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Chapter 1
Introduction

The study of the Circular Restricted Three-Body Problem (CR3BP) has a long history in
the field of Celestial Mechanics. This simplified model of gravitational interaction between
three bodies has been applied to a variety of problems, ranging from predicting the
motions of celestial bodies to designing spacecraft trajectories. Of particular interest are
the periodic orbits that exist within the CR3BP; these are trajectories that a spacecraft
can follow indefinitely under the sole influence of the two primary bodies. These orbits
have significant implications for the planning and execution of space missions, as they
offer opportunities for fuel-efficient travel between different regions of space.

The first part of this thesis deals with the main concepts of the CR3BP, such as
the Jacobi constant, the zero-velocity surfaces and the existence and stability of the
five Lagrangian equilibrium points (see Section 2.4). We then proceed to introducing
differential corrections (DC) techniques. These will be used along with continuation
methods, to compute families of periodic orbits. Indeed, as we will see, periodic orbits are
not isolated in the CR3BP, but lie in a cylinder of periodic orbits that is parametrized by
the Jacobi constant. In particular we show how to compute the Lyapunov, Halo, Axial and
Vertical families of periodic orbits, originating in the vicinity of the collinear Lagrangian
points L1, L2 and L3, as well as the families of the lunar Distant Prograde Orbits (DPO),
Distant Retrograde Orbits (DRO) and Low Prograde Orbits (LPO). We also address the
stability of these orbits and the presence of different types of bifurcations that exists
along the families of periodic orbits, e.g., tangent and period multiplying bifurcations,
using the Broucke diagrams.

In this work we also present the concept of stable and unstable invariant manifolds.
The stable manifolds of a periodic orbit constitute paths along which a spacecraft asymp-
totically approaches the given orbit without the need for additional energy. On the other
hand, unstable manifolds consist of trajectories along which the spacecraft locally di-
verges from the orbit, again without the need for external energy. This feature of invari-
ant manifolds offers a significant advantage, as it can be utilized to design low-energy
orbital transfers. In particular we show how the Poincaré maps of the invariant mani-
folds, associated with appropriate planes in phase space, i.e., Poincaré sections, can be
leveraged to compute homoclinic and heteroclinic transfers between L1 and L2 Lyapunov
orbits in the Earth-Moon system. In particular, these transfer orbits have the remark-
able property of requiring virtually zero thrust. Furthermore, the thesis introduces a
CR3BP model that incorporates the spherical harmonic expansion of the lunar gravi-
tational potential using the gravitational coefficients from the GRAIL Gravity Model
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(GL0660B) [24]. This model allows to compute families of lunar Repeat Ground Track
(RGT) orbits (see Section 5.3) in a high fidelity lunar gravitational field. Finally, the
thesis explores different possibilities for impulsive transfers departing from various Near
Rectilinear Halo Orbits (NRHOs) towards RGT orbits at different altitudes and incli-
nations (see Section 5.4). In order to do this we again exploit the presence of unstable
manifolds. The NRHOs of interest include the 4 : 1 and the 9 : 2 resonant Southern L2

NRHO, in particular the latter constitutes the reference trajectory for the Lunar Gate-
way, the first planned extraterrestrial space station. Strong motivation in this research is
provided by the renewed global interest in lunar exploration, including various ambitious
lunar programs, such as the NASA’s Artemis program, of which the Gateway constitutes
a vital component, and the European Space Agency’s (ESA) plan for a Lunar Navigation
and Communication System (LNCS). In particular such an infrastructure would provide
vital support for missions, facilitating communication and precise navigation, serving as
an enabler for both institutional and commercial lunar missions. In this framework, our
investigation aims at providing insights into the design of efficient trajectories for future
lunar missions. Indeed, RGT orbits, especially those with nearly polar inclination, could
be of interest for missions that focus on lunar surface coverage. For instance a Synthetic
Aperture Radar (SAR), or similar technology on a RGT orbit could provide radar imaging
for high-resolution detection and mapping with day-night imaging capabilities, providing
detailed observations of the lunar surface [32].

1.1 Some history of the N-Body Problem
As we shall explore in the next chapter, the Circular Restricted Three-Body Problem
represents a specialized variant of the broader Three-Body Problem, and by extension of
the N -Body Problem. Given the significance of the N -Body Problem, it is important to
understand its historical origins and development.

The N -Body Problem can be stated as the problem of uniquely determining the
position and velocities as functions of time of N bodies subject to their mutual gravitation
forces, given their initial conditions. This problem dates back to Newton’s Principia
Mathematica (1687) [36], where he made the first attempts at studying the motion of the
Earth and Moon around the Sun. However, while by that time he had already solved the
Two-Body Problem, it was clear that to consider more than two bodies added a whole
new level of difficulty. In his Principia Newton writes:

“And hence it is that the attractive force is found in both bodies. The Sun attracts
Jupiter and the other planets, Jupiter attracts its satellites, and similarly the satellites
act on one another and on Jupiter, and all the planets on one another. And although
the actions of each of a pair of planets on the other can be distinguished from each other
and can be considered as two actions by which each attracts the other, yet inasmuch as
they are between the same two bodies they are not two but a single operation between two
termini.

After Newton, contributions on the N -Body Problem were made by some of the
greatest mathematicians of the 18th and 19th century, such as Euler, Lagrange, Laplace,
Hamilton, Liouville, Jacobi, D’Alembert and Poincaré. The quest to discover a general
solution for N -Body Problem was regarded as highly significant, daunting. to the point
that, in the latter part of the 19th century, King Oscar II of Sweden, instituted a reward
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for anyone who could unravel this enigma. The specifications of the challenge were quite
explicit:

“ Given a system of arbitrarily many mass points that attract each according to New-
ton’s law, under the assumption that no two points ever collide, try to find a representation
of the coordinates of each point as a series in a variable that is some known function of
time and for all of whose values the series converges uniformly.”

In the event that the original problem remained unsolved, any other notable advance-
ment in the field of classical mechanics would be deemed worthy of the prize. Hence,
even though Poincaré did not provide a solution to the original problem, the prize was
still awarded to him. His groundbreaking work laid the foundations for the emergence of
chaos theory. In his words [39]:

“It may happen that small differences in the initial conditions produce very great ones
in the final phenomena. A small error in the former will produce an enormous error in
the latter. Prediction becomes impossible, and we have the fortuitous phenomenon.”

The ideas present in Poincaré’s work on the Three-Body Problem have laid the foun-
dations for chaos theory. However, if on one side chaos means that long term evolution
become impossible to predict, on the other hand it unfolds the possibilities for traveling
towards different destination at very low energy cost, as we will show later in this thesis.

