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Chapter 1

Introduction

The science of optimisation aims of the best possible use of the available re-

sources in a given physical process. Commonly speaking, any optimization

strategy answers the following questions: what is the best way to employ re-

sources? Are Nature processes designed to be optimal? The impacts of an-

swering these questions are so important to society that the interest in this

topic has been prosperous since the ancient age.

Indeed, starting from greeks analysis for geometrical problems (see for in-

stance Dido’s problem of finding the polygon of minimal perimeter and max-

imum area, analyzed by Zenodorus in 300 BC), many mathematicians and sci-

entists worked on the optimisation field. As a result, some pivotal outcomes

were already derived at the rising of the scientific revolution (see Kepler’s

work on the secretary problem and wine barrel or Galileo’s analysis on the

best shape for a hanging chain [1]).

However, the scientific community has had at its disposal the suitable tool

to handle optimization problems only with the foundation of the Calculus of

Variations in the late 17th century. Nowadays, an incredible amount of theo-

retical properties and procedures have been consolidated in literature, consti-

tuting the basis of the knowledge in many scientific fields [2]; further, several

optimization algorithms have become unavoidable tools even for simple time

scheduling problems [3]. Nevertheless, the progress in the optimization field

19
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is far from over, and the research is still open for more advanced techniques,

like the ones in Layout optimization [4].

1.1 The Topology Optimization, an overview

The layout optimization, or rather the research for the optimal disposition of

the available material (in the sense of maximizing or minimizing a chosen

functional), has applied with growing interest in several production environ-

ments in the last decades [5]. Usually, the layout optimization can be catego-

rized into three types, namely, the size optimization, the shape optimization,

and the topology optimization. A plastic demonstration of the differences be-

tween these three methods is the optimization of the compliance of a can-

tilever, reported in Figure 1.1.

In the size optimization, the structure is parameterized using sizes and posi-

tions of geometrical features, and the corresponding parameters are the op-

timization variables. The shape optimization, instead, parameterizes the geo-

metrical characteristics of structures using the spline interpolation, where the

sample points are the optimization variables. After the parameterization, the

optimization variables are iteratively evolved in the predefined feasible re-

gions, using global optimization or gradient information-based optimization

algorithm. The size optimization and shape optimization are subjected to the

inflexibility on changing the topology of the initial guessed geometry, and

thus are characterized by a strong dependence on the starting solution of the

problem [6].

20



Chapter 1 1.2. Motivation and project guidelines

Figure 1.1: Size optimization, shape optimization and topology optimization of a

cantilever with minimizing compliance

The topology optimization on the other side is less constrained by the initial

configuration, and should therefore be a more powerful, flexible and robust

tool. Usually the variables of optimization are the material distribution inside

the domain. For this reason the topology optimization can fix not only the

topology, but also the shape and size of the geometry simultaneously[6].

1.2 Motivation and project guidelines

Given the growing interest over the last decade in the Topology Optimization

algorithms (TO) [7] [8], this thesis aims, first, to develop from scratch a TO

application for fluid flows, second, to extend such TO application to the trans-

port of species in flows.

More specifically, such solver should find a theoretical best material distribu-

tion for problems involving laminar flows for incompressible Newtonian flu-

ids, whose physics is governed by the well known Navier-Stokes (NS) equa-

tions.

While publications for TO problems on fluid flows increase every year (see

Figure 1.2), the state of the art of methods, algorithms and applicability does

21



1.2. Motivation and project guidelines Chapter 1

not show the same trend. Most of the articles do not prsent clear improve-

ments and almost no one reports results in terms of performance nor validity

of the obtained optimal configurations [8]. Hence, the current research seems

more focused on reproducing what is already present in the literature than to

propose innovative applications.

For this reason, the proposed model will be validated by comparing not only

the results with some well-established optimal configurations, but also the

performance to converge at the solution.

The performance of a TO algorithm is essentially played by the choice of the

optimizer algorithm and the solver for the Navier-Stokes system. Solving the

Navier-Stokes equations is by far the heaviest requirement of the entire opti-

mization process, and it must be performed at each update of the geometry.

For this reason the use of a fast numerical technique is of fundamental im-

portance, as well as the features implemented to accelerate the fluid dynamics

solution.

Not an irrelevant role, anyway, is played by the choice of the optimizer al-

gorithm. Such a scheme is what dictates the evolution of the geometry in

terms of the current flow characteristic, and determines the required number

of optimization iterations to achieve the convergence. Pointless to say that

the less are the iterations, the less will be the calls to the Navier-Stokes equa-

tions solver, with strong benefits in terms of computational costs. On the other

hand, fast optimizers may be unstable or have local minimum, thus prevent-

ing the achievement of the best material configuration. Some of the most used

optimizers will be developed and then compared in chapter 3 and 4.

Another very important part of TO algorithm relies on the so called "adjoint
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Chapter 1 1.2. Motivation and project guidelines

system". The optimization process consists in a loop of NS system solver, ad-

joint system solver, and geometry update. The solution of the "adjoint" system

is a fundamental requirement to provide at the optimizers enough information

on the flow, in order to update the geometry.

The adjoint system does not represent a problematic computational task, be-

cause, despite its similarities with the NS system, its formulation is free from

non linearities. Accordingly, the solution of the adjoint system can be per-

formed usually faster then that of the governing equations. However, the deriva-

tion of the adjoint system is not straightforward. The literature shows only few

works where the adjoint system was explicitly derived. For general conditions

and time dependent scenarios, but they lack, in any case, of clarity in the com-

putations.

The formulation here proposed has the goal of being simple, but less formal

to allow an easier comprehension of the method.

In short, each section of this work will analyze a part of the optimization al-

gorithm and its derivation.

In chapter 2 we discuss the main features of the implemented TO and FEM

algorithms, with some basic concepts about solving techniques.

Then, chapter 3 will explain the details of the main methods, which include

the derivation of the adjoint system (3.1.1), a discussion of the most popular

optimization schemes (3.2), and the derivation of a fast solving technique for

the Navier-Stokes system (3.3.2).

Finally, the developed Topology Optimazion solver for fluid flows will be

tested over well-validated results reported in the literature, with particular at-

tention over the differences between the various optimization schemes.

The application of this model for problems including the transport of species

is an incredibly promising research area for topology optimization algorithms

23



1.2. Motivation and project guidelines Chapter 1

[8]. For this reason this thesis proposes a parallel derivation of the TO algo-

rithm for a simplified version of the flow-driven scalar transport problem.

Figure 1.2: Number of papers on TO problems published per year and total accumu-

lated publications over time. [8]
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Chapter 1 1.3. State of the Art

1.3 State of the Art

This brief review follows the excellent work of J. Alexandersen and C. Sc-

housboe Andreasen [8], since no big advancement in state of the art has been

proposed later.

It is noting that the articles published until 2020 for TO applied to fluid flows

are 186. Most of them regards steady-state laminar flow models, with only

13 out of 186 papers treating unsteady problems (see Figure 1.3), probably

due to the high requirements in both computational and storage costs. The

developing of a fully 3D approach is another issue, mandatory for complex

engineering applications, that was treated in only 58 papers (31%). Three

dimensional problems and transient analysis are mostly solved with shared

memory processing to achieve acceptable performances.

(a) PF = pure fluid;

ST = species transport;

CHT = conjugate heat transfer;

FSI = fluid±structure interaction;

MP = microstructure and porous media.

(b) SS = steady-state laminar flow;

TR = transient laminar flow;

TU = turbulent flow;

NN = Non-Newtonian fluid.

Figure 1.3: Distribution of papers in overall problem type (left). Distribution of papers

for fluid model type (right). [8]

TO algorithms mainly differs in three different aspects, i.e., the design ap-
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proach for the topology evolution, the non linear optimizer and the discretiza-

tion techniques for the Navier-Stokes equations.

TAmong the design approaches, the density and the level set method are the

most widely adopted.

The density method is a standard penalization method, in which the design pa-

rameters are locally associated to the material porosity of a fictitious material,

that is used to differentiate the free channel portions to the solid regions. This

scheme is simple, and only requires the additional computation of one term in

the governing equations. Besides, it manages extremely well the changes of

the topology, allowing both the creation and the filling of holes. However,

problems may arise in the parameter calibrations, such as the choice of a

proper interpolation rule for material properties or the penalization param-

eter, to the point that the algorithm can become unstable.

The level set method is more recent, and defines a specific function, called

level set function, which determines whether a point is within the fluid or

solid domain. In common applications, this level set function takes value zero

on the fluid-solid interface, positive value on the solid domain and negative

value in the fluid domain. The velocity inside the solid domain is identically

set to zero, and domain updates are obtained by evolution of the zero-level-set

of the level set function.

A well defined and sharp interface facilitates both the iterative scheme and

coupling with different physics, producing smoother results for the manu-

facturability. This method has a more solid mathematical background and it

currently is the most used approach. The level set method requires surface-

capturing methods, as X-FEM, and can only apply changes in topology by

evolving the shape of the existing holes of the domain, so it can remove holes,
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but not create them. Accordingly, to allow the convergence in problems where

the fluid domain is not given a priori, the initial configuration should always

present a large number of cavities.

Discretization schemes instead varies between FEM (Finite Element Meth-

ods), FVM (Finite Volume Methods), LBM (Lattice Boltzmann Methods) and

PM (Particle Methods). FEM approach covers the majority of the pubblica-

tions, but LBM and PM techniques have only been applied in recent years, and

seem to provide better results in terms of solver performances and stability of

the solution.

Finally, about the optimization schemes, the 98% of the papers analyzed used

gradient-based optimisation approaches, of which Svamberg Methods of Mov-

ing Asymptotes is the most employed by far.

Topology Optimization scheme for fluid can be generalized by including a

scalar convection-diffusion equation, to optimize the material distribution for

temperature field, the concentration of a specie or the volume fractions of two

miscible fluids. In such scenarios the flow solution is assumed to not depend

on the scalar field. As shown in Figure (1.3), only 19 out of 186 papers, up to

the 2020, have studied the effects of the species transport in a TO algorithm.

In this paper TO algorithm is developed with a density method approach, a

FEM scheme for the solving of the Navier-Stokes (end eventually Transport)

equations, relative adjoint equations and three different gradient-based algo-

rithms for the optimization, namely the Optimality Criteria Method, the Gen-

eralized Optimality Criteria (OC and GOC, respectively [9]), and the Method
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of Moving Asymptotes (MMA [10]).

The TO algorithm should work on both two and three dimensional problems,

and for stationary and time-dependent scenarios.
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Chapter 2

Numerical models: background

2.1 Topology Optimization: general description

The general formulation for a Topology Optimization problem is











































min
γ

J(x)

subject to : gi(x) ≤ 0, i = 1, ...,m;

Rh(x) = 0, h = 1, ..., l;

x ∈ X ,

(2.1.1)

where x = {xi, i = 1, ..., n} are called the decision (or design) variables, in

the space X = {x ∈ xn, xi ∈ {xmin, xmax} ∀i = 1, ..., n}, J the objective

functional of the problem, gi the constraints, and Rh the governing equations.

Almost every topology optimization problem can be formulated as in (2.1.1),

with usually xmin = 0, and xmax = 1, which represent the solid and void

volume, respectively.

The theoretical formulation of the problem is then based on discrete design

variables, and follows the heuristic goal of perfect discrimination between

solid and void regions. However, since the solving techniques for continuous

problems are extremely faster than those for discrete variables, in most ap-
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plications such exact formulation is always relaxed to X = {x ∈ xn, xi ∈

[xmin, xmax] ∀i = 1, ..., n}. Of course, the final solution should anyway pro-

vide a x with values as close as possible to xmin = 0 or xmax = 1.

As said above, several schemes have been developed in last decades to deal

with this discrete-continuous adaptation, like the level set approach, or evolu-

tionary structural optimization (ESO). The simplest but still effective method-

ology still remains the penalization method, which is based on the idea to

"penalize" the physics for every intermediate value of the xi. Usually, it is

possible by introducing a penalization parameter, q, and assuming, for exam-

ple, (xi)
q; in such a way all values lower than xmax = 1 produce effects more

and more similar to the value xmin = 0 as q is chosen high. Heuristically,

for an optimization algorithm this would imply that, to change effectively the

functional values, the decision variables have to be clustered as much as pos-

sible close to zero or one. Very good results are for example obtained with the

SIMP (Solid Isotropic Material with Penalization) method of Bendsùe [11]

for structural mechanics problems, where each local elemental stiffness ma-

trix Kel was reformulated as Kel = xq
elK

∗, with K∗ corresponding to the

standard stiffness matrix for a completely solid element. It is to stress that,

since too high values of the penalty parameter usually force the solution to

convergence towards a local minimum, q usually ranges between 2 and 5.

The bottleneck of the model is the numerical solution of the PDEs system,

Rh = 0, influencing the choice for the optimization schemes to the ones with

faster convergence and less required calls to the PDEs solver. The three most

common algorithms for general optimization algorithms are the gradient-free,

the gradient-based, and the hessian-based algorithms.

The gradient-free techniques have almost zero storing requirements and fast
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design updates, but are often subject to a local minimum and/or slow conver-

gence, and are thus almost never applied for TO algorithms.

The most applied algorithms are the gradient based, because they balance

the required iteration for convergence and storing requirements. Lastly, it is

worth noting that the Hessian-based methods would actually lead to faster

convergence, but they cannot be used in practical applications, due to the high

computational cost and storing requirements. Currently, with high degrees of

freedom, some of the best approaches apply gradient-based techniques, which

are speed up by the partial knowledge of the hessian matrix, e.g., the like Se-

quential Linear/Non-linear Quadratic Programming (SLQP/SNLQP) or the

Evolutionary Algorithms (see for example Yonekura and Kanno [12]).

A crucial step for TO is computing the functional derivatives as a function

of the decision variables, also called sensitivities. This task can be faced with

two different approaches, which depend on the characteristics of the problem:

the direct or the adjoint approach. However, apart from TO in structural me-

chanics, almost every solver in literature applies the adjoint technique, by a

discrete or continuous formulation [7].

The adjoint approach computes sensitivities of the objective function via a so

called "adjoint state", which are used as input data to the gradient-based op-

timization algorithm, like the MMA. The power of such methology relies on

the fact that the whole sensitivities can be computed via two only solver calls

that do not depend on the number on decision variables.
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2.2. Topology Optimization for fluid flow Chapter 2

2.2 Topology Optimization for fluid flow

For the specific case of fluid flow problems, TO formulation (2.1.1) reduces

to











































min
γ

J(γ)

subject to : gi(γ) ≤ 0, i = 1, ...,m Constraints,

: 0 ≤ γ(x) ≤ 1, Design variable bounds,

: NS equations, Governing equations.

(2.2.1)

In (2.2.1), the decision variables are now renamed as γi, and are associated

to a node of the mesh. As a consequence, the linearized function results

γ = γ(x) =
∑N

j=1 γjϕj(x), with ϕj an appropriate shape function of the

node j.

The chosen numerical approach to force the clustering of continuous variables

for 0/solid to 1/fluid extremes is the so called density penalization method.

The idea is to introduce an artificial friction force, proportional to the fluid

velocity and weighted by the penalization parameter q, so that only a neg-

ligible fluid fraction can enter in the solid regions. The physical meaning is

that the domain is a porous media, whose local porosity is the optimization

parameter. Solid and fluid regions then correspond to very low and very high

permeability of the medium, respectively.

The density method adopts a friction force, f , to approximate the behaviour of

the artificial porous media. Assuming laminar flow regime, i.e., low Reynolds
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numbers (Re = UL/ν, with U and L characteristic velocity and length of the

problem), the friction force law follows the Stokes’ drag, i.e., f = −αu, with

α appropriate dampen parameter. From a the physical point of view, it is rea-

sonable for the drag force to increase with viscosity and decrease with higher

permeability; consequently, the parameter α has the form α(x) = µ/k(x),

with k(x), the local permeability of the medium. This approach is consistent

for Re < 1, but practically works also for higher Reynolds numbers, with

minor uncertainties.

The design variable, γ(x) ∈ [0, 1], controls the local permeability of the in-

troduced medium. γ = 0 corresponds to the solid material and γ = 1 to fluid.

Using a convex interpolation to relate α(x) and γ(x), the formulation reads

α(γ) ≡ αmin + (αmax − αmin)
q(1− γ)

q + γ
, (2.2.2)

where αmin and αmax are limit values for α. It is worth noting that the wall

is perfectly impermeable for αmax → +∞. However, numerical approxima-

tions shows that too large values of α may create instabilities in the solution.

Therefore,αmax needs to be calibrated for each problem. On the contrary, the

best value for αmin is 0.

The parameter q controls the effect of non discrete value of the design param-

eter, i.e., between 0 and 1, to the value of the damping parameter α. When q

is large, α(γ) ≃ αmin only for γ very close to 1, while all the others inter-

mediate values produce an α(γ) close to its maximum, αmax. For this reason,

when q is large, the topology optimization algorithm is forced to converge to

a discrete solutions, or at least to have an almost exact γ = 1 value in the fluid

region.
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It is important to highlight that increasing q the TO algorithm may be forced

to quick discrete convergence, and is than more likely to stop on local mini-

mum.

The role of permeability on the fluid dynamics is quantified by the Darcy

number, Da, which describes the effect of the permeability of the medium

versus its cross-sectional area,

Da =
k

L2
=

µ

αmaxL2
, (2.2.3)

where k = µ/αmax is the medium permeability and L the characteristic length

of the section. It is evident that almost impermeable materials are associated

to very low Darcy numbers. Fixing the threshold to Da ≤ 10−5, one should

then always choose an αmax big enough to guarantee impermeable material

for γ = 0.

The implemented Optimization algorithm can then be summarized as:

1. To choose an initial value for γ ,

2. To solve Governing equations for u and p with a FEM algorithm (2.5),

3. To compute derivative of objective function and constraints as a functin

of γ:

(a) To solve the adjoint of the Navier-Stokes problem, to eliminate

partial derivative of implicit functions from the formulation

(b) To compute the gradient of the objective function

4. To use MMA/GOC/OC updating rule to find the value of γ that min-

imizes J by means of the past iteration history and gradient informa-

tions,
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5. To check the convergence rule. If not satisfied, to go back to step (2),

otherwise to end the process.

The computational time of the process is mainly given by Point 2, because,

for each iteration, the algorithm needs to solve a system of non linear partial

differential equations.

2.2.1 Objective functionals

Standard optimization problems are usually formulated as minimization prob-

lems unless described differently. Therefore a reduction of the objective func-

tional leads to an improved design. Stationary objective functionals are usu-

ally classified as boundary or volume based, and their common representation

for TO in fluid flows is

J(u[γ], p[γ]; γ) = β1

∫

Ω

A(u,∇u, p; γ))dx + β2

∫

∂Ω

B(u, p; γ)dσ, (2.2.4)

where β1 and β2 are space independent parameters that can be used to weight

the importance of the two terms of the functional (volume and boundary

based). Time dependent objective functionals simply take the form

J(u[γ], p[γ]; γ) =

∫ T

0

∫

Ω

β1A(u,∇u, p; γ))dx +

∫ T

0

∫

∂Ω

β2B(u, p; γ)dσ,

(2.2.5)

with T the period of time of the considered transient.

Hereinafter we consider for simplicity only the stationary case, keeping in

mind that the transient scheme can be obtained just by an additional integra-

tion in time.

Objective functionals need to be written as J(u, p; γ). This general functional
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may obviously include the characteristics of the flow (like in the case of min-

imal energy dissipation), but it still always depend uniquely on the decision

variable γ. By Equation (2.2.1), given γ, the material distribution in Ω is set,

and the governing equations can be immediately solved for u and p without

any further assumption.

Reasonably, there are infinite possible formulations for functionals with the

structure of (2.2.4), but we will only analyze here the effect of the most popu-

lar choice, namely, the minimization of the power dissipation. Other possible

and popular objective functionals are described in [13].

Power dissipation

In this thesis we minimize the power dissipation inside the domain, whose

functional reads

J =

∫

Ω

[

1

2
µ||∇u+ (∇u)T ||2 + α||u||2

]

dx, (2.2.6)

where A = 1
2
µ||∇u +∇Tu||2 + α||u||2 (see Equation 2.2.8). This formula-

tion is valid in absence of heat forces and adiabatic BCs, ans it is derived by

scalar multiplying the velocity field with the momentum equation. Using the

integration by parts, J is the sum of the power dissipation due to the viscosity

(proportional to the stress tensor), and the power of the external force field.

