
University of Padova

Department of Information Engineering

Master Thesis in Control System Engineering

Analysis of Artificial Intelligence Based

Diagnostic Methods for Satellites

Supervisor Master Candidate
Prof. GiuliaMichieletto Paolo Arvotti
University of Padova

Co-Supervisors Student ID
Ing. Chiara Brighenti 2021129
Ing. Mattia Ricatto
S.A.T.E. Srl

Academic Year
2022-2023

ii

“Artificial Intelligence isthepowertotransformourperception intoknowl-
edge, our knowledge into insight, and our insight into action for the bet-
terment of ourworld.”
—Fei-Fei Li

iv

Abstract

The growing utilization of small satellites in various applications has emphasized the need for
reliable diagnostic methods to ensure their optimal performance and longevity. This master
thesis focuses on the analysis of artificial intelligence-based diagnostic methods for these partic-
ular space assets.
This work firstly explores the main characteristics and applications of small satellites, high-

lighting the critical subsystems and components that play a vital role in their proper function-
ing.
The key components of this study revolve around Diagnosis, Prognosis, and Health Moni-

toring (DPHM) systems and techniques for small satellites. The DPHM systems aim at mon-
itoring the health status of the satellite, detecting anomalies and predicting future system be-
havior. The reason why advanced DPHM systems are of interest for the space operators is
the fact that they mitigate the risk of satellites catastrophic failures that may lead to service
interruptions or mission abort. To achieve these objectives, a hybrid architecture combining
Convolutional Neural Networks (CNN) and Long Short-TermMemory (LSTM) networks is
proposed. This architecture leverages the strengths of CNNs in feature extraction and LSTM
networks in capturing temporal dependencies. The integration of these two neural network
architectures enhances the diagnostic capabilities and enables accurate predictions for small
satellite systems.
Real data collected from an operational satellite is utilized to validate and test the proposed

CNN-LSTMhybrid architecture. Based on the experimental results obtained, advantages and
drawbacks of the exploitation of this architecture are discussed.

v

vi

Contents

Abstract v

List of figures ix

List of tables xiii

Listings xv

Listing of acronyms xvii

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Thesis Objectives . 3
1.4 Thesis Outline . 5

2 Small Satellites: Main Characteristic and Applications 7
2.1 Introduction to Satellites . 7
2.2 Types of Satellites . 8
2.3 Growth of Small Satellites . 9
2.4 Mission Applications and Stakeholders . 11
2.5 Subsystem and Composition . 14
2.6 Failures and Anomalies . 18

2.6.1 Levels of Criticality in Satellites . 18
2.6.2 Causes of Failures in Small Satellites 20
2.6.3 Common Failures and Anomalies in Small Satellites 22
2.6.4 Critical Subsystems and Components in Small Satellites 23

2.7 Summary of Findings . 26

3 Diagnosis, Prognosis, andHealthMonitoring (DPHM) 29
3.1 Introduction to DPHM . 29
3.2 Fault Diagnosis . 30

3.2.1 Four Types of Fault Diagnosis Methods 30
3.3 Fault Prognosis . 32

3.3.1 Four Types of Fault Prognosis Methods 32
3.4 Maintenance Strategies . 34

vii

3.5 Recovery and Preventive Actions . 35
3.6 DPHMMethods for Space Systems . 38
3.7 Summary of Findings . 41

4 Long Short-TermMemory (LSTM) Network 43
4.1 Introduction to LSTM . 43
4.2 LSTMArchitecture . 44

4.2.1 Step-by-Step LSTMWalk Through 45
4.3 Functionality and Advantages of LSTM 48
4.4 Training and Learning in LSTM . 49
4.5 Applications of LSTM in Various Domains 50
4.6 LSTM in the Space Domain . 51

4.6.1 Examples of LSTM in Space Domain 53
4.7 Limitations and Considerations . 61
4.8 Summary of Findings . 63

5 Workflow and Results 65
5.1 MATLABOverview . 65
5.2 Dataset Description and Preprocessing . 67

5.2.1 Dataset Split: Train and Test Periods 68
5.2.2 Data Preprocessing . 69

5.3 Network Architecture: CNN-LSTMHybrid Network 71
5.4 EvaluationMetrics . 74
5.5 Training Process . 75
5.6 Testing Process . 89

5.6.1 current_1 . 93
5.6.2 current_2 . 99
5.6.3 current_3 . 105
5.6.4 voltage_1 . 110
5.6.5 voltage_2 . 116

6 Conclusions 123
6.1 Research Overview . 123
6.2 Summary of Findings . 124
6.3 Discussions of Results . 125
6.4 Recommendations for Future Work . 128

A Appendix A 131

References 155

viii

Listing of figures

2.1 Nano Satellite Launches (Nanosats Database) [1] 10
2.2 Mission Type in Aerospace Corporation Database (2009 – 2018) [2] 13
2.3 Funding Agency and Developers in Aerospace Corporation Database (2009

– 2018) [2] . 14
2.4 Satellite Subsystem Interconnections . 18
2.5 Distribution of Failure Criticality in China Spacecraft Database (2000-2017)

[3] . 19
2.6 Distribution ofOn-Orbit FailureCauses inChina SpacecraftDatabase (2000-

2017) [3] . 21
2.7 Affected Subsystem by Failure in China Spacecraft Database (2000-2017) [3] 23
2.8 AverageAgeofRetirementbyFault inAerospaceCorporationDatabase (2009

– 2018) [2] . 24
2.9 Failures of SpacecraftComponents inChinaSpacecraftDatabase (2000-2017)

[3] . 25
2.10 Failures of Gyroscope in China Spacecraft Database (2000-2017) [3] 26

3.1 Fault Diagnosis Methods Overview . 32
3.2 Fault Prognosis Methods Overview . 34
3.3 Diagnostic and Prognostic Loop . 37

4.1 LSTMChain . 45
4.2 LSTMCell State . 45
4.3 LSTM Forget Gate . 46
4.4 LSTM Input Gate - Part 1 . 46
4.5 LSTM Input Gate - Part 2 . 46
4.6 LSTMOutput Gate . 47
4.7 FDI Scheme for the Spacecraft RW (Example 1) 54
4.8 Architecture for RW Fault Diagnosis (Example 1) 55
4.9 Stages of Data-Driven Fault Prognosis (Example 2) 56
4.10 Training and Fault DetectionWorkflow: Flowchart of the Model (Example 3) 57
4.11 Framework of Bi-LSTMNetworkModel (Example 4) 58
4.12 Framework of Satellite Telemetry Data Anomaly Detection Using CN-FA-

LASTM (Example 5) . 60

5.1 ConvolutionalNeuralNetwork (CNN)Model forTime SeriesData Forecasting 72

ix

5.2 Workflow of the Proposed DPHM System (Block Diagram) 73
5.3 Comparison of Absolute Error Mean for Different SlidingWindow 81
5.4 Comparison of NRMSEMean for Different SlidingWindow 81
5.5 PredictedOutcomes v sObservedValues [TrainData] (current_1)with vars.Lag =

24Hours . 82
5.6 Error Histogram [Train Data] (current_1) with vars.Lag = 24Hours 82
5.7 NRMSEHistogram [Train Data] (current_1) with vars.Lag = 24Hours . . . 83
5.8 PredictedOutcomes v sObservedValues [TrainData] (current_2)with vars.Lag =

24Hours . 83
5.9 Error Histogram [Train Data] (current_2) with vars.Lag = 24Hours 84
5.10 NRMSEHistogram [Train Data] (current_2) with vars.Lag = 24Hours . . 84
5.11 PredictedOutcomes v sObservedValues [TrainData] (current_3)with vars.Lag =

2Hours . 85
5.12 Error Histogram [Train Data] (current_3) with vars.Lag = 2Hours 85
5.13 NRMSEHistogram [Train Data] (current_3) with vars.Lag = 2Hours . . . 86
5.14 PredictedOutcomes v sObservedValues [TrainData] (voltage_1)with vars.Lag =

12Hours . 86
5.15 Error Histogram [Train Data] (voltage_1) with vars.Lag = 12Hours 87
5.16 NRMSEHistogram [Train Data] (voltage_1) with vars.Lag = 12Hours . . . 87
5.17 PredictedOutcomes v sObservedValues [TrainData] (voltage_2)with vars.Lag =

2Hours . 88
5.18 Error Histogram [Train Data] (voltage_2) with vars.Lag = 2Hours 88
5.19 NRMSEHistogram [Train Data] (voltage_2) with vars.Lag = 2Hours . . . 89
5.20 PredictedOutcomes v sObservedValues [TestPeriod1] (current_1)with vars.Lag =

24Hours . 93
5.21 Errors [Test Period 1] (current_1) with vars.Lag = 24Hours 94
5.22 Health Index [Test Period 1] (current_1) with vars.Lag = 24Hours 94
5.23 PredictedOutcomes v sObservedValues [TestPeriod2] (current_1)with vars.Lag =

24Hours . 95
5.24 Errors [Test Period 2] (current_1) with vars.Lag = 24Hours 96
5.25 Health Index [Test Period 2] (current_1) with vars.Lag = 24Hours 96
5.26 PredictedOutcomes v sObservedValues [TestPeriod3] (current_1)with vars.Lag =

24Hours . 97
5.27 Errors [Test Period 3] (current_1) with vars.Lag = 24Hours 98
5.28 Health Index [Test Period 3] (current_1) with vars.Lag = 24Hours 98
5.29 Predicted Outcomes v s Observed Values [Test Period 1] (current_2) with

vars.Lag = 24Hours . 99
5.30 Errors [Test Period 1] (current_2) with vars.Lag = 24Hours 100
5.31 Health Index [Test Period 1] (current_2) with vars.Lag = 24Hours 100

x

5.32 Predicted Outcomes v s Observed Values [Test Period 2] (current_2) with
vars.Lag = 24Hours . 101

5.33 Errors [Test Period 2] (current_2) with vars.Lag = 24Hours 102
5.34 Health Index [Test Period 2] (current_2) with vars.Lag = 24Hours 102
5.35 Predicted Outcomes v s Observed Values [Test Period 3] (current_2) with

vars.Lag = 24Hours . 103
5.36 Health Index [Test Period 3] (current_2) with vars.Lag = 24Hours 104
5.37 Errors [Test Period 3] (current_2) with vars.Lag = 24Hours 104
5.38 Predicted Outcomes v s Observed Values [Test Period 1] (current_3) with

vars.Lag = 2Hours . 105
5.39 Errors [Test Period 1] (current_3) with vars.Lag = 2Hours 106
5.40 Health Index [Test Period 1] (current_3) with vars.Lag = 2Hours 106
5.41 Predicted Outcomes v s Observed Values [Test Period 2] (current_3) with

vars.Lag = 2Hours . 107
5.42 Errors [Test Period 2] (current_3) with vars.Lag = 2Hours 107
5.43 Health Index [Test Period 2] (current_3) with vars.Lag = 2Hours 108
5.44 Predicted Outcomes v s Observed Values [Test Period 3] (current_3) with

vars.Lag = 2Hours . 109
5.45 Errors [Test Period 3] (current_3) with vars.Lag = 2Hours 109
5.46 Health Index [Test Period 3] (current_3) with vars.Lag = 2Hours 110
5.47 PredictedOutcomes v sObservedValues [TestPeriod1] (voltage_1)with vars.Lag =

12Hours . 111
5.48 Errors [Test Period 1] (voltage_1) with vars.Lag = 12Hours 111
5.49 Health Index [Test Period 1] (voltage_1) with vars.Lag = 12Hours 112
5.50 PredictedOutcomes v sObservedValues [TestPeriod2] (voltage_1)with vars.Lag =

12Hours . 113
5.51 Errors [Test Period 2] (voltage_1) with vars.Lag = 12Hours 113
5.52 Health Index [Test Period 2] (voltage_1) with vars.Lag = 12Hours 114
5.53 PredictedOutcomes v sObservedValues [TestPeriod3] (voltage_1)with vars.Lag =

12Hours . 115
5.54 Errors [Test Period 3] (voltage_1) with vars.Lag = 12Hours 115
5.55 Health Index [Test Period 3] (voltage_1) with vars.Lag = 12Hours 116
5.56 PredictedOutcomes v sObservedValues [TestPeriod1] (voltage_2)with vars.Lag =

2Hours . 117
5.57 Errors [Test Period 1] (voltage_2) with vars.Lag = 2Hours 117
5.58 Health Index [Test Period 1] (voltage_2) with vars.Lag = 2Hours 118
5.59 PredictedOutcomes v sObservedValues [TestPeriod2] (voltage_2)with vars.Lag =

2Hours . 119
5.60 Errors [Test Period 2] (voltage_2) with vars.Lag = 2Hours 119
5.61 Health Index [Test Period 2] (voltage_2) with vars.Lag = 2Hours 120

xi

5.62 PredictedOutcomes v sObservedValues [TestPeriod3] (voltage_2)with vars.Lag =
2Hours . 121

5.63 Errors [Test Period 3] (voltage_2) with vars.Lag = 2Hours 121
5.64 Health Index [Test Period 3] (voltage_2) with vars.Lag = 2Hours 122

xii

Listing of tables

5.1 Satellite Parameters and Descriptions . 67
5.2 PerformanceMetrics ofTelemetryErrors in theTrainingPhasewith vars.Lag =

2Hours . 79
5.3 PerformanceMetrics ofTelemetryErrors in theTrainingPhasewith vars.Lag =

12Hours . 80
5.4 PerformanceMetrics ofTelemetryErrors in theTrainingPhasewith vars.Lag =

24Hours . 80

6.1 Summary of Algorithm Performance for Each Telemetry and Test Period. . . 128

xiii

xiv

Listings

5.1 MATLAB Script for Generating Prediction for the Training Data 78
5.2 MATLAB Script for Anomaly Detection 89
5.3 MATLAB Script for Health Index Calculation 91
A.1 MATLAB Script for Importing Data from CSV Files in a Folder 131
A.2 MATLAB Script for Data Splitting into Train and Test Periods 133
A.3 MATLAB Script for Data Preprocessing 136
A.4 MATLAB Script for CNN-LSTMNetwork Architecture Definition 138
A.5 MATLAB Script for Training Options and Network Training 140
A.6 MATLAB Script for Assessing Performance Metrics and Visualizing Results

on Training Datasets . 141
A.7 MATLAB Script for Assessing Performance Metrics and Visualizing Results

on Testing Datasets . 146

xv

xvi

Listing of acronyms

AI Artificial Intelligence

AOCS Attitude &Orbit Control Subsystem

Bi-LSTM bi-direction LSTM

BOL Beginning-Of-Life

BPTT Backpropagation Through Time

CBM Conditional-BasedMaintenance

CHD Command &Data Handling Subsystem

CMI Conditional Mutual Information

CNN Convolutional Neural Network

CN-FA-LSTM . . Causal Network and Feature-Attention-based LSTM

CRNN Convolutional Recurrent Neural Network

DCNN Deep Convolutional Neural Network

DPHM Diagnosis, Prognosis, and Health Monitoring

ELU Exponential Linear Unit

EO Earth Observation

EOL End-Of-Life

EPDS Electrical Power &Distribution Subsystem

ETTF Estimated Time To Failure

FDI Fault Detection and Identification

FPS False Positive Rate

FTC Fundamental Theorem of Calculus

xvii

GNN Growing Neural Network

GRU Gated Recurrent Unit

HI Health Index

KPCA Kernel Principal Component Analysis

LSTM Long Short-TermMemory Network

ML Machine Learning

MLS Microwave Limb Sounder

MSE Mean Square Error

NMCTE NormalizedModified Conditional Transfer Entropy

NPL Natural Language Processing

NRMSE Normalized Root Mean Square Error

OBC On-Board Computer

PCA Principal Component Analysis

PL Payload Subsystem

PROP Propulsion Subsystem

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RUL Remaining Useful Life

SMAP Soil Moisture Active & Passive

SMS Structures &Mechanism Subsystem

TBM Time-BasedMaintenance

TCNN Temporal Convolutional Neural Network

TCS Thermal Control Subsystem

TTC Telemetry, Tracking & Command Subsystem

Var-LSTM variable sequence LSTM

xviii

1
Introduction

1.1 Motivation

Satellites have always been playing a crucial role in various applications, ranging from commu-
nication and navigation to Earth observation and scientific research. The proliferation of small
satellites over the last decade has been remarkable, driven by factors such as technological ad-
vancements, cost reduction, and increased accessibility. These compact spacecraft offer unique
advantages, including flexibility in design, faster development cycles, and the ability to address
specific mission requirements.

The deployment of small satellites brings numerous opportunities and increases reliance on
the services offered by these flying systems. For this reason, ensuring their reliable and efficient
operation becomes paramount. To reach this goal, there is the need for diagnostic and prog-
nostic capabilities that aim at identifying and resolving issues that may arise during the lifetime
of a satellite. However, traditional diagnostic methods, which often rely on predefined rules or
human expertise, can struggle to keep up with the scale and complexity of satellites currently
in flight. Furthermore, the limited resources and constraints associated with small satellites ne-
cessitate efficient and automated diagnostic techniques to ensure their continued operation in
a cost-effective manner.

This is where artificial intelligence (AI) and machine learning (ML) come into play. AI
and ML techniques offer the potential to revolutionize satellite diagnostics by enabling auto-

1

mated analysis of vast amounts of data, detection of complex patterns, and accurate prediction
of faults or anomalies. By leveraging these advanced technologies, it becomes possible to de-
velop diagnostic methods that are adaptable, scalable, and capable of handling the intricate
subsystems and components in small satellites. The benefits of AI and ML-based diagnostic
techniques are multifaceted. Firstly, they can enhance the reliability and performance of small
satellites by enabling early fault detection and diagnosis. By promptly identifying and resolving
issues, the downtime andpotentialmission failures can beminimized, ensuring the continuous
operation and success of satellite missions. Secondly, these techniques offer the potential for
real-time or near real-time monitoring of satellite status, enabling proactive maintenance and
predictive maintenance strategies that can improve overall system reliability. By harnessing the
power of AI and ML, satellite operators and engineers can unlock valuable insights from the
vast amount of data generated by these complex systems. Through automated data analysis and
intelligent algorithms, patterns and correlations that may not be apparent to human operators
can be detected, enabling more accurate and efficient diagnostic processes.
In this thesis, the aim is to explore and analyze AI and ML-based diagnostic methods for

small satellites, with a focus on improving the reliability and efficiency of satellite operations.
By investigating the various techniques and approaches available in the field, the thesis seeks
to identify the most suitable approach to address the diagnostic challenges specific to small
satellites.
In the next section, a deeper exploration of the specific problem statement will be provided,

along with an outline of the thesis structure. This will outline the key areas of focus and the
subsequent chapters.

1.2 Problem Statement

This thesis aims to support the definitionof automated and reliable diagnostic systems for small
satellites. This thesis aims to address this pressing demand and contribute to the development
of automated and reliable diagnostic systems for small satellites.

This work has been performed during a 6-month internship at S.A.T.E. (Systems and Ad-
vanced Technologies Engineering), an engineering company that provides advanced and fore-
front customised software products and services for simulation, diagnostics and data analysis
in the automotive, space and energy fields. S.A.T.E. has more than twenty years of experience
in developing diagnostics solutions and during the last decade these have been tailored also for
space applications. For this reason, the company recognises the importance of having robust di-

2

agnostic and prognostic systems that can ensure reliable operations for these complex systems.
To effectively tackle this problem, it is essential to first focus on the failures and anomalies

that occur in small satellites. Therefore, a comprehensive analysis of the critical subsystems and
components is required to identify the areas that require diagnostic attention. Through the
examination of historical data and extensive research, the aim is to determine the most critical
subsystems and identify the key components within those subsystems that have a significant
impact on the overall performance and reliability of small satellites.
The current state of the art in satellite diagnostics offers various techniques and method-

ologies; however, there are still gaps and limitations that need to be addressed. For instance,
conventional diagnostic methods often depend on predefined rules or manual analysis, which
can encounter difficulties when dealing with the intricate nature of small satellite systems. Ad-
ditionally, the ever-increasing number of small satellites being launched poses significant chal-
lenges in terms of scalability and efficiency of diagnostic methods. This thesis aims to bridge
these gaps by leveraging AI andML techniques to develop automated and data-driven diagnos-
tic solutions that can adapt to the unique characteristics of small satellites.
Automation assumes a pivotal role in satellite diagnostics due to its numerous advantages

over manual processes. By embracing AI and ML techniques to automate the diagnostic pro-
cess, higher levels of efficiency, accuracy, and reliability can be achieved. The ability to ana-
lyze vast amounts of data in real-time enables the early detection and diagnosis of faults, lead-
ing to reduced downtime and increased operational reliability. Furthermore, the integration
of prognostic capabilities can enable predictive maintenance strategies, further enhancing the
longevity and efficiency of small satellites.

1.3 Thesis Objectives

The primary objective of this thesis is to develop and demonstrate the effectiveness of anAI and
ML-based diagnostic technique for small satellites to develop anAIbased solution for the detec-
tion of anomalous behaviour in satellites components, by leveraging real telemetry data made
available by SATE. To accomplish this objective, the following workflow was implemented:

1. Alalysis of the Subsystems and Critical Components of Small Satellites:

• Investigation of small satellite missions deployed over the last decades, in order to
understand the main goals and characteristics of the so-called New Space Econ-
omy.

3

• Identification of all subsystems that are part of a satellite, with particular atten-
tion to those that significant impact the overall performance and reliability of the
system.

• Determination of the most critical components within these subsystems and un-
derstand their role in satellite failures and anomalies.

2. Evaluation of Various Diagnostic and Prognostic Techniques Based on AI andML:

• ReviewandEvaluationof the state-of-the-art diagnostic andprognostic techniques
that utilize AI andML in the context of satellite engineering.

• Analysis of the advantages, limitations, and applicability of these techniques to
small satellite diagnostics.

• Comparisonof thedifferent approaches, considering factors such as accuracy, com-
putational complexity, data requirements, and scalability.

3. Selection and Testing of a Specific Diagnostic Technique on Real Data:

• Selection of the most suitable AI and ML-based diagnostic technique for small
satellite diagnostics based on the findings from the literature review and analysis.

• Development of the chosen diagnostic technique and customize it to suit the spe-
cific requirements of small satellites.

• Acquisition of real data from small satellite missions and apply the selected diag-
nostic technique to evaluate its effectiveness in detecting and diagnosing faults.

4. Demonstrate the Effectiveness of the Chosen Diagnostic Technique:

• Analysis and interpretation of the results obtained from the application of the di-
agnostic technique to real data.

• Validation of the accuracy, efficiency, and reliability of the technique in identifying
and diagnosing faults in small satellite systems.

• Comparison of the performance of the chosen diagnostic technique with existing
methods and highlight its advantages and contributions.

Achieving these goals, this thesis aims to contribute to the satellite engineering field by pro-
viding a comprehensive analysis of small satellite subsystems and critical components, evaluat-
ingAI andML-based diagnostic techniques and demonstrating the effectiveness of the selected
diagnostic technique on real data.

4

1.4 Thesis Outline

This thesis is organized into several chapters, each focusing on a specific steps reported in the
previous section. The following is an overview of the main sections and their content:

1. Chapter 1: Introduction

• Provides an introduction to the field of satellite diagnostics, highlighting the im-
portance of reliable diagnostic techniques for small satellites.

• Presents themotivationbehind the thesis andoutlines theproblem statements and
objectives.

• Introduces the structure and organization of the thesis.

2. Chapter 2: Small Satellites: Main Characteristic and Applications

• Provides a detailed overview of the concept of satellites, with a focus on small satel-
lites, and their applications in various missions.

• Analyzes the composition and subsystemsof small satellites, emphasizing their crit-
icality by investigating failures and anomalies.

• Concludes with a summary of the research findings.

3. Chapter 3: Diagnosis, Prognosis, and HealthMonitoring (DPHM)

• Introduces the concepts of diagnostics, prognostics, and health monitoring in the
space environment.

• Discusses variousdiagnostic andprognosticmethods, includingmodel-based, signal-
based, data-driven, and hybrid approaches.

• Explores the existing literature and research in the field of AI and ML-based diag-
nostic techniques for satellites.

• Proposes and expands the problem statement, highlighting similar examples and
their state-of-the-art solutions.

• Concludes with the selection of the most appropriate diagnostic technique.

4. Chapter 4: Long Short-TermMemory (LSTM) Network

5

• Introduction to LSTM and its architecture.
• Exploration of the functionality and advantages of LSTM networks.
• Discussion of training and learning in LSTM networks.
• Exploration of the application of LSTM in various domains, including its rele-
vance in the space environment.

• Presentation of examples showcasing the utilization of LSTM in the space domain.
• Addressing limitations and considerations of using LSTM.

5. Chapter 5: Workflow and Results

• Provides an overview of the environment and data used in the study.
• Describes the dataset split into train and test periods and explains the data prepro-
cessing techniques applied.

• Discusses the network architecture, specifically the CNN-LSTM hybrid network.
• Presents the results obtained from the training process.
• Details the testing process and evaluation metrics and conducts an overall evalua-
tion and discussion of the findings.

6. Chapter 6: Conclusions

• Summarizes the main findings and contributions of the thesis.
• Reflects on the achievements and limitations of the research.
• Provides final thoughts and recommendations based on the research outcomes.

6

2
Small Satellites: Main Characteristic and

Applications

2.1 Introduction to Satellites

In this section, a deep study of satellites will be conducted, aiming to provide a comprehen-
sive understanding of their characteristics, operational environment, and the challenges they
commonly face.

A satellite can be defined as a deliberately placed object in orbit around a celestial body, such
as the Earth, Moon, or another planet. It relies on the principles of orbital mechanics to main-
tain its trajectory and spatial position. Satellites can be categorized based on their purpose, size,
and orbital characteristics. Notably, the deployment of small satellites, also known as Cube-
Sats or nanosatellites, has witnessed a remarkable surge in recent years. These satellites, typi-
cally weighing from a few kilograms to a few hundred kilograms, have gained popularity due
to their compact size, cost-effectiveness, and versatility in executing a wide range of missions.

The space environment presents numerous challenges for satellites. In fact, they must with-
stand extreme temperatures, vacuum conditions, radiation exposure, micro-meteoroids, and
other harsh elements. These factors can significantly impact the performance, reliability, and
longevity of satellite systems. Moreover, the intricate nature of satellite operations, encom-
passing deployment, orbit control, data transmission, manoeuvres, and power management,

7

demands meticulous engineering and continuous monitoring to ensure optimal functionality.
In this particular scenario, the accurate identification and diagnosis of failures or anoma-

lies in satellite subsystems and components are essential for maintaining optimal performance,
prolonging operational lifespan, and minimizing the risk of mission failure. Traditional diag-
nostic approaches have inherent limitations in terms of efficiency and accuracy, underscoring
the need to explore advanced techniques that exploits the power of AI and ML to automate
and enhance the diagnostic process.
In the subsequent sections, this studydelves deeper into the analysis of small satellites, explor-

ing their proliferating launch rate, diversemissionprofiles, the involvement of funding agencies
and developers, as well as the composition of their subsystems. Furthermore, the study investi-
gates the failures and anomalies that occur within these satellites, aiming to identify the most
critical subsystems and components.

2.2 Types of Satellites

Satellites can be categorized based on their physical characteristics, specifically their size and
mass. This section focus on the various types of satellites classified according to their mass,
providing comprehensive insights into their distinct characteristics and differentiating factors.

1. Large Satellites: Large satellites typically weigh more than 500 kilograms and feature
complex designs, multiple payloads, and their own propulsion systems. These satellites
are capable of accommodating a wide range of advanced instruments and technologies,
making them suitable for various missions requiring extensive capabilities.

2. Small Satellites: Small satellites, on the other hand, are designed to be smaller andmore
cost-effective compared to traditional satellites. They generally have a mass between 1
and 500 kilograms and offer simpler designs with fewer payloads. Some small satellites
may not have their own propulsion systems and rely on alternative methods for maneu-
vering in space.