1.1.1 On the solutions of the Three-Body Problem
Ultimately, the original problem was solved by Sundman for the case N = 3 [48]. Sund-
man has shown that an analytical solution expressed in terms of power series of t2/3 exists.
Unfortunately, this solution converges so incredibly slowly that it is completely useless
from a practical point of view. Moreover, it is known today that the general N -Body
Problem, for N � 3, does not admit a closed-form solution. However, special solutions
can be found for some special cases of the Three-Body Problem. However, special classes
of solutions for the Three-Body Problem have been known to exist for a long time. In fact
in 1767 Euler proved that three collinear bodies of arbitrary finite masses, with appro-
priate initial conditions would remain collinear indefinitely, while the line on which they
lie rotates around their center of mass describing Keplerian orbits of which the center of
mass is one focus. A second class of periodic solutions was found by Lagrange in 1772,
when he showed that three bodies forming an equilateral triangle with suitable initial
conditions would describe ellipses such that the triangle formed by the three bodies will
remain equilateral at all times.

More recently a new remarkable solution to the three-body problem, known as the
figure-eight solution, was discovered numerically by Alain Chenciner and Richard Mont-
gomery [9]. In the figure-eight solution, three bodies of equal mass follow a single looping
trajectory that resembles the shape of an eight. Each body moves smoothly along this
shared path, never colliding with the others, and after one full cycle, each body returns
to its original position and the pattern repeats indefinitely, in what may be regarded as
an orbital dance. Surprisingly this eight-shaped orbit appears to be stable [22] and to
persist for small perturbation of both the masses and the initial conditions, moreover it
has been proven numerically to be a possible, albeit rather rare, outcome of a planar
binary-binary scattering [18].

Since the discovery of the figure-eight solution, many solutions to the N -body problem
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in which N equal masses chase each other around a fixed closed curve, equally spaced in
phase along the curve, have been found. These solutions are known as N -body chore-
ographies, and have already been found for many different values of N .

As we close this short overview of the general Three-Body Problem and its intriguing
solutions, we turn our attention to the Circular Restricted Three-Body Problem and
its many interesting aspects, particularly the existence of periodic solutions, which are
not isolated, but rather come in families of orbits that are parametrized by the Jacobi
constant, an energy-like first integral. We want to emphasize that these solutions, apart
from being fascinating mathematical constructs, also bear significant implications for
space mission planning.
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Chapter 2
The Circular Restricted Three-Body Problem

The Circular restricted Three-Body problem (CR3BP) is a simplification of the general
Three-Body problem, in which one of the masses is assumed to be much smaller than the
to the other two, which we shall call the primaries, so that the force exerted by this body
on the primaries can be neglected. In this case the motion of the primaries can be simply
described by the Two-Body problem, whose analytical solution is known, in particular
we will assume that the primaries describe circular orbits around their center of mass.
This approximation allows for more tractable solutions and it has proven to be of large
practical interest in the field of celestial mechanics and spacecraft trajectory design.

2.1 Motion of the primaries
Let’s start by considering N point masses in an inertial reference frame, subject only to
their mutual gravitational interaction and label them P1, P2, . . . PN . Their equations of
motion read

r̈i = G
NX

j=i
i 6=j

mj

r3ij
rij, i = 1, 2, 3, (2.1)

where we have let:

ri = (xi, yi), rij = rj � ri, rij = krijk, (2.2)

so that rij is the relative position vector of the bodies Pi and Pj. Suppose now for
simplicity that there are only two bodies in our system, for instance this may be the
Earth and the Moon, so that the gravitational interactions with the Sun as well as those
with all the other planets are neglected. We label these two bodies P1 and P2. In this
case, we can rewrite the equation (2.1) in a more explicit form as shown below:

r̈1 = G
m2

r312
r12, r̈2 = G

m1

r321
r21. (2.3)

Let rb be the position vector of the center of mass of the system, that is:

rb =
m1r1 +m2r2
m1 +m2

. (2.4)
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Then (2.3) can be rewritten in the form:

r̈b = 0, r̈12 = �
G(m1 +m2)

r312
r12. (2.5)

The first equation in (2.5) implies in particular that the center of mass moves of uniform
linear motion. While the second equation implies that the motion of the relative position
vector r12 is determined by the Kepler problem with mass m1 + m2. From now on, let

r = r12 and r = krk, for simplicity. We define the specific angular momentum vector as

h = r ⇥ ṙ. (2.6)

Then it is easy to show that h is a first integral of motion, i.e., it remains constant along
a solution of our differential equation, indeed:

dh

dt
= r ⇥ r̈ + ṙ ⇥ ṙ = 0 (2.7)

Where we used the fact that r and r̈ are parallel because of (2.5). As a consequence of
the conservation of the angular momentum, we find that the motion of P1 and P2 in the
reference frame centered in the center of mass of the system takes place in a plane. This
follows from the fact that h is a fixed vector which by construction, is perpendicular both
to the r and ṙ. In this way the three-dimensional dynamics is reduced to dynamics on a
plane. This observations justify the choice of a planar inertial reference frame with origin
in the center of mass of the system and orthogonal to h. In this new reference frame the
relative position vector of P1 and P2 can be expressed in terms of the polar coordinates
r, ✓, as:

r = (x, y) = (r cos ✓, r sin ✓). (2.8)

Now define the specific kinetic energy

T (=
1

2
ṙ2 =

1

2
(ṙ2 + r2✓̇2), (2.9)

and the potential energy

V = �
G(m1 +m2)

r
. (2.10)

This allows us to express Lagrangian of the system as follows:

L(r, ✓, ṙ, ✓̇) = T � V =
1

2
(ṙ2 + r2✓̇2) +

G(m1 +m2)

r
. (2.11)

Now we can compute:

@L

@ṙ
= ṙ,

@L

@✓̇
= r2✓̇, (2.12)

@L

@r
= r✓̇2 �

@V

@r
,

@L

@✓
= 0, (2.13)

d

dt

✓
@L

@ṙ

◆
= r̈,

d

dt

✓
@L

@✓̇

◆
= 2rṙ✓̇ + r2✓̈. (2.14)

Finally the Lagrange equations read [17]:
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r̈ = r✓̇2 �
@V

@r
(2.15)

2rṙ✓̇ + r2✓̈ = 0. (2.16)

At this point we can compute the conjugate momenta pr and p✓ of the polar coordi-
nates r and ✓ respectively. This is done via the Legendre transform, which yields

pr =
@L

@ṙ
= ṙ, p✓ =

@L

@✓̇
= r2✓̇. (2.17)

Now we can so express the Hamiltonian of the system, which can be written in the form:

H(r, ✓, pr, p✓) = T + V =
p2r
2

+
p2✓
2r2

�
G(m1 +m2)

r
. (2.18)

Then the Hamilton equations hold, i.e.,

ṗr = �
@H

@r
, ṙ =

@H

@pr
, (2.19)

ṗ✓ = �
@H

@✓
, ✓̇ =

@H

@p✓
. (2.20)

From the Hamilton equations (2.19), we rediscover that the angular momentum p✓ is
a first integral of motion, alongside the Hamiltonian H. This follows immediately from
the fact that the Hamiltonian does not depend explicitly on ✓, indeed it is:

ṗ✓ = �
@H

@✓
= 0. (2.21)

In particular we are interested in the circular orbits solution. This can be found by
imposing that r minimizes the effective potential V ⇤, defined as the sum of the potential
energy angular kinetic energy:

V ⇤(r) =
p2✓
2r2

+ V =
p2✓
2r2

�
G(m1 +m2)

r
, (2.22)

This is the same as requiring that ṗr = 0 [17], from which find:

ṗr = �
@H

@r
= �

dV ⇤

dr
= �

p2✓
r3

+
G(m1 +m2)

r2
= 0. (2.23)

Equation (2.23) can now be solved for r, yielding the fixed relative distance r̄ between
P1 and P2 for circular orbits:

r = r̄ =
p2✓

G(m1 +m2)
. (2.24)

Moreover we can obtain the following expression for the angular velocity ✓̇ in the case of
circular motion:

✓̇ =
@H

@p✓
=

p✓
r̄2
. (2.25)
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At this stage, we can define a set of normalized units to further simplify our descrip-
tion. We choose the unit distance to be equal to the relative distance for circular motion,
i.e, L = r̄ = 1. Now assume that m2  m1, and let µ be the relative mass of the smaller
primary, i.e.,

µ =
m2

m1 +m2
, 0 < µ 

1

2
, (2.26)

moreover we choose the unit of mass to be the total mass of the primaries, so that we
can write:

m1 +m2 = 1 =) m2 = µ, m1 = 1� µ. (2.27)

The unit of time is chosen so that the period of the orbit of P1 around P2 is T = 2⇡.
With this choice it must be that the angular velocity is ✓̇ = 1, and using (2.24) and (2.25)
we obtain also G = 1. Since the inertial frame reference frame has origin in the center
of mass, and the orbits are circular, i.e., the distance from the origin for each of the two
bodies remains constant, it must be r1 = �µ and r2 = 1 � µ. Finally we can write an
expression for the position vectors of the two bodies as a function of time. Assuming that
P1 and P2 are aligned on the x axis at t = 0, we find:

r1(t) = �µ(cos t, sin t), (2.28)
r2(t) = (1� µ)(cos t, sin t). (2.29)

Figure 2.1: Plot of the effective potential V ⇤(r). The value r̄ corresponds to the global minimum
V ⇤. At this value of the potential the orbits are circular, and r̄ is the fixed distance that separates
P1 and P2.

2.2 Equations of motion in the synodic frame
Since we are interested in studying the motion of the third body it is convenient to perform
all the calculations in the synodic reference frame, that is the orthogonal reference frame
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such that the primaries lie on the x axis oriented towards the smaller of the primaries,
with the origin coinciding with the center of mass and with the z axis normal to the
ecliptic plane, so that it ha the same direction of the angular momentum vector, finally
the y axis is chosen as to complete the right handed triad. Clearly in this frame the
positions of the primaries are fixed, and it is:

P1 = (�µ, 0, 0), P2 = (1� µ, 0, 0). (2.30)

In the following we will denote the positions and velocity of the massless particle P as

r = (x, y, z), ṙ = (ẋ, ẏ, ż) (2.31)

The equations of motion for P , using vector notation, can be written as

r̈ + 2! ⇥ ṙ + ! ⇥ (! ⇥ r) =
@UG

@r
, (2.32)

where ! = (0, 0,!) is the angular momentum vector, and UG is the gravitational potential:

UG(r;µ) =
1� µ

r1
+

µ

r2
. (2.33)

Here r1 and r2 are the distances from the massive bodies:

r1 =
p
(x+ µ)2 + y2 + z2, r2 =

p
(x� 1 + µ)2 + y2 + z2. (2.34)

It should be clear that in the limiting case µ = 0 the problem is just the Kepler problem
in rotating coordinates [31]. Let us define we define the centrifugal potential:

UC(r) =
1

2
(! ⇥ r)2 =

1

2
(x2 + y2), (2.35)

We can then define the effective potential U :

U(r;µ) = UC(r) + UG(r) =
1� µ

r1
+

µ

r2
+

1

2
(x2 + y2). (2.36)

Finally we can rewrite the the equations of motion as

r̈ + 2! ⇥ ṙ =
@U

@r
, (2.37)

which is just a more compact way of writing (2.40).

Alternatively we can proceed using Lagrangian formalism, by introducing the La-
grangian of the massless particle in the synodic frame is given by [25]:

L(r, ṙ) =
1

2

�
ẋ2 + ẏ2 + ż2

�
+ (xẏ � ẋy)� U(r;µ). (2.38)

Then the equations of motion in the synodic reference frame for the massless particle P
can be obtained from the Euler-Lagrange equations

d

dt

@L

@ṙ
=

@L

@r
, (2.39)
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which can be written more explicitly as a set of three second order ordinary differential
equations (ODEs), that is the most common form of the equations of motion for the
spatial Circular Restricted Three-Body Problem, i.e.,

ẍ� 2ẏ =
@U

@x
, ÿ + 2ẋ =

@U

@y
, z̈ =

@U

@z
, (2.40)

and the explicit expression of the partial derivatives of U are given by:
@U

@x
= x�

1� µ

r31
(x+ µ)�

µ

r32
(x� 1 + µ), (2.41)

@U

@y
= y �

1� µ

r31
y �

µ

r32
y, (2.42)

@U

@z
= �

1� µ

r31
z �

µ

r32
z. (2.43)

It is worth noting that the equations of motion (2.40) do not explicitly depend on time,
and we say that the system in t�invariant. Finally we give one more form of the equations
of motion which will be useful later. We can rewrite the vector form of the equations of
motion:

r̈ = 2⌦ṙ +
@U

@r
, (2.44)

where we have let

⌦ =

0

@
0 1 0
�1 0 0
0 0 0

1

A . (2.45)

Moreover let x = (r, ṙ). Then the equations of motion can be written as a first order
vector ODE:

ẋ = g(x;µ), g(x;µ) =

✓
03⇥3 I3⇥3

03⇥3 2⌦

◆
x+

✓
03⇥1

U
T
r

◆
, (2.46)

where we denoted Ur = @U/@r. Additionally we denote the flow associated to the
dynamical system (2.46) as '(x(ti), t), i.e.,

'(x(t), t) = x(t) +

Z t

t0

g(x(⌧);µ) d⌧. (2.47)

For completeness we report here the explicit expression of the second order derivatives
of U , which will need later on. This are given by:

Uxx = 1�
1� µ

r31
�

µ

r32
+ 3(1� µ)

(x� x1)2

r51
+ 3µ

(x� x2)2

r52
, (2.48)

Uyy = 1�
1� µ

r31
�

µ

r32
+ 3


1� µ

r51
+

µ

r52

�
y2, (2.49)

Uzz = �
1� µ

r31
�

µ

r32
+ 3


1� µ

r51
+

µ

r52

�
z2, (2.50)