The latter term is f · u, with f = αu, the artificial force field. Applying the

divergence theorem to the functional definition [[13], one can easily check,

that the above formulation is equivalent to

J =

∫

∂Ω

[σ · u−
1

2
ρ||u||2u] · ndσ, (2.2.7)
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where σ = µ∇u+∇T
u

2
−pI is the Cauchy stress tensor. σ ·n is thus the external

force acting on the boundary, and σ ·u ·n is the related work, which one wants

as close as possible to the the work due to the dynamic pressure, 1
2
ρ||u||2 ·u·n.

In addition, in the case of solid wall BCs, i.e., u = 0 along some edges of ∂Ω,

above formulation reduces to

J = −

∫

∂Ω

[p+
1

2
ρ||u||2]u · ndσ. (2.2.8)

Borrvall and Petersson [14] showed that for Stokes flows with only Dirich-

let boundary conditions on ∂Ω, the problem of minimizing the total power

dissipation inside the domain subject to a volume constraint on the material

distribution is mathematically well-posed. Moreover, it was proven that in the

case of an α, which is linear function of (γ), the optimal material distribution

takes only discrete values even in the continuous formulation.

The used interpolation rule is given by Equation (2.2.2), and is in fact almost

linear when q ≫ 1.

Hence, for large values of q the interpolation is almost linear and almost dis-

crete interfaces should be expected, whereas, for small q, interfaces should be

smeared out in the optimized solution. Many hydraulic optimization problems

could be formulated according to the dissipation power method. For example,

if (2.2.8) holds, when prescribed the flow rate, minimizing the total power

dissipation is equivalent to minimizing the pressure drop across the system. If

instead a prescribed pressure drop is given, then minimizing the total power

dissipation is analogous to maximizing the flow rate [15].
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2.2.2 Constraints

TO formulation (2.2.1) is adaptable to any constraint g(γ,u[γ], p[γ]) < 0.

However, since all gredient-based optimization schemes require both the func-

tional and the constraints sensitivities, the treatment of the implicit dependen-

cies u[γ], p[γ] is non trivial, and may require the computation of an additional

adjoint problem.

In general, constraints arise from specific needs to reduce the set of admissi-

ble solutions, given the characteristics of the analyzed problem.

The only implemented constraint in this work, fis the volume constraint, namely

∫

Ω

γ(x)dx − β|Ω| ≤ 0. (2.2.9)

Equation 2.2.9 forces the material distribution to occupy at least (1 − β) of

the total domain, and modifies the search for the best configuration among

the ones with a maximum flow channel set to β|Ω|. The volume constraint is

widely used in literature, because it prevents the scheme to converge toward

trivial solutions [16].

2.3 The Topology optimization for Transport of

Species

The formulation for Topology Optimization in the case of species transport is

just an evolution of 3.5.1, namely
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


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




















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























min
γ

J(γ)

subject to : gi(γ) ≤ 0, i = 1, ...,m Constraints,

: 0 ≤ γ(x) ≤ 1, Design variable bounds,

: NS equations, Governing equations,

: ADR equations, Governing equations,

(2.3.1)

with "ADR" standing for "Advection-Diffusion-Reaction". In this case, the

procedure to find the optimal material distribution is almost the same of stan-

dard fluid dynamics problems. By the density method, the optimal layout is

given by the optimization of the material porosity of the domain through a

dampen parameter α(γ) defined as in (2.2).

Such formulation, however, allows the functional to be also concentration-

dependent, J(γ,u[γ], p[γ], c[γ]).

For this reason, the computation of the functional sensitivities will now re-

quire the solution of an additional adjoint system for the Advection-Diffusion-

Reaction problem.

The implemented Optimization algorithm is summarized in the following:

1. To choose an initial value for γ ,

2. To solve Navier-Stokes equations for u and p with a FEM algorithm

2.5,

3. To solve Advection-Diffusion-Reaction equation for c with a FEM al-

gorithm, using the appoximated velocity field u

4. To compute derivative of objective function and constraints as a functin

of γ:
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(a) To solve the adjoint of the Advection-Diffusion-Reaction elimi-

nate the partial derivative of c[γ] from the formulation

(b) To solve the adjoint of the Navier-Stokes problem, to eliminate

partial derivative of implicit functions u[γ] and p[γ] from the for-

mulation

(c) To compute the gradient of the objective function

5. To use MMA/GOC/OC updating rule to find the value of γ that min-

imizes J by means of the past iteration history and gradient informa-

tions,

6. To check the convergence rule. If not satisfied, to go back to step (2),

otherwise to end the process.

The computational time of the process is again mainly given by the solver for

the Navier-Stokes system.

2.3.1 Objective functionals and constraints

TO applications for scalar transport problems driven by fluid flows are still

new in literature, and the used constraint and objective functionals are all

problem-dependent.

Pollute dissipation

If the object is to minimize the concentration level of a contaminant at the

outlet boundary, a simple formulation is just

J =

∫

Γout

cdσ. (2.3.2)
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Target concentration

If a target value for the final concentration is known a-priori, the inverse-

design problem can be formulated with

J =
1

β
ln

∫

Γoute
β(c−ctarget)2dσ, (2.3.3)

proposed by Makhija and Maute [17], where a larger value for β should in-

crease the accuracy of approximating the maximum value, but may result in

numerical issues if chosen too large.

Measure of mixing

If the goal is to find the best form of a mixer, in the case of fluid flows with

different specie concentration, the functional results in [18]

J =

∫

Γout(c−ctarget)2dσ
∫

(c0−ctarget)2dσ

, (2.3.4)

where Γin and Γout are the inlet and outlet of the mixer, respectively, c0 is the

reference concentration (usually equal to the one specified at the inlet), and

ctarget is the target concentration, usually chosen as the average concentration.

For the scope of this thesis, the idea is to analyze the pollute dispersion in a

closed region subject to a dissipation rate, considering the effects of the ge-

ometries to the energy dissipation of the fluid. For this reason the considered

functional shows a multi-objective formulation, to minimize both the concen-

tration at the outlet boundary, and the power dissipation inside the domain.

The resulting form is

J = β1

∫

Ω

[

1

2
µ||∇u+ (∇u)T ||2 + α||u||2

]

dx + β2

∫

Γout

cdσ, (2.3.5)
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where β1 and β2 are weights used to properly calibrate the functional depen-

dencies.

Also in this case the generalization to unsteady flows just require an additional

integration in time.

The constraints for this type of TO problems are usually very similar to the

one adopted for the fluid flows scenarios. The volume constraint is then again

used for stabilization purposes even for the coupling with species transport.

2.4 FEM formulation

2.4.1 Navier-Stokes

Recall the complete system for the Navier-Stokes problem










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
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




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

























∂tu+ (u · ∇)u+
1

ρ
∇p− ν∆u = f∗ in Ω× [0, T ]

∇ · u = 0 in Ω× [0, T ]

u(x) = gD(x), on ΓD × [0, T ]

[
p

ρ
I− ν∇u] · n = gN(σ), on ΓN × [0, T ]

u = u0 in Ω× {0},

(2.4.1)

with x ∈ Ω the point inside the domain, u(x) the velocity field, p the pres-

sure field, ρ the fluid density, ν the fluid cinematic viscosity, and f∗ the body

force on the fluid. For TO application with density method, the forcing term

is f∗ = −αu + f , with f true body forces of the system. The first two equa-

tions in 2.4.1 describes the balance of momentum, and the balance of mass
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(continuity equation), respectively, while, in order, the last three equations are

respectively the Dirichlet and the Neumann boundary conditions, prescribing

either the velocity at the boundary, or the external forces, n ·σ, and the veloc-

ity initial condition.

Once defined the mappings u(t) : I → V and p(t) : I → Q, the solution of

the above system takes the form (u, p) ∈ L2(I,V) × L2(I,Q), where (see

chap. 5 [19]):

V = [H1
0,ΓD

(Ω)]d

Q = L2(Ω),

(2.4.2)

with d the space dimension of the problem, L2 Lebesgue space of squared

integrable functions, H1 standard Hilbert space, ΓD Dirichlet subset of the

boundary and

H1
0,ΓD

(Ω) = {v ∈ H1(Ω) | v = 0 in ΓD ⊂ ∂Ω} (2.4.3)

It is well known that resulting weak formulation for test functions v ∈ V , and

q ∈ L2(Ω) is

∫

Ω

(∂tu) · vdx +

∫

Ω

[u · ∇u] · vdx +

∫

Ω

ν∇u : ∇vdx

−
1

ρ

∫

Ω

(∇ · v)pdx +

∫

∂Ω

(
1

ρ
pI − ν∆u) · n =

∫

Ω

f∗ · vdx,

∫

Ω

q∇ · u = 0,

(2.4.4)

43



2.4. FEM formulation Chapter 2

which in compact notation is equivalent to

(∂tu,v) + n(u,u,v) + a(u,v) + b(v, p) +mα(u,v) = F (v)−
1

ρ
(g, v)ΓN

,

b(u, q) = 0,

(2.4.5)

for all test functions, v ∈ V and q ∈ Q, with

(v,w) =

∫

Ω

v ·wdx n(v,w, z) =

∫

Ω

(v · ∇w) · zdx

a(v,w) = ν

∫

Ω

∇v : ∇wdx mα(v,w) =
1

ρ

∫

Ω

α(r)v ·wdx

b(v, q) = −
1

ρ

∫

Ω

q∇ · vdx F (v) =

∫

Ω

f · vdx

(g, v)ΓN
=

∫

ΓN

g · vdσ

Galerkin discretized formulation, using backward Euler time-stepping in ma-

trix form, reads







(M
∆t

+N(un+1
h ) +Mα +H), BT

B 0













un+1
h

pn+1
h






=







1
∆t
Mun + f − fN

0






,

(2.4.6)
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Chapter 2 2.4. FEM formulation

where

M = {mij} mij = (wi,wj) =

∫

Ω

wi ·wjdx i, j = 1, ..., N ;

N(uh) = {nij(uh)} nij(uh) = n(uh,wi,wj) =

∫

Ω

[(uh · ∇)wi] ·wjdx i, j = 1, ..., N ;

Mα = {mαij
} mαij

= (αwi,wj) =

∫

Ω

α(x)wi ·wjdx i, j = 1, ..., N ;

H = {hij} hij = a(wi,wj) = ν

∫

Ω

∇wi : ∇wjdx i, j = 1, ..., N ;

B = {bki} bki = b(wi, Jk) = −
1

ρ

∫

Ω

ϕk∇ ·widx k = 1, ...,M ; i = 1, ..., N

f = {fi} fi =

∫

Ω

f ·widx i = 1, ..., N,

fN = {fNi} fNi =
1

ρ

∫

ΓN

g ·widσ i = 1, ..., N,

with w ∈ Vh(T
V
h ) = {v ∈ C0(Ω) : v|T ∈ [P1(T )]

d, ∀T ∈ T V
h} =

Span(w1, ..., wdNV
) ⊂

[

H1
ΓD

(Ω)
]d

, and ϕ ∈ Qh(T
P
h ) = {q ∈ C0(Ω) : q|T ∈

P1(T ), ∀T ∈ T P
h } = Span(ϕ1, ..., ϕNP

) ⊂ H1
ΓD

(Ω), the test functions in

the velocity and pressure spaces respectively. Dirichlet boundary conditions,

u = gD on ΓD are then be imposed via lifting operators (see 6.1).

The inf-sup stability condition [20] is guaranteed by the choice of P1 −

isoP2/P1 elements [19], through an enrichment of the velocity space as in

Figure 2.1, where T V
h and T P

h are triangulation for velocity and pressure

spaces respectively (see appendix 6.2 for details).

Figure 2.1: P1 − isoP2/P1 stable elements. Pressure T P
h (left) and velocity T V

h

(right) discretization.
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2.4. FEM formulation Chapter 2

The convection term n(un+1
h ,un+1

h ,v) is linearized by a Picard approach, and

a Streamline-Upwind-Petrov-Galerkin scheme stabilizes oscillations due to

convection-diffusion treatment (see [21]).

Three different types of boundary conditions have been implemented, namely,

the Dirichlet, the Neumann and the Symmetry conditions (see appendix 6.1).

2.4.2 Advection-Diffusion-Reaction

The unsteady advection-diffusion-reaction problem subject to an uncompress-

ible velocity field can be formulated as







































∂tc+ u · ∇c−∇ · (D∇c) = R in Ω× [0, T ]

c(x) = gD(x), on ΓD × [0, T ]

D∇c · n = gN(σ), on ΓN × [0, T ]

c = c0 in Ω× {0},

(2.4.7)

with c concentration of the transported specie, D diffusion coefficient, u the

fluid velocity and R source/sink term. Let in the following consider R =

−ksc + r, to split concentration-dependent terms from independent ones, as-

suming a default sink term −ksc, with ks sink rate.

The weak formulation for the problem, assuming test functions and solution

c ∈ V = H1
ΓD

(Ω) = {v ∈ H1(Ω), v = 0 ∈ ΓD}, is

∫

Ω

[∂tc− div(D∇u) + u · ∇c+ kc] vdΩ =

∫

Ω

rvdx, (2.4.8)
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Chapter 2 2.4. FEM formulation

which, using Green’s Lemma, reduces to

(∂tc, v) + a(c, v) + b(c, v) +mk(c, v)− (gN , v)ΓN
= F (v) (2.4.9)

with

(v, w) =

∫

Ω

vwdx; a(c, v) =

∫

Ω

D∇c · ∇vdx (2.4.10)

b(v, w) =

∫

Ω

u · ∇vwdx mk(v, w) =

∫

Ω

kcwdx (2.4.11)

(v, w)∂ΓN
=

∫

ΓN

vwdσ, F (v)

∫

Ω

rdx (2.4.12)

where n is the external normal to the domain. Dirichlet boundary conditions

can then be imposed via lifting operators (see 6.1). Consequently, the Galerkin

discretized formulation, approximating the test space V with Vh, reads

Vh = {v ∈ C0(Ω̄) : v|T ∈ P1(T )∀T ∈ Th}, (2.4.13)

Th is the given triangulation, gives

[

1

∆t
M +H +B +Mk

]

ch = f + fN , (2.4.14)
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2.4. FEM formulation Chapter 2

where

M = {mij} mij = (ϕi, ϕj) =

∫

Ω

ϕi · ϕjdx i, j = 1, ..., N ;

H = {hij} hij = a(ϕi, ϕj) =

∫

Ω

D∇ϕi : ∇ϕjdx i, j = 1, ..., N ;

B = {bij} bki = b(ϕi, ϕj) =

∫

Ω

(u · ∇ϕj)ϕidx i, j = 1, ..., N ;

Mk = {mki,j} mki =

∫

Ω

kϕi, ϕjdx i, j = 1, ..., N,

f = {fi} fi =

∫

ΓN

rϕidσ i = 1, ..., N,

fN = {fNi} fNi =

∫

ΓN

gNϕidσ i = 1, ..., N,

ϕi ∈ Vh, i = 1, ..., N , N number of nodes of the discretization.

Stabilization term: Streamline Upwind diffusion

Several authors in the literature [21] [19] discussed the importance of stabi-

lization techniques for convection-dominated problems, to preserve coercivity

of the system bilinear form and guarantee the uniqueness of the solution. For

this reason a simple Streamline Upwind diffusion (SUD) approach has been

considered, in the form

S = {sij}, sij =
∑

T∈Th

∫

T

τ
hel

|uel|Del

(u · ∇ϕj)(u · ∇ϕi)dx, (2.4.15)

with hel, |uel|, and Del, respectively the reference size, velocity and diffusion

coefficient for the local element T . The stabilization term, S, in Equation

2.4.15, adds "artifical diffusion" in the direction of the streamlines, scaled by

a calibration parameter τ .
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Chapter 2 2.4. FEM formulation

By introducing this additive stabilizing term, S, the final system becomes

[

1

∆t
M +H +B +Mk + S

]

ch = f + fN . (2.4.16)

Note that the stabilization terms depends on the mesh Péclet number [19],

locally defined element by element as

Peh =
|uel|hel

Del

,

thst gives an approximate measure of the local ratio between convection and

diffusion terms. As the mesh is refined, i.e., h → 0, the local Péclet numbers

vanishes, and the stabilization term is not necessary. However, in practical

application still misses a theory that determines an exact value of Peh that

guarantees convergence. For this reason the parameter τ has calibrated inde-

pendently for each of the considered problems.

49



2.5. Solver Chapter 2

2.5 Solver

2.5.1 Navier-Stokes

As explained in the introduction, to solve the NS system of equation (2.4.1)

is by far the heaviest process of the complete TO algorithm.

Numerical solvers for linear systems can essentially be divided in two big

classical group, namely, the direct and the iterative methods [22]. The direct

methods provide the exact solution to the system through a succession of sim-

ple operations, whose number depends on the size of the system matrix. Most

direct methods rely on the acceleration of the Gaussian elimination procedure

and, whether on one hand they can be extremely fast for two-dimensional

problems, where the dof number is relatively small, on the other hand, they

are not suitable for 3D scenarios, when the problem size is large, and requires

high CPO time and storage capacity.

The path to solve three-dimensional problems is then through iterative meth-

ods, which build a sequence of approximations of the final solution to eventu-

ally reach the exact one, if the scheme is convergent. Usually these methods

use a stopping criterion associated to the residual norm of the current solu-

tion, which blocks the algorithm when a "sufficiently good" approximation is

found.

Let us consider the system of equation Kx = b, with K ∈ Rn × Rn,

x, b ∈ Rn, n ∈ N number of unknowns. Calling xk the approximate so-

lution at step k and h the real solution, the error and residual vector can be

defined as

ϵk = h − xk

rk = Kh −Kxk.
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Chapter 2 2.5. Solver

The matrix associated to the NS system (2.4.1), can be synthetically formu-

lated as

K =







A BT

B 0






, (2.5.1)

with A = (M/∆t + N(uh) +Mα + H), and shows a strong non symmetry

as the convective is large.

There are several possible iterative algorithms used to solve non-symmetric

systems, mainly based on Krylov subspaces, like GMRES (Generalized Min-

imal Residual), or QMR (Quasi Minimal Residual) [23].

However, from a practical viewpoint, the choice of the iterative method is not

so relevant for efficient computations, but the choice of the preconditioner.

For this reason a simple GMRES scheme has been implemented, and in the

following sections are described some possible formulations of good precon-

ditioners.

GMRES scheme

The Generalized Minimal Residual method is a famous iterative method for

linear system, firstly introduced by Saad and Shultz in 1986 [24]. It is based

on finding the approximate solution xm through a subspace Km ⊂ Rn of size

m < n by the minimization of the current residual norm ||rm||2.

The space Km is defined as

Km(K, r0) = span{r0, Kr0, K
2r0, ..., K

m−1r0}, (2.5.2)
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where r0 is the residual related to the initial guess x0. Km is called Krylov

subspace of size m generated by K and r0.

Approximate solutions are then found through the search of the best correc-

tion z ∈ Km of the initial guess, namely

xm = x0 + z, z ∈ Km(K,x0), (2.5.3)

where z is given by argminz||b −K(x0 + z)|2.

Therefore, at each iteration, the algorithm has to enlarge the Krylov subspace

by computing a new linearly independent (l.i.) vector, like Kmr0. Defining

with, v1, ..., vm the m vectors in the current Krylov subspace, and with Vm

the n × m matrix that has them as columns, the new l.i. vector is computed

as w = Avm, and is then orthogonalized against all the other vectors in

Vm. Starting from the initial residual, r0, the algorithm enlarges the current

Krylov subspace by creating a vector, w = Kmr0, with m current iteration,

l.i. from the other vector in the base, adding it to the current base after the

orthogonalization with respect to the other vectors, v1, ..., vm, in the base .

The orthogonalization process is a necessary process in finite arithmetic, be-

cause the vectors r0, Kr0, ..., K
m−1r0 are "little linearly dependent" [22], and

it is usually performed by Householder process or modified Graham-Schmidt

scheme, chosen in this work.

Residual at step m is then rm = b − K(x0 + Vmy) = r0 − KVmy, with

y ∈ Rm the vector containing the coefficients for the optimal linear combina-

tion of v1, ..., vm.

