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i

Abstract

The goal of this work is to implement resilience policies for Autonomous Vehicles under

attack, based on the context in which the platoon is located. In a platoon model, we define

the leader as the fulcrum entity of the whole model, which acts as a guide for the other

entities, defined as followers. To allow the vehicles to communicate with each other and

exchange the data necessary to establish an autonomous driving scenario, a system of data

transmission from and between the entities is implemented. Considering this transmission

as unsafe and attackable from the outside, the implemented policies recognize a possible

attack and define various rules so that the targeted subject can recover and continue

working in a safe driving scenario. The driving contexts are implemented thanks to the

Carla simulator and collect the various nuances and meanings of real driving, allowing us

to define realistic attacks and scenarios and to observe and analyze the various responses.

Each context is therefore repeatedly tested and analyzed, both in situations of regular

operation and in the presence of various attacks, to ascertain the functioning and accuracy

of the rules above. In conclusion, a report on the mentioned tests is indicated, reporting

the precision of the rules and their practical functioning, supported by the data collected

during the simulations.
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Chapter 1

Introduction

Smart vehicles, equipped with computers and wireless communication devices are emerging on

the road. These vehicles are able to drive themselves, communicate with other vehicles, connect

to the internet, and provide other services to drivers and passengers. Following the trend of

such technologies, a new model for autonomous driving has been developed, called platooning.

Platooning brings many benefits. For example, reduced air drag for the vehicles inside a platoon

provides better fuel efficiency, especially for heavy-duty trucks [1]. Also, reduced inter-vehicle

distance and speed disturbance of the traffic help to achieve both higher road capacity and more

comfortable travel experience (e.g., less travel time, less fatigue from driving, higher safety,

etc.). Moreover, emerging autonomous vehicles have the capability of sensing the surrounding

environment and driving themselves. As a result, platooning software can be installed on such

vehicles as a value-added service. In this work, we present a possible solution to the security

problems encountered by implementing a platooning model. In fact, despite plenty of benefits

resulting from the use of wireless communications in a platoon, it is naturally vulnerable to

cyber-attacks, like data injection, replay, jamming, eavesdropping, and spoofing attacks [2].

All these attacks can potentially endanger the stability of the platoon. Moreover, the attacker

could be an external or an internal malicious agent. Our goal is to create different rules, able

to compensate for the shortcomings of the script itself, and implement detection and resilience

techniques, in order to keep an entire platoon under attack operational. To do this, we start

from the basics, i.e., we will describe what we mean by autonomous driving, and various progress

steps, as reported in the next section. In Chapter 2 we present a brief background on sensors,

essential for any reference to autonomous driving. In Section 2.1 there is a brief excursus on
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the most used sensors, their operation, and their use. In Section 2.2, instead, we discuss the

attacks on these sensors, a fundamental part of the work of developing an autonomous driving

mechanism. In Chapter 3, we start talking about platooning, presenting its characteristics in

Section 3.1, its structure in Section 3.2 and, finally, some hints about security in Section 3.3.

In Chapter 4, we reconnect to the security topic, discussing some useful approaches to fine-

tune security in the platooning models and, above all, in determining attacks on the sensors

described in Chapter 3. Different techniques are presented, based on complex machine learning

algorithms and the like, in order to introduce the reader to some recent solutions. In Chapter 5,

we start talking about the work we have done. We begin with a description of the infrastructure

used, CARLA Simulator. In Section 5.2.1 we describe the client-server interaction, essential

for our work, while in Section 5.2.2 we begin focusing on what we used for our tests. Finally, in

Section 5.3 we explain how our platooning model has been implemented inside the simulator.

In Chapter 6, we focus more on the technical aspect of the simulation, reporting the data used,

the variables mentioned, the links between scripts and, in Section 6.4, we present the scenarios

chosen for the simulation. In Chapter 7, we present the defined policies, divided by scenario,

while in Chapter 8 we discuss the testing phase, the attacks tried and the results obtained,

topped off with a conclusion on the work done.

1.1 Autonomous Driving Systems

Autonomous driving has received a unanimous definition, given by the automotive industry

itself, and it is "The capability of a car to drive partly or fully by itself, with limited or

no human intervention" [3]. An Autonomous Driving System is a mixture of elements, both

hardware and software, that helps the vehicle in reaching autonomous behavior during everyday

driving scenarios. To date, there are 6 different levels of complexity for Autonomous Driving [4],

ordered from the most human-involved one to the more machine-oriented final level, as depicted

in Figure 1.1. These six levels are described in the next sections.

1.1.1 Level 0 - No Automation

Level 0 is the most diffused example of Autonomous Driving System and it can be resumed in

two simple words: Manual Control. In fact, in level 0 all the driving skills and techniques are
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controlled by humans, which provide the "Dynamic Driving task" [4], while some additional

systems can be implemented to help the driver, like some basic forms of Driving Assistance

Systems. Despite that, these systems cannot interfere directly with human driving, instead

they can only warn the driver and wait for human intervention, or intervene without taking

full control of the vehicle. An example could be emergency braking systems, that don’t drive

the vehicle but just act on the brakes, not influencing the trajectory of the agent. This level is

indicated as 0 because technically there are no autonomous driving mechanisms, so it can not

be qualified as automation.

1.1.2 Level 1 - Driving Assistance

Level 1 is the lowest form of real automation. Here we can have a more expansive realization

for Driving Assistance Systems, including the ones that take control of the vehicle for basic

scenarios, like for example Adaptive Cruise Control (ADAC). In this level, the driving task

is divided between humans and driving assistants. For example, with ADAC the assistant

controls the distance from the next car in order to act on throttle and brake, while the human

driver takes care of the steering task, but it is also able to modify and take control of the other

driving aspects at any moment.

1.1.3 Level 2 - Partial Driving Automation

With level 2, we define the concept of Advanced Driving Assistance Systems (ADAS). This

system can fully control the trajectory of the agent, by intervening on the steer, throttle, and on

brake mechanisms. ADAS aggregates assist the driver to avoid collisions and maintain control

by giving warning signals and using detection mechanisms like Lane Departure Warning, Blind

Spot Detection, and other warning systems [5]. Human presence is needed, in order to monitor

the Automation system’s work and take control of the car at any time. Level 2 automation

includes the most common and known Tesla Autopilot, which implements all the characteristics

described before.

1.1.4 Level 3 - Conditional Driving Automation

This one is the most important level of all the layer sequences. In fact, here we define a sub-

stantial jump from a technological perspective, in particular because these technologies don’t
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require human intervention. Level 3 vehicles implement "environmental detection capabili-

ties" [4], which make the vehicle able to take informed decisions for itself. Despite that, the

human override in case of an execution problem is needed, so we could say that human inter-

vention in decision is obsolete, but human supervision is still needed. An example of Level 3

automation can be the decision made by the car itself to overtake a slow-moving vehicle in a safe

scenario. This is what Audi reach in 2017 with Audi Traffic Jam Pilot, powered by Artificial

Intelligence and implemented in the upcoming 2019 Audi A8 [6]. However, the regulatory pro-

cess in the U.S. classify this technology as Level 2+, meaning that is still classified as a Level 2

technology, but with key hardware and software required to achieve Level 3 functionalities. To

date, very few vehicles on the market can boast of having Level 3 Automation Driving Systems

(like Mercedes-Benz EQS or Honda Legend), the maximum common level reached (according

to the U.S. regulatory process) is Level 2+.

1.1.5 Level 4 - High Driving Automation

The main difference between Levels 3 and 4 is that the latter makes the vehicles able to intervene

if things go wrong or if there is a system failure. So, in this level general human interaction is not

needed in most circumstances, however a human still has to monitor the whole system. Level 4

vehicles exist and are testing in limited areas, according to actual legislation and infrastructure.

An example could be Waymo, a Level 4 self-driving taxi developed in Arizona, which collected

the impressive results of over 15 billion miles driven using driver-less cars, so without any safety

driver in the driving seat [7].

1.1.6 Level 5 - Full Driving Automation

Level 5 vehicles do not require any human attention. This means that vehicles do not need

steering wheels or pedals, and they will not need any geofencing or restriction, because they will

be able to replicate completely what an experienced human driver can do. These techniques

are already testing to date, but no solution is available to general public.
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Figure 1.1: SAE Levels of Driving Automation





Chapter 2

Background

In this chapter, we will introduce a brief background, regarding sensors and their usage. In

Section 2.1, we present a list of the most used sensors in automotive sectors, followed by a

singular accurate description. Then, in Section 2.2, we describe the attack surface of each

sensor. As we will see, many of these sensors suffer from various attacks, which can partially

or completely compromise their functionality. For this reason, it is important to understand

the attack surface of each sensor, in order to know the vulnerabilities and study for possible

solutions.

2.1 Sensors

Different kinds of sensors can be involved in Autonomous Driving models, depending on the

necessity and the requirements of the builder or to the level of awareness of the system. We

can define a standard list of sensors, that represents the basic one implemented:

• Camera: Monitor the vehicle’s surroundings (road, vehicles, pedestrians, etc.) and read

traffic lights;

• LiDAR/Radar: Light Detection and Ranging system. The vehicle uses spinning lasers

to generate a point cloud, that gives the car a 360-degree view;

• Ultrasonic Sensors: Measure velocity and proximity to nearby objects, as the car

maneuvers through traffic;
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• Inertial Sensors: Measure the fundamental physics of motion, acceleration, and rota-

tional velocity;

• GNSS: Global Navigation Satellite System, combined with tachometers, altimeters, and

gyroscopes (inertial sensors), pin-point the car in the environment.

In Figure 2.1, it is reported an example of vehicle sensors positioning.

Figure 2.1: Example of sensors positioning (ACAMP, Advanced Technologies Product Devel-
opment)

In Table 2.1, inspired by [8] and adapted to the case in question, are reported the most

important characteristics inherited by this kind of sensor fusion techniques. The table is or-

ganized as follows: if a sensor is able to perform a correct and useful measurement under the

specific factor, a ✓is reported. If a sensor does not operate well under that specific factor,

or if it is not an intrinsic feature of the sensor, a X is reported. Then, if the sensor performs

reasonably well under a specific factor, but not excellent, a ∼ is reported.

2.1.1 Camera

A camera is an optical device that perceives the world around it as a digital video signal. It is a

basic sensor for Autonomous Driving systems, as it is used to detect obstacles, traffic signs, lane

detection and generally understand the road scenery, by capturing the elements in the area in
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Table 2.1: Characteristics inherited.

Factors Camera LiDAR/Radar Ultrasonic Inertial Sensors GNSS
Range ∼ ✓ X X ✓

Resolution ✓ ∼ X X X
Accuracy ✓ ✓ ✓ ∼ ∼
Velocity ∼ X X ✓ ✓

Color Perception ✓ X X X X
Object Detection ∼ ✓ ✓ X X

Scenario Recognition ✓ X X X X

different frames [9]. The main objective of camera data analysis is to extract interesting regions

and features from an image (or a particular frame), then classify them in order to be able to

use the analysis for autonomous driving. There are a lot of important parameters to take care

of when we implement cameras in an Autonomous driving model. On top of those, there is the

quality of the images/videos that the camera can obtain, which can be influenced by lenses,

environmental and vehicular conditions (like lack of good lighting), and can truly affect the

analysis and the reliability of data. By performing a simple analysis of an image/frame, the

camera data analysis is susceptible to many different attacks, this is one of the reasons why it

should be used together with other sensors that perform the same, or similar, task.

2.1.2 LiDAR/Radar

The "Light Detection And Ranging" or "Laser imaging, Detection, And Ranging" (LiDAR)

sensor is part of the range-finding sensors. It works by emitting a light pulse (usually, in the

order of infrared) and measuring the time needed to reflect off a surface, so that time is used

as a measurement for distance [10]. Radar is a similar technology, that uses microwave pulses

and electromagnetic signals. To date, it is preferred to use LiDAR, as it has a higher spatial

resolution than Radar, which helps in getting better image reconstruction [11]. The biggest

problem with LiDAR and similar technologies is the unsuitability of the sensor in wet scenarios,

as the pulses can be absorbed by water molecules. This is one of the reasons why LiDAR should

be used together with other sensors. One of the advantages of using LiDAR is the possibility of

generating three-dimensional images, by putting the sensor on a rotating pedestal, in order to

obtain the geometry of all the objects around, even without good lighting conditions. Paired

with camera, it can be used for Collision Avoidance Systems and in tasks that require the

analysis of the near environment [12].
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2.1.3 Ultrasonic sensors

Ultrasonic sensors are used to detect obstacles that are close to the vehicle. The sensor emits

an ultrasonic signal, that will be reflected by the obstacle and directed back to the sensor.

As they work with close objects, they are usually implemented in ADAS for low speed or for

parking help [13]. Ultrasonic Sensors measure the distance to the target by measuring the time

between the emission and reception. The distance can be calculated with the following formula:

D = 1/2 ∗ T ∗ C

where D is the distance, T is the time between the emission and reception, and C is the sonic

speed (the value is multiplied by 1/2 because T is the time for go-and-return distance). To

prevent the disruption of the ultrasonic signals coming from sensors, it’s important to keep the

face of the ultrasonic transducer clear of any obstructions, like dirt or other condensation.

2.1.4 Inertial sensors

The most famous examples of Inertial sensors are accelerometers and gyroscopes. Accelerome-

ters measure the acceleration of an object (in this case, the car), while gyroscopes measure the

rotation rate with respect to a determined rotation axis. Both these sensors transduce inertial

forces into measurable electrical signals, determining even small changes in position or accel-

eration. They are usually based on Micro Electromechanical Systems (MEMS) technologies,

which are low-cost, high performance, and high-precision single-crystal silicon sensors [14].

2.1.5 GNSS

Global Navigation Satellite System (GNSS) is the basic infrastructure on which different sys-

tems are implemented. The most famous and diffused one is American Global Positioning Sys-

tem (GPS), but other systems exist such as the European GALILEO or Russian GLONASS.

It uses a network of 24 satellites and 5 communication frequencies, that help in getting a pre-

cise real-time position of the vehicle, with a precision in the order of 10 meters [15]. GNSS

satellites send navigation messages to the ground receivers, which can then calculate the dis-

tance to satellites by using the transmission time. To obtain the correct location, the receiver

has to calculate its distance to at least 4 satellites. The messages exchanged between satel-

lites and receivers are not authenticated or signed, because real-time positioning requires fast
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data computation. This leads to vulnerabilities and threats [16], which recommends the use of

GNSS technologies paired with other sensors (like cameras), in order to verify if the received

information is compatible with the actual scenario.

2.2 Threats Description

In this section, we will present the most important and diffused attacks on the sensors presented

in Section 2.1. Some of these attacks are naive and can be executed by a low-level attacker

by using non-sophisticated tools, while some of these attacks require deep knowledge of the

sensor involved and expensive and difficult-to-use tools [17, 18]. The attacks are divided into

categories by sensors, some of these have the same name, because the effects reported to the

sensor are the same. A summary of the treated attacks on sensors is reported in Table 2.2.

The table is organized as follows: whether an attack is functional against the specific sensor, a

✓is reported, otherwise a X is indicated.

Table 2.2: Relation between Attacks and Sensors interested.

Attack Type Camera LiDAR/Radar Ultrasonic Inertial GNSS
Auto-Control ✓ X X X X

Blinding ✓ ✓ X X X
DoS X ✓ X X X

Jamming X ✓ ✓ X ✓
Meaconing X X X X ✓

Replay X ✓ X X X
Relay X ✓ X X X

Spoofing X ✓ ✓ ✓ ✓

2.2.1 Camera

In this section, we will present the most important and diffused attacks on Camera sensors.

Blinding

In this attack, the malicious actor wants to compromise the camera functionality by directing

a light source (usually a laser beam) focused on the camera lens. This led to camera’s complete
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blindness, which can make the system recognize a non-real obstacle, or worse to a complete

stop and emergency braking. This attack is described and implemented in detail in [18], which

is the principal and most important paper on camera and LiDAR attacks, and re-proposed in

an interesting and particular way in [19] and [20]. A more complete approach and study on

the effect, the techniques, and the hardware details of blinding can be found in [21].

Auto-Control

Again, the attacker directs a light source directly to the camera lens, in order to manipulate the

auto-controls and avoid the camera from stabilizing on the image. This leads the camera to not

be able to reconstruct an image of the scenario. Similarly to blinding, this attack is described

and implemented in detail in [18], and re-proposed in [19], with an interesting analysis of its

working features and execution problematics.

2.2.2 LiDAR/Radar

In this section, we will present the most important and diffused attacks for LiDAR and Radar

sensors.

Replay

In replay attacks for LiDAR and Radar, the attacker receives and record the legitimate signals

emitted by the LiDAR. Then, at a later point in time, when the scenario is changed, the attacker

sends back to the LiDAR the recorder signals, in order to let it track and map non-existent

objects in the actual scenario. This attack is very difficult, as the "forged" recorder signal has

to be sent to the LiDAR very fast, before the legitimate signal, reflected on the real scenario

objects, turn back to the sensor. An implementation of this attack is reported in [19], with a

detailed description of the equipment used and on the effectiveness of the threat.

Relay

Relay attacks are an extension of Replay ones. In this case, the received signals from the

LiDAR are sent to a third receiver, far in a different location that, with the delay granted by

the transmission, it will send back to the LiDAR the signals, compromising the mapping of

the scenario and disrupting the ability of the LiDAR in accurately calculating the distance of
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nearby objects. Relay attacks are treated in detail in [18], with an example of implementation

in which are described the various trials performed and the equipment used in each of those, in

order to make the reader more aware of the correct tools needed to perform a similar attack.

Blinding

Blinding for LiDAR is similar to the one presented for cameras. The attacker points to the

LiDAR a light source with the same wavelength used by the sensor signals (usually in the

infrared order). This will create saturation in the analysis of data, which will see a multitude

of points and won’t be able to reconstruct any useful scenario. This is a very dangerous attack,

because it completely compromises the sensor but, other than that, it can not be recognized

by humans, as the infrared wavelength cannot be detected by the human eye. An interesting

example of how the Blinding attack is performed without the vehicle’s occupants’ knowledge

is reported in [22].

Jamming

In jamming attacks for LiDAR, the attacker emits a light pulse similar to the ones generated by

the sensor, so with the same wavelength (usually in the infrared order), but also with the same

frequency band. Similar to blinding attacks, the attacker has to find the correct wavelength but,

this time, the aim is to recreate a false signal and not to saturate the sensor. A really complete

work on LiDAR jamming attacks and on frequency bands for performing is reported in [23].

A realistic example, based on a low-cost attack environment, based on a simple Raspberry Pi

and a low-power laser is reported in [24].

Spoofing

The aim of the attacker is to make the LiDAR detect non-existent objects or to under/over-

calculate the distances from the object. It can be considered as an extension of Relay and

Jamming attacks, focused on fooling the sensor by placing specific objects or by miscalculating

the distances. The most noted example is in [18], where Petit et al. were able to spoof a LiDAR

system and cause it to over-calculate its distance to an obstacle. Related to this, in [22], Shin

et al. were able to obtain the opposite effect, where the LiDAR under-calculates the distance

to an obstacle.
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DoS

In a Denial-of-Service(DoS) attack, the attacker injects an enormous number of fake objects

into the data collected by the LiDAR, by repeatedly using techniques like jamming or spoofing.

The aim of this attack is to generate a number of fake objects bigger than the one that a LiDAR

can track, making the sensor unusable or unstable. An example of DoS for LiDARs is reported

in [19], where the author, using the technique described before, forced the LiDAR in entering

a sort of malfunctioning given the enormous number of forged data detected.

2.2.3 Ultrasonic sensors

In this section, we will present the most important and diffused attacks for Ultrasonic sensors.

Spoofing

Spoofing for Ultrasonic sensors consists of direct false signals (from a malicious second source)

to the legitimate sensor, before the legitimate signals return back, in order to force the sensor

to detect objects that do not exist. It can be innovated by injecting not a random signal,

but an old one (captured and stored in the past), in order to block the sensor in a sort of

"temporal loop". Another approach is to block the legitimate signal by using specific material

(like a sound-absorbing sponge), to replace it with the forged signal, removing the problem

of replacing the signal in a short time. This technique is called "cloaking". An example of a

cloaking attack is reported in [20], where the authors simply place sound-absorbent materials

around the obstacles, so that the sensor does not detect them. Similarly, in [25], the authors

were able to conceal objects, this time by covering them completely in acoustic foam, fooling the

LiDAR sensor. A more general example of a Spoofing attack, that uses the cloaking technique

for signal deletion, is reported in [26], where, in an advanced spoofing scenario, the attacker

listens for an incoming ultrasonic signal, eliminates the reflected signal by performing a cloaking

attack and sends a forged reflected signal back to the sensor.

Jamming

Similar to the LiDAR jamming attack, the aim of the attacker is to continuously send ultrasonic

signals direct to the sensor. It can try to saturate it or, more difficult, to recreate a false signal.

An example of this, applied to Autonomous driving, is the experiment brought by Xu et al. [26],
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which perform a jamming attack on a Tesla Model S in the self-driving Autopark and Summon

modes, which caused the vehicle to collide with an undetected obstacle. Another example is

brought by [27], where the authors overwhelm the sensor, making it unable to accurately gauge

the vehicle’s distance to nearby objects.

2.2.4 Inertial sensors

In this section, we will present the most important and diffused attacks for Inertial sensors.

Spoofing

Spoofing for Inertial sensors consists in injecting sound waves (in the range of ultrasonic, over

20kHz) to fool the sensor, by using transducers or speakers. The crucial point is to modify the

"Heading angle", a particular angle used to note the direction in which the sensor is turned,

used to derive the final decisions of the attacker. To modify this value, two approaches were

presented. First of all, the switching attack, where the attacker alternate between injecting

different waveforms (of different frequencies) to bring about phase pacing, that causes the

heading value to continuously grow. The other approach, called side-swing attack, focuses on

increasing and decreasing the injected waveform in order to manipulate the vehicle heading

value. An implementation of side-swing attacks is described in [28]. A similar attack, focused

on MEMS gyroscopes, is described in [28], where the authors falsify acoustic waves with a

frequency matching the load resonant frequency of the system, fooling the sensor [29, 30].

2.2.5 GNSS

In this section, we will present the most important and diffused attacks for GNSS.

Jamming

In jamming attacks for GNSS, the attacker transmit some noise on top of the legitimate signal,

in order to make it unusable for the receiver. It is the easiest attack, because there are on the

market many simple devices that can perform this task and they can be placed even in the car

cigarette lighter socket, as clearly described in the work by Petit and Shladover [31].
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Meaconing

In meaconing attacks, the attacker forward to the victim its own computed GNSS signal, in

order to make the receiver compute the route to the exact attacker location [32]. This signal

is always sent by the attacker with higher power than usual, in order to force the receiver to

choose them as legitimate.

Signal generation attack (Spoofing)

In this variant of Spoofing attack, the attacker generates a malicious signal (with high signal

strength), that has to be transmitted on top of the legitimate one [33], in order to force the

receiver in computing the forged coordinates and force it in tracking the route that the attacker

wants [34, 35]. It differs from meaconing because the forged signal injected is not the computed

position of the attacker, but it is a completely new signal built from scratch.

2.3 Threats Taxonomy

In Figure 2.2 is reported a taxonomy graph for the attacks reported in the previous sections.

Here, we have grouped the attacks presented in the previous sections into two specific groups,

based on the type of exploited vulnerability. The first, larger group includes all attacks that

exploit construction flaws, or vulnerabilities inherent in the type of sensor. This may include, for

example, the use of a known and fixed wavelength, or the use of sensors particularly sensitive to

light. In turn, this group is divided into two subsections, based on the need or not to manipulate

the data, in order to exploit the vulnerability of the sensor. The second macro group, however,

focuses on data vulnerabilities. In this case, in fact, attacks that act directly on data analysis

are included. An example can be the addition of noise (used for GNSS attacks) to the original

signal, which does not act directly on the sensor, but on the data collected and analyzed by it.
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Chapter 3

Platooning

The platooning concept can be viewed as a collection of vehicles that travel together, actively

coordinated in formation. Some expected advantages of platooning include increased fuel and

traffic efficiency, safety, and driver comfort. There are many variations of the details of the

concept such as: the goals of platooning, how it is implemented, mix of vehicles, the require-

ments on infrastructure, what is automated (longitudinal and lateral control), and to what

level [36]. In this chapter we will present the concept of platooning, discussing its advantages

and disadvantages (Section 3.1). Then, in Section 3.2 we will present a platoon scheme model,

reporting how the vehicles communicate and the technologies used. Finally, in Section 3.3 we

will discuss about platoon security and attack surfaces.

3.1 Definition

Platooning is an autonomous driving technique, that can be efficiently applied to a small group

of vehicles, in order to solve some traffic problems, like road congestion and fuel consump-

tion [37]. A platoon is a group of vehicles that can travel very closely together, safely, even at

high speed. Each vehicle communicates with the other vehicles in the platoon. There is a lead

vehicle that controls the speed and direction, and all following vehicles (which have precisely

matched braking and acceleration) respond to the lead vehicle’s movement. This lead vehicle,

called Platoon Leader, fulfills the task of directing all the other vehicles in the platoon, called

Platoon Followers. These followers will respond to all the lead vehicle’s input, transmitted on

air.
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The first approaches of platooning involved some kind of true mechanic coupling, similar to

the train concept, where the Leader and all the Followers are linked through a mechanic joint,

through which is passed physical wiring for data transmission. To date, platoon models use

modern communication systems, like Bluetooth or 5G, that are able to compute and process

the huge volume of data needed to make platooning a safe driving option.

Therefore, platooning techniques are implemented due to their extended list of advantages,

like:

• Improving of aerodynamic effectiveness and performance;

• Improving of road capacities;

• Introduces a "Steady-state" traffic flow;

• Reduces fuel consumption, as the vehicles are each vehicle is sort of drafting the following

one;

• In a driver-less scenario, autonomous driving vehicles will be able to automatically join

platoons based on the pre-computed trip, leaving the human counterpart free to work

and use efficiently also the travel time;

• They can reduce accidents, by removing as long as possible the human error in the driving

scenario.

Obviously, there are also some downsides for these techniques, like:

• Difficulties in managing long platoons, like in case of changing lanes during highway

driving;

• Heavy traffic can be problematic for platoons, for example, a lead car might cross a junc-

tion but there might not be enough room on the other side of the junction to accommodate

all other cars in the platoon, thus the junction will be blocked;

• They are difficult to retrofit to existing cars;

• Drivers need to be able to leave the platoon at any time and reform into other platoons,

or take control completely;
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• No computer system is completely secure and platoons could be hacked (Discussed in

section 3.3);

• Drivers should be educated on the correct use of platoon.

3.2 Structure

In a platoon model, vehicles are interconnected and they exchange information regarding their

instant position, speed, and collected environment data, as visible in Figure 3.1. This data

are exchanged in order to perform vehicles’ basic operations, like acceleration/deceleration,

braking, and changing lanes. Other than these, there are other operations that require data

transmission, specific for the platoon model [38]:

• Join platoon, it is performed when one vehicle wants to become a member of a platoon;

• Merge platoon, it consists in merging two platoons that have the same destination to

form a single platoon;

• Leave platoon, it takes place when one vehicle wants to exit the platoon. In this situation,

the vehicles in the head and behind this vehicle open a space for security reasons. When

this vehicle leaves, they return back to the platoon distance;

• Split platoon, it takes place when several vehicles want to exit the platoon and create a

new one having another leader;

• Cut-in/Cut-out, Cut-in operation is a specific lane change maneuver, in which a vehicle

moves closely in front of a platoon vehicle in the adjacent lane. In the case of a cut-out

operation, the vehicle entering the platoon decides to leave it. So, the other vehicles have

to cover the cut-out vehicle gap.

Data transmission is guaranteed by two main technologies: Vehicle-to-Infrastructure (V2I)

communication and Vehicle-to-Vehicle (V2V) communication [38].

3.2.1 V2I

This mode of communication is adopted to ensure the exchange of information between vehi-

cles/platoons and the infrastructure. The devices installed along the road, called Road Side
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Units (RSUs), represent an example of V2I communication. The infrastructure collects data

from vehicles and other information sources, handles it, and makes it accessible to the platoon

members in order to facilitate their coordination. This technology is open to modification and

customizations, such that many different approaches have been presented. An example could

be the work of Böhm and Kunert [39], where the authors introduce a framework for timely and

reliable communication both within a platoon and between platoons. Each platoon contains a

leader and one or more followers preserving a gap between vehicles and a speed that secures

operations of the platoon at the current conditions (such as radio, weather, road, etc.). The

communication associated with platoons is ensured using a dedicated Service Channel. The

exchange of information between non-platoon vehicles takes place on a separate Control Chan-

nel (CCH) without interference. The announcements platoon on the CCH allows the platoon

to notify its presence to its neighbors.

3.2.2 V2V

This mode of communication is the primordial requirement for the platooning operation. It

is adopted for ensuring direct communication between vehicles or platoons. Vehicles driving

in a platoon communicate together to keep a distance from the vehicle in front of them. The

exchanged messages are disseminated very quickly, such that the vehicles can react in time in

case of dangerous situations. We classify V2V communications into three categories:

• Intra-platoon communication: It focuses on the communication between the platoon

members;

• Inter-platoon communication: It consists in exchanging messages between vehicles of

different platoons. It has much more requirements than the one between the same platoon

vehicles;

• Communication between platoon vehicles and normal vehicles: It focuses on exchanging

information between platoon members and normal vehicles, not part of the platoon.
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Figure 3.1: Example of platooning communication [40]

3.3 Security

The most common attack hypothesis is that a third party (malicious attacker) is able to in-

troduce itself into the platoon system. By doing this, the attacker can take control of a single

vehicle, but also of the entire platoon, inducing the vehicles to taking wrong and (possibly)

dangerous decisions. The basic idea of Security in a platoon model is based on 4 pillars:

• The leader vehicle must be safe and reliable, so the platoon followers have to test this

assumption in order to trust all the received data and instructions;

• Each vehicle in the platoon must be able to have access to the data collected and detected

by every other platoon member. Consequently, every platoon member must share or make

accessible its own collected data;

• Every action induced by a vehicle has to be tested and analyzed. This rule reconnects to

the first one, where we consider the Leader as safe and reliable, but the instructions have

to be checked and verified in every case;

• Finally, in a platoon model the only data that should be considered as fully reliable and

safe are the "internal ones", so the ones directly collected by the vehicle, that can not be

altered by external sources. In this way, the vehicle can perform a cross-check between



24 CHAPTER 3. PLATOONING

the collected and the received "external" data, in order to detect anomalies or wrong

instructions.

The security idea is based on the interconnection between all the vehicles in the platoon. In

this way, if the attacker focuses on one vehicle (for example, by setting a speed goal higher

than the limit and higher than the other vehicles), the faked data are cross-checked with the

other "correct" ones, such that the attacked vehicle can recognize the anomaly, labeling it as a

simple calculation error or alerting the whole system of a malicious intruder. Finally, the data

can be recomputed, correcting it and making the platoon safe again.

To solve problems and attacks aimed at individual sensors, rather than at data transmission,

some solutions, which can be summarized in the concept of Sensor Fusion, have been presented,

as described in the next Chapter 4.



Chapter 4

Sensor Fusion

Sensor Fusion is defined as the process of combining data coming from multiple sensors, installed

in cars, machinery, or smartphones in order to compute the correct decisions in a complex

scenario, for example, an attack one, with more accuracy compared to using a single data

source, based on the analysis of data coming from different pools, instead of relying on a

single point of view. In this chapter, we present a survey that analyzes the possible threats on

sensors, applied to Autonomous Driving systems, reporting the most important attacks known

to date and the approaches that Sensor Fusion introduces to mitigate them. We highlight

the advantages and disadvantages compared to classical mitigation approaches, adding a real

comparison to the state of the art in this topic. The results presented underline the potential

of these new techniques in terms of efficiency, strengths, and costs.

4.1 Context

Sensor fusion techniques are used in almost every industry now, starting from factories, going

through our smartphones and cars. The importance of sensor fusion is the collection of data

coming from a lot of sensors, instead of just an individual sensor. This helps in creating a much

better model of the world around, in our case, the vehicle, reporting more precisely possible

obstacles and recognizing the different scenarios. While the main goal of sensor fusion is to

perform data merging for detection, another skill that the system inherits is to recognize the

strength and the weakness of every involved sensor, in order to leverage the strengths and reduce

the weaknesses by combining them in a unique data reading. In autonomous driving, usually,
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the data coming from a wide variety of sensors are transmitted into a central computing unit to

elaborate and digest the data, to estimate the position, speed, and trajectory of the car in order

to make more reliable navigation decisions. These sensors are susceptible to different types of

attacks, from the most basic ones, focused on simply fooling and triggering a singular sensor, to

more advanced one, that can involve more sensors and requires a more complex data elaboration

to be found [29]. Other aspects can affect the precision of Sensor Fusion techniques, that do

not depend on a third involved party. An example could be sensor degradation, which includes

wear and tear of sensors, that can produce incorrect data or non-accurate ones. Therefore,

one task that has to be taken into consideration is: how can sensor fusion techniques be used

to detect incoming attacks? How can the system isolate one sensor, if it is under attack or

degraded, without affecting too much the accuracy of the autonomous driving system?

In this chapter, we present some examples of attacks, focused on sensors used in Autonomous

Driving models. Then, different mitigation techniques will be presented. First of all, sensor

fusion based ones, which examples will be described in detail. Then, we will present the classical

mitigation techniques, based on elaboration and analysis of a single threat for every single

sensor. Finally, we will compare these two sets of techniques, by highlighting the strengths and

the weaknesses of each method.