Uxy = 3


(1� µ)

x� x1

r51
+ µ

x� x2

r52

�
y, (2.51)

Uxz = 3


(1� µ)

x� x1

r51
+ µ

x� x2

r52

�
z, (2.52)

Uyz = 3


1� µ

r51
+

µ

r52

�
yz. (2.53)
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System µ L [km] V [km/s] T [s]
Sun-Jupiter 9.537⇥ 10�4 7.784⇥ 108 13.102 3.733⇥ 108

Sun-(Earth+Moon) 3.036⇥ 10�6 1.496⇥ 108 29.784 3.147⇥ 107

Earth-Moon 1.215⇥ 10�2 3.844⇥ 105 1.022 2.357⇥ 106

Mars-Phobos 1.667⇥ 10�8 9.380⇥ 103 2.144 2.749⇥ 104

Jupiter-Io 4.704⇥ 10�5 4.218⇥ 105 17.390 1.524⇥ 105

Jupiter-Europa 2.528⇥ 10�5 6.711⇥ 105 13.780 3.060⇥ 105

Jupiter-Ganymede 7.804⇥ 10�5 1.070⇥ 106 10.909 6.165⇥ 105

Jupiter-Callisto 5.667⇥ 10�5 1.883⇥ 106 8.226 1.438⇥ 106

Saturn-Mimas 6.723⇥ 10�8 1.856⇥ 105 14.367 8.117⇥ 104

Saturn-Titan 2.366⇥ 10�4 1.222⇥ 106 5.588 1.374⇥ 106

Neptune-Triton 2.089⇥ 10�4 3.548⇥ 105 4.402 5.064⇥ 105

Pluto-Charon 1.097⇥ 10�1 1.941⇥ 104 0.222 5.503⇥ 105

Table 2.1: Approximate values of the µ parameter for different systems inside the Solar systems,
as well as the dimensional mean values of the unit distance between the primaries L, unit velocity
V , and period of the orbit of the primaries T = 2⇡. The values are from the Jet Propulsion
Laboratory’s solar system dynamics website: http://ssd.jpl.nasa.gov/.

We now note the presence of three kinds of symmetries in the CR3BP, this is remark-
able in that they allow us to find new solutions when some are already known, this will be
useful later on, e.g., we can immediately recover the initial conditions for a Southern Halo
orbit, once the corresponding Northern Halo is given. The symmetries are the following
[13]:

• Symmetry with respect to the xy plane, i.e., if (x(t), y(t), z(t)) is a solution of (2.40),
then the mapping

(x(t), y(t), z(t)) 7! (x(t), y(t),�z(t)), (2.54)

yields another solution.

• Symmetry with respect to time, i.e., if (x(t), y(t), z(t)) is a solution of (2.40), then
the mapping

(x(t), y(t), z(t)) 7! (x(�t),�y(�t), z(�t)), (2.55)

yields another solution.

• Symmetry with respect to the mass parameter, i.e., if (x(t), y(t), z(t)) is a solution
of (2.40), for µ, then the mapping

(x(t), y(t), z(t);µ) 7! (�x(t),�y(t), z(t); 1� µ), (2.56)

yields another solution, but for mass parameter 1� µ.

2.3 The Jacobi constant
In general the Lagrange equation of a time independent Lagrangian L(r, ṙ) admit a first
integral of the form:

C = ṙ ·
@L

@ṙ
� L(r, ṙ). (2.57)
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Parameter Symbol Value
Earth gravitational parameter GmE 398.6004415 km3/s2

Moon gravitational parameter GmM 4.902801076 km3/s2

Moon radius RM 1738.0 km
Earth n radius RE 6371.0 km

Earth-Moon distance L 384400 km
Moon relative mass µ 0.01215058655960256

Time unit T/2⇡ 375190.258663027 s

Table 2.2: Earth-Moon system parameters. The Earth and Moon gravitational parameter and
radius are those used in the Earth Gravity Model (EGM96) and the GRAIL Gravity Model
(GL0660B) [24], respectively. The mass parameter µ is derived from (2.26). The remaining data
is borrowed from [45] and Jet Propulsion Laboratory’s solar system dynamics website.

We arrive to the same conclusion by noting that (2.40) can be recast as system of 6 first
order ordinary differential equations, moreover the system is autonomous and as such
admits one energy-like first integral. A simple way of finding the explicit form of the first
integral is to scalar multiply equation (2.37) by ṙ, this yields

ṙ ·
�
r̈ + 2! ⇥ ṙ

�
= ṙ ·

@U

@r
, (2.58)

which can be rewritten as
1

2

dṙ2

dt
=

dU

dt
. (2.59)

This last equation can be integrated to obtain

ṙ2 = 2U(r)� C. (2.60)

Then the constant of integration C, is the first integral we were looking for, usually known
as the Jacobi constant, which can be thought as a function of the positions and velocities
as

C(r, ṙ) = 2U(r)� (ẋ2 + ẏ2 + ż2). (2.61)

It can be shown that it is actually the only first integral of the CR3BP, thus we are not
able to reduce further the number of degrees of freedom of the system. However as we will
see the Jacobi constant can be used to recover important information on the dynamics
of the system.

2.3.1 Hamiltonian formulation
Up until this point, we have expressed the equations of motion using the state variables
x, y, z and their corresponding time derivatives ẋ, ẏ, ż. As we move to a discussion of
the Hamiltonian formalism, it is useful to introduce a new set of variables. These are the
generalized coordinates qi and the generalized momenta pi. In our current context, the
qi variables correspond to the positional state variables x, y, and z, so that:

q1 = x, q2 = y, q3 = z. (2.62)

The generalized momenta pi are defined as the partial derivatives of the Lagrangian L

with respect to the time derivatives of qi, which in this case correspond to ẋ, ẏ, ż. Then

14
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the expressions for the generalized momenta pi are given by:

p1 =
@L

@ẋ
= ẋ� y, (2.63)

p2 =
@L

@ẏ
= ẏ + x, (2.64)

p3 =
@L

@ż
= ż. (2.65)

If we now denote q = (q1, q2, q3), p = (p1, p2, p3), the Hamiltonian function can be written
as:

H(q,p) =
3X

i=1

piq̇i � L(q, q̇), (2.66)

more explicitly we can write:

H =
1

2
(ẋ2 + ẏ2 + ż2)�

1� µ

r1
�

µ

r2
�

1

2
(x2 + y2). (2.67)

The Hamiltonian has then the same expression of the Jacobian constant up to a constant
factor �2. This is an alternative proof that C is constant since H is the energy of the
system which, in absence of external and dissipative forces, is conserved. Finally the
equations of motion can be retrieved once again, from the Hamilton equations:

q̇i =
@H

@pi
, i = 1, 2, 3, (2.68)

ṗi = �
@H

@qi
, i = 1, 2, 3. (2.69)

2.4 Lagrangian points
The equations of motion (2.40) admit exactly five stationary points, known as Lagrangian
points and denoted by Li, i = 1, . . . , 5, that are the solutions of

rU =

✓
@U

@x
,
@U

@y
,
@U

@z

◆
= 0. (2.70)

Indeed this condition guarantees that if the massless particle P is placed in Li = (xi, yi, zi)
with zero-velocity, then the accelerations will also be zero, and P will remain in Li forever
(in the synodic frame of reference). Clearly in the non-rotating frame P will move in a
circular orbit with the same frequency of the primaries. With this idea in mind we will
now find the critical points of U explicitly. We notice immediately from (2.43) that it
needs be z = 0, thus the Lagrangian points all lie on the orbital plane xy. That said, we
now distinguish two cases.