It can be proved [22], that, naming H̄m ∈ Rm+1×Rm the upper Hessemberg

matrix defined by hjk = vT
j Kvk,

KVm = Vm+1H̄m. (2.5.4)
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With this result, the residual at iteration m reads

rm = r0 −KVmz = Vm+1(βe1 − H̄my),

with β = ||r0||2 and e1 = [1, 0, ..., 0]T ∈ Rm+1.

Once the new vector of the base, vm+1, is defined, the scheme aims at the best

combination of the vectors in the base, z, which minimizes the 2-norm of the

residual, i.e,

argminy||rm||2 = ||βe1 − H̄my||2,

being V T
m+1Vm+1 = I by construction. Finally, z is usually obtained by a QR

factorization of Hm.

The overall GMRES scheme runs as follows [25]:

GMRES

1. Choose x0 and a restart parameter m

2. Arnoldi process:

For j = 1, ...,m

(a) Compute w = Kvj

(b) For i = 1, ..., j











hi,j =< w, vi >

w− = hi,jvi

(c) Compute hj+1,j = ∥w∥2 and vj+1 = w/hj+1,j .

3. Define Vm = [v1, ..., vm]

4. Form the approximate solution:

(a) Compute y = argminy

∥

∥βe1 − H̄my
∥

∥

2

(b) Compute xm = x0 + Vmz
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5. If residual less then tolerance STOP, else restart and go to 2.

The restart parameter, m, is usually set by the available storing limits.

Preconditioning

The GMRES algorithm has in principle a maximum possible number of it-

erations required to achieve the exact solution, due to its finite termination

property [22]. The only possible breakdown of the algorithm occurs when the

the new computed vector Kvm, used to enlarge the Krylov subspace, is lin-

early dependent from the other vectors in the base. In this case the Krylov

subspace has reached its maximum dimension ("luckily" smaller than N) and

we can compute immediately the exact solution.

Using the Chebyshev polynomials it can be proved that at the kth step, in case

of a diagonalizable matrix system K, the residual norm is bounded by

∥rk∥2
∥r0∥2

≤ k(U)min
Pk

∥pk(Λ)∥∞,

with U the eigenvector matrix of K and Pk the space of polynomials of de-

gree k and pk ∈ Pk. Better bounds arises in case of a symmetric matrix or

when the symmetric part of K is positive definite [26].

A sufficient condition for a good preconditioner, is that the preconditioned

matrix T = KM−1 has a low degree minimum polynomial, that is a small

number of different eigenvalues [27]. The maximum dimension dimension of

the Krylov subspace is indeed bounded by the number of different eigenval-

ues of K [28], and computational experience indicates that a good clustering

of the eigenvalues of the system matrix far from the origin of the complex

plane usually leads to a fast convergence.
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In this sense a matrix M , whose inverse approximates the one of K, would

produce a matrix with eigenvalues closer to the unity, and should likely pro-

vide the convergence in few iterations.

When not specified all the approximated matrix have been used as right pre-

conditioners.

1. left preconditioning

M−1Kx = M−1b

2. right preconditioning

KM−1x∗ = b, x = M−1x∗.

Jacobi type preconditioner

The Jacobi preconditioner is the simplest, but in general widely used precon-

ditioner. According to this scheme, M is taken as the diagonal matrix with the

same entries of the main diagonal of K. This method clearly leads to a huge

simplification of K−1, but is of great ease implementation and could actually

work fine with diagonally dominant matrices.

Unfortunately, in the Navier-Stokes problem (2.4.1), the pattern of the sys-

tem matrix does not allow this specific condition, but shows a particular block

matrix formulation, with all zeros in the last m × m entries (m number of

pressure nodes) leading to a zero division.

A trivial idea to adapt the Jacobi preconditioner for the NS system, is to sub-

stitute all the zeros entries in the diagonal with ones.

The Jacobi preconditioning requires almost the same cost of the preconditioner-

free GMRES scheme, but some better approaches can be derived, based on the

particular block matrix form of the system.
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Schur based preconditioner

The Schur preconditioner exploit the particular block pattern of the NS matrix.

The Schur decomposition of a block matrix, is

K =







A BT

B 0






=







I 0

BA−1 I













A 0

0 S













I A−1BT

0 I






. (2.5.5)

A variety of articles, like [29] use the so called "triangular preconditioner" for

the right or left preconditioners. The idea is to approximate the product of the

two left (or right) matrices in (2.5.5), and use it as left (or right) precondi-

tioner.

Let us choose the right preconditioners,

M =







A 0

0 S













I A−1BT

0 I






=







A BT

0 S






,

whose inverse is

M−1 =







A−1 −BT

0 S−1






,

where S = −BA−1BT is the Schur complement.

Hence, in this way, the multiplication of the system matrix with the precondi-

tioner,

KM−1 =







I 0

B I






,

produce a triangular matrix, with all ones in the diagonal and thus all eigen-

values clustered to one.

In practice, the exact construction of A−1 or S−1 is impossible due to storage

and CPU requirements; consequently, approximated matrices need to be de-

rived in some smart but simple ways. Now all these matrices have non zeros
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on the main diagonal, then it is natural to approximate them just with their

diagonal, similarly to the Jacobi approach.

The inverses of A and the Schur complement S are thus M−1
1 = diag(A)−1

and M−1
2 = diag(−BM−1

1 BT )−1, respectively.

Including the left Schur matrix as left preconditioner, the original linear sys-

tem is reduced to

P−1
L KP−1

R y = b, x = P−1
L y,

with

P−1
L =







I 0

−BM−1
1 I







P−1
R =







M−1
1 −BT

0 M−1
2






.

This method has proven to be extremely faster than the standard GMRES or

even the Jacobi preconditioned one.

2.5.2 Advection-Diffusion-Reaction

The advection-diffusion-reaction problem is solved with the prescribed veloc-

ity field obtained by solving the NS problem (2.4.1). For this reason, the two

systems are called "one-way" coupled, meaning that the two systems do not

need to be solved simultaneously.

The convective term in ADR problem leads to the folllowing non symmetric

matrix:

K =

[

1

∆t
M +H +B +Mk + S

]

,
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which is iteratively solved by a GMRES scheme.

In this case the matrix does not show any particular block formulation to ex-

ploit for fast preconditioning. Since the number of unknowns is extremely

lower than for the NS system, the solving process is faster. Accordingly, a

simple Jacobi preconditioning is sufficient to speed up the solution, and the

computational time is negligibly small compared with the time required to

solve the fluid dynamics problem.

Both the ADR and NS solvers have been validated in appendix C (6.4).
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Materials and Methods

3.1 Adjoint derivation

3.1.1 The Adjoint derivation for the Navier-Stokes equa-

tions

Let us consider at first the case for a steady solution of Navier-Stokes system

(2.4.1) and a stationary functional (2.2.4). The adjoint system is a fundamental

tool to manage the implicit dependence of the state variables u and p from the

design variable γ when computing the functional sensitivities.

Recall now some known theoretic results for derivatives of operators.

The Fréchet derivative of a function at a point u ∈ U , f : U → W , with

U ⊂ V , open set, and V , W Banach spaces, is defined as the bounded linear

operator D : V → W that satisfies

lim
||v||V→0

||f(u+ v)− f(u)−Df(v)||W
||v||W

= 0,

whenever it exists. Fréchet differentiability is thus just an extension of the

total derivative to linear normed spaces, in the sense that if f is defined on an

open set in Rn, with || · || being the Euclidean norm, then Df(x, h) is exactly
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equivalent to the total differential of f . In the Frechét derivatives, most of the

results of the total derivative, hold, such as the like linearity or the chain rule

for derivation, i.e.,

D(g ◦ f)(u) = Dg(f(u)) ◦Df(u).

The Functionals in (2.2.4) are actually J : U × Q × W → x, with U ⊂

[H1
Γ(Ω)]

d, Q ⊂ L2(Ω) and W ⊂ L2(Ω), u : W → U , p : W → Q, hence

U, Q and W are Banach spaces. It can be easily proved that all the functionals

and operator used in the present model are Fréchet differentiable in each point

of the domain Ω. In this case, the Fréchet derivatives coincides with Gateaux

derivates, which are much simpler to obtain.

With the same conditions stated for the Fréchet derivative (V , W Banach

spaces and U ⊂ V , open set), the Gateaux derivative at a point u ∈ U is

defined as the bounded and linear operator duf : U → W , such that

lim
t→0

f(u+ tv)− f(u)

t
= duf(v), ∀v ∈ U,

whenever it exists. Functions duf(v) are called Gateux derivatives of f at u

in direction v.

Hereinafter, both the Fréchet and Gateaux derivatives will be identified with

the standard derivative symbols. In addition, each of the operator will be con-

sidered as Fréchet differentiable in Ω. More details can be found in [30].
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With such concepts, we can write the explicit dependence of the gradient of

J , by chain rule, i.e.,

d

dγ
[J(u[γ], p[γ], γ)] =

∂J

∂γ
+

∂J

∂u
·
du

dγ
+

∂J

∂p

dp

dγ
. (3.1.1)

Since u[γ] and p[γ] are implicit, direct evaluation the derivative u

/
∂γ and

∂p/∂γ is not a simple task. The addjoint method allows us to overcome this

issue. In this frame, a complete formal derivation is provideed for optimiza-

tion of constrained PDEs by Ulbrich [31]. Here, we prefer to present a still

rigorous but more intuitive derivation.

The ground idea is that the dependence of u and p on γ may not be of trivial,

but both variables are uniquely determined once the material distribution (i.e.

γ) has been set via the Navier-Stokes system. In other words, this means that

for each possible γ, each of the Navier-Stokes equations must be verified for

the computed value of u and p, and then so must be their weak formulation.

The steady NS weak formulation residual for a general test function v ∈

[H1(Ω)]d (not [H1
ΓD

]d) and q ∈ L2(Ω) is

Ru(u[γ], p[γ], γ,v) = n(u,u,v) + a(u,v) + b(v, p) +mα(u,v) + k(u, p,v)

− F (v)

Rp(u[γ], q) = b(u, q).

(3.1.2)

with Ru and Rp the residual operators associated to the momentum and con-

tinuity equation of NS system, respectively, and

k(u, p,v) ==

∫

∂Ω

(
1

ρ
pI − ν∇u)n · vdσ. (3.1.3)

Since u and p are the (steady) theoretical solutions of the strong formula-
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tion (2.4.1), Ru and Rp must be exactly zero for every possible choice of

v ∈ [H1(Ω)]d and q ∈ L2(Ω).

Most of the authors in the literature, (see, e.g., [32]), define now a Lagrangian

function, by summing to J the constraints Ru = 0 and Rp = 0 weighted by

appropriate functions ua and pa (later called adjoint variables). The Karush

Kuhn Tacker optimality principles are then used to find the sensitivities of the

original functional J . This approach is extremely solid, but it is not so intuitive

for readers having a not so strong mathematical background; therefore a much

simpler idea is explained in the following.

Since the residuals (3.1.2) have to be zero for all possible functions γ ∈

H1(Ω), also

dRu

dγ
=

∂Ru

∂u

du

dγ
+

∂Ru

∂p

dp

dγ
+

∂Ru

∂γ
= 0 ∀v ∈ [H1(Ω)]d

dRp

dγ
=

∂Rp

∂u

du

dγ
= 0 ∀q ∈ L2(Ω).

(3.1.4)

We can thus add those zero quantities to the formulation for functional sensi-

tivity, and collect terms with the same implicit derivative

d

dγ
J =

[

∂J

∂γ
+

∂J

∂u
·
∂u

∂γ
+

∂J

∂p
·
∂p

∂γ

]

+

[

∂Ru

∂u

∂u

∂γ
+

∂Ru

∂p

∂p

∂γ
+

∂Ru

∂γ

]

+

[

∂Rp

∂u

∂u

∂γ

]

=
∂J

∂γ
+

∂Ru

∂γ
+

(

∂J

∂u
+

∂Ru

∂u
+

∂Rp

∂u

)

∂u

∂γ
+

(

∂J

∂p
+

∂Ru

∂p

)

∂p

∂γ
.

(3.1.5)

Since derivatives in (3.1.4) are zero for all test functions v ∈ H1(Ω) and

q ∈ L2(Ω), we search for a pair (v, q) (if exist) that send to zero the round
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parenthesis multiplied by implicit derivatives ∂u/∂γ and ∂p/∂γ,and hence

avoid their computation.

The obtained system is















Du :=
∂Ru

∂u
(·,v) +

∂Rp

∂u
(·, q) +

∂J

∂u
= 0

Dp :=
∂Ru

∂p
(·, q) +

∂J

∂p
= 0,

(3.1.6)

where ” · ” indicates the dependence for variables fixed by the Navier-Stokes

equations (u and p are the solution of system (2.4.1), so that Ru, Rp and their

derivatives in γ are zero). This system prescribe the conditions of Du = 0 and

Dp = 0, with 0 the null operator.

If a pair (v, q) = (ua, pa) satisfies System (3.1.6), the computation for sensi-

tivity in (3.1.5) reduces to

d

dγ
J =

∂J

∂γ
(u, p, γ) +

∂Ru

∂γ
(u, p,ua), (3.1.7)

ans does not require any of the derivation for the implicit functions.

Given the assumption of Fréchet differentiability these operators can be easily

computed via Gateaux derivative. Being w and r the derivative directions, the

above system should be valid for every search direction w ∈ V and r ∈ Q

(spaces of u and p, derivation functions).

The Equation (3.1.6) is exactly the base of the adjoint system for the Navier-

Stokes equations.

Let now reformulate system (3.1.6) to impose conditions on each directional

derivative,















∂Ru

∂u
(·,ua,w) +

∂Rp

∂u
(·, pa,w) +

∂J

∂u
(w), ∀w ∈ V

∂Ru

∂p
(·,ua, r) = −

∂J

∂p
(r), ∀r ∈ Q.

(3.1.8)
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It can be proved that this is exactly the weak formulation of the problemgiven

by (3.1.6). It should be noted that, although this derivation seems of simpler

understanding compared to the one proposed in the literature, it does not al-

low a full mathematical comprehension of what an "adjoint system" really

represent, for which a classical derivation is suggested.

Let us compute now the derivatives of terms in Ru and Rp,

∂a(u,ua)

∂u
(w) = lim

t→0

ν
∫

Ω
[∇(u+ tw)∇ua −∇u∇ua] dx

t

= ν

∫

Ω

∇w∇uadx = a(w,ua) = a(ua,w)

(3.1.9)

∂mα(u,ua)

∂u
(w) =

1

ρ
lim
t→0

∫

Ω
α(x) [(u+ tw)ua − uua] dx

t

=
1

ρ

∫

Ω

wuadx = mα(w,ua) = mα(ua,w)

(3.1.10)

∂b(u, pa)

∂u
(w) = −

1

ρ
lim
t→0

∫

Ω
pa [∇ · (u+ tw)−∇ · u] dx

t

= −
1

ρ

∫

Ω

pa∇ ·wdx = b(w, pa)

(3.1.11)
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∂n(u,u,ua)

∂u
(w) = lim

t→0

∫

Ω
[(u+ tw) · ∇(u+ tw)− (u · ∇u)] · uadx

t

=

∫

Ω

[w · ∇u+ u · ∇w] · uadx

=

∫

Ω

(w · ∇u) · uadx +

∫

Ω

(u · ∇w) · uadx

= n(w,u,ua) + n(u,w,ua)

(3.1.12)

∂b(ua, p)

∂p
(r) = −

1

ρ
lim
t→0

∫

Ω
[(p+ tr)∇ · ua − p∇ · ua] dx

t

= −
1

ρ

∫

Ω

r∇ · uadx = b(ua, r)

(3.1.13)

Recalling that u and p are the steady solution of (2.4.1), and given that bound-

ary conditions do not change in γ, k is actually equivalent to (exclusively for

Dirichlet or Neumann boundaries)

k(u, pv) =

∫

∂Ω

(
1

ρ
pI − ν∇u)n · vdσ

=

∫

ΓN

gNn · vdσ +

∫

ΓD

(
1

ρ
pI − ν∇uD)n · vdσ = k(·, p,v),

(3.1.14)

resulting independent on u[γ].

The derivatives of Equation (3.1.14) are then

∂k(u, p,ua)

∂u
(w) = 0, (3.1.15)
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and

∂k(u, p,ua)

∂p
(r) =

1

ρ
lim
t→0

∫

ΓD
(p+ tr − p)n · uadx

t

=
1

ρ

∫

ΓD

rn · uadx =
1

ρ

∫

ΓD

ua · nrdx.

(3.1.16)

Substituting the terms in (3.1.9− 3.1.16) into (3.1.6) the adjoint is



























a(ua,w) + n(w,u,ua) + n(u,w,ua) + b(w, pa) +mα(ua,w)

= −
∂J

∂u
(w), ∀w ∈ V

b(ua, q) +
∂k

∂p
(r) = −

∂J

∂p
(r), ∀r ∈ Q.

(3.1.17)

It is evident how the structure in (3.1.17) reminds the structure of the weak

formulation for the governing equations. Almost each term, except the con-

vection operator n(u,u,v) has an analogous in the adjoint weak formula-

tion, where ua and pa are the new unknowns, and w, r are the new test

functions. The only difference in the adjoint system relies on the non linear

convection operator n(u,u,v), that here is converted in two linear operators

n(w,u,ua) + n(u,w,ua). This difference is however of extreme relevance

for the numerical analyis, since the lack of non linear terms allows a direct

solving of the adjoint problem. For this reason, the computational effort to

solve this system is considerably small compared to the numerical costs of

the governing equations.

Finally, the forcing term, compressibility, and boundary conditions are gov-

erned by the functional derivatives in u and p. Let us consider a stationary
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functional as (2.2.4),

J = β1

∫

Ω

A(u,∇u, p; γ)dx + β2

∫

∂Ω

B(u, p; γ)dσ,

and compute derivatives in u and p.

Since u and p are solutions of the steady NS system, and the boundary con-

ditions are fixed for all values of γ, it is possible to enforce them as done for

k(u, p,v) term above, obtaining

J = β1

∫

Ω

A(u,∇u, p; γ)dx + β2

∫

ΓN

B(u, p; γ)dσ + β2

∫

ΓD

B(u, p; γ)dσ

= β1

∫

Ω

A(u,∇u, p; γ)dx + β2

∫

ΓN

B(u,∇u; γ)dσ + β2

∫

ΓD

B(uD, p; γ)dσ.

(3.1.18)

In (3.1.18), by the Neumann conditions, p can be written as a function of gN

and ∇u on ΓN . Derivative in u is then

∂J

∂u
(·,w) = lim

t→0

1

t
β1

∫

Ω

[A(u+ tw,∇(u+ tw), p; γ)− A(u,∇u, p; γ)] dx

+ lim
t→0

1

t
β2

∫

ΓN

[B(u+ tw,∇(u+ tw); γ)− B(u,∇u; γ)] dσ.

Further, adding and subtracting A(u,∇(u + tw), p; γ) in the first limit, and

B(u,∇(u+ tw)) in the second, the derivative reads

∂J

∂u
(·,w) = β1

∫

Ω

[

∂A

∂u
(w) +

∂A

∂∇u
(w)

]

dx + β2

∫

ΓN

[

∂B

∂u
(w) +

∂B

∂∇u
(w)

]

dσ.

(3.1.19)
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Similarly, the derivative of J in p, reads

∂J

∂p
(·, r) = lim

t→0

1

t
β1

∫

Ω

[A(u,∇u, p+ tr; γ)− A(u,∇u, p, γ)] dx

+ lim
t→0

1

t
β2

∫

ΓD

[B(·, p+ tr, γ)− B(u, p, γ)] dσ

= β1

∫

Ω

∂A

∂p
(r)dx + β2

∫

ΓD

∂B

∂p(r)
dσ

(3.1.20)

Substituting (3.1.19) and (3.1.20) in (3.1.17) the adjoint system weak formu-

lation results in



















































a(ua,w) +n(w,u,ua) + n(u,w,ua) + b(w, pa) +mα(ua,w)

= −β1

∫

Ω

[

∂A

∂u
(w) +

∂A

∂∇u
(w)

]

dx

−β2

∫

ΓN

[

∂B

∂u
(w) +

∂B

∂∇u
(w)

]

dσ,

b(ua, q) +
1

ρ

∫

ΓD

ua · nrdx = −β1

∫

Ω

∂A

∂p
(r)dx − β2

∫

ΓD

∂B

∂p
(r)dσ,

(3.1.21)

for all w ∈ V and r ∈ Q. The boundary conditions for the adjoint system

are defined from the boundary terms of (3.1.21). The Neumann BCs naturally

arise from the weak formulation by the integral on the Neumann boundary

ΓN , i.e., in this case they are already applied, being β2

∫

ΓN

[

∂B
∂u

(w) + ∂B
∂∇u

(w)
]

dσ

in (3.1.21).

