field Ising model and the process of the simulations, and Chapter 5
summarizes the conclusions.



2 Tensor network methods

Many-body quantum systems are described by wave functions. In the case covered
in this thesis, we work with a system where the configuration of each site ¢ is de-
scribed by the spin direction along the z-axis. This spin configuration is described
by |a;), where |a;) can be in any superposition of |a;) = [1) and |a;) = [{), so
that a particular lattice configuration is described by |ajas...an), where N is the
number of sites of the lattice. This means that the generic state is described by a
N-rank tensor as seen in Eq. (1):

) = Vayas.ay [0102..an) (1)

where [¢) is the state describing the linear combination of possible state configu-
rations acquired by the system, and ¢4, 4,..a, is the probability amplitude of each
possible state configuration. The generic state can also be described by the tenso-
rial form Yo, ay..ay -

We can describe a tensor graphically using the tensor network representation: the
tensor itself is represented by a circle and the indexes are represented by lines.
Such graphic representation is used to describe different mathematical objects,
ranging from scalars to general n-rank tensors, i.e. as in Fig. 1.

Figure 1: Tensor network representation of a vector v; and a matrix M; ;.
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One can use this representation to show the contraction of indexes between tensors
in a compact form. Using Einstein’s notation where repeated indexes are summed,
one can represent the contraction A; ;B ;Ci as in Fig. 2.
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Figure 2: Tensor network representation of the contraction A; ;B; 1 1Cim.



It is important to notice that each line does not have to represent a singular index
of dimension one. In fact, by using index fusion and index splitting one can repre-
sent an index with bigger dimension. For example, one could re-arrange a matrix

into a vector:
a b
(C d) — ) (2)

This re-arrangement causes the fusion of the two indexes describing the position in
the matrix into a single index describing the position in the vector, e.g. b’s position
is described in the different representations as (1,2) in the matrix and (2) in the
vector. In this way, any tensor of n indexes can be described in matrix form, with
each of the two indexes’ dimensions of the matrix being multiplied to n. Using the
tensor network representation we can visualize the system’s state as in Fig. 3.
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Figure 3: Tensor network representation of the state of the lattice ¥a;a..ay -

When approaching the simulation, it is useful to calculate the computational cost
of tensor contraction. This is important because, when computing a system wave
function, the execution time is dictated by the number of operations needed to be
performed in order to obtain it. One can extract a general rule that tells the num-
ber of operations necessary to compute the state, that is, the contraction complex-
ity. Starting from a simple example of a scalar product as in Fig. 4, one can un-
derstand that the operations needed correspond to the dimension of the contracted
index, m. On a general note, an estimation of the contraction complexity is given
by the product of the dimensions of the free indexes and the contracted ones.



Figure 4: Tensor network representation of a scalar product between two vectors with
bond size m.

In general, one could use advanced linear algebra manipulation algorithms in order
to reduce the actual complexity, e.g. divide-and-conquer methods for matrices mul-
tiplication. As a consequence we can deduce, assuming the index dimension is d,
that the contraction complexity for the inner product of the tensor in Fig. 3 is d.
In the particular case of the transverse-field Ising model (see Chapter 4) d = 2, as
it represents the two possible configurations of spin s, = %

The computational complexity grows exponentially with N, which leads to limited
possibilities of simulations as it increases too quickly when increasing the number
of sites. In order to simplify the situation, tensor network methods aim to decom-
pose a general state into different tensor network forms using different useful ap-

proximations [14].

2.1 Mean field ansatz

One widely used approximation is the mean field, which can describe the system in
a way that is easily computable, even though it is a rough approximation.

The mean field ansatz treats each site as independent from the others and subject
to an external mean field, which can be different for every site. This ansatz is de-
scribed as a tensor product of the N single-body wave functions as in Eq. (3):

d
M) = vl ) @ Z Y o) ® .. ® Z Yl o) (3)

ar1=1 as=1 ay=1

where d represents the index dimension, that is to say, the possible configurations
that |a;) can be. In the Ising Model, d = 2, because it represents the possible spins
configurations that can be +% or —% (d=2- % + 1). Using the graphical tensor
representation, this ansatz is represented by Fig. 5.
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Figure 5: Tensor network representation of the state in mean field ansatz for N sites.

Instead of the exponentially scaling number of coefficients as in the case of a gen-
eral state, in mean field approximation the memory cost of storing a wave func-
tion becomes Nd. Such scaling is linear in system size N, and therefore much more
manageable. However, the downside is that it does not accurately represent the
system and its behaviour if there is entanglement present in the system. In order
to achieve a middle ground between computational complexity and accurate de-
scription we use the Matrix Product States (MPS) tensor network method, which
is described in Chapter 2.2.

2.2 Matrix Product States

The main difference between the MPS method and the mean field ansatz is that in
the former there is a description of the approximate interaction of the sites, while
in the latter the sites are independent and are only subject to an external mean
field. The tensor representation of the MPS approximation is represented in Eq.
(4):

Vayag..ay = Ag Ag, - AN A

@951 " aN_1,SN—2° TON,SN—-1" (4)

Visually, the MPS interaction is represented by the presence of auxiliary indexes
between the tensors, as shown in Fig. 6, where the auxiliary indexes’ dimension is
m.

m m m

(5] a2 cen QN

Figure 6: Tensor network representation of the MPS method of N sites with bond di-
mension m.

