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Abstract
The transition from prediabetes to Type 2 Diabetes Mellitus (T2DM) is character-

ized by defects in insulin secretion and glucagon suppression in response to glucose.
However, simultaneous estimation of both hormones actions on endogenous glu-
cose production (EGP) remains a challenge. A mathematical model that fulfill this
need, may be helpful to better describe the pathophysiology of T2DM. In particular,
it would be useful to understand how and how much impaired glucagon secretion
influences the progression of the disease from a prediabetes condition. To address
this, we studied 36 non-diabetic subjects on 2 occasions when endogenous hormone
secretion was inhibited by somatostatin. Glucagon was infused at 0.65 ng/kg/min,
at 0 min to prevent a fall in its concentration (non-suppressed day - NS) or at 120min
to create a transient fall (suppressed day - S). [3-3H]-glucose was infused to mimic
an oral glucose challenge together with a prandial insulin infusion – one group re-
ceived the full dose (1.0 Ins group), another 80% (0.8 Ins group) and another 60%
(0.6 Ins group). We testedmathematical models describing EGP as a function of glu-
cose, insulin and glucagon concentrations. Both linear and non linear interactions
between hormones were tested. The optimal model assumes that EGP is suppressed
by the linear actions of glucose, its rate of change and insulin in a remote compart-
ment, while plasma glucagon stimulated EGP through a parameter that represent
hepatic glucagon sensitivity (𝑆𝐺𝑛). The glucagon evanescent effect was included in
the model. With 60% insulin replacement (corresponding to severely impaired in-
sulin secretion), 𝑆𝐺𝑛 was significantly higher than with 80% (slightly impaired) and
100% replacement (p-value = 0.024). This demonstrates that glucagon action on EGP
is modulated by insulin concentrations, emphasizing the need to quantify secretion
and action of both hormones when measuring postprandial pancreatic islets func-
tion.





Sommario
La transizione da una condizione di prediabete allo sviluppo del diabete mellito

di tipo due (T2DM) è caratterizzata da una compromissione della secrezione di in-
sulina e della soppressione del glucagone in risposta al glucosio. Tuttavia, la stima
simultanea dell’ azione di entrambi gli ormoni sulla produzione endogena di glu-
cosio (EGP) resta una sfida. Un modello matematico che soddisfa questa richiesta
potrebbe aiutare a comprendere meglio la patofisiologia del T2DM. In particolare,
considerando come l’imperfetta secrezione di glucagone influenza la progressione
della malattia da una condizione di prediabete. Per risolvere questo problema, ab-
biamo studiato 36 pazienti non diabetici in due occasioni, dove la secrezione en-
dogena di ormoni era inibita dalla somatostatina. Il glucagone è stato infuso a 0.65
ng/kg/min, a 0min per prevenire un calo della sua concentrazione (giorno non sop-
presso - NS) o a 120 min per creare una riduzione momentanea (giorno soppresso
- S). [3-3H]-glucosio è stato infuso mimando un carico orale di glucosio assieme ad
una infusione prandiale di insulina – un gruppo ha ricevuto l’intera dose (gruppo
1.0 Ins), un altro l’80% (gruppo 0.8 Ins) e un altro il 60% (gruppo 0.6 Ins).
Abbiamo testato vari modelli matematici che descrivono l’ EGP in funzione delle
concentrazioni di glucosio, insulina e glucagone. Sono state testate sia interazioni
lineari sia non lineari tra gli ormoni. Il modello ottimale assume che l’ EGP sia sop-
presso da azioni lineari proporzionali al glucosio, la sua derivata e insulina in un
compartimento remoto, mentre il glucagone nel plasma stimola l’ EGP attraverso
un parametro che rappresenta la sensitività epatica al glucagone (𝑆𝐺𝑛). L’effetto
evanescenza del glucagone è stato incluso nel modello. Nel gruppo “0.6 Ins” (che
corrisponde a una severa compromissione della secrezione di insulina), 𝑆𝐺𝑛 è si-
gnificativamente più alto che nel gruppo “0.8 Ins” (compromissione leggera) e nel
gruppo “1.0 Ins” (p-value = 0.024). Questo dimostra che l’azione del glucagone su
EGP è modulata dalla concentrazione di insulina, enfatizzando la necessità di quan-
tificare la secrezione e l’azione di entrambi gli ormoni quando si misura la funzio-
nalità delle isole pancreatiche nel periodo post-pandriale.
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1
Introduction

1.1 THE GLUCOSE-INSULIN-GLUCAGON SYSTEM

Glucose is a monosaccharide, a simple sugar that is the primary source of en-
ergy of the body. It is metabolized by all tissues to fuel their activities. Based on
their glucose uptake, they can be classified in two groups. Glucose dependent tissues,
such as the brain and the red blood cells, need a continuous and fix sugar intake,
that is around 150 𝑔 per day in a normal subject [1]. Insulin dependent tissues, like
adipose andmuscular tissues, in which glucose utilization depends on insulin, since
the transport of glucose inside the cell is performed by a glucose transporter called
GLUT-4, which is synthesized only if insulin is present. Insulin is a hormone (a
chemical messenger) secreted by the 𝛽-cells of the islets of Langerhans, which are
regions of the pancreas. Insulin is released into the hepatic portal vein and after a
liver extraction, it reaches the circulation. The pancreas is able to sense plasma glu-
cose concentration and to adjust insulin secretion to it. Besides controlling glucose
uptake, insulin influences the endogenous glucose production (EGP) that mainly
comes from the liver. In particular, insulin inhibits EGP. Also the liver is a glucose-
sensing organ. Consequently, it can adjust EGP according to the glucose level in the
blood. Another hormone that has a role in the system is glucagon, that is secreted
by the 𝛼-cells of the islets of Langerhans. Like insulin, glucagon is released into the
hepatic portal vein and cleared by the kidneys [2]. Its main physiological action is
to stimulate the hepatic glucose production. Also glucagon secretion is regulated by
plasma glucose concentration.
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1.1. THE GLUCOSE-INSULIN-GLUCAGON SYSTEM

Figure 1.1: Schematic representation of the glucose regulatory system. Glucose is
endogenously produced by the liver and released into circulation. A glucose rise
inhibits its own production, stimulates 𝛽-cells to produce insulin and reduces the
glucagon secretion from 𝛼-cells. Both hormones are released into the circulation.
Themetabolic action of insulin is to reduce EGP and to increase the uptake of glucose
from insulin dependent tissues. Conversely, glucagon stimulates the liver to secrete
more glucose. Thus, insulin and glucagon are antagonist hormones.

The aim of this complex system is to maintain glycaemia, the blood glucose level,
inside a safety range, the euglycemia condition. As seen before, the glucose depen-
dent tissues require a constant intake of glucose. Consequently, if blood glucose
is not enough to fulfill the need, such tissues does not work properly. This condi-
tion is called hypoglycemia and it can lead to really dangerous conditions in the short
term, like coma or even death. Hypoglycemia arises when blood glucose is below
70 [𝑚𝑔/𝑑𝑙]. The opposite condition is, in turn, another risky scenario. When gly-
caemia is too high (glucose above 180 [𝑚𝑔/𝑑𝑙], called hyperglycemia condition) sev-
eral bad complications, e.g. cardiovascular diseases, hypertension and retinopathy,
may occur in the long term. As briefly described above, the body realizes the home-
ostasis of blood glucose level by means of a complex feedback mechanism, that is
the result of interactions among glucose, insulin and glucagon on their target tissues
(figure 1.1).
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CHAPTER 1. INTRODUCTION

ENDOGENOUS GLUCOSE PRODUCTION (EGP)

This thesis will focus on hormones action on EGP. Thus, a more detailed expla-
nation of the related physiology is presented.
The liver produces glucose through two processes: glycogenolysis and gluconeogene-
sis. Glycogenolysis is the degradation of glycogen, a polysaccharide of glucose that is
stored inside the liver, into glucose-1-phosphate; via dephosphorylation by the en-
zyme glycogen phosphorylase. Than, glucose-1-phosphate is converted to glucose-
6-phosphate by the enzyme phosphoglucomutase [3]. A final reaction, promoted by
the enzyme glucose 6-phosphatase, converts glucose-6-phosphate into glucose.
The second primary mechanism used by the body to maintain blood sugar level is
gluconeogenesis. The generation of glucose is the result of a metabolic pathway that
uses non-carbohydrate carbon substances, like glycerol, lactate, glutamine and ala-
nine to realize glucose-6-phosphate. Gluconeogenesis occurs also in the kidneys,
however the liver is the major contributor of EGP from both processes [4]. As high-
lighted before, insulin inhibits glucose production; nevertheless, its action only af-
fect glycogenolysis [5]. The primary effect of glucagon on the liver is promoting
glycogenolysis, enhancing the enzyme glycogen phosphorylase [6]. Gluconeogen-
esis is stimulated by glucagon only during prolonged hypoglycemia (more than 3
hours) [7]. Moreover, glucagon inhibits the synthesis of glycogen from blood glucose
(glycogenesis). A continuous glucagon stimulation of the liver produces an effect
that wanes over time. This physiological phenomenon is called glucagon evanescent
effect [8]. The causes of the reduction of glucagon action are still not clear. A possible
reason is the desensitization of receptors regulated by cyclic adenosine monophos-
phate (cAMP), that are responsible of the hepatic signaling cascade triggered by
glucagon [9]. Another reason might be the depletion of hepatic glycogen or a stim-
ulus mediation of the hypothalamus [10]. Otherwise, it may be a combination of all
these phenomena. A representation of the glucagon action on the liver is illustrated
in figure 1.2.
There is also a relation between glucagon and insulin actions. In fact, glucagon stim-
ulation on EGP dependents on insulin level. When plasma insulin concentration is
high, the hepatic response to glucagon is mitigated [11]. Conversely, it seems that
ambient glucose level does not influence glucagon action on the liver [12].
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1.1. THE GLUCOSE-INSULIN-GLUCAGON SYSTEM

Figure 1.2: Simplified version of glucagon (Gn) and insulin (Ins) action model on
the liver. Glucagon stimulates endogenous glucose (G) production (EGP) increas-
ing glycogenolysis and gluconeogenesis and inhibiting glycogenesis. Insulin action
reduces EGP via glycogenolysis inhibition, and promotes filling of glycogen (Gly)
reserves enhancing glycogenesis. Glucose-6-phosphate (G6P) is converted into glu-
cose and secreted into circulation thanks to enzyme glucose 6-phosphatase.

DIABETES MELLITUS

As seen before, the aim of the glucose regulatory system is to maintain glucose
homeostasis and so, to avoid hypoglycemia and hyperglycemia conditions. When
the human body is not able to properly control blood sugar level, it is affected by
a chronic disorder, called Diabetes mellitus (DM) or simply diabetes. There are two
types of diabetes. Type 1 diabetes mellitus (T1DM) is caused by an autoimmune de-
struction of the 𝛽-cells of the pancreas. Consequently, there is absence of endoge-
nous insulin secretion. It affects around 5%-10% of all patients with DM and it is
typically diagnosed in children and adolescents [13]. Type 2 diabetes mellitus (T2DM)
is distinguished by impaired glucagon suppression (IGS) and defective insulin se-
cretion in the postprandial period (after the consumption of a meal). It is caused by
a mix of genetic variations and environmental factors. Obesity, ageing, unhealthy
and sedentary lifestyle are risk factors for the development of T2DM [14]. In the
U.S. alone, T2DM is expected to increase by more than 50% in 2030 with respect to
2015. DM is considered a global pandemic and a major health crisis with the need of
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CHAPTER 1. INTRODUCTION

increasing medical and societal costs [15]. A metabolic state in between an healthy
condition and T2DM is called prediabetes. It is characterized by increased plasma
glucose concentrations both during fasting and after a two hours standard 75 g oral
glucose tolerance test (OGTT). In particular, Impaired Fasting Glucose (IFG) subjects
have fasting blood sugar level between 5.6 and 6.9 [mmol/l] and Impaired Glucose
Tolerance (IGT) subjects have a blood glucose between 7.8 and 11.0 [mmol/l] after
2h from OGTT. To prevent DM development, it is essential to understand which fac-
tors are predominant risks of conversion from prediabetes to T2DM. Consequently,
understanding the pathophysiology of the glucose regulatory system is crucial. In
non-diabetic subjects, a lack of postprandial glucagon suppression combined with
a reduced and delayed secretion of insulin caused hyperglycemia [16]. The same
happens in patients with type 2 diabetes after an oral test [17]. As a result, also
in pathological conditions, glucagon and insulin actions interact. In fact, abnormal
glucagon suppression has an effect on EGP only in presence of severely impaired in-
sulin secretion. Moreover, 𝛼-cell dysfunction is also associated with genetic variant
in the TCF7L2 gene [18]. Thus, it becomes clear that defective glucagon secretion
and its action on the liver is a key factor to monitor in T2DM prevention.

1.2 QUANTIFICATION OF THE GLUCOREGULATORY SYSTEM

Quantitative measurements of the glucoregulatory system can be derived with
easy calculations but rather complex and invasive experiments. For example, with
an approach called glucose clamp technique [19], it is possible to calculate a measure
of how good insulin is to reduce blood glucose level, the so called insulin sensitiv-
ity (𝑆𝑖). However, to better quantify the mechanisms of glucose regulation in the
body, in the past decades it became clear that a model based approach is needed. A
model is a mathematical description of the system under analysis that enables the
identification of nonmeasurable entities, such as the production of an hormone [20].
This more complex approach gives the possibility to derive more information with
simpler experiments (like the OGTT). Exploiting models, it was possible to quantify
𝑆𝑖 ([21], [22]), producing an estimation validated against the clamp technique (gold
standard) [23]. This formulation assumes that 𝑆𝑖 is the combination of two distinct
components: the disposal insulin sensitivity 𝑆𝐷𝑖 , i.e. the ability of insulin to pro-
mote glucose utilization and the hepatic insulin sensitivity 𝑆𝐿𝑖 , that quantify insulin
suppression action on EGP. Several models, that try to estimate separately the two
components are present in literature ([24],[25]). However, none of them takes into
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account glucagon action on EGP. As seen before, glucagon plays an important role
in the system, especially in presence of defective insulin secretion. Not considering
its action produces a systematic error in the estimation of 𝑆𝐿𝑖 . In recent years, models
that consider both hormone actions on the liver were developed ([12],[26],[27],[28]).
Several model structures were used to define the interaction between glucagon and
insulin on EGP,with different level of detail (from an overall approach to the descrip-
tion of hormone actions on single processes like glycogenolysis and gluconeogene-
sis). The experimental design onwhich thesemodelswere based varied substantially
and so did also their domain of validity. Moreover, they showcased some limitation
in fitting performance or they were not validated. For all this reasons, simultaneous
estimation of both hormones actions on EGP remains a challenge.

1.3 AIM OF THE THESIS

The goal of this work is to develop a mathematical model of endogenous glu-
cose production (EGP) to quantify simultaneously hepatic insulin sensitivity 𝑆𝐿𝑖 and
hepatic glucagon sensitivity 𝑆𝐺𝑛 in presence of different levels of impaired insulin
secretion and defective glucagon suppression in the postprandial period. A model
pursuing this objective can improve the estimation of insulin action on the liver and
better describe the pathophysiology of type 2 diabetes, especially, considering how
much impaired glucagon secretion influences the progression of the disease.