The Dirichlet boundary conditions are instead obtained by comparing the two

integrals on the Dirichlet boundary, ΓD in (3.1.21), obtaining

∫

ΓD

ua · nrdσ = −ρβ2

∫

ΓD

∂B

∂p
(r)dσ. (3.1.22)

For example if B = p,

∫

ΓD

ua · nrdσ = −ρβ2

∫

ΓD

1rdσ =⇒ ua · n = −ρβ2.
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Since w is contained in the space V , hence vanishes at Dirichlet boundaries, it

is mandatory to have essential equation for the value of ua on ΓD. Given that

no other condition is originated from (3.1.21) for the tangential components

of ua, the simplest choice adopted in literature is to set (3.1.22) as

∫

ΓD

uardσ = −ρβ2

∫

ΓD

∂B

∂p
(r)ndσ. (3.1.23)

In above example (B = p), this implies uD = −ρβ2n.

From system (3.1.21), with some elementary calculation, it is possible to de-

rive the operators Du and Dp of (3.1.6), and from (3.1.6) obtain the strong

formulation of the adjoint system. The result is the following [16]:



































































−ν∆ua − (u · ∇)ua + (∇u)ua +
1

ρ
∇pa

= −β1

(∂A′

∂u
−∇ ·

∂A′

∂∇u

)

−
1

ρ
αua, in Ω

−
1

ρ
∇ · ua = −β1

∂A

∂p
, in Ω

ua = −ρ
∂B′

∂p
n, on ΓD

[

−
1

ρ
paI+ ν∇ua

]

n = −(u · n)ua − β1
∂A

∂∇u
n− β2

∂B

∂u
, on ΓN ,

(3.1.24)

where for simplicity of notation we have assumed A and B such that ∂A
∂u

(w) =

∂A′

∂u
w, ∂A

∂∇u
(w) = ∂A′

∂∇u
w and ∂B

∂p
(r) = ∂B′

∂p
r.

The system can be thus solved with a FEM algorithm, similarly to the Navier-

Stokes system (2.4.1).

Once solved the system (3.1.21), the solution (ua, pa) is known, and from

(3.1.7) the sensitivities can be found as

d

dγ
J(u, p, γ) =

∂J

∂γ
(u, p, γ) +

∂Ru

∂γ
(u, p, γ,ua),
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where, by the Gateaux derivatives in a generic direction h ∈ L2(Ω),

∂J

∂γ
(·, h) = β1

∫

Ω

∂A

∂γ
(h)dx + β2

∫

ΓN

∂B

∂γ
(h)dσ

= β1

∫

Ω

∂A′

∂γ
hdx + β2

∫

ΓN

∂B′

∂γ
hdσ.

(3.1.25)

∂Ru

∂γ
(·, h) =

∂mα

∂γ
=

1

ρ

∫

Ω

∂α

∂γ
(h)u · uadx

=
1

ρ

∫

Ω

∂α′

∂γ
u · uahdx,

(3.1.26)

Summing the two the result, the derivative of J in γ is simply

d

dγ
J(u, p, γ)(h) =

∫

Ω

[

β1
∂A

∂γ
+

∂α′

∂γ
u · ua

]

hdx +

∫

∂Ω

β2
∂B′

∂γ
hdσ

=< β1
∂A

∂γ
+

∂α′

∂γ
, h >L2(Ω) + < β2

∂B′

∂γ
, h >L2(∂Ω),

(3.1.27)

with < ·, · >L2(Ω) L
2 scalar product in Ω and < ·, · >L2(∂Ω) L

2 scalar product

in ∂Ω. This finally implies

d

dγ
J(u, p, γ) =< β1

∂A

∂γ
+

∂α′

∂γ
u · ua, · >L2(Ω) + < β2

∂B′

∂γ
, · >L2(∂Ω)

(3.1.28)

The Derivation for the time dependent scenario

In the time dependent scenario, the objective functional J is given by (2.2.5).

Let Ru and Rp be the total residual of the Navier-Stokes equations in time
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[0, T ], i.e.,

Ru(u[γ], p[γ], γ,v) =

∫ T

0

[

(∂tu,v) + n(u,u,v) + a(u,v) + b(v, p) +mα(u,v)

+ k(u, p,v)− F (v)
]

dt+

∫

Ω

[u− u0]
∣

∣

t=0
vdx

Rp(u[γ], q) =

∫ T

0

b(u, q)dt,

(3.1.29)

where the initial condition is u = u0 at t = 0.

Steps up to (3.1.8) are valid also in this case, even if now the target is a

map ua(t) : I → [H1(Ω)]d and pa(t) : I → Q, i.e., solutions ua ∈

L2(I, [H1(Ω)]d) and pa ∈ L2(I,Q). Derivatives (3.1.9) and (3.1.20) are thus

consistent, apart from an additional integration in time in [0, T ].

The latter yields a new time derivative term appearing in Ru, (∂tu,v) and the

new initial condition term q =
∫

Ω
[u− u0] dx

∣

∣

t=0
, resulting

∂q

∂u
(w) = lim

t→0

∫ T

0

∫

Ω
[(u+ tw)ua − uua]

∣

∣

t=0
dx

t

=

∫ T

0

∫

Ω

[wua]
∣

∣

t=0
dx

∂(∂tu,v)

∂u
(w) = lim

t→0

∫ T

0

∫

Ω
[∂t(u+ tw)ua − (∂tu)ua] dx

t

=

∫ T

0

∫

Ω

(∂tw)uadx

On the assumption required by the Fubini-Tonelli theorem [33], it is possible

to switch the two integrations in (3.1.1) and apply integration by parts, i.e.,

∂(∂tu,v)

∂u
(w) =

∫

Ω

∫ T

0

∂t(wua)dx −

∫

Ω

∫ T

0

w∂t(ua)dx

=

∫

Ω

[∂t(wua)]
T
0 dx −

∫ T

0

∫

Ω

w∂t(ua)dx.

71



3.1. Adjoint derivation Chapter 3

Hence, the sum of the two terms yields

∂q

∂u
(w) +

∂(∂tu,v)

∂u
(w) =

∫

Ω

[wua]
∣

∣

t=T
dx − (∂ua, w). (3.1.30)

This result for t = T has exactly the same form of
∫

Ω
[w(ua − ua,T )]

∣

∣

t=T
dx,

with ua,T = 0, and can be easily linked to a strong formulation, where we

impose the final condition instead than the initial one. As for the steady case, it

is possible to deduce from an hypothetical strong formulation of the problem.

The result is [16]:



















































































−
∂ua

∂t
− ν∆ua − (u · ∇)ua + (∇u) · ua +

1

ρ
∇pa

= −β1

(∂A′

∂u
−∇ ·

∂A′

∂∇u

)

+
1

ρ
αua, in [0, T ]× Ω

−1
ρ
∇ · ua = −β1

∂A′

∂p
, in [0, T ]× Ω

ua(T, x) = 0, in Ω

ua = −β2ρ
∂B′

∂p
n, on ΓD

[

−
1

ρ
paI+ ν∇ua

]

n = −(u · n)ua − β1
∂A′

∂∇u
n− β2

∂B′

∂u
, on ΓN .

(3.1.31)

Finally, it can be easily proved that for the unsteady scenario

d

dγ
J =

∫ T

0

[

< β1
∂A

∂γ
+

∂α′

∂γ
u · ua, · >L2(Ω) + < β2

∂B′

∂γ
, · >L2(∂Ω)

]

dt

(3.1.32)

The adjoint system is modeled with a FEM approach, analogous to the one

for Navier-Stokes equations. Real sensitivities are then the derivatives with

respect to the local parameters γi, which are obtained by the chain rule from

(3.1.28) or (3.1.32). In both cases, γ =
∑

i γiϕi, with i nodes of the mesh and

ϕi the relative shape functions.
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Considering the power dissipation scenario,

J =

∫

Ω

[

1

2
µ||∇u+ (∇u)T ||2 + α||u||2

]

dx, (3.1.33)

it can be easily proved that

∂A

∂u
= 2αu,

∂A

∂∇u
= 2

[

∇u+ (∇u)T
]

,

∂A

∂p
= 0,

∂B

∂u
= 0,

∂B

∂p
= 0.

Hence, the final implemented adjoint system takes the form















































































−
∂ua

∂t
−ν∆ua − (u · ∇)ua + (∇u) · ua +

1

ρ
∇pa

= −β1

(

2αu− 2∇ ·
[

∇u+ (∇u)T
]

)

+
1

ρ
αua, in [0, T ]× Ω

−1
ρ
∇ · ua = 0, in [0, T ]× Ω

ua(T, x) = 0, in Ω

ua = 0, on ΓD

[

−
1

ρ
paI+ ν∇ua

]

n = −(u · n)ua − 2β1

[

∇u+ (∇u)T
]

n, on ΓN .

(3.1.34)
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3.1.2 The Adjoint system for the Advection-Diffusion-Reaction

module

Consider for the derivation a steady functional with separable dependence on

the physics-governing parameters, u, p, c, in the form

J(u, p, c; γ) = β1J1(u, p, γ) + β2J2(c), (3.1.35)

as the functional for the pollute dissipation coupled with power dissipation

(2.3.5). Extension to more complex functionals can be easily deduced from

the following steps.

By chain rule, the objective functional sensitivity in γ is

d

dγ
[J(u, p, c; γ)] =

∂J

∂γ
+

∂J

∂u
·
du

dγ
+

∂J

∂p

dp

dγ
+

∂J

∂c

dc

dγ
. (3.1.36)

Again, the implicit dependence of u, p , and c for γ will be handled using

appropriate adjoint problems.

Consider the NS weak residual operators, Ru and Rp as in (3.1.2) and the

residual for the weak ADR problem for a test function v ∈ H1
ΓD

(Ω) (from

2.4.10)

Rc(c[γ],u[γ]v) = a(c, v)+b(c,u, v)+mk(c, v)−(gN , v)ΓN
−F (v). (3.1.37)

Let us assume the specie diffusion coefficient, D, to be independent from γ,

i.e., to be the perfectly equal between solid and fluid regions. This assump-

tion is clearly a huge simplification of the optimization task, but allows an

extremely simpler solving process. In order to reduce the approximation’s

given errors, the obtained results in chapter 4 are truly obtained with a very
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low diffusion coefficient, hence minimizing the diffusion both for the solid

and fluid regions, for an advection-dominated flow.

As for the simple fluid-flow case, all these residuals have to be zero for all

the possible formulations of the design function γ, so Ru and Rp must satisfy

(3.1.4), and

dRc

dγ
=

∂Rc

∂u

du

dγ
+

∂Rc

∂c

dc

dγ
= 0, ∀v ∈ H1(Ω). (3.1.38)

Summing to (3.1.36) the zero quantities, the sensitivity results in

d

dγ
J =

∂J

∂γ
+

∂Ru

∂γ
+

(

∂J

∂u
+

∂Ru

∂u
+

∂Rp

∂u
+

∂Rc

∂u

)

du

dγ
+

(

∂J

∂p
+

∂Ru

∂p

)

dp

dγ

+

(

∂J

∂c
+

∂Rc

∂c

)

dc

dγ
.

(3.1.39)

Consider now the last round parenthesis. Since the derivative (3.1.38) is zero

for all v ∈ H1
ΓD

(Ω), the idea is thus again to search for the test function v

which send such term to zero, leading to the equation

Dc :=
∂Rc

∂c
(·, v) +

∂J

∂c
= 0, (3.1.40)

where ” · ” hides the implicit dependence for variables fixed by NS and

ADR equations. Define ca the solution of such equation. Computing direc-

tional derivatives as described in the previous section,
∂a(c,ca)

∂c
(w) = a(ca, w),
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∂mk(c, ca)/∂c(w) = mk(ca, w), and

∂b(c, ca)

∂c
(w) = lim

t→0

∫

Ω
u · ∇(c+ tw − c)cadx

t
=

∫

Ω

(u · ∇w)cadx

=

∫

Ω

div(uwca)dx−

∫

Ω

div(uca)wdBx

=

∫

∂Ω

(cau · n)wdσ −

∫

Ω

(u · ca)wdx =

∫

Ω

(u · ca)wdx

= −b(ca, w),

(3.1.41)

by divergence theorem and fluid incompressibility (∇ · u = 0). Equation

(3.1.40) has to be valid for all search derivatives w, so the advection-diffusion-

reaction adjoint weak formulation is

a(ca, w)− b(ca,u, w) +mk(ca, w) = −
∂J

∂c
, ∀w ∈ H1

ΓD
(Ω), (3.1.42)

If J2(c) =
∫

Γout
cdσ,

∂J(c)

∂c
(w) = = lim

t→0

∫

Γout
(c+ tw − c)dσ

t
=

∫

Γout

wdσ, (3.1.43)

the weak formulation (3.1.42) can be easily associated to a continuous scalar

transport problem in the form



























−u · ∇ca −∇ · (D∇ca) = 0 in Ω

ca(x) = 0, on ΓD

D∇c · n = −β2, on ΓN .

(3.1.44)

Once the adjoint concentration, ca, is determined, an adjoint NS problem has

to be developed to kill the other round parenthesis in (3.1.39). Let us first
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compute the derivative of the transport residual operator, Rc, in u,

∂Rc

∂u
(w) =

∂b(c,u, ca)

∂u
(w) = lim

t→0

∫

Ω
[(u+ tw − u) · ∇c] cadx

t

=

∫

Ω

w · ∇ccadx =< ca∇c, · > (w)

=⇒
∂Rc

∂u
=< ca∇c, · > .

(3.1.45)

Since ∂Rc

∂u
only depends on the state variables u and c, and the adjoint con-

centration, ca, it actually acts as a forcing field for the momentum equation of

the flow, and the adjoint formulaton can be derived with the same procedure

shown in the previous section. In particular,for pollute dissipation coupled

with power dissipation, its continuous formulation results in































































−ν∆ua − (u · ∇)ua + (∇u)ua +
1

ρ
∇pa =− β1

[

2αu+ 2∇u+ 2(∇u)T
]

− β2(ca∇c)−
1

ρ
αua,

in Ω

∇ · ua = 0, in Ω

ua = 0, on ΓD

[

−
1

ρ
paI+ ν∇ua

]

n = −(u · n)ua − 2β1

[

∇u+ (∇u)T
]

n, on ΓN .

(3.1.46)

Once the adjoint variables ca, ua, and pa, are known, the computation for the

sensitivity reduces now to

d

dγ
J =

∂J

∂γ
(u, p, γ) +

dRu

dγ
(u, p,ua), (3.1.47)

and can be computed exactly as in (3.1.28).

The extension to unsteady scenarios is not derived in this paper, but is a

straightforward extension to what showed in the last two paragraphs.
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3.2 The Optmization schemes

Here are summarized the main features of each of the chosen optimization

schemes.

3.2.1 The Optimality Criteria (OC)

The Optimality Criteria is a very simple scheme widely used for TO in struc-

tural mechanics. It is based on the Karush-Kuhn-Tacker optimality conditions,

and has the limitation of admitting just one equality constraint in the formu-

lation. By (2.2.1), we have











































min
γ

J(γ)

subject to : g(γ) = 0 Equality constraint,

: R(γ) = 0 Governing equations,

: γmin ≤ γ ≤ γmax, Design variable bounds.

(3.2.1)

It is now possible convert this constrained optimization problem into an un-

constrained one by defining the Lagrange function :

L(γ, λ) = J(γ) + λ(g(γ)). (3.2.2)

The Karush-Kuhn-Tucker first-order optimality conditions state that















∂L

∂γ
=

∂J

∂γ
+ λ

∂g(γ)

∂γ
= 0

∂L

∂λ
= g(γ) = 0.

(3.2.3)
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Since the Lagrange multiplier λ and the design variable γi are coupled, the

two equations must be solved simultaneously, but, being nonlinear equations,

the solution is computationally expensive and difficult due to numerical in-

stabilities. The common solving procedure is composed of two-level loops.

In the inner loop, given λ, the design variable γi is updated to satisfy the first

condition of (3.2.3). On the other hand, the outer loop is used to update the

value of λ in order to satisfy the constraint.

Once defined the element scale factor

Di =
| ∂J
∂γi

|

λ ∂V
∂γi

, (3.2.4)

the inner-loop update rule for the γi is

γnew
i = γold

i

√

Di, γ
min
i ≤ γnew

i ≤ γmax
i . (3.2.5)

One can easily verify that with this choice the first equation in (3.2.3) is veri-

fied. In Equation (3.2.3), note how the optimality conditions are satisfied when

the objective sensitivity has same absolute value of the constraint sensitivity

times λ. Thus, in an optimal configuration the ratio of the two quantities (Di)

should be one. Therefore, the design does not change when Di = 1 and the

optimality condition is already satisfied. When Di < 1, increasing the mate-

rial density γi (that is decreasing its porosity) has a greater effect on the con-

straint bond than in decreasing the compliance, so its value decreases. On the

opposite, when Di > 1, increasing γi becomes convenient since it produces

an higher improvement in the functional than in the constraint. To prevent the

scheme from instabilities due to hasty shifts, we impose a maximum value for

the change of each variable.

Consequently, in the outer loop the Lagrange multiplier is updated to satisfy

the constraint g(γ) = 0 using a simple bisection method. Starting from some
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given lower and upper bound for λ, λmin and λmax], the range [λmin, λmax] is

halved at each iteration of the outer loop, and the incumbent λ is chosen as

the middle value of the range. If the procedure is to evaluate the volume con-

straint, V (γ) − VrV0, when the result is positive, the upper half of the range

is kept and the lower is discarded (greater values of λ results in smaller Di

and probably smaller densities, hence smaller volume). The opposite is done

when V (γ) − VrV0 is negative, and this routine is repeated until the range is

smaller than a given tolerance.

As said above, this method is very fast and simple to implement but it can

not be applied to more complex scenarios, like the multi-constrained prob-

lems. Such concern will be overcomed in the generalized version of the OC

method, based on a different approach for the γ − λ coupled problem.

3.2.2 The Generalized Optimality Criteria (GOC)

The generalized Optimality Criteria Method (GOCM) for topology optimiza-

tion [9] extends the capability of the OCM to multiple inequality constraints,

altaugh it may lead to a loss of the efficiency. The general optimization prob-

lem solvable with this technique can be defined as











































min
γ

J(γ)

subject to : gi(γ) ≤ 0, i = 1, ..., NC,

: R(γ) = 0, Governing equations,

: γmin ≤ γ ≤ γmax, Design variable bounds,

(3.2.6)
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with NC number of constraints. This formulation can clearly represent also

greater-than-or-equal-to inequalities constraint and multiple functionals by

weighted sums.

The associated Lagrangian unconstrained optimization problem has now the

form

minimize L(γ, λ, s) = J(γ) +
NC
∑

i=1

λi(gu(γ) + s2i ), (3.2.7)

with λi the Lagrange multiplier associated to constraint gi. The variables si,

called "slack variables", are used to convert the inequalities constraint into

equalities, and are not zero (less than zero) only when the constrain is satisfied

(gi < 0). The necessary conditions for optimality are

∂J

∂γ
+

NC
∑

i=1

λi
∂gi
∂γ

= 0,

gi(γ) + s2i = 0, i = 1, ..., NC

λisi = 0, i = 1, ..., NC.

(3.2.8)

The third set of equations in (3.2.8) represents the "complementary slackness

conditions", which state that only active constraints need to be considered in

the necessary conditions ( if si ̸= 0 the constraint is satisfied, and λi = 0, so

that it does not influence the optimization).

Conversely, the second and third sets of equations in (3.2.8) are satisfied by

identifying active constraints. For this reason the GOC goal is only to solve

the first part of (3.2.8). As in (3.2.3), the Lagrange multipliers λi and the

decision variables γi are coupled, but, in this case, the double-loop approach

of OC method can not be exploited, since it would require an additional loop

for each new constraint.