Every wave function can be represented by an MPS if one chooses the correct di-
mension of m, but generally, it is better to profit from the approximation, choosing



a smaller dimension to decrease the computational cost. In this case, the memory
cost becomes Ndm?, which grows linearly in N. The mean field ansatz is a limit of
the MPS as m — 1.

The MPS is a particular case of a much wider class of tensor networks called Tree
Tensor Network (TTN). The structure of the TTN has each tensor with rank three:
the binary TTN (bTTN), which divides each tensor into two other tensors, is shown
in Fig. 7.

Figure 7: Tensor network representation of the bTTN method of 8 sites.

This type of tensor network has the practical advantage of successfully describing
periodic systems [15], and is the method we use for the simulations within this the-
sis, as it is already proven to be effective for simulating the ground state of the 1D
and 2D quantum Ising model [16, 17].

For the case of two-dimensional systems, another worth noting tensor network rep-
resentation is available, called Projected Entangled Pair States (PEPS) [18, 19].
PEPS represents a natural extension of the one-dimensional MPS to two dimen-
sions and is visualized in Fig. 8.

Figure 8: Example of the PEPS tensor network representation for 9 sites.



3 The Hilbert curve

In order to represent a multi-dimensional space we need to find a way to describe
it in a complete and useful way. We aim to find a description that covers the en-
tire space while keeping track of the interactions between nearest-neighbour sites,
mapping the 2D or 3D system disposition into a one-dimensional curve. The snake
curve could serve the purpose, but as it turns out the best choice to preserve lo-
cality is the Hilbert curve [13, 17]. We, therefore, use a Hilbert curve, which is de-
fined as a continuous fractal space-filling curve.

Looking at a singular site, we observe that the medium distance between this site
and its nearest neighbours in the 1D-curve representation is smaller in the Hilbert
curve case with respect to the snake curve: Fig. 9 shows an example of the site at
position (2,2). The projected position of the (2,2) site and its nearest neighbours
on the one-dimensional axis, representing the curve filling order, show that in the
Hilbert curve their proximity is preserved better than the snake curve. As studied
in Ref. [17], on average this property holds for every site.

Figure 9: Representation of the preserved locality of a 2D lattice disposed into a) a
snake curve and b) a Hilbert curve. The figure is taken from the study cited in [17].

For these reasons, we focus on coding two-dimensional and three-dimensional Hilbert
curves on a generic square or cube with a side being a power of two, and then ex-
tend the code into a generic rectangle or box, with the sides being different powers
of two.



3.1 2D Hilbert curve

In order to code a generic two-dimensional Hilbert curve we must follow a cer-
tain set of rules. The first step is to take a square, divide it into four equal squares
and decide in which order the curve will cover them. This is the first-order Hilbert
curve and it is represented in Fig. 10, where the written numbers order the squares
(sites of the lattice) in the covering order.

2 3

1 4

Figure 10: First-order Hilbert curve in a 2 x 2 square.

Being the Hilbert curve a fractal curve, the following steps to create the i-th or-
der Hilbert curve are repeated. Each of the squares created is divided into other
four squares, connected through a first-order Hilbert curve. The steps following the
first-order one do not have the choice of the covering sequence, because they must
create a continuous curve. While coding the curve, we must follow the same se-
quence as the first-order case. In Fig. 10, for example, the first square that has to
be divided and covered by the second-order Hilbert curve is the one labelled 71”.
This is necessary in order to create a recursive function that will work regardless
of the chosen division of the original square. The second-order Hilbert curve looks
like Fig. 11.

— |5

1 2

Figure 11: Second-order Hilbert curve in a 22 x 22 square.

It is worth noting that, in order to follow the filling sequence of the first-order
Hilbert curve the choice about the subdivision orientation curve is fixed. This
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process can be repeated n times in order to divide the original square space into
2" x 2" squares.

After these steps, it is straightforward to extend the curve to the case of a gen-
eral rectangle made of 2™ x 2™ squares. If we follow the initial order presented in
the first-order Hilbert curve, we can observe that the curve always ends up in the
bottom-right square: if the rectangle’s width is greater than its height, it is suf-
ficient to repeat the Hilbert curve as many times as needed. If m = n + 1, for
example, there will be one repetition, as shown in Fig. 12.

Figure 12: Example of a Hilbert curve covering a rectangular space of 22 x 23.

If the rectangle’s width is smaller than its height, instead, it is sufficient to do the
same procedure as for the longer case followed by mirroring the result, as one can
see in Fig. 13.
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Figure 13: Representation of the Hilbert curve a) in the 23 x 23 case, b) the 23 x 2% case,
and c) the 2% x 2% case.

The central example in Fig. 13 does not end in the bottom-right corner: that is

11
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because the rectangle is higher than the original square, so the code does the final
mirroring, as said before, in order to visually represent what we planned.