4.2 Sensor Fusion models

In this section, we present the general skeleton of a Sensor fusion framework. We can distinguish

the usage of Sensor fusion techniques in three categories or approaches [41]:

• Complementary: in this type of approach, sensors are not dependent one from each

other, but when their output is combined, their non-dependence helps in creating a more

clear and complete image of the scenario. As an example, the usage of LiDAR and

several cameras, placed in different parts of the vehicle focused on different parts of the

environment can collectively provide a very complete image of the surrounding of the

vehicle, granting a good level of accuracy and a wider view of the scenario;

• Redundant: in this type of approach, sensors provide independent measurements of the

same target. It can be performed both by fusion of data from different and independent
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sensors, both by using different instances of data taken by the same sensor. This technique

provides a really high level of accuracy, at the cost of a loss of view of the general scenario;

• Cooperative: in this type of approach, different independent sensors provide data that

works only combined. This is the most complex technique, but it guarantees the capability

of recreating a unique model of the targeted scenario.

Then, after having presented the three categories of use, we can define the three levels of fusion

presented in the Multi-Sensor Data Fusion (MSDF) framework [8]:

• High-level fusion: in this level, each sensor carries out object detection or any algorithm

independently, then fusion is performed. For example, after treated data are collected by

sensors, they could pass through a non-linear Kalman Filter that analyzes the whole data

in order to detect obstacles or tracking elements [42]. This approach has lower complexity

than the other two, but it does not guarantee a high level of accuracy and confidence

during classification;

• Mid-level fusion: this level, also known as feature-level fusion, fuses multi-target fea-

tures extracted from the raw measurement coming directly from sensor data. Then,

recognition and classification are performed, based on the fused multi-sensor data. It

is a good approach to extract all the low-dimensional features from sensors data, but

at the same time it provides a limited sense of the environment, losing the contextual

information of the scenario;

• Low-level fusion: in this level, data from each sensor are fused directly at raw data,

without any preliminary elaboration. This helps in retaining all the information of data

and it can improve the efficiency and the accuracy of the elaboration. However, it is

the most complex one to implement, as it requires a correct calibration of all the sensors

involved, but also a perfect time calibration of the captured data.

4.3 Countermeasures against attacks to Sensor Fusion

In this section are reported some countermeasures to the attacks reported in Section 2.2, based

on the concept of Sensor Fusion. We will highlight the most important features, starting from
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the definition of the attack, the sensors involved, the technique of sensor fusion adopted, and

the results obtained.

4.3.1 GNSS Spoofing Attack Detection Framework

In [43], the authors developed a sensor fusion-based GNSS spoofing attack detection framework,

where the data collected by the car sensor and the GNSS data are compared to detect a possible

attack. The difference with previous GNSS spoofing attack detection frameworks is that this

new solution uses more data sensors, like speedometer, steering wheel angle, and accelerometer,

in order to predict the location traveled, focusing in particular on Autonomous driving. Four

variants of spoofing attacks on GNSS are presented (also visible in Figure 4.1):

(a) Turn-by-turn attack: A turn-by-turn attack is a sophisticated attack because the spoofer

has an Autonomous Vehicle’s (AV) route and destination information. In this type of

spoofing attack, the spoofer takes over a target AV’s GNSS computation and changes the

AV’s current location, resulting in a location shift between the AV’s location before and

after the attack. Due to a change in AV’s current location, the navigation application

creates a new route to reach the forged destination, follows the newly created wrong route,

and ends up in a wrong, possibly unsafe location, instead of the desired location. The

spoofer also tries to keep realistic values of the location shift, AV’s speed, and distance

between actual and forged route, in order to make it more realistic;

(b) Overshoot attack: After taking over the AV’s GNSS calculation, the spoofer keeps sending

the same location information. As a result, based on the GNSS output, the AV perceives

that it is in a standstill state, but the AV is moving forward in reality. As a result, when

a road split or intersection occurs, the AV will be unable to identify the path to proceed;

(c) Wrong turn attack: The spoofer takes over the target AV’s GNSS receiver just before a

turn. While the target AV takes a right turn, the spoofer tempers the GNSS signal and

the target AV perceives that is taking a left turn. Similarly, if the AV takes a left turn,

the GNSS will show a right turn. This will lead to the rerouting of the attacker AV, so the

target AV will end up in continuous rerouting, possibly arriving at a wrong destination;

(d) Stop attack: Opposite to the Overshoot attack, the spoofer takes over the receiver GNSS

when the target AV is stopped, at a stop sign or due to traffic. Then, it transmits a
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synthetic signal, such that the AV perceives that is moving along the road.

Figure 4.1: GNSS spoofing attack models [43].

The structure of the detection framework can be based on two different strategies:

1. Detection of a vehicle’s state using predicted location shift and vehicle motion state,

by developing a vehicle state prediction model. This model can predict the subject

vehicle’s state information (i.e., distance traveled / location shift) by fusing data from

multiple in-vehicle sensors (i.e., inertial sensors like accelerometer or gyroscope). For every

timestamp, data like speed, acceleration, steering angle, and location shift of previous

timestamps are def to train a deep recurrent neural network model, in particular a Long

Short-Term Memory (LSTM), that will predict the location shift between two consecutive

timestamps. If the difference between the perceived location shift using GNSS and the

predicted one is greater than the error threshold, an attack will be detected. The error

threshold is given by:
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Error Threshold = Prediction Model Maximum Absolute Error + Positioning Error of

the GNSS

2. Detection of turning maneuvers, where the steering angle data (obtained by using Inertial

sensors like gyroscope) can be used to recognize different types of turns (left or right).

For example, the steering angle sensor or gyroscope output can provide turn maneuvering

data. These data are compared with the information collected by GNSS, to detect and

classify turning maneuvers. If a turn is detected using steering angle data, but GNSS

shows no turn, then an attack will be detected. Moreover, if the steering angle change

represents a right turn and GNSS indicates a left turn, an attack will be detected.

These two techniques use neural networks to digest, classify, and analyze the huge amount

of data provided by sensors. In particular, in the first strategy is used an LSTM model, as it

requires a deep analysis of data collected, while in the second approach, they use a k-Nearest

Neighbour algorithm (k-NN). This algorithm is included in the category of supervised learning

classifiers. It uses proximity to make classifications or predictions about the grouping of an

individual data point and it is mainly used for classification problems, like in our study case,

where the clustering algorithm is used to perform a layered task of labeling and comparison.

These two techniques can be implemented singularly in order to satisfy the system’s require-

ments, but the greatest approach is to use them merged, in order to detect also more complex

attacks. As it is reported in Table 4.1, the checkmark states that the strategy can detect that

specific attack, while the cross states that the attack can fool that strategy. Therefore, the

combination of both these techniques is the right way to detect all the attacks presented [43].

Table 4.1: Attack detection.

Attack Type Strategy 1 Strategy 2
Turn-by-turn ✓ X

Overshoot ✓ ✓
Wrong turn X ✓

Stop ✓ ✓
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4.3.2 CACC based framework

In [44], the authors focused on the concept of Cooperative Adaptive Cruise Control (CACC),

used in platooning scenarios, and analyze possible attacks on this technique. The authors

implement a Sensor-fusion based framework for detection, improving previous similar models

based on a single sensor data analysis, because sensor fusion accounting for spatial information

provided by multiple vehicles in the platooning can achieve way better results. The authors

present three categories of attacks on sensors:

• Jamming: In this case, they focus on LiDAR/Radar jamming, usually caused by in-

terference of a malicious signal, that causes an additional and significant noise at the

exploited sensor;

• Data injection: hijacks one or some of the sensors and purposely gives predefined false

information. They consider a typical data injection, where a ghost vehicle deceives the

sensors that the obstacle is at a different distance than in reality. This attack is a variant

of Spoofing attack;

• Sensor Manipulation: the aim is to undermine a sensor’s precision by enlarging its

output interval. This can be done by fixing the minimal value while enlarging the maximal

value, cheating the car with a larger headway distance to induce a collision. This is a

more advanced and complex attack, very unusual because it requires a high knowledge

of the sensor itself, but also access to it. This is reported for the sake of completeness.

As before, the authors propose two different strategies to mitigate the attacks, the first based

on a naive approach, the second formulated by the authors themselves:

• Naive and Pairwise Sensor Fusion: This is the simplest approach. It is based on a

simple algorithm, that takes the intersection of all the intervals returned: for a vehicle i

with n sensors, the sensor fusion represented is si = ⋂︁n
j=1 sij, where ⋂︁n

j=1 is the intersection

symbol, for j in the range [1,n]. The authors define abstract sensor models, each one has

to contain the ground truth value, a value that, in a healthy sensor, lies in a defined

interval. The algorithm performs the intersection of the intervals and returns as output

an interval, si. Then, this result is passed to a second algorithm that adds a temporal

information dependence, as proposed in [45], in order to enhance the sensor fusion. This



32 CHAPTER 4. SENSOR FUSION

pairwise intersection technique uses historical intervals from some previous time, maps

them to the present with the vehicle’s actual dynamics, and intersects the corresponding

interval pairs. Then, it performs a final intersection between these intervals to recover

the ground truth. The value of this ground truth is used to detect if the model is under

attack, or in a safe state;

• Proposed Approach: In this approach, based on the platooning technique, the authors

supposed that the vehicle i not only receives information in the range pi−1 − pi, which

refers only to the distance between the car involved and the closer one calculated using

the i car sensors, but also from the additional range of information passed by vehicle

i − 1 (i.e., pi−2 − pi−2), data calculated using the i − 1 vehicle sensors, and the position

of vehicle i − 2 (i.e., pi−2). So, the distance between two cars can be computed as:

pi−1 − pi = (pi−2 − pi) − (pi−2 − pi − 1).

Consequently, using the distance from vehicle i and i−2 to subtract all the intervals from

the last car, an extra set of intervals for sensor fusion is received. This calculation is called

triangular pairwise intersection, as it uses the vector difference of two edges in a triangle.

This approach helps in reducing the error propagation and lowers the risk of attack, in

particular focusing on the lead car. Other than that, this sensor fusion technique is also

an effective defense for protecting vehicle i, given that vehicle i − 1 is not under attack,

that can eventually be detected by the technique itself.

Figure 4.2: Car Platooning order [44].

The data used for these two techniques comes from the Radar, the GPS, and Inertial sensors

(velocity and acceleration ones). Both these techniques work well in detecting and recovering
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from an attack, but the proposed one is the most efficient one, as it has a smaller positional

error in respect to the other, given the fact that it uses a huge amount of data coming from

vehicles sensors.

4.4 Alternative Countermeasures

Sensor Fusion is not the only solution to mitigate and solve possible threats and attacks. Before

that, many other solutions have been proposed, each one with its advantages and disadvantages.

4.4.1 Camera

For what concerns cameras, a solution to mitigate attacks can be the so-called "redundancy".

In this case, the vehicle uses more than a single camera, where the images of different cameras

partly overlap, in order to be able to reconstruct at least twice the same image, to detect

possible anomalies. The problem with this ploy is that the load of work in reconstructing and

classifying the images and the objects grow exponentially, as the algorithm has to analyze and

collect data from more cameras than usual. Then, this kind of countermeasure works for less

sophisticated attacks, like blinding with a commercial laser, but they are ineffective for attacks

brought with military weapons, like a Dazzler [18], that can fool multiple cameras at the same

time. Finally, the cameras have to be coordinated, synchronized, and perfectly calibrated, in

order to produce a useful and common data set. Then, there are some software countermeasures

for cameras, like separation of channels, spectrum analysis and so on. The problem with these

algorithms is that they require time for elaboration, while in an AV the analysis of data should

be done in real-time.

4.4.2 LiDAR

Talking about LiDAR, more complex countermeasures can be implemented [46]. As cameras,

redundancy is a solution. The problem is that a LiDAR can be very expensive, so implementing

more sensors than required can be not feasible. Then, there are some countermeasures that

are implemented in the sensor operation. First of all, Random Probing, where the pulse is not

repeated at a fixed interval, but at a random one, non-predictable. This is suitable to prevent

attacks like Jamming or Spoofing, where the attacker has to synchronize on the same interval
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of pulses. However, this countermeasure can not be applied for rotating LiDAR, that is the

most used for AV, because they require a constant rotation speed and need to know exactly at

which angle they fired a pulse. So, to prevent Jamming attacks in rotating LiDAR, Multiple

probing can be implemented. In this ploy, the LiDAR performs three measurements at the

same position, such that if one of the three is different, they will be considered invalid. Here

some other problems arise. First of all, multiple probing reduces the scan frequency, which will

reduce the effective different measurements. Then, the measurement should be corrected, as

the vehicle can be moving between the three consecutive measurements.

4.4.3 Ultrasonic sensors

For Ultrasonic sensors, in [26] two approaches are presented to protect the sensor from jamming

and spoofing attacks. The first one introduced the idea of shifting the parameters of waveform,

in order to make it possible to authenticate the physical signals. The second approach uses two

or more sensors (again, a redundancy scheme) to detect attacks, using overlapping information,

with the same advantages and disadvantages discussed before.

4.4.4 Inertial sensors

For Inertial sensors, three countermeasures have been presented in [28]. The first one is Damp-

ing and Isolation, where are used some noise barriers (like isolating boxes or acoustic foam).

The problem here is that this solution does not take care of sizes or, more generally, of the

environment in which the sensor is used, such that often this ploy is unfeasible. Then, the

second one is called Filtering. It is actuated via hardware, and the main focus is on eliminating

the out-of-band noise signal by filtering it, using for example a low-pass filter. This is not

a robust solution to the problem, as filters in digital circuits of the sensor will not alleviate

totally the problem, as out-of-band analog signals have already been aliased to in-band signals

after sampling. Finally, Sampling, which aims is to eliminate the attacker’s ability to achieve

a DC signal alias and limit potential adversarial control. This is done by adding a randomized

delay to each sampling period. This has some negative side effects, like the degradation of the

accuracy in measurement.
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4.4.5 GNSS

For GPS/GNSS, numerous countermeasures have been proposed. They can be based on the

signal strength, time interval between signals, distortion of signal, and so on. Other methods

focus on the cryptographic primitives defined for transmissions, in order to be able to under-

stand if a signal is forged (like in a spoofing attack) and authentic, by using authentication

and digital signatures. The problem with these approaches is the time required to perform the

primitives. Usually, they take too long to adapt to a real-time transmission, which makes them

unusable for AV.

In Table 4.2 is reported a recap of the effectiveness of countermeasures for all the attacks

presented, in order to highlight the approaches most effective (like redundancy, which is useful

for most of the attacks). The table is organized as follows: if the presented countermeasure

works against every possible scenario and (known) mutation of the selected attack, a ✓is

reported. If a countermeasure works for the majority (but not the entirety) of all the possible

attack developments, a ∼ is reported. Then, if the defense against that specific attack is not

an intrinsic feature of that countermeasure, such that is not useful in that attack scenario, a X

is reported. The biggest advantage of using Sensor Fusion approaches to mitigate attacks, over

the presented solution, is the possibility of protection and detection against a huge number

of attacks, by using just a system instead of implementing all the one defined. In fact, by

using the correct and adequate algorithm, sensor fusion approaches can be effective against a

multitude of attacks and, at the same time, they can inherit characteristics and properties of

singular sensors to be used to refine the security systems and the elaboration one, as it was

reported in Table 2.1.

Sensor fusion has also some disadvantages. First of all, it requires a correct setup and

initialization of all the sensors, starting from calibration to correct synchronization. Then, it

requires some important computational power in order to elaborate data. For example, in the

cases presented in Section 4.3, some variants of LSTM or deep neural networks are used, which

requires high computational power, especially for elaborating the huge amount of data coming

from combined sensors.
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Table 4.2: Countermeasures to attacks
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Camera
Auto-Control ✓ ✓ X X X X X X X X

Blinding ✓ ✓ X X X X X X X X

LiDAR

Blinding ✓ X X X X X X X X X

DoS ✓ X ∼ ✓ X X X X X X

Jamming ✓ X ∼ ✓ X X X X X X

Replay ✓ X X X X X X X X X

Relay ✓ X X X X X X X X X

Spoofing ✓ X ∼ ✓ X X X X X X

Ultrasonic
Jamming ✓ X X X ✓ X X X X X

Spoofing ✓ X X X ✓ X X X X X

Inertial Spoofing X X X X X ✓ ✓ ✓ X X

GNSS

Jamming X X X X X X X X ✓ X

Meaconing X X X X X X X X ✓ ✓

Spoofing X X X X X X X X ✓ ✓
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CARLA Simulator

5.1 What is CARLA Simulator

CARLA (Car Learning to Act) simulator is an open-source simulator, used for the development

and testing of Autonomous Driving Systems (ADS) [47]. This simulator is based on Unreal

Engine 4 for graphic rendering and it uses OpenDRIVE standard for road and environment

definition. This simulator is a joint work of Intel Labs, Toyota Research Institute, and Barcelona

Computer Vision Center.

To interact with the simulator, the user should execute a Python script, as it can be seen

in Image 5.1. So, CARLA Simulator acts as a sort of server, to whom each script connects (by

using a specific port). Now, script and simulator are free to have a dual communication, which

can be graphically seen, both by using the integrated GUI or by reading logs on the shell.

CARLA Simulator is available both on Linux and Windows distributions, in this work we

use CARLA 0.9.13 (the latest available at the start of testing) working on Ubuntu 18.04 LTS

Bionic Beaver. In the next sections, we will describe some basic commands, in order to explain

the communication scheme and the realization scheme of all the used scripts.

5.2 Basic Structure

To help understand how the script works, in this section it is presented the structure, both of

the script interaction and of the commands used. To obtain the simulation, we will import and

use three main modules, "World", "Client", and "Actor".
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Figure 5.1: Interaction scheme between simulator and script

World is described in the official documentation as "an object representing the simulation. It

acts as an abstract layer containing the main methods to spawn actors, change the weather, get

the current state of the world, etc. There is only one world per simulation. It will be destroyed

and substituted for a new one when the map is changed".

Again, in documentation, the description of Client is "the module the user runs to ask for

information or changes in the simulation. A client runs with an IP and a specific port. It

communicates with the server via the terminal. There can be many clients running at the

same time. Advanced multiclient managing requires thorough understanding of CARLA and

synchrony".

Finally, Actors are described as "An actor is anything that plays a role in the simulation",

and some examples are reported, like vehicles, walkers, sensors, traffic signs, traffic lights, and

the spectator, that is the camera that shows the entire simulation. Each one of these actors

can be generated multiple times, in order to fit our scenario. To do this, we use blueprints,

that are are already-made actor layouts necessary to spawn an actor. Blueprints are models

with animations and a set of attributes. Some of these attributes can be customized by the

user, while others don’t. There is a Blueprint library containing all the blueprints available as

well as information on them.

5.2.1 Client-Server Interaction

As said in Section 5.1, CARLA software act as a sort of server. By default, it uses port 2000

for script interaction, but it can be changed manually in the settings file, or directly in the shell

instruction, where N is the port number:
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./ CarlaUE4 .sh --carla -port=N

Now, we know the port on which the server is listening. We need to connect our Python

script to the same port, taking advantage of the possibility to write code that modifies the

simulation, thanks to CARLA APIs. To connect and establish a Client-Server Interaction we

need to follow two main steps: connect to the server, using the provided IP address (localhost)

and port, then we should recover the world object of the simulation:

1 import carla
2

3 client = carla.Client('localhost', port)
4 client.set_timeout(5.0)
5 client.load_world('TownXX')
6 client.reload_world()
7 world = client.get_world()

We set a timeout in order to not wait infinite time for a connection, in case of problems.

This value is not fixed and it was set by computing the usual time needed for a normal Client-

Server connection. Then, each time we load the Town that we need, we reload it (in order to

remove previous instances) and finally get the World object.

Once we have set up correctly the connection, the Client-Server interaction and we retrieve

the World object, we could start to use the blueprint library to add Actors to the simulation.

We could create multiple instances of Actors objects, by modifying the attributes or directly

the Actor type.

For other information about Carla configuration, commands, and libraries, we refer to the

official documentation following the link: https://carla.readthedocs.io/en/latest/

5.2.2 Maps

CARLA simulator provides 8 different maps, some integrated in the simulator package, others as

an add-on package, that has to integrated in a second time. CARLA maps are realized in order

to provide all the elements that we could find in a real road, like crossroads, stoplights, lines,

traffic signals, and similar customizable elements. We could change also the environment itself,

like the weather conditions, in order to find the ideal test scenario. All these customizations help

in studying the physics and the behavior of the vehicle in different scenarios, which may vary

https://carla.readthedocs.io/en/latest/
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even from one iteration to another. For example, in a simple turn, the trajectory is different

between each iteration, influenced by external and environmental factors, which makes the

simulator closer to real driving behaviors.

The maps provided have different layouts, each one dedicated to different driving situations

and traffic scenarios. A brief description of each map is presented in Table 5.1, as referred in

the official documentation:

Table 5.1: CARLA maps description

Town Summary
Town01 A basic town layout consisting of "T junctions"
Town02 Similar to Town01, but smaller
Town03 The most complex town, with a 5-lane junction, a roundabout, unevenness, a

tunnel, and more
Town04 An infinite loop with a highway and a small town
Town05 Squared-grid town with cross junctions and a bridge. It has multiple lanes per

direction. Useful to perform lane changes
Town06 Long highways with many highway entrances and exits. It also has a Michigan

left
Town07 A rural environment with narrow roads, barns and hardly any traffic lights
Town10 A city environment with different environments such as an avenue or promenade,

and more realistic textures

Each map is made by grouped objects, called layers, that consist in:

• NONE

• Buildings

• Decals

• Foliage

• Ground

• Parked Vehicles

• Particles

• Props

• Street Lights
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• Walls

• All

CARLA simulator provides also the possibility to import custom maps and assets, by using

a map configurator. In Image 5.2 is presented an example of a map basic layer, in particular

Town01 structure, the less complex one. The red dots represent the traffic signals’ position on

the map.

Figure 5.2: Town01 structure

5.2.3 Driving modes

CARLA simulator provides two different driving modes: Manual driving, where the user can

interact directly with the car and drive it using the keyboard, and Autonomous driving.

This last mode is the one that interests us more. In Autonomous driving mode, the simulator

manages both the car response (accelerator, brake, steering), both the traffic and road segment

of the map. So, the simulator manages to drive the car respecting all the limits and signals,
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but it also raises alerts in case the vehicle does something unusual, for example, line crossing

or eventual crashes.

In Autonomous mode, the user can not indicate the trajectory and the route to follow to

the vehicle, which is completely managed by the simulator itself, and this is a major limitation

of this simulator. However, for the scope of this research, we managed to retrieve the useful

data anyhow, by analyzing more trajectories and more behaviors when needed.

5.3 Platooning implementation

The focus of this first part of the work is to create a way for a convoy of vehicles, that follow the

same route. I decided to use the Autonomous driving mode, both to re-create a futuristic pla-

toon scenario, both to try to create a platoon able to adapt to all the possible (also millimeter)

variations in driving trajectory. So, the platoon is made by a Leader, to which is toggled the

auto-driving mode, followed by two vehicles that follow the instruction and data received by

the leader. So, the basic idea is to use the leader as the one that takes the driving decisions, for

example, which turn to take or which direction to take at a crossroad, while the two followers

are manual-driving oriented, where the input is elaborated and rearranged thanks to the leader

data transmission. So, after the connection to the server presented in Section 5.2.1, the script

continues as:

1 import carla
2 ...
3 actor_list = []
4 blueprint_library = world.get_blueprint_library()
5 ..
6 except KeyboardInterrupt:
7 pass
8 finally:
9 print('destroying actors')

10 client.apply_batch([carla.command.DestroyActor(x)
11 for x in actor_list])
12 print('done.')

The simulator works by sending a signal, called "tick", at every fixed interval, in order to

show the world situation at each tick iteration. We define this fixed interval by modifying the
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value delta_seconds. In this case, we set the interval to the minimum value possible (0.01

seconds), in order to get a higher tick frequency and be able to make more operations possible.

1 ...
2 try:
3 ...
4 settings = world.get_settings()
5 settings.fixed_delta_seconds = 0.01
6 world.apply_settings(settings)
7 ...
8 ...

So, here we obtain and save all the settings already defined, in the settings file or by previous

iterations, modify the delta_seconds parameter and finally update all the settings and apply

them to the world.

Then, we should generate the vehicle for the platoon, with their configurations. For every

vehicle, we need to define a spawn point, the point in which the car will appear in the world,

defined by the three-dimensional parameters x,y,z, and other parameters, like pitch and roll,

to establish the rotation and other aspects of the generation. Once the spawn parameter is

defined, we need to use the blueprint library in order to define the vehicle aspect. In our case,

we use the Tesla Model 3 as template for the platoon vehicles, as they represent the most

diffused type of semi-autonomous driving mode in the actual market [48, 49]. The spawn point

change for every different map.

1 ...
2 try:
3 ...
4 spawn = carla.Transform(carla.Location(x=-XXX, y=XXX, z=XXX),
5 carla.Rotation(pitch=XXX, yaw=XXX, roll=XXX))
6 model3 = blueprint_library.filter('model3')[0]
7

8 PlatooningLeader = world.spawn_actor(model3, spawn)
9 spawn.location.XXX += XXX

10 PlatooningFollower = world.spawn_actor(model3, spawn)
11 spawn.location.XXX += XXX
12 PlatooningFollower2 = world.spawn_actor(model3, spawn)
13

14

15 actor_list.append(PlatooningLeader)
16 actor_list.append(PlatooningFollower)
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17 actor_list.append(PlatooningFollower2)
18

19 PlatooningLeader.set_autopilot(True)

Now, we have created the vehicle platoon. The next steps are to define the driving functions,

the communication method between cars, implement useful sensors, and finally define the rules

and policies needed to control the platoon in case of attack detection. In Figure 5.3 is visible

the platoon implementation in CARLA simulator, with the three vehicles (Tesla Model 3)

highlighted with different colors, in order to distinguish them.

Figure 5.3: The platoon representation in CARLA simulator
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Simulation description

6.1 Introduction

The goal of this work is to implement resilience policies for Autonomous Vehicles under attack,

based on the context in which the platoon is located. We consider the data transmission

between platoon vehicles as unsafe and attackable from the outside. The implemented policies

have to recognize a possible attack and define various rules so that the targeted subject can

recover and continue working in a safe driving scenario. These rules and policies are defined

based on the driving functions implemented for the platoon, such that every possible difference

with the expected behavior is highlighted and analyzed.

Our focus was on implementing rules and policies, able to work also in a (relatively) low-cost

environment. In fact, other solutions to this kind of attacks have been presented, like [50, 51, 52],

but they all have in common the use of machine learning for data digestion (that is very

computational demanding) and the usage of lots of sensors, like multiple LiDARs or Radars,

that are very expensive. So, we want to demonstrate that, even without using highly demanding

computation and expensive sensors, the accuracy of rules and policies can be similar. In

particular, we use only 3 types of sensors for the vehicles in the platoon: a single LiDAR sensor,

spawned in front of the car to manage braking or dangerous situations, Inertial Measurement

Unit (IMU) sensors (Accelerometer, Compass, and Gyroscope) that are basic and low-cost

sensors, implemented also in mobile devices, and finally, a GPS, that in our simulation is

interpreted by the x,y,z coordinates, but in real life is needed to define the vehicle position.
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6.2 Threat Model

The purpose of our work is to define an effective solution against some attacks to which the

platoon could be subject. Here, we assume a third party, external attacker. This means that the

attacker is not included in the platoon model, but it is an external entity. The attack surface

is represented by the data transmission, described in Section 3.2. We assume that the attacker

is able to intercept the data transmitted from the leader vehicle to the followers, analyze it,

and modify some parameters, in order to take the platoon control. This attack is inspired by

the Man in the Middle (MitM) attack, where a third entity enters the communication, deemed

secure, of two distinct entities. In this way, the attacker is able to modify and send to the

victim the forged data. In our scenario, this attack model can be implemented by a malicious

vehicle, close enough to the platoon to intercept its communications, or a drone flying over

it, as in Figure 6.1. Once decrypted, the information sent by the leader to the followers is

available for modification and future sending to victim vehicles. Therefore, we assume that an

attacker is aware of the type of communication implemented by the platoon, knows the data

sent and their subsequent use and is able to modify the data in such a way as to force part of

the platoon to follow the forged commands.

Figure 6.1: Threat model example [53]

6.3 Data background

To define rules and policies, we used some variables, which values can be used both for detecting

a possible anomaly, both modified in order to solve the problem. These variables are essential for

understanding the whole working mechanism, both of CARLA simulator, both of the platooning

scripts, and the scenarios that will be presented in the next sections.

A description of the variables used in this work is presented in Table 6.1. Some of these

values are obtained inherently from the interface between vehicle and simulator (like for example
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throttle and brake), others are external values, obtained by the instantiation of different sensors

applied to the vehicles (like gyroscope[X] and accelerometer[X]). In Table 6.1 is not reported

anything about the LiDAR sensor. This is because the data obtained by the LiDAR can not

be considered as "direct" variables, ready to be used for data computation. Instead, LiDAR

output is called carla.LidarMeasurement per step, as it returns a cloud of points, computed

by adding a laser for each channel of the sensor. This point cloud is calculated by doing a

ray-cast for each laser in every step, and it can be written as points_per_channel_each_step

= points_per_second / (FPS * channels).

So, we could say that the data obtained by LiDAR measurement is a series of encoded 4D

points, where the first three coordinates are the canonical xyz and the fourth dimension is the

intensity loss during the travel. So, to obtain computable data, we have to analyze the cloud

of points, for example by extracting the number of points for each of the xyz coordinates and

this requires a supplementary data manipulation stage.

Table 6.1: Measurements

Key Type Description
steer float Steering angle between [-1.0,1.0]

throttle float Throttle input between [0.0,1.0]
brake float Brake input between [0.0,1.0]

hand_brake bool Whether the hand-brake is engaged
reverse bool Whether the vehicle is in reverse gear
pitch float Y-Axis rotation angle
yaw float Z-Axis rotation angle
roll float X-Axis rotation angle

speed float Actual vehicle speed
speedGoal float Goal speed for follower vehicle

gyroscope[X] float Measures angular velocity in rad/sec per Axis between [-99.9,99.9]
accelerometer[X] float Measures linear acceleration in m/s2 per Axis between [-99.9,99.9]

compass float Orientation in radians

In Figure 6.3, it is reported a brief scheme of connection between the various elements

that compose the Platooning script, reported entirely in Appendix A. In the diagram are

highlighted the most important parameters and functions of the instantiated objects. The

SafeCloud implementation is used for managing the connection and the data exchange between

the platoon vehicles and it is again reported entirely in Appendix A.
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Figure 6.2: Graphical view of Pitch, Roll and Yaw (CARLA documentation)

6.4 Scenarios analyzed

As presented in Section 5.2.2, CARLA simulator offers different maps, called Towns, with

different scenarios, different route types, and traffic situations. The aim was to find the most

common scenarios that a real driver faces up in the everyday driving, making them more general

as possible, in order to work in almost every case. All these different situations were found

in five different maps, both between the one included in the standard package generated by

CARLA developers, both by importing some additional Towns, more complex and heavyweight

than the classic ones. In the real world, the scenario is recognized by using the car location

systems (GPS/GNSS). In fact, in the simulator, we use the three-dimensional coordinates in

order to find the correct scenario and spawn in that position the platoon, while in real world this

is performed in real-time by analyzing the location data retrieved from sensors. So, for example,

if the navigation system communicates that the vehicle position is close to a roundabout, the

whole system will be informed of that information and the "roundabout scenario" is triggered,

with all its defined rules and policies.

The scenarios that we defined are exhaustive for the usual everyday driver, and in order

are:

• Highway

• Turn

• Roundabout

• Crossroad
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• Hairpin

Figure 6.3: Diagram of variables and functions

6.4.1 Highway

For the highway scenario, we used Town04 as referring map. In particular, Town04 includes a

loop three lanes highway, from which we extrapolate the long straight used for this scenario.