1.4 THESIS CONTENT

In chapter 2 the experimental design of the study fromwhich data were collected
is presented, along with a description on the pre-processing steps used to estimate
EGP. Chapter 3 presents linear and non linear mathematical models of EGP tested
in this thesis. A brief summary of the whole model identification and assessment
procedure is reported in chapter 4. Results and discussion are outlined in chapters
5 and 6, respectively.
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2
Material and Methods

2.1 EXPERIMENTAL DESIGN

Data used in this thesis come from a study performed by the Division of En-
docrinology, Diabetes and Metabolism of Mayo Clinic College of Medicine.
Subjects of the study were chosen if they didn’t have history of diabetes and they
lived at maximum 100-mile from Mayo Clinic in Rochester, MN. The selection was
random and based on their genotype at TCF7L2 (rs7903146). A match taking into
consideration bodyweight, sex, age and fasting glucose concentrationwas performed
between subjects homozygous for allele TT (diabetes-associated allele) and allele
CC (disease-protective allele). Participants undertook an oral glucose tolerance test
(OGTT) to identify their glucose tolerance status [29]. Subjects were not taking med-
ications and didn’t have history of chronic illness or surgery that could affect the
study outcome. From three days before the study, all subjects followed a specific
diet (15% protein, 30% fat, 55% carbohydrate).
36 non-diabetic subjects took part in the experiment. Theywere studied in twodiffer-
ent days in which somatostatin inhibited endogenous hormone secretions. Glucose,
insulin and glucagon were infused exogenously to control all the inputs relevant to
the glucose regulatory system. In particular, subjects received a glucose infusion to
mimic the appearance in the circulation of an oral ingestion of 75g of glucose [30].
This glucose infusionwas labelledwith [3−3𝐻] glucose, which allows the estimation
of endogenous glucose production (EGP) in a virtuallymodel-independentway (sec-
tion 2.2). Glucagon was infused at a rate of 0.65 [ng/kg/min], at t = 0 [min] to block
a drop in glucagon (not suppressed day) or at 120 [min] to produce a temporary fall

7



2.1. EXPERIMENTAL DESIGN

in glucagon (suppressed day). In the not suppressed day (NS) the infusion resemble
what append in type 2 diabetes patients, with glucagon staying almost constant if
not rising. In the suppressed day (S) the infusion mimics what append in an healthy
subject after a meal, with glucagon initially falling and then rising.
Participants were divided into three groups, each group received a different insulin
infusion. The group ”1.0 Ins” received an insulin profile that mimic the secretory
response in healthy subject (normal glucose tolerance - NGT). Another group (”0.8
Ins”) had an insulin infusion with 80% of the dose of the previous group. The last
group (”0.6 Ins”) received 60% of the dose of the first group. This partitioning was
done to simulated the response of impaired glucose tolerant (IGT) and type 2 dia-
betic subjects to a glucose challenge. Ideally, the only difference between the non
suppressed study (NS) and the suppressed study (S) was the glucagon infusion. All
the previous infusions started at a reference time of t = 0 [min]. However, since the
goal was to estimate EGP an additional infusion of [3 −3 𝐻] glucose was performed
from t = -180 [min] respect to the reference time. At t = 0 [min] this infusion was
decreased to mimic the anticipated fall in EGP [31]. In figure 2.1 a diagram of the ex-
perimental design is shown. More precised details about the performed experiment
can be found in the original work [32].

Figure 2.1: Diagram of the administered infusions in both experiments. Dashed line
in the continuous glucose tracer infusion indicates a decrease in the infused tracer.

8



CHAPTER 2. MATERIAL AND METHODS

2.2 MODEL-INDEPENDENT ESTIMATE OF EGP

THE TRACER METHODOLOGY

”A tracer is a substance introduced into a biological organism or other system so
that its subsequent distribution may be readily followed from its color, radioactiv-
ity, or other distinctive property.” [33]. In biology and medicine tracers are used to
solve the fundamental problem of describing in a quantitative manner the kinetics
of substances present in the body. The use of tracers can help to better understand
the production/secretion, the utilization/degradation and the transportation and
transformation fluxes of a given compound of interest. Usually, this substance is
produced and utilized by the body, it is present is several organs and tissues and
there is not the possibility (due to the invasiveness of the experiment, for example)
to directly measure the flux of interest. What is generally possible is to measure the
concentration of this compound in just one accessible pool, generally the plasma.
An ideal tracer should have the following properties:

• to be detectable by taking a measurement from the system under study;

• the introduction of the tracer into the system must not perturb the system dy-
namics;

• the body cannot distinguish the tracer from the compound of interest, called
tracee.

The last property lead to the following definition, called tracer-tracee indistin-
guishably principle: ”the probability that a particle leaving the system is a tracer
particle equals the probability that a particle of the system is a tracer particle”. Let
us make an example to clarify what it means. In this thesis, we are interested in the
glucose regulatory system. As a result, we would like to know the exact endogenous
production/appearance from the intestine, utilization/degradation and amount of
glucose present in every tissue/organ. However, for obvious reason, it is not possi-
ble to measure some quantities directly. Consequently, to at least understand some
information about the complex dynamics of glucose in the body, we can insert in
the body some labeled glucose molecules (the tracer molecules) that will be treated
by the body in the exact same way as all the others glucose molecules. Those glu-
cose molecules are built using isotopic tracers. An isotope is an atom of the same
element with a different number of neutrons and it can be a radioactive or a stable
isotope. Here, we will focus on the radioactive ones, since they were used in this
study. Radioactive isotopes are not stable atoms and they are turning back in the

9



2.2. MODEL-INDEPENDENT ESTIMATE OF EGP

original configuration through a process called radioactive decay. This process pro-
duces electromagnetic waves that can be detected. Thus, if one creates a glucose
molecule with inside one or more radioactive isotopes, it can be detected. This is the
case of [3 −3 𝐻] glucose, that contains tritium, the radioactive isotope of hydrogen.
The unlabeled glucose is call tracee, and the goal of a tracer kinetics study is to infer
information about the tracee’s kinetics from the tracer’s one.
The usual measurement variable of radioactive tracers is the specific activity (SA).
It expresses the abundance of a radioactive tracer as follow:

𝑆𝐴 =
𝑑𝑝𝑚
𝑚𝑎𝑠𝑠

(2.1)

Where dpm are disintegrations per minute, measuring the radioactivity; mass is
the total mass (tracer + tracee) of the compound. Dpm and mass are measured sep-
arately, the first by a scintillation counter, the second by an enzymatic method.

TRACERS AND MODEL USE

As previously said, the goal is to infer from the tracer’s kinetics information about
the tracee’s one, i.e. to measure tracee fluxes, mass and volume from tracer measure-
ments. When dealing with tracer experiments, the data analysis can be performed
applying:

• simple formulas;

• non-compartmental model techniques;

• compartmental model approaches.
The three approaches were listed from the simpler to the complex. Increasing

complexity is the cost to pay to retrieve more information from the same dataset.
Simple formulas calculation is based on two assumptions: the system is homoge-
neous and both tracer and tracee are in steady state. While the first one may be
a plausible simplification that works in some cases, the second one is violated in
our experiment, since we are dealing with dynamic data. The non-compartmental
model [34] is another common approach used to tackle the problem. Its strength
comes from not assuming any model structure regarding the system under study,
however, also in this case, it requires that the tracee in steady state. As a result, in
our case, a compartmental approach is needed. Furthermore, a model is required to
relate the information derived from the gauges taken from the accessible pool (the
circulation) with the events taking place in both the accessible and non-accessible
parts of the system.

10



CHAPTER 2. MATERIAL AND METHODS

TRACEE AND TRACER KINETICS VARIABLES

A scheme of the tracer-tracee system of the experiment can be appreciated in
figure 2.2. As mentioned in section 2.1, there were two tracer inputs: a continuous
infusion that mimics the endogenous glucose production (EGP), and a component
(GIR tracer) proportional to the glucose infusion rate (GIR) that mimics the rate of
appearance of an oral glucose challenge in the circulation.
The goal was to estimate EGP. To do so, we used the approach proposed by Steele et
al. in 1956 [35]. This method exploits, the tracer-tracee indistinguishably principle,
which can be written as:

𝑞(𝑡)
𝑄(𝑡) =

𝑟𝑑(𝑡)
𝑅𝑑(𝑡) = 𝑘(𝑡) (2.2)

This technique assumes an homogeneous system and it connects tracee unknown ki-
netics variables to the tracer’s ones, since u(t) is known (kinetics variables in equation
2.2 refer to the following figure).

Figure 2.2: Diagram of the tracer-tracee system of the experimental design (sec. 2.1).
Glucose is the tracee and [3−3𝐻] glucose is the tracer. 𝐶(𝑡) is the glucose plasma con-
centration and 𝑐(𝑡) is the tracer plasma concentration. 𝑄(𝑡) and 𝑞(𝑡) are the amount
of glucose and tracer in the circulation, respectively. 𝑉 is the volume of the plasma
compartment. 𝑅𝑎(𝑡) is the glucose rate of appearance into the circulation, which con-
sists of the infused glucose (𝐺𝐼𝑅(𝑡)) and the 𝐸𝐺𝑃(𝑡). 𝑢(𝑡) is the total infused tracer,
which is made up of the continuous infusion (𝐶𝑜𝑛𝑡.𝑖𝑛 𝑓 (𝑡)) and the infusion propor-
tional to GIR (𝐺𝐼𝑅 𝑡𝑟𝑎𝑐𝑒𝑟(𝑡)). 𝑅𝑑(𝑡) and 𝑟𝑑(𝑡) are rates of disappearance from the
plasma.
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2.2. MODEL-INDEPENDENT ESTIMATE OF EGP

In particular the so called Steele Equation calculates the rate of appearance of
the tracee as follow:

𝑅𝑎(𝑡) = 𝑢(𝑡)
𝑡𝑡𝑟(𝑡) − 𝑝 ·𝑉𝑡𝑜𝑡 · 𝐶(𝑡) ·

𝑡𝑡𝑟(𝑡)¤
𝑡𝑡𝑟(𝑡) (2.3)

Where ttr(t) is the tracer/tracee ratio and it is the most convenient way to express
tracer data. 𝑉𝑡𝑜𝑡 is the total volume of distribution of glucose. Since the Steele equa-
tion requires the volume of the accessible compartment, it is estimated as a fraction
of the total volume of distribution, via the pool fraction p. In radioactive tracers, the
specific activity (SA) almost coincides with ttr, in fact:

𝑆𝐴(𝑡) = 𝑞(𝑡)
𝑄(𝑡) + 𝑞(𝑡) ≈

𝑞(𝑡)
𝑄(𝑡) = 𝑡𝑡𝑟(𝑡) (2.4)

where 𝑄(𝑡) is the mass of the unlabelled compound and 𝑞(𝑡) is the mass of the
tracer, that is negligible, compared to 𝑄(𝑡) in case of a radioactive tracer. Conse-
quently, equation 2.3 can be written as:

𝑅𝑎(𝑡) = 𝑢(𝑡)
𝑆𝐴(𝑡) − 𝑝 ·𝑉𝑡𝑜𝑡 · 𝐶(𝑡) ·

𝑆𝐴(𝑡)¤
𝑆𝐴(𝑡) (2.5)

An important remark is that if 𝑆𝐴(𝑡)¤ = 0, the Steele Equation reduces to the steady
state formula:

𝑅𝑎(𝑡) = 𝑢(𝑡)
𝑆𝐴(𝑡) (2.6)

That is the formulation that can be obtained applying the ”simple formula approach”
when both tracee and tracer are in steady state. This is a desirable scenario since 𝑝 ·
𝑉𝑡𝑜𝑡 ·𝐶(𝑡)· 𝑆𝐴(𝑡)¤

𝑆𝐴(𝑡) , which accounts for the non-steady state error, depends on the chosen
model. In fact, it can be proven that the estimation of Ra(t) is model dependent.
Using other approaches, like the Radziuk Equation [36], will produce a different
estimation of the tracee rate of apperance (if 𝑆𝐴(𝑡)¤ is not equal to zero).

THE TRACER-TO-TRACEE CLAMP TECHNIQUE

A possible solution to tackle the model dependency of the calculation of Ra(t)
is to infuse the tracer so that the non-stready state error is minimized. To do so,
we can exploit expectations on EGP profile. It is known that after a meal, plasma
glucose increases, and its production by the liver is suppressed. That’s why, the
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continuous tracer infusionwas reducedwhen the ”meal” infusion started (see figure
2.1). Ideally, if the tracer is properly infused, the non-steady state error becomes close
to zero and the estimation of the rate of appearance is model independent.

When Ra(t) is calculated, the endogenous glucose production can be simply cal-
culated by subtraction (equation 2.7), since the glucose infusion rate in input is known.

𝐸𝐺𝑃(𝑡) = 𝑅𝑎(𝑡) − 𝐺𝐼𝑅(𝑡) (2.7)

In figure 2.3, the estimated EGP is depicted. On average, in the S occasion, EGP
is more suppressed in the first part of the experiment compared to the NS occasion.
This is reasonable since glucagon is suppressed from t = 0 [min] to t = 120 [min] in
the S experiment. The following infusion of glucagon produces a rise in EGP that is
clearly present in the S occasion and absent at all in the NS one. Variability of EGP
(std) remains almost constant in NS, instead it increases around the peak after EGP
rise in S. This is also reasonable since subjects received different insulin infusion, and
it is known that insulin has an influence on glucagon action on EGP (see section 1.1).
In both occasions EGP doesn’t come back to basal at the end of the experiment (on
average).

Figure 2.3: Estimated EGP using Steele equation.

In figure 2.4 a comparison of EGP in the 3 insulin groups is reported. Firstly, dif-
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ferences between the two occasions are similar to the average ones in all the groups.
It is clear that different insulin infusions have a different impact on EGP. In particu-
lar, in the NS experiment average EGP profile decreases with increasing insulin in-
fusion. This confirmed that glucose production inhibition by insulin is proportional
to insulin concentration. Also in the S occasion this effect is present, especially com-
paring group with severely impaired insulin secretion (0.6 Ins) with normal insulin
secretion group (1.0 Ins) in the first part of the experiment, when glucagon is sup-
pressed. Moreover, also the relationship between glucagon and insulin profiles can
be investigated. Comparing the mean EGP in S vs NS in each group, a smaller dif-
ference in the mean profiles is present with increased insulin level. Consequently,
data suggests a reduction of glucagon action on EGP when insulin concentration is
higher. A final remark concerns the EGP variability (standard deviation) in 1.0 Ins
group with respect to the others in the S scenario. Especially after glucagon infu-
sion at t = 120 [min], an higher variability is present in this group that may suggest
that higher insulin concentrations have an increased action variability on hepatic
glucagon sensitivity.

14
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Figure 2.4: Comparison of EGP in the 3 groups respect to the infused insulin level.

2.2.1 SMOOTHING OF THE SPECIFIC ACTIVITY

As seen in the previous section, the first step to estimate EGP is to calculate the
specific activity, as the ratio between the tracer concentration and the glucose concen-
tration. Ideally, SA should remain constant during all the study; however, this is not
true in clinical practice, even if the tracer is infused in a way that mimic the expected
tracee profile. Thus, there is the need to correct from the non-steady state error, and

15



2.2. MODEL-INDEPENDENT ESTIMATE OF EGP

the derivative of SA must be calculated. Moreover, due to several sources of noise
(from the measurement devices to the actual measurement process, like sampling
from the test tube), a smoothing process of the raw specific activity is necessary.
The numerical differentiation of digitized signals is not a trivial step, simple ap-
proaches can lead to unsatisfying results, in particular regarding the noise ampli-
fication introduced by the differentiation operation. Indeed, it is referable to a fil-
tering procedure with an high-pass filter; since the measurement noise is assumed
as a white noise with a known variance, the differentiation process will amplify it.
Deconvolution can be a good approach to perform the derivative step, and it has
also the plus of solving our second need, the smoothing of SA (for more details, see
Appendix A).