Small satellites can be further categorized based on their mass, which helps distinguish their
specific capabilities and applications. Are listed in the following the common categories of
small satellites:

• Nano satellites: Nano satellites have a mass between 1 and 10 kilograms. They often ad-
here to standardizeddesigns, such asCubeSats (10 cm×10cm×10 cm)orPocketQubes,
which employ modular components for easy assembly and launch. Nano satellites are

8

popular for various purposes and are well-suited for missions that require compact and
cost-efficient solutions.

• Micro satellites: Micro satellites weigh between 10 and 100 kilograms. They are larger
andmore complex compared to nano satellites and find applications in specialized areas
where additional capabilities and payloads are required.

• Mini satellites: Mini satellites have amass ranging from 100 to 500 kilograms. They rep-
resent the largest and most sophisticated category among small satellites. Due to their
increased size and complexity, mini satellites are capable of supporting demanding mis-
sions that require advanced instruments and systems.

In addition to these primary categories, there are also smaller types of small satellites, in-
cluding pico satellites (0.1-1 kg), femto satellites (10-100 g), atto satellites (1-10 g), and zepto
satellites (0.1-1 g). These miniaturized satellites meet to specific applications and offer further
flexibility in terms of design and deployment.

2.3 Growth of Small Satellites

The emergence and growth of small satellites have significantly transformed the landscape of
the satellite industry. Referring to Figure 2.1, the growth of nano satellites can be divided into
three distinct phases, each characterized by different levels of expansion and advancements:

1. From 1999 to 2013, there was a relatively slow growth observed in the deployment of
small satellites. During this period, the industry was still exploring and developing the
potential of small satellites, with initial experiments and technology demonstrations tak-
ing place.

2. From 2013 to 2016, there was a significant increase in the number of small satellite
launches. This surge can be attributed to the development of projects that began in the
late 2000s and early 2010s, including the first constellation demonstrations. Advances
inminiaturization, standardizedCubeSat platforms, and commercialization opportuni-
ties played a key role in this growth spurt.

3. From 2017 onwards, the launch of small satellites has continued to show a remarkable
upward trend, despite a temporary downward phase. It is important to note that while
there was a decline in launches for three consecutive years after the record of 297 space-
craft launched in 2017, this decrease was influenced by various factors, including launch
delays of new small launchers and large rideshare missions. However, it is essential to

9

highlight that many satellite projects are built according to predetermined launch sched-
ules, which means that the scaling-up of constellations and mission deployments often
occurs gradually.

Despite the temporary dip in launches, 2022 witnessed a new record in the number of nano
satellite launches, with 338 spacecraft successfully reaching orbit. This trend indicates the con-
tinuing growth and interest in small satellites, with numerous missions and projects in the
pipeline.

Nanosatellite launches

2
11

2 7 4
22

9 10 14 19 12
25

88

142
129

86

297

244

188

162

326 334

609

214

86

13
3

295 287

354

309

435

www.nanosats.eu2023/05/31

1998
2000

2002
2003

2005
2006

2007
2008

2009
2010

2011
2012

2013
2014

2015
2016

2017
2018

2019
2020

2021
2022

2023
2024

2025
2026

2027
0

50

100

150

200

250

300

350

400

450

500

550

600

650

N
a
n
o
s
a
te

lli
te

s

Launched
Launch failures
Announced launch year
Nanosats.eu (2022 June) prediction

Figure 2.1: Nano Satellite Launches (Nanosats Database) [1]

Advantages andDisadvantages of Small Satellites

The increase of small satellite launches can be attributed to several to the following factors:

• Technological advancements facilitated the development of sophisticated satellite sys-
tems in compact form factors. Through the miniaturization of components, improved
power efficiency, and enhanced computing capabilities, it has become increasingly feasi-
ble to create small satellites with scalable and accessible functionalities.

• Cost reductionhas emerged as a driving force behind the growthof small satellites. Their
reduced size and weight contribute to lower manufacturing, launch, and operational ex-
penses compared to larger satellites. This enhanced affordability has attracted a wide

10

range of stakeholders, including academic institutions, research organizations, commer-
cial entities, and even individual enthusiasts, fostering active participation in satellite
missions and the utilization of space-based data.

• The expanding market and increased opportunities for commercialization have further
facilitated the growth of small satellites. The demand for Earth observation data, com-
munication services, and scientific research has stimulated the development of small
satellite constellations and the establishment of new companies dedicated to small satel-
lite operations. This competitive environment has fueled innovation in advanced small
satellite technologies.

However, in order to better understand it is worthmentioning that the exploitation of small
satellites also present the following limitations.

• Limited payload capacity: The small size of these satellites limits their payload capacity,
which can restrict the types and sizes of instruments and sensors that can be carried on-
board. This limitation may impact the scope and complexity of missions that can be
undertaken.

• Reduced power and communication capabilities: Small satellites typically have limited
power generation capacity and communication bandwidth, which can impact data ac-
quisition, transmission, and real-time communication. This constraint requires careful
optimization of power management and communication protocols.

• Shorter operational lifetimes: Due to their smaller size and resource limitations, small
satellites often have shorter operational lifetimes compared to larger satellites. Factors
such as orbital decay, limited fuel reserves, and technological obsolescence may necessi-
tate shorter mission durations or satellite replacement.

• Relianceoncommercial launchopportunities: The availability of suitable launchoppor-
tunities for small satellites can be influenced by the priorities and schedules of commer-
cial launch providers. This reliance on commercial providers may introduce potential
delays or uncertainties in accessing space.

2.4 Mission Applications and Stakeholders

Thewide range ofmission applications for small satellites encompasses amultitude of purposes
and addresses to the needs of various stakeholders. The mission types, illustrated in Figure 2.2,
have been systematically classified into the following categories:

11

• Earth Observation (EO): Earth Observation missions provide imagery coverage and
data products relating to terrestrial activity. EO missions focus on capturing and ana-
lyzing data related to human activity on Earth’s surface. They play a crucial role in ap-
plications such as environmental monitoring, urban planning, agriculture, and disaster
management.

• Technology/Test: Technology/Testmissions are designed todemonstratenewpayloads,
components, or subsystems that lack spaceflightheritage. Thesemissions serve as testbeds
for innovative technologies and advancements in satellite systems. Examples include
the demonstration of new reaction wheels, propulsion systems, or mission operations
paradigms like proximity operations or cluster flight. Technology/Test missions con-
tribute to the advancement of small satellite capabilities and enable the validation of
new concepts before their integration into operational missions.

• Communications: Communications missions focus on providing reliable and efficient
communication services from space. These missions facilitate real-time connectivity,
data storage and forwarding, radio frequency communications, and system identifica-
tion. Small satellites deployed for communications purposes enhance global connectiv-
ity, enable internet access in remote areas, support disaster response efforts, and provide
critical communication infrastructure for various stakeholders.

• Science: Sciencemissions gather data about theEarth’s surface,weather, the atmosphere,
or free space outside the atmosphere. While some Science missions may use visual im-
agery or data products, EOmissions primarily focus on studying human activity, while
Sciencemissions look at natural phenomena. Sciencemissions contribute to scientific re-
search, enabling a better understanding of our planet, weather patterns, climate change,
and space environment.

• Other: There exist also some new and emerging missions that do not fit directly into
the above categories. This includes missions such as early warning systems, on-orbit
servicing missions, signals intelligence, or cargo missions. These diverse missions reflect
the ever-evolving nature of the small satellite industry and the continuous exploration
of new applications and capabilities.

12

Earth Observation

36%

Technology 27%

Communications

18%

Science

15% Other
4%

Figure 2.2: Mission Type in Aerospace Corporation Database (2009 – 2018) [2]

Within the development and deployment of small satellites, multiple public and private sec-
tor stakeholders play a crucial role. These stakeholders can be broadly classified as funding
agencies and developers, which include a number of entities involved in the process. Specifi-
cally, the main stakeholders identified are as follows, as depicted in Figure 2.3:

1. Commercial: In this sector there are for-profit entities such as Planet, ComDev, andOr-
bcomm actively participating in small satellite missions. These companies leverage small
satellites for a wide range of applications, including Earth observation, communication
services, and scientific research.

2. Academic: In the academic sector, universities and an increasing number of high school
and organizations engaging in small satellite launches. These educational institutions
use small satellites as platforms to promote hands-on learning and research in space-
related fields.

3. Civil: In the civil sector, Prominent funding agencies and developers in the civil sector,
such as NASA and NSF in the United States, ESA, DLR, and the Norwegian Space
Centre in Europe, and the Indian SpaceResearchOrganization (ISRO) and JAXA, play
a significant role in small satellite missions. These civil organizations contribute to small
satellite missions, supporting scientific research, technology development, and national
space initiatives.

4. Military: In this sector, organizations such as the United States Army, Air Force, Navy,
and various military branches worldwide actively participate in small satellite missions.
These military-based stakeholders utilize small satellites for both civil and military pur-
poses, including communication, reconnaissance, and surveillance.

13

Commercial

49%

Academic

20%

Civil

18% Military

13%

Figure 2.3: Funding Agency and Developers in Aerospace Corporation Database (2009 – 2018) [2]

The diverse range of funding agencies and developers in small satellite missions highlights
the broad impact and collaborative nature of this evolving industry.

2.5 Subsystem and Composition

Small satellites are composed of various subsystems that work together to ensure the proper
functioning and operation of the satellite in space. Each subsystem has specific functionalities,
as reported in this section

1. Command & Data Handling Subsystem (CDH): The Command & Data Handling
Subsystem has two main functions:

• First, it receives, validates, decodes, and distributes commands to other spacecraft
systems.

• Second, it collects, processes, and formats spacecraft housekeeping and mission
data for downlink or use by an onboard computer.

This subsystem includes additional functions like spacecraft timekeeping, computerhealth
monitoring, and security interfaces. TheCDHsubsystem acts as the ”brain” of the satel-
lite, and it consists of an Onboard Computer (OBC) that controls the operation of the
satellite. TheOBC softwaremanages the programswritten to handle various tasks, such
as creating a telemetry stream about the status of the payload and then encoding the
stream. The objective of the CDH subsystem is to provide the spacecraft with opera-
tional sequences for various subsystems. Due to size restrictions of small satellites, the

14

CDHsubsystemneeds to be efficient, small, lightweight, and easy to integratewith other
subsystems.

2. Attitude &Orbit Control Subsystem (AOCS):TheAttitude andOrbit Control Sub-
system is an essential component of small satellite systems that is responsible for main-
taining the orientation and stability of the spacecraft during its mission. The AOCS is
used to determine and adjust the spacecraft’s attitude, using sensors tomonitor external
disturbances such as solar radiation, gravity, magnetic fields, or atmospheric drag. If left
unaddressed, these disturbances can cause the spacecraft to lose its orientation and fail to
achieve its mission objectives. The AOCS system typically includes actuators that coun-
teract these disturbances, either passively by exploiting the spacecraft’s inherent charac-
teristics or actively by measuring and applying corrective torques. The subsystem is also
responsible for performing manoeuvres to reorient the spacecraft to a desired direction,
such as pointing to a new target or communicate to the ground stations. By providing
this crucial functionality, the AOCS subsystem ensures that the spacecraft remains sta-
ble and oriented correctly throughout its mission.

3. Communications SubsystemorTelemetry, Tracking&CommandSubsystem (TTC):
The communications subsystem of a satellite is responsible for ensuring telecommuni-
cation between the satellite and other systems, such as ground stations or other satellites.
This subsystem utilizes electromagnetic pulses, which are transmitted by the satellite’s
transmitter and received by the ground station’s receiver, to exchange data. The com-
munication subsystem serves as the interface between the spacecraft and ground systems.
It passes payload mission data and spacecraft housekeeping data from the spacecraft to
operators and users at the operations center, while also receiving operator commands
to control the spacecraft and payload operations. The communication subsystem itself
consists of a set of antennae and transceivers, which allow for communicationwithmon-
itoring stations. The instructions received from the ground station are processed by the
satellite’s control system, which can be the main computer or certain components of
the CDH Subsystem. The communication subsystem also receives and demodulates
up-link signals and modulates and transmits down-link signals.

4. Payload Subsystem (PL): The equipment that a spacecraft carries and that interacts
with the subject to perform a specific mission is called the Payload. This equipment is
unique to each mission and is the primary reason why the spacecraft is launched. The
rest of the spacecraft is designed to support the payload andkeep it in optimal conditions.
Space missions encompass a wide range of objectives, including detection, communica-
tion, and interaction. The subject of a mission refers to the specific entity or target that
the spacecraft will engage with in order to accomplish its goals. These missions can be
broadly classified into categories such as communications, remote sensing, navigation,
in situ science, and others. In scientific missions, remote sensing payloads are the most

15

common type. Remote sensing refers to any observation that a spacecraft makes with-
out direct contact with the object in question. Measurements in the electromagnetic
spectrum are used to determine the nature, state, or features of a physical object or phe-
nomenon. These signals can either be produced by the subject or reflected, providing
valuable information about a certain feature of the subject.

5. Electrical Power & Distribution Subsystem (EPDS): The Electrical Power and Dis-
tribution Subsystem is responsible for providing, storing, distributing, and controlling
the electrical power needed by a spacecraft. To properly size each component of this
subsystem, it is important to identify the electrical power loads required for mission op-
erations at the beginning-of-life (BOL) and end-of-life (EOL). For most missions, the
EOL power demandsmust be reduced to compensate for solar array performance degra-
dation, so a detailed power budgetmust be done at different stages of themission. There
are three main elements to the EPDS:

• Power Source: This component generates electrical powerwithin the spacecraft. In
most missions, photovoltaic solar cells are the most common power source used.
They convert incident solar radiationdirectly to electrical energy and arewell-known
for their reliability.

• Energy Storage: Any spacecraft that uses photovoltaic or solar thermal dynamics
as a power source requires a system to store energy for peak-power demands and
eclipse periods. Typically, energy storage occurs in a battery, although other sys-
tems such as flywheels and fuel cells have been considered in some cases.

• Power Distribution: This component consists of cabling, fault protection, and
switching gear to turn power on and off to the spacecraft loads. The design of
power distribution systems for various power sources depends on source charac-
teristics, load requirements, and subsystem functions. When selecting a type of
power distribution, the focus is on keeping power losses and mass at a minimum
while attending to survivability, cost, reliability, and power quality.

6. Propulsion Subsystem (PROP):Thepropulsion subsystemserves threemainpurposes.
Firstly, it is responsible for lifting the launch vehicle from the surface and placing it into
low-Earth orbit (LEO). Secondly, it transfers payloads from LEO to higher orbits or
interplanetary trajectories. Finally, it provides crucial attitude control and orbit correc-
tions throughout the mission.

7. Structures&Mechanism Subsystem (SMS):The Structures&MechanismSubsystem
is responsible for providing a framework to support and safeguard the spacecraft and
its payload during launch and throughout its operational lifetime. The primary struc-
ture forms the backbone of the spacecraft and bears the main load, while the secondary

16

structure, such as brackets, closeout panels, and deployable components, supports the
primary structure.

8. Thermal Control Subsystem (TCS): The Thermal Control Subsystem is responsible
for ensuring that all components and subsystems of the spacecraft and payload remain
within their required temperature limits during each mission phase. These limits in-
clude both a cold temperature and a hot temperature, with operational limits defining
the range of temperatures that the component can tolerate while it is in use, and survival
limits defining the range of temperatures that it must remain within at all times, even
when it is not powered. Exceeding survival temperature limits can cause permanent dam-
age to equipment, whereas exceeding operational limits may result in out-of-tolerance
performance. There are two broad categories of thermal control techniques: passive and
active.

• Passive thermal control utilizes materials, coatings, or surface finishes like blankets
or second surface mirrors to regulate temperatures. These measures help main-
tain temperature limits by reflecting or absorbing thermal radiation. Passive tech-
niques are often employed in areas where temperature stability is crucial but active
control is not necessary.

• Active thermal control employs more complex means to actively regulate temper-
atures. This may include heaters or thermo-electric coolers that actively heat or
cool specific components or subsystems. Active techniques are used when precise
temperature control is required, especially for sensitive payloads or electronics that
may be affected by temperature variations.

Interdependencies between subsystems play a remarkable role in diagnosing failures and
anomalies. For instance, a failure in the power system can impact the operations of other sub-
systems, leading to the malfunctioning of the entire satellite. Similarly, if the attitude control
subsystem encounters some issues, it can affect the pointing accuracy of the payload, impacting
data acquisition or communication capabilities.

Understanding the interdependencies between subsystems is vital for troubleshooting and
anomaly resolution. By analyzing telemetry data from various subsystems, engineers can iden-
tify the root cause of failures or anomalies and develop appropriate corrective measures. Ad-
ditionally, a comprehensive understanding of the subsystems’ functionalities and their signifi-
cance in the overall satellite operation enables efficient system design, integration, and mission
planning.

17

Figure 2.4 visually represents the intricate interconnections between the CDH subsystem
and all other subsystems, showcasing the comprehensive network within the satellite architec-
ture.

Command & Data
Handling Subsystem

(CDH)

Telemetry, Tracking &
Command Subsystem

(TTC)

Payload Subsystem
(PL)

Propulsion Subsystem
(PROP)

Structures & Mechanism
Subsystem

(SMS)

Thermal Control
Subsystem

(TCS)

Att itude & Orbit
Control Subsystem

(AOCS)

Electrical Power &
Distribut ion Subsystem

(EPDS)

Figure 2.4: Satellite Subsystem Interconnections

2.6 Failures and Anomalies

2.6.1 Levels of Criticality in Satellites

When assessing failures and anomalies in small satellites, it is essential to consider the levels of
criticality associated with these issues. These levels help to classify the severity of failures based
on their impact on the overall mission. The four levels of criticality commonly used are:

• Negligible: Failures or anomalies with a negligible level of criticality have minimal im-
pact on the satellite’s operation and mission objectives. These issues may be minor and
easily rectified without significant consequences. Examples of negligible failures could
includeminor fluctuations in power consumption or temporary communication signal
interruptions that do not hinder the satellite’s primary functions.

18

• Non-Major: Non-major failures or anomalies have a moderate impact on the satellite’s
operation but do not result in mission failure. These issues may affect certain subsys-
tems or functionalities, but the satellite can continue to perform its primary tasks. For
instance, a temporary glitch in attitude control accuracy or aminor data corruption issue
may be classified as non-major failures.

• Critical: Critical failures or anomalies significantly impact the satellite’s operation, po-
tentially leading to mission failure or severe degradation in performance. These issues
affect critical subsystems or functionalities, rendering the satellite unable to achieve its
intended objectives. Examples of critical failures could include prolonged power system
failures, loss of communication with the ground station, or major attitude control er-
rors.

• Catastrophic: Catastrophic failures are severe and result in the complete loss of the satel-
lite or render it entirely inoperable. These failures can have far-reaching consequences,
including the loss of the entire mission, financial implications, and potential hazards to
other satellites or objects in space. Catastrophic failures could occur due to catastrophic
power system failures, catastrophic attitude control errors leading to collision risks, or
unrecoverable communication systemmalfunctions.

Negligible

83%

Non-Major

11% Critical

4% Catastrophic
2%

Figure 2.5: Distribution of Failure Criticality in China Spacecraft Database (2000‐2017) [3]

From a statistical perspective, Figure 2.5 illustrates the distribution of failures based on their
level of criticality.

Understanding these levels of criticality allows engineers and operators to prioritize and ad-
dress failures and anomalies based on their potential impact. By categorizing failures, appro-
priate counter measures can be taken to mitigate risks, improve system reliability, and enhance

19

overall mission success. In the next subsection, this study will analyze common failures and
anomalies observed in small satellites. These include power failures, communication issues,
thermal management problems, and attitude control errors.

2.6.2 Causes of Failures in Small Satellites

Understanding the causes of failures in small satellites is key to improving their reliability and
performance. Several factors contribute to the occurrence of failures and anomalies, including:

1. Space Environment: Approximately half of the flight failures in small satellites can be
attributed to the harsh space environment. Factors such as radiation, extreme tempera-
tures, micro-meteoroids, and vacuum conditions pose significant challenges to onboard
systems and components. The space environment can induce malfunctions and perfor-
mance degradation, affecting electronic devices, materials, and mechanisms. Radiation
can cause electronic component failures or data corruption, while extreme temperatures
can lead to thermal stress and material fatigue. Proper shielding, thermal management
strategies, and robust design considerations are necessary to mitigate the effects of the
space environment.

2. Design: Design-related factors contribute significantly to failures in small satellites. In-
adequate shielding against radiation, insufficient thermal management, poor structural
design, or improper integration of subsystems can lead to performance degradation or
complete system failures. Design flaws can exacerbate the impact of environmental con-
ditions and operational stresses, compromising the satellite’s overall functionality. En-
suring robust design practices, thorough simulations, and proper consideration of envi-
ronmental and operational factors are essential to minimize design-related failures.

3. Parts and Materials: Failures in small satellites can also be attributed to problems with
parts andmaterials used in their construction. Defective or low-quality components, in-
adequate testing of materials for space conditions, or mismatches between component
specifications and operational requirements can result in malfunctions and reduced sys-
tem reliability. It is important to ensure the use of reliable and space-qualified parts and
materials, conduct thorough testing and verification, and adhere to strict quality control
measures during the manufacturing process.

4. Software: Although smaller in proportion, software-related failures can have significant
consequences in small satellites. Errors in software code, algorithm implementation, or
command sequences can lead to unexpected behavior, system crashes, or incorrect data
processing. Robust software development practices, rigorous testing, and proper vali-
dation procedures are necessary to minimize the occurrence of software failures. Imple-
menting redundancy, error handlingmechanisms, and continuous softwaremonitoring
can enhance the resilience of the satellite’s software systems.

20

5. Workmanship: Failures resulting from workmanship issues, such as manufacturing er-
rors, assembly mistakes, or improper soldering, constitute a smaller portion of the total
failures. Poor workmanship can introduce defects or weak points in the satellite’s hard-
ware, leading to premature failures or degraded performance. Strict quality control mea-
sures, adherence tomanufacturing standards, and comprehensive testing and inspection
protocols are crucial to reduce workmanship-related failures.

6. Operations: Operational failures, although relatively small in number, can still impact
satellite performance. Human errors, incorrect procedures, or sub-optimal operational
practices can lead to anomalies, communication disruptions, or unintended system con-
figurations. Ensuring proper training, clear operational guidelines, and effective moni-
toring procedures can help mitigate operational failures and improve the overall reliabil-
ity of small satellites.

Space Environment

50%

Design

22%

Parts andMaterials

15%
Software

6% Workmanship
5% Operation
2%

Figure 2.6: Distribution of On‐Orbit Failure Causes in China Spacecraft Database (2000‐2017) [3]

Figure 2.6 illustrates the distribution of failures in small satellites based on their causes. The
chart indicates that approximately 50% of failures are attributed to the space environment, 22%
to design-related issues, and 15% to problems with parts and materials. The remaining failures
are attributed to software, workmanship, and operational factors.

Bymitigating these factors through robust design practices, rigorous testing, proper compo-
nent selection, and effective operational procedures, developers and operators can enhance the
overall reliability of small satellite systems.

21

2.6.3 Common Failures and Anomalies in Small Satellites

Small satellites are susceptible to various failures and anomalies that can significantly impact
their operational effectiveness and mission outcomes. The following are common failures and
anomalies observed in small satellites.

• Power Failures: Power failures can occur due to degraded solar panels, battery malfunc-
tions, or problems in power distribution systems. These failures result in insufficient
power supply, reduced payload performance, or complete power loss, rendering the satel-
lite inoperable.

• Communication Issues: Failures in transceivers, antennas, or data processing units can
disrupt data transmission, command reception, and real-time monitoring of the satel-
lite. Communication issues impair the satellite’s ability to receive commands, transmit
telemetry data, or retrieve critical information from the spacecraft.

• ThermalManagement Problems: Inadequate heat dissipation, malfunctioning thermal
control mechanisms, or environmental factors can lead to thermal management prob-
lems. Excessive heat or cold can cause component degradation, reduced performance,
or permanent equipment damage.

• Attitude Control Errors: Failures in sensors, actuators, or control algorithms within
the AOCS can result in attitude control errors, leading to significant deviations from
the desired attitude or loss of control altogether. These failures hinder precise pointing,
required maneuvers, and accurate mission execution.

• PayloadMalfunctions: Failures in sensors, instruments, or data processing units within
the payload can compromise data acquisition, analysis, or transmission. This impacts
the quality and quantity of scientific or operational results, hindering the achievement
of mission objectives.

• Command and Data Handling Issues: Failures within the CDH subsystem can disrupt
critical communication and data processing functions. Malfunctions in the onboard
computer, data validation systems, or security interfaces hinder command distribution
and mission/housekeeping data processing.

• Structures and Mechanism Failures: Failures in the primary or secondary structure, as
well as malfunctioning deployment mechanisms, can compromise satellite stability and
functionality. Effectively mitigating structural damage or deployment issues ensures
overall performance and reliability.

22

• Propulsion System Malfunctions: Failures in the Propulsion (PROP) subsystem can
limit satellite maneuverability and its ability to maintain the desired orbit or adjust atti-
tude. Engine anomalies or fuel system issues require prompt handling and mitigation
for mission success.

By recognizing and addressing these common failures and anomalies, the reliability and per-
formance of small satellites can be improved, increasing the chances of successful mission out-
comes.

2.6.4 Critical Subsystems and Components in Small Satellites

This section presents the research findings on the identification of themost critical subsystems
and components in small satellites. When considering criticalities, the evaluation encompasses
both the frequency of failures and the level of impact these failures have on mission outcomes.
It is crucial to distinguish between failures that can lead to catastrophic or mission-ending con-
sequences and failures that may only result in the loss of certain satellite features.

AOCS

34%TTC

20%

PL

19%

EPDS

15%
CDH

5% SMS

4% PROP
3%

Figure 2.7: Affected Subsystem by Failure in China Spacecraft Database (2000‐2017) [3]

Figure 2.7 illustrates the results obtained from the analysis of satellite data from the ”China
Spacecraft Database”, covering launches from 2000 to 2017. The subsystems with the highest
number of failures, areAOCS,TTC, PL, and EPDS,whileCDH, SMS, and PROP exhibit the
fewest failures. This analysis highlights AOCS as the most vulnerable subsystem to failures. It

23

encompasses critical systems that play a pivotal role in spacecraft operations, and any malfunc-
tions within AOCS can have severe consequences, potentially compromising overall spacecraft
functionality. Ensuring the reliability and robustness of the AOCS subsystem is essential for
maintaining precise attitude and orbit control.
Although theTTC,EPDS, andPL subsystems experience fewer failures compared toAOCS,

it is important to note that failures within these subsystems can still significantly impact core
functions and mission objectives. These subsystems are paramount for spacecraft operations,
and their smooth functioning is crucial for mission success. Therefore, it is essential to imple-
ment measures to mitigate the risk of failures in these subsystems.
On the other hand, the PROP, SMS, andCDH subsystems demonstrate a lower failure rate.

This suggests that these subsystems have implemented effective redundancy measures and pro-
tectionmechanisms to withstand the challenging space environment. The relatively lower inci-
dence of failures in these subsystems indicates that they were designed and implemented with
adequate safeguards, resulting in minimal mission degradation.