The platoon is spawned at the start of this long straight, with the vehicles spaced twelve meters

apart. This one is the least complex scenario, as the following vehicles in the platoon have the

only task of following the leader in its lane, without possible intersections or traffic signals

that could make the run complex to analyze. At the same time, it could be easy to recognize

possible attacks and how to protect the platoon from them. In this scenario, the platoon

leader is equipped with LiDAR and IMU sensors, similar to the two followers. In Figure 6.4 is

presented the map layout, in particular is boxed in red the part of the highway used for testing.
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Figure 6.4: Town04 structure, with highlighted the Highway

6.4.2 Turn

For the turn scenario, we used Town03 as referring map. Town03 is the most complex map,

it is a complicated city-inspired map, from which we extrapolated a right turn, of around 90

degrees, coming right after a simple two-way crossroad. Here, the platoon is spawned at the

end of a short straight, right after a crossroad, such that the platoon is capable of picking

up the adequate speed and performing correctly the turn. We decided to take this particular

turn just for the reason of making the script more general as possible, by using a very generic

turn. In fact, this scenario could be used for most of the normal turns (both right and left

ones), while for specific turns (like hairpins) we better defined a specific scenario, more detailed

and complex. Here we have to consider more variables than before. For example, while in

the highway scenario, it was an easy constant motion, with a fixed speed and with a very low

probability of encountering obstacles, now we should consider the city environment, like the

possibility of sudden accelerations and decelerations. In this scenario, the platoon leader is

equipped with LiDAR and IMU sensors, similar to the two followers. In Figure 6.5 is presented

the map layout, in particular is boxed in red the part of the road used for testing.
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Figure 6.5: Town03 structure, with highlighted the Turn

6.4.3 Roundabout

For the Roundabout scenario, we use again Town03 as referring map. The features and a brief

description of the map are reported in Section 6.4.2. In this scenario, we use a classic four-exit

roundabout, placed right after a long straight. Here, the platoon is spawned at the end of

this straight, such that the platoon is capable of picking up the adequate speed and entering

realistically in the roundabout. This is a very complex scenario, as the variable are multiple

and the number of parameters to take into account is huge. For example, we could not rely

only on yaw to determine an abnormal behavior, as this parameter is very variable during the

roundabout execution. So, we should take into account other aspects of the driving data, and

cross-check them with the usual ones, in order to write policies that are correct and respect

the normal behavior of the scenario. Other than that, the attack recognition is much more

difficult than before. By using a lot of parameters, we extend a lot the attack surface, such

that we should analyze more carefully each signal and error. Some examples of attacks and

variables affected are reported in Section 7.4. In this scenario, the platoon leader is equipped

with LiDAR and IMU sensors, similar to the two followers. In Figure 6.6 is presented the map

layout, in particular is boxed in red the part of the road used for testing.
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Figure 6.6: Town03 structure, with highlighted the Roundabout

6.4.4 Crossroad

For the Crossroad scenario, we use again Town04 as referring map. The features and a brief

description of the map is reported in Section 6.4.1. Town04 is depicted as "An infinite loop

with a highway and a small town", and it is that small town our point of interest. We localized

a series of crossroads, one adjacent to the other, such that it generates the perfect scenario for

testing our purposes. The platoon is spawned right before the stop line of the first crossroad,

which is the most important, as it has 3 different directions: straight, turn left, and turn right.

Then, following the decision of the platoon leader, the vehicles can run across a brief straight,

end by another crossroad, or enter a totally different route. We focused on the behavior of

our platoon model in the first crossroad, but the rules and policies are valid also for the other

adjacent ones, as noted during the test phase. We will report the results obtained with just

one crossroad passed through for a matter of redundancy and huge data manipulation for

results extraction. This one was by far the most complex scenario of the series, both for the

implementation of the platoon, both for the study of policies and attack surfaces. As said in

Section 6.4.3, there are a lot of parameters interested in the study of the vehicles’ trajectory,

behavior and attacks, such that the task here is more complex than ever. We should depict rules

that work for general conditions, taking into account not to influence the normal unfolding of



6.4. SCENARIOS ANALYZED 53

the operations. In this scenario, the platoon leader is equipped with LiDAR and IMU sensors,

similar to the two followers. In Figure 6.7 is presented the map layout, in particular is boxed

in red the crossroad used for testing.

Figure 6.7: Town04 structure, with highlighted the Crossroad

6.4.5 Hairpin

For the Hairpin scenario, we use Town06 as referring map. Town06 includes long straights,

with small crossroads at the end. In the middle of the map, there is a two-lane road crossing

it horizontally, ended by two similar hairpins. These ones are the object of our study. The

main difference between a hairpin and a simple turn is the steering angle required, which is

more important in the hairpin one, but there are other reasons that make us prefer to have a

specific set of rules for it. First of all, we can not rely that much on the yaw value, as made

in the turn scenario, as it is a too much variable value in hairpins, similar to what happens in

roundabouts. Then, we have different steering angles during the hairpin approach, not a fixed

one (or semi-fixed) as in a normal turn. Finally, we have a very different speed approach in

hairpin, that needs to be addressed much slower than a normal turn. The platoon is spawned

at the end of the long straight that crossed the maps, some meters behind the hairpin, in order

to make the platoon capable of picking up the adequate speed, decelerating, and performing
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correctly the turn. In this scenario, the platoon leader is equipped with LiDAR and IMU

sensors, similar to the two followers. In Figure 6.8 is presented the map layout, in particular is

boxed in red the crossroad used for testing.

Figure 6.8: Town06 structure, with highlighted the Hairpin
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Policies

7.1 Introduction

In this chapter, we will introduce and describe the policies and rules defined for each one of the

scenarios depicted in Section 6.4. These rules are hard-coded in the platooning script, which

can be viewed in Appendix A.

Each scenario has its own rules, such that each version of the platooning script is modified

and adapted to the request. The focus of these policies is to assure resilience after an attack

detection, so the implemented functions do not only recognize a possible incoming menace, but

it is also able to analyze it and, by using the trusted real-time data (described in Section 3.3),

to assure that the platoon is able to complete its actions correctly and safely.

All these objectives are reached by using a low-cost and efficient model, by using the min-

imum number of sensors possible, the least possible computational power (avoiding the use

of Machine Learning or Deep Learning techniques as said in the previous chapter intro, Sec-

tion 6.1). The results will be presented later in this thesis, in Chapter 8.

We perform a check using LiDAR, common for all the scenarios, in order to detect any

possible blinding attack. This is a sort of "add-on" to the pre-defined policies, in order to not

exclude in advance the use of LiDAR (considering it as not trusted), introducing a step zero

when the signal received is abnormal (for example, a sudden stop in the middle of a straight

road) where the sensor is controlled in its functionality. In the above code, it can be seen how

this check works.

Full code can be seen in Appendix A.
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1 def check_lidar(self,points):
2 detection=False
3 blinded=False
4 danger_dist = self.speed/5
5 for p in points:
6 if p.point.x<max(3,danger_dist):
7 if p.point.x < 0.5:
8 blinded = True
9 detection = False

10 print("Points = ", p.point.x)
11 else:
12 detection=True
13 print("LiDAR triggered")
14 self.override_brake=detection
15 self.blinded=blinded

We defined two Boolean variables, detection and blinded. detection is false when the

LiDAR is not triggered, so when it does not detect any close obstacle and the condition in line

6 is not satisfied, therefore the number of points in the cloud along the x-axis is bigger than the

maximum value between 3 and the danger distance, defined as danger_dist. Then, when this

condition is satisfied, we perform a further check on the number of points in the cloud along

the x-axis. If this number is very small (less than 0.5), this means that the LiDAR retrieves an

enormous obstacle in front of it, like a solid wall. The possibility that the LiDAR detects a wall

just when the vehicle is really close to it is infinitesimal, so, with high probability, the sensor

is targeted by a blinding attack, described in Section 2.2.2. So, we set the blinded variable

value as true, the detection variable value as false and we consider the LiDAR under attack

during the policies definition. Otherwise, the LiDAR check is performed normally.

7.2 Highway

In this section, we will present the defined policies for resilience, applied to the highway scenario,

presented in Section 6.4.1. We defined three different policies, focused on the speed bounds (so,

to respect the highway limits) and on sudden swerves, by checking if a snap turn signal can be

coherent with the collected data. In Table 7.1, these policies are formally defined, followed by

a brief explanation.
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Table 7.1: Highway Policies

ID Explanation Formalization
speed_bound Do not exceed the maximum speed

limit in highway (around 90MPH)
speedGoal >= upper_limit

abnormal_slowdown Do not stop in the highway (or go too
slow) if LiDAR does not recognize ob-
stacles, or if it detects attacks

speedGoal <= lower_limit

sudden_swerve Avoid sudden or excessive swerves
while in highway

|yaw(lead) − yaw(foll)| > τ

7.2.1 speed_bound

This rule was defined to avoid speeding attacks. In fact, an attacker can intercept the data

transmitted from the platoon leader to the follower and modify the passed leader speed value.

This value is used to compute the speed goal of the followers. So, if an attacker modifies

the speed value with a higher one, for example, 150MPH, the speed goal computation will be

abnormal and it will make the follower go too fast. This can cause possible road accidents or,

less dangerously, it could force the car to take a speeding ticket.

1 #--Rule 1-Speed bound (Leader speed is faked)--
2 if self.speed > 15:
3 if self.speedGoal >= upper_limit:
4 print("Abnormal behaviour")
5 self.speedGoal = self.speed
6 sg = ss

In this policy, we use two variables: speed and speedGoal. If the value of speed, which is the

value of the actual speed of the follower vehicle, is greater than 15MPH, we start monitoring

the passed speed, which is contained in speedGoal. If this value is greater than the upper limit

(upper_limit), then we will alert an abnormal behavior to the driver, and the vehicle will

adjust the speed itself, by referring to the actual speed instead of the passed one. So, now the

vehicle will increase or decrease its own speed based on its own collected data, on the trusted

data passed and it will base the calculation of the true speed value registered by itself.
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7.2.2 abnormal_slowdown

This rule detects a behavior opposite to the speed_bound rule. In this case, we want to avoid

sudden stops on highway, or too low speeds. As said before, an attacker can intercept the data

transmitted from the platoon leader to the follower and modify the passed leader speed value.

So, if an attacker modifies the speed value with a really lower one, for example, 5MPH, the

speed goal computation will be abnormal and it will make the follower go too slow, or even stop

in the middle of the lane. This can cause possible severe road accidents, as the following cars

may not have the time to react to a sudden breaking or stop, or it can again force the car to

take a ticket. In this case, we should consider the possibility that the data passed is not faked,

instead, the leader really detects a possible obstacle. To distinguish these two possibilities,

we use the LiDAR sensor. In fact, by referring to the LiDAR check presented in Section 7.1,

we are able to define if the LiDAR is under attack. So, we check if the LiDAR has launched

an override_brake signal, which means that the LiDAR is working fine (it passes the check

on points discussed before) and there is really an obstacle, such that the brakes have to be

activated. Otherwise, if the override_brake alert is not triggered, we could both assume that

the LiDAR does not detect any obstacle (so the data passed from the leader are faked) or that

the LiDAR is blinded (and it will always alert for not existing obstacles).

1 #--Rule 2-Abnormal slowdown (Leader speed is faked)--
2 if self.speed > 15:
3 if self.speedGoal < lower_limit:
4 if not self.override_brake:
5 print("Fake signal, the LiDAR is blinded"
6 "or the data is corrupted, override")
7 self.speedGoal = self.speed
8 sg = ss

Again, in this policy, we use two variables: speed and speedGoal. If the value of speed, which

is the value of the actual speed of the follower vehicle, is greater than 15MPH (that means

that the vehicle is slightly moving), we start monitoring the passed speed, which is contained

in speedGoal. If the registered value is smaller than the lower limit (lower_limit) and the

LiDAR check is negative, then we will alert an abnormal behavior to the driver and the vehicle

will adjust the speed itself, by referring to the actual speed instead of the passed one. So,

now the vehicle will increase or decrease its own speed based on its own collected data, on the
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trusted data passed and it will base the calculation of the true speed value registered by itself.

7.2.3 sudden_swerve

This rule was defined to detect abnormal swerves, which should not be done on highways. An

example could be a 90 degrees turn detected while the GPS signal indicates a straight route.

In this case, an attacker can intercept and modify the yaw value (in the script called lyaw,

leader yaw), in order to fake a turn. For example, the platoon is going in a straight stretch of

highway, with almost constant yaw = 90±5. Then, an attacker modifies the lyaw value, setting

it at 40. Now, the follower vehicle will use that value to calculate both its own yaw value and

consequently the steering angle, forcing it in taking a hard turn out of road. Also in this case,

we should consider the possibility that the data passed is not faked, instead, the leader really

detects a possible obstacle and took a swerve to avoid it. To improve the detection mechanism

and reduce the possibility of false positives, we add another condition relative to the gyroscope

detections of the leader. In this way, we did not influence the results of the check conducted

by the rule, but we add a condition that makes it more reliable. Obviously, also the gyroscope

data can be faked by a high-level attacker, but, by being yaw and gyroscope-related values, we

consider really hard to modify them in a coherent way. In addition, gyroscope values are very

accurate and variables, so they are really hard to be faked in a good way.

1 #--Rule 3-Avoid sudden swerve (Leader coordinates are faked)--
2 if (yaw in interval) and (lyaw<upper_limit or lyaw>lower_limit)
3 and (gyro < 5 and gyro > -5):
4 print("Fake swerve")
5 lyaw=yaw

In this policy, we use three variables: lyaw (the leader yaw), yaw (the follower yaw), and gyro

(the leader z-axis gyroscope value). We can consider four different cases, representing the four

different directions, in order to demonstrate the possibility of adapting the rule to the scenario.

We use the yaw values referring to the axis (0 and 180/-180 are the y-axis directions, while 90

and -90 are the x-axis directions). Obviously, these values have to be retrieved at driving time.

If the lyaw and the yaw differ for a value greater than τ , then the rule detects an abnormal

behavior. If this condition is met, and the value of the gyroscope is included between -5 and

5 (so, the vehicle is not taking a turn, just adjusting), the rule will alert the driver and the
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vehicle itself will adjust the direction, permitting the platoon to advance safely. Therefore, now

the vehicle will modify its yaw and steering angle based on its own collected data and on the

trusted data passed, not considering the faked lyaw value.

7.3 Turn

In this section, we will present the defined policies for resilience, applied to the Turn scenario,

presented in Section 6.4.2. We defined six different policies, focused on the speed bounds

(i.e., to respect the highway limits) and on steering input (absence or abnormal behavior). In

Table 7.2, these policies are formally defined, followed by a brief explanation.

7.3.1 speed_bound

This rule was defined to avoid speeding attacks. As said for highway speeding attacks, an

attacker can intercept the data transmitted from the platoon leader to the follower and modify

the passed leader speed value. This value is used to compute the speed goal of the followers. So,

if an attacker modifies the speed value with a higher one, the speed goal computation will be

abnormal and it will make the follower go too fast. This can cause possible road accidents (i.e.,

the car may be forced off road) or, less dangerously, it could force the car to take a speeding

ticket.

1 #--Rule 1-Speed bound (Leader speed is faked)--
2 if self.speed > 0.03:
3 if self.speedGoal >= upper_limit:
4 print("Abnormal behaviour: Faked speed")
5 self.speedGoal = self.speed
6 sg = ss

In this policy, we use two variables: speed and speedGoal. If the value of speed, which

is the value of the actual speed of the follower vehicle, is greater than 0.03MPH (the vehicle

is slightly moving), we start monitoring the passed speed, which is contained in speedGoal.

If this value is greater than the upper limit (upper_limit), then we will alert an abnormal

behavior to the driver and the vehicle will adjust the speed itself, by referring to the actual

speed instead of the passed one. So, now the vehicle will increase or decrease its own speed
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Table 7.2: Turn Policies

ID Explanation Formalization
speed_bound Do not exceed the maximum

speed limit
speedGoal >= upper_limit

abnormal_slowdown Do not stop suddenly (or go too
slow) if LiDAR does not recognize
obstacles, or if it detects attacks

speedGoal <= lower_limit

no_steer_input Leader takes the turn, while fol-
lower does not receive any input
steer signal (fixed yaw)

|yaw(lead) − yaw(foll)| > τ

double_turn Fake turn after the real one |yaw(lead) − yaw(foll)| > β ∧
|gyroscope.z(foll)| < 1

early_turn Fake turn before the real one |gyroscope.z(lead)| < 1 ∧
|gyroscope.z(foll)| < 1 ∧
yaw(lead) /∈ interval_1

fake_turn The signal received makes the car
turn in a different direction com-
pared to the real one

yaw(foll) ∈ interval_2
∧yaw(lead) /∈ interval_2
∧|gyroscope.z(lead)| > 1 ∧
|gyroscope.z(foll)| > 1

based on its own collected data, on the trusted data passed and it will base the calculation of

the true speed value registered by itself.

7.3.2 abnormal_slowdown

This rule detects a behavior opposite to the speed_bound rule. In this case, we want to avoid

sudden and dangerous unmotivated stops, or too-low speeds (below the 1MPH). As said before,

an attacker can intercept the data transmitted from the platoon leader to the follower and

modify the passed leader speed value. So, if an attacker modifies the speed value with a really

lower one, the speed goal computation will be abnormal and it will make the follower go too

slow, or even stop in the middle of the lane. This can cause possible severe road accidents, as the

following cars may not have the time to react to a sudden breaking or stop. Again, also in this

case, we should consider the possibility that the data passed is not faked, instead the leader

really detects a possible obstacle. To distinguish these two possibilities, we use the LiDAR

sensor. In fact, by referring to the LiDAR check presented in Section 7.1, we are able to define

if the LiDAR is under attack. So, we check if the LiDAR has launched an override_brake

signal, which means that the LiDAR is working fine (it passes the check on points discussed
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before) and there is really an obstacle, such that the brakes have to be activated. Otherwise,

if the override_brake alert is not triggered, we could both assume that the LiDAR does not

detect any obstacle (so the data passed from the leader are faked) or that the LiDAR is blinded

(and it will always alert for not existing obstacles).

1 #--Rule 2-Abnormal slowdown (Leader speed is faked)--
2 ...
3 elif self.speedGoal < lower_limit:
4 if not self.override_brake:
5 print("Fake signal, the LiDAR is blinded or the data"
6 "is corrupted, override")
7 self.speedGoal = self.speed
8 sg = ss

This rule is correlated to the speed_bound one, as they share the first check on the follower

vehicle speed. So, the else if in Line 3 of the script is connected to the one that checks the

speedGoal in speed_bound. If the registered speedGoal value is smaller than the lower limit

(lower_limit) and the LiDAR check is negative, then we will alert an abnormal behavior to

the driver and the vehicle will adjust the speed itself, by referring to the actual speed instead

of the passed one. So, now the vehicle will increase or decrease its own speed based on its own

collected data, on the trusted data passed and it will base the calculation of the true speed

value registered by itself.

7.3.3 no_steer_input

This rule detects an absence of steering input. This means that, if the system detects that the

leader vehicle is turning but the passed data are referring to a straight trajectory indication,

the rule will alert and find a solution. In our scenario, the turn is right after a short straight,

so we analyze the case in which the data passed to the followers indicates to continue straight,

instead of turning. This could be done by an attacker that intercepts the transmission between

the platoon members, and modify the yaw value passed by the leader with a previous one,

when the vehicle was going straight.

1 #--Rule 3: No input steer resilience--
2 if self.speed > 10:
3 if yaw > 0 and yaw < 180 and (yaw < 89 or yaw > 91):
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4 if lyaw < upper_yaw and lyaw > lower_yaw and (gyro > 1 or gyro < -1):
5 print ("Error 1 - No input steer")
6 lyaw = yaw
7 elif yaw < 0 and yaw > -180 and (yaw > -89 or yaw < -91):
8 if lyaw > lower_yaw and lyaw < upper_yaw and (gyro > 1 or gyro < -1):
9 print ("Error 2 - No input steer")

10 lyaw = yaw
11 elif yaw < 90 and yaw > -90 and (yaw > 1 or yaw < -1):
12 if lyaw > lower_yaw and lyaw < upper_yaw and (gyro > 1 or gyro < -1):
13 print ("Error 3 - No input steer")
14 lyaw = yaw
15 elif yaw < -90 and yaw > 90 and (yaw > -179 or yaw < 179):
16 if lyaw > 180 - 0.5τ and lyaw < -180 + 0.5τ and (gyro > 1 or gyro < -1):
17 print ("Error 4 - No input steer")
18 lyaw = yaw

In this policy, we use four variables: speed (the follower actual speed), lyaw (the leader

yaw), yaw (the follower yaw) and gyro (the leader z-axis gyroscope value). We consider four

different cases, representing the four different directions, in order to demonstrate the possibility

of adapting the rule to the scenario. We use yaw value referring to the axis (0 and 180/-180

are the y-axis directions, while 90 and -90 are the x-axis directions). Obviously, these values

have to be retrieved at driving time. If the lyaw and the yaw differ for a value greater than

τ , then the rule detects an abnormal behavior. If this condition is met, and the value of the

leader gyroscope is greater than -1 or 1 (so, the vehicle is taking a left or right turn), the rule

will alert the driver and the vehicle itself will adjust the direction, permitting the platoon to

advance safely. All these checks are performed after a basic control of the vehicle speed, in

order to avoid false positives due to possible corrections at low speeds So, now the vehicle will

modify its yaw and steering angle based on its own collected data and on the trusted data

passed, not considering the faked lyaw value.

7.3.4 double_turn

This rule is used to detect a fake turn, after the platoon has ended the real turn. In fact, in the

analyzed simulation scenario, the turn is ended by a long straight. An attacker can intercept

the yaw parameter, sent by the leader to the follower in order to highlight the correct direction,

modify it and force the followers in take a fake turn. At the same time, the attacker could

exploit the fact that the platoon has just ended a real turn, such that it maintains constant
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the yaw passed. In this way, the platoon followers elaborate that the platoon is still turning,

from this the name "double turn".

1 #--Rule 4-Fake turn signal after the real turn--
2 if self.speed > 10:
3 if yaw > 179 and yaw < -179:
4 if lyaw < upper_yaw2 or lyaw > lower_yaw2 and (gyro < 1 and gyro > -1):
5 if self.gyroscope[-1] > 1 or self.gyroscope[-1] < -1:
6 print("Error: the turn has ended")
7 lyaw = yaw #or we can pass 180 (the straight yaw value)
8 elif yaw > 89 and yaw < 91:
9 if lyaw < upper_yaw2 or lyaw > lower_yaw2 and (gyro < 1 and gyro > -1):

10 if self.gyroscope[-1] > 1 or self.gyroscope[-1] < -1:
11 print("Error: the turn has ended")
12 lyaw = yaw #or we can pass 90 (the straight yaw value)
13 elif yaw < -89 and yaw > -91:
14 if lyaw > -upper_yaw2 or lyaw < -lower_yaw2 and (gyro < 1 and gyro > -1):
15 if self.gyroscope[-1] > 1 or self.gyroscope[-1] < -1:
16 print("Error: the turn has ended")
17 lyaw = yaw #or we can pass -90 (the straight yaw value)
18 elif yaw > -1 and yaw < 1:
19 if lyaw < -upper_yaw2 or lyaw > lower_yaw2 and (gyro < 1 and gyro > -1):
20 if self.gyroscope[-1] > 1 or self.gyroscope[-1] < -1:
21 print("Error: the turn has ended")
22 lyaw = yaw #or we can pass 0 (the straight yaw value)

In this policy, we use five variables: speed (the actual speed of the follower), lyaw (the leader

yaw), yaw (the follower yaw), gyro (the leader z-axis gyroscope value) and gyroscope (the

follower z-axis gyroscope value). We consider four different cases, representing the four different

directions, in order to demonstrate the possibility of adapting the rule to the scenario. We use

the yaw values referring to the axis (0 and 180/-180 are the y-axis directions, while 90 and

-90 are the x-axis directions). Obviously, these values have to be retrieved at driving time.

If the lyaw and the yaw differ for a value greater than τ , then the rule detects an abnormal

behavior. If this condition is met, and the value of the gyroscope is included between -1 and

1 (so, the vehicle is not taking a turn, just adjusting), the rule will alert the driver and the

vehicle itself will adjust the direction, permitting the platoon to advance safely. All these

checks are performed after a basic control of the vehicle speed, in order to avoid false positives

due to possible corrections at low speeds. So, now the vehicle will modify its yaw and steering

angle based on its own collected data (including the fundamentals sensors detection) and on



7.3. TURN 65

the trusted data passed, not considering the faked lyaw value.

7.3.5 early_turn

This rule is used to detect a fake turn, before the platoon starts the real turn. In fact, in the

analyzed simulation scenario, before the real turn there is a short straight. An attacker can

intercept the yaw parameter, sent by the leader to the follower in order to highlight the correct

direction, modify it and force the followers to take a fake turn. In this way, the platoon is

forced to take a non-existent turn. This can cause severe accidents or, even in the case in which

the attack is not targeted to a crash, it could mess up the trajectory, such that the platoon

follower can not be able to re-adjust its own trajectory and perform the real turn correctly.

1 #--Rule 5: Fake turn before the real one--
2 if self.speed > 10:
3 if (gyro < 1 and gyro > -1) and (self.gyroscope[-1] < 1
4 and self.gyroscope[-1] > -1):
5 if not (lyaw in interval1):
6 print("Fake turn data")
7 lyaw = yaw

In this policy, we use five variables: speed (the actual speed of the follower), lyaw (the leader

yaw), yaw (the follower yaw), gyro (the leader z-axis gyroscope value) and gyroscope (the

follower z-axis gyroscope value). Here, we don’t consider four different cases as before, but

we define an interval, defined in the second nested if condition. So, we first perform a check

on the follower speed, again to avoid false positives due to possible corrections at low speeds.

Then, we check the gyroscope values, both of the leader and of the follower vehicle. If they

are both in the interval [-1,1], we enter in the second nested if condition. Here, we check the

coherency of data. If the passed leader yaw indicates a possible turn (so, if it is not in one of

the intervals indicated), this means that the data are not coherent and the data transmission

is under attack. So, now the vehicle will alert the driver and independently modify its yaw and

steering angle based on its own collected data (including the fundamentals sensors detection)

and on the trusted data passed, not considering the faked lyaw value.
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7.3.6 fake_turn

This rule was defined in order to detect if the signal received during a turn is coherent with

the actual vehicle trajectory. So, for example, if the car is taking a right turn and suddenly the

data indicates a left one, the system will alert and check with the context data. Otherwise, the

following vehicles will take an opposite direction and this can cause severe accidents or, even

in the case in which the attack is not targeted to a crash, it could mess up the trajectory, such

that the platoon follower can not be able to re-adjust its own trajectory and perform the real

turn correctly.

1 #--Rule 6: Fake turn direction--
2 if self.speed > 10:
3 if yaw in interval2 and self.gyroscope[-1] > 1:
4 if lyaw not in interval2 and gyro > 1:
5 #this means that the signal are faked in order to make the car turn
6 #in the opposite position.
7 print("Single turn, error in the transmitted signal")
8 lyaw = yaw

In this policy, we use five variables: speed (the actual speed of the follower), lyaw (the leader

yaw), yaw (the follower yaw), gyro (the leader z-axis gyroscope value) and gyroscope (the

follower z-axis gyroscope value). Here we can define four different cases, referring to four

different intervals. We define these intervals by dividing the yaw range into four equal parts.

Again, we start performing a check on the follower vehicle speed. Then, we check in which

interval the follower yaw is. Defined this, we check coherency with the follower gyroscope data,

just to make the rule stronger. Then, it is time to check the passed data. If the received leader

yaw is not in the same interval of the follower one, this means that there is something abnormal,

in particular the faked signal indicates to take a turn opposite to the real one. So, as usual,

the vehicle will alert the driver and independently modify its yaw and steering angle based on

its own collected data (including the fundamentals sensors detection) and on the trusted data

passed, not considering the faked lyaw value.
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7.4 Roundabout

In this section, we will present the defined policies for resilience, applied to the Roundabout

scenario, presented in Section 6.4.2. We defined four different policies, focused on the speed

bounds (so, to respect the road limits) and on steering input (absence or abnormal behavior).

This one, paired with the crossroad one, was the most difficult scenario to analyze, both for

the great number of possible different outcomes, and both for the number of aspects to take

care of. In Table 7.3, these policies are formally defined, followed by a brief explanation.

Table 7.3: Roundabout Policies

ID Explanation Formalization
speed_bound Do not exceed the maximum

speed limit
speedGoal >= upper_limit

abnormal_slowdown Do not stop suddenly (or go too
slow) if LiDAR does not recognize
obstacles, or if it detects attacks

speedGoal <= lower_limit

no_steer_input Leader takes the turn, while fol-
lower does not receive any input
steer signal (fixed yaw)

|yaw(lead) − yaw(foll)| > τ

steer_angles Check if the steering angles are
abnormal

steer(foll) > upper_steer ∧
steer(foll) < lower_steer

7.4.1 speed_bound

This rule was defined to avoid speeding attacks. In fact, an attacker can intercept the data

transmitted from the platoon leader to the follower and modify the passed leader speed value.

This value is used to compute the speed goal of the followers. So, if an attacker modifies the

speed value with a higher one, the speed goal computation will be abnormal and it will make

the follower go too fast. This can cause possible road accidents, caused for example by a too-

high entering speed in the roundabout, that can cause a collision with other cars or make the

vehicle not able to follow the turn trajectory. This attack can also override brake signals, such

that the attacked vehicle does not stop at the roundabout entering to give precedence, causing

a possible collision.
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1 #--Rule 1-Speed bound (Leader speed is faked)--
2 if self.speed > 10:
3 if self.speedGoal > upper_limit:
4 print("Abnormal behaviour: Faked speed")
5 self.speedGoal = self.speed
6 sg = ss

In this policy, we use two variables: speed and speedGoal. If the value of speed, which is the

value of the actual speed of the follower vehicle, is greater than 10MPH, we start monitoring

the passed speed, which is contained in speedGoal. If this value is greater than the upper

limit (upper_limit), then we will alert an abnormal behavior to the driver and the vehicle will

adjust the speed itself, by referring to the actual speed instead of the passed one. So, now the

vehicle will increase or decrease its own speed based on its own collected data, on the trusted

data passed and it will base the calculation of the true speed value registered by itself.

7.4.2 abnormal_slowdown

With this rule, we want to avoid sudden and dangerous unmotivated stops, or too-low speeds

(below the 1MPH). As said in previous sections, an attacker can intercept the data transmitted

from the platoon leader to the follower and modify the passed leader speed value. So, if an

attacker modifies the speed value with a really lower one, the speed goal computation will be

abnormal and it will make the follower go too slow, or even stop in the middle of the roundabout

without any motivated reason. This can cause possible severe road accidents, as the following

cars may not have the time to react to a sudden breaking or stop. Similar to what was described

in 7.3.2, we should consider the possibility that the data passed is not faked, instead the leader

really detects a possible obstacle. So, as presented in the cited section, we use the LiDAR

sensor and its data check.

1 #--Rule 2-Abnormal slowdown (Leader speed is faked)--
2 ...
3 elif self.speedGoal < lower_limit:
4 if not self.override_brake:
5 print("Fake signal, the LiDAR is blinded or the data
6 "is corrupted, override")
7 self.speedGoal = self.speed
8 sg = ss
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This rule is correlated to the speed_bound one, as they share the first check on the follower

vehicle speed. So, the else if in Line 3 of the script is connected to the one that checks the

speedGoal in speed_bound. If the registered speedGoal value is smaller than the lower limit

(lower_limit) and the LiDAR check is negative, then we will alert an abnormal behavior to

the driver and the vehicle will adjust the speed itself, by referring to the actual speed instead

of the passed one. So, now the vehicle will increase or decrease its own speed based on its own

collected data, on the trusted data passed and it will base the calculation of the true speed

value registered by itself.

7.4.3 no_steer_input

This rule detects an absence of steering input. This means that, if the system detects that the

leader vehicle is turning but the passed data are referring to a straight trajectory indication, the

rule will alert and find a solution. In our scenario, the roundabout is right after a long straight,

so we analyze the case in which the data passed to the followers indicates to continue straight,

instead of turning. In particular, in this roundabout scenario, the vehicle has to perform a

slight right turn in order to enter in it, then it will go through the roundabout turning left,

until it has to take the selected exit. So, an attacker could modify the passed leader yaw data,

in order to force the follower vehicles to go straight and cross the roundabout, with a high risk

of crashes.

1 #--Rule 3: No input steer resilience--
2 if self.speed > 1:
3 if yaw < 89 or yaw > 91:
4 if lyaw < upper_yaw and lyaw > lower_yaw:
5 print ("Error 1 - No input steer")
6 lyaw = yaw
7 elif yaw > -89 or yaw < -91:
8 if lyaw > lower_yaw and lyaw < upper_yaw:
9 print ("Error 2 - No input steer")

10 lyaw = yaw
11 elif yaw > 1 or yaw < -1:
12 if lyaw > lower_yaw and lyaw < upper_yaw:
13 print ("Error 3 - No input steer")
14 lyaw = yaw
15 elif yaw < 179 or yaw > -179:
16 if lyaw < upper_yaw and lyaw > lower_yaw:
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17 print ("Error 4 - No input steer")
18 lyaw = yaw

In this policy, we use four variables: speed (the follower actual speed), lyaw (the leader yaw),

yaw (the follower yaw) and gyro (the leader z-axis gyroscope value). We consider four different

cases, representing the four different directions, in order to demonstrate the possibility of

adapting the rule to the scenario. We use yaw value referring to the axis (0 and 180/-180 are

the y-axis directions, while 90 and -90 are the x-axis directions). Obviously, these values have

to be retrieved at driving time. If the lyaw and the yaw differ for a value greater than τ , then

the rule detects an abnormal behavior. If this condition is met, the rule will alert the driver

and the vehicle itself will adjust the direction, permitting the platoon to advance safely. All

these checks are performed after a basic control of the vehicle speed, in order to avoid false

positives due to possible corrections at very low speeds So, now the vehicle will modify its

yaw and steering angle based on its own collected data and on the trusted data passed, not

considering the faked lyaw value.

7.4.4 steer_angles

This rule was designed to detect any abnormal steering angle while performing the roundabout

turn. So, it will detect if the vehicle is turning too much (or not enough) due to a faked yaw.

In this case, we do not rely only on the yaw value, as this one is very variable during the

roundabout turn performing. In fact, if the vehicle takes the fourth exit, it will perform an

almost complete roundabout lap, passing almost all the yaw values. So, a similar rule based

only on yaw won’t be strong and it will for sure influence the normal behavior of the vehicle,

by raising too many false alerts. The attacks detected by this rule are multiple. An attacker

can modify the yaw value to make the vehicle go too wide in the roundabout, forcing it to go

over a possible sidewalk, roadside, or other vehicles. At the same time, an attacker can modify

the same value to force the vehicle in taking a too-narrow turn, go into the roundabout center,

or bump other cars.