The code used to achieve this representation used TURTLE out of the Python stan-
dard library, which consists in a moving and rotating cursor, i.e. the turtle, that
writes down the areas it covers. The recursive function has two variables: ”an-
gle” and "k”. The first variable represents the direction of rotation of the turtle,
and it has value 90° or —90° depending on the case. The second variable, k, repre-
sents the order of the Hilbert curve and derives from the input-given power of two
wanted for the side length (n,m). Listing 3.1 shows the corresponding piece of the
code inside the recall function. There are four calls at itself diminishing the k vari-
able by one, representing the recursive divisions of every square into four squares,

which are covered by a Hilbert curve with an inferior order.

def hilbert_curve (angle, k):
if k==1:

forward (0.5)
right (angle)
forward (0.5)
right (angle)
forward (0.5)

else:
hilbert_curve (-angle, k - 1)

if (k%2==0):
right (angle)
forward (0.5)
if (k % 2 == 1):
right (angle)
hilbert_curve (angle, k - 1)

if (k % 2 == 0):
right (-angle)
forward (0.5)
if (k % 2 == 0):
right (-angle)
hilbert_curve (angle, k - 1)

if (k % 2 == 1):

right (angle)
forward (0.5)

12



if (k % 2 == 0):
right (angle)
hilbert_curve (-angle, k - 1)
Listing 1: Code section of the recursive function providing the two-dimensional Hilbert

curve.

The recursive calls stop when the input order k = 1, providing a special if-clause
that returns the procedure of drawing the first-order Hilbert curve with the accord-
ing direction and rotation.

3.2 3D Hilbert curve

The three-dimensional Hilbert curve is less straightforward to code but follows a
similar set of rules. Likewise the initial division of a square into four squares for
the 2D case, we start by dividing the initial cube into eight cubes: after this, we
can define a recursive function that divides the new cubes into eight more cubes,
and so on. In Appendix A we report the code with the recursive calls of the func-
tion of itself [20]. The python library used for the visualization is MATPLOTLIB.

OHNW;;U-,@\‘

Figure 14: Representation of the Hilbert curve in a) the 2x 2 x 2 case, b) the 22 x 22 x 22
case, and c) the 23 x 23 x 23 case. The curve starts at the (0,0,0) position in purple, and
arrives at the endpoint in green-yellow.

Figure 14 shows how the orientation of the curve is chosen: the first-order 3D Hilbert
curve starts in point (0,0,0), and the following point to be covered could be either
(1,0,0), (0,1,0) or (0,0,1). All these alternatives are valid, as we could always
find the right path to cover the rest of the cube: the chosen direction is arbitrary.
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We approach the second-order 3D Hilbert curve as the 2D case: we follow the se-
quence of the first-order curve as a path and fill every subdivision keeping in mind
the following cube to be filled. For example, the second covered site in Fig. 14’s

a) case is (1,0, 0), shifting in the x-direction: this translates in the need to cre-
ate a cube that ends in a shift in the x-direction for the first 8 covered sites of the
second-order Hilbert curve. How the cube achieves the x-shift itself is not impor-
tant: the other cubes’ filling order follows the same logic.

The natural evolution of this curve is to take the general box, with each side be-
ing a different power of two. In order to achieve this plotting, we start choosing
the biggest possible cube that can be repeated in order to cover the whole space,
corresponding to the side with the least sites, and proceed by following the pat-
tern of a two-dimensional Hilbert curve. In Fig. 15, we represent the sequence fol-
lowed by the code in red, while the thin black line represents the underlying two-
dimensional Hilbert curve. Here, we assume that the side with the least sites is n,,.

7 ([F£7
7 H7 [T
I lzjfljm

1) (T8

t-—

v
(O;O; O)

Figure 15: Visualization of the code for a general box: example with n, = n,. The red
line represents the sequence followed by the code and the thin black line represents the
underlying two-dimensional Hilbert curve.

The starting point of the curve is always (0,0, 0) and the two points in two of the
eight vertices represent the starting and the finishing point of the cubes’ creation.
The actual code is presented in Appendix B. The cases where n, or n. are the
minimum are implemented by switching the values of indexes as needed, running
the program assigning the smallest value to n, and then creating a matrix contain-
ing the coordinates in the correct order. For example, the 22 x 2% x 2% looks like
Fig. 16.
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Figure 16: Visualization of the Hilbert curve for the 22 x 23 x 24 rectangular cuboid.

4 The Quantum Ising Model

The transverse-field Ising Model is a quantum version of the classical Ising Model.
It consists of a lattice of particles with spin S = %, and it features a magnetic field
along the x-axis. The Hamiltonian is described by Eq. (5):

H=-J]Y oioi—g>» o} =Hy+H, (5)
(i,) J
where the notation (i, j) represents nearest neighbour sites. The o; are operators
acting on the i-th site in the 3D system, representing the spin projections along
the particular axis, and are described by the Pauli matrices:

R Y (3 P F

On the one hand, Hy represents the interaction between the sites. J represents the
strength of interaction between the sites and for J > 0 we are in the ferromagnetic
case, while for J < 0 we are in an antiferromagnetic case. On the other hand, H;
represents the sites’ interactions with the external magnetic field, whose strength is
controlled by the parameter g. In the limit ¢ — oo the system behaves paramag-
netically.

The main cause of quantum behaviours in the system arises from the fact that the
two terms in the Hamiltonian do not commute, that is: [o,,0.] # 0. This means
that if the external field is zero, the spins align in the z-direction, in which case the
degenerate ground state is:

15



e E D
) = = . (7)

The TTN method helps the algorithm by breaking the symmetry of the system,
and decides which sense is the one the spins will take along the z-direction.

Adding the magnetic field along the x-direction creates a situation in which there
is no common eigenbasis of Hy and Hy, creating the quantum fluctuations. Increas-
ing the field strength enough makes the quantum fluctuations less noticeable, as
the spins align according to the external field, which leads to lower energy in the
system. In this case, the ground state is:

V) = |—=— ... =), (8)

along the external magnetic field strength.