The Generalized Optimality Criteria overcomes this problem by relaxing the
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controls over the Lagrange multipliers, stating that they do not have to satisfy

Equations (3.2.8) in each iteration. It then introduces an update routine to

assure gradually the constraints as the optimization algorithm converges.

More details on the method and on the possible updating routines for the

Lagrange multipliers and the design parameters are given in [9].

In this project we use

λk+1
i = λk

i

[

1 + p0(g
k
i +∆gki )

]

(3.2.9)

as update rule for the Lagrange multipliers, with k the iteration number of the

optimization problem, ∆gi the variation on the value of ith constraint from the

previous iteration, and p0 the chosen update parameter (usually p0 = 0.5 or

1). For the decision variables we still to use a scale factor Diel for the updating

algorithm, now redefined as

Diel = −

〈

∂J
∂γiel

〉

−
+
∑NC

i=1 λi

〈

∂gi
∂γiel

〉

−
〈

∂J
∂γiel

〉

+
+
∑NC

i=1 λi

〈

∂gi
∂γiel

〉

+

(3.2.10)

where ⟨x⟩− = min(0, a) and ⟨x⟩+ = max(0, a). When Diel = 1, this for-

mula also satisfies the stationary condition of the Lagrange function.

From Lagrange multiplier theory, it is well known that λi = 0 only if the rela-

tive constraint, gi, is not active, while λi > 0 when gi is active. In poor words,

it is unnecessary to consider Lagrange multipliers for inactive constraints.

From a coding point of view, it is not so easy to turn off/on different con-

straints as the optimization proceeds, and thus all constraints and Lagrange

multipliers are retained. When a constraint is inactive, the corresponding La-

grange multiplier will converge to its lower bound, which reduces its effect

on the optimality criteria.
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3.2.3 The Method of Moving Asymptotes (MMA)

The method of moving asymptotes, MMA, was developed by Krister Svam-

berg ([10]-[34]), and it is an extremely efficient algorithm for constrained non

linear optimization. The MMA is based on a special type of convex approx-

imation. Here, we do not show all the computations needed to completely

define the method. The code used in this thesis has been adapted from the

MATLAB version[35].

Let us consider an optimization problem (in a standard form) :

P: minimize

f0(x) (x ∈ RN),

subject to

fi(x) ≤ f̂i, for i = 1, ...,M

xj ≤ xj ≤ x̄j, j = 1, ..., N,

where x = (x1, ..., xN)
T is the vector of design variable (xj = γj ), f0(x) is

the objective function (J in our case), and f(x) ≤ f̂i are the constraints, with

the additional lower and upper bounds for each variables xj and x̄j , respec-

tively. In short, the MMA scheme follow this iterative scheme:

1. Choose a starting point x0, and let the iteration index k = 0.

2. Given an iteration point x(k), compute f
(x(k))
i and the gradients ∇fi(x

(k))

for i = 1, ...,M .

3. Generate a subproblem P (k) by replacing in P the (usually implicit)
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functions fi by approximating explicit functions f
(k)
i , based on the cal-

culations from Step 2.

4. Solve P (k) and let the optimal solution of this subproblem be the next

iteration point x(k+1). Let k = k + 1 and go to Step 2.

The algorithm stops when the chosen convergence criterion is fulfilled. Sub-

stantially, each f
(k)
i is obtained by a linearization of fi in variables of the type

1/(xj − Lj) or (Uj − xj) dependent on the sings of the derivatives of fi at

x(k). Lj and Uj are usually called "moving asymptotes" and are free to change

between iterations.

It is clear that to define the MMA we need

• to define the functions f
(k)
i

• to indicate the solving method of each subproblem p(k)

Here, we face only the former point, leaving only a brief suggestoin to the

solving method.

On assuming to have chosen L
(k)
k and U

(k)
j for the current iteration k, such

that L
(k)
j < x

(k)
j < U

(k)
j , for each i = 0, ...,M , we can define f

(k)
i as

f
(k)
i (x) = r

(k)
i +

N
∑

j=1

(

p
(k)
ij

U
(k)
j − xj

+
q
(k)
ij

xj − L
(k)
j

)

, (3.2.11)
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where

p
(k)
ij =











(U
(k)
j − x

(k)
j )2∂fi/∂xj, if ∂fi/∂xj > 0

0, if ∂fi/∂xj ≤ 0

(3.2.12)

q
(k)
ij =











0, if ∂fi/∂xj ≥ 0

−(x
(k)
j − L

(k)
j )2∂fi/∂xj, ∂fi/∂xj < 0

(3.2.13)

r
(k)
i = fi(x

(k))−
N
∑

j=1

(

p
(k)
ij

U
(k)
j − xj(k)

+
q
(k)
ij

xj(k)− L
(k)
j

)

(3.2.14)

with the derivatives ∂fi/∂xj evaluated at x = x(k). According to this set of

equations, f
(k)
i is a first order approximation of fi at x(k), i.e.,

f
(k)
i (x(k)) = fi(x

(k))

and

∂f
(k)
i /∂xj = ∂fi/∂xj at x = x(k), for i = 0, ...,M, j = 1, ..., N.

It can be easily checked that since p
(k)
ij , q

(k)
ij ≥ 0, f

(k)
i is a convex function,

with the following second derivatives at x = x(k)

∂2f
(k)
i

∂x2
j

=



















2∂fi/∂xj

U
(k)
j − x

(k)
j

, if ∂fi/∂xj > 0

−
2∂fi/∂xj

x
(k)
j − L

(k)
j

, if ∂fi/∂x : j < 0.

(3.2.15)

According to Equation (3.2.15), the closer L
(k)
j and U

(k)
j are chosen to x

(k)
j ,

the larger are the second derivatives. This means that fi turns out to be more

"curved", and, since the approximation is valid only close to the points x(k),

the overall MMA result is strictly conservative. On the opposite, when L
(k)
j

and U
(k)
j are chosen far from xk, the approximating functions become more
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linear, f
(k)
i )(x) = fi(x

(k)) +
∑

j(∂fi/∂xj)(xj − x
(k)
j , in the limit case of

L
(k)
j → −∞ and U

(k)
j → +∞, which are the approximating function used by

the well-known "sequence of linear programs" method.

On assuming xj and x̄j phisically reasonable, as simple choice for L
(k)
j and

U
(k)
j is

L
(k)
j = xj − s0(x̄j − xj), and U

(k)
j = x̄j + s0(x̄j − xj), (3.2.16)

with s0 =∈ [0, 1]. To enhance the model efficiency and prevent setting Lj

and Uj at each iteration, the adoptions of some rules to lend the asymptotes is

preferred by far.

A potential solution is based on the heuristic approach and states,

• to move the asymptotes closer to the current iteration point when the

process tends to oscillate and needs to be stabilized.

• to move the asymptotes away from the current iteration point if the

process is monotone and slow, and needs to be relaxed.

According to these rules, the P (k) subproblem results in,

P (k): minimize

N
∑

j=1

(

p
(k)
0j

U
(k)
j − xj

+
q
(k)
0j

xj − L
(k)
j

)

+ r
(k)
0

subject to

N
∑

j=1

(

p
(k)
ij

U
(k)
j − xj

+
q
(k)
ij

xj − L
(k)
j

)

+ r
(k)
i ≤ f̂i, for i = 1, ...,M

xj < xj < x̄j, for j = 1, ..., N.

From this formulation the solution is usually obtained by a primal-dual algo-
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rithm, by solving the Karush Kuhn Tacker conditions by a Newton or Fletcher

Reeves gradient method [10].
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3.3 SIMPLE preconditioning and shared-memory

multiprocessing

The SIMPLE (Semi-Implicit Pressure Linked Equation) has been introduced

by Patankar as an iterative method to solve the finite volume discretized in-

compressible Navier-Stokes equations, using a staggered grid arrangement of

the unknowns [36]. The convergence of the method depends on the relaxation

parameter between velocity and pressure, but is usually quite slow. Neverthe-

less, the SIMPLE is widely used for CFD simulation and in many commercial

packages like FLUENT.

The SIMPLE algorithm has been adopted just as preconditioner for the cho-

sen GMRES algorithm, according to the procedure shown by Vuik in 2010

[37].

3.3.1 The SIMPLE scheme

Let first analyze the SIMPLE approximation scheme for the solution of the

system:






A BT

B 0













u

p






=







ru

rp






.

The first step is to rewrite the system with the Schur decomposition, i.e.,







A 0

B S













I A−1BT

0 I













u

p






=







ru

rp






.
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By changing u and p with u∗ = u + A−1BTp and p∗ = p, respectively, the

system reduces to






A 0

B S













u∗

p∗






=







ru

rp






.

It is possible to separate the new variables, solve the system for u∗ and p∗

separately, and finally express the solution in terms of u and p.

In short, the basic SIMPLE algorithm is

• Solve Au∗ = ru

• Solve Sp∗ = rp − Bu∗

• Update u = u∗ − A−1BTp

• Update p = p∗

Of course this computations would lead to the exact solution only if the matrix

inverses were assembled completely, which is not a possibility (see section

2.5). This formulation is usually developed in an iterative scheme by the use

of approximate inverse of A−1 [36].

We then take advantage from this easy formulation and apply it as precondi-

tioner for each step of the GMRES algorithm, applying the Jacobi precondi-

tioners to the small systems Au∗ and Sp∗.

3.3.2 The flexible inner preconditioned GMRES

A standard GMRES iteration requires the computation of the product w =

Kv, with K matrix of the system. When a right preconditioner is available this
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becomes KP−1
R v∗, with v∗ = PRv, and the scheme works by the construction

of a basis of the Krylov space of KP−1
R .

If the exact K−1 were available as preconditioner, it would lead to

w = KK−1v∗, K−1v∗ = v.

Of course the system K−1v∗ = v has the same complexity of the original

problem, and despite the use of K−1 allows us to solve the iterative cycle in

just one step, we do not expect any gain in the model performance. From what

stated in Section (2.5.1), using the exact K−1 as preconditioner would trans-

form the system matrix into the identity, which has only one eigenvalue, so

the system is solved immediately by the scheme. Identify now, for simplicity

of notations, v, with v∗, and, z, with v, so that

w = Kz, K−1v = z.

The real solution would solve immediately the problem, but we may imagine

an approximate solution by solving the system with another preconditioner

PR instead of K, i.e.,

PRz̃ = v,

where z̃ is the approximate solution of z. In this sense approximating the

solution of the system Kz = v is comparable to the use of a different precon-

ditioner at each iteration of the GMRES scheme. For this reason, the reference

scheme is called flexible GMRES (FGMRES) algorithm [25].

Defining with Mj the preconditioner used at the jth iteration, the scheme for

GMRES with variable preconditioning is the following,

GMRES with variable preconditioning
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1. Choose x0 and a restart parameter m

2. Arnoldi process:

For j = 1, ...,m

(a) Compute zj from Mjzj = vj

(b) Compute w = Kzj

(c) For i = 1, ..., j











hi,j =< w, vi >

w− = hi,jvi

(d) Compute hj+1,j = ∥w∥2 and vj+1 = w/hj+1,j .

3. Define Zm = [z1, ..., zm]

4. Form the approximate solution:

(a) Compute ym = argminy

∥

∥βe1 − H̄my
∥

∥

2
, e1 = [1, 0, ..., 0]T

(b) Compute xm = x0 + Zmym

5. If residual less then tolerance STOP, else restart and go to 2.

The SIMPLE for variable preconditioning

The SIMPLE preconditioning scheme does not work with different precon-

ditioners Mj as in the FGMRES scheme, but it has anyway to save all the

the partial results zj , since systems Kzj = vj are only solved approximately.

Approximating such solutions with one iteration of the SIMPLE method, the

implemented scheme finally results in

1. Choose x0 and a restart parameter m

2. Arnoldi process:

For j = 1, ...,m
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(a) SIMPLE: solve approximately system Kzj = vj for zj

i. solve Au∗ = ru

ii. Solve Sp∗ = rp − Bu∗

iii. Update u = u∗ − A−1BTp

iv. Update p = p*

v. zj =







u

p







(b) Compute w = Azj

(c) For i = 1, ..., j











hi,j =< w, vi >

w− = hi,jvi

(d) Compute hj+1,j = ∥w∥2 and vj+1 = w/hj+1,j .

3. Define Zm = [z1, ..., zm]

4. Form the approximate solution:

(a) Compute ym = argminy

∥

∥βe1 − H̄my
∥

∥

2
, e1 = [1, 0, ..., 0]T

(b) Compute xm = x0 + Zmym

5. If residual less then tolerance STOP, else restart and go to 2.

The scheme comparison against the other proposed preconditioners and PAR-

DISO commerical software [38] are shown in (6.3).

Some theoretical properties

Let now prove that ym = argminy

∥

∥βe1 − H̄m+1,my
∥

∥

2
, is the best possible

set of coefficient for the linear combination of the Zm vectors to minimize the

norm of the residual

rm = b−K(x0 + Zmy).
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The main difference with the basic GMRES algorithm is that the Krylov sub-

spaces enlarged with a vector obtained as

wk+1 = Kzk,

with zk owing to a possible variable preconditioning as in (3.3.2).

The new basis vector thus reads

v̂k+1 = Kzk −

k
∑

j=1

hj,kvj, vk+1 =
v̂k+1

∥v̂k+1∥2
,

with

hj,k =< wk+1, vj >=< Kzk, vj >= zTk K
Tvj = vTj Kzk.

Multiplying both sides by vTk+1, using v̂k+1 = ∥v̂k+1∥2vk+1, and the orthonor-

mality of all the vectors vj by construction, we can prove that

∥v̂k+1∥2 = vTk+1Kzk = hk+1,k,

that easily leads to

hk+1,kvk+1 = Kzk −
k
∑

j=1

hj,kvj =⇒ Kzk =
k+1
∑

j=1

hj,kvj.

In matrix form the last result reads

KZm = Vm+1H̄m+1,m, (3.3.1)

with H̄m (m+1)×m the upper Hessemberg matrix collecting all the scalars

hj,k.
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The residual of the linear system at the step m is equal to

rm = b−K(x0 + Zmy) = r0 − AZmy

and can thus be rewritten as

rm = r0 − Vm+1H̄m+1,my,

which is exactly the formulationof the standard GMRES, and leads directly to

ym = argminy

∥

∥βe1 − H̄m+1,my
∥

∥

2

as the best set of coefficient to minimize the residual at the current iteration

also for the GMRES scheme with variable preconditioning.

Lucky and hard breakdown

It has not yet been discussed the role of the new vector zk, when the newly cre-

ated vector wk+1 = Kzk is linearly dependent from other vectors of the base

and thus the Krylov subspace dimension cannot increase. Does the "lucky

breakdown" property still hold for the flexible GMRES? Is the condition

hk+1,k = 0 still sufficient for an exact convergence?

Unfortunately the answer is no, in general.

In the standard GMRES if the new wk+1 is linearly dependent from the vector

in the base, the orthogonalization scheme leads to hk+1,k = 0, which means

that the last row of the Hessemberg matrix Hk+1,k is all made by zero entries.

Now, noticing that in such situation [39]

Vk+1Hk+1,k = VkHk,k,
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the kth residual gets the form

rm = r0 − VkHk,ky, (3.3.2)

which can be imposed equal to zero, leading to a m × m linear system that

can be solved exactly ("lucky" termination).

The problem with variable preconditioning is precisely in this final step. While

GMRES guarantees that the final Hk,k is full rank, with the new approach, the

condition hk+1,k = 0, may lead to either a "lucky breakdown" case with a full

rank H , or to a "hard breakdown" case, with H singular.

H is singular when two or more columns are linearly dependent, which roughly

means that the last vector wk+1 is linearly dependent from the previous ones

wj , with j ≤ k, used to build the space. Since wk+1 = Kzk, this can only

happen if zk is linearly dependent from the previously used zj[40]. This is

impossible in standard GMRES with zk = vk, because this would mean that

a vector of the basis is linearly dependent from the others.

Summarizing, when FGMRES incurs in hk+1,k = 0, the algorithm stops for

"lucky breakdown" if H is of full rank, and fails for "hard breakdown", if zk

is linearly dependent from the previous zj .

The SIMPLE preconditioning would thus present the same problematic, but,

with zk coming from the approximate solution of Kzk = vk, it is extremely

unlikely for the zj to be linearly dependent, especially for high degrees of

freedom.

For the implementation, when the current zk yields hk+1,k = 0 with non zero

residual, the GMRES scheme is restarted with the last approximate solution

obtained with the previous zj .
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3.3.3 The Shared memory multiprocessing

In order to decrease the required computational time for the solving process,

the GMRES-SIMPLE scheme has been adapted to a SMP (Shared memory

multiprocessing) routine. The implementation just aims at accelerating the

time-consumingproducts between matrix and vector, and matrix by matrix,

as well as each simple operation of easy parallelization. Used functions fol-

lows the openMP directives [41]. Some results on efficiency and speed up are

shown in appendix B (6.3).
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3.4 The Topology Optimization: the code struc-

ture

In this section we present a series of examples that are analyzed according

to the TO approach. The procedure to run the simulations from the oiginal

domain of analysis is reported in the following subsection.

3.4.1 The Topology Optimization algorithm for fluid flow

First, the mesh discretizations have been obtained by COMSOL Multiphysics

[42]. COMSOL output mesh file (.mphtxt or .mphbin formats) contains all

the relevant information about domain and boundaries, which are read and

re-elaborated to create and add an inner finer grid, which is required to build

the chosen FEM stable elements (see section 2.4.1).

Once the geometry has been imported and elaborated by the preprocessing ex-

ecutable , each problem requires the compilation of three input files, namely

the geometry, optimization and print file.

The geometry file specifies the problem name, according to the file in which

the geometry has been saved, the solver for the NS problem, and all the phys-

ical properties of the fluid. The fluid density, viscosity, external forcing fields,

and boundary conditions are all prescribed in this file.

The optimization file, instead, specifies the value for all the optimization pa-

rameters, αmax, q, the maximum number of optimization iterations, the ad-

missible volume fraction, Vr. If the optimization domain is smaller than the

total domain, this file includes also the coordinates of the bounds of the sub-

domain to optimize.
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Finally, the print file contains the printing parameters, like the maximum num-

ber of the otuput files. A user may also choose to print just the material distri-

bution rather than the fluid and pressure solution at each printing iteration.

Figure (3.1) shows the flowchart of the complete TO implemented scheme,

while Figure (3.2) reports the NS solving routine.

Figure 3.1: TO algorithm flowchart
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Figure 3.2: Navier-Stokes solver scheme
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3.4.2 The TO for species transport

The scheme for the TO algorithm for species transport just requires the solv-

ing of two additional systems in the formulation, the ADR problem and its

adjoint.

Figure 3.3: TO algorithm flowchart
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3.5 Validation procedure and testing for the TO

algorithm

3.5.1 TO for fluid flow

All the consider analysis for fluid flow problems have been developed over

the TO formulation with minimization of the dissipation power, over the ad-

ditional volume constraint, in absence of external force fields. Namely,















































min
γ

J(γ) =

∫

Ω

[

1

2
µ||∇u+ (∇u)T ||2 + α||u||2

]

dx

subject to :

∫

Ω

γ(x)dx − β|Ω| ≤ 0, Volume constraint,

: 0 ≤ γ(x) ≤ 1, Design variable bounds,

: NS equations (2.4.1), Governing equations.

(3.5.1)

The following examples are only validated against numerical results obtained

in literature, since for most of them still suffer the lack of an experimental

validation.

2D validation

Double Pipe problem

To validate the developed Topology Optimization algorithm for steady fluid

flows problems, a first study has been conducted for the standard "double

pipe" problem [32]. The double pipe geometry is showed in Figure (3.4).

The computational domain consists of two straight channels, of dimension

1/6× 0.5m, entering into a rectangular box, of height 1m and varying length,
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L. Finally two identical channels, 1/6m×0.5m , exiting from the box. The

optimization domain is the central box, and the parameter L is used to in-

vestigate the differences between optimal layouts at the varying of the box

length.

Figure 3.4: The "Double pipe" geometry, by [32]. Grey area represents the analyzed

domain due to symmetry.

At the two inlet channels (left) and otulet (right) channels, we prescribe parabolic

velocity, two outlet channels (at the right), and zero-pressure condition, re-

spectively, whereas, wall bounds (no-slip boundaries) on the remaining con-

tours. By symmetry, the problem can be cut at y = 0.5m (grey area), thereby

the hydrodynamics is solved only on the upper half of the domain.