1 #--Rule 4: steering angle bounds--
2 if s<lower_steer or self.gyroscope[-1] < - 40:
3 print("Abnormal steering")
4 s=-normal_steer
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5 if s>upper_steer or self.gyroscope[-1] > 60:
6 #Check leader yaw to know if it is exiting/entering the roundabout
7 if lyaw > yaw or lsteer > 0:
8 #Entering or exiting the roundabout
9 print("Entering/Exiting the roundabout")

10 elif lyaw < yaw or lsteer < -0.1:
11 print("Abnormal steering - stay in the roundabout")
12 s=-normal_steer
13 if self.gyroscope[-1] > 5 and gyro < 0:
14 print("Wrong turn")
15 print("Gyroscope = ", self.gyroscope[-1])
16 print("gyro = ", gyro)
17 lyaw = yaw

In this policy, we use four variables: s (the follower calculated steering angle), lyaw (the

leader yaw), yaw (the follower yaw), gyro (the leader z-axis gyroscope value), gyroscope (the

follower z-axis gyroscope value) and lsteer (the leader steering angle). We defined two bounds

(lower_steer and upper_steer). Then, we check if the calculated steering angle is out of these

bounds. In the first if, we check if the steering angle is less than the lower limit, checking also

the gyroscope to make the rule stronger. If this is the case, we alert the driver and the vehicle

independently set the steering angle to the common one, calculated by analyzing the previously

collected data. In the second if, we check if the steering angle is bigger than the upper limit. If

this is the case, we should distinguish two possible outcomes: the first one does not imply any

attack, but it’s the normal behavior of a vehicle exiting or entering the roundabout. The second

scenario is the attack one, where the faked data are passed while the platoon is still turning.

To distinguish these two study cases, we introduce the lsteer variable, defined previously in

this section. If the value of lsteer is greater than 0 and the leader yaw is greater than the

follower one, then the platoon is in the first case, so it is exiting or entering the roundabout.

Otherwise, if lsteer < -0.1 and the leader yaw is not greater than the follower one, then the

data are not coherent and we are probably under attack. So, the vehicle alerts the driver of

the abnormal behavior and independently set again the steering angle to the same common

value obtained before. Finally, we add another check to make the rule stronger. In this case,

we check for any abnormal type of turn, in particular opposite turns during the roundabout

crossing. We check the gyroscopes value of the leader and of the follower and if they are not

consistent with each other, the vehicle itself will modify its yaw and steering angle based on its

own collected data and on the trusted data passed, not considering the faked lyaw value.
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7.5 Crossroad

In this section, we will present the defined policies for resilience, applied to the Crossroad

scenario, presented in Section 6.4.4. We defined six different policies, focused on the speed

bounds (so, to respect the road limits) and on steering input (absence or abnormal behavior).

As said previously, this scenario was one of the most difficult to analyze, both for the great

number of possible different outcomes, both for the number of aspects to take care. In Table 7.4,

these policies are formally defined, followed by a brief explanation.

Table 7.4: Crossroad Policies

ID Explanation Formalization
speed_bound Do not exceed the maximum speed

limit
speedGoal >= upper_limit

fake_start Leader is not moving, but the fol-
lower receives signals to start mov-
ing

|accelerometer.x(lead)| < α ∧
|accelerometer.x(foll)| > β

no_brake_input Leader is stopping (red light or stop
signal), follower does not slow down

|accelerometer.x(lead)| < α ∧
|accelerometer.x(foll)| > α ∧
Dist(lead, foll) < 10

fake_turn Leader goes straight, follower re-
ceives signal to turn

¬(yaw(lead) > upper_yaw2 ∧
yaw(lead) < lower_yaw2) ∧
|gyroscope.z(lead)| < τ ∧
|gyroscope.z(foll)| < τ

opposite_turn Leader turn into a direction, fol-
lower takes the opposite turn

yaw(lead) /∈ interval∧yaw(foll) ∈
interval ∧ |gyroscope.z(foll)| > 1

no_steer_input Leader turn, follower receives sig-
nal to go straight (trial rule, re-
calculating yaw)

|yaw(lead) − yaw(foll)| > δ ∧
|gyroscope.z(lead)| > γ

7.5.1 speed_bound

This rule was defined to avoid speeding attacks. In fact, an attacker can intercept the data

transmitted from the platoon leader to the follower and modify the passed leader speed value.

This value is used to compute the speed goal of the followers. So, if an attacker modifies the

speed value with a higher one, the speed goal computation will be abnormal and it will make

the follower go too fast. This can cause possible road accidents, caused for example by a too-

high entering speed in the crossroad, that can cause a collision with other cars or make the
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vehicle not able to follow the correct trajectory. This attack can also override brake signals,

such that the attacked vehicle does not stop at the crossroad stop line to give precedence,

causing a possible collision. The code is very similar to the previous cases, as the recognition

mechanism is the same.

1 #--Rule 1-Speed bound (Leader speed is faked)--
2 if self.speed > 5:
3 if self.speedGoal > upper_limit:
4 print("Abnormal behaviour: Faked speed")
5 self.speedGoal = self.speed
6 sg = ss

In this policy, we use two variables: speed and speedGoal. If the value of speed, which is the

value of the actual speed of the follower vehicle, is greater than 5MPH, we start monitoring

the passed speed, which is contained in speedGoal. If this value is greater than the upper

limit (upper_limit), then we will alert an abnormal behavior to the driver and the vehicle will

adjust the speed itself, by referring to the actual speed instead of the passed one. So, now the

vehicle will increase or decrease its own speed based on its own collected data, on the trusted

data passed and it will base the calculation of the true speed value registered by itself.

7.5.2 fake_start

This rule was defined to avoid fake starts while the platooning is stopped. In fact, the vehicles

can stop due to a red light, or to a stop signal, then the platoon will restart when the road

is free, or when the green light appears. An attacker could intercept the throttle and braking

data and modify them, in order to force the follower vehicle that the leader one is moving, while

the entire platoon is not starting yet. This can cause crashes between the platoon vehicles, in

particular if the attacker also blinds the LiDAR sensor.

1 #--Rule 2-Fake start (Leader is not moving for stop signal or red light)
2 if |self.accelerometer[0]| > β:
3 if self.speed == 0 and (|aclx| < α and |acly| < α):
4 print("Error, the platoon leader is stopped")
5 self.speedGoal = self.speed
6 sg = ss
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In this policy, we use four variables: speed, accelerometer, aclx (that is the acceleration value

of the leader, calculated on the x-axis) and acly (that is the acceleration value of the leader,

calculated on the y-axis). First of all, we check if the follower acceleration value (calculated

on the x-axis) is greater than β. If this is the case, we check the actual condition both of the

follower and of the leader vehicles. If the speed of the follower is still 0, this means that we

are in a stationary situation and probably we are preparing to restart. So, we will expect that

the acceleration values of the leader (both on the x and y axis, just to make the rule stronger)

are important, both positive or negative depending on the direction, because of the platoon

starting. If this is not the case, like the condition in the second nested if represent, there is

some sort of anomaly in the system. To solve this, the follower vehicle alerts the driver and

independently adjusts the speed (and consequently the acceleration) based on the collected

data, avoiding the use of the faked variables arriving from the leader.

7.5.3 no_brake_input

This rule detects if vehicle’s data are faked, such that it is not able to stop even when the

platoon leader is stationary. This could happen again when the leader encounters a red light

or a stop signal. This implies that the leading vehicle takes some kind of deceleration until

it completely stops near to the stop line. Usually, the following vehicles will take the same

deceleration, copying the leader’s behavior. If an attacker intercepts, as before, the throttle

and brake data and modify them, it could force the following vehicles to not stop and continue

their trajectory without any deceleration, or worse by accelerating it. This can cause severe

accidents and, even if LiDAR is not overridden and detects the obstacle, it could be again

dangerous due to a sudden braking or trajectory change.

1 #--Rule 3-No brake indication--
2 if self.speed > 10 and |self.accelerometer[0]| > α

3 and (|aclx| < α):
4 if self.leader_dist < 10 #or 22 for the third platoon member:
5 print("Error, the platoon leader is stopping")
6 self.speedGoal = 0
7 sg = 0

In this policy, we use five variables: speed, speedGoal, accelerometer, aclx (that is the ac-

celeration value of the leader, calculated on the x-axis), and leader_dist (that is the distance,
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calculated at real time, between the following vehicle and the leader one). First of all, we

consider only the cases in which the following vehicle is moving, so we check the actual speed.

If this is greater than 10MPH, we check if the car is still accelerating. If the vehicle is still

accelerating, while the leader accelerometer data indicate a deceleration, we find an anomaly.

At this point, we check the distance between the vehicles. We defined 10 meters as a good

safe distance, so if the following vehicle is under this distance and still accelerating, we are in

a dangerous situation. It it important to note that this distance is set at 22 meters for the

second platoon follower, because its original spawn point is 12 meters behind the first follower.

We could use also use a distance measured between the vehicles themselves, instead of refer-

ring to the leader every time. The problem with this solution is that it creates another attack

surface, where the faked data are the one passed from follower to follower and the leader is

not involved. It is a good building technique to involve always the leader, to make the platoon

safer. So, when the rule detects the possible attack, the system will alert the driver and the

vehicle will independently adjust the speed, in this case by setting it at 0, in order to apply a

great deceleration and avoid crashes or sudden trajectory changes.

7.5.4 fake_turn

This rule was designed to detect fake turns while crossing the crossroad. For example, after

the restart, the platoon leader goes straight, while the followers take a left or right turn. This

could happen if an attacker intercepts the steering data and modify it, forcing the following

vehicles in taking wrong directions. This can cause different kinds of problems. First of all, it

can cause the vehicles to take a non-existent turn, so they will crash. Otherwise, the platoon

will be separated, so the following vehicles lose the leader indications. This is an addressable

problem, as the designer should decide if the remaining platoon should safely stop and wait for

help, or if there should be a role change, such that the first follower becomes the platoon leader,

re-instantiating a new communication system. So, this rule helps avoid this kind of problems.

1 #--Rule 4-Fake turn--
2 if self.speed > 0.03:
3 if ((lyaw > 95 and lyaw < 175) or (lyaw < 85 and lyaw > 5))
4 or ((lyaw < -5 and lyaw > -85) or (lyaw > 5 and lyaw < 85))
5 or ((lyaw < -95 and lyaw > -175) or (lyaw > -85 and lyaw < -5))
6 or ((lyaw < 175 and lyaw > 95) or (lyaw > -175 and lyaw < -95)):
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7 if gyro < τ and gyro > -τ

8 and self.gyroscope[-1] < τ and self.gyroscope[-1] > -τ:
9 print("Error: The platoon leader is going straight")

10 lyaw = yaw

In this policy, we use five variables: speed, lyaw, yaw, gyro and gyroscope. First of all, we

check if the vehicle is moving. Then, we consider multiple cases, nested in a single if. This

is done to detect if the leader’s yaw is in some determined intervals that indicate a turn. So,

if the leader yaw indicates a turn, we check the gyroscope values, both of the leader and of

the follower one. If these values are in little interval ([−τ, τ ]), this means that the gyroscope

does not detect any turn. So, the system detects an inconsistency between the collected and

the passed data. The vehicle will alert the driver and independently adjust the steering data,

based on its own collected data and on the trusted data passed, not considering the faked lyaw

value.

7.5.5 opposite_turn

This rule was defined in order to detect if the signal received during a turn is coherent with

the actual vehicle trajectory. So, for example, if the leader platoon takes a right turn after

restarting from the stop line and the data passed to followers indicates a left turn, the system

will alert and check with the context data. Otherwise, the following vehicles will take an

opposite direction and this can cause severe accidents and even different kinds of problems.

First of all, it can cause the vehicles to take a non-existent turn, so they will crash. In case

of not crashing, the platoon will be separated and, as described in the previous section, the

following vehicles lose the leader indications.

1 #--Rule 5-Opposite turn--
2 if self.speed > 5:
3 if yaw in interval:
4 if lyaw not in interval and self.gyroscope[-1] > 1:
5 #this means that the signal are faked in order to make the car
6 #turn in the opposite position.
7 print("Wrong turn, error in the transmitted signal")
8 lyaw = yaw



7.5. CROSSROAD 77

In this policy, we use four variables: speed, lyaw, yaw, and gyroscope. Here we can define four

different cases, referring to four different intervals. We define these intervals by dividing the

yaw range into four equal parts. First of all, we perform a check on the follower vehicle speed.

Then, we check in which interval the follower yaw is. Defined this, we check coherency with the

leader yaw data, to see if it is in the same interval, and we check if the follower gyroscope value

is greater than 1 (or lower than -1, depending on the turn direction). If the gyroscope value is

verified and the leader yaw is not in the same interval as the follower one, this means that there

is something abnormal, in particular the faked signal indicates to take a turn opposite to the

real one. So, as usual, the vehicle will alert the driver and independently modify its yaw and

steering angle based on its own collected data (including the fundamentals sensors detection)

and on the trusted data passed, not considering the faked lyaw value.

7.5.6 no_steer_input

This rule detects an absence of steering input. This means that, if the system detects that the

leader vehicle is turning but the passed data are referring to a straight trajectory indication, the

rule will alert and find a solution. In this case, it means that the rule recognizes a scenario in

which the leader takes a turn after the restart, but the passed data forces the follower vehicles

to go straight. So, an attacker could modify the passed leader yaw data, in order to force the

follower vehicles to go straight and cross the crossroad, with the same risks discussed before, so

crashes or connection loss with the platoon. This rule was the most complex one to define in

this scenario, because it requires reconstructing and re-calculate the yaw value, starting from

the trusted collected data.

1 #--Rule 6: No input steer resilience--
2 if self.speed > 5:
3 if lyaw > lower_yaw and lyaw < upper_yaw:
4 if gyro > γ or gyro < -γ:
5 print ("Error, the platoon leader is turning")
6 lyaw = 180 * np.arctan(accz/np.sqrt(accx*accx + accz*accz))/np.pi
7 print("lyaw recalculated= ", lyaw)

In this policy, we use five variables: speed (the follower actual speed), lyaw (the leader yaw),

gyro (the leader z-axis gyroscope value), accx (that is the leader acceleration value calculated

on the x-axis) and accz (that is the leader acceleration value calculated on the z-axis). We can
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consider four different cases, representing the four different directions, in order to demonstrate

the possibility of adapting the rule to the scenario. We use yaw value referring to the axis (0 and

180/-180 are the y-axis directions, while 90 and -90 are the x-axis directions). Obviously, these

values have to be retrieved at driving time. Then, we check if the platoon leader is turning, by

checking the gyro values. If this value is bigger than γ (or lower than −γ, it depends on the

turn direction), the leading vehicle is turning, while the follower data indicate to go straight.

Even if the basic structure is similar to the previous cases, the reconstruction of the leader yaw

used for computing the steering angle is completely different and experimental. In fact, in this

case, we can not reconstruct it starting from the follower yaw value, as the follower vehicle can

not forecast in any way the leader direction based only on a single data, because the leading

vehicle can take three different directions (not one as in the previous cases). So, we had to

reconstruct the leader yaw value from the scratch. By looking in CARLA simulator’s official

documentation, we can retrieve how the yaw value is calculated. Then, by using the formal

definition of yaw, described in 6.3, we were able to write the formula

180 ∗ np.arctan(accz/np.sqrt(accx ∗ accx + accz ∗ accz))/np.pi

to calculate the yaw value, where arctan is the arc-tangent of the z-axis acceleration, divided

by the square root of the sum of the z-axis squared and x-axis squared accelerations). Then,

we divide this obtained value by π and we retrieve the yaw value. So, now the vehicle will

modify its yaw and steering angle based on its own collected data, on the trusted data passed,

and on the leader yaw reconstruction, not considering the faked lyaw value. As said before,

this is the more experimental rule. This because the generated yaw value is accurate, but the

computation requires some time, such that there is a little delay between the data generation

and its passage, due to the short time set for ticks. This is more a simulator-side problem, due

to its construction methods, but it is good to take this aspect into account also in a possible

real realization.

7.6 Hairpin

In this section, we will present the defined policies for resilience, applied to the Hairpin scenario,

presented in Section 6.4.5. We defined five different policies, focused on the speed bounds (so,

to respect the road limits) and on steering input (absence or abnormal behavior). A hairpin
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can be defined as a very narrow turn but, by its conformation and its values management,

it can be considered a sort of hybrid between the turn and the roundabout scenarios, with

differences in the traffic management and in the dangerous situations. So, we prefer to describe

a dedicated script, in order to highlight better the differences. In Table 7.5, these policies are

formally defined, followed by a brief explanation.

Table 7.5: Hairpin Policies

ID Explanation Formalization
speed_bound Do not exceed the maximum

speed limit
speedGoal >= upper_limit

abnormal_slowdown Do not stop suddenly (or go too
slow) if LiDAR does not recognize
obstacles, or if it detects attacks

speedGoal <= lower_limit

excessive_angles The gyroscope alerts a too high
steer angle

(gyroscope.z(lead) >
gyro_max∨gyroscope.z(lead) <
gyro_min)∧(gyroscope.z(foll) >
gyro_max ∨gyroscope.z(foll) <
gyro_min)

opposite_turn Leader turn into a direction, fol-
lower takes the opposite turn

|yaw(foll)| < yaw_limit ∧
|gyroscope.z(foll)| <
γ ∧ compass(foll) ∈ interval ∧
[yaw(lead) > yaw(foll) (if left
turn) ∨yaw(lead) < yaw(foll)
(if right turn)]

no_steer_input Leader turn, follower receives sig-
nal to go straight

|gyroscope.z(lead)| > 11 ∧
|gyroscope.z(foll)| < 0.01

7.6.1 speed_bound

This rule was defined to avoid speeding attacks. In fact, an attacker can intercept the data

transmitted from the platoon leader to the follower and modify the passed leader speed value.

This value is used to compute the speed goal of the followers. So, if an attacker modifies

the speed value with a higher one, the speed goal computation will be abnormal and it will

make the follower go too fast. This can cause possible road accidents, caused for example by a

too-high entering speed in the hairpin turn, that can cause a collision with other cars or make

the vehicle not able to follow the correct trajectory. As before, the code is very similar to the

previous cases, as the recognition mechanism is the same.



80 CHAPTER 7. POLICIES

1 #--Rule 1-Speed bounds (Leader speed is faked)--
2 if self.speed > 5:
3 if self.speedGoal > upper_limit:
4 print("Abnormal behaviour: Faked speed")
5 self.speedGoal = self.speed
6 sg = ss

In this policy, we use two variables: speed and speedGoal. If the value of speed, which is the

value of the actual speed of the follower vehicle, is greater than 5MPH, we start monitoring

the passed speed, which is contained in speedGoal. If this value is greater than the upper

limit (upper_limit), then we will alert an abnormal behavior to the driver and the vehicle will

adjust the speed itself, by referring to the actual speed instead of the passed one. So, now the

vehicle will increase or decrease its own speed based on its own collected data, on the trusted

data passed and it will base the calculation of the true speed value registered by itself.

7.6.2 abnormal_slowdown

With this rule, we want to avoid sudden and dangerous unmotivated stops, or too-low speeds

(below 1MPH). As said in previous sections, an attacker can intercept the data transmitted

from the platoon leader to the follower and modify the passed leader speed value. So, if an

attacker modifies the speed value with a really lower one, the speed goal computation will

be abnormal and it will make the follower go too slow, or even stop in the middle of the

hairpin turn without any motivated reason. This can cause possible severe road accidents, as

the following cars may not have the time to react to a sudden breaking or stop. Similar to

what was described in previous attack sections, we should consider the possibility that the data

passed is not faked, instead the leader really detects a possible obstacle. So, as presented in

the cited section, we rely on LiDAR sensor and its data check.

1 #--Rule 2-Abnormal slowdown (Leader speed is faked)--
2 ...
3 elif self.speedGoal < lower_limit:
4 if not self.override_brake:
5 print("Fake signal, the data are corrupted, override")
6 self.speedGoal = self.speed
7 sg = ss



7.6. HAIRPIN 81

This rule is correlated to the speed_bound one, as they share the first check on the follower

vehicle speed. So, the "else if" of the script is connected to the one that checks the speedGoal in

speed_bound. If the registered speedGoal value is smaller than the lower limit (lower_limit)

and the LiDAR check is negative, then we will alert an abnormal behavior to the driver and the

vehicle will adjust the speed itself, by referring to the actual speed instead of the passed one.

So, now the vehicle will increase or decrease its own speed based on its own collected data, on

the trusted data passed and it will base the calculation of the true speed value registered by

itself.

7.6.3 excessive_angles

This rule was designed to detect and fix possible anomalies in steering angles. In particular,

while taking the hairpin, we recorded and collected the normal updating scheme of the steering

angle. If a detected value is importantly out of bounds, the system will detect that and solve

the problem. This is a rule focused on detecting very detailed attacks, where, for example, the

yaw value is slightly modified, such that the vehicle does not detect any initial anomaly, but

the car still takes a wrong trajectory, which could lead to going out of road, with consequently

probability of crashes.

1 #--Rule 3-Excessive angles (yaw data are faked)
2 if (gyro > gyro_max or gyro < gyro_min or
3 self.gyroscope[-1] > gyro_max or self.gyroscope[-1] < gyro_min):
4 print("Excessive turning angle")
5 print("Self Gyroscope = ", self.gyroscope[-1])
6 lyaw = yaw

In this policy, we use four variables: lyaw, yaw, gyro and gyroscope First of all, we check

the gyroscope values, both of the leader and of the follower vehicle. If the values of one (or

multiple) of those variables are abnormal, that means that they are out of the bounds. This

rule is defined for a left-turn hairpin. To adapt it to a right-turn hairpin, we just need to

invert the limits sign, as they are mirrored. As a result, the vehicle will alert the driver and

independently modify its yaw and steering angle based on its own collected data (including

the fundamentals sensors detection) and on the trusted data passed, not considering the faked

lyaw value.
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7.6.4 opposite_turn

This rule was defined in order to detect if the signal received during a turn is coherent with the

actual vehicle trajectory. So, for example, if the leader platoon takes a left turn hairpin (as in

our case) and the data passed to followers indicates a right turn, the system will alert and check

with the context data. Otherwise, the following vehicles will take an opposite direction ans this

can cause severe accidents and even different kinds of problems. First of all, it can cause the

vehicles to take a non-existent turn, so they will crash. In case of no crash, the platoon will be

separated and the following vehicles will lose the leader indications.

1 #--Rule 4a-Fake turn signal
2 #The hairpin is to the left, during the turn the signal indicates to turn opposite (right)
3 if yaw < yaw_limit and self.gyroscope[-1] < γ and
4 (self.compass in interval):
5 if lyaw > yaw:
6 print("Error, wrong turn")
7 lyaw = yaw

In this policy, we use five variables: speed, lyaw, yaw, gyroscope and compass (that indicates

the cardinal directions of the vehicle, expressed in degrees). Here we can define four different

cases, referring to four different intervals, by using the "yaw limits" values. First of all, we

check in which interval the follower yaw is. Defined this, we check coherency with the follower

gyroscope data, by checking if the value is lower than γ. At the same time, we perform also

a check on the compass values, to establish the vehicle direction. If the conditions defined in

the if (and previously explained) are respected, this means that there is something abnormal,

in particular the faked signal indicates to take a turn opposite to the real one. So, as usual,

the vehicle will alert the driver and independently modify its yaw and steering angle based on

its own collected data (including the fundamentals sensors detection) and on the trusted data

passed, not considering the faked lyaw value.

7.6.5 no_steer_input

This rule detects an absence of steering input. This means that, if the system detects that the

leader vehicle is turning but the passed data are referring to a straight trajectory indication,

the rule will alert and find a solution. In this case, it means that the rule recognizes a scenario
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in which the leader takes correctly the hairpin turn, but the passed data forces the follower

vehicles to go straight. So, an attacker could modify the passed leader yaw data, in order to

force the follower vehicles to go straight, possibly out of road or crashing or, in a better scenario,

taking another route, losing the connection with the platoon leader. As discussed in 7.5.6, this

rule was the most complex one to define in this scenario, because it requires reconstructing and

re-calculate the yaw value, starting from the trusted collected data.

1 #--Rule 4-No steer input resilience
2 if (gyro > α or gyro < -α) and (self.gyroscope[-1] < β and self.gyroscope[-1] > -β):
3 print("The platoon leader is turning")
4 lyaw = 180 * np.arctan(accz/np.sqrt(accx*accx + accz*accz))/np.pi

In this policy, we use four variables: lyaw, gyro, accx (that is the leader acceleration value

calculated on the x-axis) and accz (that is the leader acceleration value calculated on the

z-axis). We check if the platoon leader is turning, by checking the gyro values. If this value

is bigger than α (or lower than −α, it depends on the turn direction), the leading vehicle is

turning, while the follower data indicate going straight, as indicated by the values reported

by the follower gyroscope. Even if the basic structure is similar to the previous cases, the

reconstruction of the leader yaw used for computing the steering angle is completely different

and experimental, also based on the work done and discussed in 7.5.6. So, we had to reconstruct

the leader yaw value from the scratch. By looking in CARLA simulator’s official documentation,

we can retrieve how the yaw value is calculated. Then, by using the formal definition of yaw,

described in 6.3, we were able to write the formula

180 ∗ np.arctan(accz/np.sqrt(accx ∗ accx + accz ∗ accz))/np.pi

to calculate the yaw value, where arctan is the arc-tangent of the z-axis acceleration, divided

by the square root of the sum of the z-axis squared and x-axis squared accelerations). Then,

we divide this obtained value by π and we retrieve the yaw value. So, now the vehicle will

modify its yaw and steering angle based on its own collected data, on the trusted data passed,

and on the leader yaw reconstruction, not considering the faked lyaw value. As said before,

this is the more experimental rule. This because the generated yaw value is accurate, but the

computation requires some time, such that there is a little delay between the data generation

and its passage, due to the short time set for ticks. This is more a simulator-side problem, due
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to its construction methods, but it is good to take this aspect into account also in a possible

real realization.



Chapter 8

Results

8.1 Introduction

In this chapter, we will introduce and describe the attacks used to test the policies, defined

in Chapter 7. Then, we will discuss the results obtained, by comparing them with a "normal"

scenario (where the task is completed without any attack or anomaly) and with the same attack

scenario, but without any rules implemented.

As said in Section 7.1, each scenario has its own rules, such that each version of the pla-

tooning script is modified and adapted to the request. The same happens for the attacks. They

are specific for each scenario, even if the basic idea could be similar. This means that each

attack has its own values and parameters, adapted to the attack surface disposed by the testing

scenario.

For the sake of testing, each attack situation is coded inside the platooning script, which can

be viewed entirely in Appendix A. This because we modify directly the passed data, without

the need to intercept it during the transmission. An attacker should do the additional stages of

intercepting the data communication while the platoon is moving, which is not a difficult job,

and decrypting it (if encryption is performed between data, a security measure that is often

taken), that could be more difficult. In the next sections, we will present in order the attacks

and the results obtained, with a brief data discussion.
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8.2 Highway

In this section, we will present three different attacks, two focused on the speeding policies and

one on the steering ones, defined in Section 7.2. In Table 8.1 are presented the attacks, with a

brief explanation and the variables involved.

Table 8.1: Highway Attacks

ID Explanation Effect
speeding_attack Force the vehicle to exceed the

upper speed limit (90MPH)
Forge passed leader speed = 150MPH

slowing_attack Force the vehicle to go below the
minimum speed limit (10MPH)

Forge passed leader speed = 0MPH

swerve_attack Cause a sudden swerve while the
leader vehicle is going straight

Forge passed yaw(lead) = 70

Rules’ values for this scenario, referring to Table 7.1
upper_limit = 90MPH —/— lower_limit = 10MPH —/— τ = 5

upper_yaw = 80 —/— lower_yaw = 100

interval ∈ [85,95]

8.2.1 speeding_attack

Description

With this attack, we want to test the speed_bound policy, presented in Section 7.2.1. Here, an

attacker intercepts the data transmission and forge the speed value, which represents the leader

registered speed, that will be used by the follower as target to compute its own acceleration

or deceleration values. In our case, we pass the leader the value "150" as speed reference,

after the platoon reaches the real target speed of 30MPH. In this way, the leading vehicle will

accelerate, until reaching its constant cruise (around 85/90MPH), while the following ones will

receive the input to accelerate and reach the target speed of 150MPH. Without rules, we will

expect the following cars to rear-end the vehicle in front (in this case, the first follower will

rear-end the leading car and, by naturally decreasing its speed due to the crash, it will be

rear-ended by the second platoon follower). If the vehicles are equipped with LiDAR, the rule

presented in Section 7.1 will possibly prevent the car from crashing, but it will force the vehicle
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to accelerate and brake repeatedly, in order to maintain the distance from the car in front.

This could lead to abnormal behaviors (i.e., problems in maintaining the trajectory, as tested

during the simulation) and, in a real scenario, it can cause damage to the car.

1 #--Attack 1-speeding--
2 ...
3 if self.speed>0.03 and self.speed<30.0:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
5 follower.set_speed_goal(self.speed)
6 if self.speed>=30.0:
7 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
8 follower.set_speed_goal(150)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like the leader yaw, position, and steering values). Then,

through function follower.set_speed_goal, the leader passes its own actual speed to the

followers, which will use that value as speedGoal reference. In the first part of the code (lines

3 to 5), we report the usual scenario, such that the data passed is correct. This works until

the leader speed is less than 30MPH. When we reach that target speed, we trigger the second

part of the script (lines 6 to 8), where we pass to the function follower.set_speed_goal our

forged value.

Results

The results obtained by this rule are excellent. First of all, we repeat this attack 20 times in a

row, in order to test the success rate of rules. We register an important result, in particular the

rule works in 20 cases out of 20 trials, so we obtain 100% of success rate. This result is confirmed

also by the hundreds of trials repeated to refine the rule, which was almost every time successful.

The reason behind such great success rate of rules is also due to the simplicity of the scenario

and of the attack. In fact, such an attack, that modifies only speed parameters is easy to detect,

and it can be solved by using the other data that the car receives or register. Nevertheless,

speed attacks are one between the most diffused and used [54], so it is great to obtain good

results in detecting and recovering from such attacks. Talking about the registered data during

the attack, such as speed detection and trajectory study, we could say that the rule works



88 CHAPTER 8. RESULTS

(a) Normal - Speed (b) speed_attack - Speed, no rules

(c) speed_attack - Speed, with rules

Figure 8.1: speed_attack - Speed graph

fine in all the scenarios. The only noticeable difference with a normal "non-attack" scenario is

the distance between the cars. In fact, when the rule is triggered (so, an attack is detected),

the distance between the car is slightly higher, in particular around a meter more than usual.

This is not debilitating for the platoon and it is not affecting it at all, considering also the fact

that the highway scenario is the one that registers higher speeds (around 85/90MPH), so the

safe distance is naturally higher than in other cases. In Figure 8.1, we reported three graphs,

highlighting three different situations. The green line represents the platoon leader’s speed,

while the red and blue ones represent, respectively, the first and the second platoon follower

speed.

In Figure 8.1a, we report the speed graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that the speed of the leader and followers

is almost the same in all the parts of the graph, until all the lines saturate at approximately

85MPH.
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In Figure 8.1b, we report the speed graph when the platoon is under attack, in particular

under speed_attack, without implementing any resilience policy. In this case, we could see that

the followers have an acceleration greater than the leader because, as visible after 40MPH, the

followers’ lines are more vertical, so they reach the saturation speed faster. Then, we could

see a lot of short waves. These represent the LiDAR work, that continuously modifies the

acceleration/deceleration value, in order to keep the car in lane behind the leader.

Finally, in Figure 8.1c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, we could see that the followers take longer to reach the

plateau speed, and they take a line more similar to a ladder than to a straight line. This because,

after 30MPH, the vehicle has to calculate its own speed based on the collected data, which are

detected in a determined time interval. Therefore, the graph takes a ladder semblance. This

also implies a slightly higher distance between vehicles. At the end of the graph, we could see

that the three vehicles reach the plateau speed without problems, and they maintain it without

requiring the LiDAR intervention.

In Figure 8.2, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.2a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that there is a short section of the graph (at

the start) where the vehicles make some corrections on the position assumed in the lane. Then,

all the vehicles travel the same trajectory, as highlighted by the almost overlapping lines.

In Figure 8.2b, we present the trajectory graph of an attacked platoon, in particular under

speed_attack, without implementing any resilience policy. Here, we could see that the trajecto-

ries of the leader and of the followers are further apart. In particular, the second follower (blue

line) is the one that met more problems. In fact, as it can be seen in the left-most position of

the graph, the second follower takes a completely different starting trajectory, caused by the

higher speed. Then, it is not able to copy perfectly the leader trajectory, as it is highlighted

by the space between the leader and follower lines.

Finally, in Figure 8.2c, we report the study case, where the platoon is under speed_attack

and the rule is triggered. Here we could see that both the followers copy almost perfectly the

leader trajectory, highlighted by the similarity with the "normal" graph in 8.2a. None of the
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(a) Normal - Trajectory (b) speed_attack - Trajectory, no rules

(c) speed_attack - Trajectory, with rules

Figure 8.2: speed_attack - Trajectory graph

followers takes strange trajectories (as in the previous case) and the trajectories distance is

small and totally acceptable.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are excellent.