2,8

2,5

1,75

1,55

0,9

0,75

0,65

0,6

0,6

0,5

0,4

0,17

0,13

TTC-Transponder Failure

PROP-Thruster/Fauel System Failure

EPDS-Electrical Distribution Failure

EPDS-Battery/Cell Failure

Unknown Anomaly

TTC-Telemetry/Tracking/Command Failure

SMS-Mechanisms/Structures/Thermal Failure

PL-Payload Instrument/Amplifier

CDH-On-Board Computer Failure

CDH-Control Processor Failure

AOCS-Gyroscope/Reaction Wheels Failure

EPDS-Solar Array Deployment Failure

EPDS-Solar Arrray Operating Failure

Years from Launch

Average Age of Retirerement by Fault

Figure 2.8: Average Age of Retirement by Fault in Aerospace Corporation Database (2009 – 2018) [2]

This research also provides significant insights into the characteristics of component failures
within their respective subsystems. Figure 2.8, based on an analysis of data from the ”Aerospace
Corporation Database” covering satellite launches from 2009 to 2018, presents the average re-

24

tirement age of satellites resulting fromcomponent failures. Notably, the componentswith the
shortest average lifespan, are in order the solar arrays (part of the EPDS subsystem), followed by
the gyroscope and reaction wheels (part of the AOCS subsystem). Subsequent failures include
the on-board computer and control processes within the CDH subsystem, as well as payload
instruments and components within the SMS and TTC subsystems.

0

20

40

60

80

100

120

140

Payl
oa

d I
ns

tru
men

t

Sta
r E

lec
tro

nis
cs

Tran
spo

nd
er

Gyro
sco

pe GPS

Con
tro

l P
ro

ces
so

r
CPU

Batt
eri

es

Pow
er

Con
tro

lle
r

Driv
ing

 M
ech

an
im

s

Trac
kin

g I
ns

tru
men

t

N
um

be
r o

f F
ail

ur
es

Failures of Spacecraft Components

Negligible

Non-Major

Critical

Catastrophic

Figure 2.9: Failures of Spacecraft Components in China Spacecraft Database (2000‐2017) [3]

To delve deeper into the criticality of these component failures, Figure 2.9, derived from the
same analysis of the ”China SpacecraftDatabase”, categorizes the failures into catastrophic, crit-
ical, non-major, and negligible. Among the components, payload instruments, star electronics,
and transponders exhibit the highest number of failures. However, as mentioned earlier, it is
crucial to assess the critical implications of these failures. Figure 2.10) demonstrates that the
gyroscope emerges as one of the most critical components due to its substantial occurrence of
catastrophic and critical failures (12% and 10%, respectively), surpassing other components in
terms of criticality.

These findings emphasize the importance of robust design, maintenance strategies, andmit-
igation measures for critical subsystems and components. Identifying and addressing vulnera-
bilities and critical aspects of component failures is vital to enhance the reliability and resilience
of small satellites. By understanding the failure patterns and their critical implications, satellite

25

operators can optimize component selection, implement appropriate redundancy measures,
and develop effective maintenance protocols, ultimately ensuring the success of spacemissions.

Negligible

74%

Non-Major

4%

Critical

10%
Catastrophic

12%

Figure 2.10: Failures of Gyroscope in China Spacecraft Database (2000‐2017) [3]

2.7 Summary of Findings

This chapter presents a comprehensive analysis of small satellites, focusing on their subsystems,
failures, and critical components. The findings offer valuable insights into the challenges and
considerations associated with small satellite missions and provide a foundation for the devel-
opment of effective diagnostic techniques using AI andML.

The key findings can be summarized as follows:

1. Small satellites comprise various subsystems that performcrucial functions in space. These
include the Command and Data Management (CDH) Subsystem, Attitude and Or-
bitControl Subsystem (AOCS),Communications Subsystem, Payload (PL) Subsystem,
Electrical Power Subsystem and Distribution (EPDS), Propulsion Subsystem (PROP),
Structures andMechanisms Subsystem (SMS), andThermal Control Subsystem (TCS).
Each subsystem plays a vital role in the overall performance and reliability of small satel-
lites.

2. Failures and anomalies can occur in small satellites, affecting their operational capabil-
ities. Examples include power outages, communication disruptions, thermal manage-

26

ment issues, and attitude control errors. Among the subsystems, theAOCS subsystem is
particularly susceptible to failures due to its critical role in spacecraft stabilization andori-
entation. Failures in the TTC subsystem can impact communication links with ground
stations, while failures in the PL subsystem directly affect mission objectives. EPDS fail-
ures significantly impact power generation and distribution, and propulsion system fail-
ures limit maneuverability and attitude control.

3. The analysis of critical subsystems and components reveals the following insights:

(a) The subsystemswith thehighest numberof faults areAOCS,TTC,PL, andEPDS.
(b) The components with the lowest average retirement age are the solar arrays (EPDS

components) and the gyroscope and reaction wheels (AOCS components).
(c) The gyroscope (an AOCS component) exhibits the highest number of critical fail-

ures.

These findings highlight the critical nature of subsystems like AOCS and EPDS, as well
as components such as gyroscope and reaction wheels. Ensuring the proper functional-
ity of these critical components and implementing appropriate measures are crucial for
accurate attitude control and orientation.

27

28

3
Diagnosis, Prognosis, and Health

Monitoring (DPHM)

3.1 Introduction toDPHM

Diagnosis, Prognosis, and Health Monitoring (DPHM) are processes exploited for ensuring
reliable performance and safety of operating systems or components. DPHM encompasses
a range of methods and processes aimed at detecting faults, predicting system behavior, and
monitoring the health of that aim systems in real-time. By employing advanced algorithms
and AI techniques, DPHM enables proactive maintenance, reduces downtime, and enhances
operational efficiency.

However, traditional reactivemaintenance approaches are no longer sufficient to address the
demands of modern complex systems, included the aerospace systems.

The implementation of DPHM in aerospace systems brings several benefits. It enables early
fault detection, allowing maintenance teams to intervene before the fault escalates and causes
extensive damage. Moreover, DPHM facilitates improved decision-making regarding mainte-
nance actions, ensuring optimal resource allocation and minimizing operational disruptions.
By employing advanced algorithms and AI techniques, DPHM can enable proactive mainte-
nance, reduce downtime, and enhance operational efficiency.

29

3.2 Fault Diagnosis

Fault diagnosis refers to the process of identifying symptoms of anomalous behaviour of sys-
tems or components and determining the root cause of this anomalous behaviour. It consists
in analyzing the observed symptoms or deviations from expected behavior to locate the specific
error or failure responsible for the observed problems. The objective of fault diagnosis is to ac-
curately and efficiently identify the underlying problem or fault in order to enable timely and
effective corrective actions.

Fault diagnosis consists of two main steps: fault detection and isolation.

1. Fault Detection involves monitoring and analyzing system parameters, such as sensor
readings, control signals, or performance metrics, to detect deviations from normal op-
eration. This is achieved by comparing observed values with expected or reference values
obtained from systemmodels or historical data. Statistical techniques, signal processing
methods, and ML algorithms can be utilized to identify anomalies and trigger alarms
when predefined thresholds or patterns are exceeded.

2. Once a fault is detected, the subsequent step is to isolate the fault to a specific component
or subsystem. Fault Isolation aims at determining the root cause of the fault by analyz-
ing available data and system behavior. Various diagnostic techniques can be employed
to narrow down the potential sources of the fault, such as analyzing system responses,
examining fault signatures, or employing logical reasoning based on systemmodels. The
objective is to accurately identify the faulty component or subsystem, enabling targeted
maintenance actions and minimizing system downtime.

3.2.1 Four Types of Fault Diagnosis Methods

Fault diagnosis can be approached using various methods, which can be classified into four
distinct categories.

1. Model-Based:Model-based fault diagnosis methods utilizemathematical models of the
system to detect and isolate faults. These methods rely on system knowledge, such as
physical principles or system dynamics, to develop analytical or numerical models. By
comparing thepredicted systembehaviorwith theobserveddata,model-based approaches
can identify deviations and attribute them to specific faults. Techniques like fault signa-
ture analysis, parameter estimation, and residual generation are commonly employed in
model-based fault diagnosis. Model-based methods can be very accurate and efficient,
but they require a good understanding of the system and its behavior.

30

2. Data-Driven: Data-Driven fault diagnosis methods rely onML and data analytics tech-
niques to detect and isolate faults. These methods utilize historical data collected from
sensors and other monitoring sources to build models and algorithms that can identify
patterns associated with specific fault conditions. Data-Driven approaches include tech-
niques like artificial neural networks, support vector machines, decision trees, and clus-
tering algorithms. They excel in handling complex, non-linear relationships and can
adapt to changing system behaviors. Data-Driven methods are often used when there
is not enough knowledge about the system to develop an accurate model, or when the
system’s behavior is too complex to model accurately. Data-driven methods can be very
effective in identifying faults, but they require large amounts of data and may be less
accurate than model-based methods.

3. Signal-Based: Signal-Based fault diagnosis methods focus on analyzing the system’s in-
put and output signals to detect and isolate faults. These methods leverage signal pro-
cessing techniques, statistical analysis, and pattern recognition algorithms to identify
abnormal patterns or deviations in the signals. Signal-based approaches often involve
frequency analysis, time-frequency analysis, statistical hypothesis testing, and pattern
recognition algorithms to detect and isolate faults. Signal-Basedmethods are often used
when the system is complex and difficult to model, or when there is limited data avail-
able. Signal-Based methods can be very effective in identifying faults, but they require
specialized knowledge of the system and its signals.

4. Hybrid: Hybrid fault diagnosis methods combinemultiple approaches, such asModel-
Based, Signal-Based, and Data-Driven techniques, to achieve more robust and accurate
fault detection and isolation. By integrating complementarymethodologies, hybridmeth-
ods aim to leverage the strengths of each approach andmitigate their limitations. These
methods can enhance fault diagnosis performance by consideringmultiple aspects of the
system, combining diverse information sources, and incorporating expert knowledge.

Overall, the choice of fault diagnosis method depends on the specific characteristics of the
system analyzed, as well as the available data, expertise and computational resources. Figure 3.1
illustrates the categorization of various fault diagnosis methods.

31

StochasticFault Diagnosis
Methods

M odel-Based

Signal-Based

Data-Driven

Hybrid

Deterministic

Time Domain

Frequency Domain

Time Frequency

Quantitative

Qualitative

Expert System

Quality Trend Analysis

Statistical Analysis Based

Non-Statistical Analysis Based

Figure 3.1: Fault Diagnosis Methods Overview

3.3 Fault Prognosis

Fault prognosis refers to the process of estimating the Remaining Useful Life (RUL) or the Es-
timated Time To Failure (ETTF) of a system or component. It involves predicting the future
behaviour, performance, or health condition of the system based on the analysis of historical
data and the current state of the system. Fault prognosis aims at providing early warnings or
alerts about impending failures, allowing for proactive maintenance actions to be taken to pre-
vent or mitigate the consequences of the failure. The objective of fault prognosis is to provide
accurate and timely information about the expected future behaviour of the system, includ-
ing the time at which a failure is likely to occur. This information enables decision-makers to
plan maintenance activities, optimize resource allocation, and minimize downtime and costs
associated with unexpected failures.

3.3.1 Four Types of Fault Prognosis Methods

As with fault diagnosis, fault prognostics can also be addressed using various methods, which
can be classified into four distinct categories:

1. Model-Based:Model-basedmethods utilizemathematical models that represent the be-
havior and dynamics of the system under normal and faulty conditions. These models
are typically developed based on physical principles, system specifications, or empirical

32

data. By simulating the system’s behavior over time, Model-Based methods can fore-
cast its degradation and predict potential faults. These methods are particularly effec-
tive when accurate models are available and when the system’s behavior can be well-
characterized.

2. Data-Driven: Data-Driven methods leverage historical data collected from the system
to make predictions about its future behavior. These methods utilize statistical analysis,
ML, and pattern recognition techniques to extract patterns, trends, and anomalies from
the data. By analyzing the temporal or spatial relationships in the data, Data-Driven
methods can forecast potential faults or degradation. Data-Driven methods are partic-
ularly advantageous when sufficient historical data is available, allowing for robust and
accurate predictions.

3. Knowledge-Based: Knowledge-Based methods rely on expert knowledge and domain-
specific rules tomake predictions about the future behavior of a system. Thesemethods
utilize predefinedpatterns, rules, or heuristics derived from experience or existing knowl-
edge bases. Knowledge-Based methods are beneficial when there is a wealth of domain
expertise available and when the system’s behavior can be effectively captured through
logical rules or expert opinions.

4. Hybrid:Hybridmethods combinemultiple approaches, such asModel-Based,Knowledge-
Based, and Data-Driven methods, to achieve more accurate and comprehensive fault
prognosis. By leveraging the strengths of different techniques, Hybrid methods can
overcome limitations and enhance the predictive capabilities of fault prognosis systems.
Thesemethods often integrate multiple data sources, domain knowledge, and advanced
algorithms to provide a holistic and reliable prognosis.

Overall, the choice of fault prognosis method depends on the specific characteristics of the
system or being analyzed, as well as the available data, knowledge, and expertise. Figure 3.2
provides representation of the classification of different failure prognosis methods.

33

Fault Prognosis
Methods

M odel-Based

Knowledge-Based

Data-Driven

Hybrid

Fuzzy Logic

Signal Prognosis Technique

Expert System

Regression-Based Methods

Artif icial Intelligence Methods

Artif icial Neural Network

Support Vector Machine

Random Forest

Deep Learning

Probabilistic-Based Methods

Markov-Based Methods

Figure 3.2: Fault Prognosis Methods Overview

3.4 Maintenance Strategies

Maintenance strategies play a crucial role in keeping sufficient level of performance and extend-
ing the life of systems and components. Two commonly employed strategies are Time-Based
Maintenance and Condition-Based Maintenance. This section delves into the exploration of
these strategies and their application within the context of DPHM.

• Time-Based Maintenance (TBM): TBM is a preventive maintenance strategy that in-
volves performing maintenance activities at predetermined intervals or fixed time inter-
vals. These intervals are typically determined based on historical data, manufacturer rec-
ommendations, or regulatory requirements. TBM aims to prevent failures by replac-
ing components or conducting maintenance tasks before their expected useful life is ex-
ceeded. TBMoffers several advantages, including simplicity in planning and scheduling
maintenance activities, compliance with regulatory requirements, and the ability to ad-
dress known failure modes. However, it can also result in unnecessary maintenance ac-
tions and associated costs when components or systems are replaced before reaching the
end of their useful life. Moreover, TBMmay not effectively capture the actual degrada-
tion and health condition of the system, leading to potential risks or unexpected failures.

• Condition-BasedMaintenance (CBM):CBM is a proactivemaintenance strategy that
relies on real-time monitoring and assessment of the system’s condition. CBM utilizes

34

sensor data, diagnostics, and prognostics to detect anomalies, assess the health of compo-
nents or systems, and determine the optimal timing for maintenance actions. By moni-
toring the actual condition of the system, CBM aims to minimize unnecessary mainte-
nance andmaximize the operational lifespan of components. CBMoffers several advan-
tages over TBM. It allows formaintenance actions to be performed only when necessary,
based on the actual health condition of the system. This approach reduces maintenance
costs, optimizes resource allocation, and minimizes downtime. CBM also enables early
detection of faults or degradation, facilitating proactive decision making and minimiz-
ing the risk of unexpected failures. However, implementing CBM requires advanced
sensor systems, data analysis capabilities, and predictive models to accurately assess the
system’s condition and predict maintenance needs.

In practice, a combination of TBM and CBM strategies can be employed to optimize main-
tenance activities and achieve the most effective maintenance outcomes. This integrated ap-
proach leverages the strengths of both strategies, taking advantage of the predictability of TBM
for certain failuremodeswhile incorporating the real-time conditionmonitoring and proactive
decision making of CBM.

By integrating TBM and CBM, maintenance actions can be tailored for the specific needs
and health condition of each component or system. This hybrid approach optimizes mainte-
nance scheduling, reduces costs, minimizes downtime, and enhances the overall reliability and
performance of aerospace systems.

In the context of DPHM, the selection of an appropriate maintenance strategy depends on
various factors, including the criticality of the components, system complexity, available mon-
itoring capabilities, and operational requirements.

3.5 Recovery and Preventive Actions

In the field of Diagnosis, Prognosis, and Health Monitoring (DPHM) for aerospace systems,
the process of fault diagnosis and fault prognosis provides valuable insights into the health con-
dition of the system. However, it is equally important to take appropriate actions based on
the diagnostic and prognostic results to ensure the safe and reliable operation of the system. In
this section, the focuswill be on exploring recovery actions andpreventive actions, emphasizing
their significance and application in both general and space environments.

35

Recovery Actions

Recovery actions refer to the correctivemeasures taken after the fault detection and isolation to
restore the system to its normal or desired operating state. These actions aim to rectify the iden-
tified faults, eliminate any adverse effects, and bring the systemback to its optimal performance.
Depending on the nature of the fault, recovery actions can involve various steps such as com-
ponent replacement, system reconfiguration, software updates, or adjustments in operational
parameters.

In the context of space missions, recovery actions are particularly critical due to the harsh
and unforgiving environment of space. The remoteness of space systems and the limited abil-
ity for human intervention necessitate efficient and autonomous recovery procedures. Space
agencies and satellite operators employ specialized protocols and procedures to address faults
and anomalies encountered in space systems. These protocols often involve onboard diagnostic
systems, redundancy mechanisms, and automated recovery sequences to mitigate the impact
of faults and ensure mission continuity.

Preventive Actions

Preventive actions, as the name suggests, are measures taken proactively tominimize the occur-
rence of faults, failures, or degradation in the system. These actions aim to increase the system’s
reliability, extend its lifespan, and reduce the likelihood of unexpected failures. Preventive ac-
tions can include maintenance activities, system upgrades, design modifications, or changes in
operational procedures.

Satellite operators and space agencies employ comprehensivemaintenance programs and rig-
orous quality control measures to prevent faults and ensure the long-term operation of space
systems. These programs often include regular inspections, scheduledmaintenance tasks, com-
ponent replacements based on predicted lifetimes, and continuous monitoring of critical pa-
rameters to detect early signs of degradation.

The implementation of preventive actions in space systems is often guided by historical data,
predictivemodels, and expert knowledge. By takingproactivemeasures, space operators canop-
timize systemperformance, reduce the risk ofmission failure, and enhance the overall reliability
and availability of satellites and spacecraft.

36

RAW DATA

TS Anomaly
Detect ion

Feature
Extract ion

TS
Classif icat ion

TS Forecast

Classif ication /
Rules

Classif ication /
Rules

Selected
RECOVERY
Action

Fault Locat ion

Selected
PREVENTIVE
Act ion

Symptom Forecast
Symptom
Trip Thresholds

Symptom

ETTF

DIAGNOSTIC LOOP

PROGNOSTIC LOOP

Figure 3.3: Diagnostic and Prognostic Loop

Figure 3.3 combines both diagnostic and prognostic processes. The blue section represents
the diagnostic loop, involving a series of sequential stages such as processing rawdata, extracting
relevant features, detecting anomalies in time series, identifying symptoms, classifying anoma-
lies, locating faults, and selecting appropriate recovery actions. This cycle enables comprehen-

37

sive analysis and resolution of abnormalities within the system. Within the same figure, the
orange section depicts the prognostic loop, which focuses on predicting future symptoms us-
ing historical data, intervening when symptom prediction thresholds are reached, estimating
the remaining time before failure, and selecting preventive actions. This proactive cycle facil-
itates the anticipation and prevention of potential failures, ensuring timely interventions and
enhancing the overall system’s reliability.

3.6 DPHMMethods for Space Systems

In this section, the findings of an extensive literature search on the most widely used DPHM
methods in the space environment, with a specific focus on satellite applications, are presented.
The research aimed to identify the prevalent techniques and algorithms employed for fault di-
agnosis, prognosis, and overall DPHM, providing an overview of the field.

The initial focus of the research was on exploring specific methods employed for fault diag-
nosis. These methods encompass a range of approaches, including data-driven, model-based,
and knowledge-based techniques. Notably, data-driven methods emerged as the most widely
used approaches in the space environment.

Within the model-based approach, two noteworthy works were identified. In 2011, J. Schu-
mann [4] introduced an integrated software and sensor healthmanagement system tailored for
small spacecraft, utilizing Bayesian networks. Similarly, in 2013, S. Xie [5] put forward a fault
diagnosis technique for the satellite power system, also relying on Bayesian networks. These
probabilistic graphical models have proven effective in capturing complex dependencies and
relationships among system variables.

Data-driven approaches, on the other hand, have largely replaced model-based methods in
the realm of space exploration. Due to the intricate nature of satellite systems and the intricate
interactions between their components, model-based techniques are infrequently employed.
The benefits of data-driven approaches have proven to be more advantageous, as they offer
greater adaptability, capture complex relationships, and provide valuable insights that tradi-
tional models cannot achieve. In fact, the data-driven approach encompasses a wide range of
works. In 2015, D.Pan [6] introduced an anomaly detection technique for the satellite power
subsystem using Kernel Principal Component Analysis (KPCA) and associated rules. In 2017,
T.Yairi [7] proposed a data-driven health monitoring method for satellite housekeeping data
based on probabilistic clustering and dimensionality reduction. H.Fang [8], in the same year,
presented a spacecraft power system fault diagnosis method based on a Deep Neural Network

38

(DNN). M.Suo [9] also contributed to fault diagnosis in 2017 by utilizing a variable preci-
sion fuzzy neighborhood rough set model. In 2019, S.Dheepadharshani [10] proposed a mul-
tivariate time-series classification approach for automated fault detection in the satellite power
system, combining KPCA and a multilayer perceptron. In 2020, S.K.Ibrahim [11] used ma-
chine learning techniques such as K-means clustering, logistical analysis of data, and fault tree
analysis for satellite fault diagnosis. B.Xiao and S.Yin [12], in the same year, presented a deep
learning-based data-driven approach for thruster fault diagnosis in satellite attitude control sys-
tems. Finally, the knowledge-based approach includes one paper from 2021. S. Mengqi [13]
introduced a fuzzy-based analysis of thermal effects on component failure for low Earth orbit
satellites using fuzzy logic.

While fault diagnosis techniques play a fundamental role in detecting and isolating faults,
this investigation extended beyond that to encompass comprehensive DPHM methods com-
monly utilized in the spatial domain. Alignedwith the research objectives, the focus was specif-
ically placed on ML and AI techniques, aiming to harness the unique advantages provided by
these advanced approaches.

Under the model-based category, the work of A. Rahimi [14] in 2020 focuses on failure
prognosis for satellite reaction wheels. The proposed method combines Kalman and Particle
filters for accurate prognostication.

In the data-driven category, several works are listed. J.Wang [15], in 2015, presents a progno-
sis method for on-orbit satellite momentumwheels using a neural network. C. Zhang [16], in
2017, introduces a multiobjective deep belief networks ensemble approach for remaining use-
ful life estimation in prognostics. X. Li [17], in 2018, proposes a Deep Convolution Neural
Network (DCNN) method for estimating remaining useful life in prognostics. K. Hundman
[18], also in 2018, suggests the use of LSTMs and non-parametric dynamic thresholding for
detecting spacecraft anomalies. J.Dong [19], in 2019, focuses on deep learning-based multiple
sensors monitoring and abnormal discovery for the satellite power system using LSTMs. C.-G.
Huang, [20], in the same year, presents a bidirectional LSTM prognostics method under mul-
tiple operational conditions. D. Pan [21], in 2020, presents a satellite telemetry data anomaly
detection approach using a bi-directional LSTM prediction-based model. In 2021, Y. Wang
[22] introduced an anomaly detection method specifically designed for spacecraft telemetry
data. The proposed approach utilizes a Temporal Convolutional Neural Network (TCNN)
to identify and flag any abnormal patterns or behavior in the data. In the same year, J. Murphy
[23] conducted a comprehensive review focusing on machine learning algorithms and hard-
ware for space applications. The review particularly highlights LSTM-based methods used for

39

fault prognosis in space. It provides valuable insights into the use of LSTMmodels for analyz-
ing and predicting faults in space systems. Also in 2021, M.Sirajul Islam and A.Rahimi [24]
presented a fault prognosis technique for satellite reaction wheels. The proposed approach uti-
lizes a Two-Step LSTM Network to forecast and anticipate potential failures in the reaction
wheels. M. ElDali and K. D. Kumar [25] introduced a fault diagnosis and prognosis approach
for aerospace systems in the same year. Themethod employs aGrowingRecurrentNeuralNet-
work (GRNN) and LSTM to diagnose faults and provide prognostic insights, enabling proac-
tive maintenance and efficient system management. In 2021, D. Han [26] proposed a remain-
ing useful life prediction approach specifically for spacecraft bearings. The method utilizes
low-frequency current data and combines an autoregression model, backpropagation neural
network, and CNN to accurately estimate the remaining useful life of the bearings. Further-
more, C.Wang [27] presented a data-driven degradation prognostic strategy for aero-engines
operating under various operational conditions. The approach incorporates a deep forest clas-
sifier andLSTMto effectively predict the degradation of aero-engines and provide timelymain-
tenance recommendations. Z. Zeng [28], in 2022, focuses on satellite telemetry data anomaly
detection using aCausalNetwork and Feature-Attention-based LSTM(CN-FA-LSTM).A.-E.
R.Abd-Elhay [29], in the same year, presents a reliable deep learning approach for time-varying
fault identification, using a one-dimensionalCNNwithLSTM,with a case study on spacecraft
reactionwheels. V.Muthusamy andK.D.Kumar [30], in 2022, discusses failure prognosis and
remaining useful life prediction of control moment gyroscopes on-board satellites, employing
a general path model and Bayesian updating. Finally, X. Wei [31], in 2022, proposes a fault
diagnosis method for spacecraft control systems based on Principal Component Analysis and
Residual Network (PCA-ResNet).

It is evident that the identifiedmethods predominantly fall under the data-driven paradigm,
with only one example incorporating amodel-based approach. Within the realmof data-driven
algorithms, LSTM(Long Short-TermMemory) emerges as themostwidely adopted algorithm,
manifesting in its fundamental formulation aswell as various iterations such as Bi-LSTM,Two-
Step LSTM, and VarLSTM. The popularity of LSTM can be attributed to its ability to effec-
tively capture temporal dependencies and handle sequential data, making it a favored choice in
DPHM applications.

In addition toLSTM, other neural network-based algorithms have been employed in the spa-
tial domain. These include Deep Convolutional Neural Network (DCNN), Temporal Con-
volution Neural Network (TCNN), Growing Neural Network (GNN), and Convolutional
Recurrent Neural Network (CRNN). By harnessing the power of deep learning, these algo-

40

rithms excel in extracting high-level features and detecting intricate patterns from sensor data
or telemetry parameters.
The adoption of these diverse algorithms signifies the growing significance of ML and AI

techniques in DPHM applications within the space environment. This trend highlights the
recognition of the potential ofML and AI in enhancing fault diagnosis, prognosis, and overall
system health management in space-related contexts.

3.7 Summary of Findings

After a thorough analysis of the popularmethods and algorithmsused inDPHMfor the spatial
environment, a critical stage in the research was encountered: the decisive selection of an algo-
rithm to serve as the fundamental framework for the DPHM system. Based on the knowledge
gained throughout the research, the decision to utilize the LSTM network was made. This
selection is motivated by several factors:

• First, as shown in the previous section, LSTM emerges as the most widely used network
in the field of DPHM. Its wide adoption, coupled with its growth and use beyond the
boundaries of the space industry, attests to its versatility and ability to capture temporal
dependencies and effectively handle sequential data.

• Moreover, the sustained popularity of LSTM, both within and outside the space indus-
try, reinforces its position as a reliable choice for DPHM applications. This sparked the
interest of S.A.T.E., which expressed a desire to explore and evaluate the capabilities of
LSTM. In fact, since S.A.T.E. during the last two decades developed proprietary meth-
ods that are part of diagnostics and prognostics commercial solutions, the comparison
between the mentioned proprietary methods against state-of-the-art techniques (such
as the LSTM) can provide added value to the company. Consequently, the decision
to adopt LSTM for the DPHM system aligns with industry trends and presents an op-
portunity for S.A.T.E. to delve into the practical implementation and evaluation of this
network using real satellite data.

The next chapter delves into a detailed exploration of the intricate architecture of LSTM,
providing a thorough analysis of its advantages and limitations. Real-world case studies where
LSTMhas demonstrated successful application are studied to gain valuable insights and knowl-
edge. These findings will serve as a foundation for implementing a tailored DPHM system.