USE OF DECONVOLUTION IN THIS STUDY

As previously mentioned, the goal of this pre-processing step is to smooth the
specific activity and calculate its derivative. Using the same notation of Appendix
A, the derivative of SA is u(k) and SA data points are y(k); k is the k-th measurement,
sincewe assume towork in a discrete time domain. The transfermatrix of the system
is a simple first order integrator, since wewould like to calculate the derivative of the
output signal. Moving into the frequency domain through a Z-transform, the system
transfer function can be formalized as:

𝐻(𝑧) = 1
1 − 𝑧−1 (2.8)

Derivative of SA was estimated with the Bayesian approach described in the Ap-
pendix and 𝛾 was selected exploiting the third consistent criterion. The smoothed
version of SA is the result of a re-convolution process using the estimated input.
In figure 2.5 the smoothing and differentiation of SA in a representative subject is
shown. Besides the value of the regularization parameter 𝛾, also a metric that de-
scribes the amount of regularization is included (q/n). It could take values between
zero and one. Zero means that it was not applied a regularization of the estimated
signal (the same of using the least square approach), instead a value of 1 means that
the estimation process was based only on prior information on u(k). This metric was
developed since 𝛾 is highly dependent on different factors and its value does not re-
flect how much the estimated signal was regularized. Finally it is worth noting that
a virtual and more dense (with respect to the sampling one) time grid was used.
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Figure 2.5: Smoothing process of specific activity (SA) with deconvolution in the not
suppressed occasion in a representative subject. First panel: data (red circles) and
smooth version (blu line) of SA. Second panel: weighted residuals of the reconvo-
luted output. Third panel: estimated derivative of SA.
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2.3 ESTIMATION ERROR ON EGP

As highlighted in section 2.2, EGP estimation is the result of a cascade of cal-
culations. Thus, propagation of error to estimate EGP’s error of measurement (𝑣)
is cumbersome. Consequently, here we made a reasonable assumption about the
variance of each element of 𝑣 (since it is assumed gaussian), based on the resulting
coefficient of variation. It is also important to remember that the estimation of EGP
is model dependent, only if SA remains constant during all the experiment a non-
steady state correction is not needed and the dependency vanishes. However, this is
notwhat happens in real experiments. The non-steady state correctionwill be higher
when the absolute value of the derivative of SA is significantly greater than zero (eq.
2.5). In such time instants there is the greater model dependency of EGP estimates.
These time points can be considered the EGP values with more uncertainty. There-
fore, we embedded this information inside themodel of EGP’s error ofmeasurement
as follow:

𝑠𝑡𝑑𝑣(𝑘) = 𝑠𝑡𝑑𝑏 + 𝛿𝑆𝐴¤ (𝑘), 𝛿 =
𝑠𝑡𝑑𝑏

𝑚𝑎𝑥(|𝑆𝐴¤ |) (2.9)

Where 𝑠𝑡𝑑𝐸𝐺𝑃(𝑘) is the standard deviation (std) of the measurement error for the
k-th samples, 𝑣(𝑘). 𝑠𝑡𝑑𝑏 is the std value of time points where SAwas almost constant
(where there is no need of non-steady state correction and EGP’s estimates are not
dependent from the selected model). The additional part, 𝛿𝑆𝐴¤ (𝑘), increases EGP
uncertainty with respect to the derivative of SA. 𝛿 was set to have a maximum std
double with respect to the basal value in case of maximum absolute value of SA
derivative.
In figure 2.6 and figure 2.7, SA data vs smoothed SA and corresponding EGP esti-
mated using Steele equation are displayed for two illustrative subjects. In both sub-
jects SA showed some variation during the experiment in S and NS occasions. Thus,
EGP’s estimates corresponding to those time points where SA had the greatest vari-
ation will have an higher uncertainty.
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Figure 2.6: Smoothing of SA and EGP estimation using Steele equation for subject
539PET in both suppressed (S) and not suppressed (NS) occasion.

Figure 2.7: Smoothing of SA and EGP estimation using Steele equation for subject
723KUR in both suppressed (S) and not suppressed (NS) occasion.

An important comment concerns the correlation among EGP estimates. As seen
before, EGP is estimated using Steele equation (eq.2.5). Thus, there is the need of
smoothing SA and calculated its derivative (section 2.2.1). Consequently, each EGP’s
estimate is not based only on data collected in a single time point, rather it is influ-
enced by measurements taken at different time instants. As a result, EGP’s error
should not be considered uncorrelated. During model assessment, in particular
within the residual analysis step, this remark must be considered.
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3
Models

3.1 LINEAR MODELS OF EGP

In this section, all the tested linear models of EGP are presented. In thesemodels,
EGP is described as a linear combination of different factors that are proportional to
the measured signals (glucose, insulin and glucagon) or their delayed actions, or
their rate of change.

3.1.1 MODEL 1

The first model is the model proposed by Dalla Man et al. in 2008 (model 6 in the
original paper) [25]. It was built with the aim to measure hepatic insulin sensitivity
and is essentially an improved version of the EGP description that can be derived
from the so called minimal model [21], one of the pioneer models in this research
field. Model equation are:



𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 · 𝐺(𝑡) − 𝑘𝑝3 · 𝑋𝐿(𝑡) − 𝑘𝑝7 · 𝐺𝐷𝑒𝑟(𝑡)
𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − 𝐼(𝑡)] 𝑋 𝐼(0) = 𝐼𝑏

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 𝐼𝑏

𝐺𝐷𝑒𝑟(𝑡) =


𝜕𝐺(𝑡)
𝜕𝑡 𝑖 𝑓 𝜕𝐺(𝑡)

𝜕𝑡 ≥ 0

0 𝑖 𝑓 𝜕𝐺(𝑡)
𝜕𝑡 < 0

𝑘𝑝1 = 𝐸𝐺𝑃𝑏 + 𝑘𝑝2 · 𝐺𝑏 + 𝑘𝑝3 · 𝑋𝐿(0)

(3.1)
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where 𝐺(𝑡) [𝑚𝑚𝑜𝑙/𝑙] is glucose plasma concentration, 𝐼(𝑡) [𝑝𝑚𝑜𝑙/𝑙] is insulin
plasma concentration and𝐺𝐷𝑒𝑟(𝑡) [𝑚𝑚𝑜𝑙/𝑙/𝑚𝑖𝑛] is glucose rate of change,𝑋 𝐼(𝑡) [𝑝𝑚𝑜𝑙/𝑙]
is a delayed insulin signal and 𝑋𝐿(𝑡) [𝑝𝑚𝑜𝑙/𝑙] is a further delayed insulin profile.
𝑘𝑝2 [𝑚𝑙/𝐾𝑔/𝑚𝑖𝑛] is the glucose sensitivity of the liver,
𝑘𝑝3 [(𝜇𝑚𝑜𝑙/𝐾𝑔/𝑚𝑖𝑛)/(𝑝𝑚𝑜𝑙/𝑙)] is hepatic insulin sensitivity , 𝑘𝑝7 [𝑚𝑙/𝐾𝑔] describes
the magnitude of the glucose rate of change action on EGP, 𝑘𝑝5 [1/𝑚𝑖𝑛] is the insulin
transfer coefficient and it describes how fast is insulin action dynamics. The part of
the model proportional to glucose and its rate of change (𝑘𝑝2 ·𝐺(𝑡)+ 𝑘𝑝7 ·𝐺𝐷𝑒𝑟(𝑡)) can
be related to the above-basal insulin secretion, occurring after a meal [37], that is a
surrogate of the portal insulin signal [38]. Finally, 𝑘𝑝1 [𝜇𝑚𝑜𝑙/𝑘𝑔/𝑚𝑖𝑛] is a parameter
function of the others, used as offset for the basal state (equilibrium and also initial
state).

3.1.2 MODEL 2

The second tested model is the EGP description presented inside the FDA ap-
proved ”UVA/PADOVA type I diabetes simulator” [39]. The model equations are:

𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 · 𝐺(𝑡) − 𝑘𝑝3 · 𝑋𝐿(𝑡) + 𝑘𝑝4 · 𝑋𝐺𝑛(𝑡)
𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − 𝐼(𝑡)] 𝑋 𝐼(0) = 𝐼𝑏

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 𝐼𝑏

𝑋𝐺𝑛(𝑡)¤ = −𝑘𝑝6 · [𝑋𝐺𝑛(𝑡) − 𝐺𝑛(𝑡)] 𝑋𝐺𝑛(0) = 𝐺𝑛𝑏

𝑘𝑝1 = 𝐸𝐺𝑃𝑏 + 𝑘𝑝2 · 𝐺𝑏 + 𝑘𝑝3 · 𝑋𝐿(0) − 𝑘𝑝4 · 𝑋𝐺𝑛(0)

(3.2)

With respect to the previousmodel, here the glucose rate of change is not present.
Instead, EGP is stimulated by a glucagon plasma concentration 𝐺𝑛(𝑡) [𝑝𝑚𝑜𝑙/𝑙]with
some delay 𝑋𝐺𝑛(𝑡) [𝑝𝑚𝑜𝑙/𝑙]. Thus, 𝑘𝑝4 [(𝜇𝑚𝑜𝑙/𝑘𝑔/𝑚𝑖𝑛)/(𝑝𝑚𝑜𝑙/𝑙)] is the hepatic
glucagon sensitivity and 𝑘𝑝6 [1/𝑚𝑖𝑛] is the glucagon transfer coefficient.

3.1.3 MODEL 3

This model in equal to model 2 with a component that takes into consideration
the glucagon ”evanescent” effect ([40],[26]). This effect (𝐸) is described as an hyper-
bolic tangent function, as previously suggested [12]. This is not a structural model
estimated with an ad hoc protocol, since, from the best of our knowledge, such a
model is not present in the literature. The formulation of the evanescent effect of
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this model considers a fall in glucagon action on EGP even if glucagon concentra-
tion remains above basal. These are the model equations:

𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 · 𝐺(𝑡) − 𝑘𝑝3 · 𝑋𝐿(𝑡) + 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(𝑡)
𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − 𝐼(𝑡)] 𝑋 𝐼(0) = 𝐼𝑏

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 𝐼𝑏

𝑋𝐺𝑛(𝑡)¤ = −𝑘𝑝6 · [𝑋𝐺𝑛(𝑡) − 𝐺𝑛(𝑡)] 𝑋𝐺𝑛(0) = 𝐺𝑛𝑏

𝑋𝐺𝑛𝑒(𝑡) =

𝑋𝐺𝑛(𝑡) 𝑖 𝑓 𝑡 < 𝑡𝑖

𝑋𝐺𝑛(𝑡) · 𝐸(𝑡) 𝑖 𝑓 𝑡 ≥ 𝑡𝑖
𝑋𝐺𝑛𝑒(0) = 𝐺𝑛𝑏

𝐸(𝑡) = 1
2 · [1 − 𝑡𝑎𝑛ℎ( 𝑡−𝑡0𝜏 )]

𝑘𝑝1 = 𝐸𝐺𝑃𝑏 + 𝑘𝑝2 · 𝐺𝑏 + 𝑘𝑝3 · 𝑋𝐿(0) − 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(0)

(3.3)

where 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(𝑡) is the glucagon action incorporating the evanescence effect and
𝑡𝑖 [𝑚𝑖𝑛] represented the time at which the glucagon infusion starts. In the not-
suppressed occasion it is equal to 0 [min], instead in the suppressed one is equal
to 120 [min]. Before this moment, no evanescent effect is considered on glucagon
action. Parameter 𝑡0 [𝑚𝑖𝑛] is the time instant where the glucagon action is reduced
by 50% respect to its value without the evanescence effect and 𝜏 [𝑚𝑖𝑛] models the
shape of the hyperbolic tangent, the smaller it is, the faster the fall (figure 3.1). 𝑡0 and
𝜏 are new model parameters that will be estimated from the data.

Figure 3.1: Model of glucagon evanescence effect, E(t). Comparison of E profile with
two different 𝜏 values. 𝑡𝑖 is fixed to t = 0 [min].
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3.1.4 MODEL 4

The only difference with respect the previous model is that glucagon action on
EGP is directly proportional to glucagon concentrations instead of his delayed ver-
sion. Thus, model 4 has one parameter less respect to model 3.

𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 · 𝐺(𝑡) − 𝑘𝑝3 · 𝑋𝐿(𝑡) + 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(𝑡)
𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − 𝐼(𝑡)] 𝑋 𝐼(0) = 𝐼𝑏

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 𝐼𝑏

𝑋𝐺𝑛𝑒(𝑡) =

𝐺𝑛(𝑡) 𝑖 𝑓 𝑡 < 𝑡𝑖

𝐺𝑛(𝑡) · 𝐸(𝑡) 𝑖 𝑓 𝑡 ≥ 𝑡𝑖
𝑋𝐺𝑛𝑒(0) = 𝐺𝑛𝑏

𝐸(𝑡) = 1
2 · [1 − 𝑡𝑎𝑛ℎ( 𝑡−𝑡0𝜏 )]

𝑘𝑝1 = 𝐸𝐺𝑃𝑏 + 𝑘𝑝2 · 𝐺𝑏 + 𝑘𝑝3 · 𝑋𝐿(0) − 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(0)

(3.4)

3.1.5 MODEL 5

In this model, the action of glucose rate of change on EGP (𝑘𝑝7 · 𝐺𝐷𝑒𝑟(𝑡)) is rein-
troduced. The remaining part of the model is the same of model 3 (eq. 3.3).



𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 · 𝐺(𝑡) − 𝑘𝑝3 · 𝑋𝐿(𝑡) + 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(𝑡) − 𝑘𝑝7 · 𝐺𝐷𝑒𝑟(𝑡)
𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − 𝐼(𝑡)] 𝑋 𝐼(0) = 𝐼𝑏

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 𝐼𝑏

𝑋𝐺𝑛(𝑡)¤ = −𝑘𝑝6 · [𝑋𝐺𝑛(𝑡) − 𝐺𝑛(𝑡)] 𝑋𝐺𝑛(0) = 𝐺𝑛𝑏

𝑋𝐺𝑛𝑒(𝑡) =

𝑋𝐺𝑛(𝑡) 𝑖 𝑓 𝑡 < 𝑡𝑖

𝑋𝐺𝑛(𝑡) · 𝐸(𝑡) 𝑖 𝑓 𝑡 ≥ 𝑡𝑖
𝑋𝐺𝑛𝑒(0) = 𝐺𝑛𝑏

𝐸(𝑡) = 1
2 · [1 − 𝑡𝑎𝑛ℎ( 𝑡−𝑡0𝜏 )]

𝐺𝐷𝑒𝑟(𝑡) =


𝜕𝐺(𝑡)
𝜕𝑡 𝑖 𝑓 𝜕𝐺(𝑡)

𝜕𝑡 ≥ 0

0 𝑖 𝑓 𝜕𝐺(𝑡)
𝜕𝑡 < 0

𝑘𝑝1 = 𝐸𝐺𝑃𝑏 + 𝑘𝑝2 · 𝐺𝑏 + 𝑘𝑝3 · 𝑋𝐿(0) − 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(0)

(3.5)
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3.1.6 MODEL 6

With respect to model 5 (eq. 3.5), in this model glucagon exerts its action without
delay. That’s why, model 6 has one parameter less with respect to model 5.

𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 · 𝐺(𝑡) − 𝑘𝑝3 · 𝑋𝐿(𝑡) + 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(𝑡) − 𝑘𝑝7 · 𝐺𝐷𝑒𝑟(𝑡)
𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − 𝐼(𝑡)] 𝑋 𝐼(0) = 𝐼𝑏

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 𝐼𝑏

𝑋𝐺𝑛𝑒(𝑡) =

𝐺𝑛(𝑡) 𝑖 𝑓 𝑡 < 𝑡𝑖

𝐺𝑛(𝑡) · 𝐸(𝑡) 𝑖 𝑓 𝑡 ≥ 𝑡𝑖
𝑋𝐺𝑛𝑒(0) = 𝐺𝑛𝑏

𝐸(𝑡) = 1
2 · [1 − 𝑡𝑎𝑛ℎ( 𝑡−𝑡0𝜏 )]

𝐺𝐷𝑒𝑟(𝑡) =


𝜕𝐺(𝑡)
𝜕𝑡 𝑖 𝑓 𝜕𝐺(𝑡)

𝜕𝑡 ≥ 0

0 𝑖 𝑓 𝜕𝐺(𝑡)
𝜕𝑡 < 0

𝑘𝑝1 = 𝐸𝐺𝑃𝑏 + 𝑘𝑝2 · 𝐺𝑏 + 𝑘𝑝3 · 𝑋𝐿(0) − 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(0)

(3.6)

3.1.7 MODEL 7

This model is an evolution of model 3 (eq. 3.3) that takes into consideration also
glucagon rate of change through parameter 𝑘𝑝8[(𝜇𝑚𝑜𝑙/𝑘𝑔)/(𝑝𝑚𝑜𝑙/𝑙)].



𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 · 𝐺(𝑡) − 𝑘𝑝3 · 𝑋𝐿(𝑡) + 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(𝑡) + 𝑘𝑝8 · 𝐺𝑛𝐷𝑒𝑟(𝑡)
𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − 𝐼(𝑡)] 𝑋 𝐼(0) = 𝐼𝑏

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 𝐼𝑏

𝑋𝐺𝑛(𝑡)¤ = −𝑘𝑝6 · [𝑋𝐺𝑛(𝑡) − 𝐺𝑛(𝑡)] 𝑋𝐺𝑛(0) = 𝐺𝑛𝑏

𝑋𝐺𝑛𝑒(𝑡) =

𝑋𝐺𝑛(𝑡) 𝑖 𝑓 𝑡 < 𝑡𝑖

𝑋𝐺𝑛(𝑡) · 𝐸(𝑡) 𝑖 𝑓 𝑡 ≥ 𝑡𝑖
𝑋𝐺𝑛𝑒(0) = 𝐺𝑛𝑏

𝐸(𝑡) = 1
2 · [1 − 𝑡𝑎𝑛ℎ( 𝑡−𝑡0𝜏 )]

𝐺𝑛𝐷𝑒𝑟(𝑡) =


𝜕𝐺𝑛(𝑡)
𝜕𝑡 𝑖 𝑓 𝜕𝐺𝑛(𝑡)

𝜕𝑡 ≥ 0

0 𝑖 𝑓 𝜕𝐺𝑛(𝑡)
𝜕𝑡 < 0

𝑘𝑝1 = 𝐸𝐺𝑃𝑏 + 𝑘𝑝2 · 𝐺𝑏 + 𝑘𝑝3 · 𝑋𝐿(0) − 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(0)

(3.7)

After a comparison of nine published or new EGP models, Emami et al. in 2017
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[26] showed that glucagon rate of change was important to achieved the best fit. In
fact, glucagon derivative can be helpful to model an hepatic response to a rapid in-
crease of plasma glucagon concentration.

3.1.8 MODEL 8

Model 8 is the most complex linear model tested in this thesis. It combines all the
different parts of the previous models. So, it considers both glucose and glucagon
rate of change and glucagon evanescence effect is present and assumes that glucagon
exerts its action with some delay.



𝐸𝐺𝑃(𝑡) = 𝑘𝑝1 − 𝑘𝑝2 · 𝐺(𝑡) − 𝑘𝑝3 · 𝑋𝐿(𝑡) + 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(𝑡) − 𝑘𝑝7 · 𝐺𝐷𝑒𝑟(𝑡) + 𝑘𝑝8 · 𝐺𝑛𝐷𝑒𝑟(𝑡)
𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − 𝐼(𝑡)] 𝑋 𝐼(0) = 𝐼𝑏

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 𝐼𝑏

𝑋𝐺𝑛(𝑡)¤ = −𝑘𝑝6 · [𝑋𝐺𝑛(𝑡) − 𝐺𝑛(𝑡)] 𝑋𝐺𝑛(0) = 𝐺𝑛𝑏

𝑋𝐺𝑛𝑒(𝑡) =

𝑋𝐺𝑛(𝑡) 𝑖 𝑓 𝑡 < 𝑡𝑖

𝑋𝐺𝑛(𝑡) · 𝐸(𝑡) 𝑖 𝑓 𝑡 ≥ 𝑡𝑖
𝑋𝐺𝑛𝑒(0) = 𝐺𝑛𝑏

𝐸(𝑡) = 1
2 · [1 − 𝑡𝑎𝑛ℎ( 𝑡−𝑡0𝜏 )]

𝐺𝐷𝑒𝑟(𝑡) =


𝜕𝐺(𝑡)
𝜕𝑡 𝑖 𝑓 𝜕𝐺(𝑡)

𝜕𝑡 ≥ 0

0 𝑖 𝑓 𝜕𝐺(𝑡)
𝜕𝑡 < 0

𝐺𝑛𝐷𝑒𝑟(𝑡) =


𝜕𝐺𝑛(𝑡)
𝜕𝑡 𝑖 𝑓 𝜕𝐺𝑛(𝑡)

𝜕𝑡 ≥ 0

0 𝑖 𝑓 𝜕𝐺𝑛(𝑡)
𝜕𝑡 < 0

𝑘𝑝1 = 𝐸𝐺𝑃𝑏 + 𝑘𝑝2 · 𝐺𝑏 + 𝑘𝑝3 · 𝑋𝐿(0) − 𝑘𝑝4 · 𝑋𝐺𝑛𝑒(0)
(3.8)

3.2 NON LINEAR MODELS OF EGP

As seen in the physiology section 1.1, insulin level modulates the hepatic re-
sponse to glucagon. Therefore, a non linear relationship between glucagon and in-
sulin should be tested. In literature, this relationship is model in several ways, and a
multiplicative description seems to be themost suitable to describe this phenomenon
([41],[26]). In this section, wewill present four EGPmodel structures that investigate
different possible non linear interactions.
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3.2.1 NON LINEAR MODEL 1

The first non linear model takes into consideration the same dynamics of the
linear model 3 (eq. 3.3) for insulin and glucagon. When all the input signals (glu-
cose, insulin and glucagon) are in basal state, EGP is not perturbed and it is equal
to its basal rate 𝐸𝐺𝑃𝑏 [𝜇𝑚𝑜𝑙/𝑘𝑔/𝑚𝑖𝑛]. If glucagon remains in basal state (𝐺𝑛(𝑡) =
𝐺𝑛𝑏), EGP is proportional to the above basal glucose concentration through param-
eter 𝛼1 [𝑚𝑙/𝐾𝑔/𝑚𝑖𝑛] and to insulin delayed profile (𝑋𝐿(𝑡)) through parameter 𝛽1

[(𝜇𝑚𝑜𝑙/𝑘𝑔/𝑚𝑖𝑛)/(𝑝𝑚𝑜𝑙/𝑙)]. However, when glucagon is not in basal state, it will in-
fluence both glucose anddelayed insulin actions onEGP, throughparameter 𝛼2 [𝑙/𝑝𝑚𝑜𝑙]
and 𝛽2 [𝑙/𝑝𝑚𝑜𝑙] respectively; reducing their inhibition effect. The model equations
are:



𝐸𝐺𝑃(𝑡) = 𝐸𝐺𝑃𝑏 − 𝛼1
1+𝛼2·𝑋𝐺𝑛(𝑡) · (𝐺(𝑡) − 𝐺𝑏) −

𝛽1
1+𝛽2·𝑋𝐺𝑛(𝑡) · 𝑋𝐿(𝑡)

𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − (𝐼(𝑡) − 𝐼𝑏)] 𝑋 𝐼(0) = 0

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 0

𝑋𝐺𝑛(𝑡)¤ = −𝑘𝑝6 · [𝑋𝐺𝑛(𝑡) − (𝐺𝑛(𝑡) − 𝐺𝑛𝑏)] 𝑋𝐺𝑛(0) = 0

(3.9)

3.2.2 NON LINEAR MODEL 2

With respect to non linear model 1, in this model glucagon modulation has an
effect only on delayed insulin action on EGP (𝑋𝐿(𝑡)); since it seems that glucose level
is not in relation with glucagon action [42].



𝐸𝐺𝑃(𝑡) = 𝐸𝐺𝑃𝑏 − 𝛼1 · (𝐺(𝑡) − 𝐺𝑏) − 𝛽1
1+𝛽2·𝑋𝐺𝑛(𝑡) · 𝑋𝐿(𝑡)

𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − (𝐼(𝑡) − 𝐼𝑏)] 𝑋 𝐼(0) = 0

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 0

𝑋𝐺𝑛(𝑡)¤ = −𝑘𝑝6 · [𝑋𝐺𝑛(𝑡) − (𝐺𝑛(𝑡) − 𝐺𝑛𝑏)] 𝑋𝐺𝑛(0) = 0

(3.10)

3.2.3 NON LINEAR MODEL 3

Non linear model 3 still has a multiplicative relationship between glucagon and
insulin. However, in this case it is delayed insulin (𝑋𝐿(𝑡)) that modulates delayed
glucagon action (𝑋𝐺𝑛(𝑡)) on EGP (in the previous two models, it was the reverse);
this is based on the hypothesis that high insulin level reduces hepatic stimulation
effect of glucagon, as reported in the physiology section 1.1.
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𝐸𝐺𝑃(𝑡) = 𝐸𝐺𝑃𝑏 − 𝛼1 · (𝐺(𝑡) − 𝐺𝑏) + 𝛽1
1+𝛽2·𝑋𝐿(𝑡) · 𝑋𝐺𝑛(𝑡)

𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − (𝐼(𝑡) − 𝐼𝑏)] 𝑋 𝐼(0) = 0

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 0

𝑋𝐺𝑛(𝑡)¤ = −𝑘𝑝6 · [𝑋𝐺𝑛(𝑡) − (𝐺𝑛(𝑡) − 𝐺𝑛𝑏)] 𝑋𝐺𝑛(0) = 0

(3.11)

3.2.4 NON LINEAR MODEL 4

Non linear model 4 has the same structure of non linear model 3 (eq.3.12), with
the addition of a component proportional to glucagon rate of change through pa-
rameter 𝛾 [(𝜇𝑚𝑜𝑙/𝑘𝑔)/(𝑝𝑚𝑜𝑙/𝑙)]. Since, as explained for the linear model 7 (eq. 3.7),
it may help to better describe a rapid EGP increase.



𝐸𝐺𝑃(𝑡) = 𝐸𝐺𝑃𝑏 − 𝛼1 · (𝐺(𝑡) − 𝐺𝑏) + 𝛽1
1+𝛽2·𝑋𝐿(𝑡) · 𝑋𝐺𝑛(𝑡) + 𝛾 · 𝐺𝑛𝐷𝑒𝑟(𝑡)

𝑋 𝐼(𝑡)¤ = −𝑘𝑝5 · [𝑋 𝐼(𝑡) − (𝐼(𝑡) − 𝐼𝑏)] 𝑋 𝐼(0) = 0

𝑋𝐿(𝑡)¤ = −𝑘𝑝5 · [𝑋𝐿(𝑡) − 𝑋 𝐼(𝑡)] 𝑋𝐿(0) = 0

𝑋𝐺𝑛(𝑡)¤ = −𝑘𝑝6 · [𝑋𝐺𝑛(𝑡) − (𝐺𝑛(𝑡) − 𝐺𝑛𝑏)] 𝑋𝐺𝑛(0) = 0

𝐺𝑛𝐷𝑒𝑟(𝑡) =


𝜕𝐺𝑛(𝑡)
𝜕𝑡 𝑖 𝑓 𝜕𝐺𝑛(𝑡)

𝜕𝑡 ≥ 0

0 𝑖 𝑓 𝜕𝐺𝑛(𝑡)
𝜕𝑡 < 0

(3.12)
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4
Model Identification and Assessment

4.1 MODEL IDENTIFICATION

In this section, we will introduce the model identification process and its appli-
cation in this thesis. The theory behind is huge, thus here we will just summarize
the main steps and approaches. For a detailed and formal explanation see chapter 6
of Introduction to Modeling in Physiology and Medicine, Cobelli C.,Carson E. [43].

Figure 4.1: Diagram of overall modeling identification procedure. Credit: Chiara
Dalla Man.
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4.1. MODEL IDENTIFICATION

Modeling is the realization of a mathematical description (the model) of an ana-
lyzed system. To do so, firstly you need amodel structure, such as the ones in section
3.1 for EGP. These models are parametric models, that is, there is a set of parameters
p appearing in model equations that is initially unknown. The goal of the following
techniques is assigning numerical values to p exploiting the information about the
system (measuring its output) after an input-output experiment, where the input is
known (figure 4.1).

4.1.1 A PRIORI IDENTIFIABILITY

Before trying to estimate the unknown parameter values, it is fundamental to ver-
ify if the collected measurements contain enough information to uniquely estimate
all the parameters of the proposed model structure. In literature, this problem is
called a priori or structural identifiability problem. Addressing this issue (that is posed
under the ideal condition of noise–free observable variables, error–free model struc-
ture and continuous–time measurements), it become clear whether one or more pa-
rameters are not identifiable from the data. If so, a simpler model structure must be
formulated.

If the proposed model is time invariant and has a linear kinetics (thus, it can be
expressed as in eq. 4.1) the a priori identifiability problem can be tackled with the
Transfer Function Method.

𝑥(𝑡)¤ = 𝐹(𝑝) · 𝑥(𝑡) + 𝐺(𝑝) · 𝑢(𝑡)
𝑦(𝑡) = 𝐻(𝑝) · 𝑥(𝑡) + 𝐽(𝑝) · 𝑢(𝑡), 𝑥(0) = 𝑥0

(4.1)

where 𝑥(𝑡) is the r-dimensional state vector, 𝑢(𝑡) is the q-dimensional input vector
and 𝑦(𝑡) is the n-dimensional measurement vector (output of the system). 𝐹, 𝐺, 𝐻, 𝐽
are time-invariantmatrices that contain themodel’s parameters (m-dimensional vec-
tor 𝑝). This method exploits the Laplace transform to calculate the transfer function
matrix of the system 𝐻(𝑠), for each input-output pair. Such matrices are rational
functions (a ratio between two polynomials). The polynomials’ parameters (vector
𝜙), called observable parameters, can be expressed in function of themodel’s param-
eters (𝜙 = 𝑓 (𝑝)). Thus a set of equations, called exhaustive summary, that connects
the two vectors can be written. If it is possible to uniquely solving the system respect
to 𝑝, the model is a priori globally identifiable. If a set of finite solutions exists, the
model is a priori locally identifiable. When the exhaustive summary solved respect to
𝑝 admits infinite solutions, the model is a priori not identifiable.
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If the proposed model structure has a non linear dynamics or is time-variant,
the transfer function method cannot be used. A suitable alternative is the Taylor
Series Expansion Method. For sake of simplicity, let us consider a system with one
measurement variable 𝑦. The Taylor series expansion of 𝑦 in 𝑡∗ is:

𝑦(𝑝, 𝑡) = 𝑦(𝑝, 𝑡∗) + (𝑡 − 𝑡∗)𝑦¤ (𝑝, 𝑡∗) + (𝑡 − 𝑡∗)2
2!

𝑦¥(𝑝, 𝑡∗) + (𝑡 − 𝑡∗)3
3!

�̈�(p, 𝑡∗) + ... (4.2)

where 𝑦(𝑝, 𝑡∗), 𝑦¤ (𝑝, 𝑡∗), 𝑦¥(𝑝, 𝑡∗), �̈�(𝑝, 𝑡∗), ... are known observable parameters 𝜙𝑘 ,
that can be expressed in function of the model’s parameter 𝑝. Consequently, with
this approach the exhaustive summary is:

𝑦𝑘(𝑝, 𝑡∗) = 𝜙𝑘 , 𝑘 = 0, 1, 2, ... (4.3)

where 𝑘 is the derivative order. If it is possible to find an unique solution for 𝑝,
the model is a priori identifiable. A drawback of this method is the impossibility to
know how many derivatives (𝑘) are needed for proving the unique identification of
𝑝. Moreover, due to the complexity that eq. 4.3 can reach, if no solution with respect
to 𝑝 is found, it does not mean that the model is not identifiable.

Other methods to solve the structural identifiability problem of non linear sys-
tems are present in literature, like the software DAISY (Differential Algebra for Iden-
tifiability of SYstems) [44], that exploits a different algebra and geometry approach.