8.2.2 slowing_attack

Description

With this attack, we want to test the abnormal_slowdown policy, presented in Section 7.2.2.

Here, as in the previous attack, an attacker intercepts the data transmission and forge the speed

value, which represents the leader registered speed, that will be used by the follower as target

to compute its own acceleration or deceleration values. In our case, we pass the leader the value

"0" as speed reference, after the platoon reaches the real target speed of 30MPH. In this way,

the leading vehicle will accelerate, until reaching its constant cruise (around 85/90MPH), while
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the following ones will receive the input to decelerate and reach the target speed of 0MPH.

Without rules, we will expect the following cars to stop in the middle of the highway. This

could lead to abnormal behaviors (i.e., problems in maintaining the trajectory, as tested during

the simulation) and, in a real scenario, it can cause severe crashes or dangerous situations.

1 #--Attack 2-slowing--
2 ...
3 if self.speed>0.03 and self.speed<30.0:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
5 follower.set_speed_goal(self.speed)
6 if self.speed>=30.0: #Attack
7 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
8 follower.set_speed_goal(0)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like the leader yaw, position, and steering values). Then,

through function follower.set_speed_goal, the leader passes its own actual speed to the

followers, which will use that value as speedGoal reference. In the first part of the code (lines

3 to 5), we report the usual scenario, such that the data passed is correct. This works until

the leader speed is less than 30MPH. When we reach that target speed, we trigger the second

part of the script (lines 6 to 8), where we pass to the function follower.set_speed_goal our

forged value.

Results

Similarly to the previous test, the results obtained by this rule are excellent. First of all, we

repeat this attack 20 times in a row, in order to test the success rate of rules. We register an

important result, in particular the rule works in 20 cases out of 20 trials, so we obtain 100%

of success rate. This result is confirmed also by the hundreds of trials repeated to refine the

rule, which was almost every time successful. Again, probably the reason behind a such great

success rate of rules is also due to the simplicity of the scenario and of the attack. In fact, such

an attack, that modifies only speed parameters is easy to detect, and it can be solved by using

the other data that the car receives or register. Talking about the registered data during the

attack, we can find a lot of similarities with the previous attack. As before, the only noticeable
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(a) Normal - Speed (b) slowing_attack - Speed, no rules

(c) slowing_attack - Speed, with rules

Figure 8.3: slowing_attack - Speed graph

difference with a normal "non-attack" scenario is the distance between the cars. In fact, when

the rule is triggered (so, an attack is detected), the distance between the car is slightly higher,

in particular around a meter more than usual. This is not debilitating for the platoon and it

is not affecting it at all, considering also the fact that the highway scenario is the one that

registers higher speeds (around 85/90MPH), so the safe distance is naturally higher than in

other cases. In Figure 8.3, we reported three graphs, highlighting three different situations.

The green line represents the platoon leader’s speed, while the red and blue ones represent,

respectively, the first and the second platoon follower speed.

In Figure 8.3a, we report the speed graph of a platoon typical situation, when there are no

attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the parts of the graph, until all the lines reach the plateau at approximately

85MPH.

In Figure 8.3b, we report the speed graph when the platoon is under the tested attack,
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without implementing any resilience policy. In this case, we could see that the followers have

an acceleration equal to the leader until they reach 30MPH then, as visible by the red and blue

lines, the followers’ line drop continuously and equally, decreasing constantly the speed, while

the leader graph goes normally, reaching the plateau speed.

Finally, in Figure 8.3c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, we could see that the followers take longer to reach the

plateau speed, and they take a line more similar to a ladder than to a straight line. This because,

after 30MPH, the vehicle has to calculate its own speed based on the collected data, which are

detected in a determined time interval. Therefore, the graph takes a ladder semblance. This

also implies a slightly higher distance between vehicles. At the end of the graph, we could see

that the three vehicles reach the plateau speed without problems, and they maintain it without

requiring the LiDAR intervention. At first sight, the graphs presented in Figure 8.3c and in

Figure 8.1c (referring to the previous attack) are very similar, almost identical. This because

the rule has the same effect on the vehicles, even if the scenario is the opposite. This is an

additional confirmation of the correct functioning of the rules.

In Figure 8.4, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.4a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that there is a short section of the graph (at

the start) where the vehicles make some corrections on the position assumed in the lane. Then,

all the vehicles travel the same trajectory, as highlighted by the almost overlapping lines.

In Figure 8.4b, we present the trajectory graph of an attacked platoon, in particular under

speed_attack, without implementing any resilience policy. Here, we could see that the tra-

jectories of the leader and of the followers are very different. As it can be clearly seen, the

trajectories of the followers is extremely short, compared to the leader one. This because the

two following vehicles do not reach the leader’s target speed, instead they decelerate once they

reach 30MPH. So, the speed continuously decreases, and they travel less space.

Finally, in Figure 8.4c, we report the study case, where the platoon is under slowing_attack

and the rule is triggered. Here we could see that both the followers copy almost perfectly the

leader trajectory, highlighted by the similarity with the "normal" graph in 8.4a. None of the
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(a) Normal - Trajectory (b) slowing_attack - Trajectory, no rules

(c) slowing_attack - Trajectory, with rules

Figure 8.4: slowing_attack - Trajectory graph

followers takes strange trajectories (as in the previous case) and the trajectories distance is small

and totally acceptable. As said while discussing the speed graph, there are some similarities

between Figure 8.4c and Figure 8.2c (referring to the previous attack). This because the rule

has the same effect on the vehicles, even if the scenario is the opposite. This is an additional

confirmation of the correct functioning of the rules.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are excellent.

8.2.3 swerve_attack

Description

With this attack, we want to test the sudden_swerve policy, presented in Section 7.2.3. Here,

an attacker intercepts the data transmission and forge the yaw(lead) value, which represents

the leader yaw value, that will be used by the follower as target to compute its own yaw and
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steering values. In our case, we pass the leader the value "70" as yaw reference, after the platoon

reaches the real target speed of 30MPH. In this way, the vehicles will accelerate, until reaching

30MPH, where the forged yaw value is passed to the followers. The real value of yaw(lead) is

close to 90 (as the platoon is going along a straight road). Therefore, by passing a forged value

of 70, we will expect the follower vehicles to take a constant turn, crashing into the guardrails,

if there are no rules to avoid this. In a real scenario, this could lead to abnormal behaviors

(i.e., problems in maintaining the trajectory, as tested during the simulation) and it can cause

severe crashes or dangerous situations.

1 #--Attack 3-forged yaw--
2 ...
3 if self.speed>0.03 and self.speed<30.0:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
5 follower.set_speed_goal(self.speed)
6 if self.speed>=30.0: #Attack
7 follower.add_waypoint([self.x, self.y, 70, self.steer, self.gyroscope[-1]])
8 follower.set_speed_goal(self.speed)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like our target yaw, position, and steering values). In the

first part of the code (lines 3 to 5), we report the usual scenario, such that the data passed

is correct. This works until the leader speed is less than 30MPH. When we reach that target

speed, we trigger the second part of the script (lines 6 to 8), where we pass to the function

follower.add_waypoint our forged yaw value.

Results

Similarly to the previous tests, the results obtained by this rule are excellent. First of all, we

repeat this attack 20 times in a row, in order to test the success rate of rules. We register

an important result, in particular the rule works in 20 cases out of 20 trials, so we obtain

100% of success rate. This result is confirmed also by the hundreds of trials repeated to refine

the rule, which was almost every time successful. When the rule is triggered, there are no

visible differences with the "normal" scenario, both the distance and the speed of the vehicles

are comparable to the ones registered in a classic situation. In Figure 8.5, we reported three
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(a) Normal - Speed (b) swerve_attack - Speed, no rules

(c) swerve_attack - Speed, with rules

Figure 8.5: swerve_attack - Speed graph

graphs, highlighting three different situations. The green line represents the platoon leader’s

speed, while the red and blue ones represent, respectively, the first and the second platoon

follower speed.

In Figure 8.5a, we report the speed graph of a platoon typical situation, when there are no

attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the parts of the graph, until all the lines reach the plateau at approximately

85MPH.

In Figure 8.5b, we report the speed graph when the platoon is under the tested attack,

without implementing any resilience policy. In this case, we could see that the followers have

an acceleration equal to the leader until they reach 30MPH then, as visible by the red and blue

lines, the followers’ line drop suddenly and freezes at 0. This because the following vehicles stop

right before crashing against the middle-lane guardrails, thanks to the LiDAR intervention.

Finally, in Figure 8.5c, we report the interested scenario, where the platoon is under attack
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(a) Normal - Trajectory (b) swerve_attack - Trajectory, no rules

(c) swerve_attack - Trajectory, with rules

Figure 8.6: swerve_attack - Trajectory graph

and the rule is triggered. In this case, this graph and the "normal" one are almost overlapping.

They are very similar, all the three cars reach the plateau speed in the correct way without

hesitations or strange values.

In Figure 8.6, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.6a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that there is a short section of the graph (at

the start) where the vehicles make some corrections on the position assumed in the lane. Then,

all the vehicles travel the same trajectory, as highlighted by the almost overlapping lines.

In Figure 8.6b, we present the trajectory graph of an attacked platoon, without imple-

menting any resilience policy. Here, we could see that the trajectories of the leader and of
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the followers are very different. As it can be clearly seen, the trajectories of the followers are

extremely different, compared to the leader one. This because the two following vehicles, when

reached the target speed of 30MPH, started turning to the left, in order to meet the 70 yaw

value requirements. This forces the vehicles in stopping right in front of the guardrail, saved

by the LiDAR from crashing.

Finally, in Figure 8.6c, we report the study case, where the platoon is under swerve_attack

and the rule is triggered. Here we could see that both the followers copy the leader trajectory,

highlighted by the similarity with the "normal" graph in 8.6a. There is a little hesitation in

the left-most part of the graph (right when the attack starts), but this does not lead to lane

changes or trajectory problems, but just in a slight trajectory correction. Then, the following

vehicles copy the leader trajectory perfectly until the end, considering a bit of deviation due to

the previous correction, which does not affect the platoon security.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are excellent.

8.3 Turn

In this section, we will present four different attacks, two focused on the speeding policies and

two on the steering ones, defined in Section 7.3. In Table 8.2 are presented the attacks, with a

brief explanation and the variables involved.

8.3.1 speeding_attack

Description

With this attack, we want to test the speed_bound policy, presented in Section 7.3.1. Here, an

attacker intercepts the data transmission and forge the speed value, which represents the leader

registered speed, that will be used by the follower as target to compute its own acceleration

or deceleration values. In our case, we pass the leader the value "100" as speed reference.

In this way, the leading vehicle will accelerate and decelerate, reaching its calculated target

speed, while the following ones will receive the input to accelerate and reach the target speed

of 100MPH. Without rules, we will expect the following cars to rear-end the vehicle in front

(in this case, the first follower will rear-end the leading car and, by naturally decreasing its
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Table 8.2: Turn Attacks

ID Explanation Effect
speeding_attack Force the vehicle to ex-

ceed the upper speed limit
(35MPH)

Forge passed leader speed = 100MPH

slowing_attack Force the vehicle to go be-
low the minimum speed
limit (1MPH)

Forge passed leader speed = 0MPH

no_steer_attack Force the vehicle to go
straight

Forge passed yaw(lead) = 90

opposite_turn_attack Force the vehicle to take
the opposite direction while
turning

Forge passed yaw(lead) = 20

Rules’ values for this scenario, referring to Table 7.2
upper_limit = 35MPH —/— lower_limit = 1MPH

upper_yaw = 93 —/— lower_yaw = 87

upper_yaw2 = 168 —/— lower_yaw2 = -178

τ =upper_yaw - lower_yaw = 6 —/— β =upper_yaw2 - lower_yaw2 = 24,
with yaw(foll) ∈ [89, 91]

interval_1 ∈ [85, 95]

interval_2 ∈ [1, 89]

speed due to the crash, it will be rear-ended by the second platoon follower). If the vehicles

are equipped with LiDAR, the rule presented in Section 7.1 will possibly prevent the car from

crashing, but it will force the vehicle to accelerate and brake repeatedly, in order to maintain

the distance from the car in front. This could lead to abnormal behaviors (i.e., problems in

maintaining the trajectory, as tested during the simulation) and, in a real scenario, it can cause

damage to the car.

1 #--Attack 1-speeding--
2 ...
3 if self.speed>=0.03:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
5 follower.set_speed_goal(100)
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Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like the leader yaw, position, and steering values). Then,

through function follower.set_speed_goal, the leader passes its own actual speed to the

followers, which will use that value as speedGoal reference. In lines 3 to 5, we trigger the part

of the script where we pass to the function follower.set_speed_goal our forged value.

Results

The results obtained by this rule are excellent. First of all, we repeat this attack 20 times in

a row, in order to test the success rate of rules. We register an important result, in particular

the rule works in 20 cases out of 20 trials, so we obtain 100% of success rate. This result is

confirmed also by the hundreds of trials repeated to refine the rule, which was almost every

time successful. Talking about the registered data during the attack, such as speed detection

and trajectory study, we could say that the rule works fine in all the scenarios. When the rule is

triggered, there are no visible differences with the "normal" scenario, both the distance and the

speed of the vehicles are comparable to the ones registered in a classic situation. In Figure 8.7,

we reported three graphs, highlighting three different situations. The green line represents the

platoon leader’s speed, while the red and blue ones represent, respectively, the first and the

second platoon follower speed.

In Figure 8.7a, we report the speed graph of a platoon typical situation, when there are no

attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the parts of the graph, until all the lines reach the plateau at approximately

30MPH.

In Figure 8.7b, we report the speed graph when the platoon is under attack, in particular

under speed_attack, without implementing any resilience policy. In this case, we could see that

the followers have an acceleration greater than the leader because, clearly visible as followers’

lines are more vertical, so they reach the saturation speed faster. Then, we could see a lot of

waves. These represent the LiDAR work, that continuously modifies the acceleration/deceler-

ation value, in order to keep the car in lane behind the leader. At the end of the graph, the

follower vehicles’ speed suddenly decreases to 0. This because the vehicles went out of road

and, thanks to the LiDAR, they stopped right before crashing with some obstacles.
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(a) Normal - Speed (b) speed_attack - Speed, no rules

(c) speed_attack - Speed, with rules

Figure 8.7: speed_attack - Speed graph

Finally, in Figure 8.7c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, we could see that this graph and the "normal" one are

almost overlapping. They are very similar, except for a little hesitation during the acceleration

phase, where the followers take a brief deceleration, before re-establish a normal behavior. At

the end of the graph, we could see that the three vehicles reach the plateau speed without

problems.

In Figure 8.8, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.8a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. All the vehicles travel the same trajectory, as highlighted

by the almost overlapping lines.



102 CHAPTER 8. RESULTS

(a) Normal - Trajectory (b) speed_attack - Trajectory, no rules

(c) speed_attack - Trajectory, with rules

Figure 8.8: speed_attack - Trajectory graph

In Figure 8.8b, we present the trajectory graph of an attacked platoon, in particular under

speed_attack, without implementing any resilience policy. Here, we could see that the trajec-

tories of the leader and of the followers are different. In particular, the followers (red and blue

lines) take a narrower turn, as highlighted by the lines. This led to a possible crash, avoided by

the intervention of LiDAR sensor, that blocks the cars right before crashing with the delimiting

fence.

Finally, in Figure 8.8c, we report the study case, where the platoon is under speed_attack

and the rule is triggered. Here we could see that both the followers copy perfectly the leader

trajectory, highlighted by the similarity with the "normal" graph in Figure 8.8a. None of the

followers takes strange trajectories (as in the previous case) and the trajectories distance is

negligible.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are excellent.
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8.3.2 slowing_attack

Description

With this attack, we want to test the abnormal_slowdown policy, presented in Section 7.3.2.

Here, as in the previous attack, an attacker intercepts the data transmission and forge the

speed value, which represents the leader registered speed, that will be used by the follower as

target to compute its own acceleration or deceleration values. In our case, we pass the leader

the value "0" as speed reference. In this way, the leading vehicle will accelerate and decelerate,

reaching its calculated target speed, while the following ones will not receive any input to

accelerate, as the speed goal is set to 0MPH. Without rules, we will expect the following cars

to reach a very low speed (around 5/10MPH) and not go over it, while the leading vehicle

reaches higher speeds (around 30/35MPH). This because the follower vehicle sensors detect

that the car in front is pulling away, but the speed calculation is based on the 0 value, such

that there is a sort of "mismatch" between data. This could lead to abnormal behaviors (i.e.,

problems in maintaining the trajectory, as tested during the simulation) and, in a real scenario,

it can cause severe crashes or dangerous situations.

1 #--Attack 2-slowing--
2 ...
3 if self.speed>=0.03:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
5 follower.set_speed_goal(0)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like the leader yaw, position, and steering values). Then,

through function follower.set_speed_goal, the leader passes its own actual speed to the

followers, which will use that value as speedGoal reference. In lines 3 to 5, we trigger the part

of the script where we pass to the function follower.set_speed_goal our forged value.

Results

Similarly to the previous test, the results obtained by this rule are excellent. First of all, we

repeat this attack 20 times in a row, in order to test the success rate of rules. We register an

important result, in particular the rule works in 20 cases out of 20 trials, so we obtain 100%
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(a) Normal - Speed (b) slowing_attack - Speed, no rules

(c) slowing_attack - Speed, with rules

Figure 8.9: slowing_attack - Speed graph

of success rate. This result is confirmed also by the hundreds of trials repeated to refine the

rule, which was almost every time successful. Talking about the data registered during the

attack, we can find a lot of similarities with the previous attack. As before, the only noticeable

difference with a normal "non-attack" scenario is the distance between the cars. In fact, when

the rule is triggered (so, an attack is detected), the distance between the car is slightly higher,

in particular around a meter more than usual. This is not debilitating for the platoon and it

is not affecting it at all. In Figure 8.9, we reported three graphs, highlighting three different

situations. The green line represents the platoon leader’s speed, while the red and blue ones

represent, respectively, the first and the second platoon follower speed.

In Figure 8.9a, we report the speed graph of a platoon typical situation, when there are no

attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the parts of the graph, until all the lines reach the plateau at approximately

30MPH.
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In Figure 8.9b, we report the speed graph when the platoon is under the tested attack,

without implementing any resilience policy. In this case, we could see that the followers reach a

very lower speed (around 10MPH, as expected), while the leader graph goes normally, reaching

the plateau speed. At the end of the graph, we could see that the follower speed lines drop to

zero. This because the vehicles go out of the road (after losing the connection with the platoon

leader) and are stopped by the LiDAR, to avoid a crash with the delimiting fence.

Finally, in Figure 8.9c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, we could see that the followers take longer to reach the

plateau speed. This because the vehicle has to calculate its own speed based on the collected

data, which are detected in a determined time interval. This also implies a slightly higher

distance between vehicles. At the end of the graph, we could see that the three vehicles

reach the plateau speed without problems, and they maintain it without requiring the LiDAR

intervention.

In Figure 8.10, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.10a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that all the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines.

In Figure 8.10b, we present the trajectory graph of an attacked platoon, in particular under

speed_attack, without implementing any resilience policy. Here, similarly to what happened

with the speeding_attack, we could see that the trajectories of the leader and of the followers are

different. In particular, the followers (red and blue lines) take a narrower turn, as highlighted

by the lines. This lead to a possible crash, avoided by the intervention of LiDAR sensor, that

blocks the cars right before crashing with the delimiting fence.

Finally, in Figure 8.10c, we report the study case, where the platoon is under slowing_attack

and the rule is triggered. Here we could see that both the followers copy perfectly the leader

trajectory, highlighted by the similarity with the "normal" graph in Figure 8.10a. None of the

followers takes strange trajectories (as in the previous case) and the trajectories distance is

negligible.

So, considering both the graphs presented (speed and trajectory), we could say that this
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(a) Normal - Trajectory (b) slowing_attack - Trajectory, no rules

(c) slowing_attack - Trajectory, with rules

Figure 8.10: slowing_attack - Trajectory graph

rule is correctly working, and the results obtained are excellent.

8.3.3 no_steer_attack

Description

With this attack, we want to test both the no_steer_input and the double_turn policies,

presented in Section 7.3.3 and Section 7.3.4. Here, an attacker intercepts the data transmission

and forge the yaw(lead) value, which represents the leader yaw value, that will be used by

the follower as target to compute its own yaw and steering values. In our case, we pass to

the followers the value "90" as yaw reference, that is the value that the yaw assumes when

the car is going straight, before taking the turn. We will pass this value when the real yaw

value is greater than 100 so when the vehicle is approaching the turn. Therefore, by passing a

forged value of 90, we will expect the follower vehicles to not take any turn, crashing into the

guardrails, if there are no rules to avoid this. In a real scenario, this could lead to abnormal
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behaviors (i.e., problems in maintaining the trajectory, as tested during the simulations) and

it can cause severe crashes or dangerous situations.

1 #--Attack 3-no steer input--
2 ...
3 if self.speed>0.03:
4 if self.yaw>100:
5 follower.add_waypoint([self.x, self.y, 90, self.steer, self.gyroscope[-1]])
6 follower.set_speed_goal(self.speed)
7 else:
8 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
9 follower.set_speed_goal(self.speed)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

pass its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like our target yaw, position and steering values). In

the second part of the code (lines 7 to 9), we report the usual scenario, such that the data

passed is correct. This works until the leader’s yaw is less than 100. When we reach that

target value, we trigger the first part of the script (lines 4 to 6), where we pass to the function

follower.add_waypoint our forged yaw value.

Results

The results obtained by this combination of rules, in response to the presented attack, are

great. First of all, we repeat this attack 20 times in a row, in order to test the success rate

of rules. We register a very good result, in particular the rules work in 17 cases out of 20

trials, so we obtain 85% of success rate. This result is confirmed also by the hundreds of trials

repeated to refine the rules, which were in most of the cases successful. The errors that we

encounter during the simulations are three, mostly connected to the vehicle trajectory. In the

first case, the following vehicles take the turn too wide, such that in the middle of it both the

vehicles invaded the opposite direction lane. This can be caused by a bad interpretation of

the collected data, which indicates a wider turn than real. It was the most frequent error, and

also the less problematic one, as the vehicles re-establish the correct trajectory some seconds

after the error. The second error encountered involves just one vehicle. In particular, the first

follower takes a too-narrow turn, such that it goes out of road, with the danger of crashing

into the delimiting fence. This is an error rarely encountered, and it can be caused both by a
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(a) Normal - Speed (b) no_steer_attack - Speed, no rules

(c) no_steer_attack - Speed, with rules

Figure 8.11: no_steer_attack - Speed graph

data misinterpretation, or probably by a simulation environment error, as the second follower

proceeds its trajectory without any error. Similarly, the third encountered error involves again

just one vehicle, this time the second follower. In fact, right after completing the turn, the

second follower takes suddenly a 90 degrees right turn, going out of road. Again, this can

be caused by a data misinterpretation or by a simulation problem. In any case, it is again a

very rare error. When the rule is triggered, there are no visible differences with the "normal"

scenario, both the distance and the speed of the vehicles are comparable to the ones registered

in a classic situation. In Figure 8.11, we reported three graphs, highlighting three different

situations. The green line represents the platoon leader’s speed, while the red and blue ones

represents, respectively, the first and the second platoon follower speed.

In Figure 8.11a, we report the speed graph of a platoon typical situation, when there are no

attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the part of the graph, until all the lines reach the plateau at approximately
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30MPH.

In Figure 8.11b, we report the speed graph when the platoon is under the tested attack,

without implementing any resilience policy. In this case, we could see that the followers have an

acceleration equal to the leader. Then, at the end of the graph, the followers’ speeds decrease

until stop. This because the following vehicles take a wrong trajectory and go out of road, such

that the LiDAR has to intervene, in order to avoid a crash.

Finally, in Figure 8.11c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, this graph and the "normal" one are almost overlapping.

They are very similar, all the three cars reach the plateau speed in the correct way without

hesitations or strange values.

In Figure 8.12, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.12a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that all the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines.

In Figure 8.12b, we present the trajectory graph of an attacked platoon, without imple-

menting any resilience policy. Here, we could see that the trajectories of the leader and of

the followers are not overlapping. As it can be clearly seen, the trajectories of the followers is

extremely different, compared to the leader one. In fact, both the followers take wider lanes,

this because they are going almost straight, instead of correctly taking the turn. It can be seen

how the attacks work when yaw is greater than 100, where the three lanes separate.

Finally, in Figure 8.12c, we report the study case, where the platoon is under no_steer_attack

and the rule is triggered. Here we could see that both the followers copy perfectly the leader

trajectory, highlighted by the similarity with the "normal" graph in Figure 8.12a. None of the

followers takes strange trajectories (as in the previous case) and the trajectories distance is

negligible.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are great, considering the low error rate and

the distribution of errors, as presented in the attack description.
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(a) Normal - Trajectory (b) no_steer_attack - Trajectory, no rules

(c) no_steer_attack - Trajectory, with rules

Figure 8.12: no_steer_attack - Trajectory graph

8.3.4 opposite_turn_attack

Description

With this attack, we want to test the fake_turn policy, presented in Section 7.3.6. Here, an

attacker intercepts the data transmission and forge the yaw(lead) value, which represents the

leader yaw value, used by the followers as target to compute their own yaw and steering values.

In our case, we pass to the followers the value "20" as yaw reference, which is a value opposite

to the ones obtained in the expected curve. We will pass this value when the real yaw value is

greater than 125, so when the vehicles are almost in the middle of the real turn. Therefore, by

passing a forged value of 20, we will expect the follower vehicles to take an unexpected turn

to the left, going out of road, if there are no rules to avoid this. In a real scenario, this could

lead to abnormal behaviors (i.e., problems in maintaining the trajectory, as tested during the

simulations) and it can cause severe crashes or dangerous situations.
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1 #--Attack 4-opposite turn attack--
2 ...
3 if self.speed>0.03:
4 if self.yaw>125:
5 follower.add_waypoint([self.x, self.y, 20, self.steer, self.gyroscope[-1]])
6 follower.set_speed_goal(self.speed)
7 else:
8 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
9 follower.set_speed_goal(self.speed)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like our target yaw, position, and steering values). In

the second part of the code (lines 7 to 9), we report the usual scenario, such that the data

passed is correct. This works until the leader’s yaw is less than 125. When we reach that

target value, we trigger the first part of the script (lines 4 to 6), where we pass to the function

follower.add_waypoint our forged yaw value.

Results

The results obtained by this rule, in response to the presented attack, are good. First of all,

we repeat this attack 20 times in a row, in order to test the success rate of rules. We register a

good result, in particular the rule works in 16 cases out of 20 trials, so we obtain 80% of success

rate. This result is confirmed also by the hundred of trials repeated to refine the rule, which was

in most of the cases successful. The errors that we encounter during the simulations are three

and, similarly to the previous attack, they are mostly connected to the vehicle trajectory. In

the first case, we encounter a problem that we detected also in the previous attack. Right after

completing the turn, the second follower takes suddenly a 90 degrees right turn, going out of

road. This problem can be caused by a data misinterpretation but, supported by the fact that

the first follower does not encounter any problem and by the occasional presence of this error

also in other attacks, we could attribute this to a simulation error (both caused by a CARLA

malfunction or by a script problem). The second error encountered was repeated twice during

the 20 simulations in a row. In this case, both the vehicles take a sort of U-turn while turning.

This is probably due to a data misinterpretation, such that the rule becomes not effective. The

real reason behind this could be a wrong data detection, or also by some wrong peak data
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(a) Normal - Speed (b) opposite_turn_attack - Speed, no rules

(c) opposite_turn_attack - Speed, with rules

Figure 8.13: opposite_turn_attack - Speed graph

due to some noise in the simulation, which could rarely affect it. The third error encountered

is the least affecting one. In fact, after the platoon completes correctly the turn, the first

follower takes a slight turn to the left, invading the other lane, then it goes back to its lane

and continues correctly. We consider this as an error due to the opposite lane invasion (even if

it is a very brief one), but probably it is just caused by a slightly wrong data correction, such

that the vehicles obtain wrong data on their position for a pair of simulation ticks. When the

rule is triggered, there are no visible differences with the "normal" scenario, both the distance

and the speed of the vehicles are comparable to the ones registered in a classic situation. In

Figure 8.13, we reported three graphs, highlighting three different situations. The green line

represents the platoon leader’s speed, while the red and blue ones represent, respectively, the

first and the second platoon follower speed.

In Figure 8.13a, we report the speed graph of a platoon typical situation, when there are no

attacks or abnormal situations. We could see that the speed of the leader and followers is almost
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the same in all the parts of the graph, until all the lines reach the plateau at approximately

30MPH.

In Figure 8.13b, we report the speed graph when the platoon is under the tested attack,

without implementing any resilience policy. In this case, we could see that the followers have an

acceleration equal to the leader. Then, at the end of the graph, the followers’ speeds decrease

until stop. This because the following vehicles take a wrong trajectory and go out of road, such

that the LiDAR has to intervene, in order to avoid a crash.

Finally, in Figure 8.13c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, this graph and the "normal" one are almost overlapping.

They are very similar, all the three cars reach the plateau speed in the correct way without

hesitations or strange values.

In Figure 8.14, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.14a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that all the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines.

In Figure 8.14b, we present the trajectory graph of an attacked platoon, without imple-

menting any resilience policy. Here, we could see that the trajectories of the leader and of

the followers are very different. As it can be clearly seen, the trajectories of the followers is

extremely different, compared to the leader one. In fact, we can see that, in the middle of the

turn, the two followers take an opposite direction compared to the leader. This because the

attack is effective when yaw >= 125, so after that threshold the followers will take an opposite

turn in order to satisfy the forged yaw value (20).

Finally, in Figure 8.14c, we report the study case, where the platoon is under oppo-

site_turn_attack and the rule is triggered. Here we could see that both the followers copy

perfectly the leader trajectory, highlighted by the similarity with the "normal" graph in Fig-

ure 8.14a. None of the followers takes strange trajectories (as in the previous case) and the

trajectories distance is negligible.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are great, considering the low error rate and
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(a) Normal - Trajectory (b) opposite_turn_attack - Trajectory, no rules

(c) opposite_turn_attack - Trajectory, with rules

Figure 8.14: opposite_turn_attack - Trajectory graph

the distribution of errors, as presented in the attack description.

8.4 Roundabout

In this section, we will present three different attacks, two focused on the speeding policies and

one on the steering ones, defined in Section 7.4. We will report the attacks brought in two

different roundabout scenarios: when the platoon takes the first exit (performing less than a

quarter of the roundabout) and when the platoon takes the third exit (performing almost the

75% of the roundabout).

We encountered some little simulation problems with this scenario. First of all, sometimes

the platoon enters in a loop, such that it continues turning in the roundabout without exiting.

These behaviors were discarded from the total count. Then, we notice that in all the trials

made (both for development and testing), the autonomous driving systems always avoid taking
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the second exit of the roundabout, for a non-defined reason. This is due to some simulator

problems or internal policies. In Table 8.3 are presented the attacks, with a brief explanation

and the variables involved.

Table 8.3: Roundabout Attacks

ID Explanation Effect
speeding_attack Force the vehicle to exceed the

upper speed limit (35MPH)
Forge passed leader speed = 100MPH

slowing_attack Force the vehicle to go be-
low the minimum speed limit
(1MPH)

Forge passed leader speed = 0MPH

fake_turn_attack Force the vehicle to go straight
or take a fake turn

Forge passed yaw(lead) = 180

Rules’ values for this scenario, referring to Table 7.3
upper_limit = 35MPH —/— lower_limit = 0.1MPH

upper_yaw = -175 —/— lower_yaw = 175

upper_steer = -0.1 —/— lower_steer = -0.3 —/— normal_steer = -0.16

τ =(180 + upper_yaw) + (180 - lower_yaw) = 10,
with yaw(foll)∈ [−179, 179]

8.4.1 speeding_attack

Description

With this attack, we want to test the speed_bound policy, presented in Section 7.4.1. Here, an

attacker intercepts the data transmission and forge the speed value, which represents the leader

registered speed, that will be used by the follower as target to compute its own acceleration

or deceleration values. In our case, we pass the leader the value "100" as speed reference.

In this way, the leading vehicle will accelerate and decelerate, reaching its calculated target

speed, while the following ones will receive the input to accelerate and reach the target speed

of 100MPH. Without rules, we will expect the following cars to rear-end the vehicle in front

(in this case, the first follower will rear-end the leading car and, by naturally decreasing its

speed due to the crash, it will be rear-ended by the second platoon follower). If the vehicles

are equipped with LiDAR, the rule presented in Section 7.1 will possibly prevent the car from
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crashing, but it will force the vehicle to accelerate and brake repeatedly, in order to maintain

the distance from the car in front. This could lead to abnormal behaviors (i.e., problems in

maintaining the trajectory, as tested during the simulation) and, in a real scenario, it can cause

damage to the car.

1 #--Attack 1-speeding--
2 ...
3 if self.speed>=0.03:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
5 follower.set_speed_goal(100)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like the leader yaw, position, and steering values). Then,

through function follower.set_speed_goal, the leader passes its own actual speed to the

followers, which will use that value as speedGoal reference. In lines 3 to 5, we trigger the part

of the script where we pass to the function follower.set_speed_goal our forged value.