41

42

4
Long Short-TermMemory (LSTM)

Network

4.1 Introduction to LSTM

Long Short-TermMemory (LSTM) is a type of recurrent neural network (RNN) architecture
that addresses the limitations of traditional RNNs in capturing long-term dependencies in se-
quential data. Unlike standard RNNs, LSTMnetworks have the ability to remember informa-
tion for extended periods, making them suitable for tasks involving sequences with long-range
dependencies. They were introduced by Hochreiter and Schmidhuber (1997) [32], and were
refined and popularized by many people in following work.

LSTM networks are designed to overcome the vanishing gradient problem, which hampers
the training ofRNNsby causing the gradients to diminish exponentially over time. Byutilizing
a specialized memory cell and gating mechanisms, LSTM effectively retains and propagates
relevant information through the sequences, allowing it to capture dependencies over longer
time horizons.

The importance of LSTM stems from its wide range of applications across various domains.
In natural language processing, LSTMhas achieved significant success in tasks such asmachine
translation, sentiment analysis, and speech recognition. The ability of LSTM to model and
understand the context and semantics of language has made it a powerful tool in processing

43

sequential data.
Additionally, LSTM has demonstrated remarkable performance in time series prediction

and forecasting. Its ability to capture long-term dependencies enables accurate predictions in
domains such as financial market forecasting, weather prediction, and energy load forecasting.
Furthermore, LSTMnetworks have found applications in image and video processing tasks.

They excel at tasks such as object detection, image captioning, video classification, and video
summarization. By effectively modeling temporal relationships within image and video se-
quences, LSTM enhances the understanding and analysis of dynamic visual data.
The versatility and effectiveness ofLSTMmake it a valuable tool inmanydomains, including

healthcare, finance, robotics, and more. Its ability to handle variable-length input sequences
and capture long-term dependencies makes it particularly well-suited for tasks where context
and temporal dynamics play a crucial role.
In the subsequent sections, the architecture and functionality of LSTM will be explored,

providing a comprehensive understanding of its strengths, weaknesses, and applications. The
focuswill be on adapting andutilizingLSTMin the specific context of the spacedomain, taking
into account the unique challenges and opportunities that arise in this field.

4.2 LSTMArchitecture

LSTMnetworks are composed of a distinct architecture that enables them to capture and prop-
agate information over long sequences effectively. In this section, the focuswill be on exploring
the structure and components of an LSTM network, emphasizing the key elements that con-
tribute to its distinctive functionality.

LSTM, like other RNNs, is composed of repeated modules within its network architecture.
This structure can be visualized in Figure 4.1, where xt represents the input and ht represents
the output for the module at time t. What sets LSTM apart from traditional RNNs is the
distinctive arrangement and configuration of these cells.

Therefore, the core of an LSTM network is this LSTM cell, which consists of several inter-
connected components. The LSTM cell is designed to retain and control the flow of informa-
tion over time, allowing the network to selectively remember or forget information as needed.

The fundamental element of an LSTM cell is the memory cell, also referred to as the cell
state, the horizontal line running through the top of the diagram. The Figure 4.2 clearly illus-
trate the concept. The memory cell serves as the ”long-term memory” of the LSTM network.

44

Figure 4.1: LSTM Chain

Figure 4.2: LSTM Cell State

It preserves information from past time steps and carries it forward, allowing the network to
capture dependencies over extended sequences.
To control the flow of information into and out of the memory cell, LSTM employs three

types of gates: the input gate, forget gate, and output gate. These gates are composed of sigmoid
neural network layers and have weights that are adaptively adjusted during the training process.

4.2.1 Step-by-Step LSTMWalk Through

First, the forget gate (Figure 4.3) determines what information is retained or discarded from the
memory cell. It regulates the flow of information from the previous time step by controlling
the amount of information that is forgotten. The forget gate considers the current input and
the previous hidden state to decidewhich information is no longer relevant. It looks at ht−1 and
xt, and outputs a number between 0 and 1 for each number in the cell stateCt−1. A 1 represents
“completely keep this” while a 0 represents “completely get rid of this”.

Second, the input gate (Figure 4.4) determines howmuch new information is incorporated

45

Figure 4.3: LSTM Forget Gate

Figure 4.4: LSTM Input Gate ‐ Part 1

into thememory cell from the current time step. It selectively updates thememory cell based on
the relevance and significance of the new input. The input gate takes into account the current
input and the previous hidden state to make this decision. In details, the tanh layer creates a
vector of new candidate values, Ct̃, that could be added to the state.

Next, it’s now time to update the old cell state, Ct−1, into the new cell state Ct (Figure 4.5).
The previous steps have determined the necessary actions, and now it is time to implement
them. The old state is multiplied by ft, disregarding the previously discarded elements. Subse-
quently, it ∗ Ct̃ is added. These represent the updated candidate values, adjusted based on the
designated update proportions for each state value.

Figure 4.5: LSTM Input Gate ‐ Part 2

46

Figure 4.6: LSTM Output Gate

Finally, the output gate controls the flow of information from thememory cell to the current
time step’s output. It selectively exposes the memory cell’s contents, considering the current
input and the previous hidden state. The output gate allows the LSTM network to determine
which information is relevant and should be passed on as the output. The cell state is passed
through a tanh function to restrict the values within the range of -1 to 1. Following this, it
is multiplied by the output of the sigmoid gate, enabling us to selectively generate the desired
information (see Figure 4.6).

Flow informationwithin an LSTM cell

1. At each time step, the input gate decides how much new information should be stored
in the memory cell.

2. The forget gate determines which information from the previous time step should be
discarded from the memory cell.

3. The memory cell updates its contents based on the combined input from the input gate
and the forget gate.

4. The output gate determines which information from thememory cell should be exposed
as the output for the current time step.

5. The output of the LSTM cell, along with the updated hidden state, is passed on to the
next time step or used for further processing.

By leveraging the memory cell and the gating mechanisms, LSTM networks can effectively
capture and propagate information over extended sequences, enabling them to model long-
term dependencies and address the vanishing gradient problem.

47

4.3 Functionality and Advantages of LSTM

LSTMnetworks possess several key functionalities and advantages thatmake themhighly effec-
tive inmodeling sequential data. This section focuses on discussing the remarkable capabilities
of LSTM networks and highlighting their advantages over other recurrent neural network ar-
chitectures.

One of the primary strengths of LSTM networks is their ability to capture long-term de-
pendencies in sequential data. Traditional recurrent neural networks (RNNs) struggle with
this task due to the vanishing gradient problem, where gradients diminish exponentially over
time, making it challenging to propagate information across distant time steps. LSTM net-
works address this issue by utilizing the memory cell and gating mechanisms, allowing them
to retain and propagate information over extended sequences. This enables LSTM networks
to capture and leverage long-term dependencies, making them particularly suitable for tasks
involving time-series data or natural language processing (NLP).

The vanishing gradient problem is mitigated in LSTM networks through the use of the for-
get gate and the input gate. The forget gate allows the network to selectively discard irrelevant
information from thememory cell, preventing it from being overwhelmed by irrelevant or out-
dated data. On the other hand, the input gate enables the network to selectively update the
memory cell with new and relevant information. By adaptively adjusting the weights of these
gates during the training process, LSTMnetworks can effectively manage the flow of gradients
and alleviate the vanishing gradient problem, enabling them to capture meaningful long-term
dependencies.

Another notable advantage of LSTM networks is their capability to handle variable-length
input sequences. Unlike traditional feed-forward neural networks that require fixed-size in-
puts, LSTM networks can process sequences of varying lengths. This flexibility makes LSTM
networks well-suited for tasks involving sequential data with irregular or unpredictable lengths,
such as speech recognition, sentiment analysis, or time-series forecasting. The ability to handle
variable-length sequences allows LSTMnetworks to capture dependencies within different seg-
ments of the input, making them robust and adaptable to various real-world applications.

Additionally, LSTM networks offer several advantages over other recurrent neural network
architectures. These advantages include:

• Improvedmemory retention: Thememory cell inLSTMnetworks enables themto store
and access information over long sequences, making them particularly effective in mod-
eling temporal dynamics and capturing subtle patterns in sequential data.

48

• Enhanced training efficiency: Bymitigating the vanishing gradient problem, LSTMnet-
works facilitatemore efficient training, leading to faster convergence and improved learn-
ing outcomes.

• Increased expressiveness: The gatingmechanismsofLSTMnetworks provide additional
control and flexibility in modeling complex relationships within sequential data, allow-
ing them to capture intricate dependencies and exhibit a higher level of expressiveness.

• Adaptability to diverse domains: LSTMnetworks have demonstrated success in various
domains, including natural language processing, speech recognition, time-series analysis,
and robotics, showcasing their versatility and applicability in diverse problem domains.

In summary, LSTM networks excel in capturing long-term dependencies, mitigating the
vanishing gradient problem, and handling variable-length input sequences. Their functional-
ity and advantages make them a powerful tool for modeling sequential data and addressing
challenges associated with temporal dependencies.

4.4 Training and Learning in LSTM

Training LSTM networks involves optimizing their parameters to learn and capture meaning-
ful patterns in sequential data. This section presents an overview of the training process in
LSTM networks, highlighting key concepts such as backpropagation through time (BPTT),
gradient descent, and the significance of forget gates and input gates in the learning process.

The training process in LSTM networks is based on the principles of supervised learning,
where the network learns from a labeled dataset to make predictions or generate sequences.
The labeled dataset consists of input sequences and their corresponding target outputs. During
training, the LSTM network is exposed to the input sequences one timestep at a time, and its
predictions are compared to the corresponding target outputs. The discrepancy between the
predicted outputs and the targets is quantifiedusing a loss function, such asmean squared error
or cross-entropy loss.

To optimize the LSTM network’s parameters, the backpropagation through time (BPTT)
algorithm is employed. BPTT extends the traditional backpropagation algorithm to recurrent
neural networks by unfolding the network over time and computing gradients at each timestep.
This allows the gradients to flow backward through time, enabling the network to learn from
the entire sequence.

Gradient descent is then used to update the LSTMnetwork’s parameters based on the com-
puted gradients. The gradients indicate the direction andmagnitude of parameter adjustments

49

required to minimize the loss function. By iteratively updating the parameters in the opposite
direction of the gradients, the network gradually converges towards an optimal set of parame-
ters that minimize the overall prediction error.
The forget gates and input gates play crucial roles in the learning process of LSTMnetworks.

During training, these gates are adjusted to control the flowof informationwithin the network.
The forget gate determineswhich information shouldbediscarded fromthememory cell, while
the input gate decides which new information should be added. By adapting the weights of
these gates during training, the LSTM network can selectively retain and update information
based on its relevance and importance for accurate predictions.
The forget gate and input gate are updated using the gradients computed during BPTT.The

gradients provide information about the contribution of each gate to the overall loss function.
By adjusting the gate weights based on these gradients, the LSTM network can learn to effec-
tively control the flow of information and enhance its predictive capabilities. This mechanism
allows the network to focus on relevant features and suppress irrelevant or noisy information
during training.
Through the iterative training process, LSTM networks learn to capture complex temporal

dependencies and make accurate predictions on sequential data. The combination of BPTT,
gradient descent, and the adaptability of forget gates and input gates enables LSTM networks
to effectively learn from sequential data and optimize their performance over time.

4.5 Applications of LSTM in Various Domains

The versatility and effectiveness of LSTM networks have led to their successful application in
various domains. In this section, notable applications ofLSTMwill be reviewed in the domains
of natural language processing, time series prediction and forecasting, and image and video
processing tasks.

LSTMnetworkshavedemonstrated remarkable success innatural languageprocessing (NLP)
tasks, such as language modeling, machine translation, sentiment analysis, and text generation.
Due to their ability to capture long-term dependencies, LSTM networks excel in understand-
ing and generating coherent and contextually relevant sequences of words. They have proven
particularly effective in tasks where the context of previous words or phrases is crucial for accu-
rate prediction and generation.

In time series prediction and forecasting, LSTM networks have shown significant improve-
ments over traditional methods. By considering the temporal dependencies in the data, LSTM

50

models can capture complex patterns and make accurate predictions. This makes them well-
suited for tasks such as stock market prediction, weather forecasting, energy load forecasting,
and anomaly detection in time series data. The ability of LSTM networks to handle variable-
length input sequences makes them particularly valuable in scenarios where the length of the
historical data varies.
LSTMnetworks have also found applications in image and video processing tasks. In image

recognition and classification, LSTM networks can be combined with Convolutional Neural
Networks (CNNs) to process sequential image data effectively. This enables the analysis of
videos, action recognition, and generating textual descriptions of visual content. Additionally,
LSTMnetworks have been used in video analysis tasks, including video captioning, video sum-
marization, and video prediction. The sequential nature of video data makes LSTM networks
valuable for capturing temporal dependencies and modeling motion dynamics.

The applications of LSTM networks extend beyond these domains, with successful utiliza-
tion in speech recognition, music generation, medical diagnosis, and more. Their ability to
capture long-term dependencies, handle variable-length sequences, and mitigate the vanishing
gradient problem makes them a powerful tool in many complex and sequential data analysis
tasks.
However, it is worth noting that while LSTM networks have achieved impressive results in

these applications, they are not without limitations. LSTMmodels can be computationally ex-
pensive, especially for large-scale datasets, which may pose challenges in real-time applications
or resource-constrained environments. Additionally, training LSTM networks requires a sub-
stantial amount of labeled data to effectively capture the underlying patterns in the data.
In the following section, the considerations and contrasts of employing LSTM networks in

the space domainwill be discussed. This domain involves the analysis and prediction of sequen-
tial data, which holds significant importance in ensuring the success of satellite operations and
missions.

4.6 LSTM in the Space Domain

The application of LSTM networks in the space domain brings both challenges and oppor-
tunities. This section analyzes the specific considerations of utilizing LSTM in space-related
applications, examines the adaptation of LSTM to accommodate space-specific data and con-
straints, and explores the potential enhancements that LSTM can offer in satellite operations,
data analysis, and anomaly detection within the space domain.

51

Space-related applications often involve dealing with complex and dynamic datasets, such
as telemetry data, sensor readings, satellite imagery, and orbital information. LSTM networks
offer a promising approach to address the challenges associated with analyzing and predict-
ing sequential space data. By leveraging the ability to capture long-term dependencies, LSTM
models can effectively handle the temporal characteristics of space data, allowing for improved
understanding and prediction of various space phenomena.
One significant challenge in the space domain is the limited availability of labeled data, par-

ticularly for rare events or anomalies. LSTM networks require an adequate amount of labeled
data to learn and generalize patterns effectively. However, anomalies or critical events in space
missions are relatively rare, making it challenging to collect sufficient labeled examples. There-
fore, careful data collection, preprocessing, and augmentation techniques are necessary tomax-
imize the potential of LSTMmodels in space anomaly detection and prediction tasks.
Another crucial aspect is the adaptation of LSTM to handle space-specific data and con-

straints. For example, space telemetry data often exhibits irregular sampling rates, missing val-
ues, andnoisymeasurements. LSTMnetworks canbemodified to accommodate irregular time
intervals and handlemissing data effectively, ensuring robust performance even in the presence
of data irregularities. Additionally, incorporating domain knowledge into the LSTM architec-
ture, such as including physical constraints or contextual information, can further enhance the
model’s performance in space-related applications.
LSTM networks have the potential to significantly enhance satellite operations in various

ways. By leveraging the sequential nature of space data, LSTMmodels can assist in satellite or-
bit prediction, aiding in precise maneuver planning and optimizing satellite operations. More-
over, LSTMnetworks can improve the analysis of satellite sensordata, enabling real-time anomaly
detection, fault diagnosis, and health monitoring of satellite subsystems. Early detection of
anomalies or deviations from expected behavior can facilitate proactive maintenance and en-
hance the overall reliability and longevity of space systems.
Furthermore, LSTM networks can be utilized in data analysis tasks to extract meaningful

patterns and trends from large volumes of satellite imagery and remote sensing data. By in-
corporating LSTM with convolutional neural networks (CNNs), complex spatio-temporal
patterns can be captured, enabling improved land cover classification, change detection, and
environmental monitoring.
In summary, LSTM networks offer significant potential in the space domain, enabling en-

hanced satellite operations, data analysis, and anomaly detection. By addressing the challenges
associatedwith space-specific data and constraints, LSTMmodels canprovide valuable insights

52

into space phenomena and contribute to the success of space missions. However, it is crucial
to carefully design and adapt LSTM architectures to suit the specific requirements and charac-
teristics of space-related applications.

4.6.1 Examples of LSTM in Space Domain

In this subsection, notable examples are explored to demonstrate the successful utilization of
LSTMnetworks within the field of space exploration and related applications. These examples
shed light on the remarkable effectiveness of LSTM technology, particularly in the field of fault
diagnosis and prognosis, with a special emphasis on the AOCS. By focusing on the diagnosis
and prediction of faults in crucial components like reactionwheels and gyroscopes, these exam-
ples provide insights into the practical applications of LSTM and its potential to revolutionize
decision making and operational efficiency in space missions.

Example 1 | AReliable Deep Learning Approach for Time-Varying Identifica-
tion: Spacecraft ReactionWheels Case Study [29]

This study presents a fast and accurate end-to-end architecture for detecting and identifying
anomalies occurring in spacecraft reaction wheels. The proposed approach utilizes a combi-
nation of One-Dimensional Convolutional Neural Network (1D-CNN) and LSTM network
architecture. The 1D-CNN is employed to extract informative features from the raw residual
signals, while the LSTM layer effectively handles the time series data and learns long-term de-
pendencies. Experimental results demonstrate the reliability and robustness of the proposed
algorithm, offering a compact system architecture for anomaly detection and identification
in spacecraft reaction wheels. The use of convolutional neural networks (CNNs) reduces the
number of trainable parameters through parameter sharing and local connectivity. CNNshave
been widely employed in pattern recognition applications, primarily due to their optimal con-
figuration and ability to extract discriminative features from raw signals. Additionally, the
integration of LSTM overcomes the vanishing gradient problem and enables the analysis of
patterns in long sequences of data. By combining the 1D-CNN and LSTM networks in a sin-
gle architecture for reaction wheel fault diagnosis, the contributions of this work [29] can be
summarized as follows:

• The proposed deep learning architecture offers a superior approach for spacecraft re-
action wheel fault diagnosis, seamlessly integrating the feature-extraction and anomaly

53

classification phases into a single process, eliminating the need for time-consuming fea-
ture extraction methods.

• The 1D-CNN with LSTM fault diagnosis structure effectively captures long-term de-
pendencies from the reaction wheel residual time-series signals, enabling the diagnosis
of time-varying faults with a simple architecture and superior performance.

• The compact nature of the proposed deep learning architecture, with a small memory
footprint, makes it highly suitable for safety-critical real-time applications, both in gen-
eral and specifically for onboard computer fault diagnosis tasks in spacecraft.

• By directly learning discriminative features from the raw signals, the proposed fault diag-
nosis approach can be adapted for other spacecraft subsystems and different industrial
systems as well.

The considered faults include bus voltage (Vbus) faults, faults caused by variations in motor
current (Im), and faults due to an increase in bearing friction. These faults commonly occur
due to the internal non-linearity and complex design of reaction wheels. Figure 4.7 illustrates
the proposed Fault Detection and Identification (FDI) scheme for spacecraft reaction wheels,
consisting of two phases:

1. Residual generation phase: The residual signal is generated by calculating the difference
between the measured torque and the estimated torque.

2. CNN-LSTM phase: The residual time-series signals are processed to extract distinctive
features representing different reaction wheel states.

Tthe model architecture is depicted in Figure 4.8, comprising four main layers: the convolu-
tional layer, the pooling layer, the LSTM layer, and the fully connected layer.

Torque estimated using Radial Bias Function
Neural Network (RBFNN) model for the

Reaction Wheels.

Spacecraft On-Board Computer

RBFNN RW
Model

?
Estimated Torque

Actual Torque

Residual Signal CNN - LSTM
Model RW Status:

- N (normal state)
- F1 (low bus voltage fault)
- F2 (high bus voltage fault)
- F3 (motor current losses fault)
- F4 (high frict ion fault)

Est imated Torque

Figure 4.7: FDI Scheme for the Spacecraft RW (Example 1)

54

RW Dataset
Preparation

Split - Dataset Pre - Processing 1D - CNN Layer Pooling Layer LSTM Network
RW Status

Classif ication

Dataset partitioned into
training, validation, and

testing

The raw residual singnals are normalized and applied
to the CNN layer

M ax pooling layer to
reduce the dimensions of
the input feature maps

LSTM captures the internal features of the residual signal, and
finally, fed to the fully connected layers (soft-max classifier)

Figure 4.8: Architecture for RW Fault Diagnosis (Example 1)

Example 2 | Fault Prognosis of Satellite ReactionWheels Using A Two-Step
LSTMNetwork [24]

Reaction wheels are extensively used actuators in the AOCS, but they are prone to premature
failure. Failure in reaction wheels often arises from technical issues such as inadequate bearing
lubrication and uneven distribution of frictional torque, resulting in motor torque variations.
However, measuring motor torque directly from onboard sensors is not feasible. To address
this challenge, the study [24] proposes the utilization of a LSTM network to estimate motor
torque using available measurable data.

The main objective of this work is to predict the future performance degradation of a re-
action wheel, ultimately determining its Remaining Useful Life (RUL) and ensuring smooth
system performance. To achieve this, a framework is developed to forecast future system states
and parameters based on historical and available sensor data.

The proposed prognostic approach consists of three steps, as illustrated in Figure 4.9.

1. Employing an LSTM network to forecast the system state, which includes Reaction
Wheels speed (wm) and motor current (Im), based on available and historical measure-
ments.

2. Utilizing the forecasted state data and knowledge of the correlation between system state
and system parameters, it is possible to predict future values of system parameters (bus
voltage Vbus, and motor torque Kt) that are directly linked to the health of the system
components. These predicted states are fed into a multivariate LSTM network to pre-
dict critical system parameters.

3. Using the results obtained from the first two steps, the RUL of the system components
can be determined by applying a thresholding technique to the operating ranges of crit-
ical componentnts, thereby generating a systemHealth Index.

55

Forecast Future
System States

Sensors Estimates System
Parameters

Forecast System
Parameters

RUL

Figure 4.9: Stages of Data‐Driven Fault Prognosis (Example 2)

Example 3 | FaultDiagnosis and Prognosis of Aerospace SystemUsingGrow-
ing RecurrentNeural Network and LSTM [25]

This work introduces an AI approach utilizing two innovative neural network models, the
Growing Neural Network (GNN) and variable sequence LSTM (VarLSTM), for automating
the DPHM process in aerospace systems. The proposed model estimates a Health Index (HI)
value by comparing measured telemetry data with predictions generated using the GNN al-
gorithm. Subsequently, the HI value is extrapolated for prognostic purposes. For datasets
with multiple units, the model directly maps the RUL of training units to their correspond-
ing measured features at each instant to make RUL predictions. The work [25] optimizes the
architecture of a recurrent neural network and evaluates its performance in making RUL pre-
dictions for aircraft engines and detecting failures in satellite attitude actuators, specifically Re-
actionWheels. Themodel’s effectiveness is tested on theCMAPSS andPHM08 aircraft engine
datasets (multiple-unit datasets) simulated byNASA, aswell as on single-unit datasets from the
Kepler spacecraft’s reaction wheels.

While the true RUL of a system generally exhibits a linear relationship with time, the sys-
tem’s degradation is typically nonlinear, initially operatingnominally and then gradually deteri-
orating until failure. To ensure accuracy, the learning process employs piece-wise RUL instead
of the true RUL. The piece-wise RUL remains constant until signs of degradation appear, at
which point the RUL starts decreasing linearly.

The available dataset for the Kepler Mission includes features such as Speed, Torque Fric-
tion, Torque Command, Temperature, and Attitude Errors in X, Y, and Z. Test residuals are
calculated by comparing the predictions with the actual speed values. Themean (μ∗), standard
deviation (σ2∗), and 90th percentile (δ∗) values are then computed for the test residual data.
Utilizing the GNN model, predictions are generated, and prediction residuals are calculated.
Similarly, the mean (μ), standard deviation (σ2), and 90th percentile (δ) values are derived from
the prediction residuals data. Figure 4.10 illustrates the framework of the model.

56

Real-Time Normal
Condition Data

Data Processing

Feature Engineering

Test Data Train Data

GRNN Model

Test Residuals

Mean*
Variance*

90th Percentile*

Real-Time
Measurement Data

Prediction Residuals

Mean
Variance

90th Percentile

Prediction
Values

Deviation
Index (DI)

Volatility
Index (VI)

Signif icance
Index (SI)

Probability
SI

Probability
VI

Probability
DI

Health Index

Figure 4.10: Training and Fault Detection Workflow: Flowchart of the Model (Example 3)

TheHealth Index is a performance index that ranges in [0,1] and it indicates the probability
of failure. In this specific case it is the product of three indices: Deviation Index (DI), Volatility
Index (VI) and Significance Index (SI).
Instead, the RUL of the reaction wheels is estimated by first determining a degradation

model for theHI, fromwhich theHI can be extrapolated to predict when it will exceed the fail-
ure threshold. The time fromwhich the extrapolation starts until theHI exceeds the threshold
will be the predicted RUL.

Example 4 | SatelliteTelemetryDataAnomalyDetectionUsingBi-LSTMPre-
diction BasedModel [21]

In work [21], a novel approach for anomaly detection in telemetry time series data is proposed,
utilizing a bi-directional Long Short-TermMemoryNeuralNetwork (Bi-LSTM). Themethod
leverages the strong temporal feature extraction capabilities of Bi-LSTM to model and regress
satellite data, enabling point data anomaly detection by comparing predicted values with real

57

values. To enhance the suitability of the prediction-based model, a dynamic threshold opti-
mization method is incorporated into the framework (Figure 4.11). Experimental results on
three satellite telemetry datasets demonstrate the effectiveness of the proposed method, with
performance outperforming RNN and basic LSTMmodels.

B
i-L

ST
M

 N
etw

ork M
odel T

raining

Original Satellite Telemetry Time Series Data

Data Pre-Processing: Removing NaN Data, Standardization

Real Data
Output

Loss Function
Calculation

Adam
Optimization

Bi-LSTM Cell

Iterative Prediction, Anti-Standardization

Dynamic Threshold Anomaly Detection Analysis

P1 P2 Pn

X1 X2 Xn

Model Predictive
Output

Figure 4.11: Framework of Bi‐LSTM Network Model (Example 4)

Traditional LSTMmodels only consider sequence features in the forward time series order
andoverlook the impact of previous timedata on the current data. However, in the anomaly de-
tection of satellite telemetry data, adjacent telemetry data within the sequence can significantly

58

influence each other, serving as crucial indicators for evaluating the current data. Bi-LSTM ad-
dresses this limitation by processing data in both forward and backward timing directions, cap-
turing the long-termmemoryof time series data, andprovidingpast and future context for each
moment. Consequently, Bi-LSTM effectively captures data characteristics and achieves more
accurate anomaly detection results. Despite the high predictive capabilities of Bi-LSTMand its
support by powerful devices, its application in anomaly detection has been limited. To validate
the performance of the proposed method, experiments were conducted using Soil Moisture
Active and Passive (SMAP) satellite telemetry data.

The real satellite telemetry data provided in the official NASA database was utilized for algo-
rithm verification, including detector temperature in SMAP, angular velocity of SMAP wind-
surfing board, and active power of SMAP power system.
The Bi-LSTM algorithm swiftly adjusts the relationship between the current time data and

the data learned at previous and subsequent times, effectively capturing contextual information
and simplifying complex problems. The experimental results demonstrate that the proposed
Bi-LSTM model improves monitoring efficiency and provides effective decision support for
anomaly detection and adjustment tasks.