In the following, we present the results of the simulations focusing on two studies:
the search of the quantum critical point (QCP), explained in detail in Chapter 4.1,
and the convergence to the best value by increasing the bond dimension. In both
studies, we choose a ferromagnetic scenario by fixing J = 1, without loss of gener-
ality.

4.1 Quantum critical point

The quantum critical point is a point in the phase diagram where a sudden change
in the qualitative properties of the ground state, i.e. a quantum phase transition,
occurs. Taking into account the Hamiltonian of Eq. (5), one can show that if g =
0, there are no conflicts in terms of commuting operators in the Hamiltonian, mean-
ing that the ground state shows a ferromagnetic order along the z-axis. In the

limit |g| — oo, in contrast, the second term in the Hamiltonian prevails and the
spins align along the x-axis.

In this study, we, therefore, look for the QCP by looking at the magnetization
along the z-axis by varying the field strength. In a straightforward way. the mag-
netization would be computed following Eq. (9):

r 1 Y z
M _N;<Ji>’ (9)

where N is the total number of sites and the sum is looping over all the sites in
the box. The magnetization holds the information about the QCP because the
TTN breaks the symmetry described in Eq. (7) and shows a local magnetization
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in the z-direction, which disappears when the external magnetic field g becomes
strong enough and the spins align along the x-axis. But this feature relies on a nu-
merical instability and therefore it is safer to compute the magnetization through
the correlations between spins:

| X
M= > (oio3). (10)
ij=1
Using Eq. (10), we can not achieve a null magnetization even in the paramagnetic
limit, because the mean also counts the cases in which ¢+ = j, that do not corre-
spond to a correlation and return (o7o?)=1.
The one-dimensional quantum Ising model in the thermodynamic limit faces a
phase transition at 4 = 1. In order to align all the spins in the x-direction for the
two-dimensional and three-dimensional case we expect a stronger external field be-
cause each site has more interactions. Here, we study the shift of the g value corre-
sponding to the quantum phase transition, from now on called g*, starting from a
two-dimensional system of size 8 x 8 and transitioning into three-dimensional sys-
tems of size 8 x 8 x 2, 8 x 8 x 4 and 8 x 8 x 8, while using bond dimension of
m = 100.
In order to simulate the system we used a collection of codes offered by [15, 21,
22], which already had the codes regarding the tensor network simulation and
the Hamiltonian construction for various models, including the two-dimensional
transverse-field Ising model. We implemented a code that could simulate the three-
dimensional transverse-field Ising model and the codes from the Appendixes re-
garding the three-dimensional Hilbert curve.
Figure 17 shows that, as expected, the value of the external field strength ¢ neces-
sary to set the magnetization M to zero increases as the third dimension increases
from N3 = 1 to N3 = 8. In order to find the quantum phase transition we search
the value of g for which the magnetization goes to zero: we find this value, g*,
studying the first derivative of the magnetization with respect to g. We choose ¢*
based on when the first derivative is maximum, indicating that the magnetization
is changing the fastest. As stated in Ref. [23], for the 8 x 8 x 1 lattice we expect
a quantum phase transition around ¢* ~ 3: taking into account our restrained
amount of time for this thesis’ simulations, our results are compatible. The results
are:

Ns| 1 2 3 4
26 3.7 41 43

*

g
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(a) (b)

Figure 17: We show the variation of the quantum critical point by increasing the third
dimension N3, where g represents the field strength, M represents the magnetization
along the z-axis and N3 represents the system’s third direction’s number of sites. The
critical value ¢g* is the g-value corresponding to the quantum phase transition. In a) we
can see the variation of the magnetization by varying the magnetic field strength (black
for the 8 x 8 x 1, blue for the 8 x 8 x 2, red for the 8 x 8 x 4, and green for the 8 x 8 x 8).
The system behaves ferromagnetically before the quantum phase transition occurs, while
the system behaves paramagnetically after approaching the QCP. In b) we can see the
variation of the quantum critical point field strength increasing the third dimension.

(a) (b)

Figure 18: We show how the QCP was chosen, using the 8 x 8 x 8 lattice as an example.
In a) is presented the first derivative of the magnetization M with respect to the mag-
netic field strength, g. In orange is highlighted the max value of the first derivative. In
b) is highlighted in orange the correspondent point.
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We notice that the biggest shift in ¢* occurs when we transition from the two-
dimensional into the three-dimensional system: when we increase the third dimen-
sion’s site numbers in an already three-dimensional system, the shift is not as radi-
cal. This result is sensible: the biggest correlations are between closer sites, and on
average the two-dimensional sites have 3.5 nearest neighbours, while the 8 x 8 x 2,
the 8 x 8 x 4, and the 8 x 8 x 8 have, respectively, 4.5, 5 and 5.25 nearest neigh-
bours on average. The biggest shift in average close neighbours is, in fact, between
the two-dimensional system and the 8 x 8 x 2 system.

4.2 Convergence study

As reported in Chapter 2, the simulations need to be approximated via tensor net-
work methods, where the degree of the approximation gives us control over the
simulation time. In our case, the capability of our computer allows us to take bond
dimensions up to m = 100. This approximation is to be checked for convergence,
given that the correct bond dimension to describe exactly the system potentially
goes, in the worst-case scenario, to m = d%, but it is a good choice in order to
keep both the simulation time and the approximation error under control.