If y = 0, then (2.42) is solved for any value of x while from (2.41) we obtain:

f(x) ⌘
@U

@x

����
y,z=0

= x� (1� µ)
x+ µ

|x+ µ|3
� µ

x� 1 + µ

|x� 1 + µ|3
= 0. (2.71)

That is equivalent to finding the zeros of the function f(x). In Figure 2.2 we show the
plot of f(x) obtained for the Earth-Moon system, and we observe that f(x) has three
zeros, which we label xL1 , xL2 , xL3 , so that

xL3 < �µ < xL1 < 1� µ < xL2 . (2.72)
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Therefore we have found three critical points for U , that go under the name of collinear
Lagrangian points L1, L2, L3. These corresponds to the collinear solutions for the general
three body problem, found by Euler in 1767, the remaining two equilibria correspond
instead to the equilateral solutions for the three body problem, discovered by Lagrange
in 1772. The approximate positions of the collinear points for the Earth-Moon system
are:

L1 = (xL1 , yL1 , zL1) = (0.8369, 0, 0), (2.73)
L2 = (xL2 , yL2 , zL2) = (1.1557, 0, 0), (2.74)
L3 = (xL3 , yL3 , zL3) = (�1.0051, 0, 0). (2.75)

If instead we let y 6= 0, from (2.42), dividing both members by y, after rearranging we
obtain:

1� µ

r31
= 1�

µ

r32
. (2.76)

On the other hand, if we now substitute (2.76) into (2.41), we get:

x� (1�
µ

r32
)(x+ µ)�

µ

r32
(x� 1 + µ) = 0, (2.77)

finally implying:
µ(1�

1

r32
) = 0. (2.78)

Clearly (2.78) is satisfied only for r2 = 1, moreover substituting in (2.76) we get

1� µ

r31
= 1� µ. (2.79)

Implying that it must also be r1 = 1. Substituting r1 = r2 = 1, into (2.34)we obtain:

x =
1

2
� µ, y = ±

p
3

2
. (2.80)

Thus we have found two more critical points of U , that are those forming an equilateral
triangle with P1 and P2, known as the equilateral Lagrangian points L4 and L5, with
coordinates

L4 = (xL4 , yL4 , zL4) =
�1
2
� µ,

p
3

2
, 0
�
, (2.81)

L5 = (xL5 , yL5 , zL5) =
�1
2
� µ,�

p
3

2
, 0
�
. (2.82)

(2.83)

Recall that by convention we assumed m2  m1 so that 0 < µ 
1
2 . Then it holds:

U(L1) > U(L2) � U(L3) > U(L4) = U(L5), (2.84)

and the equality U(L2) = U(L3) holds only in the limit case µ = 1
2 . In the following we

will use the notation

xLi = (xLi , yLi , zLi , 0, 0, 0), i = 1, 2, . . . 5 (2.85)

In Figure 2.2 we show the positions of the Lagrangian points for the value of µ corre-

sponding to the Earth-Moon system.
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2.5 The zero-velocity surfaces
The presence of a first integral of motion allows us to grasp some insight on the dynamics
of the massless particle, by defining the so called zero-velocity surfaces. These are regions
in phase space where the velocity of a particle goes to zero, thus not allowing the particle
to go trough them, thus confining the regions of space where the particle is confined.
The starting point for understanding these surfaces is defining the energy surface of the
system, we define this as the level set:

M(C;µ) = {(x, y, z, ẋ, ẏ, ż) : 2U � ṙ2 = C}, (2.86)

this is a 5 dimensional hypersurface embedded in R6. In particular we are interested in
its projection in the physical space, two this aim consider the auxialiary function

f(r;µ, C) = 2U � C. (2.87)

Since it is obvious that the velocity components must be real, it needs be ṙ2
� 0. As a

consequence, along any trajectory, it needs be also f(r;µ, C) � 0. This means that by
solving

f(r;µ, C) = 0, (2.88)

we are able to get insight on the regions of space in which the massless particle P is
confined. Indeed we can define the admissible region, i.e., the projection of M(C;µ) as

A(C;µ) = {(x, y, z) : f(r;µ, C) � 0}. (2.89)

The reason is that for the definition of f above, P can reach the boundary of A(C;µ)
only with zero-velocity, i.e., ṙ = 0, and hence P cannot cross it. For the same reason the
boundaries of A(C;µ), are called zero-velocity surfaces i.e.,

S(C;µ) ⌘ @A(C;µ) = {(x, y, z) : f(r;µ, C) = 0}, (2.90)

and their intersections with the coordinate planes are known as zero-velocity curves.
Moreover we call the complement of A(µ, C) the forbidden region, i.e.,

F(C;µ) ⌘ R3
\ A(C;µ). (2.91)

For simplicity we will denote Ci = C(Li), i = 1, . . . , 5. If we restrict the motion to the xy
plane we can distinguish the following five scenarios depending on the value the Jacobi
constant [25], and hence on the shape of the zero-velocity curves.

• C > C1: If the Jacobi constant is above C1, the particle is trapped either in the
region surrounding P1 or P2 depending on the initial state.

• C2 < C < C1: If the Jacobi constant is just below C1, a tunnel between the regions
around P1 and P2 opens up, allowing the massless particle to move between the
two.

• C3 < C < C2: This is the case the most interesting case, when the Jacobi constant
is just below C2. The particle can now move not only between the regions in the
vicinity of P1 and P2 but it is also allowed to reach the exterior region via a tunnel
near L2.
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• C4 = C5 < C < C3: In this case, the Jacobi constant is above C3 but below that of
C4 = C5. The particle can now move from the vicinity of P1 into the exterior region
also trough a gap around L3.

• C < C5: If the Jacobi constant is below C5, the forbidden realm disappears, so that
the particle is free to move in the entire xy plane.

In Figure 2.4 we show the zero-velocity curves S(C;µ) on the xy and xz plane, and
the corresponding forbidden regions F(C;µ) for different values of the Jacobi constant
for the Earth-Moon system.

Figure 2.2: Plot of f(x) ⌘ @U/@x for the Earth-Moon system. The intersections with the x axis
are the abscissae of the critical points of U . The two vertical asymptotes have equations x = �µ
and x = 1� µ.