Example 5 | Satellite TelemetryData AnomalyDetectionUsingCausalNet-
work and Feature-Attention-Based LSTM [28]

Traditional data-driven methods for satellite telemetry data anomaly detection often suffer
from high false positive rates (FPR) and lack interpretability. To address these challenges, the
work [28] proposes an anomaly detection framework called Causal Network and Feature At-
tention based Long Short-Term Memory (CN-FA-LSTM). The method involves construct-
ing a causal network of telemetry parameters using normalized modified conditional transfer
entropy (NMCTE) and optimizing it through conditional independence tests based on con-
ditional mutual information (CMI). A CN-FA-LSTM model is then established to predict
telemetry data, and a non-parametric dynamic k-sigma threshold updatingmethod is proposed
for setting thresholds. Furthermore,CN-FA-LSTMoffers improved interpretability compared
to other commonly used predictionmodels. The effectiveness and universality of the proposed
method are verified through experiments on two public datasets.

Causality captures the cause-and-effect relationshipbetween factors, reflecting the irreversible
relationship at the physical mechanism level. On the other hand, correlation only describes
a statistical relationship, indicating synchronization or similarity between factors. Therefore,
causality better captures the internal correlation and mechanism of a system compared to cor-

59

relation.

Input: Historical
Telemetry Data

Causal Network Construction
by NMCTE

Redundant Causality Removal
by CMI

Feature-Attention-based
LSTM Modeling

Predicted DataResidualCurrent Data

Non-Parametric Dynamic
k-sigma Threshold Updating

Original Anomalies

Output: Anomalies

Causal Network Analysis
Using LSTM

False Negative Correction &
False Positive Removal

A
no

m
al

y
D

et
ec

ti
on

Anomaly Correct ion

Causal Network Inference

Figure 4.12: Framework of Satellite Telemetry Data Anomaly Detection Using CN‐FA‐LASTM (Example 5)

Therefore, to improve the interpretability and accuracy of data-driven anomaly detection by
discovering causal relationships between telemetry parameters, this new framework called CN-
FA-LSTM was introduced. Figure 4.12 illustrates the framework, and the work [28] presents
the following key contributions:

• Utilizing normalized modified conditional transfer entropy (NMCTE) as a metric to
identify andmeasure the strength of causality in time series data, constructing the causal
network.

• Introducing a conditional independence testmethodbased on conditionalmutual infor-
mation (CMI-CIT) to optimize the causal network by removing redundant causality.

• Developing CN-FA-LSTM, which utilizes the causal network, source parameters, and
target parameter (parameter to be predicted) as inputs, and models and predicts the
telemetry data using a multivariate LSTM with feature attention. CN-FA-LSTM ef-
fectively leverages the causality between telemetry parameters, leading to competitive
performance in anomaly detection.

60

• Introducing a nonparametric dynamic k-sigma threshold updating method that contin-
uously updates the tradeoff coefficient. This method enablesmore reasonable threshold
setting in unsupervised anomaly detection.

• Employing an interpretative structure model (ISM) to analyze the causal network and
correct anomalies, effectively reducing false negatives and false positives (FPs).

To validate the universal applicability of the method, experiments were conducted on the
SMAPandMLSdatasets publishedbyNASA.The experimental results on thesedatasets demon-
strate that the precision, F1-score, and FPR of the proposed method surpass those of other
state-of-the-art methods. Moreover, the time complexity of the method is also satisfactory.

This method enables the study of causality in multivariate and large-scale telemetry data,
improves anomaly sensitivity in model predictions, and provides more reasonable threshold
settings. Additionally, it offers valuable insights for satellite operation and maintenance per-
sonnel to explore the internal mechanisms of satellites.

4.7 Limitations and Considerations

While LSTMnetworks offer several advantages and have proven effective in various domains, it
is important to acknowledge their limitations and consider potential drawbacks when utilizing
them in practical applications. This section aims to highlight the limitations of LSTM net-
works, explore computational requirements and memory constraints, and examine alternative
architectures and potential enhancements to LSTM.

One limitation of LSTM networks is their vulnerability to overfitting, especially when deal-
ing with limited training data. Overfitting occurs when the model becomes too complex and
starts to memorize the training examples instead of learning general patterns. Regularization
techniques such as dropout and weight decay can be employed to mitigate overfitting and im-
prove the generalization capability of LSTM networks.

Another consideration is the computational requirements of LSTM networks, particularly
when dealing with large-scale datasets or complex models. Training LSTM networks can be
computationally expensive and time-consuming, requiring significant computational resources.
Additionally, the memory requirements of LSTM networks can pose challenges, especially
when working with long sequences or high-dimensional data. Efficient memory management
techniques and parallel computing architectures can be explored to mitigate these challenges
and improve the scalability of LSTMmodels.

61

Furthermore, while LSTM networks excel in capturing long-term dependencies, they may
face difficulties in capturing certain types of patterns, such as hierarchical structures or ex-
plicit symbolic rules. Alternative architectures, such as Transformer networks, have emerged
as promising alternatives to LSTM in natural language processing tasks by utilizing attention
mechanisms and self-attention layers. These architectures can offer improved performance in
capturing complex dependencies and long-range interactions, which may be beneficial in spe-
cific space-related applications.

It is also important to consider the interpretability and explainability of LSTM networks.
Deep neural networks, including LSTMs, are often considered black boxes due to their com-
plex and non-linear nature. Understanding the decision-making process of LSTMmodels and
providing explanations for their predictions can be challenging. Interpretability techniques,
such as attention mechanisms and gradient-based methods, can be employed to shed light on
the important features and patterns learned by LSTMnetworks, enhancing their transparency
and trustworthiness in critical space applications.

Moreover, advancements inLSTMvariants and improvements innetwork architectures con-
tinue to expand the capabilities of sequential modeling. Variants such as Gated Recurrent
Units (GRUs) and bi-directional LSTMs offer alternative options for capturing temporal de-
pendencies and have shown promising results in various applications. Additionally, incorpo-
rating external knowledge, domain-specific constraints, or hybridmodels that combine LSTM
with otherML techniques can further enhance the performance and address the limitations of
LSTM networks.

In conclusion, while LSTM networks offer valuable capabilities in capturing long-term de-
pendencies and handling sequential data, it is important to be aware of their limitations and
consider the specific requirements of space-related applications. Mitigating overfitting, manag-
ing computational andmemory constraints, exploring alternative architectures, and improving
interpretability are key considerationswhenutilizingLSTMnetworks. By addressing these lim-
itations and leveraging advancements in the field, LSTM networks can continue to play a vital
role in space applications and contribute to advancements in satellite operations, data analysis,
and anomaly detection.

In the final chapter, the discussion will focus on practical implementation guidelines, offer-
ing recommendations formodel optimization and deployment. Furthermore, potential future
directions in the utilization of LSTM networks in the space domain will be highlighted.

62

4.8 Summary of Findings

In this chapter, a comprehensive exploration of LSTM networks has been conducted, encom-
passing their architecture, functionality, advantages, training process, and applications in vari-
ous domains. Additionally, specific adaptations and considerations required for LSTMutiliza-
tion in the space domain were examined. To conclude this chapter, the key points discussed
will be summarized, strengths and weaknesses of LSTM in the context of space applications
will be reflected upon, and final thoughts on future prospects and potential advancements in
LSTM research will be provided.

Throughout this chapter, a thorough understanding of LSTMnetworks has been obtained.
The introduction highlighted the significance of LSTM and its wide-ranging applications in
natural languageprocessing, time series prediction, and image andvideoprocessing. TheLSTM
architecture was then explored, elucidating its fundamental components such as the memory
cell, input gate, forget gate, and output gate. The capacity of LSTM to capture and retain long-
term dependencies in sequential data was illustrated through the information flow within an
LSTM cell.

The functionality and advantages of LSTMwere discussed, emphasizing its ability to handle
long-term dependencies, address the vanishing gradient problem, and process input sequences
of varying lengths. Remarkable performance and state-of-the-art results achieved by LSTM in
domains like natural language processing, time series prediction, and image and video process-
ing were explored.

The training and learning process of LSTM networks were explained, with a focus on back-
propagation through time (BPTT) and gradient descent. The significance of forget gates and
input gates in the learningprocess, enabling effective adaptation to sequential patternsbyLSTM
networks, was highlighted.

Shifting attention to the applications of LSTM in the space domain, the challenges and op-
portunities associated with its utilization were discussed. The enhancement of satellite opera-
tions, data analysis, and anomaly detection in space through LSTMwere explored, considering
the unique constraints and characteristics of space-related data.

It is crucial to acknowledge the limitations and considerations inherent in LSTM networks.
Potential limitations, including overfitting, computational requirements, and memory con-
straints, were identified. Alternative architectures and improvements to LSTM, such as Trans-
former networks, interpretability techniques, andLSTMvariants likeGRUs andBidirectional
LSTMs, were also discussed.

63

In conclusion, LSTMnetworks offer valuable capabilities in capturing long-term dependen-
cies and handling sequential data, making themwell-suited for various applications in the space
domain. Their ability to process and learn from complex and dynamic data can significantly
enhance satellite operations, data analysis, and anomaly detection in space.
However, it is crucial to address the limitations and consider the specific requirements of

space applicationswhenutilizingLSTMnetworks. This involvesmitigating overfitting,manag-
ing computational andmemory constraints, exploring alternative architectures, and improving
interpretability. By doing so, LSTM networks can continue to advance space-related research
and contribute to the optimization of satellite missions, data processing, and decision-making.
Looking ahead, the future prospects for LSTM research are promising. Further advance-

ments in network architectures, optimization techniques, and interpretability methods will
continue to enhance the capabilities ofLSTMnetworks. Additionally, the integrationofLSTM
with other ML techniques and the incorporation of domain-specific knowledge can unlock
new possibilities and enable more sophisticated applications in the space domain.
As the exploration of LSTM networks progresses, it becomes imperative to further investi-

gate their potential in space-related tasks, expanding the scope of their application. By harness-
ing the capabilities of LSTMnetworks and addressing their limitations, new opportunities can
be unlocked, leading to enhanced operational efficiency in space and facilitating groundbreak-
ing discoveries.
In the concluding chapter, practical implementation guidelineswill be presented, alongwith

recommendations for optimizing and deploying the models. Additionally, potential future
directions for LSTMnetworks in the space domainwill be discussed, paving theway for further
advancements in this field.

64

5
Workflow and Results

5.1 MATLABOverview

Implementing the network architecture presented in Chapter 4 and conducting the necessary
experiments requires a suitable programming environment. In this study, MATLAB (MATrix
LABoratory) was chosen as the preferred software package due to its powerful capabilities in
scientific computing, data analysis, and algorithm development. MATLAB offers a compre-
hensive range of tools and functions that facilitate the implementation and evaluation of the
network architecture used in the study. It provides an intuitive and interactive environment
for exploring, analyzing and visualizing data, making it an ideal choice for developing complex
neural network architectures like the hybrid CNN-LSTM.

The decision to utilize MATLAB for creating and training the network architecture was
driven by several key factors:

• Extensive Deep Learning Toolbox: MATLAB provides a dedicated Deep Learning
Toolbox that offers a wide range of pre-build functions, models, and layers for construct-
ing, training, and evaluating neural networks. This toolbox simplifies the implementa-
tion process and allows for rapid prototyping of deep learning architectures.

• Integration with Other Toolboxes: MATLAB seamlessly integrates with various tool-
boxes for data preprocessing, signal processing, and statistical analysis. This integration
facilitates efficient data manipulation and preprocessing steps required before training
the hybrid network.

65

• Visualization Capabilities: MATLAB provides advanced visualization tools, includ-
ing interactive plots, graphs, and heatmaps, which are invaluable for analyzing and inter-
preting the performance of the hybridCNN-LSTMnetwork. These visualization aid in
identifying patterns, trends, and potential areas for improvement in the training process.

By utilizing the extensive capabilities and resources providedbyMATLAB, the development
and training of the hybrid CNN-LSTM network can be efficiently. The following sections
will provide comprehensive insights into the dataset, data preprocessing techniques, network
architecture, and the process of training and evaluating the network in this study.

In order to ensure the transparency and reproducibility of the research, accompanyingMAT-
LAB scriptswill be provided for each section of this chapter. These scriptswill showcase the im-
plementation of the network architecture, includingmodel configuration, training procedures,
and evaluation metrics. The sharing of these scripts aims to facilitate a deeper comprehension
of the methodology employed and enables readers to replicate the experiments conducted in
this study.

There are several other popular alternatives for developing and training neural networks, as
for instance:

• TensorFlow: an open-source deep learning framework developed by Google. It provides
a flexible and efficient platform for building and training various types of neural net-
works. TensorFlow uses a data flow graph model, where nodes represent mathematical
operations and edges represent data tensor. It offers a Python interface, along with sup-
port for other programming languages like C++, Java, and JavaScript.

• PyTorch: anopen-sourcedeep learning frameworkdevelopedbyFacebook’sAIResearch
lab. It provides a dynamic computational graph approach, making it highly flexible for
building and training neural networks. PyTorch offers a Python interface and is known
for its simplicity, ease of use, and strong support for GPU acceleration.

• Keras: a high-level deep learning library written in Python. It is build on top of Tensor-
Flow and provides a user-friendly interface for designing and training neural networks.
Keras offers a wide range of predefined layers andmodels, making it accessible for begin-
ners and efficient for rapid prototyping.

• Caffe: adeep learning frameworkdevelopedbyBerkeleyAIResearch (BAIR). It iswidely
used for computer vision tasks and provides a C++ and Python interface. Caffe’s archi-
tecture emphasizes speed and efficiency, making it suitable for large-scale deep learning
applications.

66

5.2 Dataset Description and Preprocessing

The dataset used for training and testing the DPHM system consists of real satellite data pro-
vided by S.A.T.E. for testing purposes. The dataset includes multiple .csv files containing var-
ious parameters from different subsystems. This study specifically focuses on five parameters
from the EPDS subsystem: current_1, curren_2, current_3, voltage_1, and voltage_2. For de-
tailed descriptions of these parameters, please refer to Table 5.1. These parameters have been
chosen because the ground truth was available and therefore the health status to be detected
was known a priori.

Parameter Description

current_1 Measured output current (mA) of the EPDS component that distributes
the power. Value referred to specific output channel.

current_2 Measured output current (mA) of the EPDS component that distributes
the power. Value referred to specific output channel.

current_3 Measured output current (mA) of the EPDS component that distributes
the power. Value referred to specific output channel.

voltage_1 MeasuredVBATvoltage (mV). Value referred to specific output channel.

voltage_2 MeasuredVBATvoltage (mV). Value referred to specific output channel.

Table 5.1: Satellite Parameters and Descriptions

The parameters are stored in multiple .csv files, and the process of loading them into MAT-
LAB can now be explored. Each .csv file contains a timestamp column in Unix Time format,
followed by various parameters in subsequent columns. To extract the desired parameter’s time
series data and necessary information for further processing, aMATLAB script has been devel-
oped (see Listing A.1). This script allows you to select a specific .csv file from a designated
folder and choose the number of parameters you wish to select.

After selecting the file and number of parameters, the script parses the contents and displays
the available telemetries alongwith their identificationnumbers in the commandwindow. Sim-
ply enter the corresponding integer to load the desired telemetry data.

Once the data loading phase is complete, a preprocessing of the timeseriesmay be performed,
by synchronizing and interpolating the timeseries value (following a sample-hold interpolation

67

method). This preprocessing function allow to pass multiple parameters as input to the net-
work. In this work, only the results of the univariate approach is considered, therefore this
preprocessing function was not exploited for the presented results and for this reason is not
reported here. However, this preprocessing function has been implemented and tested and it
can be used for a multivariate analysis.

5.2.1 Dataset Split: Train and Test Periods

To assess the performance of theDPHMsystem, it is essential to divide the dataset into distinct
training and test periods. In this section, the criteria used for partitioning the dataset will be
described, along with the rationale behind selecting three separate test periods. Furthermore, a
MATLAB script in Listing A.2 demonstrates the process of dataset division for reference and
clarity.

The data parameters were collected over a period spanning from June 1, 2019, toNovember
10, 2019. The training period was selected from June 1, 2019, to June 23, 2019, based on care-
ful consideration: this period demonstrated no anomalies and exhibited a consistent nominal
trend in the parameters.

To thoroughly assess the robustness of the DPHM system, three separate testing periods
were established:

1. The first testing period: from June 24, 2019, to July 4, 2019.

2. The second testing period: from September 16, 2019, to October 9, 2019.

3. The third testing period: fromOctober 1, 2019, to November 10, 2019.

These testing periods were specifically chosen to encompass instances where anomalies are
expected to occur. By incorporating such scenarios, the system’s ability to accurately detect
and predict anomalous behavior can be assessed.

To ensure the accurate selection of the training period and the three test periods, two func-
tions have been developed: selection_of_training_data and selection_of_testing_data. These
functions, as demonstrated in Listing A.2, enable us to select the desired training period from
the complete dataset using the first function, and select the three predefined test periods using
the second function. These functions make use of additional simple functions, namely date-
time2unixtimestemp and find_closest_indexes, which are also available in Listing A.2. These
functions facilitate the conversion of datetime values to Unix Time and help in finding the
closest indexes within the dataset, respectively.

68

5.2.2 Data Preprocessing

In this section, the concept of data preprocessing will be explored, with a specific focus on
two fundamental techniques: data standardization and data normalization. Furthermore, the
process of preparing input sequences for the RNNmodel will be outlined.

Data preprocessing plays a crucial role in machine learning and neural network applications
as it enhances the effectiveness and reliability of models. Two commonly used techniques in
data preprocessing are data standardization and data normalization.

• Data Standardization also known as feature scaling or z-score normalization, involves
transforming the values of different variables to have a common scale. This is achieved
by subtracting the mean of the variable from each data point and dividing it by the stan-
dard deviation. The resulting standardized values have a mean of zero and a standard
deviation of one. Standardization is particularly useful when dealing with variables that
have different scales or units of measurement. It eliminates the impact of variable scale,
enabling fair comparisons and preventing variables with larger values from dominating
the analysis or modeling process.

• On the other hand, Data Normalization, also known as min-max scaling, rescales the
values of a variable to a specific range, typically between 0 and 1. The process involves
subtracting theminimum value from each data point and dividing it by the range (maxi-
mum valueminusminimum value). The normalized values are then constrainedwithin
the range of 0 to 1. Normalization is valuable when the absolute values of the variables
are less important than their relative values. It ensures that all variables are on a similar
scale, facilitating comparison and combination.

The choicebetween standardization andnormalizationdependson the specific requirements
of the analysis and the characteristics of the data. In this case, data standardization was imple-
mented, as indicated in ListingA.3. TheMATLAB script calculates themean (μ) and standard
deviation (σ) of the data, allowing for the standardization of both the training and test datasets.
It is crucial to record the standardization parameters for future denormalization or conversion
of the data back to its original values.
Another crucial step in the data preprocessing phase is preparing the input sequences for

the RNN. The input sequence size is lagged by n-timesteps, whichmeans the RNN expects an
input size of n-timesteps to predict the next timestep, known as ”one-step ahead” prediction.
Listing A.3 demonstrates this process by creating lagged input sequences for both the training
and test data.

69

In this process, the independent variables (XTrain and XTest) are shifted by n-timesteps,
while the dependent variables (YTrain andYTest) remain unchanged. This formatting ensures
that the data is properly structured for training and evaluating the RNNmodel.

By implementing slidingwindows or look-backs, the neural network can learn temporal pat-
terns within the data. The code achieves this by shifting the data back in time by a specified
number of timestamps, defined by the variable vars.Lag. Subsequently, the data is organized
into a suitable format for training the neural network, using the variables XrTrain, YrTrain,
XrTest, and YrTest.

Choosing the appropriate value for vars.Lag depends on various factors related to the data
and the specific problem at hand. This value determines the length of the sliding windows and
has a significant impact on the temporal aspect of the information considered by the neural
network. Some key considerations for determining this value are:

• DataRate: If the data has a low frequency, such asmonthly or yearly data, a higher value
may be required to capture significant time patterns. Conversely, for high-frequency
data, such as daily or hourly data, a lower value may be adequate.

• Periodicity: When dealing with data that displays seasonal or cyclical patterns, it is ad-
vantageous to choose a value that corresponds to the length of the period. For example,
if you are working with monthly data that exhibits yearly seasonal trends, selecting a
value of 12 can effectively capture these seasonal patterns.

• Dataset Size: The size of the dataset can also influence the choice of this value. With
a larger dataset, there is greater flexibility to experiment with different values and deter-
mine the one that yields the best results for the given problem. Conversely, when dealing
with a small dataset, it is advisable to make more cautious choices to avoid overfitting.

It is recommended to experiment with different values of vars.Lag and evaluate the model’s
performance on a validation dataset. By testing different values, one can determine the optimal
value that yields the best results in terms of accuracy, error, or other relevant evaluationmetrics
specific to the given problem.

Determining the value of vars.Lag involved considering several solutions specific to this case.
The time series data consisted of approximately 1800/2600 values collected over a two-week
period, with an average sampling rate of approximately 129/186 samples per day.
Initially, the possibility of using a sliding two-hour window was explored, taking into ac-

count the periodicity observed in the data set. Since the satellite completes one orbit every
two hours, this window size was found to be relevant. The next step was to experiment with a

70

longer period, first with 12 hours, and then with a 24-hour window, to evaluate the network’s
performance and results.

In all approaches, the vars.Lag value was determined based on the number of samples col-
lected within the specified time interval, whether it was two, 12, or 24 hours. You can refer to
Listing A.3 to see the detailed process for determining this value. By changing the numHours
variable in the script, you can easily adjust the sliding window length to the desired number of
hours for further experimentation.

By undergoing data standardization and the preparation of input sequences, the data is effec-
tively scaled and organized, thereby optimizing the performance of the DPHM system. This
crucial step ensures that the data is in a suitable format for further analysis and modeling, facil-
itating accurate predictions and enhanced system functionality.

5.3 NetworkArchitecture: CNN-LSTMHybridNet-
work

This section presents the network architecture employed in the DPHM system, which utilizes
a hybrid model combining CNN and LSTM components to leverage the respective strengths
of each model in feature extraction and sequence modeling.

CNNs are particularly effective in extracting meaningful features from complex and high-
dimensional data, such as satellite telemetry and sensor readings. With their hierarchical layers
of convolution and pooling operations, CNNs excel at capturing spatial and temporal patterns.
By incorporating CNNs into the architecture, the goal is to leverage their ability to automati-
cally extract relevant features, enabling efficient learning from satellite data. Figure 5.1 provides
a visual representation of the CNN architecture employed for time series forecasting.

To capture the temporal dynamics and long-term dependencies inherent in satellite data,
the network architecture integrates LSTM. As demonstrated in Chapter 4, LSTM is a special-
ized type of RNN that excels in modeling sequential and time-series data. With its unique
architecture comprising memory cells and gating mechanisms, LSTM can retain and propa-
gate information over extended periods, effectively capturing crucial temporal patterns within
the dataset. Therefore, theRNNcomponent learns to predict the next value at the subsequent
timestep.

71

In
pu

t
T

im
e

Se
ri

es

Convolutional
Convolutional

Pooling
Pooling

Fl
at

te
n

in
g

Fully Connected

O
ut

pu
t

P
re

di
ct

io
n

Feature Extraction Classification

Figure 5.1: Convolutional Neural Network (CNN) Model for Time Series Data Forecasting

The network architecture comprises two main components, as illustrated in the script pro-
vided in Listing A.4. Firstly, the architecture incorporates CNN layers, which consist of mul-
tiple convolutional layers followed by ELU activation functions. These layers capture hierar-
chical representations of the data, andmax pooling is applied to downsample the feature maps.
Once the CNN processing is complete, the output is unfolded and flattened.

The second component of the architecture involves LSTM layers. Both GRU and LSTM
layers are utilized for sequencemodeling, anddropout layers are incorporated for regularization
to mitigate overfitting. The final LSTM layer generates predictions for the next time step. To
predict the output for a single time step ahead, a fully connected layer with a single neuron is
employed. Given the regression task at hand, a regression layer serves as the final output layer.

By combining the strengths of CNNs for feature extraction and LSTMs for sequence mod-
eling, the CNN-LSTM hybrid network architecture provides a powerful framework for the
DPHM system. It enables effective diagnostic and prognostic capabilities, enhancing the sys-
tem’s performance. The inspiration for this architecture can be attributed to an example in
MathWorks, developed by H. Sanchez [33].

72

Input Time Series

Sequence Folding

CNN Layers

Sequence Unfolding

LSTM Layers

Fully Connected Layer

Regression Output

Load Data

Data Preprocessing

Neural Network
(CNN-LSTM Hybrid Architecture)

Network Testing

Data Standardization

Input Sequence Preparation

Network TrainingNetwork Performance Evaluation

Anomaly Detection

Health Index Calculation

Figure 5.2: Workflow of the Proposed DPHM System (Block Diagram)

To summarize the workflow of the DPHM system, Figure 5.2 illustrates the key steps in-
volved in the proposed system. The process begins with loading the satellite telemetry data and
performing pre-processing, including data standardization and preparation of input sequences.
The core of the system is the hybrid neural network architecture, which combines CNN and
LSTM components for feature extraction and sequence modeling. The network is trained us-
ing the prepared data, and its performance is evaluated. Subsequently, the trained network is
tested, and anomaly detection techniques are applied to identify deviations between expected
and observed values. Finally, a health index is calculated based on the deviation, enabling proac-
tive maintenance and decision-making. The next section will delve into the analysis of the re-
sults obtained during the training and testing processes.

73

5.4 EvaluationMetrics

In this section, the results of the implemented DPHM system are presented, beginning with a
discussion on the evaluation metrics employed to assess the network’s performance. Key met-
rics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), and Normal-
ized RootMean Squared Error (NRMSE), are emphasized as important indicators of the accu-
racy and effectiveness of the network throughout the training and testing phases.

• Mean Squared Error (MSE): The MSE measures the average squared difference be-
tween the predicted values (ŷi) and the actual values (yi). It provides an overall assess-
ment of the model’s accuracy, with lower values indicating better performance.

MSE =
1
n

n∑
i=1

(yi − ŷi)
2

• Root Mean Squared Error (RMSE): The RMSE is the square root of the MSE and
provides a measure of the average magnitude of the prediction errors. It is a commonly
used metric to quantify the model’s predictive accuracy, with lower values indicating
better performance.

RMSE =
√
MSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)2

• Normalized Root Mean Squared Error (NRMSE):TheNRMSE is a variation of the
RMSE that scales the error by the range of the actual values (max(y)−min(y)). It pro-
vides anormalizedmeasure of theprediction error, allowing forbetter comparison across
different datasets and variables. NRMSE values closer to zero indicate higher prediction
accuracy.

NRMSE =
RMSE

max(y)−min(y)
These evaluationmetrics enable thequantitative assessmentof theperformanceof theDPHM

system and facilitate a comparison with alternative methods. By incorporating multiple met-
rics, a comprehensive understanding of the strengths and limitations of the network in captur-
ing underlying patterns and trends in satellite telemetry data is achieved.

The subsequent subsections delve into the results attained during the training and testing
processes, providing an analysis of the network’s performance based on these evaluation met-
rics.

74

5.5 Training Process

The training process begins by configuring the desired training options, which include param-
eters such as the solver name, maximum epochs, mini-batch size, learning rate, and execution
environment. These options play a crucial role in determining the behavior and performance
of the training process. Once the training options are set, the hybrid network is trained us-
ing the trainNetwork function. This function takes the training data, consisting of the input
data XrTrain and the target data YrTrain, along with the defined layers and options. The
script used for training is provided in Listing A.5, where all the values of the training options
reported in this section have been reported.

During the training process, the hybrid architecture, which combines CNN and LSTM
components, is utilized to extract meaningful representations from the input data and cap-
ture temporal dependencies. Through iterative adjustments of its parameters, the network
strives to minimize the discrepancy between expected and target outputs. As the training pro-
gresses, the network learns to extract relevant features from the data and optimizes its weights
and biases to make accurate predictions. The resulting trained hybrid network, referred to as
hybrid_network, encapsulates the acquired knowledge and can be further employed for diag-
nostic and prognostic tasks.