— M max=200]
-
<
w
1
|Em — Empax=200]

100 -

4 x 10t 6 x 10! 102 4 x 10t 6 x 10! 102

(a) (b)

Figure 19: Subsection a) represents the error of the magnetization M with respect to

the magnetization value of the simulation with bond dimension m = 200, in a log scale.
It clearly shows that from bond m = 70 the magnetization is stabilized. Figure b) rep-
resents the energy error with respect to the energy value of of the simulation with bond

dimension m = 200.

We study the magnetization convergence of the lattice of dimension 8 x 8 x 8,
studying the case of ¢ = 4.9, and considering bond dimensions m of 35, 50, 70,
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100, 141, and 200. We choose to study the system at ¢ = 4.9 because it is close
to the QCP for the 8 x 8 x 8 box, implying that this point is probably a difficult
one to converge correctly. In particular, we plot the magnetization difference from
the best magnetization value. The best value was chosen based on the energy of
the system, which in this case is lower at bond dimension 200. This behaviour is
expected: having a larger m dimension implies that the system is described closely
to its real, not approximated behaviour, allowing it to settle down to smaller and
therefore more stable energy values. In Fig. 19, the results are presented.

We notice that the magnetization begins to stabilize around bond dimension m =
70, where the error at m = 100 is bigger probably due to fluctuations of the sys-
tems caused by the tensor network approximation. The error of the m = 100 sim-
ulation with respect to the m = 200 simulation is eight per cent, and the energy
does not converge: this shows that the study could have been better simulated
with higher bond dimension, but is not unprofitable.

20



5 Conclusion

In this work, we studied the properties of the quantum phase transition of the
three-dimensional transverse-field Ising model varying the strength of the exter-
nal magnetic field. In order to approach this study, we implemented a code for

the Hilbert curve of a general box having the side lengths being a power of two:
the choice of using the Hilbert curve for mapping the system among all possible
curves is justified by previous studies of the interaction-preserving properties of the
Hilbert curve [17]. In particular, we focused on studying the shift of the quantum
critical point varying the force of the external field starting from a two-dimensional
square and transitioning into a three-dimensional cube. In order to simulate the
system in a controlled amount of time, we used proper tensor network techniques,
focusing on the Tree Tensor Network approximation. We also studied the conver-
gence of the magnetization varying the bond dimension of the TTN approxima-
tion.

We discovered that, transitioning from an 8 x 8 X 1 to an 8 x 8 x 8 lattice, the QCP
increases the most in the shift from a two-dimensional into a three-dimensional
system, while it tends to increase less while transitioning from an already three-
dimensional system into a bigger one. This result was expected, as the biggest
shift of average nearest-neighbour sites occurs in the transition from the 8 x 8 lat-
tice to the 8 x 8 x 2 lattice. We studied the efficacy of our approximation through
the convergence study, which showed us that bond dimension m = 100 is not suf-
ficient to consider the system’s simulation converged, but the results are neverthe-
less usable as a first approximation. We would have preferred to run the simula-
tions with bigger bond dimensions, but the time dedicated to this thesis could not
allow us to run simulations that took longer than a week.

With this study, we expanded the discussion on the quantum Ising Model. Study-
ing the three-dimensional quantum Ising Model could help in understanding the
general properties of different systems by testing approximations and procedures
on this model before implementing them in other, more difficult models such as the
Bose-Hubbard model, leading the way in new technologies in the quantum infor-
mation field.

We would like to improve these results using an increased bond dimension: the
simulation of bigger systems and higher bond dimensions are beyond the scope
and time frame of this thesis. Future studies could also be focused on states other
than the ground state, such as the first-excited states, and in simulating systems of
bigger size.
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A Cube code

In Listing A we present the code used for the filling of a cubic lattice through the
Hilbert curve. It is important to notice the eight recursive calls to the function
itself on lines 44 — 67.

1 def get_3d(s, x, y, z, dx, dy, dz, dx2, dy2, dz2, dx3, dy3, dz3, xs,

ys, zs, m, n):
[ ]

s: number of sites of the side

(x, y, z): coordinates of the cube beginning

(dx, dy, dz): direction of the first vector of the cube

(dx2, dy2, dz2): direction of the second vector of the cube
(dx3, dy3, dz3): direction of the third vector of the cube
(xs, ys, zs): the arrays that will be returned filled with the
coordinates in sequence

m: keeps track of the position of the arrays, needs to be
updated in the various recursive calls

n: number of total sites of the cube
[ ]

if (s == 1):
xs[m] = x
ys[ml =y
zs[m] = z
m=m+1
return m
else:

s=s/2
if (dx < 0):

x —-= s * dx
if (dy < 0):

y -= s x dy
if (dz < 0):

z —-= s * dz
if (dx2 < 0):

x -= s *x dx2
if (dy2 < 0):

y -= s * dy2
if (dz2 < 0):

z —-= s * dz2
if (dx3 < 0):

x -= s * dx3
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if (dy3 < 0):

y -= s * dy3
if (dz3 < 0):
z —-= s * dz3

m = hilbert_curve(s, x, y, z, dx2, dy2, dz2, dx3, dy3, dz3,
dx, dy, dz, xs, ys, zs, m, n)