Results

The results obtained by this rule are excellent. First of all, we repeat this attack 20 times in

a row, in order to test the success rate of rules. We register an important result, in particular

the rule works in 19 cases out of 20 trials, so we obtain 95% of success rate. This result is

confirmed also by the hundreds of trials repeated to refine the rule, which was almost every

time successful. The only error find in trials, which consequently is the one found also in

the 20 repetitions used for success rate detection, is focused on one vehicle only. In fact, the

second follower, taking the first exit of the roundabout, goes a little too wide, invading the

traffic divider at the roundabout exit. This does not imply a crash (in our trial cases), but

we defined it as an error as it takes a wrong trajectory, even if only for a few simulation ticks.

Talking about the registered data during the attack, such as speed detection and trajectory

study, we could say that the rule works fine in all the scenarios. When the rule is triggered,

there are no visible differences with the "normal" scenario, both the distance and the speed of

the vehicles are comparable to the ones registered in a classic situation. Just for the sake of

completeness, the rule works even when the platoon is stuck in the roundabout, as described



8.4. ROUNDABOUT 117

(a) Normal - Speed (b) speed_attack - Speed, no rules

(c) speed_attack - Speed, with rules

Figure 8.15: speed_attack - Speed graph, 1st exit

between the encountered problems in Section 8.4, performing correctly one or more roundabout

loops. In Figure 8.15, we reported three graphs, focused on the platoon taking the 1st exit

and highlighting three different situations. In Figure 8.16, we reported other three graphs, this

time focused on the platoon taking the 3rd exit. The green line represents the platoon leader’s

speed, while the red and blue ones represent, respectively, the first and the second platoon

follower speed.

In Figures 8.15a and 8.16a, we report the speed graph of a platoon typical situation, when

there are no attacks or abnormal situations. We could see that the speed of the leader and

followers is almost the same in all the parts of the graph, until all the lines reach the plateau

at approximately 30MPH.

In Figures 8.15b and 8.16b, we report the speed graph when the platoon is under attack,

in particular under speed_attack, without implementing any resilience policy. In this case,

we could see that, in both cases, the followers have an acceleration greater than the leader
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(a) Normal - Speed (b) speed_attack - Speed, no rules

(c) speed_attack - Speed, with rules

Figure 8.16: speed_attack - Speed graph, 3rd exit

because, clearly visible as followers’ lines are more vertical, so they reach the saturation speed

faster. Then, we could see a lot of waves. These represent the LiDAR work, that continuously

modifies the acceleration/deceleration value, in order to keep the car in lane behind the leader.

At the end of the graph, the follower vehicles’ speed suddenly decreases to 0. This because the

vehicles went out of road and, thanks to the LiDAR, they stopped right before crashing with

some obstacles. In Figure 8.15b, the follower vehicles go over the roundabout exit, stopping

right before crashing with a street lamp, while in Figure 8.16b, the following vehicles take a

narrower turn, ending over the roundabout center.

Finally, in Figures 8.15c and 8.16c, we report the interested scenario, where the platoon

is under attack and the rule is triggered. In this case, we could see that this graph and the

"normal" one are almost overlapping. They are very similar, except for a little hesitation in

Figure 8.16c during the acceleration phase, where the followers take a brief deceleration, before

re-establish a normal behavior. At the end of the graph, we could see that the three vehicles
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(a) Normal - Trajectory (b) speed_attack - Trajectory, no rules

(c) speed_attack - Trajectory, with rules

Figure 8.17: speed_attack - Trajectory graph, 1st exit

reach the plateau speed without problems.

In Figure 8.17, we reported the trajectory graphs, again focusing on the platoon taking

the 1st exit and highlighting three different situations, while in Figure 8.18, we focused on the

platoon taking the 3rd exit. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figures 8.17a and 8.18a, we report the trajectory graph of a platoon’s typical situation,

when there are no attacks or abnormal situations. All the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines.

In Figures 8.17b and 8.18b, we present the trajectory graph of an attacked platoon, in

particular under speed_attack, without implementing any resilience policy. Here, we could see

that, in both the cases, the trajectories of the leader and of the followers are different. In

particular, in Figure 8.17b, the followers (red and blue lines) take a wider turn, as highlighted
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(a) Normal - Trajectory (b) speed_attack - Trajectory, no rules

(c) speed_attack - Trajectory, with rules

Figure 8.18: speed_attack - Trajectory graph, 3rd exit

by the lines. This implies that, when taking the 1st exit, the two vehicles invade the traffic

divider, leading to a possible crash, avoided by the intervention of LiDAR sensor, that blocks

the cars right before crashing with a street lamp. Differently, in Figure 8.18b, the followers

take a narrower turn, while they are in the middle of the roundabout. This implies that the

vehicles go out of the road, in particular into the center of the roundabout, again leading to a

possible crash, avoided by the intervention of LiDAR sensor, that blocks the cars right before

crashing with what is inside the roundabout isle.

Finally, in Figures 8.17c and 8.18c, we report the study case, where the platoon is under

speed_attack and the rule is triggered. Here we could see that both the followers copy perfectly

the leader trajectory, highlighted by the similarity with the "normal" graph, respectively in

Figure 8.17a and Figure 8.18a. None of the followers takes strange trajectories (as in the

previous cases) and the trajectories distances are negligible.

So, considering both the graphs presented (speed and trajectory), we could say that this



8.4. ROUNDABOUT 121

rule is correctly working, and the results obtained are excellent.

8.4.2 slowing_attack

Description

With this attack, we want to test the abnormal_slowdown policy, presented in Section 7.4.2.

Here, as in the previous attack, an attacker intercepts the data transmission and forge the

speed value, which represents the leader registered speed, that will be used by the follower as

target to compute its own acceleration or deceleration values. In our case, we pass the leader

the value "0" as speed reference. In this way, the leading vehicle will accelerate and decelerate,

reaching its calculated target speed, while the following ones will not receive any input to

accelerate, as the speed goal is set to 0MPH. Without rules, we will expect the following cars

to reach a very low speed (around 5/10MPH) and not go over it, while the leading vehicle

reaches higher speeds (around 30/35MPH). This because the follower vehicle sensors detect

that the car in front is pulling away, but the speed calculation is based on the 0 value, such

that there is a sort of "mismatch" between data. This could lead to abnormal behaviors (i.e.,

problems in maintaining the trajectory, as tested during the simulation) and, in a real scenario,

it can cause severe crashes or dangerous situations.

1 #--Attack 2-slowing--
2 ...
3 if self.speed>=0.03:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1]])
5 follower.set_speed_goal(0)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like the leader yaw, position, and steering values). Then,

through function follower.set_speed_goal, the leader passes its own actual speed to the

followers, which will use that value as speedGoal reference. In lines 3 to 5, we trigger the part

of the script where we pass to the function follower.set_speed_goal our forged value.
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Results

Similarly to the previous test, the results obtained by this rule are excellent. First of all, we

repeat this attack 20 times in a row, in order to test the success rate of rules. We register an

important result, in particular the rule works in 20 cases out of 20 trials, so we obtain 100% of

success rate. This result is confirmed also by the hundreds of trials repeated to refine the rule,

which was almost every time successful. Talking about the data registered during the attack, we

can find a lot of similarities with the previous attack. As before, the only noticeable difference

with a normal "non-attack" scenario is the distance between the cars. In fact, when the rule is

triggered (so, an attack is detected), the distance between the car is slightly higher. This is not

debilitating for the platoon and it is not affecting it at all. In Figure 8.19, we reported three

graphs, focused on the platoon taking the 1st exit and highlighting three different situations.

In Figure 8.20, we reported other three graphs, this time focused on the platoon taking the

3rd exit. The green line represents the platoon leader’s speed, while the red and blue ones

represent, respectively, the first and the second platoon follower speed..

In Figures 8.19a and 8.20a, we report the speed graph of a platoon typical situation, when

there are no attacks or abnormal situations. We could see that the speed of the leader and

followers is almost the same in all the parts of the graph, until all the lines reach the plateau

at approximately 30MPH.

In Figures 8.19b and 8.20b, we report the speed graph when the platoon is under the tested

attack, without implementing any resilience policy. In this case, we could see that, in both

the graphs, the followers reach a very lower speed (around 10MPH, as expected), while the

leader graph goes normally, reaching the plateau speed. In particular, at the end of the graph

in Figure 8.20b, we could see that the follower speed lines drop to zero. This because the

following vehicles take a narrower turn, ending over the roundabout center.

Finally, in Figures 8.19c and 8.20c, we report the interested scenario, where the platoon is

under attack and the rule is triggered. In this case, we could see that the followers take longer

to reach the plateau speed. This because the vehicle has to calculate its own speed based

on the collected data, which are detected in a determined time interval. This also implies a

slightly higher distance between vehicles. In particular, in both cases they start delayed with

respect to the leader, and they recover from this by accelerating sharply, until they reach the

leader’s condition. At the end of the graph, we could see that the three vehicles reach the
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(a) Normal - Speed (b) slowing_attack - Speed, no rules

(c) slowing_attack - Speed, with rules

Figure 8.19: slowing_attack - Speed graph, 1st exit

plateau speed without problems, they overtake it for a while (because they accelerate sharply

to adequate to the leader speed), then they decelerate and maintain it without requiring the

LiDAR intervention.

In Figure 8.21, we reported the trajectory graphs, again focusing on the platoon taking

the 1st exit and highlighting three different situations, while in Figure 8.22, we focused on the

platoon taking the 3rd exit. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory..

In Figures 8.21a and 8.22a, we report the trajectory graph of a platoon typical situation,

when there are no attacks or abnormal situations. We could see that all the vehicles travel the

same trajectory, as highlighted by the almost overlapping lines.

In Figures 8.21b and 8.22b, we present the trajectory graph of an attacked platoon, in

particular under slowing_attack, without implementing any resilience policy. Here, similarly to
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(a) Normal - Speed (b) slowing_attack - Speed, no rules

(c) slowing_attack - Speed, with rules

Figure 8.20: slowing_attack - Speed graph, 3rd exit

what happened with the speeding_attack, we could see that the trajectories of the leader and

of the followers are different, similar to what happened in the previous attack. In particular, in

Figure 8.21b, the followers (red and blue lines) take a wider turn, as highlighted by the lines.

This implies that, when taking the 1st exit, the two vehicles invade the traffic divider. Then,

they take a sudden left turn, crossing the opposite direction lane, ending it on the walk side.

Differently, in Figure 8.22b, the followers take a narrower turn, while they are in the middle of

the roundabout. This implies that the vehicles go out of the road, in particular into the center

of the roundabout, again leading to a possible crash, avoided by the intervention of LiDAR

sensor, that blocks the cars right before crashing with what is inside the roundabout isle.

Finally, in Figures 8.21c and 8.22c, we report the study case, where the platoon is un-

der slowing_attack and the rule is triggered. Here we could see that both the followers copy

perfectly the leader trajectory, highlighted by the similarity with the "normal" graphs in Fig-

ures 8.21a and 8.22a. None of the followers takes strange trajectories (as in the previous case)
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(a) Normal - Trajectory (b) slowing_attack - Trajectory, no rules

(c) slowing_attack - Trajectory, with rules

Figure 8.21: slowing_attack - Trajectory graph, 1st exit

and the trajectories distance is negligible. As a note, both these graphs includes more data

samples than usual. This because, as highlighted when we talked about speed, the following

vehicles have some delay with respect to the leader one, which does not affect the platoon

functioning, but it requires more time to complete the entire "travel" studied.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are excellent.

8.4.3 fake_turn_attack

Description

With this attack, we want to test both the no_steer_input and the steer_angles policies,

presented in Section 7.4.3 and Section 7.4.4. Here, an attacker intercepts the data transmission

and forge the yaw(lead) value, which represents the leader yaw value, that will be used by

the follower as target to compute its own yaw and steering values. In our case, we pass to the
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(a) Normal - Trajectory (b) slowing_attack - Trajectory, no rules

(c) slowing_attack - Trajectory, with rules

Figure 8.22: slowing_attack - Trajectory graph, 3rd exit

followers the value "180" as yaw reference, which is the value that the yaw assumes when the

car is going straight, before taking the roundabout. Therefore, by passing a forged value of 180,

we will expect the follower vehicles to not take any turn, crashing into the guardrails, if there

are no rules to avoid this. Then, even if the first no_steer_input works, we would have some

problems while the followers’ vehicles take the roundabout. In fact, with yaw fixed to 180, they

will be forced in taking a fake turn to the right, opposite to the roundabout direction. For this

reason, we will test also the steer_angles policy. In a real scenario, the absence of these rules

could lead to abnormal behaviors (i.e., problems in maintaining the trajectory, as tested during

the simulations) and it can cause severe crashes or dangerous situations.

1 #--Attack 3-fake turn--
2 ...
3 if self.speed>=0.03:
4 follower.add_waypoint([self.x, self.y, 180, self.steer, self.gyroscope[-1]])
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5 follower.set_speed_goal(self.speed)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like our target yaw, position, and steering values). In line

4, we pass to the function follower.add_waypoint our forged yaw value.

Results

The results obtained by this combination of rules, in response to the presented attack, are good.

First of all, we repeat this attack 20 times in a row, in order to test the success rate of rules.

We register a good result, in particular the rules work in 15 cases out of 20 trials, so we obtain

75% of success rate. This result is confirmed also by the hundreds of trial repeated to refine

the rules, which were in most of the cases successful. We should consider the complexity of

this scenario, where we should distinguish between different sub-scenarios, some legit and some

abnormal. The errors that we encounter during the simulations are three, mostly connected

to the vehicle trajectory. In the first case, the leading and the first follower vehicles takes

correctly the first exit, while the second follower remained in the roundabout. This error

happens really few times in all trials, but two times in the 20 simulations in a row. It could

be attributed to a momentary disconnection from the platoon (possibly due to a simulation

error) or to a wrong data manipulation. As a result of this, the follower takes a complete

loop of the roundabout, exiting the roundabout correctly, while the rest of the platoon already

takes some meters of advantage. The second error encountered involves again just one vehicle.

In particular, the platoon leader and the second follower takes the fourth exit, while the first

follower tries to take the third exit, but it almost crashes into the traffic divider, saved by

the LiDAR intervention. This happens one time in the 20 simulations and it can be caused

both by a data misinterpretation, or probably by a simulation environment error, as the first

follower proceeds its trajectory without any error. Finally, the third encountered error involves

again just one vehicle, this time the second follower. In fact, while the leader and the first

follower vehicles take a full loop of the roundabout and take the first exit, the second follower

takes the fourth exit. Again, this can be caused by a data misinterpretation or by a simulation

problem. In any case, it is again a very rare error. The effect of this error is the disconnection

of the third vehicle from the platoon, but it does not imply any crash, as in many previous



128 CHAPTER 8. RESULTS

(a) Normal - Speed (b) fake_turn_attack - Speed, no rules

(c) fake_turn_attack - Speed, with rules

Figure 8.23: fake_turn_attack - Speed graph, 1st exit

cases. When the rule is triggered, usually there are no visible differences with the "normal"

scenario, both the distance and the speed of the vehicles are comparable to the ones registered

in a classic situation. Sometimes, the follower vehicles take the roundabout less smoothly

than usual, and sometimes they choose another lane (as the roundabout used has two lanes).

Both these behaviors do not affect the platoon behavior, or the traffic safety. In Figure 8.23,

we reported three graphs, focused on the platoon taking the 1st exit and highlighting three

different situation. In Figure 8.24, we reported other three graphs, this time focused on the

platoon taking the 3rd exit. The green line represents the platoon leader’s speed, while the red

and blue ones represent, respectively, the first and the second platoon follower speed.

In Figures 8.23a and 8.24a, we report the speed graph of a platoon typical situation, when

there are no attacks or abnormal situations. We could see that the speed of the leader and

followers is almost the same in all the parts of the graph, until all the lines reach the plateau

at approximately 30MPH.
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(a) Normal - Speed (b) fake_turn_attack - Speed, no rules

(c) fake_turn_attack - Speed, with rules

Figure 8.24: fake_turn_attack - Speed graph, 3rd exit

In Figures 8.23b and 8.24b, we report the speed graph when the platoon is under the tested

attack, without implementing any resilience policy. In this case, we could see that the followers

have an acceleration equal to the leader. Then, near the middle of both the graphs (around

x=400), the followers’ speed decrease until stop. This because the following vehicles take do

not take the turn to enter in the roundabout and they go straight to the roundabout center,

such that the LiDAR has to intervene, in order to avoid a crash.

Finally, in Figures 8.23c and 8.24c, we report the interested scenario, where the platoon is

under attack and the rule is triggered. In both the cases, this graph and the "normal" one are

almost overlapping. They are very similar, all the three cars reach the plateau speed in the

correct way without hesitations or strange values.

In Figure 8.25, we reported the trajectory graphs, again focused on the platoon taking the

1st exit and highlighting three different situations, while in Figure 8.26, we focused on the

platoon taking the 3rd exit. Again, the green line represents the platoon leader trajectory,
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(a) Normal - Trajectory (b) fake_turn_attack - Trajectory, no rules

(c) fake_turn_attack - Trajectory, with rules

Figure 8.25: fake_turn_attack - Trajectory graph, 1st exit

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory..

In Figures 8.25a and 8.26a, we report the trajectory graph of a platoon typical situation,

when there are no attacks or abnormal situations. We could see that all the vehicles travel the

same trajectory, as highlighted by the almost overlapping lines.

In Figures 8.25b and 8.26b, we present the trajectory graph of an attacked platoon, without

implementing any resilience policy. Here, we could see that the trajectories of the leader and of

the followers are not overlapping. As it can be clearly seen, the trajectories of the followers are

extremely different, compared to the leader one. In fact, in both the cases the followers’ lanes

are interrupted, this because they are going straight, not entering the roundabout. Therefore,

they go out of road, straight to the roundabout center, such that the LiDAR has to intervene

and stop them, in order to avoid a crash.

Finally, in Figures 8.25c and 8.26c, we report the study case, where the platoon is under
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(a) Normal - Trajectory (b) fake_turn_attack - Trajectory, no rules

(c) fake_turn_attack - Trajectory, with rules

Figure 8.26: fake_turn_attack - Trajectory graph, 3rd exit

fake_turn_attack and the rule is triggered. Here we could see that both the followers copy

perfectly the leader trajectory, highlighted by the similarity with the "normal" graph, respec-

tively in Figure 8.25a and in Figure 8.26a. None of the followers takes strange trajectories (as

in the previous case) and the trajectories distance is negligible.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are great, considering the acceptable error

rate and the distribution of errors, as presented in the attack description.

8.5 Crossroad

In this section, we will present three different attacks, one focused on the speeding policies

and two on the steering ones, defined in Section 7.5. We will report the attacks brought in

two different crossroad scenarios: when the platoon go straight after the restart and when the
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platoon takes the right turn. In this way, we will demonstrate the completeness of rules in all

the scenarios. This scenario was by far the most complex one. In fact, similar to the roundabout

one, we should consider many different outcomes, which makes difficult both the rule definition

step, both the testing phase. Then, we encounter some problems with the left turn. In fact,

even in the normal simulation (without attacks), sometimes the platoon takes that turn a little

too wide, going for a few seconds over the sidewalk. This is probably a simulator problem,

related to the implemented autonomous driving system. Other than that, we should consider

that the turns at these crossroads are very narrow, such that even a little imprecision can cause

a wrong trajectory. In Table 8.4 are presented the attacks, with a brief explanation and the

variables involved.

Table 8.4: Crossroad Attacks

ID Explanation Effect
speeding_attack Force the vehicle to exceed the

upper speed limit (35MPH)
Forge passed leader speed =
100MPH

fake_turn_attack Force the vehicle to turn while
the leader goes straight

Forge passed yaw(lead) = 170

opposite_turn_attack Force the vehicle to take the op-
posite direction after restart

Forge passed yaw(lead) = 170 (if
leader turn left) or yaw(lead) =
10 (if leader turn right)

Rules’ values for this scenario, referring to Table 7.4
upper_limit = 35MPH

upper_yaw = 90.5 —/— lower_yaw = 89.5

α = 0.01 , β = 1 , τ = 4 , γ = 15

δ =upper_yaw - lower_yaw = 1

upper_yaw2∧ lower_yaw2 ∈ interval
interval ∈ ([5, 85] ∨ [95, 175])

8.5.1 speeding_attack

Description

With this attack, we want to test three rules: the speed_bound policy, presented in Section 7.5.1,

the fake_start policy, presented in Section 7.5.2 and finally the no_brake_input one, presented
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in 7.5.3. Here, an attacker intercepts the data transmission and forge the speed value, which

represents the leader registered speed, that will be used by the follower as target to compute

its own acceleration or deceleration values. In our case, we pass the leader the value "100"

as speed reference. In this way, the leading vehicle will accelerate and decelerate, reaching

its calculated target speed, while the following ones will receive the input to accelerate and

reach the target speed of 100MPH. In particular, in this scenario the car will decelerate until

reaching a complete stop at the crossing stop line. Then, when the stoplight is green (or the

crossroad is free), the platoon will restart. This situation can produce various outcomes, that

make this attack more efficient (and consequently, the rule harder to apply) with respect to the

previous scenarios. Without rules, we will expect the following cars to rear-end the vehicle in

front (in this case, the first follower will rear-end the leading car and, by naturally decreasing

its speed due to the crash, it will be rear-ended by the second platoon follower). If the vehicles

are equipped with LiDAR, the rule presented in Section 7.1 will possibly prevent the car from

crashing, but it will force the vehicle to accelerate and brake repeatedly, in order to maintain

the distance from the car in front. This could lead to abnormal behaviors (i.e., problems in

maintaining the trajectory, as tested during the simulation) and, in a real scenario, it can cause

damage to the car.

1 #--Attack 1-speeding--
2 ...
3 if self.speed>0.03:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.accelerometer[0],
5 self.gyroscope[-1], self.accelerometer[1], self.accelerometer[2]])
6 follower.set_speed_goal(100)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like the leader yaw, position, and steering values). This

time, we pass also all the three accelerometer values (referring to x, y and z axis), that are used

in the rules, as defined in Section 7.5. Then, through function follower.set_speed_goal,

the leader passes its own actual speed to the followers, which will use that value as speedGoal

reference. In lines 4 to 6, we trigger the part of the script where we pass to the function

follower.set_speed_goal our forged value.
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Results

The results obtained by this combination of rules are great. First of all, we repeat this attack

20 times in a row, in order to test the success rate of rules. We register an important result,

in particular the rules work in 17 cases out of 20 trials, so we obtain 85% of success rate. This

result is confirmed also by the hundreds of trials repeated to refine the rules, which were almost

every time successful. The only error find in trials, which consequently is the one found also in

the 20 repetitions used for success rate detection, is the one described also in the introduction.

In fact, both the followers, taking the left turn of the crossroad, goes a little too wide, invading

for some seconds the sidewalk. This does not imply a crash (in our trial cases), but we defined it

as an error as it takes a wrong trajectory, even if only for a few simulation ticks. Talking about

the registered data during the attack, such as speed detection and trajectory study, we could

say that the rule works fine in all the scenarios. The only noticeable difference with a normal

"non-attack" scenario is the distance between the cars. In fact, when the rule is triggered (so,

an attack is detected), the distance between the car is slightly higher, in particular around a

meter more than usual. This is not debilitating for the platoon and it is not affecting it at all.

In Figure 8.27, we reported three graphs, focused on the platoon going straight and highlighting

three different situations. In Figure 8.28, we reported other three graphs, this time focused on

the platoon taking the right turn. The green line represents the platoon leader’s speed, while

the red and blue ones represent, respectively, the first and the second platoon follower speed.

In Figures 8.27a and 8.28a, we report the speed graph of a platoon typical situation, when

there are no attacks or abnormal situations. We could see that the speed of the leader and

followers is almost the same in all the parts of the graph, there are some accelerating/deceler-

ating phases until all the lines reach a sort of plateau at approximately 30MPH. This because

the car accelerates for the first part of the brief straight, then decelerates until stopping at the

crossing stop line. Then, if the platoon goes straight (Figure 8.27a), the platoon accelerates

in the consequent straight, until reaching the plateau speed. The same happens if the platoon

takes a turn (as in Figure 8.28a), where, after the restart, the cars take the turn and accelerate

in the consequent short straight, until they reach the next crossroad.

In Figures 8.27b and 8.28b , we report the speed graph when the platoon is under attack, in

particular under speeding_attack, without implementing any resilience policy. In this case, we

could see that, in both cases, the graph is very abnormal, with strange peaks and not aligned
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(a) Normal - Speed (b) speed_attack - Speed, no rules

(c) speed_attack - Speed, with rules

Figure 8.27: speed_attack - Speed graph, Straight

lines. This because the followers’ vehicles crash, first into the leader one, then between them.

This happens because the leader stops at the crossing stop line, while the follower is not able to

stop in time, even after the LiDAR intervention. So, this crash influence also the leader speed,

which is pushed into the crossroad center. Then, the platoon restarts, but the acceleration is

very fragmented, as it can be seen from x=1000 in both graphs.

Finally, in Figures 8.27c and 8.28c, we report the interested scenario, where the platoon

is under attack and the rules are triggered. In this case, we could see that the behavior of

both the graphs is similar to their "normal" cor-respective. The main difference is the delay

that occurred with the followers’ acceleration, which is clearly visible in graph. This implies a

slightly bigger distance between cars, but it does not affect the platoon functioning. In both

cases we could see that the lines are equal, just transposed in time. In particular, in 8.28c we

could see that also the second stop (x=1500) is correctly done. This means that the rule is

correctly working.
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(a) Normal - Speed (b) speed_attack - Speed, no rules

(c) speed_attack - Speed, with rules

Figure 8.28: speed_attack - Speed graph, Turn right

In Figure 8.29, we reported the trajectory graphs, again focusing on the platoon taking

the 1st exit and highlighting three different situations, while in Figure 8.30, we focused on the

platoon taking the 3rd exit. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figures 8.29a and 8.30a, we report the trajectory graph of a platoon typical situation,

when there are no attacks or abnormal situations. All the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines. In Figure 8.29a, we could see the adjustment

of the vehicles, at the start of the graph.

In Figures 8.29b and 8.30b, we present the trajectory graph of an attacked platoon, in

particular under speeding_attack, without implementing any resilience policy. Here, we could

see that, in both the cases, the trajectories of the leader and of the followers are very different.

In particular, in Figure 8.29b, the followers (red and blue lines) take a fragmented direction,
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(a) Normal - Trajectory (b) speed_attack - Trajectory, no rules

(c) speed_attack - Trajectory, with rules

Figure 8.29: speed_attack - Trajectory graph, Straight

not linear as in the "normal" graph. This because, as described in the speed graph section,

there is a crash between vehicles (that can clearly be seen when the lines start dividing), which

makes the platoon lose its correct trajectory. Similarly, in Figure 8.30b, the followers take a

very wider right turn, and they are not able to come back to the correct trajectory after the

crash, as it can be seen by the red and blue lines. In particular, they also overtake the platoon

leader, and go out of road before the next crossroad.

Finally, in Figures 8.29c and 8.30c, we report the study case, where the platoon is under

speeding_attack and the rules are triggered. Here we could see that, in 8.29c, both the followers

copy perfectly the leader trajectory, highlighted by the similarity with the "normal" graph, in

Figure 8.29a. Similarly, in 8.30c, the followers copy almost perfectly the leader trajectory,

except in the middle of the turn, where they take a bit wider trajectory. This does not imply

invading the other direction lane (otherwise, it will be considered as a wrong attempt), so we

consider it as acceptable, as it does not affect the platoon functioning and safety. After the
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(a) Normal - Trajectory (b) speed_attack - Trajectory, no rules

(c) speed_attack - Trajectory, with rules

Figure 8.30: speed_attack - Trajectory graph, Turn right

wider turn, the follower realigns perfectly with the leader. None of the followers takes strange

trajectories (as in the previous cases) and the trajectories distances are negligible.

So, considering both the graphs presented (speed and trajectory), we could say that these

rules are correctly working, and the results obtained are great, considering the acceptable error

rate and the distribution of errors, as presented in the attack description.

8.5.2 fake_turn

Description

With this attack, we want to test the fake_turn policy, presented in Section 7.5.4. Here, an

attacker intercepts the data transmission and forge the yaw(lead) value, which represents the

leader yaw value, that will be used by the follower as target to compute its own yaw and steering

values. In our case, we pass to the followers the value "170" as yaw reference, that is the value

that the yaw assumes when the car is turning to the right, after the restarting. We pass this
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forged value when the real yaw(lead) is in the interval ]85,95[, so when the leading vehicle is

going straight after the restart. Therefore, by passing a forged value of 170, we will expect the

follower vehicles to turn right, taking the wrong route or crash with the sidewalk obstacles,

if there are no rules to avoid this, while the leader continues straight. In a real scenario,

the absence of these rules could lead to abnormal behaviors (i.e., problems in maintaining

the trajectory, as tested during the simulations) and it can cause severe crashes or dangerous

situations.

1 #--Attack 3-fake turn--
2 ...
3 if self.speed>0.03:
4 if self.yaw > 85 and self.yaw < 95:
5 follower.add_waypoint([self.x, self.y, 170, self.steer, self.accelerometer[0],
6 self.gyroscope[-1], self.accelerometer[1], self.accelerometer[2]])
7 follower.set_speed_goal(self.speed)
8 else:
9 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.accelerometer[0],

10 self.gyroscope[-1], self.accelerometer[1], self.accelerometer[2]])
11 follower.set_speed_goal(self.speed)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like our target yaw, position, and steering values). In

lines 8 to 11, we pass the values normally, without any modification. Then, when yaw(lead)

is between 85 and 95 degrees, we trigger the attack part of the script (lines 4 to 7), where we

pass to the function follower.add_waypoint our forged yaw value.

Results

The results obtained by this rule, in response to the presented attack, are great. First of all,

we repeat this attack 20 times in a row, in order to test the success rate of rules. We register

a good result, in particular the rule works in 18 cases out of 20 trials, so we obtain 90% of

success rate. This result is confirmed also by the hundreds of trials repeated to refine the rule,

which was in most of the cases successful. We should consider the complexity of this scenario,

where we should distinguish between different sub-scenarios, some legit and some abnormal.

We encounter only one problem during the simulations, connected to the vehicle trajectory.
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(a) Normal - Speed (b) fake_turn_attack - Speed, no rules

(c) fake_turn_attack - Speed, with rules

Figure 8.31: fake_turn_attack - Speed graph, Straight

This error is related to an abnormal behaviour of the first follower vehicle. In fact, after the

fake yaw value is passed, the vehicle does not take a sharp turn to the right (as we will expect

in a non-working case), instead it takes a really slight turn to the left, invading the other

direction lane. Therefore, the leader and the second follower proceed correctly straight, while

the second follower slowly invades the other lane, stopping right before a possible collision

with road obstacles. This error happens two times during the 20 simulations in a row, and it

was probably due to some data misinterpretation while computing the correct steering angles.

When the rule is triggered and working, usually there are no visible differences with the "normal"

scenario, both the distance and the speed of the vehicles are comparable to the ones registered

in a classic situation. In Figure 8.31, we reported three graphs, highlighting three different

situations. The green line represents the platoon leader’s speed, while the red and blue ones

represent, respectively, the first and the second platoon follower speed.

In Figure 8.31a, we report the speed graph of a platoon typical situation, when there are no
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attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the parts of the graph, there are some accelerating/decelerating phases until

all the lines reach a sort of plateau at approximately 30MPH. This because the car accelerates

for the first part of the brief straight, then decelerates until stopping at the crossing stop line.

Therefore, if the platoon goes straight, the vehicles accelerate in the consequent straight, until

reaching the plateau speed.

In Figure 8.31b, we report the speed graph when the platoon is under the tested attack,

without implementing any resilience policy. In this case, we could see that the followers have an

acceleration similar to the leader. Then, the leader restarts and gain speed, while the followers

stay stopped at 0MPH. This because they went out of road while the leader was going straight,

such that the LiDAR makes them stop before crashing with the sidewalk obstacles.

Finally, in Figure 8.31c, we report the interested scenario, where the platoon is under

attack and the rule is triggered. In both the cases, this graph and the "normal" one are almost

overlapping. They are very similar, all the three cars reach the plateau speed in the correct

way without hesitations or strange values.

In Figure 8.32, we reported the trajectory graphs, highlighting three different situations.

Again, the green line represents the platoon leader trajectory, while the red and blue ones

represent, respectively, the first and the second platoon follower trajectory..

In Figure 8.32a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that all the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines.

In Figures 8.32b, we present the trajectory graph of an attacked platoon, without imple-

menting any resilience policy. Here, we could see that the trajectories of the leader and of

the followers are not overlapping, and they take completely different directions. As it can be

clearly seen, the trajectories of the followers is opposite, compared to the leader one. In fact,

while the leader (green line) has a behavior similar to the one depicted in 8.32a, the red and

blue lines (follower vehicles) are represented by an almost straight line, which means they are

going out of road, following the fake yaw value of 170.

Finally, in Figures 8.32c, we report the study case, where the platoon is under fake_turn_attack

and the rule is triggered. Here we could see that both the followers copy the leader trajectory,

highlighted by the similarity with the "normal" graph, respectively in Figure 8.32a. As visible

in the graph, there is a slight trajectory difference between the leader and the vehicles, not
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(a) Normal - Trajectory (b) fake_turn_attack - Trajectory, no rules

(c) fake_turn_attack - Trajectory, with rules

Figure 8.32: fake_turn_attack - Trajectory graph, Straight

visible during the visual simulation. This is caused by a slightly different positioning in the

lane. This means that no vehicle invades the opposite lane, so it does not affect the platoon’s

functioning or safety.