In the context of this thesis, five different networks have been trained, with each network
dedicated to a specific telemetry range. These networks are designed to handle the unique
characteristics and patterns present in each telemetry dataset, optimizing the performance and
accuracy of the predictions for their respective ranges.

Training Options

The training options used in the script provide control over various aspects of the training pro-
cess. They are defined as follows:

• Solver Name: The solver specifies the optimizer for training the neural network. There
are three options:

– ’sgdm’: Stochastic Gradient Descent withMomentum (SGDM) optimizer.

– ’rmsprop’: RMSProp optimizer.

– ’adam’: Adam optimizer.

75

• Plots and Display

– Plots: Determines which plots to display during neural network training. Two
options are available:

* ’none’: No plots are displayed during training.

* ’training-progress’: Plots the training progress.

– Verbose: Controls the display of training progress information.

* ’1’ (true): Display training progress information.

* ‘0‘ (false): Do not display training progress information.

• Mini-Batch Options

– MaxEpochs: Specifies the maximum number of epochs for training. It is a posi-
tive integer.

– Mini-Batch Size: Determines the size of the mini-batch used for each training
iteration. It is a positive integer. A mini-batch is a subset of the training set used
to evaluate the gradient of the loss function and update the weights.

– Shuffle: Specifies the option for shuffling the data during training and validation.

* ’once’: Shuffle the training and validation data once before training.

* ’never’: Do not shuffle the data.

* ’every-epoch’: Shuffle the training data before each training epoch and shuffle
the validation data before each neural network validation.

• Solver Options

– InitialLearnRate: Sets the initial learning rate used for training. It is a positive
scalar. The default values are 0.01 for the ’sgdm’ solver and 0.001 for the ’rmsprop’
and ’adam’ solvers.

– LearnRateSchedule: Controls the dropping of the learning rate during training.

* ’none’: The learning rate remains constant throughout training.

76

* ’piecewise’: The learning rate is updated every certain number of epochs by
multiplying it with a certain factor. The value of this factor is specified using
the ‘LearnRateDropFactor‘ training option. The number of epochs between
multiplications is set using the ‘LearnRateDropPeriod‘ training option.

– LearnRateDropPeriod: Number of epochs for dropping the learning rate, spec-
ified as a positive integer. This option is valid only when the LearnRateSchedule
training option is ’piecewise’. The softwaremultiplies the global learning ratewith
the drop factor every time the specified number of epochs passes. Specify the drop
factor using the LearnRateDropFactor training option.

– LearnRateDropFactor: Factor for dropping the learning rate, specified as a scalar
from 0 to 1. This option is valid only when the LearnRateSchedule training op-
tion is ’piecewise’. LearnRateDropFactor is a multiplicative factor to apply to the
learning rate every time a certain number of epochs passes. Specify the number of
epochs using the LearnRateDropPeriod training option.

• Gradient Clipping

– GradientThreshold: Sets the threshold for gradient clipping. It is specified as ‘Inf‘
or a positive scalar. If the gradient exceeds the value of ‘GradientThreshold‘, it is
clipped according to the ‘GradientThresholdMethod‘ training option.

• Hardware Options

– ExecutionEnvironment: Determines the hardware resource to be used for train-
ing the neural network.

* ’auto’: Use a GPU if available; otherwise, use the CPU.

* ’cpu’: Use the CPU.

* ’gpu’: Use the GPU.

* ’multi-gpu’: Use multiple GPUs on one machine, utilizing a local parallel
pool based on the default cluster profile. If no current parallel pool exists,
the software starts a parallel pool with a size equal to the number of available
GPUs.

* ’parallel’: Use a local or remote parallel pool based on the default cluster pro-
file. If no current parallel pool exists, the software starts one using the default
cluster profile. If the pool has access to GPUs, only workers with a unique
GPU perform training computation. If the pool does not have GPUs, train-
ing takes place on all available CPU workers instead.

77

Network Performance Evaluation

For evaluating the performance of the network, the following lines of code were executed after
the training phase:

Listing 5.1: MATLAB Script for Generating Prediction for the Training Data

1 YPred_Train = predict(hybrid_network, XrTrain, 'ExecutionEnvironment',
optns.ExecutionEnvironment, 'MiniBatchSize', numFeatures);

2 YPred_Train = YPred_Train';
3 YPred_Train = sigTrain. * YPred_Train + muTrain;
4 YTrain = sigTrain. * YTrain + muTrain;

Theprovided lines of codedemonstrate theprocess of generatingpredictions for the training
data (XrTrain) using the trained hybrid network (hybrid_network), using the predict function.
After obtaining the predictions (YPred_Train), the necessary steps are taken to rescale them to
their original scale. This involves transposing YPred_Train, followed by rescaling it using the
factors sigTrain andmuTrain. Similarly, the original target values (YTrain) are also rescaled
using the same factors. These rescaling steps ensure that the predictions and target values are
aligned in terms of their original scale, facilitating a meaningful evaluation of the network’s
performance.

As stated previously, the approach involved training individual networks for each parameter
using three different values of the ”vars.Lag” parameter: 2, 12, and 24 hours. Consequently,
for each telemetry, three networks were trained. Since there are five parameters in total, a total
of 15 networks were trained. By evaluating the performance of each network and calculating
relevant metrics, the optimal network can be selected from the available options.

In fact, this section outlines the process of evaluating thesemetrics and provides an overview
of the obtained results.

The MATLAB script in Listing A.6 demonstrates how the performance metrics, including
Mean Squared Error (MSE), RootMean Squared Error (RMSE), andNormalizedRootMean
Squared Error (NRMSE), were calculated. These metrics provide valuable insights into the
accuracy and reliability of the network predictions by measuring the residual error between
the expected results and the observed values.

The network performances were then summarized in three tables: Table 5.2, Table 5.3, and
Table 5.4. These tables correspond to the networks trained with sliding windows of 2, 12, and
24 hours respectively. The tables present key parameters related to the error and NRMSE, in-

78

cluding the mean and standard deviation of the error, as well as the total, mean, and standard
deviation of theNRMSE. The optimal values for each telemetry are highlighted in blue. Based
on these results, it was determined that the network with a sliding window of 24 hours is the
best choice for current_1 and current_2 telemetry, the network with a 2-hour sliding window
is preferred for current_3 and voltage_2 telemetry, and the network with a 12-hour sliding win-
dow is selected for voltage_1 telemetry.

The best calculated performancemetrics were then visualized fromFigure 5.5 to Figure 5.19.
These figures provide a comprehensive overview of the network’s performance for each teleme-
try parameter.

For each parameter, the first figure displays a graph comparing the expected results with the
observed values, allowing for a visual assessment of the network’s predictive capabilities. The
second figure presents an histogram of the errors, illustrating the distribution of the residual
errors and providing insights into the Error Mean and Error Standard Deviation. Finally, the
last figure depicts a histogram of the NRMSE, which provides a normalized measure of the
prediction error. The figure includes the Total NRMSE value (NRMSE calculated over the
entire training window), NRMSEMean, and NRMSE Standard Deviation, providing a com-
prehensive understanding of the network’s performance in terms of prediction accuracy.

Parameter
Error NRMSE

Mean StD Total Mean StD

current_1 0.3830 5.5956 0.0036513 0.026011 0.037904

current_2 0.89478 99.2483 0.31211 0.062909 0.089091

current_3 0.037007 4.2267 0.032256 0.032757 0.038987

voltage_1 0.10599 8.2503 0.0005139 0.0078624 0.008227

voltage_2 0.051303 0.79727 0.0049288 0.0066276 0.010578

Table 5.2: Performance Metrics of Telemetry Errors in the Training Phase with vars.Lag = 2Hours

79

Parameter
Error NRMSE

Mean StD Total Mean StD

current_1 0.25565 1.312 0.0086939 0.0069451 0.0084725

current_2 1.3301 123.1662 0.38702 0.080009 0.10917

current_3 -0.0011145 12.1265 0.092565 0.10522 0.10134

voltage_1 -0.92308 6.12 0.00038548 0.0061601 0.0059091

voltage_2 0.038875 10.2001 0.062934 0.11852 0.10653

Table 5.3: Performance Metrics of Telemetry Errors in the Training Phase with vars.Lag = 12Hours

Parameter
Error NRMSE

Mean StD Total Mean StD

current_1 0.029695 1.2293 0.0080048 0.0075383 0.0066887

current_2 2.1611 22.7218 0.071655 0.0092789 0.023302

current_3 0.0053131 12.167 0.0.092895 0.10553 0.10172

voltage_1 -0.25341 6.3622 0.00039663 0.0068 0.0055

voltage_2 0.0081426 1.9081 0.0.011771 0.0174 0.0242

Table 5.4: Performance Metrics of Telemetry Errors in the Training Phase with vars.Lag = 24Hours

Figures 5.3 and 5.4 visually depict the information presented in the aforementioned tables.
These figures offer a graphical representation of themean absolute error andmeanNRMSE for
each telemetry, considering the different values of vars.Lag. By examining these figures, we can
easily compare the performance of the algorithm and network across the various telemetries.

80

0,
38

39

0,
89

48

0,
03

70

0,
10

60

0,
05

130,
25

57

1,
33

01

0,
00

11

0,
92

31

0,
03

89

0,
02

97

2,
16

11

0,
00

53 0,
25

34

0,
00

81

current_1 current_2 current_3 voltage_1 voltage_2

Comparison of the Absolute Error Mean for Different Sliding Windows

vars.Lag = 2 Hours

vars.Lag = 12 Hours

vars.Lag = 24 Hours

Figure 5.3: Comparison of Absolute Error Mean for Different Sliding Window

0,
00

26

0,
06

29

0,
03

28

0,
00

79

0,
00

66

0,
00

69

0,
08

00

0,
10

52

0,
00

62

0,
11

85

0,
00

75

0,
00

93

0,
10

55

0,
00

68 0,
01

74

current_1 current_2 current_3 voltage_1 voltage_2

Comparison of the NRMSE Mean for Different Sliding Windows

vars.Lag = 2 Hours

vars.Lag = 12 Hours

vars.Lag = 24 Hours

Figure 5.4: Comparison of NRMSE Mean for Different Sliding Window

81

current_1

Figure 5.5: Predicted Outcomes v s Observed Values [Train Data] (current_1) with vars.Lag = 24Hours

Figure 5.6: Error Histogram [Train Data] (current_1) with vars.Lag = 24Hours

82

Figure 5.7: NRMSE Histogram [Train Data] (current_1) with vars.Lag = 24Hours

current_2

Figure 5.8: Predicted Outcomes v s Observed Values [Train Data] (current_2) with vars.Lag = 24Hours

83

Figure 5.9: Error Histogram [Train Data] (current_2) with vars.Lag = 24Hours

Figure 5.10: NRMSE Histogram [Train Data] (current_2) with vars.Lag = 24Hours

84

current_3

Figure 5.11: Predicted Outcomes v s Observed Values [Train Data] (current_3) with vars.Lag = 2Hours

Figure 5.12: Error Histogram [Train Data] (current_3) with vars.Lag = 2Hours

85

Figure 5.13: NRMSE Histogram [Train Data] (current_3) with vars.Lag = 2Hours

voltage_1

Figure 5.14: Predicted Outcomes v s Observed Values [Train Data] (voltage_1) with vars.Lag = 12Hours

86

Figure 5.15: Error Histogram [Train Data] (voltage_1) with vars.Lag = 12Hours

Figure 5.16: NRMSE Histogram [Train Data] (voltage_1) with vars.Lag = 12Hours

87

voltage_2

Figure 5.17: Predicted Outcomes v s Observed Values [Train Data] (voltage_2) with vars.Lag = 2Hours

Figure 5.18: Error Histogram [Train Data] (voltage_2) with vars.Lag = 2Hours

88

Figure 5.19: NRMSE Histogram [Train Data] (voltage_2) with vars.Lag = 2Hours

5.6 Testing Process

The testing phase involves applying the trained network to new input sequences and analyz-
ing the predictions and performance metrics. The MATLAB script provided in Listing A.7
demonstrates the testing process of the hybrid network.
In this script, similar to the training process, the trained network is used to predict the out-

put, referred to as YPred_Test, for the test input sequences represented by XrTest. The pre-
dicted values are then transformed back to their original scale using the scaling factors sigTest
andmuTest, resulting in YPred_Test and YTest.

Following this initial step, the testing process delves into the intriguing aspect of the system:
anomaly detection and health index calculation. The next lines of code provide insight into
the logic behind the anomaly detection phase:

Listing 5.2: MATLAB Script for Anomaly Detection

1 lowerThreshold = prctile(abs(Errors_test), 0);
2 upperThreshold = prctile(abs(Errors_test), 80);
3 window_size = maxLag;
4 anomalies = [];
5 nrmse_anomaly = [];

89

6
7 % Determining the appropriate thresholds and upper limits for the

specific telemetry
8 if data.telemetry{1} == "current_1"
9 nrmse_threshold = 3.55;
10 hi_upper_th = 100;
11 elseif data.telemetry{1} == "voltage_1"
12 nrmse_threshold = 1.5;
13 hi_upper_th = 100;
14 elseif data.telemetry{1} == "current_2"
15 nrmse_threshold = 0.33;
16 hi_upper_th = 100;
17 elseif data.telemetry{1} == "voltage_2"
18 nrmse_threshold = 1.4;
19 hi_upper_th = 100;
20 elseif data.telemetry{1} == "current_3"
21 nrmse_threshold = 1.4;
22 hi_upper_th = 100;
23 end
24
25 % Looping through the errors to identify anomalies
26 for i = 1:size(Errors_test, 2)
27 if i > window_size && i < size(Errors_test, 2)
28 anomalies(1,i) = abs(Errors_test(1, i)) < lowerThreshold | abs

(Errors_test(1, i)) > upperThreshold;
29 if anomalies(1,i)
30 % Calculate NRMSE in a window of window_size timestamps

before the anomaly
31 windowStart = i - window_size;
32 windowEnd = i;
33 window = Errors_test(1, windowStart:windowEnd);
34 nrmse_anomaly(1, i) = sqrt(mean(window.^2)) / (max(

Errors_train) - min(Errors_train)); % PA3.0
35

90

36 if nrmse_anomaly(1, i) < nrmse_threshold
37 anomalies(1, i) = 0;
38 nrmse_anomaly(1, i) = 0;
39 end
40 end
41 else
42 anomalies(1, i) = 0;
43 nrmse_anomaly(1, i) = 0;
44 end
45 end

Within this section, the anomaly detection procedure revolves around the establishment of
lower and upper thresholds, which are based on the percentiles derived from the absolute errors
(Errors_test). The size of the detection window, referred to as window_size, is determined by
the length of the sliding window specified during the preprocessing phase.

Subsequently, the code segment dynamically assigns specific thresholds and upper limits ac-
cording to the telemetry parameter under examination. For each timestamp within the error
array, the script assesses whether it falls within the designated window and verifies if the error
value surpasses the threshold boundaries. If an anomaly is identified, the script proceeds to
calculate the NRMSE within the window preceding the anomaly, subsequently comparing it
against the predefined NRMSE threshold. Should the NRMSE value fall below the specified
threshold, the anomaly is disregarded.

Throughout the execution of this process, the arrays anomalies and nrmse_anomaly serve
thepurpose of storingbinary indications corresponding to thepresenceof anomalies, alongside
their associated NRMSE values, respectively.

The final step of this process involves calculating theHealth Index (HI). This index serves as
a metric to evaluate the overall system status and the severity of anomalies. It is measured on a
scale ranging from 0 to 100, where 0 signifies a completely healthy system, while 100 represents
the highest level of criticality. During the testing phase, when anomalies are detected, the health
index is determined using the following code:

Listing 5.3: MATLAB Script for Health Index Calculation

1 HI = [];
2 for i = 1:size(Errors_test, 2)
3 if nrmse_anomaly(1, i) < nrmse_threshold

91

4 HI(1, i) = 0;
5 elseif nrmse_anomaly(1, i) >= nrmse_threshold && nrmse_anomaly(1,

i) < hi_upper_th
6 HI(1, i) = nrmse_anomaly(1, i) * 100;
7 elseif nrmse_anomaly(1, i) >= hi_upper_th
8 HI(1, i) = 100;
9 end
10 end

For each detected anomaly, the following conditions are evaluated:

• If the normalized root mean squared error (nrmse_anomaly) is less than the defined
threshold (nrmse_threshold), the HI is assigned a value of 0, indicating no criticality.

• If nrmse_anomaly is greater than or equal to nrmse_threshold but less than the upper
threshold (hi_upper_th), the HI is computed by multiplying nrmse_anomaly by 100.

• If nrmse_anomaly exceeds the hi_upper_th, the HI is set to 100, indicating maximum
criticality.

Now, let’s examine the results of this process for all five telemetries. In the following subsec-
tions, we will explore the behavior of the networks in the three different test periods, focusing
on one telemetry at a time. For each test period, three figures will be presented:

1. The first figure showcases a comparison between the predicted values and the observed
values, providing an assessment of the accuracy of the network’s predictions in the ab-
sence of anomalies. In the presence of anomalies, this figure offers insights into the devi-
ation between the predicted and observed values, facilitating the evaluation of anomaly
detection and characterization.

2. The second figure illustrates the residual error, which represents the discrepancy be-
tween the observed and predicted values. This visualization serves as a valuable tool for
analyzing the system’s behavior and identifying any patterns or trends in the prediction
errors.

3. The third figure showcases the HI graph, providing insights into whether the network
has successfully identified anomalies.

By examining these figures, we can gain a comprehensive understandingof how thenetworks
perform across different test periods and telemetry parameters.

92

5.6.1 current_1

Test Period 1: from 24-Jun-2019 to 07-Jul-2019

The observed period exhibits two distinct anomalous behaviors: one from June 25th to June
30th, and another from July 1st to July 7th.

Figure 5.20: Predicted Outcomes v s Observed Values [Test Period 1] (current_1) with vars.Lag = 24Hours

93

Figure 5.21: Errors [Test Period 1] (current_1) with vars.Lag = 24Hours

Figure 5.22: Health Index [Test Period 1] (current_1) with vars.Lag = 24Hours

The algorithm fails to identify the initial abnormal period because it disregards the insignifi-
cant deviations. This can be characterized as amissed detection, or false negative. On the other
hand, the algorithm accurately identifies the second anomaly, resulting in a true positive.

94

Test Period 2: from 10-Sep-2019 to 24-Sep-2019

During this timeframe, there is a nominal period until September 19th, followed by two dis-
tinct anomalous behaviors: the first occurring between September 19th and September 23rd,
and the second between September 23rd and September 24th.

Figure 5.23: Predicted Outcomes v s Observed Values [Test Period 2] (current_1) with vars.Lag = 24Hours

95

Figure 5.24: Errors [Test Period 2] (current_1) with vars.Lag = 24Hours

Figure 5.25: Health Index [Test Period 2] (current_1) with vars.Lag = 24Hours

The algorithm’s performance in this particular case is notmeeting expectations. Surprisingly,
it is incorrectly labelingnormal behavior as anomalous, resulting in false positives. Additionally,
it fails to identify the initial period of anomalies because it disregards insignificant deviations,

96

leading to a missed detection or false negative. However, the algorithm accurately detects the
second anomaly, which can be classified as a true positive.

Test Period 3: from 01-Oct-2019 to 15-Oct-2019

During this period, there are distinct phases: an initial nominal period until October 3rd, fol-
lowed by two separate anomalous behaviors. The first anomalous behavior occurs fromOcto-
ber 4th to October 7th, and the second one fromOctober 8th to October 12th. Subsequently,
there is another nominal period fromOctober 12th to October 14th.

Figure 5.26: Predicted Outcomes v s Observed Values [Test Period 3] (current_1) with vars.Lag = 24Hours

97

Figure 5.27: Errors [Test Period 3] (current_1) with vars.Lag = 24Hours

Figure 5.28: Health Index [Test Period 3] (current_1) with vars.Lag = 24Hours

The initial expectedbehavior ismistakenly identified as abnormal, resulting in a false positive.
Additionally, it fails to identify the first period of abnormality, leading to a missed detection or
false negative. However, the second anomaly is accurately detected, resulting in a true positive.

98

Finally, the concluding period of expected behavior is correctly identified as normal, giving a
true negative.

5.6.2 current_2

Test Period 1: from 24-Jun-2019 to 07-Jul-2019

During this period, there is a relatively normal behavior until June 27th. However, two distinct
abnormal behaviors occur within the observed period: the first one spans from June 28th to
the end of June 30th, while the second one takes place from July 1st to July 7th.

Figure 5.29: Predicted Outcomes v s Observed Values [Test Period 1] (current_2) with vars.Lag = 24Hours

99

Figure 5.30: Errors [Test Period 1] (current_2) with vars.Lag = 24Hours

Figure 5.31: Health Index [Test Period 1] (current_2) with vars.Lag = 24Hours

The algorithm accurately identifies normal behavior (true negatives). However, it only de-
tects the first instance of anomalous behavior when theHI rises for the first time. On the other
hand, it successfully detects the second anomalous behavior (true positive).

100

Test Period 2: from 10-Sep-2019 to 24-Sep-2019

During the period leading up to September 19th, the behavior remains within expected norms.
However, from September 19th until the conclusion of September 24th, an abnormal pattern
of behavior is observed.

Figure 5.32: Predicted Outcomes v s Observed Values [Test Period 2] (current_2) with vars.Lag = 24Hours

101

Figure 5.33: Errors [Test Period 2] (current_2) with vars.Lag = 24Hours

Figure 5.34: Health Index [Test Period 2] (current_2) with vars.Lag = 24Hours

The algorithm effectively identifies normal behavior (true negative), but it detects anomalies
three days after they have occurred in the data. There is a delay in raising an alarm until Oc-

102

tober 22nd, resulting in missed detection. However, from that point onward, the algorithm
consistently identifies the events that have occurred (true positive).

Test Period 3: from 01-Oct-2019 to 15-Oct-2019

During the period from October 1st to October 8th, there is an anomaly observed, followed
by a return to normal behavior until October 15th.

Figure 5.35: Predicted Outcomes v s Observed Values [Test Period 3] (current_2) with vars.Lag = 24Hours

103

Figure 5.36: Health Index [Test Period 3] (current_2) with vars.Lag = 24Hours

Figure 5.37: Errors [Test Period 3] (current_2) with vars.Lag = 24Hours

The algorithm effectively identifies anomalous behavior (true positives) and accurately de-
tects normal behavior (true negatives). However, there is a noticeable delay in detecting anoma-
lous behavior due to the size of the sliding window.

104

5.6.3 current_3

Test Period 1: from 24-Jun-2019 to 07-Jul-2019

During this timeframe, there was nominal behavior observed from June 24th to July 1st, fol-
lowed by a period of anomalous behavior until July 7th.

Figure 5.38: Predicted Outcomes v s Observed Values [Test Period 1] (current_3) with vars.Lag = 2Hours

105

Figure 5.39: Errors [Test Period 1] (current_3) with vars.Lag = 2Hours

Figure 5.40: Health Index [Test Period 1] (current_3) with vars.Lag = 2Hours

The algorithm excels at accurately identifying normal behavior (true negatives) while also
promptly detecting anomalous behavior (true positives).

106

Test Period 2: from 10-Sep-2019 to 24-Sep-2019

The presented period exclusively encompasses nominal behaviors.

Figure 5.41: Predicted Outcomes v s Observed Values [Test Period 2] (current_3) with vars.Lag = 2Hours

Figure 5.42: Errors [Test Period 2] (current_3) with vars.Lag = 2Hours

107

Figure 5.43: Health Index [Test Period 2] (current_3) with vars.Lag = 2Hours

The algorithm successfully identifies all true negatives except for a single momentary peak,
but overall its detection accuracy remains intact.

Test Period 3: from 01-Oct-2019 to 15-Oct-2019

The period under consideration primarily comprises nominal behaviors, with the exception of
a notable peak around October 13th.

108

Figure 5.44: Predicted Outcomes v s Observed Values [Test Period 3] (current_3) with vars.Lag = 2Hours

Figure 5.45: Errors [Test Period 3] (current_3) with vars.Lag = 2Hours

109

Figure 5.46: Health Index [Test Period 3] (current_3) with vars.Lag = 2Hours

Thealgorithmeffectively identifies all instances of truenegatives and evendetects an anomaly
near the peak on October 13, which qualifies as a true positive.

5.6.4 voltage_1

Test Period 1: from 24-Jun-2019 to 07-Jul-2019

From June 24th to July 3rd, the period demonstrates typical behavior. However, starting from
this point until the conclusion of July 7th, the period deviates from its normal pattern.

110

Figure 5.47: Predicted Outcomes v s Observed Values [Test Period 1] (voltage_1) with vars.Lag = 12Hours

Figure 5.48: Errors [Test Period 1] (voltage_1) with vars.Lag = 12Hours

111

Figure 5.49: Health Index [Test Period 1] (voltage_1) with vars.Lag = 12Hours

The algorithm excels at accurately identifying both the expected behavior (true negatives)
and subsequent unusual behavior (true positives).

Test Period 2: from 10-Sep-2019 to 24-Sep-2019

From September 10th to September 23rd, the situation remains normal, but there is a notice-
able shift in behavior from September 23rd to September 24th, indicating an anomaly.

112

Figure 5.50: Predicted Outcomes v s Observed Values [Test Period 2] (voltage_1) with vars.Lag = 12Hours

Figure 5.51: Errors [Test Period 2] (voltage_1) with vars.Lag = 12Hours

113

Figure 5.52: Health Index [Test Period 2] (voltage_1) with vars.Lag = 12Hours

The algorithm demonstrates proficiency in accurately detecting both expected normal be-
havior (true negatives) and subsequent uncommon behavior (true positives).

Test Period 3: from 01-Oct-2019 to 15-Oct-2019

Throughout this period, there is a generally consistent pattern of behavior until October 3rd.
However, two noticeable deviations from the norm are observed within this timeframe: the
first abnormal behavior lasts from October 3rd until the end of October 8th, and the second
abnormal behavior occurs between October 9th and October 12th.

114

Figure 5.53: Predicted Outcomes v s Observed Values [Test Period 3] (voltage_1) with vars.Lag = 12Hours

Figure 5.54: Errors [Test Period 3] (voltage_1) with vars.Lag = 12Hours

115

Figure 5.55: Health Index [Test Period 3] (voltage_1) with vars.Lag = 12Hours

Thealgorithmexhibits shortcomings indetecting anomalies: it initiallymisses thefirst anoma-
lous period, resulting in a false negative. Additionally, it mistakenly identifies a false positive
shortly beforeOctober 9th. Furthermore, for the second anomalous period, the algorithm fails
to detect it accurately (true negative) and instead produces false positives towards the conclu-
sion of the anomalous period on October 13th.

5.6.5 voltage_2

Test Period 1: from 24-Jun-2019 to 07-Jul-2019

The specified period, which extends from June 24th to July 7th, is entirely nominal.

116

Figure 5.56: Predicted Outcomes v s Observed Values [Test Period 1] (voltage_2) with vars.Lag = 2Hours

Figure 5.57: Errors [Test Period 1] (voltage_2) with vars.Lag = 2Hours

117

Figure 5.58: Health Index [Test Period 1] (voltage_2) with vars.Lag = 2Hours

The algorithm effectively detects a regular pattern, resulting in a true negative classification.

Test Period 2: from 10-Sep-2019 to 24-Sep-2019

No anomalies are observed during the specified period, which spans from September 10th to
September 24th.

118

Figure 5.59: Predicted Outcomes v s Observed Values [Test Period 2] (voltage_2) with vars.Lag = 2Hours

Figure 5.60: Errors [Test Period 2] (voltage_2) with vars.Lag = 2Hours

119

Figure 5.61: Health Index [Test Period 2] (voltage_2) with vars.Lag = 2Hours

The algorithm effectively detects a regular pattern, resulting in a true negative classification.