m = hilbert_curve(s, x + s *x dx, y + s * dy, z + s * dz,
dx3, dy3, dz3, dx, dy, dz, dx2, dy2, dz2, xs, ys, zs,
m, n)

m = hilbert_curve(s, x + s * dx + s *x dx2, y + s * dy +

s * dy2, z + s * dz + s * dz2, dx3, dy3, dz3, dx, dy,
dz, dx2, dy2, dz2, xs, ys, zs, m, n)

m = hilbert_curve(s, x + s * dx2, y + s *x dy2, z + s *
dz2, -dx, -dy, -dz, -dx2, -dy2, -dz2, dx3, dy3, dz3,
XS, ys, zs, m, n)

m = hilbert_curve(s, x + s * dx2 + s % dx3, y + s x dy2 +
s * dy3, z + s * dz2 + s *x dz3, -dx, -dy, -dz, -dx2,
-dy2,-dz2, dx3, dy3, dz3, xs, ys, zs, m, n)

m = hilbert_curve(s, x + s * dx + s * dx2 + s * dx3, y +
s * dy + s * dy2 + s * dy3, z + s * dz + s * dz2 + s *
dz3, -dx3, -dy3, -dz3, dx, dy, dz, -dx2, -dy2, -dz2,
XS, ys, zs, m, n)

m = hilbert_curve(s, x + s * dx + s * dx3, y + s * dy +
s *x dy3, z + s * dz + s * dz3, -dx3, -dy3, -dz3,

dx, dy, dz, -dx2, -dy2, -dz2, xs, ys, 2zs, m, n)

m = hilbert_curve(s, x + s * dx3, y + s * dy3, z + s * dz3,
dx2, dy2, dz2, -dx3, -dy3, -dz3, -dx, -dy, -dz, xs,
ys, zs, m, n)

if (m == n and s == 1):
return xs[m-1], ys[m-1], zs[m-1], xs, ys, zs
return m

Listing 2: Recursive calls of the function providing the three-dimensional Hilbert curve
in a general 2" x 2" x 2™ cube.

B General box code

In Listing B we present the code used for the filling of a general box with the sides
being a power of two long. It is presented only the code piece that creates the cube
fillings as presented in Fig. 15: in fact, there are several calls to the code of the
cube Hilbert curve function.

[

[
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nmin = the minimum of nx, ny and nz

(x_prior, Xx_current, x_post): based on the 2d Hilbert curve, this
numbers represent the prior position covered and the following one
on the x-direction

(z_prior, z_current, z_post): based on the 2d Hilbert curve, this
numbers represent the prior position covered and the following one
on the z-direction

hilbert2d: numpy matrix containing the position of the 2d Hilbert
curve covering with sides pow(2, nx) and pow(2, nz)

(xs, ys, zs): temporary arrays
(coordx, coordy, coordz): arrays containing the covering

(pos_x, pos_y, pos_z): current position
LI ]

min_dim = pow(2, nmin)

x_current = np.where(hilbert2d == 0) [1]

z_current = np.where(hilbert2d == 0) [0]

x_post = np.where(hilbert2d == 1) [1]

z_post = np.where(hilbert2d == 1) [0]

if x_post == x_current + 1:
pos_x, pos_y, pos_z, xs, ys, zs = get_3d(min_dim, pos_x, pos_y,
pos_z, O, 1, 0, O, O, 1, 1, O, O, xs, ys, zs, O, sites)
coordx, coordy, coordz = add_coordinates(coordx, coordy, coordz,
Xs, ys, zs)

elif z_post == z_current + 1:
pos_x, pos_y, pos_z, XS, ys, Zs = get_Bd(min_dim, pos_X, pos_y,
pos_z, 1, 0, 0, O, 1, O, O, O, 1, xs, ys, zs, O, sites)
coordx, coordy, coordz = add_coordinates(coordx, coordy, coordz,

Xs, ys, zs)

for i in range(1l, int(pow(2, (nx - ny)) * pow(2, (nz - ny)) - 1)):

x_prior = np.where(hilbert2d == i - 1) [1]
z_prior = np where (hilbert2d == i - 1) [0]
x_current np.where (hilbert2d == i) [1]
z_current = np.where(h11bert2d == i) [0]
x_post = np.where(hilbert2d == i + 1) [1]
z_post = np.where(hilbert2d == i + 1) [0]
if x_post == x_current + 1:
r == z_current + 1:

o
pos_z = pos_z - step - 1

24



pos_x = pos_Xx - step

pos_x, pos_y, pos_z, xS, ys, zs = get_3d(min_dim,
pos_x, pos.y, pos_z, -1, 0, 0, O, 1, O, O, O, -1,
xs, ys, zs, O, sites)

coordx, coordy, coordz add_coordinates (coordx,
coordy, coordz, Xs, yS, zZs)

elif (z_prior == z_current - 1) or (x_prior == x_current
- 1):
if (z_prior == z_current - 1):
pos_z = pos_z + 1
elif (x_prior == x_current - 1):
pos_x = pos_x + 1
pos_x, pos_y, pos_z, XS, ys8, zs = get_Sd(min_dim,

pos_x, pos._y, pos_z, O, 1, O, O, O, 1, 1, O, O,
xs, ys, zs, 0, sites)

coordx, coordy, coordz = add_coordinates (coordx,
coordy, coordz, xs, ys, zs)

elif x_post == x_current - 1:
if z_prior == z_current - 1:
pos_z = pos_z + 1
pos_x, pos_y, pos_z, xs, ys, zs = get_3d(min_dim,