2.6 Linearization near the Lagrangian points
This section investigates the stability of the equilibrium points, i.e., the behavior of a
particle initially placed in an equilibrium point, after a small perturbation in its position
and/or velocity. The nonlinear system of differential equations is linearized relative to
the equilibrium solutions, i.e., yielding linear variational equations. Stability is defined
in terms of a reference solution, and if a disturbance remains in the small neighborhood
of an equilibrium point, the reference solution is considered stable. The stability criteria
used here is Lyapunov stability, which is valid only if the reference solution is constant,
i.e., an equilibrium point. In a later section the stability of non constant periodic orbits
will be investigated after introducing further concepts.

Then if we consider a perturbation of the state by a quantity �x, we obtain, after
linearization the variational equations:

d

dt
�x = ⇤(x)�x (2.92)

18



Families of periodic orbits in the CRTBP Giulio Macrì - N. 2029061

Figure 2.3: The position of the Lagrangian points and the effective potential U , for the Earth-
Moon system on the xy plane.

where ⇤(x) is the 6⇥ 6 matrix defined as:

⇤(x) =
@g(x;µ)

@x
=

✓
03⇥3 I3⇥3

Urr 2⌦

◆
, Urr =

0

@
Uxx Uxy Uxz

Uxy Uyy Uyz

Uxz Uyz Uzz

1

A , (2.93)

where I is the 3⇥ 3 identity matrix. The general solution to (2.92) is of the form

�x(t) = e⇤(t�t0)�x(t0), (2.94)

which can be expanded as:

�x(t) =
6X

j=1

cje
�j(t�t0)vj, (2.95)

where cj are coefficients determined from the initial conditions, and �j and vj are the
eigenvalues and eigenvectors associated with matrix ⇤. Note that this solution assumes
that the matrix ⇤ has n = 6 linearly independent eigenvectors. If this is not the case, the
solution process becomes more complicated and may involve generalized eigenvectors [38].
The eigenvalues �j provide important information regarding the stability of the linearized
system, and in some special cases also for the nonlinear system. Before proceeding we
provide the definition of Lyapunov stability [17].

Definition 1. An equilibrium point xeq is stable (in the future), in the sense of Lyapunov,
if for every neighborhood U of xeq there exists a neighborhood V such that any solution
to the Cauchy problem associated to 2.40 and initial condition in V does not exit from U ,
i.e.,

xeq 2 V =) '(xeq, t) 2 U, 8t � 0. (2.96)

An equilibrium point xeq is unstable if it is not stable.
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Figure 2.4: Zero-velocity curves on the xy plane (top) and xz plane (bottom) for the Earth-Moon
system, corresponding to different values of the Jacobi constant. The coloured area corresponds
to the forbidden region F(C;µ).
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Figure 2.5: Zero-velocity surfaces corresponding to different values of the Jacobi constant. In
the top panel we show a cut through the xz plane and the z = ±0.75 planes. In the bottom
panel we show a cut through the xy plane.
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We have indeed the following theorem due to Lyapunov [17].

Theorem 1 (Lyapunov’s Theorem). Let xeq be an equilibrium point for the nonlinear
system, ẋ = g(x). If all the eigenvalues of the Jacobian matrix ⇤(xeq), have strictly
negative real part, then the equilibrium point xeq, is a stable equilibrium point, for the
nonlinear system. If ⇤(xeq) has at least one eigenvalue with strictly positive real part,
then xeq is an unstable equilibrium point the non linear system.

Thus in the two scenarios considered by Lyapunov’s Theorem, the stability properties
of the equilibrium point xeq , for the nonlinear system (2.40), and in the linearized system
(2.92), are the same. Under all the other circumstances, the theorem does not apply and
it is not guaranteed that the stability properties of in the linearized dynamics carry over
to the nonlinear system. In summary the stability properties of the equilibrium points
as is then determined by the characteristics of the eigenvalues, are as follows �j [49, 52]:

• Complex eigenvalues: If all �j have negative real parts, then sufficiently small
perturbations tend to zero as time approaches infinity, and the equilibrium point is
Lyapunov stable. If any of the �j have a positive real part, then the perturbation
will grow in time, and the equilibrium point is unstable.

• Real eigenvalues: Similarly to the previous case, if any of the �j are positive real
integers, the solution is unstable. If all are negative real integers, the solution is
stable.

• Purely imaginary eigenvalues: If all �j are imaginary, the motion is oscillatory
and the solution is only linearly stable. If there are multiple roots, the solution is
unstable.

Additionally if the equilibrium point xeq possesses eigenvalues �i and �j such that the
associated real parts have opposite signs, then xeq is called a saddle point. A stable
or unstable equilibrium point with no complex eigenvalues is labeled a node, and an
equilibrium point is hyperbolic if all eigenvalues possess non-zero real parts [52].

2.7 Invariant manifolds of equilibrium points
Let xeq be an equilibrium point, and suppose that the Jacobian matrix ⇤(xeq) possess
ns eigenvalues with positive real parts, nu eigenvalues with negative real parts, and nc

eigenvalues with zero real parts. The eigenvectors associated with these eigenvalues are
linearly independent, thus, they span Rn, so that n = rank(⇤) = ns + nu + nc. Moreover
Rn can be decomposed as the direct sum of three fundamental subspaces: the stable
subspace Es, the unstable subspace Eu, and the center subspace Ec. These subspaces
are those generated by the eigenvectors associated to eigenvalues with positive real part,
negative real part and, and purely imaginary respectively. Then we can write:

Es
� Ec

� Eu = Rn, (2.97)

These are the invariant subspaces associated with the linear variational equations in
equation (2.92). A solution initially in a specific subspace remains in that subspace for
at all subsequent times, hence the name of invariant manifolds.
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The Stable Manifold Theorem [16], states that if all eigenvalues, �j, associated with
the constant Jacobian matrix ⇤(xeq) possess non-zero real parts, then xeq is an hyperbolic
equilibrium point, and does not possess a center manifold. Moreover in a neighborhood
N(xeq), there exists local stable and unstable invariant manifolds W s

loc and W u
loc, of the

equilibrium point, that are related to the invariant subspaces Es and Eu associated with
the linear system.

Theorem 2 (Stable Manifold Theorem). Suppose the nonlinear first order system of
differential equations ẋ = g(x), possesses a hyperbolic equilibrium point xeq. Then in a
neighborhood N(xeq) there exist local stable and unstable manifolds,

W s
loc(xeq) = {x 2 N | d('(x, t),xeq) ! 0 as t ! 1, '(x, t) 2 N, 8t � 0} , (2.98)

W u
loc(xeq) = {x 2 N | d('(x, t),xeq) ! 0 as t ! �1, '(x, t) 2 N, 8t  0} , (2.99)

of the same dimension ns, nu, as those of the eigenspaces Es, Eu, of the linearized system
(2.92), and tangent to Es and Eu at xeq. Moreover W s

loc and W u
loc are as smooth as the

function g.