Test Period 3: from 01-Oct-2019 to 15-Oct-2019

During the designated period of June 1st to October 15th, normal behavior is observed.

120

Figure 5.62: Predicted Outcomes v s Observed Values [Test Period 3] (voltage_2) with vars.Lag = 2Hours

Figure 5.63: Errors [Test Period 3] (voltage_2) with vars.Lag = 2Hours

121

Figure 5.64: Health Index [Test Period 3] (voltage_2) with vars.Lag = 2Hours

The algorithm effectively detects a regular pattern, resulting in a true negative classification.

122

6
Conclusions

6.1 ResearchOverview

In this section, an overview of the research conducted in this thesis is presented. The research
focuses on exploring and analyzing AI and ML-based diagnostic methods for small satellites,
with a specific emphasis on enhancing the reliability and efficiency of satellite operations. The
goal is to address the diagnostic challenges specific to small satellites by investigating various
techniques and approaches available in the field.

To achieve this, the research involves examining historical data and conducting extensive re-
search to determine themost critical subsystems and key components within those subsystems
that significantly affect the overall performance and reliability of small satellites. By identify-
ing these critical elements, the research aims to develop effective diagnostic methods that can
detect and mitigate potential failures.

Automation plays a key role in satellite diagnostics, and the research emphasizes the impor-
tance of automating the diagnostic process using AI and ML techniques. By leveraging these
technologies, higher efficiency, accuracy, and reliability can be achieved compared to manual
processes. The research explores the application of AI andML algorithms in analyzing satellite
data, identifying patterns, and making accurate predictions to improve the diagnostic capabil-
ities of small satellites.

Additionally, the research investigates the use of machine learning algorithms for anomaly

123

detection, fault classification, and health monitoring of small satellites. By training models on
historical data and real-time telemetry, the research aims to develop intelligent systems capable
of identifying and diagnosing anomalies or faults in the satellite’s operation. This could en-
able proactivemaintenance and timely interventions to prevent potential failures and optimize
satellite performance.
The research also considers the implications of the findings and their potential impact on

the field of small satellite operations. By developing reliable and efficient diagnostic methods,
the research aims to contribute to the advancement of small satellite technology, enablingmore
robust and reliable space missions.

6.2 Summary of Findings

In this section, a summary of the key findings is presented from research conducted on AI and
ML-based diagnostic methods for small satellites. The findings provide valuable insights into
the effectiveness and applicability of these methods in improving the reliability and efficiency
of satellite operations.

1. Identification of Critical Subsystems: By examining historical data and conducting
extensive research, the identification of the most critical subsystems in small satellites
has been accomplished. These subsystems hold significant importance in determining
the overall performance and reliability of the satellite. By directing attention to these
critical subsystems, diagnostic efforts can be prioritized, and resources can be allocated
appropriately for maintenance and troubleshooting purposes.

2. Key Components Affecting Performance: In the identified critical subsystems, key
components have been identified that play a significant role in the performance and re-
liability of small satellites. Recognizing the importance of these components, targeted
diagnostic methods can be developed to monitor their health and detect potential fail-
ures.

3. Automation for Improved Efficiency: The research underscores the significance of
automation in satellite diagnostics. By implementing AI and ML techniques to auto-
mate the diagnostic process, higher efficiency can be achieved in analyzing large vol-
umes of satellite data. This automation facilitates real-timemonitoring and enables early
anomaly detection.

4. AI andMLAlgorithms for Predictive Analysis: Extensive research has demonstrated
the effectiveness of AI and ML algorithms in analyzing satellite data, identifying pat-
terns, and making accurate predictions. These algorithms have demonstrated signifi-

124

cant potential in accurately predicting small satellite component behavior, and enabling
proactive maintenance strategies. As a result, they contribute to minimizing the risk of
failures and enhancing overall system reliability.

5. AnomalyDetection andFaultClassification:Machine learning algorithmshaveproven
to be effective in detecting anomalies and classifying faults in small satellites. By train-
ing models on historical data and telemetry, deviations from normal behavior can be
detected, enabling efficient troubleshooting and corrective actions.

6. Health Index Calculation: In addition to anomaly detection and fault classification,
machine learning algorithms have been leveraged to calculate the Health Index of small
satellite components. By analyzing various performance metrics and telemetry data, the
Health Index provides a quantitativemeasure of the component’s condition and overall
operational health. This calculation aids in assessing the component’s reliability, pre-
dicting potential failures, and optimizing maintenance strategies.

These findings lay the foundation for future advancements in the field and provide valuable
insights for satellite operators, researchers, and engineers involved in small satellite missions.

6.3 Discussions of Results

For the telemetry current_1, the algorithm initially fails to identify thefirst abnormal perioddue
to disregarding insignificant deviations, resulting in a missed detection (false negative). How-
ever, it accurately detects the second anomaly, demonstrating a true positive.

In the case of current_2, the algorithm shows mixed performance. It accurately identifies
normal behavior (true negatives) but exhibits false positives by incorrectly labeling normal be-
havior as anomalous. It also experiences a delay in detecting the initial period of anomalies, lead-
ing to missed detection (false negative). However, it successfully detects the second anomaly
(true positive).

For current_3, the algorithm performs well, accurately identifying both normal behavior
(true negatives) and anomalous behavior (true positives).

In the telemetry voltage_1, the algorithm excels at accurately identifying both expected be-
havior (true negatives) and subsequent anomalies (true positives). However, it misses the first
anomalousperiod, resulting in a false negative. It alsoproduces false positives shortly beforeOc-
tober 9th and fails to detect the second anomaly accurately, generating false positives towards
the end of the anomalous period on October 13th.

125

Lastly, for voltage_2 the algorithm effectively detects the regular pattern, resulting in a true
negative classification in all three test periods.

Overall, the performance of the algorithm and network varies depending on the telemetry
and test period. While they demonstrate successful detection in some cases, there are instances
of missed detections, false positives, and delays in anomaly identification. These findings high-
light the need for further refinement and optimization of the algorithm to enhance its perfor-
mance in all scenarios.

Table 6.1 summarizes the performance of the algorithm and network for each telemetry in
the three test periods. The results indicate varying degrees of success and challenges in anomaly
detection.

Test Period 1 Test Period 2 Test Period 3

current_1 The algorithm fails to
identify the initial ab-
normal period because
it disregards the insignif-
icant deviations. This
can be characterized
as a missed detection,
or false negative. On
the other hand, the
algorithm accurately
identifies the second
anomaly, resulting in a
true positive.

The algorithm’s perfor-
mance in this particular
case is not meeting ex-
pectations. Surprisingly,
it is incorrectly label-
ing normal behavior
as anomalous, result-
ing in false positives.
Additionally, it fails
to identify the initial
period of anomalies
because it disregards
insignificant deviations,
leading to a missed de-
tection or false negative.
However, the algorithm
accurately detects the
second anomaly, which
can be classified as a true
positive.

The initial expected
behavior is mistakenly
identified as abnormal,
resulting in a false pos-
itive. Additionally, it
fails to identify the first
period of abnormality,
leading to a missed de-
tection or false negative.
However, the second
anomaly is accurately
detected, resulting in a
true positive. Finally,
the concluding period
of expected behavior is
correctly identified as
normal, giving a true
negative.

126

Test Period 1 Test Period 2 Test Period 3

current_2 The algorithm accu-
rately identifies normal
behavior (true nega-
tives). However, it
only detects the first
instance of anomalous
behavior when the HI
rises for the first time.
On the other hand,
it successfully detects
the second anomalous
behavior (true positive).

The algorithm effec-
tively identifies normal
behavior (true negative),
but it detects anomalies
three days after they
have occurred in the
data. There is a delay in
raising an alarm until
October 22nd, resulting
in missed detection.
However, from that
point onward, the
algorithm consistently
identifies the events
that have occurred (true
positive).

The algorithm ef-
fectively identifies
anomalous behavior
(true positives) and ac-
curately detects normal
behavior (true nega-
tives). However, there
is a noticeable delay in
detecting anomalous
behavior due to the size
of the sliding window.

current_3 The algorithm excels at
accurately identifying
normal behavior (true
negatives) while also
promptly detecting
anomalous behavior
(true positives).

The algorithm success-
fully identifies all true
negatives except for a
single momentary peak,
but overall its detection
accuracy remains intact.

The algorithm effec-
tively identifies all
instances of true nega-
tives and even detects
an anomaly near the
peak on October 13,
which qualifies as a true
positive.

127

Test Period 1 Test Period 2 Test Period 3

voltage_1 The algorithm excels at
accurately identifying
both the expected
behavior (true nega-
tives) and subsequent
unusual behavior (true
positives).

The algorithm demon-
strates proficiency in
accurately detecting
both expected normal
behavior (true nega-
tives) and subsequent
uncommon behavior
(true positives).

The algorithm exhibits
shortcomings in de-
tecting anomalies: it
initially misses the first
anomalous period,
resulting in a false
negative. Additionally,
it mistakenly identifies
a false positive shortly
before October 9th.
Furthermore, for the
second anomalous
period, the algorithm
fails to detect it accu-
rately (true negative)
and instead produces
false positives towards
the conclusion of the
anomalous period on
October 13th.

voltage_2 The algorithm effec-
tively detects a regular
pattern, resulting in a
true negative classifica-
tion.

The algorithm effec-
tively detects a regular
pattern, resulting in a
true negative classifica-
tion.

The algorithm effec-
tively detects a regular
pattern, resulting in a
true negative classifica-
tion.

Table 6.1: Summary of Algorithm Performance for Each Telemetry and Test Period.

6.4 Recommendations for FutureWork

In the following section, potential avenues for future research and development in the field of
DPHM are discussed. Additionally, areas for improvement and enhancement of the current

128

system are identified, along with opportunities for expanding the scope of this study. These
recommendations aim to guide future researchers and practitioners in advancing the field of
DPHM and further enhancing the capabilities of such systems.

• Parameter Tuning and Architecture Optimization: One potential area for future
work is the implementation of a systematic approach for tuning the parameters of the
training options and optimizing the architecture of the network. This can involve tech-
niques such as Bayesian optimization, which allows for automatic tuning of hyperpa-
rameters to maximize the performance of the network. By fine-tuning the training op-
tions and exploring different network architectures, researchers can further optimize the
DPHM system and potentially improve its predictive accuracy and efficiency.

• Multivariate Analysis and Telemetry Integration: Another promising direction for
future research is to extend the network’s capabilities to handle multivariate time series
data. Currently, the DPHM system focuses on forecasting individual telemetry values.
However, in practical scenarios, multiple telemetry time series may exhibit interdepen-
dencies and can provide valuable insights when analyzed collectively. By incorporating
multivariate analysis techniques, researchers can explore how the behavior and perfor-
mance of the network change when considering multiple telemetry variables simultane-
ously. This can potentially lead to a more comprehensive understanding of the system’s
health and enable more accurate predictions and diagnostics.

• Comparative Analysis with Existing Systems: An interesting avenue for future re-
search is to perform a comparative analysis of the developed DPHM system with exist-
ing systems or methodologies in the field of satellite diagnostic and prognostic health
monitoring. This comparative study can involve benchmarking the performance of the
proposed system against established techniques or commercially available systems. By
conducting such a comparison, researchers can assess the strengths and weaknesses of
different approaches, identify areas of improvement, and gain insights into the unique
contributions and advantages of the developed DPHM system. This analysis can help
validate the effectiveness and competitiveness of the proposed system and provide valu-
able guidance for its practical implementation and deployment.

129

130

A
Appendix A

Listing A.1: MATLAB Script for Importing Data from CSV Files in a Folder

1 vars = {}; data = {};
2
3 [vars, data] = load_data_1(vars);
4
5 function [vars, data] = load_data_1(vars)
6 % Ask the user to enter the number of telemetries
7 vars.numOfTelemetry = input("Enter the Number of Telemetries: ");
8 data.data = [];
9
10 for i = 1:vars.numOfTelemetry
11 [chosenfile, chosendirectory] = uigetfile({'*.csv*', 'All

Files (*.csv*)'}, 'Select files to import', 'MultiSelect',
'on');

12 filePath = [chosendirectory chosenfile];
13
14 if filePath ~= 0
15 data.DataFileName = chosenfile;
16 data.CompleteData{i} = readtable(filePath);

131

17 data.seriesdataHeader{i} = data.CompleteData{i}.Properties
.VariableNames(1,:);

18 data.seriesdata{i} = table2array(data.CompleteData{i});
19 data.seriesdata{i} = transpose(data.seriesdata{i});
20 data.time{i} = data.seriesdata{i}(1,:);
21 data.datetime{i} = datetime(data.time{i}, 'ConvertFrom', '

posixtime');
22 end
23
24 allfeatures{i} = data.seriesdataHeader{i};
25
26 % Display the list of features
27 disp('List of Telemetry:');
28 for j = 1:length(allfeatures{i})
29 disp(sprintf('%d. %s\n', j, allfeatures{i}{j}));
30 end
31
32 % Ask the user to select telemetry
33 vars.features{i} = input("Enter the Telemetry Number to be

Selected: ");
34
35 % Display the selected telemetry
36 disp(sprintf('You selected the following telemetry from .csv %

d: %s\n', i, allfeatures{i}{vars.features{i}}));
37 data.telemetry{i} = allfeatures{i}{vars.features{i}};
38
39 % Create a new array with only the selected telemetry
40 data.seriesdataWfeatures{i} = data.seriesdata{i}(vars.features

{i},:);
41
42 % Find the indices of NaN values in the array
43 nanIndices = isnan(data.seriesdataWfeatures{i});
44
45 % Remove the NaN values from the array

132

46 data.seriesdataWfeatures{i} = data.seriesdataWfeatures{i}(~
nanIndices);

47 data.time{i} = data.time{i}(~nanIndices);
48 data.datetime{i} = data.datetime{i}(~nanIndices);
49 data.data(i,:) = data.seriesdataWfeatures{i};
50 data.seriesdataWfeatures{i} = transpose(data.

seriesdataWfeatures{i});
51 end
52
53 fprintf('***\n');
54 fprintf('You selected the following telemetry:\n');
55 for j = 1:vars.numOfTelemetry
56 fprintf('%d. %s\n', j, data.telemetry{j});
57 end
58 fprintf('***\n');
59 end

Listing A.2: MATLAB Script for Data Splitting into Train and Test Periods

1 vars.dateTrainStart = datetime('01-Jun-2019');
2 vars.dateTrainStop = datetime('23-Jun-2019');
3
4 vars.dateTest = [
5 datetime('24-Jun-2019'), datetime('07-Jul-2019');
6 datetime('10-Sep-2019'), datetime('24-Sep-2019');
7 datetime('01-Oct-2019'), datetime('15-Oct-2019')
8];
9
10 [data, vars] = selection_of_training_data(vars, data);
11 data = selection_of_testing_data(vars, data);
12
13 function [data, vars] = selection_of_training_data(vars, data)
14 for i = 1:vars.numOfTelemetry
15 data.seriesdataWfeatures_inter{i} = data.

seriesdataWfeatures_inter{i}';

133

16
17 data.X_Train{i} = [];
18 data.Y_Train{i} = [];
19
20 [vars.unixTrainStart, vars.unixTrainStop] =

datetime2unixtimestemp(vars.dateTrainStart, vars.
dateTrainStop);

21 [vars.indexTrainStart, vars.indexTrainStop] =
find_closest_indexes(data, vars.unixTrainStart, vars.
unixTrainStop);

22
23 data.X_Train{i} = data.seriesdataWfeatures_inter{i}(:, vars.

indexTrainStart:vars.indexTrainStop-1);
24 data.Y_Train{i} = data.seriesdataWfeatures_inter{i}(:, vars.

indexTrainStart+1:vars.indexTrainStop);
25 data.Train_Time = data.datetime_inter(vars.indexTrainStart:

vars.indexTrainStop-1);
26 end
27 end
28
29 function data = selection_of_testing_data(vars, data)
30 for p = 1:size(vars.dateTest, 1)
31 for i = 1:length(data.seriesdataWfeatures)
32 Disp1Name = strcat('X_Test_', num2str(p));
33 Disp2Name = strcat('Y_Test_', num2str(p));
34 Disp3Name = strcat('Test_Time_', num2str(p));
35
36 data.(Disp1Name) = [];
37 data.(Disp2Name) = [];
38 data.(Disp3Name) = [];
39
40 [vars.unixTestStart, vars.unixTestStop] =

datetime2unixtimestemp(vars.dateTest(p, 1), vars.
dateTest(p, 2));

134

41 [vars.indexTestStart, vars.indexTestStop] =
find_closest_indexes(data, vars.unixTestStart, vars.
unixTestStop);

42
43 data.(Disp1Name) = data.seriesdataWfeatures_inter{i}(:,

vars.indexTestStart:vars.indexTestStop-1);
44 data.(Disp2Name) = data.seriesdataWfeatures_inter{i}(:,

vars.indexTestStart+1:vars.indexTestStop);
45 data.(Disp3Name) = data.datetime_inter(vars.indexTestStart

:vars.indexTestStop-1);
46 end
47 end
48 end
49
50 function [indexStart, indexStop] = find_closest_indexes(data,

unixStart, unixStop)
51 % Find the index of the exact match (if it exists)
52 exactIndexStart = find(data.time_inter == unixStart, 1);
53 exactIndexStop = find(data.time_inter == unixStop, 1);
54 % If an exact match was found, return its index
55 if ~isempty(exactIndexStart)
56 indexStart = exactIndexStart;
57 end
58 if ~isempty(exactIndexStop)
59 indexStop = exactIndexStop;
60 end
61 % Otherwise, find the index of the closest value
62 [~, indexStart] = min(abs(data.time_inter - unixStart));
63 [~, indexStop] = min(abs(data.time_inter - unixStop));
64 end
65
66 function [unixStart, unixStop] = datetime2unixtimestemp(dateStart,

dateStop)
67 unixStart = posixtime(dateStart);

135

68 unixStop = posixtime(dateStop);
69 end

Listing A.3: MATLAB Script for Data Preprocessing

1 dataTrain = data.X_Train{1};
2 numStepsTraining = round(numel(dataTrain));
3 indexTrain = 1:numStepsTraining;
4 trainTime = data.Train_Time;
5
6 % Choose one of the 3 testing periods
7 test_period = 1; % 1, 2, 3
8 if test_period == 1
9 % Test Period 1 (24-Jun-2019 : 07-Jul-2019)
10 dataTest = data.X_Test_1;
11 numStepsTesting = round(numel(dataTest));
12 indexTest = 1:numStepsTesting;
13 testTime = data.Test_Time_1;
14
15 elseif test_period == 2
16 % Test Period 2 (10-Sep-2019 : 24-Sep-2019)
17 dataTest = data.X_Test_2;
18 numStepsTesting = round(numel(dataTest));
19 indexTest = 1:numStepsTesting;
20 testTime = data.Test_Time_2;
21
22 elseif test_period == 3
23 % Test Period 3 (01-Oct-2019 : 15-Oct-2019)
24 dataTest = data.X_Test_3;
25 numStepsTesting = round(numel(dataTest));
26 indexTest = 1:numStepsTesting;
27 testTime = data.Test_Time_3;
28 end
29
30 %% Data Standardization

136

31 muData = mean(data.data);
32 sigData = std(data.data);
33
34 % Train Data
35 TrainStandardizeddata = (dataTrain - muData) / sigData;
36
37 % Test Data
38 TestStandardizeddata = (dataTest - muData) / sigData;
39
40 %% Prepare Independent and Dependent Variables
41 numDays = 14;
42 numHours = 2;
43 maxLag = round(size(dataTrain, 2) / (numDays * 24)) * numHours;
44 vars.Lag = 1:maxLag;
45
46 % Train Data
47 XTrain = zeros(max(vars.Lag), size(TrainStandardizeddata, 2));
48 YTrain = TrainStandardizeddata(max(vars.Lag) + 1:end);
49 XrTrain = cell(size(XTrain, 2), 1);
50 YrTrain = zeros(size(YTrain, 2), 1);
51
52 for i = 1:size(XTrain, 2)
53 XTrain(:, i) = TrainStandardizeddata(max(vars.Lag) + 1 - i:end - i

);
54 XrTrain{i} = XTrain(:, i);
55 YrTrain(i) = YTrain(i);
56 end
57
58 % Test Data
59 XTest = zeros(max(vars.Lag), size(TestStandardizeddata, 2));
60 YTest = TestStandardizeddata(max(vars.Lag) + 1:end);
61 XrTest = cell(size(XTest, 2), 1);
62 YrTest = zeros(size(YTest, 2), 1);
63

137

64 for i = 1:size(XTest, 2)
65 XTest(:, i) = TestStandardizeddata(max(vars.Lag) + 1 - i:end - i);
66 XrTest{i} = XTest(:, i);
67 YrTest(i) = YTest(i);
68 end

Listing A.4: MATLAB Script for CNN‐LSTM Network Architecture Definition

1 vars.NetOption = "CNN-LSTM";
2 numFeatures = size(XTrain, 1);
3 numResponses = 1;
4 FiltZise = 5;
5
6 if strcmp(vars.NetOption, "CNN-LSTM")
7 layers = [
8 % Here input the sequence.
9 sequenceInputLayer([numFeatures 1 1], 'Name', 'input')
10 sequenceFoldingLayer('Name', 'fold')
11
12 % From here, do your engineering design of your CNN feature

extraction
13 convolution2dLayer(FiltZise, 32, 'Padding', 'same', '

WeightsInitializer', 'he', 'Name', 'conv', 'DilationFactor'
, 1)

14 batchNormalizationLayer('Name', 'bn')
15 eluLayer('Name', 'elu')
16 convolution2dLayer(FiltZise, 32, 'Padding', 'same', '

WeightsInitializer', 'he', 'Name', 'conv1', 'DilationFactor
', 2)

17 eluLayer('Name', 'elu1')
18 convolution2dLayer(FiltZise, 32, 'Padding', 'same', '

WeightsInitializer', 'he', 'Name', 'conv2', 'DilationFactor
', 4)

19 eluLayer('Name', 'elu2')
20 convolution2dLayer(FiltZise, 32, 'Padding', 'same', '

138

WeightsInitializer', 'he', 'Name', 'conv3', 'DilationFactor
', 8)

21 eluLayer('Name', 'elu3')
22 convolution2dLayer(FiltZise, 32, 'Padding', 'same', '

WeightsInitializer', 'he', 'Name', 'conv4', 'DilationFactor
', 16)

23 eluLayer('Name', 'elu4')
24 averagePooling2dLayer(1, 'Stride', FiltZise, 'Name', 'pool1')
25 % Here you finish your CNN design and the next step is to

unfold and flatten.
26 sequenceUnfoldingLayer('Name', 'unfold')
27 flattenLayer('Name', 'flatten')
28
29 % From here, the RNN design.
30 gruLayer(128, 'Name', 'gru1', 'RecurrentWeightsInitializer', '

He', 'InputWeightsInitializer', 'He')
31 lstmLayer(64, 'Name', 'gru2', 'RecurrentWeightsInitializer', '

He', 'InputWeightsInitializer', 'He')
32 dropoutLayer(0.25, 'Name', 'drop2')
33 lstmLayer(32, 'OutputMode', 'last', 'Name', 'bil4', '

RecurrentWeightsInitializer', 'He', '
InputWeightsInitializer', 'He')

34 dropoutLayer(0.25, 'Name', 'drop3')
35 % Here finish the RNN design.
36
37 % Use a fully connected layer with one neuron because you will

predict one step ahead.
38 fullyConnectedLayer(numResponses, 'Name', 'fc')
39 regressionLayer('Name', 'output')
40];
41
42 layers = layerGraph(layers);
43 layers = connectLayers(layers, 'fold/miniBatchSize', 'unfold/

miniBatchSize');

139

44 end

Listing A.5: MATLAB Script for Training Options and Network Training

1 %% Training Options
2 optns.solverName = 'adam';
3 % 'sgdm', 'rmsprop', 'adam'
4 optns.Plots = 'training-progress';
5 % 'none', 'training-progress'
6 optns.Verbose = false;
7 % 'true', 'false'
8 optns.MaxEpochs = 450;
9 % positive integer
10 optns.MiniBatchSize = 64;
11 % positive integer
12 optns.Shuffle = 'every-epoch';
13 % 'once', 'never', 'every-epoch'
14 optns.InitialLearnRate = 0.00611;
15 % positive scalar
16 optns.LearnRateSchedule = 'piecewise';
17 % 'none', 'piecewise'
18 optns.LearnRateDropPeriod = 96;
19 % positive scalar
20 optns.LearnRateDropFactor = 0.25;
21 % positive scalar from 0 to 1
22 optns.GradientThreshold = 1;
23 % positive scalar
24 optns.ExecutionEnvironment = 'cpu';
25 % 'auto', 'cpu', 'gpu', 'multi-gpu', 'parallel'
26
27 options = trainingOptions(optns.solverName, ...
28 'Plots', optns.Plots, ...
29 'Verbose', optns.Verbose, ...
30 'MaxEpochs', optns.MaxEpochs, ...
31 'MiniBatchSize', optns.MiniBatchSize, ...

140

32 'Shuffle', optns.Shuffle, ...
33 'InitialLearnRate', optns.InitialLearnRate, ...
34 'LearnRateSchedule', optns.LearnRateSchedule, ...
35 'LearnRateDropPeriod', optns.LearnRateDropPeriod, ...
36 'LearnRateDropFactor', optns.LearnRateDropFactor, ...
37 'GradientThreshold', optns.GradientThreshold, ...
38 'ExecutionEnvironment', optns.ExecutionEnvironment);
39
40 %% Train Hybrid Network
41 hybrid_network = trainNetwork(XrTrain, YrTrain, layers, options);

Listing A.6: MATLAB Script for Assessing Performance Metrics and Visualizing Results on Training Datasets

1 % Create a "Train Folder" for save the results
2 folder_path_train = 'H:\Arvotti\Results\TRAIN';
3 folder_contents_train = dir(folder_path_train);
4 num_subfolders_train = 1;
5
6 % Count the number of existing subfolders
7 for i = 1:length(folder_contents_train)
8 if folder_contents_train(i).isdir && ~strcmp(folder_contents_train

(i).name, '.') && ~strcmp(folder_contents_train(i).name, '..')
9 num_subfolders_train = num_subfolders_train + 1;
10 end
11 end
12
13 I_train = num_subfolders_train;
14
15 % Create a new folder with a unique name
16 if I_train < 10
17 folder_name_train = "CASE_TRAIN_00" + I_train;
18 else
19 folder_name_train = "CASE_TRAIN_0" + I_train;
20 end
21

141

22 data.new_folder_path_train = fullfile(folder_path_train,
folder_name_train);

23 mkdir(data.new_folder_path_train);
24
25 %% Evaluate The Network: Train Period
26 YPred_Train = predict(hybrid_network,XrTrain,'ExecutionEnvironment',

optns.ExecutionEnvironment,'MiniBatchSize',numFeatures);
27 YPred_Train = YPred_Train';
28
29 YPred_Train = sigTrain.*YPred_Train+muTrain;
30 YTrain = sigTrain.*YTrain+muTrain;
31
32 %% Metrics Calculation [Train Data]
33 Errors_train = YTrain - YPred_Train;
34
35 MSE_train_total = mean(Errors_train.^2);
36 RMSE_train_total = sqrt(MSE_train_total);
37 NRMSE_train_total = RMSE_train_total / mean(YTrain);
38 ErrorMean_train_total = mean(Errors_train);
39 ErrorStd_train_total = std(Errors_train);
40
41 % NRMSE
42 for i = 1:size(YTrain, 2)
43 mse_train(1, i) = (Errors_train(1, i)).^2;
44 rmse_train(1, i) = sqrt(mse_train(1, i));
45 nrmse_train(1, i) = rmse_train(1, i) / (max(YTrain) - min(YTrain))

;
46 end
47 nrmse_mean_train = mean(nrmse_train);
48 nrmse_std_train = std(nrmse_train);
49
50 % Plot The Results [Train Data]
51 Train_Time = trainTime(1, max(vars.Lag) + 1:end);
52 Disp1Name = "Predicted_Outcomes_vs_Observed_Values_[Train_Data]_(" +

142

data.telemetry{1} + ")";
53 Disp2Name = "Errors_[Train_Data]_(" + data.telemetry{1} + ")";
54 Disp3Name = "Error_Histogram_[Train_Data]_(" + data.telemetry{1} + ")

";
55 Disp4Name = "NRMSE_[Train_Data]_(" + data.telemetry{1} + ")";
56 Disp5Name = "NRMSE_Histogram_[Train_Data]_(" + data.telemetry{1} + ")

";
57
58 % Predicted Outcomes vs Observed Values
59 figure('Name', 'Predicted_Outcomes_vs_Observed_Values_[Train_Data]', '

NumberTitle', 'off')
60 hold on
61 title("Predicted Outcomes vs Observed Values [Train Data] (" + data.

telemetry{1} + ")", 'Interpreter', 'none')
62 plot(Train_Time, YTrain, 'LineWidth', vars.lineWidth)
63 plot(Train_Time, YPred_Train, '.-', 'LineWidth', vars.lineWidth);
64 xlabel("Time")
65 xlim([Train_Time(1) Train_Time(end)]);
66 grid minor;
67 ylabel("Telemetry Value")
68 legend(["Observed Values" "Predicted Outcomes " + vars.NetOption], '

Location', "best")
69 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');
70 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '

XMinorTick', 'on', 'YMinorTick', 'on', ...
71 'XGrid', 'on', 'YGrid', 'on', 'TickDir', 'in', 'TickLength', [.015

.015], ...
72 'FontName', 'avantgarde', 'FontSize', vars.fontSize, 'FontWeight',

'normal');
73 savefig(fullfile(data.new_folder_path_train, sprintf('%s.fig',

Disp1Name)));
74
75 % Errors

143

76 figure('Name', 'Errors_[Train_Data]', 'NumberTitle', 'off');
77 hold on
78 title("Errors [Train Data] (" + data.telemetry{1} + ")", 'Interpreter'

, 'none');
79 subtitle(['Error Mean = ' num2str(ErrorMean_train_total) ', Error StD

= ' num2str(ErrorStd_train_total)]);
80 plot(Train_Time, Errors_train, "LineWidth", vars.lineWidth, 'Color', '

0.64,0.08,0.18');
81 xlabel('Time');
82 xlim([Train_Time(1) Train_Time(end)]);
83 grid minor;
84 ylabel('Error');
85 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');
86 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '

XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, ...