4.1.2 PARAMETER ESTIMATION

After assessing the a priori identifiability, to assign a numerical value to themodel’s
parameters, data collected from the system are needed. Since the parameter estima-
tion is performed following the experiment, it is called a posteriori identification. Es-
timation of unknown parameters of mathematical models is not a trivial problem; in
literature, many techniques exist and the approaches can be very different. However,
all of them are estimators, statistics used to estimate an unknown true parameter
𝑝 ∈ R𝑚 exploiting the measured data 𝑧 ∈ R𝑛 . An estimator (�̂�(𝑧)) is a random vari-
able, since measurements are random variables too, due to the additional random
noise (the measurement error). A good estimator must have these properties:

• it is unbiased. Its expected value is equal to the true value of the unknown
parameter: 𝐸[�̂�] = 𝑝;
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• it is consistent. So if n grows, its mean square error 𝑀𝑆𝐸(�̂�) tends to zero:
lim𝑛→∞ 𝐸[(�̂� − 𝐸[�̂�])2] = 0. Since 𝑀𝑆𝐸(�̂�) = 𝑉𝑎𝑟(�̂�) + 𝐵𝑖𝑎𝑠(�̂�)2, it means that
the variance of �̂� should tends to zero.

In mathematical notation, the output of the system in the scalar case is (discrete
time domain):

𝑦𝑘 = 𝑔(𝑡𝑘 , 𝑝) 𝑘 = 1, 2, ...𝑛 (4.4)

where g in the function describing the model. If the model perfectly resembles
the system, it should have the exact same behaviour of the system itself in all condi-
tions. The formulation that connects measured data (𝑧𝑘) and the model output can
be written as follow:

𝑧𝑘 = 𝑦𝑘 + 𝑣𝑘 = 𝑔(𝑡𝑘 , 𝑝) + 𝑣𝑘 , 𝑘 = 1, 2, ...𝑛 (4.5)

where 𝑣𝑘 is the k-th sample of the measurement error corrupting 𝑧𝑘 and it is an
unknown randomvariable. Usually, some assumptions on the statistical distribution
of v are proposed. It is generally considered normally distributed, with an expected
value equal to zero and a known covariancematrix that can be factorized asΣ𝑣 = 𝜎2𝐵.
Samples of v are usually assumed uncorrelated, consequently B is usually a diagonal
matrix.
For the following formulations is useful to put eq. 4.5 into a matrix-vector form, that
contains all the measurements:

𝑧 = 𝑦 + 𝑣 = 𝐺(𝑝) + 𝑣. (4.6)

where 𝑧, 𝑦, 𝑣 ∈ R𝑛 , 𝑝 ∈ R𝑚 .
As this equation suggests, biological models are usually not linear in the parame-

ters (it is not possible towrite eq. 4.6 as 𝑧 = 𝐺𝑝+𝑣) that’s why there isn’t an analytical
solution to find p and iterative methods have to be used. As a result, parameter esti-
mation has an iterative nature (fig.4.2).
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Figure 4.2: Iterative procedure for parameter estimation in case of model non linear
in the parameters. Credit: Cobelli C., Carson E. [43].

Two main estimation approaches exist. A deterministic one (also called Fisher
approach), for which it exits a true (unique) value of p, and it is estimated only using
experimental data. A stochastic approach (also called Bayesian approach), where all
involved variables are considered random values. Consequently, the output of the
procedure is not only a point estimate of p, rather a statistical description in terms of
its probability distribution function (pdf). In this case, not only measured data but
also information prior to the experiment are exploited in the estimation process.

DETERMINISTIC APPROACHES

Awell knowndeterministic approach is based onweightednon linear least squares
(WNLLS) estimation. Optimal p is the one that minimizes the quadratic distance be-
tween the data and the model prediction, i.e.:

�̂�𝑊𝑁𝐿𝐿𝑆 = arg min
𝑝

[𝑧 − 𝐺(𝑝)]𝑇Σ−1
𝑣 [𝑧 − 𝐺(𝑝)] (4.7)

with 𝑟 = 𝑧 − 𝐺(𝑝) the residual vector, where each value is weighted with respect
to its own uncertainty (inverse of the std of that sample). To find �̂�𝑊𝑁𝐿𝐿𝑆 the Gauss-
Newton Method is used. It is an iterative procedure that works on the first order
Taylor series approximation of the model. It calculates the gradient of the cost func-
tion with respect to the parameter vector and it updates the solution moving in the
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direction opposite to the gradient. The update step is the one that minimizes the
residual vector. One possible drawback of this procedure (and all similar gradient-
based techniques) is the risk to stop the iterative procedure in a local minimum, in-
stead of the desired global one, and consequently obtaining a wrong estimate of the
unknown parameter vector. This approach provides also an estimation of the preci-
sion of the estimated parameters, in terms of the covariancematrix of the error vector
�̃� = 𝑝 − �̂�, that is:

Σ�̃� � (𝑆𝑇Σ−1
𝑣 𝑆)−1 (4.8)

where S is the sensitivity matrix, that contains the gradient of 𝐺(�̂�) for each time
point.

This is fundamental to calculate the coefficient of variation (CV) of the estimates,
that is formalized as:

𝐶𝑉�̂� =

√
𝜎2
�̃�

�̂�
(4.9)

where 𝜎2
�̃� is the variance of �̃� (the diagonal of Σ�̃�).

Another common approach to estimate p is the maximum likelihood estima-
tor (MLE). It exploits information regarding the probability density function of the
measurement error 𝑓𝑣(𝑣) (if it is known or there is an assumption on it). Since v is an
aleatory variable z is random too. As a result, it has its own pdf 𝑓𝑧(𝑧). Given eq. 4.6,
pdf takes the following form:

𝑓𝑧(𝑧) = 𝑓𝐺(𝑝)+𝑣(𝐺(𝑝) + 𝑣) (4.10)

When the experiment is realized, v is not a random variable anymore and it be-
comes one of its own realization 𝑣𝑚𝑒𝑎𝑠 , thus eq. 4.10 is a function of p only:

𝑓𝐺(𝑝)(𝐺(𝑝)) = 𝐿(𝑝) (4.11)

that is called likelihood function of p. The goal of the procedure is to find �̂� that maxi-
mizes 𝐿(𝑝).

𝑝𝑀𝐿𝐸ˆ = arg max
𝑝
𝐿(𝑝) (4.12)

In other words, MLE tries to fit a distribution on the experimental data and find
the parameters of the distribution that better describes it. Also with this approach,
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an estimation of the precision of the estimated parameters is provided. In fact, the
Cramer-Rao inequality holds and it gives a lower bound to the estimated covariance
matrix of �̃�:

Σ�̃� ≥ [𝐹(𝑝)|𝑝=�̂�]−1 (4.13)

where 𝐹(𝑝) is the Fisher informationmatrix (FIM) that is the generalization of the
Fischer information (FI) in the scalar case [45]. FI is a way to measure the amount of
information that a random variable 𝑋 carries about an unknown parameter 𝜃 of a
distribution that models 𝑋. It is defined as the variance of the first derivative of the
log-likelihood respect to 𝜃 (usually called score). Connecting this notation with the
previous one, the random variable 𝑋 is the vector of the measurements z and the
unknown parameter 𝜃 is the vector containing the model parameters p. Therefore:

𝐹(𝑝) = 𝐸
[
𝜕𝑙𝑛[𝐿(𝑝)]

𝜕𝑝
𝜕𝑙𝑛[𝐿(𝑝)]

𝜕𝑝

𝑇
]

(4.14)

In case of Gaussian and independent v, FIM is expressed as:

𝐹(𝑝)|𝑝=�̂� = 𝑆𝑇Σ−1
𝑣 𝑆 (4.15)

STOCHASTIC APPROACHES

The Bayesian stochastic approach is based on Bayes’s theorem. To quickly un-
derstand it, let us see an example. A sample of 2600 people is divided based on sex
(variable 𝑋) and height (variable𝑌), that is treated as a categorical variable with two
classes: higher than 170 [cm] or lower. Division in the four groups (since there are
two categorical variables each of them with two categories) is displayed in table 4.1.
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Height

<170 cm >170 cm

Sex
M 500 1000

F 700 400

Table 4.1: Sample of 2600 people divided according to their sex andheight (simulated
example).

From probability theory, for each cell of the table,the following general equation
holds:

𝑝(𝑋 = 𝑥)𝑝(𝑌 = 𝑦 |𝑋 = 𝑥)
= 𝑥 = 𝑥1, 𝑥2; 𝑦 = 𝑦1, 𝑦2.

𝑝(𝑌 = 𝑦)𝑝(𝑋 = 𝑥 |𝑌 = 𝑦) (4.16)

where, for example, 𝑝(𝑌 = 𝑦 |𝑋 = 𝑥) is the conditional probability of event 𝑦
when event 𝑥 is verified.
Thus, for instance:

𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170)𝑝(𝑠𝑒𝑥 = 𝐹 |𝐻𝑒𝑖𝑔ℎ𝑡 < 170)
=

𝑝(𝑠𝑒𝑥 = 𝐹)𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170|𝑠𝑒𝑥 = 𝐹) (4.17)

Let us try to answer to the following question: ”If a random person is selected
from the group and his/her height is lower than 170 cm, is it possible to know if is
female or male?”.

It is impossible to be 100 % sure, however exploiting eq.4.16, it is possible to say
that the person will be male or female with a certain probability:
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𝑝(𝑠𝑒𝑥 = 𝐹 |𝐻𝑒𝑖𝑔ℎ𝑡 < 170) = 𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170|𝑠𝑒𝑥 = 𝐹)𝑝(𝑠𝑒𝑥 = 𝐹)
𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170) = 58.33 %

𝑝(𝑠𝑒𝑥 = 𝑀 |𝐻𝑒𝑖𝑔ℎ𝑡 < 170) = 𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170|𝑠𝑒𝑥 = 𝑀)𝑝(𝑠𝑒𝑥 = 𝑀)
𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170) = 41.66 %

(4.18)
Previous equations are exactly applications of Bayes’s theorem. Let us think

aboutmeasuring the height of each person of the group as the experiment performed
in a study on this sample. Before the experiment, some ingredients of Bayes’s theo-
rem were already available. We are referring to 𝑝(𝑠𝑒𝑥 = 𝐹) and 𝑝(𝑠𝑒𝑥 = 𝑀). As a re-
sult, they are called a priori probabilities of the variable we want to predict (sex). After
the experiment, we can measure howmany person are smaller than 170 [cm] in both
classes respect to sex (𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170|𝑠𝑒𝑥 = 𝐹) and 𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170|𝑠𝑒𝑥 = 𝑀)). This
gives us ameasure of howprobable (likely) is to have a person smaller than the height
threshold in both classes. This is the likelihood function or simply likelihood and it is a
function of sex. Lastly, it is possible to calculate 𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170) simply as the sum
of 𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170|𝑠𝑒𝑥 = 𝐹)𝑝(𝑠𝑒𝑥 = 𝐹)) and 𝑝(𝐻𝑒𝑖𝑔ℎ𝑡 < 170|𝑠𝑒𝑥 = 𝑀)𝑝(𝑠𝑒𝑥 = 𝑀).
All these ingredients made possible the calculation of 𝑝(𝑠𝑒𝑥 = 𝐹 |𝐻𝑒𝑖𝑔ℎ𝑡 < 170)
and 𝑝(𝑠𝑒𝑥 = 𝑀 |𝐻𝑒𝑖𝑔ℎ𝑡 < 170) that are called a posteriori probabilities, since they are
the probability of selecting a male or a female after the experiment (so after having
measured some data).

This example can be generalized to m variables for which to calculate the a pos-
teriori probability (it will be the model parameter vector that need to be estimated,
p) and for n measured variables, also continuous variable and not just categorical
(they will be the measured data of the experiment, z). Of course with continuous
variables, to estimate the a posteriori probability 𝑓𝑝 |𝑧(𝑝 |𝑧), m-dimensional integral
should be solved:

𝑓𝑝 |𝑧(𝑝 |𝑧) =
𝑓𝑧 |𝑝(𝑧 |𝑝) 𝑓𝑝(𝑝)∫

R𝑚
𝑓𝑧 |𝑝(𝑧 |𝑝) 𝑓𝑝(𝑝)𝑑𝑝

(4.19)

This is Bayes’s theorem in the general case. 𝑓𝑝(𝑝) is the prior probability density
function of p and 𝑓𝑧 |𝑝(𝑧 |𝑝) 𝑓𝑝(𝑝) is the likelihood. Due to the need of solving high
dimensional integrals, calculating the a posteriori pdf is not simple. Usually, there
is the necessity of sampling methods (like Markov Chain Monte Carlo, MCMC) that
are able to approximate 𝑓𝑝 |𝑧(𝑝 |𝑧) drawing samples from a distribution that tends to
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it. Moreover, estimating the complete statistical description of p might be unpractical
and one could be more interested in a point estimator of p from z. For instance, one
could want to estimate p which maximizes the a posteriori distribution (Maximum a
posteriori, MAP)

Luckily, in case of Gaussian distribution of p and v, this estimation problem can
be solved as an optimization problem, since the optimal 𝑝𝑀𝐴𝑃ˆ can be found as:

𝑝𝑀𝐴𝑃ˆ = arg min
𝑝

[𝑧 − 𝐺(𝑝)]𝑇Σ−1
𝑣 [𝑧 − 𝐺(𝑝)] + (𝑝 − 𝜇𝑝)𝑇Σ−1

𝑝 (𝑝 − 𝜇𝑝) (4.20)

This cost function is similar to the one of the WNLLS estimation (eq.4.7). How-
ever, here the second part of the function is taking into consideration the adherence
of the estimated parameter vector to the a priori information (mean 𝜇𝑝 and covari-
ance matrix Σ𝑝 of 𝑓𝑝(𝑝)).

Also with a Bayesian approach is it possible to get an estimation of the precision
of the estimates. The formulation exploits the Cramer-Rao inequality (eq.4.13). For
MAP estimation with Gaussian prior, Fisher information matrix takes the following
form:

𝐹(𝑝)|𝑝=�̂� = 𝑆𝑇Σ−1
𝑣 𝑆 + Σ−1

𝑝 (4.21)

As a result, precision of pwill be betterwith this approach respect to deterministic
ones. On the other hand, fit of the model to the data will be worse compared to
WNLLS and MLE, since in the cost function of MAP a balance between fitting the
data and matching prior information is realized.

The increased complexity of a stochastic approach respect to Fisher’s ones is
worth accepting in case of experiments with:

• low number of measured data (z);

• high uncertainty of z;

• estimation of complex model (high number of parameter to estimate).

A closing remark on the algorithms used to minimize the cost function defined
by each approach, is worth doing. They can be divided into two categories: gradient-
type algorithms and direct search algorithms. The first ones are based on the Gauss-
Newton method, thus the calculation of the gradient is necessary. The second ones
are faster methods since they avoid the calculation of any partial derivative. There-
fore, they can span a wider range of possible solutions. The main drawback of these
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methods is that they do not provide the precision of the estimated parameters. Con-
sequently, gradient-type algorithms are the most used.

4.1.3 IDENTIFICATION STRATEGY

As seen in the section related to the experimental design (sec.2.1), each subject
was studied in two occasions, one with a suppressed glucose (S) infusion and one
with a not suppressed infusion (NS). Ideally, if we identify the same model in the
two occasions separately, even if inputs andmeasurementswere different, we should
estimate the same model parameters (figure 4.3).

Figure 4.3: Parameter identification of a generic subject in the two experiments, S
and NS. k is the k-th measurement.