The local invariant manifolds W s
loc and W u

loc can be extended into the global stable
and unstable manifolds W s and W u. This can be computed by propagating the flow
backward and forward in time, for W s and W u respectively.

We now present another result. If xeq, is a non-hyperbolic equilibrium point, that is,
ns, nu, and nc are all non-zero, the structure of the local flow is governed by the Center
Manifold Theorem for Flows [16]:

Theorem 3 (Center Manifold Theorem for Flows). Let g be a vector field on Rn van-
ishing at the equilibrium point g(xeq) = 0, let ⇤(xeq) be the Jacobian matrix of g at the
equilibrium xeq. Then the spectrum of ⇤(xeq) can be decomposed into three subsets ns,
nc, and nu, such that:

Re[�] < 0,� 2 ns (2.100)
Re[�] = 0,� 2 nc (2.101)
Re[�] > 0,� 2 nu (2.102)

Let the generalized eigenspaces be Es, Ec, and Eu, respectively. Then, there exist stable
and unstable invariant manifolds W s and W u tangent to the Eu and Es at xeq, and a
center manifold W c, tangent to the center subspace Ec at xeq. The manifolds W s, W u,
and W c are all invariant for the flow g. The stable and unstable manifolds are unique,
but W c need not be.

The existence of a center manifold implies that the structure of the flow near the equi-
librium point, possessing at least one zero eigenvalue, is more diverse than an equilibrium
point with no center subspace. The solutions initially in the center manifold neither grow
nor decay over time, relative to xeq. In Section 2.7.3 we will show how the center manifold
can be leveraged to obtain an initial guess for a Lyapunov periodic orbit in the vicinity
of the collinear points.
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2.7.1 Stability of the collinear points L1, L2, L3

In particular we are interested in studying the stability near the Lagrangian points. We
begin by considering the collinear ones. Since Li = (xLi , 0, 0), i = 1, 2, 3, from equations
(2.51-2.53) we obtain:

Uxx(Li) = 1 +
2(1� µ)

r31
+

2µ

r32
, (2.103)

Uyy(Li) = 1�
1� µ

r31
�

µ

r32
, (2.104)

Uzz(Li) = �
1� µ

r31
�

µ

r32
, (2.105)

Uxy(Li) = Uxz(Li) = Uyz(Li) = 0. (2.106)

Then the linearized equation (2.92) can be rewritten explicitly as:

�ẍ� 2�ẏ = Uxx(Li)�x, �ÿ + 2�ẋ = Uyy(Li)�y, �z̈ = Uzz(Li)�z. (2.107)

We observe that the the third equation in (2.107) is uncoupled from the first two and it is
the equation of an harmonic motion of frequency

p
|Uzz(Li)|. Thus the motion is stable

with respect to the z direction. Now we can assume that the solution to the remaining
set of two second order linear ODE’s is of the form

�x = ↵e�t, �y = �e�t. (2.108)

Then substituting in (2.107), we obtain a linear system in the unknowns ↵ and �:
(
[�2

� Uxx(Li)]↵� 2�� = 0,

2�↵ + [�2
� Uyy(Li)]� = 0.

(2.109)

This is an homogeneous system, and as such it admits the trivial solution ↵ = � = 0. We
are interested in non-trivial solutions, according to Kramer’s rule we then require that

����
�2

� Uxx(Li) �2�
2� �2

� Uyy(Li)

���� = 0, (2.110)

this leads to the characteristic equation

�4 + 2A�2
� B = 0, (2.111)

where we have let

A = 2�
1

2
[Uxx(Li) + Uyy(Li)], (2.112)

B = �Uxx(Li)Uyy(Li). (2.113)

Equation (2.111) is a biquadratic equation in �, with solutions given by

� = ±

q
�A±

p

A2 +B. (2.114)

It is immediate from (2.103) that Uxx(Li) > 0, moreover it can be shown that for the
collinear points it is Uyy(Li) < 0. Hence it holds B > 0, implying that the characteristic
equation (2.111) admits a pair of real eigenvalues with opposite sign:

�1,2 = ±

q
�A+

p

A2 +B 2 R, (2.115)

and a pair of conjugate, purely imaginary eigenvalues:

�3,4 = ±i

q
�A�

p

A2 +B 2 C \ R. (2.116)
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2.7.2 Stability of the equilateral points L4, L5

We will now study the stability of the equilateral points. In order to do this we substitute
the coordinates of the equilateral points given by (2.81�2.82), in the linearized equations
of motion (2.107), obtaining

�ẍ� 2�ẏ =
3

4
�x+

p
27

4
(1� 2µ)�y, (2.117)

�ÿ + 2�ẋ =

p
27

4
(1� 2µ)�x+

9

4
�y, (2.118)

�z̈ = ��z. (2.119)

We observe that also in this case the z equation is uncoupled from the first two, and
it is easily seen that it leads to 2⇡ periodic motion, proving stability in the z direction.
At this point we can proceed as before to investigate stability in the xy plane for the
equilateral points. This leads to the characteristic equation

�4 + �2 +
27

4
µ(1� µ) = 0. (2.120)

This has solutions

�1,2,3,4 = ±

s
�1±

p
1� 27µ(1� µ)

2
. (2.121)

It turns out that if
1� 27µ(1� µ) � 0, (2.122)

we have two pairs of purely imaginary eigenvalues, implying that the equilateral points
are stable and non attracting in the linear approximation. Otherwise the eigenvalues
will have non-zero real part, thus the solution will be unstable. Since we assumed by
convention that 0 < µ  0.5, the inequality (2.122) is verified for

µ  µ⇤ =
1

2
�

r
23

108
⇡ 0.0385, (2.123)

the threshold µ⇤ is known as Routh’s critical mass ratio. In particular for µ = µ⇤, we find
the repeated eigenvalues �1 = �2 = i

p
2/2, and �3 = �4 = �i

p
2/2. The condition (2.123)

is satisfied for many systems of interest, e.g., Earth-Moon, Sun-Earth and in particular for
Sun-Jupiter pairs, explaining the existence of the Greek and Trojan families of asteroids
that surrounds the L4 and L5 points of the system.