87 'TickDir', 'in', 'TickLength', [.015 .015], ...
88 'FontName', 'avantgarde', 'FontSize', vars.fontSize, 'FontWeight',

'normal');
89 savefig(fullfile(data.new_folder_path_train, sprintf('%s.fig',

Disp2Name)));
90
91 % Error Histogram
92 figure('Name', 'Error_Histogram_[Train_Data]', 'NumberTitle', 'off');
93 hold on
94 title("Error Histogram [Train Data] (" + data.telemetry{1} + ")", '

Interpreter', 'none');
95 subtitle(['Error Mean = ' num2str(ErrorMean_train_total) ', Error StD

= ' num2str(ErrorStd_train_total)]);
96 histogram(Errors_train, "LineWidth", vars.lineWidth, 'FaceColor', '

0.64,0.08,0.18');
97 grid minor;
98 xlabel('Error Magnitude');

144

99 ylabel('Occurrences')
100 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');
101 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '

XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, ...

102 'TickDir', 'in', 'TickLength', [.015 .015], ...
103 'FontName', 'avantgarde', 'FontSize', vars.fontSize, 'FontWeight',

'normal');
104 savefig(fullfile(data.new_folder_path_train, sprintf('%s.fig',

Disp3Name)));
105
106 % NRMSE
107 figure('Name', 'NRMSE_[Train_Data]', 'NumberTitle', 'off');
108 hold on
109 title("NRMSE [Train Data] (" + data.telemetry{1} + ")", 'Interpreter',

'none');
110 subtitle(['NRMSE Total = ' num2str(NRMSE_train_total)...
111 ', NRMSE Mean = ' num2str(nrmse_mean_train)...
112 ', NRMSE StD = ' num2str(nrmse_std_train)]);
113 plot(Train_Time, nrmse_train, 'LineWidth', vars.lineWidth, 'Color', '

0.49,0.18,0.56');
114 xlabel('Time');
115 xlim([Train_Time(1) Train_Time(end)]);
116 grid minor;
117 ylabel('NRMSE');
118 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');
119 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '

XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, ...

120 'TickDir', 'in', 'TickLength', [.015 .015], ...
121 'FontName', 'avantgarde', 'FontSize', vars.fontSize, 'FontWeight',

'normal');

145

122 savefig(fullfile(data.new_folder_path_train, sprintf('%s.fig',
Disp4Name)));

123
124 % NRMSE Histogram
125 figure('Name', 'NRMSE_Histogram_[Train_Data]', 'NumberTitle', 'off');
126 hold on
127 title("NRMSE Histogram [Train Data] (" + data.telemetry{1} + ")", '

Interpreter', 'none');
128 subtitle(['NRMSE Total = ' num2str(NRMSE_train_total)...
129 ', NRMSE Mean = ' num2str(nrmse_mean_train)...
130 ', NRMSE StD = ' num2str(nrmse_std_train)]);
131 histogram(nrmse_train, 'LineWidth', vars.lineWidth, 'FaceColor', '

0.49,0.18,0.56');
132 grid minor;
133 xlabel('NRMSE Magnitude');
134 ylabel('Occurrences')
135 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');
136 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '

XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, ...

137 'TickDir', 'in', 'TickLength', [.015 .015], ...
138 'FontName', 'avantgarde', 'FontSize', vars.fontSize, 'FontWeight',

'normal');
139 savefig(fullfile(data.new_folder_path_train, sprintf('%s.fig',

Disp5Name)));
140 save(fullfile(data.new_folder_path_train,'workspace.mat'));

Listing A.7: MATLAB Script for Assessing Performance Metrics and Visualizing Results on Testing Datasets

1 % Create a "Test Folder" to save the results
2 folder_path_test = 'H:\Arvotti\Results\TEST';
3 folder_contents_test = dir(folder_path_test);
4 num_subfolders_test = 2;
5

146

6 for i = 1:length(folder_contents_test)
7 if folder_contents_test(i).isdir && ~strcmp(folder_contents_test(i

).name, '.') && ~strcmp(folder_contents_test(i).name, '..')
8 num_subfolders_test = num_subfolders_test + 1;
9 end
10 end
11 I_test = num_subfolders_test;
12
13 % Create a new folder with a unique name inside the specified path
14 if I_test < 10
15 folder_name_test = "CASE_TEST_00" + I_test;
16 elseif I_test >= 10
17 folder_name_test = "CASE_TEST_0" + I_test;
18 end
19
20 data.new_folder_path_test = fullfile(folder_path_test,

folder_name_test);
21 mkdir(data.new_folder_path_test);
22
23 %% Evaluate The Network: Test Period
24 YPred_Test = predict(hybrid_network, XrTest, 'ExecutionEnvironment',

optns.ExecutionEnvironment, 'MiniBatchSize', numFeatures);
25 YPred_Test = YPred_Test';
26
27 YPred_Test = sigTest .* YPred_Test + muTest;
28 YTest = sigTest .* YTest + muTest;
29
30 %% Metrics Calculation [Test Data]
31 Errors_test = YTest - YPred_Test;
32
33 MSE_test_total = mean(Errors_test.^2);
34 RMSE_test_total = sqrt(MSE_test_total);
35 NRMSE_test_total = RMSE_test_total / mean(YTest);
36 ErrorMean_test_total = mean(Errors_test);

147

37 ErrorStd_test_total = std(Errors_test);
38
39 % NRMSE
40 nrmse_test = [];
41 for i = 1:size(YTest, 2)
42 mse_test(1, i) = mean(Errors_test(1, i)).^2;
43 rmse_test(1, i) = sqrt(mse_test(1, i));
44 nrmse_test(1, i) = rmse_test(1, i) / (max(YTest) - min(YTest));
45 end
46 nrmse_mean_test = mean(nrmse_test);
47 nrmse_std_test = std(nrmse_test);
48
49 % Plot The Results [Test Data]
50 Test_Time = testTime(1, max(vars.Lag) + 1:end);
51
52 Disp1Name = "Predicted_Outcomes_vs_Observed_Values_[Test_Data]_(" +

data.telemetry{1} + ")";
53 Disp2Name = "Errors_[Test_Data]_(" + data.telemetry{1} + ")";
54 Disp3Name = "Error_Histogram_[Test_Data]_(" + data.telemetry{1} + ")";
55 Disp4Name = "NRMSE_[Test_Data]_(" + data.telemetry{1} + ")";
56 Disp5Name = "NRMSE_Histogram_[Test_Data]_(" + data.telemetry{1} + ")";
57
58 % Predicted Outcomes vs Observed Values
59 figure('Name', 'Predicted_Outcomes_vs_Observed_Values_[Test_Data]', '

NumberTitle', 'off')
60 hold on
61 title("Predicted Outcomes vs Observed Values [Test Data] (" + data.

telemetry{1} + ")", 'Interpreter', 'none')
62 plot(Test_Time, YTest, 'LineWidth', vars.lineWidth);
63 plot(Test_Time, YPred_Test, '.-', 'LineWidth', vars.lineWidth)
64 xlabel("Time")
65 xlim([Test_Time(1) Test_Time(end)]);
66 grid minor;
67 ylabel("Telemetry Value")

148

68 legend(["Observed Values", "Predicted Outcomes " + vars.NetOption], '
Location', "best")

69 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '
FontWeight', 'bold');

70 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '
XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, 'TickDir', 'in', 'TickLength', [.015 .015], 'FontName', '
avantgarde', 'FontSize', vars.fontSize, 'FontWeight', 'normal');

71 savefig(fullfile(data.new_folder_path_test, sprintf('%s.fig',
Disp1Name)));

72
73 % Errors
74 figure('Name', 'Errors_[Test_Data]', 'NumberTitle', 'off');
75 hold on
76 title("Errors [Test Data] (" + data.telemetry{1} + ")", 'Interpreter',

'none');
77 subtitle(['Error Mean = ' num2str(ErrorMean_test_total) ', Error StD =

' num2str(ErrorStd_test_total)]);
78 plot(Test_Time, Errors_test, "LineWidth", vars.lineWidth, 'Color', '

0.64,0.08,0.18');
79 xlabel('Time');
80 xlim([Test_Time(1) Test_Time(end)]);
81 grid minor;
82 ylabel('Error');
83 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');
84 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '

XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, 'TickDir', 'in', 'TickLength', [.015 .015], 'FontName', '
avantgarde', 'FontSize', vars.fontSize, 'FontWeight', 'normal');

85 savefig(fullfile(data.new_folder_path_test, sprintf('%s.fig',
Disp2Name)));

86
87 % Error Histogram

149

88 figure('Name', 'Error_Histogram_[Test_Data]', 'NumberTitle', 'off');
89 hold on
90 title("Error Histogram [Test Data] (" + data.telemetry{1} + ")", '

Interpreter', 'none');
91 subtitle(['Error Mean = ' num2str(ErrorMean_test_total) ', Error StD =

' num2str(ErrorStd_test_total)]);
92 histogram(Errors_test, "LineWidth", vars.lineWidth, 'FaceColor', '

0.64,0.08,0.18');
93 grid minor;
94 xlabel('Error Magnitude');
95 ylabel('Occurrences')
96 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');
97 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '

XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, 'TickDir', 'in', 'TickLength', [.015 .015], 'FontName', '
avantgarde', 'FontSize', vars.fontSize, 'FontWeight', 'normal');

98 savefig(fullfile(data.new_folder_path_test, sprintf('%s.fig',
Disp3Name)));

99
100 % NRMSE
101 figure('Name', 'NRMSE_[Test_Data]', 'NumberTitle', 'off');
102 hold on
103 title("NRMSE [Test Data] (" + data.telemetry{1} + ")", 'Interpreter',

'none');
104 subtitle(['NRMSE Total = ' num2str(NRMSE_test_total)]);
105 plot(Test_Time, nrmse_test(1, :), 'LineWidth', vars.lineWidth, 'Color'

, '0.49,0.18,0.56');
106 xlabel('Time');
107 xlim([Test_Time(1) Test_Time(end)]);
108 grid minor;
109 ylabel('NRMSE');
110 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');

150

111 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '
XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, 'TickDir', 'in', 'TickLength', [.015 .015], 'FontName', '
avantgarde', 'FontSize', vars.fontSize, 'FontWeight', 'normal');

112 savefig(fullfile(data.new_folder_path_test, sprintf('%s.fig',
Disp4Name)));

113
114 % NRMSE Histogram
115 figure('Name', 'NRMSE_Histogram_[Test_Data]', 'NumberTitle', 'off');
116 hold on
117 title("NRMSE Histogram [Test Data] (" + data.telemetry{1} + ")", '

Interpreter', 'none');
118 subtitle(['NRMSE Total = ' num2str(NRMSE_test_total) ', NRMSE Mean = '

num2str(nrmse_mean_test) ', NRMSE StD = ' num2str(nrmse_std_test)
]);

119 histogram(nrmse_test(1, :), "LineWidth", vars.lineWidth, 'FaceColor',
'0.49,0.18,0.56');

120 grid minor;
121 xlabel('NRMSE Magnitude');
122 ylabel('Occurrences');
123 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');
124 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '

XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, 'TickDir', 'in', 'TickLength', [.015 .015], 'FontName', '
avantgarde', 'FontSize', vars.fontSize, 'FontWeight', 'normal');

125 savefig(fullfile(data.new_folder_path_test, sprintf('%s.fig',
Disp5Name)));

126
127 %% Anomaly Detection
128 lowerThreshold = prctile(abs(Errors_test), 0);
129 upperThreshold = prctile(abs(Errors_test), 95);
130 window_size = maxLag;
131 anomalies = [];

151

132 nrmse_anomaly = [];
133
134 if data.telemetry{1} == "current_1"
135 nrmse_threshold = 3.55;
136 hi_upper_th = 100;
137 elseif data.telemetry{1} == "voltage_1"
138 nrmse_threshold = 1.5;
139 hi_upper_th = 100;
140 elseif data.telemetry{1} == "current_2"
141 nrmse_threshold = 0.33;
142 hi_upper_th = 100;
143 elseif data.telemetry{1} == "voltage_2"
144 nrmse_threshold = 1.4;
145 hi_upper_th = 100;
146 elseif data.telemetry{1} == "current_3"
147 nrmse_threshold = 1.4;
148 hi_upper_th = 100;
149 end
150
151 for i = 1:size(Errors_test, 2)
152 if i > window_size && i < size(Errors_test, 2)
153 anomalies(1, i) = abs(Errors_test(1, i)) < lowerThreshold |

abs(Errors_test(1, i)) > upperThreshold;
154 if anomalies(1, i)
155 % Calculate NRMSE in a window of window_size timestamps

before the anomaly
156 windowStart = i - window_size;
157 windowEnd = i;
158 window = Errors_test(1, windowStart:windowEnd);
159 nrmse_anomaly(1, i) = sqrt(mean(window.^2)) / (max(

Errors_train) - min(Errors_train)); % PA3.0
160
161 if nrmse_anomaly(1, i) < nrmse_threshold
162 anomalies(1, i) = 0;

152

163 nrmse_anomaly(1, i) = 0;
164 end
165 end
166 else
167 anomalies(1, i) = 0;
168 nrmse_anomaly(1, i) = 0;
169 end
170 end
171
172 anomalies = logical(anomalies);
173 anomalyTimes = Test_Time(anomalies);
174
175 HI = [];
176 for i = 1:size(Errors_test, 2)
177 if nrmse_anomaly(1, i) < nrmse_threshold
178 HI(1, i) = 0;
179 elseif nrmse_anomaly(1, i) >= nrmse_threshold && nrmse_anomaly(1,

i) < hi_upper_th
180 HI(1, i) = nrmse_anomaly(1, i) * 100;
181 elseif nrmse_anomaly(1, i) >= hi_upper_th
182 HI(1, i) = 100;
183 end
184 end
185
186 % Health Index
187 Disp6Name = "Health_Index_[Test_Data]_(" + data.telemetry{1} + ")";
188 figure('Name', 'Health_Index_[Test_Data]', 'NumberTitle', 'off');
189 hold on
190 title("Health Index [Test Data] (" + data.telemetry{1} + ")", '

Interpreter', 'none');
191 plot(Test_Time, HI, 'LineWidth', vars.lineWidth, 'Color', '

1.00,0.00,0.00');
192 grid minor;
193 ylim([0, 100]);

153

194 xlim([Test_Time(1), Test_Time(end)]);
195 xlabel('Time');
196 ylabel('Health Index');
197 set(gca, 'FontSize', vars.fontSize, 'FontName', 'Adobe Kaiti Std R', '

FontWeight', 'bold');
198 set(gca, 'Box', 'on', 'LineWidth', vars.lineWidth, 'Layer', 'top', '

XMinorTick', 'on', 'YMinorTick', 'on', 'XGrid', 'on', 'YGrid', 'on'
, 'TickDir', 'in', 'TickLength', [.015 .015], 'FontName', '
avantgarde', 'FontSize', vars.fontSize, 'FontWeight', 'normal');

199 savefig(fullfile(data.new_folder_path_test, sprintf('%s.fig',
Disp6Name)));

200 save(fullfile(data.new_folder_path_test, 'workspace.mat'));

154

References

[1] Nanosats database. [Online]. Available: https://www.nanosats.eu/

[2] K. O’Donnell and G. Richardson, “Small satellite trending & reliability 2009-2018,”
The Aerospace Corporation, 2019.

[3] X.-Y. Ji, Y.-Z. Li, G.-Q. Liu, J. Wang, S.-H. Xiang, X.-N. Yang, and Y.-Q. Bi, “A brief
review of ground and flight failures of chinese spacecraft,” Progress in Aerospace Sciences,
vol. 107, pp. 19–29, 2019.

[4] J. Schumann, O. J. Mengshoel, and T. Mbaya, “Integrated software and sensor health
management for small spacecraft,” in 2011 IEEE Fourth International Conference on
SpaceMission Challenges for Information Technology, 2011, pp. 77–84.

[5] S. Xie, X. Peng, X. Zhong, and C. Liu, “Fault diagnosis of the satellite power system
based on the bayesian network,” in 2013 8th International Conference on Computer Sci-
ence & Education, 2013, pp. 1004–1008.

[6] D. Pan, D. Liu, J. Zhou, and G. Zhang, “Anomaly detection for satellite power subsys-
temwith associated rules based on kernel principal component analysis,”Microelectron-
ics Reliability, vol. 55, no. 9, pp. 2082–2086, 2015.

[7] T. Yairi, N. Takeishi, T.Oda, Y.Nakajima,N.Nishimura, andN.Takata, “A data-driven
health monitoring method for satellite housekeeping data based on probabilistic clus-
tering and dimensionality reduction,” IEEE Transactions on Aerospace and Electronic
Systems, vol. 53, no. 3, pp. 1384–1401, 2017.

[8] H. Fang, H. Shi, Y. Dong, H. Fan, and S. Ren, “Spacecraft power system fault diagnosis
based on dnn,” in 2017 Prognostics and SystemHealthManagement Conference (PHM-
Harbin), 2017, pp. 1–5.

[9] M. Suo,M.Zhang,D.Zhou, B. Zhu, and S. Li, “Fault diagnosis of satellite power system
using variable precision fuzzy neighborhood rough set,” in 2017 36th Chinese Control
Conference (CCC), 2017, pp. 7301–7306.

155

https://www.nanosats.eu/

[10] S. Dheepadharshani, S. Anandh, K. B. Bhavinaya, and R. Lavanya, “Multivariate time-
series classification for automated fault detection in satellite power systems,” in 2019
International Conference on Communication and Signal Processing (ICCSP), 2019, pp.
0814–0817.

[11] S.K. Ibrahim,A.Ahmed,M.A. E. Zeidan, and I. Ziedan, “Machine learning techniques
for satellite fault diagnosis,” Ain Shams Engineering Journal, vol. 11, pp. 45–56, 2020.

[12] B. Xiao and S. Yin, “A deep learning based data-driven thruster fault diagnosis approach
for satellite attitude control system,” IEEETransactions on IndustrialElectronics, vol. 68,
no. 10, pp. 10 162–10 170, 2021.

[13] S. Mengqi, Y. Xinqing, L. Guiming, and H. Zhongmin, “Fuzzy-based analysis of ther-
mal effects on component failure for leo satellites,” in 2021 IEEE2nd InternationalCon-
ference onBigData, Artificial Intelligence and Internet ofThings Engineering (ICBAIE),
2021, pp. 933–943.

[14] A. Rahimi, K. D. Kumar, and H. Alighanbari, “Failure prognosis for satellite reaction
wheels using kalman filter and particle filter,” Journal of Guidance Control and Dynam-
ics, vol. 43, pp. 585–588, 2020.

[15] J. Wang, H. Zheng, Q. Li, H. Wu, and B. Zhou, “Prognostic for on-orbit satellite mo-
mentumwheel based on the similitudemethod,” in 2015 Prognostics and SystemHealth
Management Conference (PHM), 2015, pp. 1–5.

[16] C. Zhang, P. Lim, A. K. Qin, and K. C. Tan, “Multiobjective deep belief networks en-
semble for remaining useful life estimation in prognostics,” IEEE Transactions on Neu-
ral Networks and Learning Systems, vol. 28, no. 10, pp. 2306–2318, 2017.

[17] X. Li, Q. Ding, and J.-Q. Sun, “Remaining useful life estimation in prognostics using
deep convolution neural networks,”Reliability Engineering and SystemSafety, vol. 172,
no. C, pp. 1–11, 2018.

[18] K. Hundman, V. Constantinou, C. Laporte, I. Colwell, and T. Söderström, “Detect-
ing spacecraft anomalies using lstms and nonparametric dynamic thresholding,” Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery
&DataMining, 2018.

156

[19] J. Dong, Y. Ma, and D. Liu, “Deep learning based multiple sensors monitoring and ab-
normal discovery for satellite power system,” in 2019 International Conference on Sens-
ing, Diagnostics, Prognostics, and Control (SDPC), 2019, pp. 638–643.

[20] C.-G. Huang, H.-Z. Huang, and Y.-F. Li, “A bidirectional lstm prognostics method
under multiple operational conditions,” IEEE Transactions on Industrial Electronics,
vol. 66, no. 11, pp. 8792–8802, 2019.

[21] D. Pan, Z. Song, L. Nie, and B. Wang, “Satellite telemetry data anomaly detection us-
ing bi-lstm prediction based model,” in 2020 IEEE International Instrumentation and
Measurement Technology Conference (I2MTC), 2020, pp. 1–6.

[22] Y. Wang, Y. Wu, Q. Yang, and J. Zhang, “Anomaly detection of spacecraft telemetry
data using temporal convolution network,” in 2021 IEEE International Instrumenta-
tion andMeasurement Technology Conference (I2MTC), 2021, pp. 1–5.

[23] J. Murphy, J. E. Ward, and B. M. Namee, “Machine learning in space: A review of ma-
chine learning algorithms and hardware for space applications,” in Irish Conference on
Artificial Intelligence and Cognitive Science, 2021.

[24] M. Sirajul Islam andA.Rahimi, “Fault prognosis of satellite reactionwheels using a two-
step lstm network,” in 2021 IEEE International Conference on Prognostics and Health
Management (ICPHM), 2021, pp. 1–7.

[25] M. ElDali and K. D. Kumar, “Fault diagnosis and prognosis of aerospace systems us-
ing growing recurrent neural networks and lstm,” in 2021 IEEE Aerospace Conference
(50100), 2021, pp. 1–20.

[26] D. Han, J. Yu, M. Gong, Y. Song, and L. Tian, “A remaining useful life prediction ap-
proach based on low-frequency current data for bearings in spacecraft,” IEEE Sensors
Journal, vol. 21, no. 17, pp. 18 978–18 989, 2021.

[27] C.Wang, Z. Zhu, N. Lu, Y. Cheng, and B. Jiang, “A data-driven degradation prognostic
strategy for aero-engine under various operational conditions,” Neurocomputing, vol.
462, pp. 195–207, oct 2021.

[28] Z. Zeng, G. Jin, C. Xu, S. Chen, Z. Zeng, and L. Zhang, “Satellite telemetry data
anomaly detection using causal network and feature-attention-based lstm,” IEEETrans-
actions on Instrumentation andMeasurement, vol. 71, pp. 1–21, 2022.

157

[29] A.-E. R. Abd-Elhay, W. A. Murtada, and M. I. Youssef, “A reliable deep learning ap-
proach for time-varying faults identification: Spacecraft reaction wheel case study,”
IEEE Access, vol. 10, pp. 75 495–75 512, 2022.

[30] V. Muthusamy and K. D. Kumar, “Failure prognosis and remaining useful life predic-
tion of control moment gyroscopes onboard satellites,” Advances in Space Research,
vol. 69, no. 1, pp. 718–726, 2022.

[31] X. Wei, X. Mu, T. Jiang, W. Liu, and Z. Zeng, “Fault diagnosis method of spacecraft
control systems based on pca-resnet,” Journal of Physics: Conference Series, vol. 2258,
no. 1, p. 012062, apr 2022.

[32] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Computation,
vol. 9, no. 8, pp. 1735–1780, 1997.

[33] H. Sanchez. Mathworks. [Online]. Available: https :// it .mathworks .com/
matlabcentral/fileexchange/91360-time-series-forecasting-using-hybrid-cnn-rnn

158

https://it.mathworks.com/matlabcentral/fileexchange/91360-time-series-forecasting-using-hybrid-cnn-rnn
https://it.mathworks.com/matlabcentral/fileexchange/91360-time-series-forecasting-using-hybrid-cnn-rnn

	Abstract
	List of figures
	List of tables
	Listings
	Listing of acronyms
	Introduction
	Motivation
	Problem Statement
	Thesis Objectives
	Thesis Outline

	Small Satellites: Main Characteristic and Applications
	Introduction to Satellites
	Types of Satellites
	Growth of Small Satellites
	Mission Applications and Stakeholders
	Subsystem and Composition
	Failures and Anomalies
	Levels of Criticality in Satellites
	Causes of Failures in Small Satellites
	Common Failures and Anomalies in Small Satellites
	Critical Subsystems and Components in Small Satellites

	Summary of Findings

	Diagnosis, Prognosis, and Health Monitoring (DPHM)
	Introduction to DPHM
	Fault Diagnosis
	Four Types of Fault Diagnosis Methods

	Fault Prognosis
	Four Types of Fault Prognosis Methods

	Maintenance Strategies
	Recovery and Preventive Actions
	DPHM Methods for Space Systems
	Summary of Findings

	Long Short-Term Memory (LSTM) Network
	Introduction to LSTM
	LSTM Architecture
	Step-by-Step LSTM Walk Through

	Functionality and Advantages of LSTM
	Training and Learning in LSTM
	Applications of LSTM in Various Domains
	LSTM in the Space Domain
	Examples of LSTM in Space Domain

	Limitations and Considerations
	Summary of Findings

	Workflow and Results
	MATLAB Overview
	Dataset Description and Preprocessing
	Dataset Split: Train and Test Periods
	Data Preprocessing

	Network Architecture: CNN-LSTM Hybrid Network
	Evaluation Metrics
	Training Process
	Testing Process
	current_1
	current_2
	current_3
	voltage_1
	voltage_2

	Conclusions
	Research Overview
	Summary of Findings
	Discussions of Results
	Recommendations for Future Work

	Appendix A
	References