The fluid properties and topology parameters are listed in Table (3.1),

umax[m/s] ρ[kg/m3] ν [m2/s] αmax [1/s] q Vr maxIt

1 1 1 1e4 1 0.34 50

Table 3.1: Parameter settings in the topology optimization of the double pipe.

The numerical experiment is studied for two scenarios, L = 1.0m, and L =

1.5m, with a triangular discretization of more than 105 elements.

Unsteady double pipe problem

We use the "double pipe" also to validate the developed Topology Optimiza-
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tion algorithm for unsteady problems. In this case, we simplify the domain as

shown in Figure (3.5). The computational domain consists only in a box of

dimensions 1× 1m, which coincides with the optimization domain.

Figure 3.5: Unsteable double pipe geometry, by [16].

In this unsteady problem we prescribe at the two inlet boundaries (at the left),

the following oscillating parabolic velocity,

uin,1 = −144(y − 4/6)(5/6− y) cos(t)n, t ∈ [0, 2π]

uin,2 = −144(y − 1/6)(2/6− y) sin(t)n, t ∈ [0, 2π],

where uin,1 and uin,2 are the velocity at the upper and lower inlets, respec-

tively. We also prescribe zero-pressure outlet conditions (at the right), and

wall bounds,i.e. no-slip conditions, on the rest of the external geometry. A

zero velocity field is assumed as initial condition.

The fluid properties and topology parameters adopted in the analysis are sum-

marized in Table (3.2).
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ρ [kg/m3] ν [m2/s] αmax[1/s] q Vr maxIt

1 1 1e4 1 0.34 50

Table 3.2: Parameter settings in the topology optimization of the unsteady double

pipe.

The computational mesh consists in more than 2 ·105 triangular elements, and

the simulation analyze a period of 6.28 s with a time-step of 0.3925 s (equal

to 1/16 of the period).

The 4 terminal device problem

One of the main properties of a Topology Optimization algorithm should be

the capability to change the domain topology, for example generating holes

inside the optimization domain. This effect is tested with the steady "4 termi-

nal device problem" [16].

The computational domain consists of a 1m×1m box, with two inlet bound-

aries at the lateral edges and two outlets on the upper/lower side. Each in-

let/outlet is positioned at the center of each edge, with size of 1/3 m. The

optimization domain coincides with the total domain (see Figure 3.6).

Figure 3.6: "4 terminal device" geometry, by [16].
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The 4 terminal device presents two inlet boundaries Γin (left and right walls),

where we prescribe parabolic velocity profile, two zero-pressure outlets Γout

(top and bottom walls), and wall bounds on the rest of the external geometry.

The fluid properties and topology parameters are showed in Table (3.3)

umax[m/s] ρ[kg/m3] ν [m2/s] αmax [1/s] q Vr maxIt

1 1 1 1e4 1 0.4 50

Table 3.3: Parameter settings in the topology optimization of the 4 terminal device.

The problem is studied by a triangular with of more than 2.0 · 105 elements.

The unsteady Bend channel problem

To observe the effect of the Reynolds number, Re = UL/ν, with U the char-

acteristic velocity and L the characteristic length of the problem, we analyze

the unsteady "Bend channel" problem [16].

The computational domain consists of a 5× 5m box, coinciding with the op-

timization domain, with an inlet (left) and an outlet channel (bottom), having

size of 1.0× 1.5m (see figure 3.7).

Figure 3.7: "Bend channel" geometry, by [16].
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The bend channel problem is implemented with one inlet boundary condition,

prescribing a time-dependent parabolic velocity profile, and one zero-pressure

condition at the outlet. We finally prescribe wall bounds on the rest of the

external geometry. A zero velocity field is assumed for the initial condition.

The velocity profile is assumed to grow linearly in time as

uΓi
= umax(y − 3.5)(4.5− y)t, (3.5.2)

with t varying from 0 to 1 second, which is the final computational time.

To test the effects of a different Re, two simulations have been developed

changing the maximum inflow velocity umax from 1 to 100 m/s, assuming a

unitary density and kinematic viscosity.

Fluid properties for the two simulations and topology parameters are summa-

rized in Table (3.4),

umax[m/s] ρ[kg/m3] ν [m2/s] αmax [1/s] q Vr maxIt

1 1 1 1e4 1 0.25 50

300 1 1 1e4 1 0.25 50

Table 3.4: Parameter settings in the topology optimization of the bend channel.

The problem is studied with a triangular mesh of more than 2.0∗104 elements,

and a time step of 1/16 seconds.

The 3D validation

The Bend channel

To validate the implemented Topology Optimization algorithm for three-dimensional
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steady flow problems, at different Reynolds numbers, we consider a 3D adap-

tation of the "bend channel" example [43]. The computational domain con-

sists of a box of 1 × 0.4 × 1m, with a circular inlet at the left face and a

circular outlet at the bottom face (see Figure 3.8). The inlet and outlet dia-

mater is constant and equal to 0.2m.

Figure 3.8: Three-dimensional "bend channel" geometry, by [43].

The 3D bend channel problem is implemented prescribing a parabolic velocity

profile at the inlet, one zero-pressure at the outlet, and wall bounds on the rest

of the external geometry.

To test the effects of Re, two simulations have been developed, changing the

maximum inflow velocity from umax = 1 m/s, to umax = 50 m/s. The density

and kinematic viscosity are kept fixed to the unitary value. By symmetry, the

problem can be cut by the sagittal. Thereby the hydrodynamics can be solved

only on the one half of the domain.

Fluid properties for the two simulations and topology parameters are showed

in Table (3.5),

The problem is studied with a tetrahedral mesh with more than 3.0 · 106 ele-
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umax[m/s] ρ[kg/m3] ν [m2/s] αmax [1/s] q Vr maxIt

1 1 1 1e4 1 0.1 30

50 1 1 1e4 1 0.1 30

Table 3.5: Parameter settings in the topology optimization of the three-dimensional

bend channel.

ments.

The 6 terminal device

Lastly, we consider the generalization of the 4 terminal device in three-dimensions,

namely the "6 terminal device" problem Figure(3.9) [43]. The computational

domain consists of a 5 × 5 × 5m box, with a small circular channel (radius

0.5m height 1m) connected to the middle of each face.

Figure 3.9: "6 terminal device" geometry, by [43].

The 6 terminal device presents two inlet boundaries (channel along the x-

direction), where we prescribe parabolic velocity profile, four zero-pressure

outlets (all the other channels), and wall bounds on the rest of the external

geometry. By symmetry, the problem can be cut on the planes y = 3.5m and

z = 3.5m, so that the hydrodynamics is solved only on 1/4 of the domain.
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The fluid properties and topology parameters are showed in Table (3.6),

umax[m/s] ρ[kg/m3] ν [m2/s] αmax [1/s] q Vr maxIt

200 1 1 1e5 1 0.1 30

Table 3.6: Parameter settings in the topology optimization of the 6 terminal device.

The problem is studied on a tetrahedral mesh of more than 5× 105 elements.

The choice of the starting configuration

Each problem has been studied with the developed optimization schemes de-

scribed in section 3.2(Optimality Criteria, Generalized Optimality Criteria

and Method of Moving Asymptotes). Every optimization algorithm has its

own dependence on the initial configuration, that may change the optimiza-

tion process and the final result. A popular idea is to use initially a uniform

material distribution exactly satisfying the volume constraint, γ = Vr. This

initial configuration has proven to accelerate the scheme convergence veloc-

ity, but often leads to oscillations and checkboard effects on the solutions

when a proper density filter is not applied [44]. The chosen interpolation rule

for the damping parameter α, Equation (2.2.2), makes easier for the opti-

mization process to add material than to remove it. For this reason, a good

initial configuration is simply a void optimization domain. In this way, the

algorithms are able to build the final domain only by augmenting the material

density in proper regions, and it is not necessary to remove material where the

fluid is flowing.

This choice for the initial condition is not consistent with the imposed volume

constraint, but all the implemented optimization schemes are able to evolve

the domain even starting from unfeasible layouts. Accordingly, if not speci-
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fied otherwise, all the results are obtained considering a completely fluid ini-

tial layout.

It is important to remark that none of the implemented optimization schemes

is guaranteed to reach the true optimal configuration. The topology optimiza-

tion is less constrained than the size and the shape optimization on the initial

material distribution, but can still stop on local minimum. For this reason in

practical applications the optimization scheme should be tested over several

initial configurations and values of the optimization parameters, αmax, and q,

or different interpolation rules for α(γ). Moreover, when an intuitive solution

is known, it may be important to use an initial material distribution which

force the algorithm to evolve in that direction, and check whether the ob-

tained result provides a better compliance than the ones with different initial

configurations.
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3.5.2 TO for species transport

Given the lack of well-known solutions for TO applications in flow-driven

scalar transport problems, a single, but in depth analyzed scenario has been

tested, to eventually create a well-documented benchmark for future applica-

tions. The validation will thus only be semi-qualitative, with a physical anal-

ysis on the common sense of the final configurations. The study is based on

the weighted pollute-energy dissipation functional over the additional volume

constraint. The optimization problem takes the final form,































































min
γ

J(γ) = β1

∫

Ω

[

1

2
µ||∇u+ (∇u)T ||2 + α||u||2

]

dx + β2

∫

Γout

cdσ

subject to :

∫

Ω

γ(x)dx − β|Ω| ≤ 0, Volume constraint,

: 0 ≤ γ(x) ≤ 1, Design variable bounds,

: NS equations (2.4.1), Governing equations,

: ADR equations (2.4.7), Governing equations.

(3.5.3)

The ratio ξ = β2/β1 fix the schemes optimization priority. When ξ → 0, the

optimization should be focused on the minimization of the energy dissipation,

while for ξ → ∞ the objective should only keep count of the pollute dissipa-

tion. Let us assume in the following zero specie generation inside the domain,

f = 0, Equation (2.4.2).

The Bend channel problem

The case study derives from the bend channel adopted in the only CFD analy-

sis. The computational domain consists of a rectangle of dimensions 1× 4m,

with an inlet bound of size 0.25m on the left wall, and an outlet edge of the
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same size on the right wall (see Figure 3.10).

Figure 3.10: "bend channel" geometry.

The boundary conditions for the problem are prescribed by a parabolic veloc-

ity at the inlet, a zero-pressure condition at the outlet, and no-slip conditions

on the remaining geometry.

The fluid properties and topology parameters are listed in Table (3.7),

umax[m/s] ρ [kg/m3] ν[m2/s] D[m2/s] ks [1/s] αmax [1/s] q Vr maxIt

1 1 1 10−5 0.1 1e4 1 0.4 50

Table 3.7: Parameter settings in the topology optimization of the bend channel.
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The numerical experiment is studied with a triangular discretization of more

than 2 × 104 elements. Five different simulations, varying the weighting co-

efficient ratio ξ = β2/β1, are developed for this configuration, namely, ξ =

0, 1, 10, 100, ∞, with a value of β1 fixed to one for the firsts four scenarios,

while zero in the last, and a value of β2 varying from one to zero.
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Chapter 4

Results and Discussion

4.1 TO for fluid flows

4.1.1 2D testing

The steady flow optimization

The solution of the example (3.4) has been already proposed by [32], and is

showed in Figure (4.1).

Figure 4.1: Optimal layouts for L = 1.0m (left) and L = 1.5m (right). From Okubo

Jr. [32].

In the first simulation (L = 1m) our models results are reported with vary-

ing the iterations in Figures (4.2) and (4.3). Each optimization scheme shows

a different optimization process, both in the layouts and in convergence ve-
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locity. The only algorithm that could reach the configuration proposed by the

literature, with two straight channels connecting inlets and outlets, was the

MMA, with a final compliance of J = 17.51 and volume 33.99% of the start-

ing optimization domain, V0, achieved in 27 iterations.

The OC method provides an almost equivalent solution in terms of compli-

ance (J = 18.83), and a faster convergence (9 iterations), is not able to satisfy

exactly the volume constraint, converging to a final volume of 34.67%V0).

Moreover, in the OC final configuration the two resulting channels shows a

central bending towards the domain center, probably effect of the optimiza-

tion process, that got stuck in a local minimum (see Figure(4.2).

Finally, the GOC algorithm gives a completely different final layout, that

merge the two entering channels into a bigger one. This is probably due to

the optimization process of the algorithm, which operates only small changes

per iteration, and converge more likely in local minima. The GOC final con-

figuration present a compliance J = 34.47, with a final volume of 32.01% of

V0.

The optimization performances are showed in Figure (4.4). From the graphs

in Figure (4.4), it is evident how the OC and MMA methods search imme-

diately for feasible solution (V ol/V0 < 0.34), while the GOC algorithm just

requires the solution feasibility at the end of the optimization process.
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Figure 4.2: Snapshots of optimization procedure for the steady double pipe example

in Figure (3.4) for L = 1m. From the left, configurations at iteration 2, 5, and final

result

Figure 4.3: Snapshots of flow field at the optimization procedure for the steady double

pipe example in Figure (3.4) for L = 1m. From the left, configurations at iteration 2,

5, and final result.
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Figure 4.4: Performance comparison of the optimizer schemes.

Effect of the initial configuration

Let us check now the effect of an initial configuration in this simple prob-

lem. The intuition suggests that an optimum could be found with the double

pipe configuration. Results (4.4) actually showed that the double pipe layout

provide a better compliance than the other minima found by OC and GOC

methods, but can be important to check whether the OC and GOC methods

converge to same solution by starting from a different initial condition. For

this reason we try the OC and GOC methods with an initial low porosity

layer between the two channels (see Figure (4.5), to see whether they keep

or remove the separation in the optimization process. With this initial settings

both the algorithms converge exactly to the double pipe configuration Fig-

ure(4.6), with a final compliance of J = 17.38 for the Optimality Criteria,

and J = 17.55 for the Generalized Optimality Criteria, confirming that this is

really the optimum configuration, independently on the used scheme.
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Figure 4.5: Initial material configuration.

Figure 4.6: Snapshots of optimization procedure for the steady double pipe example

in Figure (3.4) for initial condition of Figure(4.5). From the left, configurations at

iteration 2, 5, and final result.

The results of the second scenario (L = 1.5m) are reported in Figures (4.7)

and (4.8). In this case, the literature proposes a best layout formed by a merge

of the two entering channels (see Figure 4.1). Similar configurations are in

fact reached by the OC and GOC algorithms, while the MMA preserve the

two seperate channels in its final layout. The best result in terms of compli-

ance is obtained with the OC method, J = 48.92, with a slightly unfeasi-

ble configuration (43.50% of the initial volume V0). In contrast to the case

L = 1m, the MMA has here the worst layout configuration, J = 74.57, at a

volume of 34% of V0. Finally, GOC final configuration gives J = 54.00 and

a volume of 32.22% of V0. Performance results are showed in Figure (4.9).
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Figure 4.7: Snapshots of optimization procedure for the steady double pipe example

in Figure (3.4) for L = 1.5m. From the left, configurations at iteration 5 and final

result.

Figure 4.8: Snapshots of flow field at the optimization procedure for the steady double

pipe example in Figure (3.4) for L = 1.5m. From the left, configurations at iteration

5 and final result.
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Figure 4.9: Performance comparison of the optimizer schemes.
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The Unsteady flow optimization

The solution of the unsteady double pipe example of Figure (6.14) has been

proposed by [45] as shown in Figure (4.10).

Figure 4.10: Optimal layout, from [32].

The time-dependent flow field at the first iteration (free channel) is reported in

Figure (4.11). The optimization results for the three simulations are presented

in Figure(4.12). As in the steady double pipe example (3.4), the OC algorithm

converges in few iterations (9), but slightly exceeding the volume constraint

(34.86% of V0). The MMA result is instead identical to the reference one of

Figure(4.10), and perfectly satisfy the imposed constraint (V = 34% of V0).

Lastly, the performance plots of Figure (4.13), shows that the GOC scheme

could not reach convergence in the imposed 30 iterations, providing a final

unfeasible solution (V = 37%V0).

The best compliance is found by the OC algortihm (J = 0.40), followed by

MMA (J = 0.46) and GOC (J = 0.49).

The resulting flow path associated to the final MMA configuration is shown

in Figure (4.14).
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Figure 4.11: Snapshots of flow field the initial configuration for the unsteady double

pipe example in Figure (6.14).

Figure 4.12: Snapshots of optimization procedure for the unsteady double pipe ex-

ample in Figure (6.14). From the left, configurations at iteration 2, 5 and final result.
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Figure 4.13: Performance comparison of the optimizer schemes.

Figure 4.14: Snapshots of flow field at the final MMA configuration of Figure(4.12)

for the unsteady double pipe example in Figure (6.14).
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The 4 Terminal device

The solution of the unsteady double pipe example of Figure (3.6) has been

proposed by [16] as shown in Figure (4.15).

Figure 4.15: Optimal layout for the 4 terminal device [16].

The results of the optimization process are reported in Figures (4.16) and

(4.17). The solution of the OC method almost matches the reference config-

uration in FIgure (4.15), with a final compliance of J = 13.75 at the 41.28%

of V0, and a convergence in 7 iterations. However, it is important to remark

that all the three schemes are able to change the topology of the inital domain,

by filling a box of solid material at the center of the configuration. The MMA

method converges in 15 iterations to J = 2175 and a volume of 39.99% of

V0, while the GOC method gives J = 28.36 and V = 38%V0 in more than

40 iterations. The optimization progress for the three algorithm is showed in

Figure (4.18).
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Figure 4.16: Snapshots of optimization procedure for the 4 device example in Figure

(3.6). From the left, configurations at iteration 5 and final result.

Figure 4.17: Snapshots of flow field at the optimization procedure for the 4 device

example in Figure (3.6). From the left, configurations at iteration 5 and final result.
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Figure 4.18: Performance comparison of the optimizer schemes.

The Bend channel

The reference layouts for the two Reynolds numbers are shown in Figure

(4.19). The paper of Deng [16] actually study this configuration with an addi-

tional term on the objective functional, given by the pressure work at the inlet,

i.e.,

J =

∫ T

0

∫

Ω

Jdiss +

∫ T

0

∫

Γi

βpdΓi,

with Jdiss the dissipation power given by Equation (2.2.6), Γi the inlet bound-

ary, and β = 0.1. The final configurations of the present model may thus show

some discrepancies, but we do not expect substantial differences in the model

response with Re varying.

The resulting optimal layouts for the two scenarios are showed in Figures

(4.20) and (4.21).
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In the case Re = 1, the optimal configurations are all extremely similar, with

compliance and volume of 20.26 and 25.26%V0 for the OC method, 22.41 and

23.71%V0 for the GOC method, and 21.01 and 25%V0 for the MMA.

The case Re = 100 present some instabilities on the final configurations,

with a non clear solid/fluid interface. The results with the three algorithms

are again extremely similar, with compliance and volume of 3.45 × 106 and

25.08%V0 for the OC method, 1.24× 106 and 32.8%V0 for the GOC method,

and 3.12× 106 and 25%V0 for the MMA.

Figure 4.19: Optimal design at different Reynolds numbers [16], with an objective

Figure 4.20: Optimal layouts for the bend channel example in Figure (3.7) at Re = 1.

From the left, configurations at iteration 5 and final result.
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Figure 4.21: Optimal layouts for the bend channel example in Figure (3.7) at Re =
300.

Choice of the functional

It is worth to stress how all these solutions are functional-dependent. Each

choice of the functional has different effect on the evolution of the domain.

Let us consider for example the problem in (3.6), by introducing with a body

force fy = −10N , i.e., we consider the effect of gravity. The reference result

in the literature is obtained in [16] for the maximization of the work of the

body force, as shown in Figure (4.22). The result is clearly different with the

minimization of the dissipation power (Figure 4.23). In the latter case, the

gravity force slows down the fluid velocity and decrease the shear-wall stress,

forcing the outflow in the upper outlet rather the the bottom, as expected by

[16] Results are of J = 56.59 and V = 41.10%V0 for the OC method, J =

56.73 and V = 38.1%V0 for the GOC method, and J = 54.39 and V =
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40.00% for the MMA.

Figure 4.22: Optimal layout, from [45].

Figure 4.23: Optimal layouts for the 4 terminal device under gravity (4.22).