pos_x, pos._y, pos_z, 1, O, O, O, 1, O, O, O, 1,
xs, ys, zs, 0, sites)

coordx, coordy, coordz = add_coordinates (coordx,
coordy, coordz, xs, ys, zs)
elif (z_prior == z_current + 1) or (x_prior == x_current
+ 1):
if (z_prior == z_current + 1):
pos_z = pos_z - step - 1
pPos_xX = pos_xX - step
elif (x_prior == x_current + 1):
pos_x = pos_x - step - 1
pos_z = pos_z - step
pos_x, pos_y, pos_z, xS, ys, zs = get_3d(min_dim,

pos_x, pos_y, pos_z, O, 1, O, O, O, -1, -1, O, O,
xs, ys, zs, O, sites)

coordx, coordy, coordz = add_coordinates(coordx,
coordy, coordz, xs, ys, zsS)

elif z_post == z_current + 1:
if x_prior == x_current + 1:
pos_z = pos_z - step
pos_x = pos_x - step - 1
pos_x, pos_y, pos_z, xs, ys, zs = get_3d(min_dim,

pos_x, pos_y, pos_z, O, 1, O, O, O, -1, -1, O, O,
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92 xs, ys, zs, 0, sites)

93 coordx, coordy, coordz = add_coordinates(coordx,
94 coordy, coordz, xs, ys, zs)

95 elif (z_prior == z_current - 1) or (x_prior == x_current
96 = i) g

97 if (z_prior == z_current - 1):

98 pos_z = pos_z + 1

99 elif (x_prior == x_current - 1):

100 pos_x = pos_x + 1

101 pos_x, pos_y, pos_z, xs, ys, zs = get_3d(min_dim,
102 pos_x, pos_y, pos_z, 1, O, O, O, 1, O, O, O, 1,
103 xs, ys, zs, 0, sites)

104 coordx, coordy, coordz = add_coordinates (coordx,
105 coordy, coordz, xs, ys, zs)

106

107 elif z_post == z_current - 1:

108 if x_prior == x_current - 1:

109 pos_x = pos_x + 1

110 pos_x, pos_y, pos_z, xs, ys, zs = get_3d(min_dim,
111 pos_x, pos_y, pos_z, O, 1, O, O, O, 1, 1, O, O,
112 xs, ys, zs, O, sites)

113 coordx, coordy, coordz = add_coordinates (coordx,
114 coordy, coordz, xs, ys, zs)

115 elif (z_prior == z_current + 1) or (x_prior == x_current
116 + 1):

117 if (z_prior == z_current + 1):

118 pos_z pos_z - step - 1

119 pos_x = pos_x - step

120 elif (x_prior == x_current + 1):

121 pos_x = pos_x - step - 1

122 pos_z = pos_z - step

123 pos_x, pos_y, pos_z, xS, ys, zs = get_3d(min_dim,
124 pos_x, pos._.y, pos_z, -1, 0, 0, O, 1, O, O, O, -1,
125 xs, ys, zs, 0, sites)

126 coordx, coordy, coordz = add_coordinates(coordx,

127 coordy, coordz, xs, ys, zs)

130 x_prior = np.where(hilbert2d == int(pow(2, (nx - ny))
131 % pow(2, (nz - ny)) - 2))I[1]
132 z_prior = np.where(hilbert2d
133 * pow(2, (nz - ny)) - 2)) [0]

= int(pow (2, (nx - ny))

131 x_current = np.where(hilbert2d == int(pow(2, (nx - ny))
135 * pow(2, (nz - ny))) - 1) [1]
136 z_current = np.where(hilbert2d == int(pow(2, (nx - ny))

157 % pow(2, (nz - ny))) - 1) [0]
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if x_prior == x_current + 1:

pos_x = pos_x - step - 1
pos_z = pos_z - step
pos_x, pos_y, pos_z, xs, ys, zs = get_3d(min_dim, pos_x, pos_y,
pos_z, 0, 1, 0, 0, O, -1, -1, 0, O, xs, ys, zs, O, sites)
coordx, coordy, coordz = add_coordinates(coordx, coordy, coordz
Xs, ys, zs)

elif z_prior == z_current - 1:
pos_z = pos_z + 1
pos_x, pos_y, pos_z, xS, ys, zs = get_3d(min_dim, pos_x, pos_y,
pos_z, 1, 0, 0, O, 1, O, O, O, 1, xs, ys, zs, O, sites)
coordx, coordy, coordz = add_coordinates(coordx, coordy, coordz
XS, ys, zs)

elif x_prior == x_current - 1:
pos_x = pos_x + 1
pos_x, pos_y, pos_z, xs, ys, zs = get_3d(min_dim, pos_x, pos_y,
pos_z, 0, 1, 0, 0, O, 1, 1, O, O, xs, ys, zs, O, sites)
coordx, coordy, coordz = add_coordinates(coordx, coordy, coordz
Xs, ys, zs)

elif z_prior == z_current + 1:
pos_z = pos_z - step - 1
pos_x = pos_x - step
pos_x, pos_y, pos_z, xs, ys, zs = get_3d(min_dim, pos_x, pos_y,
pos_z, -1, 0, 0, O, 1, O, O, O, -1, xs, ys, zs, O, sites)
coordx, coordy, coordz = add_coordinates(coordx, coordy, coordz
Xs, ys, zs)

Listing 3: The code of the

general box of dimension 2"+ x 2™ x 2"z,

27



References

[1]

[10]

[11]

Zhidong Zhang. “Exact solution of two-dimensional (2D) Ising model with a
transverse field: A low-dimensional quantum spin system”. In: ScienceDirect
(2021). DOI: https://doi.org/10.1016/j.physe.2021.114632.