Therefore, considering both the graphs presented (speed and trajectory), we could say that

this rule is correctly working, and the results obtained are great, considering the acceptable

error rate and the distribution of errors, as presented in the attack description.

8.5.3 opposite_turn_attack

Description

With this attack, we want to test the opposite_turn policy, presented in Section 7.5.5. Here,

an attacker intercepts the data transmission and forge the yaw(lead) value, which represents

the leader yaw value, that will be used by the follower as target to compute its own yaw and

steering values. In our case, we pass to the followers the value "170" as yaw reference, if the
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leader is turning left (so, if the real leader’s yaw is less than 70 degrees), while we pass the

value "10" if the leader is turning right (so, if the leader real yaw is greater than 110 degrees).

Therefore, by passing a forged opposite yaw value, we will expect the follower vehicles to turn

in the opposite direction of the leader, taking the wrong route or crashing with the sidewalk

obstacles, if there are no rules to avoid this. In a real scenario, the absence of these rules could

lead to abnormal behaviors (i.e., problems in maintaining the trajectory, as tested during the

simulations) and it can cause severe crashes or dangerous situations.

1 #--Attack 3-fake turn--
2 ...
3 if self.speed>0.03:
4 if self.yaw < 70:
5 print("ATTACK 170")
6 follower.add_waypoint([self.x, self.y, 170, self.steer, self.accelerometer[0],
7 self.gyroscope[-1], self.accelerometer[1], self.accelerometer[2]])
8 follower.set_speed_goal(self.speed)
9 if self.yaw > 110:

10 print("ATTACK 10")
11 follower.add_waypoint([self.x, self.y, 10, self.steer, self.accelerometer[0],
12 self.gyroscope[-1], self.accelerometer[1], self.accelerometer[2]])
13 follower.set_speed_goal(self.speed)
14 else:
15 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.accelerometer[0],
16 self.gyroscope[-1], self.accelerometer[1], self.accelerometer[2]])
17 follower.set_speed_goal(self.speed)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like our target yaw, position, and steering values). If

yaw(lead) is less than 70 degrees, we trigger the first attack part of the script (lines 4 to 8),

where the leader is turning left, and we pass to the function follower.add_waypoint our

forged yaw value of 170 degrees, in order to force the follower vehicles turning right. Instead,

if yaw(lead) is greater than 110 degrees, we trigger the second attack part of the script (lines 9

to 13), where the leader is turning right, and we pass to the function follower.add_waypoint

our forged yaw value of 10 degrees, in order to force the follower vehicles turning left. Then,

in lines 14 to 17, we pass the values normally, without any modification.
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Results

The results obtained by this rule, in response to the presented attack, are great. First of all,

we repeat this attack 20 times in a row, in order to test the success rate of rules. We register

a good result, in particular the rule works in 18 cases out of 20 trials, so we obtain 90% of

success rate. This result is confirmed also by the hundreds of trials repeated to refine the rule,

which was in most of the cases successful. We should consider the complexity of this scenario,

where we should distinguish between different sub-scenarios, some legit and some abnormal.

We encounter two problems during the simulations, connected to the vehicle trajectory. The

first error is related to an abnormal behaviour of both the follower vehicles. In fact, in this

singular case, the rule is triggered (as shown by the alert on screen), but it does not prevent

the follower vehicles from taking the wrong turn. This is a rule failure, that happened just

one time between the 20 simulations, and happens very rarely also during the development

and testing phases. Then, the second error is more related to some sort of autonomous driving

problem. In fact, the rule recognizes correctly the abnormal behavior, and solves the problem.

The error is in the steering angles, because the followers take the turn (in this case, the right

turn) too narrow, such that they invade partially the sidewalk. Otherwise, when the rule is

triggered and working, usually there are no visible differences with the "normal" scenario, both

the distance and the speed of the vehicles are comparable to the ones registered in a classic

situation. In Figure 8.33, we reported three graphs, focused on the platoon taking the right

turn, and highlighting three different situations. In Figure 8.34, we reported other three graphs,

this time focused on the platoon taking the left turn. The green line represents the platoon

leader’s speed, while the red and blue ones represent, respectively, the first and the second

platoon follower speed.

In Figures 8.33a and 8.34a, we report the speed graph of a platoon typical situation, when

there are no attacks or abnormal situations. We could see that the speed of the leader and

followers is almost the same in all the parts of the graph, there is an alternation of different

accelerating/decelerating phases. This because the car accelerates for the first part of the brief

straight, then decelerates until stopping at the crossing stop line. Then, when the platoon takes

a turn, the cars accelerate in the consequent short straight, until they reach the next crossroad.

In Figures 8.33b and 8.34b, we report the speed graph when the platoon is under attack,

without implementing any resilience policy. In this case, we could see that, in both cases,
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(a) Normal - Speed (b) opposite_turn_attack - Speed, no rules

(c) opposite_turn_attack - Speed, with rules

Figure 8.33: opposite_turn_attack - Speed graph, Turn right

the differences with the usual speed graph are evident in the last part of the graph, where

the platoon takes the turn. The difference is not as notable as in other cases, but we can see

some inconsistencies, in particular in Figure 8.34b, where the followers’ speed suddenly drops

to 0MPH. In this case, the situation will be clearer with the trajectory graphs, which will be

presented later in this section.

Finally, in Figures 8.33c and 8.34c, we report the interested scenario, where the platoon is

under attack and the rules are triggered. In both the cases, this graph and the "normal" one

are almost overlapping. They are very similar, all the three cars reach the same speed in the

correct way without hesitations or strange values.

In Figure 8.35, we reported the trajectory graphs, again focusing on the platoon taking

the 1st exit and highlighting three different situations, while in Figure 8.36, we focused on the

platoon taking the 3rd exit. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower
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(a) Normal - Speed (b) opposite_turn_attack - Speed, no rules

(c) opposite_turn_attack - Speed, with rules

Figure 8.34: opposite_turn_attack - Speed graph, Turn left

trajectory.

In Figures 8.35a and 8.36a, we report the trajectory graph of a platoon’s typical situation,

when there are no attacks or abnormal situations. All the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines.

In Figures 8.35b and 8.36b, we present the trajectory graph of an attacked platoon, without

implementing any resilience policy. Here, we could see that, in both the cases, the trajectories

of the leader and of the followers are very different. In particular, in Figure 8.35b, the followers

(red and blue lines) take a completely opposite direction, turning to the opposite way. Similarly,

in Figure 8.36b, the followers take the opposite direction, and they are not able to come back

to the correct trajectory after that, as it can be seen by the red and blue lines.

Finally, in Figures 8.35c and 8.36c, we report the study case, where the platoon is under

opposite_turn_attack and the rules are triggered. Here we could see that, both in Figure 8.35c

and in Figure 8.36c, the followers copy perfectly the leader trajectory, highlighted by the
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(a) Normal - Trajectory (b) opposite_turn_attack - Trajectory, no rules

(c) opposite_turn_attack - Trajectory, with rules

Figure 8.35: opposite_turn_attack - Trajectory graph, Turn right

similarity with the "normal" graph, in Figures 8.35a and 8.36a. None of the followers takes

strange trajectories (as in the previous cases) and the trajectories distances are negligible.

So, considering both the graphs presented (speed and trajectory), we could say that these

rules are correctly working, and the results obtained are great, considering the acceptable error

rate and the distribution of errors, as presented in the attack description.

8.6 Hairpin

In this section, we will present three different attacks, two focused on the speeding policies and

one on the steering ones, defined in Section 7.6. As said in Section 6.4.5, the main difference

between a hairpin and a simple turn is the steering angle required, which is more important in

the hairpin one, but there are other reasons that make us prefer to have a specific set of rules

for it. First of all, we can not rely that much on the yaw value, as made in the turn scenario,



148 CHAPTER 8. RESULTS

(a) Normal - Trajectory (b) opposite_turn_attack - Trajectory, no rules

(c) opposite_turn_attack - Trajectory, with rules

Figure 8.36: opposite_turn_attack - Trajectory graph, Turn left

as it is a too much variable value in hairpins, similar to what happens in roundabouts. Then,

we have different steering angles during the hairpin approach, not a fixed one (or semi-fixed)

as in a normal turn. Finally, we have a very different speed approach in the hairpin, that needs

to be addressed much slower than a normal turn. In Table 8.5 are presented the attacks, with

a brief explanation and the variables involved.

8.6.1 speeding_attack

Description

With this attack, we want to test the speed_bound policy, presented in Section 7.6.1. Here, an

attacker intercepts the data transmission and forge the speed value, which represents the leader

registered speed, that will be used by the follower as target to compute its own acceleration or

deceleration values. In our case, we pass the leader the value "100" as speed reference, after the

platoon reaches the real target speed of 20MPH. In this way, the leading vehicle will accelerate
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Table 8.5: Hairpin Attacks

ID Explanation Effect
speeding_attack Force the vehicle to exceed the

upper speed limit (35MPH)
Forge passed leader speed =
100MPH

slowing_attack Force the vehicle to go below the
minimum speed limit (1MPH)

Forge passed leader speed =
0MPH

opposite_turn_attack Force the vehicle to take an op-
posite hairpin turn

Forge passed yaw(lead) = 150

no_steer_attack Force the vehicle to go straight,
instead of taking the hairpin turn

Forge passed yaw(lead) = 90

Rules’ values for this scenario, referring to Table 7.5
upper_limit = 35MPH —/— lower_limit = 1MPH

gyro_max = 20 —/— gyro_min = -40

yaw_limit = 110

α = 11 , β = 0.01 , γ = −5

interval ∈ [0, 190]

and decelerate normally, while the following ones will receive the input to accelerate and reach

the target speed of 100MPH. Without rules, we will expect the following cars to rear-end the

vehicle in front (in this case, the first follower will rear-end the leading car and, by naturally

decreasing its speed due to the crash, it will be rear-ended by the second platoon follower). If

the vehicles are equipped with LiDAR, the rule presented in Section 7.1 will possibly prevent

the car from crashing, but it will force the vehicle to accelerate and brake repeatedly, in order

to maintain the distance from the car in front. This could lead to abnormal behaviors (i.e.,

problems in maintaining the trajectory, as tested during the simulation) and, in a real scenario,

it can cause damage to the car.

1 #--Attack 1-speeding--
2 ...
3 if self.speed>0.03 and self.speed<20:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1],
5 self.accelerometer[0], self.accelerometer[1], self.accelerometer[2]])
6 follower.set_speed_goal(self.speed)
7 if self.speed>=20:
8 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1],
9 self.accelerometer[0], self.accelerometer[1], self.accelerometer[2]])
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10 follower.set_speed_goal(100)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like the leader yaw, position, and steering values). Then,

through function follower.set_speed_goal, the leader passes its own actual speed to the

followers, which will use that value as speedGoal reference. In the first part of the code (lines

3 to 6), we report the usual scenario, such that the data passed is correct. This works until

the leader speed is less than 20MPH. When we reach that target speed, we trigger the second

part of the script (lines 7 to 10), where we pass to the function follower.set_speed_goal our

forged value.

Results

The results obtained by this rule are excellent. First of all, we repeat this attack 20 times in

a row, in order to test the success rate of rules. We register an important result, in particular

the rule works in 20 cases out of 20 trials, so we obtain 100% of success rate. This result is

confirmed also by the hundreds of trials repeated to refine the rule, which was almost every

time successful. Talking about the registered data during the attack, such as speed detection

and trajectory study, we could say that the rule works fine in all the scenarios. When the

rule is triggered, there are no visible differences with the "normal" scenario, both the distance

and the speed of the vehicles are comparable to the ones registered in a classic situation. In

Figure 8.37, we reported three graphs, highlighting three different situations. The green line

represents the platoon leader’s speed, while the red and blue ones represent, respectively, the

first and the second platoon follower speed.

In Figure 8.37a, we report the speed graph of a platoon typical situation, when there are no

attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the parts of the graph, until all the lines reach the plateau at approximately

30MPH.

In Figure 8.37b, we report the speed graph when the platoon is under attack, in particular

under speeding_attack, without implementing any resilience policy. In this case, we obtain

a very fragmented graph, also referring to the leader line. This because the LiDAR can not

avoid the followers from crashing with the leader’s vehicle. As it is visible, the leader (green
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(a) Normal - Speed (b) speed_attack - Speed, no rules

(c) speed_attack - Speed, with rules

Figure 8.37: speed_attack - Speed graph

line) reaches correctly the plateau speed of 30MPH. Otherwise, both the followers (red and

blue lines) reach a really higher speed, in particular the second follower accelerates to more

than 80MPH. Then, the LiDAR intervenes, but it is not enough to avoid the first follower

crashing with the leader vehicle, as visible for x=400, where the red line (first follower) speed

drops suddenly and, oppositely, the leader speed has a peak of around 50MPH (due to the

crash). Then, there is also the second follower crash (x=450). After that, the behavior of the

platoon becomes very unstable, as the leader tries to reach a constant plateau speed, but it is

continuously disturbed by the abnormal behaviors of the following vehicles. This graph will be

clearer when compared with the trajectory one, presented later in this section.

Finally, in Figure 8.37c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, we could see that this graph and the "normal" one are

almost overlapping. They are very similar, except for some more waves in the final acceleration

phase, just before reaching the platoon, due to some speed adjustment. At the end of the
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(a) Normal - Trajectory (b) speed_attack - Trajectory, no rules

(c) speed_attack - Trajectory, with rules

Figure 8.38: speed_attack - Trajectory graph

graph, we could see that the three vehicles reach the plateau speed without problems, without

abnormal waves or LiDAR intervention.

In Figure 8.38, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.38a, we report the trajectory graph of a platoon typical situation, when there

are no attacks or abnormal situations. All the vehicles travel the same trajectory, as highlighted

by the almost overlapping lines.

In Figure 8.38b, we present the trajectory graph of an attacked platoon, in particular

under speeding_attack, without implementing any resilience policy. Here, we could see that the

trajectories of the leader and of the followers are different. In this case, we should distinguish

between the two followers. As said in the speed graph section, both cars crash. While the
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first follower continues the hairpin turn, even if not smoothly and continuously disturbing the

leader’s behavior, the second follower, after the crash, takes a totally different trajectory. In

fact, as it can be seen in the graph, it starts going straight, so it goes out of road, not following

the platoon’s behavior.

Finally, in Figure 8.38c, we report the study case, where the platoon is under speed_attack

and the rule is triggered. Here we could see that both the followers copy perfectly the leader

trajectory, highlighted by the similarity with the "normal" graph in Figure 8.38a. None of the

followers takes strange trajectories (as in the previous case) and the trajectories distance is

negligible.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are excellent.

8.6.2 slowing_attack

Description

With this attack, we want to test the abnormal_slowdown policy, presented in Section 7.6.2.

Here, as in the previous attack, an attacker intercepts the data transmission and forge the speed

value, which represents the leader registered speed, that will be used by the follower as target

to compute its own acceleration or deceleration values. In our case, we pass the leader the value

"0" as speed reference, after the platoon reaches the real target speed of 20MPH. In this way,

the leading vehicle will accelerate and decelerate, reaching its calculated target speed, while

the following ones will not receive any input to accelerate, as the speed goal is set to 0MPH.

Without rules, we will expect the following cars to reach a very low speed (around 5/10MPH)

and not go over it, while the leading vehicle reaches higher speeds (around 30/35MPH). This

because the follower vehicle sensors detect that the car in front is pulling away, but the speed

calculation is based on the 0 value, such that there is a sort of "mismatch" between data. This

could lead to abnormal behaviors (i.e., problems in maintaining the trajectory, as tested during

the simulation) and, in a real scenario, it can cause severe crashes or dangerous situations.

1 #--Attack 2-slowing--
2 ...
3 if self.speed>0.03 and self.speed<20:
4 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1],
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5 self.accelerometer[0], self.accelerometer[1], self.accelerometer[2]])
6 follower.set_speed_goal(self.speed)
7 if self.speed>=20:
8 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1],
9 self.accelerometer[0], self.accelerometer[1], self.accelerometer[2]])

10 follower.set_speed_goal(0)

Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like the leader yaw, position, and steering values). Then,

through function follower.set_speed_goal, the leader passes its own actual speed to the

followers, which will use that value as speedGoal reference. In the first part of the code (lines

3 to 6), we report the usual scenario, such that the data passed is correct. This works until

the leader speed is less than 20MPH. When we reach that target speed, we trigger the second

part of the script (lines 7 to 10), where we pass to the function follower.set_speed_goal our

forged value.

Results

Similarly to the previous test, the results obtained by this rule are excellent. First of all, we

repeat this attack 20 times in a row, in order to test the success rate of rules. We register an

important result, in particular the rule works in 19 cases out of 20 trials, so we obtain 95%

of success rate. This result is confirmed also by the hundreds of trials repeated to refine the

rule, which was almost every time successful. The only error that we encountered was related

to the vehicle’s behavior after ending the turn. In fact, in just one case, both the vehicles

correctly complete the hairpin turn but, in the end, they take another turn to the right, while

the platoon leader is going straight. This error happens rarely in the development and test

phases, and it is probably related to an error in steering data elaboration. When the rule is

triggered, there are no visible differences with the "normal" scenario, both the distance and the

speed of the vehicles are comparable to the ones registered in a classic situation. In Figure 8.39,

we reported three graphs, highlighting three different situations. The green line represents the

platoon leader’s speed, while the red and blue ones represent, respectively, the first and the

second platoon follower speed.

In Figure 8.39a, we report the speed graph of a platoon typical situation, when there are no



8.6. HAIRPIN 155

(a) Normal - Speed (b) slowing_attack - Speed, no rules

(c) slowing_attack - Speed, with rules

Figure 8.39: slowing_attack - Speed graph

attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the parts of the graph, until all the lines reach the plateau at approximately

30MPH.

In Figure 8.39b, we report the speed graph when the platoon is under the tested attack,

without implementing any resilience policy. In this case, we could see that the followers reach a

very lower speed (around 10MPH, as expected), while the leader graph goes normally, reaching

the plateau speed. At the end of the graph, we could see that the follower speed lines drop to

zero. This because the vehicles go out of the road (after losing the connection with the platoon

leader) and are stopped by the LiDAR, to avoid a crash with some obstacles.

Finally, in Figure 8.39c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, this graph and the "normal" one are almost overlapping.

They are very similar, all the three cars reach the plateau speed in the correct way without

hesitations or strange values.
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(a) Normal - Trajectory (b) slowing_attack - Trajectory, no rules

(c) slowing_attack - Trajectory, with rules

Figure 8.40: slowing_attack - Trajectory graph

In Figure 8.40, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.40a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that all the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines.

In Figure 8.40b, we present the trajectory graph of an attacked platoon, in particular under

speed_attack, without implementing any resilience policy. Here, similarly to what happened

with the slowing_attack, we could see that the trajectories of the leader and of the followers are

different. In this case, both the followers (red and blue lines) take a wider turn, as highlighted

by the lines, then they take a straight direction, going out of road. This lead to a possible

crash, avoided by the intervention of LiDAR sensor, which blocks the cars right before crashing
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with some obstacles.

Finally, in Figure 8.40c, we report the study case, where the platoon is under speed_attack

and the rule is triggered. Here we could see that both the followers copy perfectly the leader

trajectory, highlighted by the similarity with the "normal" graph in Figure 8.40a. None of the

followers takes strange trajectories (oppositely as in the previous case) and the trajectories

distance is negligible.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are excellent.

8.6.3 opposite_turn_attack

Description

With this attack, we want to test both the excessive_angles policy, presented in Section 7.6.3,

and the opposite_turn policy, presented in Section 7.6.4. Here, an attacker intercepts the data

transmission and forge the yaw(lead) value, which represents the leader yaw value, used by

the followers as target to compute their own yaw and steering values. In our case, we pass to

the followers the value "150" as yaw reference, which is a value opposite to the ones obtained

in the expected curve. We will pass this value when the vehicles are in the middle of the real

turn, by using the leader coordinates. Therefore, by passing a forged value of 150 degrees, we

will expect the follower vehicles to take an unexpected turn to the right, going out of road,

if there are no rules to avoid this. In a real scenario, this could lead to abnormal behaviors

(i.e., problems in maintaining the trajectory, as tested during the simulations) and it can cause

severe crashes or dangerous situations.

1 #--Attack 3-opposite turn attack--
2 ...
3 if self.speed>0.03:
4 if self.x > 4 and self.x < 6:
5 follower.add_waypoint([self.x, self.y, 150, self.steer, self.gyroscope[-1],
6 self.accelerometer[0], self.accelerometer[1], self.accelerometer[2]])
7 follower.set_speed_goal(self.speed)
8 else:
9 follower.add_waypoint([self.x, self.y, self.yaw, self.steer, self.gyroscope[-1],

10 self.accelerometer[0], self.accelerometer[1], self.accelerometer[2]])
11 follower.set_speed_goal(self.speed)
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Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like our target yaw, position, and steering values). In the

second part of the code (lines 7 to 9), we report the usual scenario, such that the data passed is

correct. This works if the x-coordinate of the leader is not included in ]4,6[, so when the leader

is not turning. When we reach that target interval, we trigger the first part of the script (lines

4 to 6), where we pass to the function follower.add_waypoint our forged yaw value.

Results

The results obtained by this combination of rules, in response to the presented attack, are great.

First of all, we repeat this attack 20 times in a row, in order to test the success rate of rules.

We register a good result, in particular the rules work in 18 cases out of 20 trials, so we obtain

90% of success rate. This result is confirmed also by the hundred of trials repeated to refine

the rules, which were in most of the cases successful. The errors that we encounter during the

simulations are two and, similarly to previous attacks, they are mostly connected to the vehicle

trajectory. In the first case, the error was related to just one follower vehicle. In fact, the

first follower takes correctly the hairpin turn but, while passing the apex of the turn, it starts

going wider and wider, until it goes out of the road. Then, the vehicle is stopped by LiDAR

intervention. This can be caused by a wrong interpretation of steering data but, probably, it

depends on the starting adjustment that the platoon made at the start of the scenario. In

fact, we note that this error happens when the follower in question occupies the far right half

of the lane. This is an adjustment that the simulator does autonomously, such that we can

not interfere. The second error happened very few times during all the testing and developing

phases. In this case, both the followers are fooled by the fake data, such that they overtake the

turn apex correctly, but they do not end the turn in the right way. Instead, they take a right

turn into the grass, going out of road. Otherwise, when the rules are triggered, there are no

visible differences with the "normal" scenario, both the distance and the speed of the vehicles

are comparable to the ones registered in a classic situation. In Figure 8.41, we reported three

graphs, highlighting three different situations. The green line represents the platoon leader’s

speed, while the red and blue ones represent, respectively, the first and the second platoon

follower speed.
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(a) Normal - Speed (b) opposite_turn_attack - Speed, no rules

(c) opposite_turn_attack - Speed, with rules

Figure 8.41: opposite_turn_attack - Speed graph

In Figure 8.41a, we report the speed graph of a platoon typical situation, when there are no

attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the parts of the graph, until all the lines reach the plateau at approximately

30MPH.

In Figure 8.41b, we report the speed graph when the platoon is under the tested attack,

without implementing any resilience policy. In this case, we could see that the followers have an

acceleration equal to the leader. Then, at the end of the graph, the followers’ speeds decrease

until stop. This because the following vehicles take a wrong trajectory and go out of road, such

that the LiDAR has to intervene, in order to avoid a crash.

Finally, in Figure 8.41c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, this graph and the "normal" one are almost overlapping.

They are very similar, all the three cars reach the plateau speed in the correct way without

hesitations or strange values.
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(a) Normal - Trajectory (b) opposite_turn_attack - Trajectory, no rules

(c) opposite_turn_attack - Trajectory, with rules

Figure 8.42: opposite_turn_attack - Trajectory graph

In Figure 8.42, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.42a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that all the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines.

In Figure 8.42b, we present the trajectory graph of an attacked platoon, without imple-

menting any resilience policy. Here, we could see that the trajectories of the leader and of

the followers are very different. As it can be clearly seen, the trajectories of the followers is

extremely different, compared to the leader one. In fact, we can see that, in the middle of the

turn, the two followers take a slight turn in the opposite direction compared to the leader. This

because the attack is effective in that space zone, such that the following vehicles are fooled
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into respecting the forged yaw value of 150, which implies an opposite turn.

Finally, in Figure 8.42c, we report the study case, where the platoon is under no_steer_attack

and the rule is triggered. Here we could see that both the followers copy perfectly the leader

trajectory, highlighted by the similarity with the "normal" graph in Figure 8.42a. None of the

followers takes strange trajectories (as in the previous case) and the trajectories distance is

negligible.

So, considering both the graphs presented (speed and trajectory), we could say that these

rules are correctly working, and the results obtained are great, considering the low error rate

and the distribution of errors, as presented in the attack description.

8.6.4 no_steer_attack

Description

With this attack, we want to test both the no_steer_input and, again, the excessive_angles

policies, presented in Section 7.6.5 and Section 7.6.3. Here, an attacker intercepts the data

transmission and forge the yaw(lead) value, which represents the leader yaw value, that will

be used by the follower as target to compute its own yaw and steering values. In our case, we

pass to the followers the value "90" as yaw reference, that is the value that the yaw assumes

when the car is going straight, before taking the turn. Therefore, by passing a forged value of

90, we will expect the follower vehicles to not take any turn, crashing into the guardrails, if

there are no rules to avoid this. Then, even if the first no_steer_input works, we would have

some problems while the followers’ vehicles take the hairpin. In fact, with yaw fixed to 90,

they will be forced in taking a fake turn to the right, opposite to the hairpin turn direction.

For this reason, we will test also the excessive_angles policy. In a real scenario, this could

lead to abnormal behaviors (i.e., problems in maintaining the trajectory, as tested during the

simulations) and it can cause severe crashes or dangerous situations.

1 #--Attack 4-no steer input--
2 ...
3 if self.speed>0.03:
4 follower.add_waypoint([self.x, self.y, 90, self.steer, self.gyroscope[-1],
5 self.accelerometer[0], self.accelerometer[1], self.accelerometer[2]])
6 follower.set_speed_goal(self.speed)
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Here, it can be seen how the attack simulation works. In the platooning script, the leader

passes its data through the function follower.add_waypoint, which will create a data array

containing all the important values, like our target yaw, position, and steering values). The

attacker triggers the script (line 4 to 6), where we pass to the function follower.add_waypoint

our forged yaw value.

Results

The results obtained by this combination of rules, in response to the presented attack, are great.

First of all, we repeat this attack 20 times in a row, in order to test the success rate of rules.

We register a very good result, in particular the rules work in 18 cases out of 20 trials, so we

obtain 90% of success rate. This result is confirmed also by the hundreds of trials repeated to

refine the rules, which were in most of the cases successful. We encounter just one error during

the simulations, which was repeated twice in the 20 trials in a row. In this error, the platoon

followers recognize the attack and start correctly the turn. When reaching the chord point

of the turn, both the vehicles start turning mechanically, glitchy, and not smoothly as in the

other cases. This led to difficulty in following the correct trajectory, with the following vehicles

moving from lane to lane. This problem is probably related to the excessive_angles rule, more

than the no_steer_input one, because it is a frenetic variation of steering angles, probably

due to some data misinterpretation in the policy. When the rules are triggered, there are no

visible differences from the "normal" scenario, both the distance and the speed of the vehicles

are comparable to the ones registered in a classic situation. In Figure 8.43, we reported three

graphs, highlighting three different situations. The green line represents the platoon leader’s

speed, while the red and blue ones represent, respectively, the first and the second platoon

follower speed.

In Figure 8.43a, we report the speed graph of a platoon typical situation, when there are no

attacks or abnormal situations. We could see that the speed of the leader and followers is almost

the same in all the parts of the graph, until all the lines reach the plateau at approximately

30MPH.

In Figure 8.43b, we report the speed graph when the platoon is under the tested attack,

without implementing any resilience policy. In this case, we could see that the followers have an

acceleration equal to the leader. Then, suddenly, the followers’ speed decreases to 0MPH. This
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(a) Normal - Speed (b) no_steer_attack - Speed, no rules

(c) no_steer_attack - Speed, with rules

Figure 8.43: no_steer_attack - Speed graph

because the following vehicles take a wrong trajectory and go straight, such that the LiDAR

has to intervene, in order to avoid a collision with the hairpin central guardrail.

Finally, in Figure 8.43c, we report the interested scenario, where the platoon is under attack

and the rule is triggered. In this case, this graph and the "normal" one are almost overlapping.

They are very similar, all the three cars reach the plateau speed in the correct way without big

hesitations or strange values.

In Figure 8.44, we reported the trajectory graphs, highlighting the same three different

situations discussed before. Again, the green line represents the platoon leader trajectory,

while the red and blue ones represent, respectively, the first and the second platoon follower

trajectory.

In Figure 8.44a, we report the trajectory graph of a platoon typical situation, when there are

no attacks or abnormal situations. We could see that all the vehicles travel the same trajectory,

as highlighted by the almost overlapping lines.
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(a) Normal - Trajectory (b) no_steer_attack - Trajectory, no rules

(c) no_steer_attack - Trajectory, with rules

Figure 8.44: no_steer_attack - Trajectory graph

In Figure 8.44b, we present the trajectory graph of an attacked platoon, without imple-

menting any resilience policy. Here, we could see that the trajectories of the leader and of the

followers are not overlapping. As it can be clearly seen, the trajectories of the followers are

extremely different, compared to the leader one. In fact, both the followers take a completely

straight trajectory, instead of correctly taking the turn.

Finally, in Figure 8.44c, we report the study case, where the platoon is under no_steer_attack

and the rule is triggered. Here we could see that both the followers copy perfectly the leader

trajectory, highlighted by the similarity with the "normal" graph in Figure 8.44a. None of the

followers takes strange trajectories (as in the previous case) and the trajectories distance is

negligible.

So, considering both the graphs presented (speed and trajectory), we could say that this

rule is correctly working, and the results obtained are great, considering the low error rate and

the distribution of errors, as presented in the attack description.
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8.7 Results summary

In this section, we report a summary of the results obtained with the rules, and discussed in

the previous sections.

8.7.1 Success rate values

In this section, we report the success rate values, as visible in Table 8.6. Then, we report five

different charts, in order to highlight better the results obtained, and also to make the reader

able to see the differences between different attacks. In Figure 8.45, we report 5 distinct bar

graphs, one for each scenario analyzed. For each graph, we report the type of attack on the

abscissa axis, while on the ordinates the success rate of rules, expressed as a percentage of

successes.

Table 8.6: Success rate of rules summary

Scenario Attack Success rate

Highway
speeding_attack 100%
slowing_attack 100%
swerve_attack 100%

Turn

speeding_attack 100%
slowing_attack 100%
no_steer_attack 85%
opposite_turn_attack 80%

Roundabout
speeding_attack 95%
slowing_attack 100%
fake_turn_attack 75%

Crossroad
speeding_attack 85%
fake_turn_attack 90%
opposite_turn_attack 90%

Hairpin

speeding_attack 100%
slowing_attack 95%
opposite_turn_attack 90%
no_steer_attack 90%
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(a) Highway success rate of rules graph
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(b) Turn success rate of rules graph
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(c) Roundabout success rate of rules graph
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(d) Crossroad success rate of rules graph
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(e) Hairpin success rate of rules graph

Figure 8.45: Success rate of rules graphs
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8.7.2 Statistical Results

In this section, we present the point-to-point trajectory distance, calculated by using the ve-

hicles’ coordinates during the entire time frame of the development. The formula used is the

canonical

√︂
[(x2 − x1)2 + (y2 − y1)2]

We perform this comparison between the normal scenario (no attack) and both the attack

situations (with and without rules). We report the Cumulative Distribution Function (CDF)

graph, which describes the probabilities of a random variable having values less than or equal

to x, following the formula:

CDF (x) = P (X ≤ x)

Therefore, we counts how many occurrences of values we have with value lower than x, then

divide that number by the total of occurrences.

The goal of this study is to highlight the effect of the rules on the platoon trajectory, in

order to underline the differences and the benefits.

Highway

Here we report the results obtained for the highway attacks discussed before. We start from the

speeding_attack, presented in Figure 8.46. It is clearly visible the difference between graphs.

Even if in Figure 8.46a, the trajectory difference is higher, in the tested scenario the vehicles

reach the peak of distance (40) at the start, where the followers recognize the attack. Then,

they adapt to the leader behaviour and the platoon distance decrease, without any problem

arising. Instead, in Figure 8.46b, the trajectory distance is lower and it is increasing with

increasing time, but it is ruled by the LiDAR intervention. This means that the vehicles are

not under control, and any change in leader behavior can cause an abnormal situation for the

followers.



168 CHAPTER 8. RESULTS

(a) Trajectory difference - speeding_attack with
rules

(b) Trajectory difference - speeding_attack no
rules

Figure 8.46: Trajectory difference - speeding_attack

Then, we have slowing_attack, presented in Figure 8.47. Here the behavior is very similar

to the one presented in the previous attack. The main difference is that this time, in Fig-

ure 8.47b, the LiDAR could not intervene, as the vehicles are going very slow. This means

that the trajectory difference is very high, and it increases with increasing time. Otherwise, in

Figure 8.47a, the behavior is almost identical to the one presented in speeding_attack.