The gravity force is here used to slow the fluid motion and decrease the shear

stress on the walls, forcing the fluid to exit from the upper outlet rather then

the bottom one.
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4.1.2 3D validation

The Bend Channel

The solution of the three-dimensional bend channel example of Figure (3.8)

has been proposed by [43] as shown in Figure (4.24).

Figure 4.24: Optimal layout of the three-dimensional bend channel [43].

The results of the optimiziation are shown in Figure (4.25) for the scenario

Re = 1, and in Figure (4.26) for the scenario Re = 50. In the case Re = 1,

the final results read as: J = 87.15, V = 10.73%V0 for the OC method,

J = 68.84, V = 12.11%V0 for the GOC method, and J = 74.51, V = 9.99%

for the MMA.

On the other hand. results for the case Re = 50, are of J = 1.81 × 105,

V = 12.41%V0 for the OC method, J = 6.2 × 104, V = 21.68%V0 for the

GOC method, and J = 4.29× 105, V = 10.0% for the MMA.

The change of the Reynolds number produce an increment to the curvature of

the resulting channel, particularly visible for the results of the GOC method.
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Figure 4.25: Snapshots of optimization procedure for the three-dimensional bend

channel device example in Figure (3.8) at Re = 1. From the left, configurations

at iteration 2, 5, and final result.

Figure 4.26: Snapshots of optimization procedure for the 6 device example in Figure

(3.8) at Re = 50. From the left, configurations at iteration 2, 5, and final result.
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6 Terminal device

The solution of the 6 terminal device example of Figure (3.9) has been pro-

posed by [43] as shown in Figure (4.27). The optimization process is shown

in Figures (4.28) (4.29). The OC is the only method that was able to reach the

true best configuration, withJ = 3.21 × 104, at V = 10.44%V0. The MMA

algorithm stops instead at a local minimum that only includes an incipient

formation of such central hole, as proved by the streamlines plot in the final

configuration (see Figure (4.29), reaching a final state with J = 8.31 × 104

and V = 9.90%V0. Finally, the GOC method does not present at all the hole,

achieving the worst final compliance, J = 8.84×104 at a volume V = 7.85%

The final configurations for the entire geometry are shown in Figure (4.30),

while the performance graphs are in Figure (4.31).

Figure 4.27: Optimal layout of the 6 terminal device [43].
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Figure 4.28: Snapshots of optimization procedure for the 6 device example in Figure

(3.9). From the left, configurations at iteration 2, 5, and final result.

Figure 4.29: Snapshots of flow field at the optimization procedure for the 6 device

example in Figure (3.9). From the left, configurations at iteration 2, 5, and final result.
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Figure 4.30: Resulting optimal configurations for the 6 device example in Figure

(3.9).

Figure 4.31: Performance comparison of the optimizer schemes.

4.1.3 Some final considerations: Checkboard problem

The checkboard pattern is one of the main computational and theoretical is-

sues for a topology optimization algorithm. A checkerboard is defined as a
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periodic pattern of high and low values of pseudo-densities, γ, arranged in

a checkboards fashio. This behaviour is undesirable as it results from a nu-

merical instabilities. The checkerboards possess artificially low porosity and

prevent the fluid from entering specific regions of the domain, but does not

correspond to an optimal distribution of material.

For the developed algorithm this problematic has proven to be particularly

relevant when Re > 100, and some examples are shown in Figure (4.32).

This issue could be overcomed with a proper density filter that force a contin-

uous distribution of the values of γ inside the domain [44].

Figure 4.32: Examples of checkboard patterns in the developed examples.

4.1.4 Optimizer schemes comparison

Apart from the the double pipe and the 6-terminal device problems, all the

scehmes (OC, GOC, and MMA) converge to topology configurations similar

to the optimal layouts reported in the literature.

However, some important differences must be stressed. Among the three, the

Optimality Criteria has proved to be the more solid and efficient (4 best lay-

outs out of 7 for the 2D scenario, and 2 out of 3 for the 3D), with final config-

urations very close to the guessed optimum solution. Further, the convergence

is very fast, reaching the optimum in very few iterations (approximately less
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than 10 iterations in both the 2D and the 3D scenarios).

The Generalized Optimality Criteria showed a very slow domain update, mir-

roring in a slow convergence or breaks in local minimum, when a good initial

solution is not known.

Finally, the Method of Moving Asymptotes presents a rather fast convergence

velocity, approximately 15/20 iterations for both the 2D and 3D scenarios,

achieving satisfactory optimal solutions (best layouts out of 7 for the 2D sce-

nario, and 2 out of 3 for the 3D). On the other hand, MMA solutions seem to

be more dependent on the initial configuration than the OC, requiring a more

accurate parameter calibration for each study.

Each of these schemes should be validated over different sets of optimization

parameters and initial configurations, comparing all the local best layouts to

find the true optimal configuration. Nonetheless, the interesting result is that,

starting from a completely fluid domain, the Optimality Criteria algorithm

was able to reach a final configuration extremely close to the optimal one,

always providing at least a good sense of what should be the optimal layout

of the considered problem.

4.2 TO for fluid flow and scalar transport prob-

lems

4.2.1 Testing: Bend Channel

Case ξ = 0

The case ξ = 0 exactly corresponds to the minimization of the power dissi-

pation. The optimization process for the three optimization schemes is shown
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in Figure (4.33). After 50 iterations all the schemes reach a similar configu-

ration, and the best result is given by the MMA algorithm (J = 6.77), that

reached convergence in 10 iterations, with a volume fraction of 29.93% of V0.

The GOC algorithm could not reach convergence in the 50 iterations,exiting

the simulation at J = 1.27 with an unfeasible configuration (59.94% of the

initial volume). Lastly, the GOC algorithm was able to converge in 9 iterations

to a final configuration of 40.07% of the initial volume and a compliance of

J = 7.25.

The pollute concentration was not included in the functional in this scenario,

and the final values of the pollute concentration at the outlet (by L2 norm on

the outlet) are 0.43 for the OC, 0.30 for the GOC, and 0.47 for the MMA.

Performance results are shown in figure (4.34).

Figure 4.34: Snapshots of optimization procedure and effects on the flow field and

pollute distribution for the bend channel example in Figure (3.10) for ξ = 0. Left

column, Iteration 2, right column, final iteration.
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Figure 4.33: Snapshots of optimization procedure for the bend channel example in

Figure (3.10). Left column, Iteration 2, right column, final iteration for ξ = 0
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Case ξ = 1

The case ξ = 1 corresponds to the case β1 = β2, equalizing the weights of the

two components of the objective functional. The optimization process for the

three optimization schemes is shown in Figure (4.35). After 50 iterations, the

best compliance is now given by the OC algorithm (J = 8.10), that reached

convergence in 10 iterations, with a volume fraction of 40.29% of the initial

volume. The GOC algorithm does not reach the convergence in 50 iterations,

achieving J = 1.40, but showing an unfeasible configuration (57.76% of the

initial volume). Lastly, the OC algorithm was able to converge in 9 iterations

to a final configuration of 31.01% of the initial volume and a compliance of

J = 19.88.

The pollute concentration was now included in the functional, and its final

concentration at the outlet (by L2 norm on the outlet) are of 0.43 for the OC,

0.31 for the GOC, and 0.46 for the MMA. Performance results are shown

in figure (4.36). From the results, the optimization process for all the three

schemes, OC, GOC, and MMA, return almost the same results of the sce-

nario with ξ = 0, proving that the energy dissipation is also in this case the

most important driver of the optimization process, and only higher xi should

influence the model solution.

140



Chapter 4 4.2. TO for fluid flow and scalar transport problems

Figure 4.35: Snapshots of optimization procedure for the bend channel example in

Figure (3.10). Left column, Iteration 2, right column, final iteration for ξ = 1.
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Figure 4.36: Snapshots of optimization procedure and effects on the flow field and

pollute distribution for the bend channel example in Figure (3.10) for ξ = 1. Left

column, Iteration 2, right column, final iteration.
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Case ξ = 10

The case ξ = 10 weights the minimization of the pollute concentration at

the outlet 10 times more than the minimization of the energy dissipation. The

optimization process for the three optimization schemes is shown in Figure

(4.37). The result is in this scenario quite different with respect to the cases

with ξ = 0 and ξ = 1. After 50 iterations, the OC and GOC algorithms con-

tinue to converge to a single bend channel layout, while the MMA scheme

moves to a multi-channel configuration, splitting the flow at the inlet in two

narrow conducts, whose path follows the walls. Moreover an incipient for-

mation of a channel in the middle of the domain is visible (see Figure 4.37).

All the three solutions present some uncertainties from a physical perspective.

The OC final configuration is a bend channel slightly larger and with different

curvatures than the one for the case ξ = 1 or ξ = 0, and provides the best

compliance result, with J = 2.33 and a final volume of 43.16% of V0. Figure

(4.37) shows some "dust" inside of the OC resulting channel, which is proba-

bly used by the algorithm to slow the fluid and increase the pollute dissipation

without an energy-consuming channel division. The L2 norm of the concen-

tration at the outlet is now of 0.41. This configuration is clearly non physical

and only given by the numerical approximation, and should be excluded if a

proper density filter was not applied.

The GOC algorithm finds instead a single, but very narrow channel, reaching

now a very little fluid domain of 12.26% of the initial volume, lower in fact

than the one imposed by the volume constraint. This configuration is likely not

the best either for the pollution spreading and the energy conservation, since

it forces the fluid to very high velocity close to the walls, and does not slow

the fluid by longer paths of the channel or by a division into sub-channels,

as one would expect intuitively. From the velocity magnitude analysis in Fig-

ure(4.37), it is clear that this layout allows a portion of the flow to move with
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very low velocities even inside the regions with design variable γ = 0, in

order to slow the fluid motion and decay more pollute by the sink rate. This

configuration is again the effect of a numerical approximation, in this case

the owing to the low value of αmax, which does not prevent the fluid to pass

through the computationally solid material. The final value for the objective

functional with the GOC algorithm is J = 57.09, with the L2 concentration

norm at the outlet of 0.25.

The MMA scheme provides in this case the worst configuration in terms of

compliance, J = 35.52, with a volume of 21.55% of the initial one. The con-

figuration shows a division of the initial flow into three channels, two attached

to the walls, and a central one, non-complete, which stops before the center of

the domain, and restarts right before the outlet. This layout is the extreme case

of the solid permeability problem described for the GOC result, and is due to

the low value of the damping parameter, αmax. The pollute concentration at

the outlet is in fact the minimal among the three schemes, with an L2 outlet

norm of 0.17.

Performance results are shown in Figure (4.38).The optimization process for

all the three schemes (OC, GOC, and MMA), now takes into account the effect

of the pollute decayment, providing a decrease of the outlet concentration with

respect to the previous scenarios.
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Figure 4.37: Snapshots of optimization procedure and effects on the flow field and

pollute distribution for the bend channel example in Figure (3.10) for ξ = 10. Left

column, Iteration 2, right column, final iteration.

145



4.2. TO for fluid flow and scalar transport problems Chapter 4

Figure 4.38: Performance comparison of the optimizer schemes for the bend channel

example in Figure (3.10) for ξ = 10.
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Case ξ = 100

The case ξ = 100 weights the minimization of the pollute concentration at

the outlet 100 times more than the minimization of the energy dissipation.

The optimization process for the three optimization schemes is shown in Fig-

ure (4.39). The results of the optimization show substantially the same fea-

tures found in the case with ξ = 10. Each optimization scheme handles the

weighted functional with different evolution processes.

The OC method still propose a single channel configuration, with a slightly

different curvature than in the scenario with ξ = 10. The OC final layout is

the best in terms of compliance, J = 0.78, with the 41.16% of the initial do-

main, but continue to preserve "density dust" in the formed channel, to slow

the fluid.

The GOC scheme returns a final layout almost identical to the one found for

ξ = 10 (see Figure4.37), with a single, narrow channel, and a very slow veloc-

ity in the non-perfecetly impermeable solid material. GOC final layout finds

J = 16.62 with only 11.01% of the initial domain occupied by fluid.

Lastly, the MMA scheme reaches in this configuration the exact division of

the entering flow into two subchannels attached to the lateral walls, with a

final compliance and volume of J = 4.01 and 17.96%V0, respectively. The

increment of the ξ ratio produced the elimination of the nonphysical incom-

plete central channel (Figure4.37), reaching a first final configuration that,

compared with Figure (4.33), is substantially different from the minimization

of the energy dissipation.

Performance results are shown in figure (4.40). The resulting L2 concentration

norm at the outlet is now of 0.4, 0.23, and 0.15 for the OC, GOC, and MMA

algorithms, respectively, i.e., values in line with the solution with ξ = 10.
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Figure 4.39: Snapshots of optimization procedure for the bend channel example in

Figure (3.10). Left column, Iteration 2, right column, final iteration.
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Figure 4.40: Performance comparison of the optimizer schemes for the bend channel

example in Figure (3.10).
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Case ξ = ∞ (β1 = 0)

The case ξ = ∞ considers only of the pollute remuval in the objective func-

tional, hence the L2 concentration norm at the outlet will exactly coincide

with the functional value. The optimization process for the three optimization

schemes is shown in Figure (4.41). Some important and interesting differ-

ences can be noted with respect to the previous scenarios.

The OC method moves from the single channel configuration shown in cases

ξ = 0 → 100 to a nonphysical solution that exploit the slightly permeability

of the fictitious solid material. The proposed solution can be described as an

incomplete bend channel, with a small layer of porous material at the center,

which divide the two sides of the channel, and causes a slow down of the

fluid velocity and a reduction of the pollute mass. The final configuration for

the OC algorithm provides the worst compliance among the three schemes

(J = 0.28, and a volume of 41.05% of the initial domain).

The GOC and the MMA algorithms reaches almost the same configuration,

practically equivalent to the one found by the MMA scheme for ξ = 100 (see

Figure 4.39), showing the formation of two channels, placed along the domain

boundaries. This path is the longest connection route between the inlet and the

outlet, which does not require the complete inversion of the flow direction of

motion. It is important to note that with this almost permeable material, this

configuration is not possible, since the fluid would simply move through the

computationally solid material. The next paragraph will show what may hap-

pen with a larger value of the damping parameter, αmax.

While the MMA configuration for ξ = 100, (Figure 4.39) still showes some

fluid motion inside the solid material, the channels obtained here, for ξ = ∞,

i.e. β1 = 0, seem to be more sharp and defined, (Figure 4.41). Final layouts

for MMA and GOC schemes give J = 0.14 and J = 0.12, for final volumes

of 19.78% and 24.41% of the initial domain, respectively.
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Performance results are shown in figure (4.42).

Figure 4.42: Performance comparison of the optimizer schemes for the bend channel

example in Figure (3.10).

4.2.2 Instabilities and checkboard effect

The tests over the bend channel problem have proved that the developed

Topology Optimization algorithm can find some heuristically good solutions,

according to the prescribed computational physics, even for the flow-driven

scalar transport problem of reductive pollute. In this fraim, the main problem

is given by the non completely impermeable porous material at the solid re-

gion, which allows the fluid to move into unrealistic regions of the domain.

The main issue with the increment of the damping parameter, αmax, is given

by the formation of checkboard patterns in the solution.

While the fluid-flow topology optimization problem has been proved to be

well-posed at least for Stokes flow (Borrvall and Petersson [14]), even without
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Figure 4.41: Snapshots of optimization procedure for the bend channel example in

Figure (3.10). Left column, Iteration 2, right column, final iteration.
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the use of a regularization technique (density filter), the optimization problem

described at (3.5.3) does not ensure an optimal continuous solution of the ma-

terial distribution. An example of the instabilities that may arise is given by

considering the bend channel example (3.10) with ξ = 0, setting αmax = 1e6.

Snapshot of the optimization are shown in Figure 4.43.

The OC algorithm seems to find a stable solution even with this high value for

αmax, but it does not divide the channel, nor curve it to increase the residence

time and pollute reduction. The final L2 concentration outlet norm of 0.40.

On the other hand, both the GOC and MMA schemes converge to a check-

board pattern, clearly dependent on the adopted mesh. Such configuration is

extremely more efficient in the pollute distribution, (L2 norm of 0.16 for both).

These solutions are anyway non physical and impossible to reproduce, thus

future developments should then definitely introduce a density filter in the

optimization process.

4.2.3 Optimization schemes: final considerations

Analyzing the results for the bend channel scenario, it is possible to deduce

some features of the implemented Topology Optimization algorithm. Firstly,

the tool is able to recognize the presence of an additional concentration-

dependent term in the functional, and weight its effect on the optimization

process. Secondly, the Generalized Optimality Criteria and the Method of

Moving Asymptotes seem to have similar optimal configurations at the incre-

ment of the ratio between pollute decayment and minimization of the dissipa-

tion energy, while the Optimality Criteria converge quickly to local minimum,

which seems to be almost constant with ξ.

With these considerations the Optimality Criteria algorithm poor to analyze
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Figure 4.43: Snapshots of optimization procedure for the bend channel example in

Figure (3.10) for ξ = 0 and α = 1e6. Left column, Iteration 2, right column, final

iteration.
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the transport scenarios, while the MMA shows inaltered convergence proper-

ties with ξ.
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Conclusions and future developments

A topology optimization algorithm is developed to solve the layout optimiza-

tion problem for fluid flow and flow-driven scalar transport problems, based

on a density method approach for the optimization, and a Finite Element

method for the solving of the governing equations.

After an analysis of the current state of the art, a new derivation for the adjoint

system of the Navier-Stokes equations is proposed, with the goal of adopting

a simple approach against the current hard and poorly treated formulations

in the literature. Further, we present a generalizationto couple the advection-

diffusion-reaction equations with the Nvier-Stokes equations.

The complete code was implemented in the C++ language through an object

oriented programming routine, applying the OpenMP directives for a shared

memory parallelization of the heaviest computations.

With the goal of efficiency, the used technique for the solution of the linear

systems, the GMRES algorithm, was accelerated by the use of an almost new

preconditioner, based on the popular SIMPLE solver widely used in commer-

cial softwares.

Lastly, the algorithm is validated by comparing well-known solutions found

in the literature for fluid-flow problems, and with an ad-hoc example for the

flow-driven transport problem. Among the three methods proposed, i.e. OC,

GOC, and MMA, starting from a configuration completely filled by the fluid
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domain, the Optimality Criteria is the most stable optimization method in

purely fluid flow problems, but it was unable to reach the best configuration in

the transport scenario. The Optimality Criteria is mostly applied to topology

optimization in structural mechanics, and only works with a single constraint

on the optimization, but is is able to converge in very few iterations, thus

requiring extremely less computational time than the other methods. On the

other hand, the GOC algorithm should extend the Optimality Criteria to more

general settings, but provides very slow updates on the optimization domain,

requiring much more optimization iterations when a good starting solution is

not known.

Lastly, the Method of Moving Asymptotes is the most popular algorithm for

fluid application, but the convergence to the best configuration is more depen-

dent on the initial condition and parameters calibration. Nonotheless, com-

paring fluid-flow and transport scenarios, this method resulted the technique

valid for most of applications, with good converging properties.

An important note is that checkboard patterns may arise at moderate or high

Reynolds numbers, Re > 100, in particular for the flow-driven transport prob-

lem, invalidating the optimization process. The same problem has been found

for the flow-driven scalar transport problem, making impossible the analysis

of the problem with a true impermeable material. The algorithm would thus

require the additional implementation of a density filter, to force a continuous

porosity solution inside the domain.

A second important generalization of the implemented algorithm would then

be the consideration of a material-dependent diffusion coefficient for the trans-

port problem, to study more complex problem with a realistic non identical

behaviour of species diffusion across fluid and solid regions.

Finally, another interesting improvement may come with the testing over dif-

ferent interpolation rule for the material porosity over the optimization param-
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eter, γ, thus changing the "easiness" of movement from solid to fluid domain,

and viceversa, to test the effect on the optimization process.
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Appendices

6.1 Appendix A: Boundary conditions

The aim of this project is to analyze the best shape of the solid material inside

the domain to minimize (or maximize) the chosen functional, on different ex-

ternal conditions.