Thus, �̂�𝑆 = �̂�𝑁𝑆. However, this is an ideal scenario since it assumes that the
model is 100 % correct and intra-subject variability is absent. Unfortunately, the same
subject undergoing the same experiment in two different occasions will respond to
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the same input in different ways, due to some intrinsic unpredictable variability. In
addition, the superimposed noise, like the measurement error, may have an impact
in the accuracy of parameter estimates. Consequently, another estimation strategy
should be used. A possible approach is a simultaneous identification that is to iden-
tify an unique parameter vector using data from both occasions. For example, with
a deterministic approach like WNLLS (since all the proposed model structures of
EGP are not linear in the parameters), �̂� is the one that minimizes the following cost
function:

𝐽(𝑝) = 𝐽𝑆(𝑝) + 𝐽𝑁𝑆(𝑝) (4.22)

Where 𝐽𝑆(𝑝) and 𝐽𝑁𝑆(𝑝) are the cost functions of the two experiments defined as
in eq. 4.7.
This approach produces an unique parameter estimate but the fit of the model in the
two occasions could be likely not satisfactory. Since with this approach, intra-subject
variability is not taken into account and the model is not ”free” to adapt to data.

Thus, a better approach is to estimate two parameter vectors, one for each occa-
sion, and put a constrain to force them to be close one to each other. In this way,
intra-subject variability is taken into account, and the final estimates will be simi-
lar, but not equal, in the two experiments (the problem of separated identification is
solved). The question is now how to define such a constrain. Before performing the
experiment, a priori, we know that �̂�𝑆 and �̂�𝑁𝑆 do not differ much. Thus, a Bayesian
approach may be indicated. Furthermore, almost all of the proposed model struc-
tures of EGP have a large number of parameters that have to be estimated (18 in the
most complex model). Since the number of available EGP data points, in case of
simultaneously identification is at maximum 38, a deterministic approach provides
estimates with a really high uncertainty. For the above reasons a MAP estimation
approach was used. The proposed constrain is the following:

�̂�𝑁𝑆 = �̂�𝑆 ◦ 𝛼 (4.23)

Where ◦ is the element-wise product and 𝛼 is a vector with the following a priori
information: 𝛼 ∼ 𝑁(𝜇𝛼;Σ𝛼). 𝜇𝛼 is a vector of ones with the same dimensions of
�̂�𝑆. With this formulation we are telling to the model that prior to the experiment
the parameter vector in the two occasions is the same, and intra-subject variability
is incorporated into Σ𝛼. With the Bayesian approach the cost function to minimize
becomes:
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𝐽(𝑝𝑆 , 𝛼) = 𝐽𝑆(𝑝𝑆) + 𝐽𝑁𝑆(𝑝𝑁𝑆) + [𝑎 − 𝜇𝛼]𝑇Σ−1
𝛼 [𝑎 − 𝜇𝛼] (4.24)

Therefore, a compromise between fitting the data in the two experiments and having
close estimates in S and NS is realized.

IDENTIFICATION OF LINEAR MODELS OF EGP

To identify model parameters of linear models of EGP, we used the identifica-
tion strategy just described. Standard deviation of measurement error was assumed
equal to 1 [𝜇𝑚𝑜𝑙/𝐾𝑔/𝑚𝑖𝑛]. Estimation of parameters was done using lsqnonlin func-
tion of Matlab (R2020b). It uses an efficient algorithm based on the Gauss-Newton
principle. Parameter initial values were fixed according to previous models present
in literature ([25],[39]).

IDENTIFICATION OF NON LINEAR MODELS OF EGP

Unlike linear models, non linear ones were not based on a previous model pro-
posed in the literature. To better test model structure ability to fit the data, we de-
cided to set less possible constrains in the initial identification approach. That’s why,
we identified separately the model on S and NS occasion, using a deterministic ap-
proach. In fact, if the fitting result was not acceptable with separate identification,
with a simultaneous one the fit would have been even worse. Using the Fisherian
approach provided the possibility of not assuming the standard deviation of the
measurement error of EGP, and to estimate it a posteriori (instead with a Bayesian
approach, this was not possible). Furthermore, we used the Matlab (R2020b) func-
tion fminsearch that is based on a direct search algorithm. Since we did not have
information about plausible initial values of the parameters, we preferred to use this
type of algorithm instead of a gradient-type one, to explore a wider range of possible
solutions.

4.1.4 MODEL ASSESSMENT

After the parameter estimation stage, an assessment of the identifiedmodel must
be performed. This step focuses mainly on fitting performances and precision and
plausibility of the estimated parameters.
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GOODNESS OF FIT

If the model is correct, in the sense that it is able to perfectly reproduce the sys-
tem behaviour in the experimental setting, from eq.4.6 it is easy to retrieve that the
residuals of the model should be equal to the additive measurement noise:

𝑟 = 𝑧 − 𝐺(�̂�) = 𝑣 (4.25)

Consequently, since 𝑣 was assumed as a white noise with a known variance, 𝑟
should have the same statistical properties. Firstly, residual should be uncorrelated
and secondly their amplitude should be the same of the measurement error. An
usual approach is to display weighted residuals, 𝑤𝑟𝑒𝑠, that are residual weighted
with the standard deviation of 𝑣. The variance of the k-th 𝑤𝑟𝑒𝑠 is:

𝑣𝑎𝑟(𝑤𝑟𝑒𝑠𝑘) = 𝑣𝑎𝑟( 𝑟𝑘𝜎𝑘 ) =
1
𝜎2
𝑘

· 𝑣𝑎𝑟(𝑟𝑘) = 1
𝜎2
𝑘

· 𝑣𝑎𝑟(𝑣𝑘) = 1 (4.26)

For this reason, on average the 66% of𝑤𝑟𝑒𝑠 should lay inside the [-1,+1] band. To
evaluate amplitude and whiteness, an initial visual inspection is performed. Then,
a more robust approach to assess whiteness is applying an Anderson-Darling test
[46]. A quick metric to evaluate fitting performance of the model is to calculate the
wighted residual sum of square (WRSS), as follow:

𝑊𝑅𝑆𝑆 = 𝑟𝑇Σ−1
𝑣 𝑟 (4.27)

The lowest WRSS is and the better the model is able to fit the data.

PRECISION AND PLAUSIBILITY OF THE ESTIMATED PARAMETERS

Both Fisherian and Bayesian techniques supply an estimation of the uncertainty
of the estimates (eq. 4.15 and eq. 4.21). This uncertainty is usually expressed by the
coefficient of variation of the estimates (eq. 4.9). Estimated parameters will have a
good precision if their CV is under 50 %. A CV slightly higher can be accepted for
few parameters, in particular in case of complex model structure. If CV is greater
then 100 %, there is a too high uncertainty on the estimation of that parameter. An-
other fundamental aspect to take into consideration is the plausibility of parameter
values. Thus, if there is a physiological foundation that confirms the credibility of
the estimated values. For some parameters, this can be obvious (for example a trans-
fer rate coefficient [1/min] cannot be negative), for others it might be difficult to find
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information in the literature (for example if you are building a novelmodel for which
there are not well known benchmarks).

4.1.5 MODEL SELECTION

After themodel assessment step, if all metrics are satisfied, themodelling process
has produced a reasonable model of the analyzed system, at least in the defined do-
main of validity. Since several model structures can successfully pass through the
whole procedure is important to have a defined and robust methodology to compare
models and select the best one. Particular useful are the so called parsimony crite-
ria. They are statistical metrics that evaluate how good is a model (in term of fitting
performance) with respect to its complexity (number of model parameters). In fact,
it is well known that more complex models are better able to fit the data, since they
have more degrees of freedom. As a drawback, such complex models may adapt to
much to the experimental data and suffer from the overfitting problem. Therefore, par-
simony criteria realize a balance between fitting and model complexity, that reflects
a balance between bias and variance of the model. For Bayes estimation a common
parsimony criterion is the Generalized Information Criterion (GEN-IC) [47], defined
as:

𝐺𝐸𝑁 − 𝐼𝐶 =
2𝑚
𝑛

+ 𝐽(�̂�) (4.28)

where, as seen before, 𝑚 is the number of parameters of the model, 𝑛 is the num-
ber of available data points and 𝐽(�̂�) is the cost function defined as in eq.4.24, evalu-
ated in �̂�. Another two popular criteria are the Akaike Information Criterion - AIC
(eq. 4.29) and the Bayes InformationCriterion - BIC (eq. 4.30). Both of themare based
on the same principle of balancing between goodness of fit and model complexity.
BIC has an higher penalty for model complexity respect to AIC (if n > 7).

𝐴𝐼𝐶 =𝑊𝑅𝑆𝑆 + 2𝑚 (4.29)

𝐵𝐼𝐶 =𝑊𝑅𝑆𝑆 + 𝑚𝑙𝑜𝑔(𝑛) (4.30)

In case of small sample size , a correct version of AIC is used (eq. 4.31).

𝐴𝐼𝐶𝑐 = 𝐴𝐼𝐶 + 2𝑚(𝑚 + 1)
𝑛 − 𝑚 − 1

(4.31)
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The best model is that one with the lowest value of parsimony criteria.

4.1.6 STATISTICAL ANALYSIS

As seen in the experimental design section 2.1, this study tried to mimic the im-
paired glucagon suppression (IGS) of T2DM patients after a meal challenge (not
suppressed occasion), and also how different defective insulin secretions (0.6/0.8
Ins. group), with respect to normal (1.0 Ins. group), can impact glucagon action
on hepatic glucose production. Therefore, it is interesting to see how parameters of
the selected model change according to insulin secretion level and glucagon profile.
They can be thought as the two factors that may influence model parameters. That
is why, two-way analysis of variance (ANOVA) is the optimal tool to evaluate results
from a statistical prospective, taking into consideration the influence of both factors.
ANOVA evaluates if samples from 2 or more groups came from the same statisti-
cal distribution, calculating intra and inter group variances. The null hypothesis is
that all groups have the same sample mean, the alternative hypothesis is that at least
one group has sample mean that differs from another group. ANOVA assumes that
all groups are normally distributed and have the same variance (homoschedastic-
ity). Even if the normality assumption is not properly satisfied, the test is robust
enough to deal with it. However, if group variances are not equal, the results of
ANOVA are weaker. For this reason, an homoschedasticity test is usually applied
before ANOVA, for example the Levene’s test. If ANOVA suggests to reject the null
hypothesis (p-value lower than the selected level of significance 𝛼), it is not possi-
ble to know which group or groups have different mean with respect to the others.
To understand it a post hoc analysis is performed. The simplest approach is to apply
a t-test to all group couples. However, the main issue of multiple comparison pro-
cedures is that the probability of rejecting a null hypothesis when it is true ( type
1 error) is not more equal to the chosen 𝛼. Consequently, we should focus on the
overall probability of committing type 1 error, the so called family-wise error rate
(FWER). To do so, several approaches are available in the literature, like the Bon-
ferroni correction, the Sidak procedure and the Tukey’s test. In particular, the last
one is essentially a t-test corrected for FWER. Statistical analysis was performed in
Matlab (R2020b).
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5
Results

5.1 A PRIORI IDENTIFIABILITY

Model 1 and Model 2 are time-invariant and have a linear dynamics. Conse-
quently, we used the transfer function method to test the a priori identifiability. Both
models resulted to be globally identifiable. We obtained the same result using the
software DAISY. Models 3, 4, 5, 6, 7 and 8 are still linear in the dynamics, however,
they are not time-invariant due to the introduction of the glucagon evanescent ef-
fect 𝐸(𝑡) in the model structure. Exploiting the Taylor series expansion method, we
proved that all models are a priori globally identifiable. A priori identifiability of
non linear models was tested with the software DAISY. Non linear model 2, 3 and
4 resulted to be a priori globally identifiable. We were not able to prove the a priori
identifiability of non linear model 1. However, as seen in section 4.1.1, it does not
mean that the model is a priori not identifiable.

5.2 A POSTERIORI IDENTIFICATION

Model implementation andparameter identificationwas realized inMatlab (R2020b).
Numerical integration of differential equationswas performedusing ode45 solver im-
plemented in Matlab (R2020b). Firstly, model identification and selection was based
on model performance on average profiles. Since the ”average subject” has the less
noisy measurement data and input signals, due to the noise attenuation property
of the averaging operation. Consequently, poor fitting performances on mean val-
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5.2. A POSTERIORI IDENTIFICATION

ues will lead to even worst results at individual level. Then, the selected model was
tested on individual subjects.

5.2.1 LINEAR MODELS OF EGP

MODEL 1

Model 1 (eq. 3.1) do not consider a glucagon contribution to model EGP pro-
file. Since, this experiment was design to emphasise glucagon action on EGP, we
expected poor fitting performance. This was confirmed by the identification results
(fig. 5.1). In the S occasion the model was able to follow the EGP decrease in the
first part of the experiment, since it was produced mainly by insulin infusion (that
is taken into consideration by the model). The following EGP rise is due to the re-
duction of insulin infusion and increasing of glucagon concentration caused by its
infusion at t = 120 [min]. The model was not properly able to follow this upswing,
since it does not consider the glucagon action. In the NS occasion, the fit is better
since glucagon is constantly infused during all the experiment. Thus, its effect on
EGP is constant (if evanescence phenomenon is not considered). However, the fit is
still not satisfactorily.
A remark about insulin and its action is worth doing: in both occasions concentra-
tion profiles are rather close. As a result, also similar insulin actions are expected.
Even taking into account the intra-subject variability, such difference in insulin ac-
tions between the two experiments is not acceptable. Lastly, glucose derivative pro-
file was not needed to fitting the data, that’s why its action on EGP is almost null.
Consequently, precision of the parameter related to glucose derivative action 𝑘𝑝7 is
poor (CV»100%, see table 5.1). To wrap up, as predicted, this model did not provide
acceptable results.
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CHAPTER 5. RESULTS

Figure 5.1: Model 1 prediction vs average EGP data: Rows 1-3: input signals (left
panel) and relative actions on EGP (right panel); row 4: EGP data vs. model predic-
tions (left panel) and weighted residuals (right panel) in both not suppressed (NS)
and suppressed (S) occasions.
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NS S

Parameters value CV(%) value CV(%)

kp2
[

𝑚𝑙
𝑘𝑔·𝑚𝑖𝑛

]
0.713 14.1 1.080 5.7

kp3
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.023 25.8 0.030 5.4

kp5
[ 1
𝑚𝑖𝑛

]
0.006 55.5 0.070 1.8

kp7
[
𝑚𝑙
𝑘𝑔

]
0.970 289.0 0.960 288.4

Table 5.1: Results of Model 1 identified on average data: estimated parameters and
their precision (CV) in both not suppressed (NS) and suppressed (S) occasions.

MODEL 2

Model 2 (eq. 3.2), takes into account glucagon concentrations to predict EGP,
consequently better performances with respect to model 1 were a priori expected.
Instead, as displayed in figure 5.2, model fit was comparable with that obtained
with Model 1. Let us try to understand why. Firstly, the model was actually using
glucagon profile to predict EGP, since glucagon action was present in both occasions
(left panel of row 3). Especially in S case, glucagon could help the model to describe
EGP rise after the first decrease. However, from 𝑡 � 170 [𝑚𝑖𝑛] EGP starts to de-
cline again. This fall could not be explained with glucagon profile, since it remains
constant after 𝑡 � 170 [𝑚𝑖𝑛]. Therefore, a better fit of the EGP upswing (based on
glucagon increase) produced a worst fit of the following EGP data points. With re-
spect to Model 1, insulin actions estimated in the two occasions are closer, however,
the inter-day difference was still too large to be acceptable.
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CHAPTER 5. RESULTS

Figure 5.2: Model 2 prediction vs average EGP data: Rows 1-3: input signals (left
panel) and relative actions on EGP (right panel); row 4: EGP data vs. model predic-
tions (left panel) and weighted residuals (right panel) in both not suppressed (NS)
and suppressed (S) occasions.
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5.2. A POSTERIORI IDENTIFICATION

NS S

Parameters value CV(%) value CV(%)

kp2
[

𝑚𝑙
𝑘𝑔·𝑚𝑖𝑛

]
1.165 11.0 1.120 5.7

kp3
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.003 46.4 0.010 19.2

kp4
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.636 28.3 0.600 22.0

kp5
[ 1
𝑚𝑖𝑛

]
0.087 17.0 0.080 0.2

kp6
[ 1
𝑚𝑖𝑛

]
0.187 0.0 0.100 0.0

Table 5.2: Results of Model 2 identified on average data: estimated parameters and
their precision (CV) in both not suppressed (NS) and suppressed (S) occasions.