Adém Bécsi and Baldzs Déra. “Kibble-Zurek scaling due to environment
temperature quench in the transverse field Ising model”. In: arXiv (2022).
DOI: https://doi.org/10.48550/arXiv.2203.04029.

Istvan A. Kovacs. “Quantum multicritical point in the two- and three-dimensional
random transverse-field Ising model”. In: arXiv (2021). DOI: https://doi.
org/10.48550/arXiv.2111.06828.

Jan Alexander Koziol et al. “Quantum-critical properties of the long-range
transverse-field Ising model from quantum Monte Carlo simulations”. In:
APS (2021). DOI: https://doi.org/10.1103/PhysRevB.103.245135.

Alessio Franchi, Andrea Pelissetto, and Ettore Vicari. “Quantum critical be-
haviors and decoherence of weakly coupled quantum Ising models within an
isolated global system”. In: arXiv (2022). DOIL: https://doi.org/10.48550/
arXiv.2209.06523.

B.-W. Li et al. “Probing critical behavior of long-range transverse-field Ising
model through quantum Kibble-Zurek mechanism”. In: arXiv (2022). por:
https://doi.org/10.48550/arXiv.2208.03060.

Bobin Li. “Decoherence Effect of Qubits in 1D Transverse Ising Model”. In:
arXiv (2021). DOI: https://doi.org/10.48550/arXiv.2112.10345.

Kai Zapp and Roman Orus. “Tensor network simulation of QED on infinite
lattices: learning from (1+1)d, and prospects for (2+1)d”. In: APS (2017).
DOI: https://doi.org/10.1103/PhysRevD.95.114508.

Henrik R. Larsson. “Computing vibrational eigenstates with tree tensor net-
work states (TTNS)”. In: The Journal of Chemical Physics (2019). DOT:
https://doi.org/10.1063/1.5130390.

Mattia Moroder et al. “Metallicity in the Dissipative Hubbard-Holstein Model:
Markovian and Non-Markovian Tensor-Network Methods for Open Quantum
Many-Body Systems”. In: arXiv (2022). DOI: https://doi.org/10.48550/
arXiv.2207.08243.

Alexander Keller, Carsten Wéchter, and Nikolaus Binder. “Rendering along
the Hilbert Curve”. In: arXiv (2022). DOL: https://doi.org/10.48550/
arXiv.2207.05415.

28



[14]

[15]

[16]

[17]

[18]

[19]

Qiao Wang et al. “PHoToNs—A Parallel Heterogeneous Threads oriented
code for cosmological N-body simulation”. In: JOPScience (2018). DOI: https:
//doi.org/10.1088/1674-4527/18/6/62.

E. Estevez-Rams et al. “Visualizing long vectors of measurements by use of
the Hilbert curve”. In: arXiv (2015). DOI: https://doi.org/10.1016/j.
cpc.2015.08.0109.

Simone Montangero. Introduction to Tensor Network Methods. Springer,
2018. URL: https://doi.org/10.1007/978-3-030-01409-4.

Pietro Silvi et al. “The Tensor Networks Anthology: Simulation techniques
for many-body quantum lattice systems”. In: SciPost (2019). DOI: https :
//doi.org/10.21468/SciPostPhysLectNotes.8.

M. Gerster et al. “Unconstrained tree tensor network: An adaptive gauge
picture for enhanced performance”. In: APS (2014). DOI: https://doi.org/
10.1103/PhysRevB.90.125154.

Giovanni Cataldi et al. “Hilbert curve vs Hilbert space: exploiting fractal 2D
covering to increase tensor network efficiency”. In: Quantum Journal (2021).
DOT: https://doi.org/10.22331/q-2021-09-29-556.

Cécilia Lancien and David Pérez-Garcia. “Correlation length in random MPS
and PEPS”. In: Springer (2019). DOI: https://doi.org/10.1007/s00023~-
021-01087-4.

Ian MacCormack, Alexey Galda, and Adam L. Lyon. “Simulating Large
PEPs Tensor Networks on Small Quantum Devices”. In: arXiv (2021). DOIL:
https://doi.org/10.48550/arXiv.2110.00507.

Herman Haverkort. “An inventory of three-dimensional Hilbert space-filling
curves”. In: arXiv (2016). DOI: https://doi.org/10.48550/arXiv.1109.
2323.

Timo Felser, Simone Notarnicola, and Simone Montangero. “Efficient tensor
network ansatz for highdimensional quantum many-body problems”. In: APS
(2021). DOI: https://doi.org/10.1103/PhysRevLett.126.170603.

Quantum TEA: Quantum Tensor-network Emulator Applications. Last vis-
ited August 29th 2022. URL: https://baltig.infn.it/quantum_tea.

Sheng-Hao Li and Guo-Ping Lei. “Quantum phase transition in a two-dimensional
quantum Ising model: Tensor network states and ground-state fidelity”. In:
IOPscience (2018). DOL: https://doi.org/10.1088/1742-6596/1087/5/
052011.

29