It is well known that for a boundary value problem, there are three possible

types of boundary conditions, Dirichlet, Neumann and Robin, which briefly

speaking, respectively, the value, the flux or a mixture of the two for the un-

knowns of the problem. For the Navier-Stokes problem, this corresponds to

set the velocity value, its flux, or a combination of the two at the contour. The

contour can be subdivided in parts with different boundary conditions, in val-

ues or type, with the only constraint to have just one condition for each node

at the boundary, in order to avoid an overconstrained problem.

u(r) = gD(r), r ∈ ΓD, (Dirichlet BCs)

[pI− µ∇u(r)] · n = qN(r) r ∈ ΓN (Neumann BCs)

βu+ [pI− µ∇u(r)] · n = qC(r) r ∈ ΣC (Robin BCs)
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For brevity, we will here report the features of just the Dirichlet and Neumann

types, since the Robin condition is far less employed in simple problems like

the ones presented in this dissertation. An important point to stress is that,

since the pressure never appears in the governing equations outside from a

derivative, it is necessary to impose at least one Neumann B.C., otherwise it

would only be defined up to a constant and would generate oscillations in the

solution. Another possibility to avoid oscillations (briefly discussed above),

without this Neumann condition is to impose a further equation setting the

mean pressure to a chosen value, like zero,

∫

∂Ω

pdr = 0. (6.1.1)

For the same reason, it is compulsory to impose at least one Dirichlet B.C. for

the velocity at least in the Stokes problem.

The Dirichlet B.C.

The Dirichlet boundary conditions aim to fix the values of the unknowns at the

chosen boundary ΓD ⊂ ∂Ω. In the discretized formulation, this corresponds

to fix the nodal values of the velocity

ui = gi, (6.1.2)

where gi is the value that has to be imposed at node i of the Dirichlet bound-

ary (using above notations, gi = gD(xi), with xi position of node i). Other

possibilities, like fixing just one of the velocity components are just trivial

extensions of (6.1.2). In contrast, the pressure value is related to the flux of

the velocity, hence the case of fixed pressure in the boundary will be treated
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with the Neumann boundary conditions.

The Dirichlet conditions is usually called "essential", since to enforce them,

equation i of the Galerkin formulation, with i index of a Dirichlet node, has to

be completely substituted with something like (6.1.2). More specifically such

constraints have to be imposed in the strong formulation, changing the trial

space of the solution candidates.

From a computational point of view, one simply substitutes the FEM equa-

tions at the Dirichlet nodes with the prescribed values, usually with a "lifting

function" or a "penalty method" approach ([19]).

Neumann B.C.

The Neumann bounday conditions impose the velocity flux at the boundary.

This condition is usually called "Natural" because it appears naturally in the

FEM formulation. As shown in (2.4.1), to impose the Neumann conditions is

sufficient to set the value of [p
ρ
I− ν∇u] · n = qN in ΓN .

General external conditions

In a general flow problem, there are at least three typical boundary conditions

employed in the majority of the cases ([46])

1. u|Γin
= uin, Inflow condition;

2. u|Γrigid
= 0, Solid wall/"no slip" condition;

3. ([pI+ µ∇u] · n)|Γout
= (pn+ µ∂nu)|Γout

= 0, Outflow condition,

where, Γin,Γsolid and Γout are non intersecting portions of ∂Ω. Usually the in-

flow and solid wall condition is specified with a Dirichlet type BC prescribing

the velocity of the inflow or setting all the velocity components to zero. The

treatment of the outflow boundary condition is instead a little more tricky.
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Numerical simulation of flow problems usually requires the truncation of a

conceptionally unbounded flow region to a bounded computational domain.

The conditions adopted, aim at numerically replacing the behaviour of the

field left out, which are exactly the inflow and outflow condition.

The outlet condition stated above, (pn+µ∂nu)|Γout
= 0 has proven to be well

suited for laminar parallel flows, and since it is naturally set without prescrib-

ing any boundary conditions, it is called the "do nothing" approach or "free

outflow" condition [47].

Figure 6.1: Effect of the "do nothing" outflow condition shown by streamline plots

for flow around an inclined ellipse at Re = 500 after 100 time steps. From [47]

This approach usually yields very satisfactory results (see Figure 6.1). How-

ever, it is important to analyze what lies underneath its formulation. With

some trivial computations, calling S ⊂ ∂Ω the portion of the boundary where

one wants to apply such condition, we have

pn+ µ∂nu = 0 =⇒

∫

S

pndσ = µ

∫

S

∂nudσ = −ν

∫

S

∂tudσ = 0, (6.1.3)

where we have implicitely assumed the incompressibility of the fluid, i.e.,

∇ · u = 0 =⇒ ∂nu+ ∂tu = 0, (6.1.4)
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with t tangential direction. It is to note that u = 0 on S by applying the out-

flow boundary apart from the inflow condition, and, thus, near to the solid wall

boundary, where the velocity is identically zero due to the "no slip" condition.

Therefore, the mean pressure over S must be zero:

∫

S

pdσ = 0. (6.1.5)

This means that, the "do nothing" outflow is equivalent to apply a mean zero

pressure on S.

Some problem arise when multiple outflow regions have to be imposed. The

example in Figure (6.2) shows the streamlines for a Poiseuille flow with same

inflow condition and same variational formulation, but domains with one leg

of the pipe longer than the other in the second formulation. It is clear that, in

the second case, the flux across the upper boundary increases.

To overcome this problem, a solution consist to apply different mean pressures

to each outflow boundary, given that

pn+ µ∂nu = qN =⇒

∫

S

pn+ µ∂nudσ =

∫

S

pndσ −

∫

S

µ∂tudσ =

∫

S

pndσ

p̄ =
1

|S|

∫

S

pndσ =⇒

∫

S

pn+ µ∂nudσ = |S|p̄.

(6.1.6)

More insights on this formulation and some other outflow conditions approach

are given in [46] or [47].

Figure 6.2: Effect of the "do nothing" outflow condition shown by streamline plots

for flow through a bifurcating channel at Re = 20. From [46]
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An analysis of the pressure boundary condition for fluid flow problems [48]

showed that, when a Neumann condition is imposed to a non-straight bound-

ary that is connected only to wall boundaries, we have

∫

ΓN

(
1

ρ
pI − ν∂nu) · ndσ ≃ |ΓN |p̄+ o(

C

rd
), (6.1.7)

with C constant depending on the mean outgoing flux and r the mean curva-

ture radius of the boundary.

This condition is hence exact for straight surfaces r → ∞. In that case mean

pressure condition can be applied trivially as Neumann BCs.

The Symmetry BC

Finally, symmetry BCs aim at prescribing standard symmetry conditions, i.e.,

u · n = 0,

∇u∥ = 0,

which defines three conditions for the three dof of each node at the boundary

(normal component and gradient of parallel component in normal direction

set to zero). The first one can be imposed simply via lifting functions as the

Dirichlet BCs, while for the other two conditions is sufficient to notice that

∇u∥ = ∇(u− un) = ∇u−∇[(u · n)n] = 0.

Accordingly, the corresponding term in variational formulation (2.4.4) re-

duces to

∫

ΣS

(
1

ρ
pI − ν∇u)n · vdσ =

∫

ΣS

[(
1

ρ
pI − ν(u · n)n]n · vdσ.

This term has thus been discretized and added to the above formulation in
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case of Symmetry BCs. Noting that, in case of symmetry face aligned with

one of the Cartesian axis, symmetry conditions are exactly coincident to the

imposition of velocity normal component to zero and free outlet condition

(Neumann BC with g = 0 in ΣS) for the other components.

6.2 Appendix B: the elements choice

The well-posedness for the FEM linear system of the Navier-Stokes problem

(2.4.1) is guaranteed if the discrete inf-sup condition (also known as Babuska-

Brezzi condition [49]) holds. In the practice, this condition prescribes that, for

p ̸= 0, there must be a v such that

pTBv ≥ β||v||||p||, (6.2.1)

with β > 0. Condition (6.2.1) guarantees that the system matrix

K =







A BT

B 0






(6.2.2)

is invertible. This immediately fails, if a nonzero pressure p for which Bp =

0 exists. In the discrete cases this is equivalent to the maximum rank to B

(full column rank). In particular, by (6.2.1), every possible nonzero pressure

p must not be orthogonal to every Bv. Thus, the space of all Bv′s must have

at least the dimension of the pressure space [50]. In our case, B represents the

divergence operator, and this is the reason why often the velocity elements

are defined by polynomials with one degree higher than those used for the

pressure elements. Unfortunately, dimension of spaces are not sufficient to

prove the discrete inf-sup condition (6.2.1), and it is necessary to check each
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particular couple of spaces (Vh,Qh). The general idea is then that the two

spaces cannot be chosen independently and that, loosely speaking, we need to

have enough degrees of freedom in Vh with respect to Qh.

Defining P0, P1, P2 as constant, linear and quadratic polynomials on triangles,

respectively, and Q0, Q1, Q2 for constant, bilinear, and biquadratic elements

on quadrilaterals, we have the following results [20]:

1. Velocities in P1, pressures in P0: failure

2. Velocities in P1, pressures in P1: failure

3. Velocities in P2, pressures in P1: well posed

4. Velocities in Q1, pressures in Q1: failure

5. Velocities in Q2, pressures in Q1: well posed.

Therefore, the simplest choice for a triangular discretization would be the

P2/P1 approach. We have, however, other possibilities to enrich the velocity

space preserving the simplicity of the use of linear shape functions (see Figure

6.3). Above all, the P1 - iso - P2/P1 simply enriches the velocity space by

uniform refinement the triangulation (connects the midpoints of each triangle)

[21].

Figure 6.3: Some inf-sup stable and unstable spaces.

168



Chapter 6 6.3. Appendix C: Solver efficiency

6.3 Appendix C: Solver efficiency

The efficiency of the implemented code has been tested against PARDISO

commercial software (academic library [38]). The PARDISO library provides

functions for both direct or iterative solvers. Clearly these methods are created

to be fast with every pattern of the entering system matrix, and not specifically

for the block matrix of the Naviers Stokes problem.

The behavior of the different implemented solvers has been tested on sev-

eral problems and three different numbers of degrees of freedom, with an exit

rule of residual norm tolerance lower thatn 1e−5 for all the iterative schemes.

2D COMPARISON: PARDISO VS SIMPLE vs SCHUR vs JACOBI VS

GMRES

Figure 6.4: Mean Wall time Vs dof for the various preconditioners, and PARDISO

direct solver.

3D COMPARISON: SIMPLE vs PARDISO vs DIRECT PARDISO
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Figure 6.5: Mean Wall time Vs dof for the various preconditioners, and PARDISO

direct solver.

About the 3D comparison with PARDISO some important remarks can be

done. First of all, the direct solver of PARDISO is faster than any other

scheme, when applied to 2D problems with less than 1e5 degrees of freedom.

However, its performance worsens as we test the algorithm to 3D problems

with a large number of dof. Therefore, the SIMPLE precondiner, which is

the best among the implemented preconditioners, has been tested against the

iterative version of PARDISO, which adopts a SQMR algorithm (Simplified

Quasi-Minimal-Residual). From the time analysis of the tested problems, the

SIMPLE-preconditioned GMRES, performs better than PARDISO (max dof

test = 7.5e5). An explanation can be that the PARDISO solver is optimized

for the solution of any sparse matrix linear system. Vice versa, the SIMPLE

procedure is thought specifically to be applied to linear system deriving from

the discretization of the Stokes or Navier-Stokes problems.

SMP scaling

HSome results about the scaling of the SIMPLE-preconditioning scheme by

varying dof with various number of threads are reported in Figures (6.6) and

170



Chapter 6 6.3. Appendix C: Solver efficiency

(6.7).

(a) Speed-up. (b) Total cost.

Figure 6.6: Result at thread varying for the SMP implementation of the SIMPLE-

based GMRES.

Figure 6.7: Time comparison over 3 different degrees of freedom for different number

of threads.
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6.4 Appendix D: Validation

6.4.1 Advection Diffusion Reaction

Let assume a constant diffusion coefficient D = 1.0m2/s and k = 0.51/s.

The developed FEM model had been tested against hand-made theoretical so-

lutions. Given formulation (2.4.7), it is possible to choose any possible veloc-

ity field u and solution c(x, t). Further, we can compute from the governing

equation an appropriate set of boundary conditions and source/sink term r,

which could produce such solution c(x, t). Explicit calculus is showed only

for the first example.

Validation has been developed for several different problems and cases. Here,

results of two critical scenarios are showed, namely, unsteady two-dimensional

and steady three-dimensional. Each problem has been tested with the relative

errors adopting three different mesh (generated by COMSOL [42]), namely

EXTRA COARSE, NORMAL, and EXTRA FINE. The elemental length (el-

ement maximum edge) are, respectively, maximum 0.4, 0.134, and 0.04 times

the characteristic length of the problem in 2 dimensional problems, and 0.38,

0.2, and 0.07 times the characteristic length of the problem in 3 dimensional

problems.

Considering ϵ = c− ch, with ch the approximate solution, absolute errors are

evaluated using an L2(Ω) norm for steady scenarios and an L2([0, T ], L2(Ω))

norm for the unsteady ones, i.e.,

||ϵ||L2(Ω) =

(
∫

Ω

(c− ch)
2dx

)
1
2

||ϵ||L2([0,T ],L2(Ω)) =

(
∫ T

0

∫

Ω

(c− ch)
2dx

)

1
2

,
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while the relative errors are simply

||ϵ||RL2(Ω) =
||(c− ch)||L2(Ω)

||c||L2(Ω)

||ϵ||RL2([0,T ],L2(Ω)) =
||(c− ch)||L2([0,T ],L2(Ω))

||c||L2([0,T ],L2(Ω))

.

Ex:1 Unsteady 2D

Let consider solution

c(x, t) =
(x2 + y2)

2
t,

subject to the velocity field u = [y,−x], on Ω = {(x, y) ∈ R2, x ∈ [0, 2], y ∈

[0, 1]}. By simple computations

∂tc =
x2 + y2

2
,

u · ∇c = yxt− xyt = 0

D∆c = Dt+Dt = 2Dt

r = ∂tc+ u · ∇c−D∆c+ kc =⇒ r =
x2 + y2

2
(1 + k)− 2Dt.

Results in terms of error convergence and graphical visualization are shown

in Figure(6.8).
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(a) L2 relative error (in space and time) convergence result

against mesh size (MATLAB).

(b) VISIT representation of solution at time 2.4s. Color table from red c = 5 to blue c = 0.

Figure 6.8: Validation with COMSOL solver for the unsteady 2D example.

Ex:2 Steady 3D

Let consider now solution c(x, t) = e−(x+y)sin(z), subject to the velocity

field u = [1,−1, 1] on a parallelepiped of dimension 1 × 1 × 2 meters. With

the same operations of previous case, the source term results in

r(x) = e−(x+y) [cos(z) + (k −D)sin(z)] .

Error convergence graph and graphical results are shown in Figure(6.9).
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(a) VISIT representation of solution at time 2.4s. Color table from red c = 5 to blue c = 0.

(b) L2 relative error (in space and time) convergence result against mesh size (MATLAB).

Figure 6.9: Validation with COMSOL solver for the steady 3D example.

6.4.2 Navier-Stokes

Navier-Stokes solver has been validated both against theoretical solutions and

COMSOL numerical software.

Validation through theoretical solutions has been developed as for the advection-

diffusion-reaction problem, by mesh refinements and analysis of relative error
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scaling.

Since the solution of a commercial software suffers from approximation, it

is not possible to operate in the same way for scenarios without theoretical

solution. For this reason, the validation through COMSOL numerical solver

emerges via an empirical approach. Both the newly implemented solver and

the commercial one should provide a vanishing error as the discretization is

improved, and therefore we expect the same for the difference between the

two approximate solutions.

In these cases, the test thus simply check that

i) solutions difference (in norm) stay bounded and decreases as the mesh is

refined, and

ii) graphical results present the same characteristics (in terms of streamlines,

pressure distribution, etc.).

The code has been validated via comparison against Poiseuille and Womers-

ley theoretical solutions and several COMSOL analysis.

Poiseuille flow

Consider a Poiseuille flow within a tube of radius R = 0.5m and length L = 4

meters. Imposing a pressure difference ∆P = 4 Pa, the theoretical solution

takes the form [51]

u(x) =













0

0

∆P
L
4µ(R2 − r2)













, (6.4.1)

with r = (x2 + y2)
1
2 . The distance from the cylinder axis, with BCs

• p = 2 Pa, z = 0 m, bottom face;

• free outlet p = 0 Pa (Top face);
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• Wall no-slip condition on lateral surface;

Results are obtained for ρ = 0.5 Kg/m3 and µ = 0.05 Pa·s as showed in

Figure (6.11).

Figure 6.10: L2 error for pressure (left panel) and velocity (right panel).

Figure 6.11: Pressure and Velocity results.
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Womersley flow

For a cylinder subject to a sinusoidal oscillating pressure ∆P (t) = ∆P0(1 +

γpsin(wt)), the theoretical Womersley solution is [52]

u(x) =













0

0

w(r, t)













, (6.4.2)

with

w(r, t) =
∆P0

4µL
(R2 − r2) + Re

[

ŵ(r)e−iwt
]

ŵ(r) =
∆P0γp
ρLw

[

J0(r
√

iw/ν)

J0(R
√

iw/ν)
− 1

]

.

Here, γp and w are the amplitude and the frequency of the pressure difference

oscillations, respectively. J0 is a first-order Bessel function [53]. The solver

proved good convergence properties even in this scenario, as showed in Fig-

ures (6.12) and (6.13).

Figure 6.12: PARAVIEW representation of approximate Womersley solution at

Wo = 12.5, time = 1.1s.
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Figure 6.13: L2 error for pressure (left panel) and velocity (right panel).

The 2D double pipe flow

The geometry for the first non theoretically solved case studied is described

in Figure 6.14. The problem presents a simple 1 × 1 (meters) box, with two

inlet channels (on the left) and two outlet channels (on the right).

Figure 6.14: "Double Pipe" geometry in mm by INVENTOR [54]

.

The imposed velocity as inlet is a simple parabolic profile normalized to unity

for both the entering channels. Outlets are then treated with a "free outlet"

condition (6.1). All other boundaries are considered as no slip wall bound-
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aries (u = 0). For the time dependent analysis a zero-initial condition was set

in the whole domain, for a total time study of 8.0s.

This configuration has been tested with three different sets of physical param-

eters, to check behaviours at different Reynolds numbers, and three different

mesh sizes for the convergence analysis. Comparison between our and COM-

SOL solution are presented in Figures (6.15), (6.16), and (6.17).

Figure 6.15: Relative difference between COMSOL and developed FEM solutions in

|| · ||L2([0,T ],L2(Ω)) norm at different Re and meshes.

Figure 6.16: Streamline comparison between COMSOL (above) and implemented

FEM solution (below) at Re = 100. Considered instants of time t=0.2s, t=0.5s, t= 8.0s

from left to right.
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Figure 6.17: Streamline comparison between COMSOL (above) and implemented

FEM solution (below) at Re = 1000. Considered instants of time t=0.5s, t=1.5s, t=

8.0s from left to right.

The 3D flow

For 3D comparison has been considered a cavity with one inlet and two outlets

(see Figure 6.18).

Figure 6.18: Cavity geometry. In orange inlet boundary (circle of radius 0.1m cen-

tered in (0, 0.5, 0.5)) and in blue outlet boundaries (circles of radius 0.05m, centered

in (0.75, 0.5, 0)) and (0.75, 0.5, 1.0).

The imposed velocity at the inlet is parabolic with the maximum velocity

equal to 1 m/s, while the outlets are fixed by a "free outlet" condition. All

other boundaries are considered as no slip wall boundaries. The time depen-

dent analysis starts from a zero initial condition and evolves up to a final time
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T = 8.0s.

As for the previous configuration, this settings have been tested with three

different combinations of physical parameters and three different mesh sizes.

Comparison between our and COMSOL solution are presented in Figures

(6.19), (6.20), and (6.21).

Figure 6.19: Relative difference between COMSOL and developed FEM solutions in

|| · ||L2([0,T ],L2(Ω)) norm at different Re and meshes.

Figure 6.20: Streamline comparison between COMSOL (above) and implemented

FEM solution (below) at Re = 100 for t = 8s. Plane xy (left panel), yz (middle panel),

and zx (right panel).
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Figure 6.21: Streamline comparison between COMSOL (above) and implemented

FEM solution (below) at Re = 1000 for t = 8s. Plane xy (left panel), yz (middle

panel), and zx (right panel).
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