(a) Trajectory difference - slowing_attack with
rules

(b) Trajectory difference - slowing_attack no rules

Figure 8.47: Trajectory difference - slowing_attack

Finally, we have swerve_attack, presented in Figure 8.48. Here, the difference between the

graphs is very noticeable. In Figure 8.48a, we can see that the rules work very well, as the

trajectory difference is minimal (<0.4). Otherwise, in Figure 8.48b, the trajectory difference

lines are similar to the previous cases, they arise with increasing time, reaching very high values.
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(a) Trajectory difference - swerve_attack with
rules

(b) Trajectory difference - swerve_attack no rules

Figure 8.48: Trajectory difference - swerve_attack

Turn

Here we report the results obtained for the turn attacks discussed before. We start from the

speeding_attack, presented in Figure 8.49. It is clearly visible the difference between graphs.

In Figure 8.49a, the trajectory difference is lower (below 2.00), the lines start increasing at

the start of the graph, when the vehicles recognize the attack and have to settle themselves.

Instead, in Figure 8.49b, the trajectory distance is higher, and it is increasing with increasing

time. This is probably due to a crash (caused by the high speed) or by a disconnection from

the platoon.

(a) Trajectory difference - speeding_attack with
rules

(b) Trajectory difference - speeding_attack no
rules

Figure 8.49: Trajectory difference - speeding_attack

Then, we have slowing_attack, presented in Figure 8.50. Here, we could see that in Fig-

ure 8.50a, we reach a peak around 20, then the following vehicles start adapting to the leader



170 CHAPTER 8. RESULTS

behaviour. This because, at the start, the vehicles recognize the attack, and have to settle

themselves in order to avoid following the forged passed data (in this case 0MPH, which means

not moving). This means that the following vehicles start with a delay, compared to the leader,

but they solve this problem over time. Instead, in Figure 8.50b, the vehicles start delayed (as

before), but they are not able to reach the leader behavior, as they use the forged data (such

that their computed speed is very low, as reported in the attack analysis). This means that

the trajectory distance will arise over time, until the vehicles disconnect from the platoon.

(a) Trajectory difference - slowing_attack with
rules

(b) Trajectory difference - slowing_attack no rules

Figure 8.50: Trajectory difference - slowing_attack

Then, we have no_steer_attack, presented in Figure 8.51. Here, we could see that the

rules work very well. In fact, in Figure 8.51a, the trajectory distance is very low, reaching

a maximum peak of around 1.2. Otherwise, in Figure 8.51b, the difference arises over time,

meaning that the following vehicles are not able to follow the leader trajectory. In fact, they

use the forged yaw (fixed to 180), that forces the vehicles in going straight, out of road.

Finally, we have opposite_turn_attack, presented in Figure 8.52. Here, the behavior is

very similar to the one described previously in no_steer_attack. In fact, in Figure 8.52a, the

distance is negligible, reaching a maximum peak of 0.8, while in Figure 8.52b the distance is

higher, arising over time. The reasons are the same as before. The following vehicles use the

forged yaw data, which forces them to take a fake turn, leading them out of road.
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(a) Trajectory difference - no_steer_attack with
rules

(b) Trajectory difference - no_steer_attack no
rules

Figure 8.51: Trajectory difference - no_steer_attack

(a) Trajectory difference - opposite_turn_attack
with rules

(b) Trajectory difference - opposite_turn_attack
no rules

Figure 8.52: Trajectory difference - opposite_turn_attack

Roundabout

Here we report the results obtained for the turn attacks discussed before. We start from the

speeding_attack, presented in Figure 8.53 (for the first exit) and Figure 8.54 (for the third

one). It is clearly visible the difference between graphs. In both cases, Figure 8.53a and

Figure 8.54a, the trajectory difference is lower (below 2.00). Instead, in Figures 8.53b and 8.54b,

the trajectory distance is higher, and it is increasing with increasing time. Both the graphs are

similar in trend, they have an almost "stationary" phase, then the lines arise to higher values.

This is probably due to a crash (caused by the high speed) or by a disconnection from the

platoon.
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(a) Trajectory difference - speeding_attack with
rules - 1st exit

(b) Trajectory difference - speeding_attack no
rules - 1st exit

Figure 8.53: Trajectory difference - speeding_attack - 1st exit

(a) Trajectory difference - speeding_attack with
rules - 3rd exit

(b) Trajectory difference - speeding_attack no
rules - 3rd exit

Figure 8.54: Trajectory difference - speeding_attack - 3rd exit

Then, we have slowing_attack, presented in Figure 8.55 (for the first exit) and Figure 8.56

(for the third one). Here, we could see that in both Figures (8.55a and 8.56a), we have a

peak around 40, where the vehicles hit the maximum distance. This because, at the start,

the vehicles recognize the attack, and have to settle themselves in order to avoid following

the forged passed data (in this case 0MPH, which means not moving). This means that the

following vehicles start with a delay, compared to the leader, but they solve this problem over

time. Instead, in Figures 8.55b and 8.56b, the vehicles start delayed (as before), but they are

not able to reach the leader behavior, as they use the forged data (such that their computed

speed is very low, as reported in the attack analysis). This means that the trajectory distance

will arise over time, until the vehicles disconnect from the platoon.
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(a) Trajectory difference - slowing_attack with
rules - 1st exit

(b) Trajectory difference - slowing_attack no rules
- 1st exit

Figure 8.55: Trajectory difference - slowing_attack - 1st exit

(a) Trajectory difference - slowing_attack with
rules - 3rd exit

(b) Trajectory difference - slowing_attack no rules
- 3rd exit

Figure 8.56: Trajectory difference - slowing_attack - 3rd exit

Finally, we have fake_turn_attack, presented in Figure 8.57 (for the first exit) and Fig-

ure 8.58 (for the third one). As highlighted before, the results for the first and third exits are

similar. In fact, in both Figure 8.57a and 8.58a the distance is very low, in particular in the

first one, when is limited to 0.25. In the second graph, we reach a peak of 1.2 (a very good

result), a bit higher than the other trial probably due to the higher complexity of the scenario.

Otherwise, in both Figure 8.57b and 8.58b, the trend is opposite. The lines arise over time,

which means that the trajectory difference increases as the leader moves, until the followers

crash or disconnect from the platoon.
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(a) Trajectory difference - fake_turn_attack with
rules - 1st exit

(b) Trajectory difference - fake_turn_attack no
rules - 1st exit

Figure 8.57: Trajectory difference - fake_turn_attack - 1st exit

(a) Trajectory difference - fake_turn_attack with
rules - 3rd exit

(b) Trajectory difference - fake_turn_attack no
rules - 3rd exit

Figure 8.58: Trajectory difference - fake_turn_attack - 3rd exit

Crossroad

Here we report the results obtained for the turn attacks discussed before. We start from the

speeding_attack, presented in Figure 8.59 (for the straight direction) and Figure 8.60 (for the

right turn). It is clearly visible the difference between graphs. In both cases, Figure 8.59a and

Figure 8.60a, the trajectory difference is lower (below 12.00). The followers’ vehicles also restart

from the stop line with a little delay, compared to the leader, visible by the second lines’ peaks,

around 12 for the second follower. Instead, in Figures 8.59b and 8.60b, the trajectory distance

is higher, and it is increasing with increasing time. Both the graphs are similar in trend, they

have an almost "stationary" phase, then the lines decrease, just before arise to higher values.
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In this case, we have a noticeable difference also in leader’s trajectory. This is probably due to

a crash (caused by the high speed) of the vehicles, that involved also the leader.

(a) Trajectory difference - speeding_attack with
rules - straight

(b) Trajectory difference - speeding_attack no
rules - straight

Figure 8.59: Trajectory difference - speeding_attack - straight

(a) Trajectory difference - speeding_attack with
rules - right

(b) Trajectory difference - speeding_attack no
rules - right

Figure 8.60: Trajectory difference - speeding_attack - right

Then, we have fake_turn_attack, presented in Figure 8.61. Here, we retrieve a huge differ-

ence between graphs. In fact, in Figure 8.61a, the distance is negligible, reaching a maximum

peak of 0.6, while in Figure 8.61b the distance is higher, arising over time. The reason is that

the following vehicles use the forged yaw data, which forces them to take a fake turn, leading

them out of road, while the leader is going straight.
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(a) Trajectory difference - fake_turn_attack with
rules

(b) Trajectory difference - fake_turn_attack no
rules

Figure 8.61: Trajectory difference - fake_turn_attack

Finally, we have opposite_turn_attack, presented in Figure 8.62 (for the left turn) and

Figure 8.63 (for the right turn). In this case, we obtain very good results for both the ruled

scenarios. In fact, in both Figure 8.62a and 8.63a the distance is very low, in the first one is

below 0.1, while in the second graph we reach a maximum peak of 0.175. Otherwise, in both

Figure 8.62b and 8.63b, the trend is opposite. The difference arise over time, which means that

the trajectory distance increases as the leader moves, until the followers crash or disconnect

from the platoon.

(a) Trajectory difference - opposite_turn_attack
with rules - left turn

(b) Trajectory difference - opposite_turn_attack
no rules - left turn

Figure 8.62: Trajectory difference - opposite_turn_attack - left turn
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(a) Trajectory difference - opposite_turn_attack
with rules - right turn

(b) Trajectory difference - opposite_turn_attack
no rules - right turn

Figure 8.63: Trajectory difference - opposite_turn_attack - right turn

Hairpin

Here we report the results obtained for the turn attacks discussed before. We start from the

speeding_attack, presented in Figure 8.64. It is clearly visible the difference between graphs.

In Figure 8.64a, the trajectory difference is lower (below 1.2). Instead, in Figure 8.64b, the

trajectory distance is higher, and it is increasing with increasing time. In this particular case,

also the leader line is increasing, which means that also the leader trajectory is varying. This

is due to a crash (caused by the high speed), as described in the attack study case.

(a) Trajectory difference - speeding_attack with
rules

(b) Trajectory difference - speeding_attack no
rules

Figure 8.64: Trajectory difference - speeding_attack

Then, we have slowing_attack, presented in Figure 8.65. Here, we could see that in Fig-

ure 8.65a, we have a maximum peak around 0.2, not noticeable in the simulations. Instead,
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in Figure 8.65b, the vehicles start delayed, but they are not able to reach the leader behavior,

as they use the forged data (such that their computed speed is very low, as reported in the

attack analysis). This means that the trajectory distance will arise over time, until the vehicles

disconnect from the platoon.

(a) Trajectory difference - slowing_attack with
rules

(b) Trajectory difference - slowing_attack no rules

Figure 8.65: Trajectory difference - slowing_attack

Then, we have opposite_turn_attack, presented in Figure 8.66. Here, we could see that

the rules work very well. In fact, in Figure 8.66a, the trajectory distance is very low, reaching

a maximum peak of around 0.1. Otherwise, in Figure 8.66b, the difference arises over time,

meaning that the following vehicles are not able to follow the leader trajectory. In fact, they

use the forged yaw (fixed to 180), that forces the vehicles in going straight, out of road.

(a) Trajectory difference - opposite_turn_attack
with rules

(b) Trajectory difference - opposite_turn_attack
no rules

Figure 8.66: Trajectory difference - opposite_turn_attack

Finally, we have no_steer_attack, presented in Figure 8.67. Here, the behavior is very
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similar to the one described previously in opposite_turn_attack. In fact, in Figure 8.67a, the

distance is negligible, reaching a maximum peak of 0.3, while in Figure 8.67b the distance is

higher, arising over time. The reasons are the same as before. The following vehicles use the

forged yaw data, which forces them to take a fake turn, leading them out of road.

(a) Trajectory difference - no_steer_attack with
rules

(b) Trajectory difference - no_steer_attack no
rules

Figure 8.67: Trajectory difference - no_steer_attack

8.8 Conclusions

The goal of this work is to find rules or policies, such that a platooning model can be safely

implemented. In addition to this, these policies must also be able to implement a resilience

mechanism, through which the member(s) of the platoon under attack are able to not only

detect the malfunction, but also to fix it and allow the entire platoon to return fully operational

without the intervention of a further external entity. In our ideal, all this must take place with

the use of "low-cost" technologies, i.e., not expensive (in terms of resources and economically), in

order to develop a sustainable model, without using complex sensor fusion, machine learning,

and similar mechanisms. To this end, we have selected five of the most frequent scenarios

in everyday driving, we have reasoned on the possible vulnerabilities and, having established

the cornerstones of the project, we have begun to define the aforementioned rules. Once

perfected and refined, it was time to move on to the testing phase. To do this, we have

implemented several attacks, each aimed at triggering one or more rules, and we have reported

the results obtained, seasoned with a short discussion. To date, platoon techniques are still in

full development, aiming for an increasingly green and economical automotive world. There
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are still many unknowns and problems to be solved, before being able to develop an efficient

technology to offer to the general public, first of all, the security issue, dealt with in this

thesis work, which we hope will be a valid alternative among the various currently available

proposals.



Appendix A

Code Snippets

Full code available on Github repository: https://github.com/lorentz9819/Attack-Detec

tion-and-Resiliency-Policies-for-AV-Platoons

A.1 platooning.py

1 import carla
2 import math
3 import numpy as np
4 from cloud import SafeCloud
5

6 def sign(number):
7 if number>=0: return 1
8 else: return -1
9

10 class PlatoonMember:
11 def __init__(self, vehicle: carla.Vehicle):
12 self.vehicle = vehicle
13 tr = self.vehicle.get_transform()
14 con = self.vehicle.get_control()
15 vel = self.vehicle.get_velocity()
16 self.x = tr.location.x
17 self.y = tr.location.y
18 self.z = tr.location.z
19 self.yaw = tr.rotation.yaw
20 self.speed = 3.6*math.sqrt(vel.x**2 + vel.y**2 + vel.z**2)
21 self.throttle = con.throttle
22 self.steer = con.steer
23 self.brake = con.brake

https://github.com/lorentz9819/Attack-Detection-and-Resiliency-Policies-for-AV-Platoons
https://github.com/lorentz9819/Attack-Detection-and-Resiliency-Policies-for-AV-Platoons
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24 self.cloud: SafeCloud = None
25 self.waypoints = []
26

27 def update_position(self):
28 tr = self.vehicle.get_transform()
29 con = self.vehicle.get_control()
30 vel = self.vehicle.get_velocity()
31 self.x = tr.location.x
32 self.y = tr.location.y
33 self.z = tr.location.z
34 self.yaw = tr.rotation.yaw
35 self.speed = 3.6*math.sqrt(vel.x**2 + vel.y**2 + vel.z**2)
36 self.throttle = con.throttle
37 self.steer = con.steer
38 self.brake = con.brake
39

40 def get_pos(self):
41 return self.x, self.y
42

43 def get_speed(self):
44 return self.speed
45

46 class Follower(PlatoonMember):
47 def __init__(self, vehicle:carla.Vehicle):
48 super().__init__(vehicle)
49 self.speedGoal = 0.0
50 self.last_t = 0.0
51 self.big_dist = False
52 self.leader_dist = 0.0
53 self.safe_dist = 12.0
54 self.override_brake = False
55 self.leader: PlatoonMember = None
56

57 def set_leading_vehicle(self, lead:PlatoonMember):
58 if not self.leader:
59 self.leader = lead
60

61 def update_position(self):
62 super().update_position()
63 x = self.x
64 y = self.y
65 tx,ty = self.leader.get_pos()
66 self.leader_dist = ((x-tx)**2 + (y-ty)**2)**(1/2)
67 self.safe_dist = max(12.0, self.speed/2)
68 if self.leader_dist > self.safe_dist: self.big_dist = True
69 else: self.big_dist = False
70
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71 def connect_to_cloud(self, sc: SafeCloud):
72 if not self.cloud:
73 self.cloud = sc
74 sc.add_members(self)
75

76 def check_lidar(self,points):
77 detection=False
78 blinded=False
79 danger_dist = self.speed/5
80 for p in points:
81 if p.point.x<max(3,danger_dist):
82 if p.point.x < 0.5:
83 blinded = True
84 detection = False
85 print("Points = ", p.point.x)
86 else:
87 detection=True
88 print("LiDAR triggered")
89 self.override_brake=detection
90 self.blinded=blinded
91

92 def IMU_callback(self, sensor_data):
93 limits = (-99.9, 99.9)
94 self.accelerometer = (
95 max(limits[0], min(limits[1], sensor_data.accelerometer.x)),
96 max(limits[0], min(limits[1], sensor_data.accelerometer.y)),
97 max(limits[0], min(limits[1], sensor_data.accelerometer.z)))
98 self.gyroscope = (
99 max(limits[0], min(limits[1], math.degrees(sensor_data.gyroscope.x))),

100 max(limits[0], min(limits[1], math.degrees(sensor_data.gyroscope.y))),
101 max(limits[0], min(limits[1], math.degrees(sensor_data.gyroscope.z))))
102 self.compass = math.degrees(sensor_data.compass)
103

104 def add_waypoint(self, wp):
105 self.waypoints.append(wp)
106

107 def set_speed_goal(self, s):
108 self.speedGoal = s
109

110 def define_throttle(self, sg, ss, wp):
111 delta = sg - ss
112 t = b = 0.0
113 if self.speedGoal>0.04:
114 if (delta>0):
115 boost = 0.4 if self.big_dist else 0.0
116 t = (delta/10 + boost) if (delta/10 + boost) <= 1.0 else 1.0
117 else:
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118 t = self.last_t
119 if not self.big_dist:
120 t = 0.0
121 b = -delta/10 if -delta/10 <= 1.0 else 1.0
122 else:
123 if self.big_dist:
124 t = 0.2
125 else:
126 b = 0.8
127 self.last_t=t
128 return t, b
129

130 def define_steer(self, wp, x, y, ya):
131 if self.speed<=0.03: return 0.0
132 rl = wp
133 fx = x
134 fy = y
135 rel_yaw = yaw = ya
136 s=0.0
137 delta = delta_x = delta_y = 1000
138 rel_x = rel_y = 0
139 for row in reversed(rl):
140 lx = row[0]
141 ly = row[1]
142 lyaw = row[2]
143 gyro = row[5]
144 accx = row[4]
145 accy = row[6]
146 accz = row[7]
147 toll = (0.1**2+0.1**2)**(1/2)
148 diff = ((fx-lx)**2 + (fy-ly)**2)**(1/2)
149 if diff <= toll:
150 s=row[3]
151 if lyaw<-90 and yaw>90:
152 corr=(lyaw-yaw+360)/60
153 elif lyaw>90 and yaw<-90:
154 corr=(lyaw-yaw-360)/60
155 else:
156 corr=(lyaw-yaw)/60
157 if corr > 1.0: corr = 1.0
158 elif corr < -1.0: corr = -1.0
159 s+=corr
160 if s>1.0:
161 s=1.0
162 elif s<-1.0:
163 s=-1.0
164 return s
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165 else:
166 if diff < delta:
167 rel_y = ly
168 rel_x = lx
169 delta = diff
170 rel_yaw = lyaw
171 if abs(lx-fx) < delta_x:
172 delta_x = abs(lx-fx)
173 if abs(ly-fy) < delta_y:
174 delta_y = abs(ly-fy)
175 lyaw = rel_yaw
176 corr = (lyaw-yaw)/90
177 if abs(lyaw)<=5: #going east
178 s=(rel_y-fy)/10
179 if s>1.0: s=1.0
180 elif s<-1.0: s=-1.0
181 if corr>1.0: corr = 1.0
182 elif corr<-1.0: corr = -1.0
183 s+=corr
184 elif abs(lyaw)>=175: #going ovest
185 if lyaw>90 and yaw<-90:
186 corr-=4
187 s=(fy-rel_y)/10
188 if s>1.0: s=1.0
189 elif s<-1.0: s=-1.0
190 if corr>1.0: corr = 1.0
191 elif corr<-1.0: corr = -1.0
192 s+=corr
193 elif lyaw<-90 and yaw>90:
194 corr+=4
195 s=(fy-rel_y)/10
196 if s>1.0: s=1.0
197 elif s<-1.0: s=-1.0
198 if corr>1.0: corr = 1.0
199 elif corr<-1.0: corr = -1.0
200 s+=corr
201 else:
202 s=(fy-rel_y)/10
203 if s>1.0: s=1.0
204 elif s<-1.0: s=-1.0
205 if corr>1.0: corr = 1.0
206 elif corr<-1.0: corr = -1.0
207 s+=corr
208 elif lyaw<95 and lyaw>85: #going south
209 s=(fx-rel_x)/10
210 if s>1.0: s=1.0
211 elif s<-1.0: s=-1.0



186 APPENDIX A. CODE SNIPPETS

212 if corr>1.0: corr = 1.0
213 elif corr<-1.0: corr = -1.0
214 s+=corr
215 elif lyaw>-95 and lyaw<-85: #going north
216 s=(rel_x-fx)/10
217 if s>1.0: s=1.0
218 elif s<-1.0: s=-1.0
219 if corr>1.0: corr = 1.0
220 elif corr<-1.0: corr = -1.0
221 s+=corr
222 else:
223 if yaw>-180 and yaw<=-90:
224 if sign(rel_x)==sign(fx): fx=-fx
225 xs = (rel_x-fx)/20
226 if xs > 1.0: xs = 1.0
227 elif xs < -1.0: xs = -1.0
228 if sign(rel_y)==sign(fy): rel_y=-rel_y
229 ys = (fy-rel_y)/20
230 if ys > 1.0: ys = 1.0
231 elif ys < -1.0: ys = -1.0
232 elif yaw>-90 and yaw<=0:
233 if sign(rel_x)==sign(fx): fx=-fx
234 xs = (rel_x-fx)/20
235 if xs > 1.0: xs = 1.0
236 elif xs < -1.0: xs = -1.0
237 if sign(rel_y)==sign(fy): fy=-fy
238 ys = (rel_y-fy)/20
239 if ys > 1.0: ys = 1.0
240 elif ys < -1.0: ys = -1.0
241 elif yaw>0 and yaw<=90:
242 if sign(rel_x)==sign(fx): rel_x=-rel_x
243 xs = (fx-rel_x)/20
244 if xs > 1.0: xs = 1.0
245 elif xs < -1.0: xs = -1.0
246 if sign(rel_y)==sign(fy): fy=-fy
247 ys = (rel_y-fy)/20
248 if ys > 1.0: ys = 1.0
249 elif ys < -1.0: ys = -1.0
250 elif yaw>90 and yaw<=180:
251 if sign(rel_x)==sign(fx): rel_x=-rel_x
252 xs = (fx-rel_x)/20
253 if xs > 1.0: xs = 1.0
254 elif xs < -1.0: xs = -1.0
255 if sign(rel_y)==sign(fy): rel_y=-rel_y
256 ys = (fy-rel_y)/20
257 if ys > 1.0: ys = 1.0
258 elif ys < -1.0: ys = -1.0
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259 s = (xs+ys)
260 if s>1.0: s=1.0
261 elif s<-1.0: s=-1.0
262 if lyaw>90 and yaw<-90:
263 corr=(lyaw-yaw-360)/60
264 if corr>1.0: corr = 1.0
265 elif corr<-1.0: corr = -1.0
266 s+=corr
267 elif lyaw<-90 and yaw>90:
268 corr=(lyaw-yaw+360)/60
269 if corr>1.0: corr = 1.0
270 elif corr<-1.0: corr = -1.0
271 s+=corr
272 else:
273 corr=(lyaw-yaw)/60
274 if corr>1.0: corr = 1.0
275 elif corr<-1.0: corr = -1.0
276 s+=corr
277 if s>1.0: s=1.0
278 elif s<-1.0: s=-1.0
279 return s
280

281 def move(self):
282 self.update_position()
283 self.cloud.retrieve_check_data(self)
284 self.control()
285

286 def control(self):
287 t = s = b = 0.0
288 if self.override_brake:
289 control = carla.VehicleControl(throttle=0, steer=0, brake=1.0)
290 else:
291 wp = self.waypoints
292 x = self.x
293 y = self.y
294 ya = self.yaw
295 s = self.define_steer(wp, x, y, ya)
296 sg = self.speedGoal
297 ss = self.speed
298 t, b = self.define_throttle(sg, ss, wp)
299 control = carla.VehicleControl(throttle=t, steer=s, brake=b)
300 self.vehicle.apply_control(control)
301

302 class Leader(PlatoonMember):
303 def __init__(self, vehicle: carla.Vehicle):
304 super().__init__(vehicle)
305 self.followers = []
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306

307 def connect_to_cloud(self, sc: SafeCloud):
308 if not self.cloud:
309 self.cloud = sc
310 sc.set_leader(self)
311

312 def addFollower(self, f: Follower):
313 self.followers.append(f)
314

315 def move(self):
316 self.update_position()
317 self.update_follower()
318

319 def IMU_callback(self, sensor_data):
320 limits = (-99.9, 99.9)
321 self.accelerometer = (
322 max(limits[0], min(limits[1], sensor_data.accelerometer.x)),
323 max(limits[0], min(limits[1], sensor_data.accelerometer.y)),
324 max(limits[0], min(limits[1], sensor_data.accelerometer.z)))
325 self.gyroscope = (
326 max(limits[0], min(limits[1], math.degrees(sensor_data.gyroscope.x))),
327 max(limits[0], min(limits[1], math.degrees(sensor_data.gyroscope.y))),
328 max(limits[0], min(limits[1], math.degrees(sensor_data.gyroscope.z))))
329 self.compass = math.degrees(sensor_data.compass)
330

331 def update_follower(self):
332 self.waypoints.append([self.x, self.y, self.yaw, self.steer])
333 for follower in self.followers:
334 if self.speed>0.03:
335 follower.add_waypoint([self.x, self.y, self.yaw, self.steer])
336 follower.set_speed_goal(self.speed)
337
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A.2 cloud.py

1 class SafeCloud:
2

3 def __init__(self):
4 self.members =[]
5 self.leader = None
6 self.check_args=[]
7

8 def set_leader(self, l):
9 if not self.leader:

10 self.leader=l
11 print("Leader set.")
12

13 def add_members(self, m):
14 if len(self.members)>0:
15 l = self.members[-1]
16 elif self.leader!=None:
17 l = self.leader
18 else:
19 print("No leader available")
20 return
21 m.set_leading_vehicle(l)
22 self.members.append(m)
23 print("Connected followers:",len(self.members))
24 self.leader.addFollower(m)
25

26 def retrieve_check_data(self,vehicle):
27 for elem in self.members:
28 if vehicle==elem:
29 wp = elem.waypoints
30 x = elem.vehicle.get_transform().location.x
31 y = elem.vehicle.get_transform().location.y
32 ya = elem.vehicle.get_transform().rotation.yaw
33 sg = self.leader.speed
34 ss = elem.speed
35 self.check_args=[wp,x,y,ya,sg,ss]
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A.3 scenario.py

1 import glob
2 import os
3 import sys
4 import random
5 import weakref
6 from threading import Thread
7 from time import sleep
8

9 try:
10 sys.path.append(glob.glob('../carla/dist/carla-*%d.%d-%s.egg' % (
11 sys.version_info.major,
12 sys.version_info.minor,
13 'win-amd64' if os.name == 'nt' else 'linux-x86_64'))[0])
14 except IndexError:
15 pass
16

17 import carla
18 from platooning import Follower, Leader
19 from cloud import SafeCloud
20

21 actor_list = []
22 platoon_members = []
23 traffic = [None]*10
24

25 try:
26 #***********************
27 #---CONNECT TO SERVER---
28 #***********************
29 client = carla.Client('localhost', 2000)
30 client.set_timeout(5.0)
31 client.load_world('TownXX')
32 client.reload_world()
33 world = client.get_world()
34 settings = world.get_settings()
35 settings.fixed_delta_seconds = 0.01
36 settings.synchronous_mode = True
37 world.apply_settings(settings)
38

39 blueprint_library = world.get_blueprint_library()
40

41 cloud = SafeCloud()
42

43 #*******************
44 #---TRASH CLEANUP---
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45 #*******************
46 for v in world.get_actors():
47 if isinstance(v, carla.Vehicle):
48 v.destroy()
49

50 #****************
51 #---CARS SETUP---
52 #****************
53 spawn = carla.Transform(carla.Location(x=XXX.XX, y=-XXX.XX, z=XXX.XX),
54 carla.Rotation(pitch=XXX.XX, yaw=XXX.XX, roll=XXX.XX))
55 model3 = blueprint_library.filter('model3')[0]
56

57 #*****************
58 #---LIDAR SETUP---
59 #*****************
60 sensor_spawn = carla.Transform(carla.Location(x=2.5, z=0.8))
61 lidar_bp = blueprint_library.find('sensor.lidar.ray_cast')
62 lidar_bp.set_attribute('rotation_frequency','100')
63 lidar_bp.set_attribute('horizontal_fov','45')
64 lidar_bp.set_attribute('upper_fov','5')
65 lidar_bp.set_attribute('lower_fov','-5')
66 lidar_bp.set_attribute('range','20.0')
67

68 #*****************
69 #----IMU SETUP----
70 #*****************
71 imu_bp = blueprint_library.find('sensor.other.imu')
72

73 #******************
74 #---SPAWN LEADER---
75 #******************
76 PlatooningLeader = world.spawn_actor(model3, spawn)
77 PlatooningLeader.set_autopilot(True)
78 actor_list.append(PlatooningLeader)
79 ImuLeader = world.spawn_actor(imu_bp, sensor_spawn, attach_to=PlatooningLeader)
80 actor_list.append(ImuLeader)
81 ImuLeader.accelerometer = (0.0, 0.0, 0.0)
82 ImuLeader.gyroscope = (0.0, 0.0, 0.0)
83 ImuLeader.compass = (0.0)
84 leader = Leader(PlatooningLeader)
85 leader.connect_to_cloud(cloud)
86 world.on_tick(lambda snap: Thread(leader.move()).start())
87 ImuLeader.listen(lambda sensor_data: leader.IMU_callback(sensor_data))
88

89 #********************
90 #---SPAWN FOLLOWER---
91 #********************
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92 spawn.location.X -= 12
93 model3.set_attribute('color','255,0,0')
94 PlatooningFollower = world.spawn_actor(model3, spawn)
95 actor_list.append(PlatooningFollower)
96 ImuFollower = world.spawn_actor(imu_bp, sensor_spawn,
97 attach_to=PlatooningFollower)
98 actor_list.append(ImuFollower)
99 ImuFollower.accelerometer = (0.0, 0.0, 0.0)

100 ImuFollower.gyroscope = (0.0, 0.0, 0.0)
101 ImuFollower.compass = (0.0)
102 LidarFollower = world.spawn_actor(lidar_bp, sensor_spawn,
103 attach_to=PlatooningFollower)
104 actor_list.append(LidarFollower)
105 follower = Follower(PlatooningFollower)
106 follower.connect_to_cloud(cloud)
107 platoon_members.append(follower)
108 world.on_tick(lambda snap: Thread(follower.move()).start())
109 LidarFollower.listen(lambda points: follower.check_lidar(points))
110 ImuFollower.listen(lambda sensor_data: follower.IMU_callback(sensor_data))
111

112 #*********************
113 #---SPAWN FOLLOWER2---
114 #*********************
115 spawn.location.X -= 12
116 model3.set_attribute('color','0,255,0')
117 PlatooningFollower2 = world.spawn_actor(model3, spawn)
118 actor_list.append(PlatooningFollower2)
119 ImuFollower2 = world.spawn_actor(imu_bp, sensor_spawn,
120 attach_to=PlatooningFollower2)
121 actor_list.append(ImuFollower2)
122 ImuFollower2.accelerometer = (0.0, 0.0, 0.0)
123 ImuFollower2.gyroscope = (0.0, 0.0, 0.0)
124 ImuFollower2.compass = (0.0)
125 LidarFollower2 = world.spawn_actor(lidar_bp, sensor_spawn,
126 attach_to=PlatooningFollower2)
127 actor_list.append(LidarFollower2)
128 follower2 = Follower(PlatooningFollower2)
129 follower2.connect_to_cloud(cloud)
130 platoon_members.append(follower2)
131 world.on_tick(lambda snap: Thread(follower2.move()).start())
132 LidarFollower2.listen(lambda points: follower2.check_lidar(points))
133 ImuFollower2.listen(lambda sensor_data: follower2.IMU_callback(sensor_data))
134

135 #*********************************
136 #---POINT CAMERA TO SPAWN POINT---
137 #*********************************
138 trans = spawn
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139 trans.location.x -= 12
140 trans.location.z = 70
141 trans.rotation.pitch=-90
142 trans.rotation.yaw=0
143 trans.rotation.roll=0
144 world.get_spectator().set_transform(trans)
145

146 while True:
147 world.tick()
148

149 #Position
150 x_lead, y_lead = leader.get_pos()
151 x_fol1, y_fol1 = follower.get_pos()
152 x_fol2, y_fol2 = follower2.get_pos()
153 with open('xtraf1.txt','a') as f:
154 print(x_fol1, file = f)
155 with open('ytraf1.txt','a') as g:
156 print(y_fol1, file = g)
157 with open('xtraf2.txt','a') as h:
158 print(x_fol2, file = h)
159 with open('ytraf2.txt','a') as j:
160 print(y_fol2, file = j)
161 with open('xlead.txt','a') as k:
162 print(x_lead, file = k)
163 with open('ylead.txt','a') as l:
164 print(y_lead, file = l)
165

166 #Speed
167 slead = leader.get_speed()
168 sfol1 = follower.get_speed()
169 sfol2 = follower2.get_speed()
170 with open('slead.txt','a') as m:
171 print(slead, file = m)
172 with open('sfol1.txt','a') as n:
173 print(sfol1, file = n)
174 with open('sfol2.txt','a') as o:
175 print(sfol2, file = o)
176

177 except KeyboardInterrupt:
178 pass
179

180 finally:
181 print('destroying actors')
182 client.apply_batch([carla.command.DestroyActor(x) for x in actor_list])
183 print('done.')
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