MODEL 3

Model 3 (eq.3.3) takes into consideration the glucagon evanescent effect. Its in-
troduction solves the problem pointed out inmodel 2. In fact, glucagon action can be
considered responsible of the rise and the following fall of EGP from 𝑡 � 120 [𝑚𝑖𝑛]
in S occasion. Therefore, the fit of this model to the data was substantially increased
with respect to the previous ones, in both occasions. Furthermore, the difference
in insulin actions in S vs NS could be addressed to intra-subject variability. From a
visual inspection of weighted residual, it can be seen that this model is still not prop-
erly resembling system behaviour. In particular, from 𝑡 = 0 [𝑚𝑖𝑛] to 𝑡 = 40 [𝑚𝑖𝑛]
there was a negative peak in both cases. Thus, the model was not able to follow
EGP downswing. Moreover, EGP rise in S was still underestimated. Precision of
estimates was good for all parameters (table 5.3).
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CHAPTER 5. RESULTS

Figure 5.3: Model 3 prediction vs average EGP data: Rows 1-3: input signals (left
panel) and relative actions on EGP (right panel); row 4: EGP data vs. model predic-
tions (left panel) and weighted residuals (right panel) in both not suppressed (NS)
and suppressed (S) occasions.
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NS S

Parameters value CV(%) value CV(%)

kp2
[

𝑚𝑙
𝑘𝑔·𝑚𝑖𝑛

]
0.582 19.6 0.710 13.3

kp3
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.015 20.5 0.020 8.9

kp4
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.631 21.3 0.830 14.4

kp5
[ 1
𝑚𝑖𝑛

]
0.055 17.8 0.050 10.9

kp6
[ 1
𝑚𝑖𝑛

]
0.096 22.1 0.110 0.8

1/𝜏 [ 1
𝑚𝑖𝑛

]
0.037 46.9 0.040 42.1

𝑡0 [𝑚𝑖𝑛] 160.370 11.7 91.640 8.4

Table 5.3: Results of Model 3 identified on average data: estimated parameters and
their precision (CV) in both not suppressed (NS) and suppressed (S) occasions.

MODEL 4

In model 4 (eq. 3.4), glucagon was assumed to act without any delay and propor-
tionally to glucagon concentration. With respect to Model 3, glucagon action was
obviously less smooth. This gives to the model the ability to promptly follow EGP
rise and fall (fig.5.4). The amplitude of weighted residuals was almost in the [−1,+1]
band. Regarding residual whiteness, uncorrelated residual are not expected due to
the estimation process of EGP (more details in chapter 2, section 2.3). Consequently,
from a visual inspection, they are satisfactory unless for a small negative peak in the
initial part for both S and NS. Precision of the estimated parameter was good ( CV <
50% for every parameter, tab. 5.4). To sum up, removing glucagon delay and using a
component proportional to its plasma concentration improvedmodel performances.
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Figure 5.4: Model 4 prediction vs average EGP data: Rows 1-3: input signals (left
panel) and relative actions on EGP (right panel); row 4: EGP data vs. model predic-
tions (left panel) and weighted residuals (right panel) in both not suppressed (NS)
and suppressed (S) occasions.
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NS S

Parameters value CV(%) value CV(%)

kp2
[

𝑚𝑙
𝑘𝑔·𝑚𝑖𝑛

]
0.574 20.7 0.702 14.5

kp3
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.015 22.6 0.020 13.1

kp4
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.593 20.5 0.827 12.7

kp5
[ 1
𝑚𝑖𝑛

]
0.062 15.9 0.059 6.7

1/𝜏 [ 1
𝑚𝑖𝑛

]
0.030 41.7 0.033 36.4

𝑡0 [𝑚𝑖𝑛] 154.390 12.5 95.261 9.0

Table 5.4: Results of Model 4 identified on average data: estimated parameters and
their precision (CV) in both not suppressed (NS) and suppressed (S) occasions.

MODEL 5

Model 5 (eq. 3.5) is based on model 3 (eq. 3.3) with the addition of a component
proportional to glucose rate of change, if it is positive. In row 4 of fig. 5.5, it can be
appreciated that the main contribution of this new component is in the first 50 min-
utes of the experiment. Since glucose concentration in both occasions increases with
an higher rate when the glucose infusion that mimic a prandial input started. Since
glucose reduces EGP, also its rate of change has an inhibition effect. This helped
to better follow the initial downswing of EGP respect to all previous models and it
can be seen from the weighted residual graph (row 5, right panel). Mean CV of esti-
mated parameters increases respect to model 3 (since a new parameter is estimated),
however the precision is still reasonable.
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Figure 5.5: Model 5 prediction vs average EGP data: Rows 1-4: input signals (left
panel) and relative actions on EGP (right panel); row 5: EGP data vs. model predic-
tions (left panel) and weighted residuals (right panel) in both not suppressed (NS)
and suppressed (S) occasions.
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NS S

Parameters value CV(%) value CV(%)

kp2
[

𝑚𝑙
𝑘𝑔·𝑚𝑖𝑛

]
0.427 32.2 0.540 26.1

kp3
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.018 21.8 0.020 12.9

kp4
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.751 23.4 0.950 16.1

kp5
[ 1
𝑚𝑖𝑛

]
0.061 14.4 0.060 0.8

kp6
[ 1
𝑚𝑖𝑛

]
0.110 28.2 0.110 20.2

1/𝜏 [ 1
𝑚𝑖𝑛

]
0.025 42.4 0.030 36.0

𝑡0 [𝑚𝑖𝑛] 143.123 11.7 87.270 8.8

kp7
[
𝑚𝑙
𝑘𝑔

]
9.027 43.1 9.920 37.7

Table 5.5: Results of Model 5 identified on average data: estimated parameters and
their precision (CV) in both not suppressed (NS) and suppressed (S) occasions.

MODEL 6

As done with model 4 respect to model 3, model 6 (eq. 3.6) is equal to model 5
unless for a direct contribution of plasma glucagon in the stimulation of EGP. Signal
actions on hepatic production were similar to the ones of the previous model, except
for a less smooth glucagon action. Goodness of fit improved, leading to satisfactory
results (fig. 5.6). Parameters’ precision was good apart for 𝑘𝑝7 with a CV slightly
grater than 50%.
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Figure 5.6: Model 6 prediction vs average EGP data: Rows 1-4: input signals (left
panel) and relative actions on EGP (right panel); row 5: EGP data vs. model predic-
tions (left panel) and weighted residuals (right panel) in both not suppressed (NS)
and suppressed (S) occasions.
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NS S

Parameters value CV(%) value CV(%)

kp2
[

𝑚𝑙
𝑘𝑔·𝑚𝑖𝑛

]
0.509 24.2 0.602 18.0

kp3
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.016 20.5 0.020 10.1

kp4
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.665 19.3 0.898 12.0

kp5
[ 1
𝑚𝑖𝑛

]
0.060 18.0 0.054 10.3

1/𝜏 [ 1
𝑚𝑖𝑛

]
0.030 40.9 0.034 34.9

𝑡0 [𝑚𝑖𝑛] 152.937 11.0 90.442 8.0

kp7
[
𝑚𝑙
𝑘𝑔

]
6.364 55.2 6.033 52.0

Table 5.6: Results of Model 7 identified on average data: estimated parameters and
their precision (CV) in both not suppressed (NS) and suppressed (S) occasions.

MODEL 7

Model 7 (eq. 3.7) is equal to model 3, plus a component proportional to glucagon
rate of change, if it is positive. This new factor should help themodel to better follow
fast EGP increase, especially in the S occasion. As you can see from the left bottom
panel of figure 5.7, this was true only for the first part of the upswing of EGP. More-
over, the fitwasworst in the initial part of the experiment in both S andNS occasions.
Consequently, the introduction of glucagon rate of change did not substantially help
in these experimental settings.
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Figure 5.7: Model 7 prediction vs average EGP data: Rows 1-4: input signals (left
panel) and relative actions on EGP (right panel); row 5: EGP data vs. model predic-
tions (left panel) and weighted residuals (right panel) in both not suppressed (NS)
and suppressed (S) occasions.
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NS S

Parameters value CV(%) value CV(%)

kp2
[

𝑚𝑙
𝑘𝑔·𝑚𝑖𝑛

]
0.680 18.9 0.800 13.1

kp3
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.013 26.8 0.020 15.1

kp4
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.554 23.7 0.880 14.8

kp5
[ 1
𝑚𝑖𝑛

]
0.040 20.8 0.030 15.9

kp6
[ 1
𝑚𝑖𝑛

]
0.090 22.1 0.100 0.0

1/𝜏 [ 1
𝑚𝑖𝑛

]
0.029 56.6 0.030 53.0

𝑡0 [𝑚𝑖𝑛] 172.190 13.4 106.950 9.8

kp8
[ 𝜇𝑚𝑜𝑙

𝑘𝑔
𝑝𝑚𝑜𝑙
𝑙

]
9.163 38.6 11.900 29.7

Table 5.7: Results of Model 7 identified on average data: estimated parameters and
their precision (CV) in both not suppressed (NS) and suppressed (S) occasions.

MODEL 8

Model 8 is the most complex linear model tested and it includes all the differ-
ent parts of previous models. Regarding insulin profiles and insulin actions in both
occasions, it provided the best results: same insulin profiles lead to exactly same ac-
tions on EGP (fig. 5.8). Model prediction was good; as a result, weighted residual
were good too. Probably, glucagon rate of change reduced the ability of the model
to follow the first fall of EGP in NS (in particular around 𝑡 = 20 − 40 [𝑚𝑖𝑛]). On the
other hand, It increased fitting performance in the EGP rise in S occasion. Despite
the high number of parameters, estimation’s precision was acceptable (tab. 5.8).
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Figure 5.8: Model 8 prediction vs average EGP data: Rows 1-4: input signals (left
panel) and relative actions on EGP (right panel); row 5: EGP data vs. model predic-
tions (left panel) and weighted residuals (right panel) in both not suppressed (NS)
and suppressed (S) occasions.

61



5.2. A POSTERIORI IDENTIFICATION

NS S

Parameters value CV(%) value CV(%)

kp2
[

𝑚𝑙
𝑘𝑔·𝑚𝑖𝑛

]
0.431 31.7 0.434 26.6

kp3
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.025 20.5 0.026 13.1

kp4
[ 𝜇𝑚𝑜𝑙
𝑘𝑔·𝑚𝑖𝑛
𝑝𝑚𝑜𝑙
𝑙

]
0.813 16.9 1.054 10.7

kp5
[ 1
𝑚𝑖𝑛

]
0.039 18.3 0.034 12.8

kp6
[ 1
𝑚𝑖𝑛

]
0.157 8.4 0.156 0.0

1/𝜏 [ 1
𝑚𝑖𝑛

]
0.035 50.1 0.048 43.2

𝑡0 [𝑚𝑖𝑛] 163.374 8.5 86.145 5.9

kp7
[
𝑚𝑙
𝑘𝑔

]
14.953 30.6 14.418 24.8

kp8
[ 𝜇𝑚𝑜𝑙

𝑘𝑔
𝑝𝑚𝑜𝑙
𝑙

]
9.387 44.3 9.540 39.5

Table 5.8: Results of Model 8 identified on average data: estimated parameters and
their precision (CV) in both not suppressed (NS) and suppressed (S) occasions.
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5.2.2 NON LINEAR MODELS OF EGP

NON LINEAR MODEL 1

Fitting performance of non linearmodel 1 (eq. 3.9) was not satisfactory, especially
in the S occasion (fig. 5.9). Insulin action profile in NS was not plausible. The a
posteriori estimated standard deviation of measurement error v was too high to be
acceptable (CV of v will be close to 100% for some data points). For this reasons, this
model was discarded.

Figure 5.9: Prediction of the non linear model 1 vs average data. First row: input
signals and EGP data vs model predictions. Second row: signal actions on EGP and
weighted residuals (a posteriori).

NON LINEAR MODEL 2

With respect to non linear model 1, removing the multiplication relationship be-
tween glucose and glucagon (as suggested in [12]) did not lead to good fitting results
in non linear model 2 (fig. 5.10). This model suffered from the same problems of the
previous one, therefore it was rejected.
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Figure 5.10: Prediction of the non linear model 2 vs average data. First row: input
signals and EGP data vs model predictions. Second row: signal actions on EGP and
weighted residuals (a posteriori).

NON LINEAR MODEL 3

Figure 5.11: Prediction of the non linear model 3 vs average data. First row: input
signals and EGP data vs model predictions. Second row: signal actions on EGP and
weighted residuals (a posteriori).
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Also non linear model 3 produced unsatisfactory results, both in terms of good-
ness of fit and plausibility of signal actions on EGP (fig. 5.11). Therefore, it was
judged not suitable for a proper description of the system.

NON LINEAR MODEL 4

The introduction of glucagon rate of change in non linear model 4 did not pro-
duce better results with respect to previous non linear models (fig. 5.12). That’s why,
also this model was discarded.

Figure 5.12: Prediction of the non linear model 4 vs average data. First row: input
signals and EGP data vs model predictions. Second row: signal actions on EGP and
weighted residuals (a posteriori).
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5.2.3 MODEL SELECTION

After model assessment of both linear and non linear models of EGP, it became
clear that the best model was to choose among the linear ones. Since there were
four models showing good fitting performance and good precision of the estimates
(model 4,5,6,8), we compared themetrics likeWRSS and parsimony criteria provided
by these models.

MODEL WRSS GEN-IC AICc BIC

4 23.9 38.6 60.4 67.6

5 24.2 38.6 82.1 82.4

6 18.2 34.6 64.4 69.1

8 24.3 49.1 96.3 89.8

Table 5.9: WRSS and parsimony criteria of the 4 best linear models

The best fit (lowest WRSS) was obtained with model 6, that was also the sug-
gested as the best model by GEN-IC. However, both AICc and BIC proposed to
choose model 4 (tab. 5.9). Therefore, we decide to test both models on single subject
data.
After having tested the two models on individual subject data, we observed that
model 6 provided, on average, a better fit than model 4 (figure 5.13 vs figure 5.14
and lower average WRSS, table 5.10). Moreover, all the parsimony criteria (mean
values) suggested that model 6 was the best one (table 5.10). Therefore, also at single
individual level, it is important to take into account glucose rate of change to predict
EGP and therefore model 6 was selected as the best model of EGP.
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Figure 5.13: Fit of model 4 on single subjects. Left panel: mean EGP data vs average
of individual subject predictions. Right panel: mean ± std of individual weighted
residuals.

Figure 5.14: Fit of model 6 on single subjects. Left panel: mean EGP data vs average
of individual subject predictions. Right panel: mean ± std of individual weighted
residuals.
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MODEL WRSS CV(%) GEN-IC AICc BIC

4 99.1 (±11.5) 27.2 (±7.7) 127.3 (±13.2) 135.8 (±11.5) 142.7 (±11.5)

6 75.6 (±6.4) 37.4 (±18.4) 107.0 (±8.4) 122.2 (±6.4) 126.4 (±6.4)

Table 5.10: Average (±SE) of WRSS, precision of the estimated parameters (CV) and
parsimony criteria of model 4 and 6, identified on individual subjects.

5.2.4 STATISTICAL ANALYSIS

As highlighted in section 4.1.6, it is interesting to assess if and how much param-
eters of model 6 changed according to insulin secretion level and glucagon profile.
Do to so, a two-way ANOVA was applied.

LEVENE’S TEST

We have seen that it is important to check if the homoschedasticity hypothesis of
ANOVA is satisfied. To do that, we applied a Levene’s test. P-values of each param-
eter grouped by insulin secretion or glucagon infusion (the two factors) is reported
in table 5.11. Apart for parameter 𝑘𝑝7 when is grouped respect to insulin, there is no
evidence for rejecting the null hypothesis of the Levene’s test (equality of variances
of each group). Thus, ANOVA could be used.

parameters

factors kp2 kp3 kp4 kp7

Ins. group (0.6/0.8/1.0) 0.069 0.146 0.104 0.0003

Glucagon (S/NS) 0.079 0.094 0.025 0.467

Table 5.11: P-values of Levene’s test to check homoschedasticity (𝛼 = 0.05).
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ANOVA

Two-way ANOVA pinpointed that the difference in hepatic glucose sensitivity
(parameter 𝑘𝑝2) in suppressed (S) vs not suppressed (NS) occasion was statistically
significant (p-value = 0.021, table 5.12). The same held for hepatic glucagon sensi-
tivity (parameter 𝑘𝑝4) with respect to insulin infusion level (p-value = 0.024). Mean
values of 𝑘𝑝2 and 𝑘𝑝4 in subjects grouped by insulin and glucagon level are displayed
in fig. 5.15 and fig. 5.16, respectively.

parameters

factors kp2 kp3 kp4 kp7

Ins. group (0.6/0.8/1.0) 0.684 0.505 0.024 0.102

Glucagon (S/NS) 0.021 0.246 0.117 0.681

Table 5.12: P-values of two-way ANOVA (𝛼 = 0.05).

Figure 5.15: Mean hepatic glucose sensitivity (kp2) at low (0.6 Ins), medium (0.8 Ins)
and high (1.0 Ins) insulin level in case of suppressed (S) and not suppressed (NS)
glucagon. Vertical bars represent standard error.
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Figure 5.16: Mean hepatic glucagon sensitivity (kp4) at low (0.6 Ins), medium (0.8
Ins) and high (1.0 Ins) insulin level in case of suppressed (S) and not suppressed (NS)
glucagon. Vertical bars represent standard error.

POST HOC ANALYSIS

ANOVA did not provide details about which group has statistically different val-
ues of hepatic glucagon sensitivity (𝑘𝑝4). Consequently, we performed a post hoc
analysis to investigate it. We applied a t-test to each insulin group (0.6/0.8/1.0 Ins.)
and the results highlight a difference in the group with low insulin level (0.6) with
respect to medium insulin level (0.8), as reported in table 5.13. It is worth noting
that we did not correct for multiple comparison, since with few data (as in this case),
correction may be too strict.

kp4
Ins group

0.6 0.8 1

Ins group

0.6 - 0.009 0.118

0.8 0.009 - 0.218

1 0.118 0.218 -

Table 5.13: P-values of post hoc t-test on parameter kp4 (𝛼 = 0.05).
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Since the t-test showed a robust result (p-value = 0.009), we tried the Tukey’s test
to correct for FWER.Alsowith the corrected t-test, group 0.6 and 0.8 Ins resulted hav-
ing a statistically different glucagon sensitivity of the liver (fig. 5.17). Mean values
of group 0.6 and 1.0 were numerically different, however there was too much vari-
ability to have a solid difference from a statistical prospective. Probably, increasing
the number of subjects in the two groups might produce a more robust difference.

Figure 5.17: Tukey’s test on hepatic glucagon sensitivity (kp4). Mean values at low
(I06), medium (I08) and high (I10) insulin level. Horizontal bars represent standard
error.
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HEPATIC GLUCAGON ACTION: RELATIONSHIP AMONG PARAMETERS

As seen in the physiology section 1.1, a possible explanation for the evanescence
effect of glucagon is the depletion of hepatic glycogen. Consequently, an high hep-
atic glucagon sensitivity (𝑘𝑝4) should lead to a faster reduction of glycogen reserves,
which is reflected in a lower value of parameters 𝑡0 and 𝜏 (see eq. 3.3 and figure
5.18). As a result, a negative correlation between 𝑘𝑝4 vs 𝑡0 and 𝑘𝑝4 vs 𝜏was expected.
Scatter plots to evaluate the two relations are depicted in figure 5.19. The expected
negative correlation was present in both graphs, in particular the Pearson correla-
tion coefficient (𝜌) for 𝑘𝑝4 vs 𝑡0 was 𝜌 = −0.26 (p-value = 0.03), and for 𝑘𝑝4 vs 𝜏 was
𝜌 = −0.37 (p-value = 0.002).

Figure 5.18: Influence of hepatic glucagon sensitivity (𝑘𝑝4) on parameters governing
the glucagon evanescence effect (𝜏 and 𝑡0). An higher 𝑘𝑝4 leads to a faster reduction
of glycogen reserves, which is reflected in a lower value of 𝑡0 and 𝜏.
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Figure 5.19: Scatter plots of 𝑘𝑝4 vs 𝑡0 (first panel) and 𝑘𝑝4 vs 𝜏 (second panel).
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6
Discussion

As highlighted in the literature review of EGP’s mathematical models (section
1.2), simultaneous estimation of insulin and glucagon actions on EGP remains a
challenge. A model that addresses this need may be helpful to better describe the
pathophysiology of T2DM. In particular, it would be useful to understand how and
how much impaired glucagon secretion influences the progression of the disease
from a prediabetes condition. In this work, we confirmed that not taking into ac-
count glucagon to describe EGP led to poor predictive performance (model 1, section
5.2.1). Moreover, including the glucagon evanescent effect [8] in the model structure
was crucial to achieve acceptable fitting performance (model 2 vs model 3, in section
5.2.1). Using glucagon rate of change, as suggested by Emami et al. [26], did not
lead to a significant improvement in the prediction of EGP (model 7). Non linear
descriptions of the interaction among glucose, insulin and glucagon actions on EGP
did not provide satisfactory results (section 5.2.2). The reason may be the increased
complexity of the identification procedure due to non linearity (section 4.1.3). In ad-
dition, the interpretation of such models is always difficult.
After a careful and systematic comparison of the model performances, we selected
model 6 has the best one (section 5.2.3). It assumes that EGP is suppressed by the
linear actions of glucose, its rate of change and insulin in a remote compartment,
while plasma glucagon stimulated EGP, with an effect that is evanescent. As seen
in a previous work [25], also in this study the contribution of glucose rate of change,
that is a surrogate of the portal insulin, improved themodel. Furthermore, the direct
action of plasma glucagon on EGP, and not a delayed version of it ([39],[12]), pro-
vided better results. This model formulation is also closer to the physiology. In fact,
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the pancreas secretes glucagon into the portal vein, which reaches the liver directly.
Thus, it is likely that the glucagon action on the liver is pretty fast.
Statistical results highlighted that in ”0.6 Ins” group (corresponding to severely im-
paired insulin secretion), hepatic glucagon sensitivity 𝑆𝐺𝑛 (parameter 𝑘𝑝4) was sig-
nificantly higher than in ”0.8 Ins” group (slightly impaired) and than ”1.0 Ins” group
(p-value = 0.024, fig. 5.16). This demonstrates that glucagon action on EGP is mod-
ulated by insulin concentrations, emphasizing the need to quantify secretion and
action of both hormones when measuring postprandial pancreatic islets function.
In addition, ANOVA highlighted that there was a significant difference in the hep-
atic glucose sensitivity (also called glucose effectiveness, parameter 𝑘𝑝2 in fig. 5.15) in
S vs NS. This result is reasonable, since in the NS occasion glucagon concentration
remains high. Thus, from the model prospective, glucose’s inhibition action on the
liver is less effective with respect to S occasion.
In this study glucose, insulin and glucagon were delivered intravenously into the
peripheral circulation. However, the physiological input of the two hormones is the
the portal vein. This was an unavoidable limitation, since a direct administration
into the portal vein is too invasive and not feasible in humans. It is also important to
underline that the evanescence effect of glucagon was modeled with a simplistic ap-
proach, according to Hinshaw et al. [12]. For the best of our knowledge, a structural
model of this phenomenon (thus, a description more close to the underling phys-
iology) is not present in literature, due to the fact that the mechanism behind this
phenomenon is not well understood. A future work should introduce in the model a
sophisticated description, when ad hoc experiments that study evanescence will be
available. Another improvement may come along with a population analysis approach,
like non-linear mixed effect models (NLMEM). By converting the selected model
into a population one, additional information on the subject can be used, such as an-
thropometric measurements and genomics data; which are both important factors
determining T2DM development ([14],[18]).

76



A
Introduction to deconvolution

Before taking about deconvolution, it is important to recall some basic concepts
about signals and systems. A system, in a broader sense, is a defined object or a part
of the space able tomodified input signals u(t) into output signals c(t) in a continuous
time setting (the real world). The system is well described by its impulse response
g(t,𝜏), which is the output of the system when the input is equal to the Dirac delta
impulse. When discretemeasurements 𝑐(𝑡𝑘) are taken from the output of the system,
wemoved from continuous to discrete time and usually in the measurement process
there is the introduction of some noise 𝑣𝑘 . As a result, the final measurement (the
collected data 𝑦𝑘) is the sum of the real value and the added noise.

Figure A.1: Discrete measurements 𝑐(𝑡𝑘) of the output 𝑐(𝑡) of a general system stim-
ulated by an input signal 𝑢(𝑡). Collected data 𝑦𝑘 contains also some measurement
noise 𝑣𝑘 (modified from [43]).

In continuous time, the output of the system is described as the convolution prod-
uct of the input and the impulse response, that in the scalar case can be written as:

𝑦𝑘 = 𝑐(𝑡𝑘) + 𝑣𝑘 =
∫ 𝑡𝑘

−∞
𝑔(𝑡𝑘 , 𝜏)𝑢(𝜏)𝑑𝜏 + 𝑣𝑘 (A.1)
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Where k indicates the k-th measurement.
The aim of a deconvolution process is to travel backwards the chain of causality, so
retrieving from the output 𝑦𝑘 the input 𝑢𝑘 . Making some hypothesis on u(t), such as:

• u(t) is a causal signal;

• u(t) is constant between two consecutive sampling times.
A matrix-vector model, that describes the input/output relationship of the sys-

tem, can be realized as:

𝑦 = 𝑐 + 𝑣 = 𝐺𝑢 + 𝑣 (A.2)

Where G is the discretized impulse response of the system, also called transfer
matrix input/output. y, c, v and u are vectors containing all the data points of the
experiment (they have the same dimension). With a least squares estimation, the
solution of equation A.2 is:

�̂�𝐿𝑆 = 𝐺−1𝑦 (A.3)

since G is squared and reversible. However, this solution is really sensible to
noise since deconvolution is a ill-conditioned and also ill-posed (not unique solution)
problem.

REGULARIZATION METHOD

To solve the deconvolution problem, an approach called regularization method
was propose by Phillips and Tikhonov in 1962. The idea was to estimate u(t) not only
with the aim of fitting the data (as in the least squares approach) but also promoting
the estimation of a regular signal. Regular means smooth in this case, so a signal
that is not oscillating tomuch (or from the frequency domain prospective, with not to
much power in high frequency bands). As a result, the cost function to beminimized
to find the estimated input (�̂�𝑃𝑇) takes into consideration both the adherence of the
data and the energy of the m-th derivative of u(t). Since, the more smooth u(t) is and
the less energy his derivatives have. After some algebraic steps, the solution of this
approach is:

�̂�𝑃𝑇 = (𝐺𝑇𝐵−1𝐺 + 𝛾𝐹𝑇𝐹)−1𝐺𝑇𝐵−1𝑦 (A.4)

Where B is the covariance matrix of the measurement error (except for a scalar
factor 𝜎2 ), used to weight each data point with respect to its uncertainty. F is a
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matrix that realizes the discrete differentiation of the input signal. Lastly, 𝛾 is an
hyper parameter that weights the importance of having a smooth estimated signal
respect to fitting the data. Consequently, there is the need of a criterion to determine
a proper value for 𝛾. In the deterministic settingwherewe are, awell known criterion
is the Discrepancy Principle.
The assumptions of this criterion is to knowing 𝜎2 and to have uncorrelated noise (so
B is diagonal). If the assumptions are satisfied, you should selected 𝛾 that realizes
this equality:

𝑟𝑇𝑟 � 𝑛, 𝑟 =
𝑦 − 𝐺�̂�
𝜎𝐵0.5 (A.5)

where, 𝐵0.5𝐵0.5 = 𝐵. So, the sum of square of the normalized residual (r) should
be equal to the number of data (n), or in the same way the sum of square of the
weighted residual (𝑟𝑤 = 𝑦−𝐺�̂�

𝐵0.5 ) should be equal to 𝑛𝜎2.
Formany reasons, the scalar factor of the covariancematrix of themeasurement error
can be unknown; in this case you can use other criteria such as:

• Ordinary cross-validation (OCV);

• Generalized cross-validation (GCV);

• L-curve approach.

Alsowith these approaches some open problems remain. In fact, in a determinis-
tic setting it is not possible to have confidence intervals of the estimated input of the
system and to have additional constrains like the non-negative one. To tackle these
problems we have to leave the deterministic scenario and move into a probabilistic
setting using a Bayesian approach.

DECONVOLUTION WITH A BAYESIAN APPROACH

with the same model of measurement described in equation A.2, in the new
stochastic background u and v are random vectors. A Bayesian approach (more de-
tails in section 4.1.2) exploits information on the signals previous to the experiment,
the so called a priori information. Regarding the error vector v, an usual assumption
is an expected value equal to zero and known covariance matrix (a known statistical
distribution). Regarding the input vector u, as already mention in the previous sec-
tion, a regular signal is expected. An usual a priori description is a multi-integrated
white noise, for which the covariance matrix can be formalized.

Thus, prior information can be written as:
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Σ𝑢 = 𝜆2(𝐹𝑇𝐹)−1 Σ𝑣 = 𝜎2𝐵 (A.6)

Where 𝜆2 is the variance of the white noise. The other matrices have the same
description of eq. A.4.
A Bayesian approach produces a statistical description about the estimated signal,
that is called a posteriori distribution. This is even a too rich information since there
is not a single estimation provided. Among all possible estimators of u form y, it
can be showed that the a posteriori expected value �̂� = 𝐸[𝑢 |𝑦] is the estimator that
minimized the sum of square of the estimation error vector of u, (�̃� = 𝑢 − �̂�). In case
of u and v Gaussian it has an explicit calculation:

�̂�𝐵𝑎𝑦𝑒𝑠 = (𝐺𝑇𝐵−1𝐺 + 𝜎2

𝜆2𝐹
𝑇𝐹)−1𝐺𝑇𝐵−1𝑦 (A.7)

It can be appreciated that the formulation of the best estimate of u in a stochastic
setting is equal to the estimation of the determinism regularizationmethod (equation
A.4), if 𝛾 is equal to the ratio of the a priori variances of v and u. As a result, this is
the optimal gamma value identified with a Bayesian approach:

𝛾𝑜𝑝𝑡𝑖𝑚𝑎𝑛 =
𝜎2

𝜆2 (A.8)

Some statistical criteria as been developed to estimate 𝛾𝑜𝑝𝑡𝑖𝑚𝑎𝑛 taking into con-
sideration the amount of known a priori information. If 𝜎2 is known, 𝛾 can be found
with the first consistent criterion:

𝑊𝐸𝑆𝑆(𝛾) = 𝜆2𝑞(𝛾) (A.9)

Where WESS is the weight estimate sum of squared and q is the trace of a known
matrix.

If 𝜆2 is known, 𝛾 can be found with the second consistent criterion:

𝑊𝑅𝑆𝑆(𝛾) = 𝜎2𝑛 − 𝑞(𝛾) (A.10)

Where WRSS is the weight residual sum of squared.
If both 𝜆2 and 𝜎2 are unknown, 𝛾 can be found with the third consistent criterion:

𝑊𝑅𝑆𝑆(𝛾)
𝑛 − 𝑞(𝛾) = 𝛾

𝑊𝐸𝑆𝑆(𝛾)
𝑞(𝛾) (A.11)
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