The eigenvalues associated with the collinear points have real and imaginary parts.
At least one eigenvalue includes a positive real part, thus, L1, L2, and L3 are unstable.
Moreover for the values of µ satisfying (2.123) the Lagrangian equilibria are all non
hyperbolic, i.e., the center space has non zero dimension, and in particular the linearized
system at L1, L2, L3 has a stable space Es of dimension ns = 1, an unstable space Eu of
dimension nu = 1 and center space Ec of dimension nc = 4, while for L4 and L5 the center
space coincides with the entire phase space. Its worth noting however that whenever an
equilibrium point is unstable, with appropriate initial conditions, the divergent motion
can be suppressed in the linear system, resulting in an ellipse about the libration point.
These ellipses are not periodic in the real system, and the motion will quickly diverge if
propagated in the nonlinear equations of motion (see Section 2.7.3). However as we will
see in more detail later, a periodic solution in the nonlinear system can be determined
employing a differential correction scheme to obtain an orbit of the Lyapunov family.
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Collinear point j �j vj

L1

1 +2.3344i (�0.1058, �0.3793i, 0, �0.2469i, +0.8854, 0)
2 �2.3344i (�0.1058, +0.3793i, 0, +0.2469i, +0.8854, 0)
3 +2.2688i (0, 0, �0.4033i, 0, 0, +0.9151)
4 �2.2688i (0, 0, +0.4033i, 0, 0, +0.9151)
5 �2.9321 (�0.2932, �0.1349, 0, +0.8598, +0.3956, 0)
6 +2.9321 (�0.2932, +0.1349, 0, �0.8598, +0.3956, 0)

L2

1 +1.8626i (�0.1536, �0.4474i, 0, �0.2861i, +0.8333, 0)
2 �1.8626i (�0.1536, +0.4474i, 0, +0.2861i, +0.8333, 0)
3 +1.7862i (0, 0, +0.4885i, 0, 0, �0.8726)
4 �1.7862i (0, 0, �0.4885i, 0, 0, �0.8726)
5 �2.1587 (+0.3556, +0.2241, 0, �0.7676, �0.4838, 0)
6 +2.1587 (�0.3556, +0.2241, 0, �0.7676, +0.4838, 0)

L3

1 +1.0104i (�0.3145, �0.6292i, 0, �0.3178i, +0.6357, 0)
2 �1.0104i (�0.3145, +0.6292i, 0, +0.3178i, +0.6357, 0)
3 +1.0053i (0, 0, �0.7052i, 0, 0, +0.7090)
4 �1.0053i (0, 0, +0.7052i, 0, 0, +0.7090)
5 �0.1779 (�0.1163, �0.9776, 0, +0.0207, +0.1739, 0)
6 +0.1779 (+0.1163, �0.9776, 0, +0.0207, �0.1739, 0)

Table 2.3: Eigenvalues and eigenvectors of ⇤(Li), i = 1, 2, 3, obtained for the Earth-Moon
system.

2.7.3 Center space initial guess
Notice that it is always possible to choose initial conditions such that the contribution
of the stable and unstable manifold is null leaving only the periodic components of the
solution due to the purely imaginary exponents [7]. This observation indicates the ex-
istence of periodic orbits near the collinear equilibrium points Li, that live inside their
respective center space Ec. Thus the idea is to use an approximation of the center mani-
fold near the collinear points to generate an initial guess for a periodic orbit, then we will
need to apply iteratively a differential correction a scheme, the detailed procedure will be
discussed in the next Section. An approximation of the center space near Li is given by
the eigenvectors of the four purely imaginary eigenvalues of the matrix ⇤(Li) [30]. Then
an initial guess for the initial conditions of a periodic orbit near Li is given by:

x0 = xLi +
4X

j=1

wjvj (2.124)

where vj 2 R6, j = 1, 2, 3, 4 are the eigenvectors associated to the four purely imaginary
eigenvalues of ⇤(Li), i.e., and wj 2 C are coefficients such that w2 = w1, w4 = w3. Then
if we choose w = (w1, w2, w3, w4) such that kwk is small enough, a periodic orbit can be
generated via a differential correction scheme. In particular the initial guess obtained for
w = k(1, 1, 0, 0) with small k, e.g., k = 10�2 can be used to obtain a small amplitude,
planar periodic orbit homeomorphic to the 1�sphere S

1, in the vicinity of the collinear
point Li, i = 1, 2, 3. We call this an Li Lyapunov orbit. Moreover each Li Lyapunov
orbit will be unique for a given value of the Jacobi constant C.
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Chapter 3
Periodic orbits

A periodic orbit is a special type of solution for a dynamical system, that has the property
of repeating itself after a given time T , known as the period of the orbit. The existence
of periodic motion in the CR3BP is well-known, and the following sections will mainly
deal with the computation of periodic orbits and studying the dynamical behavior in the
vicinity of these solutions. As we have seen, the CR3BP admits exactly five equilibrium
points, and it holds in general for autonomous Hamiltonian systems that the elementary
equilibrium points xeq, i.e., those for which ⇤(xeq) is non singular, are isolated. In this
chapter we will see that this is not at all true for non constant periodic orbits, which
come in families of solutions parametrized by the Hamiltonian integral or equivalently,
in our case, by the Jacobi constant. Later in the chapter we will deal with families of
periodic orbits that can be found in the vicinity of the collinear equilibrium points and
the Moon, offering valuable insight on the dynamical behavior in these regions.

Let ' be the flow of (2.46), as defined in (2.47). Then a generic periodic orbit � in
the CR3BP with initial conditions x0 and period T , can be represented as

� = {'(x0, t)|t 2 R}, '(x0, T ) = x0. (3.1)

Then any point on � can be computed as x(ti) = '(x0, ti), for some ti 2 [0, T ].

3.1 Poincaré maps
In the realm of dynamical systems, a pivotal concept named after the eminent mathe-
matician Henri Poincaré, is the first recurrence map, also known as the Poincaré map.
This map is essentially the intersection of the flow in phase space of a continuous dy-
namical system with a given lower-dimensional subspace, known as the Poincaré section,
which is transversal to the system’s flow. The construction of a Poincaré map eliminates
at least one variable in the problem, thus leading to the analysis of a lower-dimensional
system. In these lower-dimensional problems, numerically computed Poincaré maps pro-
vide an illuminating view of the system’s global dynamics. They highlight the existence
of periodic, quasi-periodic, and chaotic behaviors, making Poincaré maps a powerful tool
in the analysis of dynamical systems.

More precisely, consider the flow '(x(ti), t) associated to some dynamical state x(ti),
and assume that the Poincaré section is simply a generic plane in physical space:

⇡ : ax+ by + cz = d, (a, b, c) 2 R3
\ {0}, d 2 R. (3.2)
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We want to emphasize that ⇡ could be an higher dimensional manifold in phase space
with and need not be defined in physical space. Then for our purposes, we can define the
Poincaré map associated to the flow '(x(ti), t) as:

�⇡(x(ti)) = {'(x(ti), t) : (x(t), y(t), z(t)) 2 ⇡, t 2 R}, (3.3)

that is the set of points in phase space that belongs to the flow of x(ti) at some time
t, such that their projection in physical space lies on the plane ⇡. Note that we have
already used the concept of Poincaré sections, without explicitly mentioning it, in Section
3.3 when dealing with the technique of differential corrections.

x0

'(x0, t)

⇡

Figure 3.1: Visualization of the Poincaré map.

3.1.1 Computation of the crossing time
In the following we will need to compute the time of the first crossing with a given
Poincaré plane, which will be denoted by tf . In order compute tf and dynamical state
x(tf ) at the crossing with the xz or xy plane, the equations of motion are integrated
using a fixed time step fourth-order Runge-Kutta method until y(t) or z(t), respectively,
changes sign, then the time step is reduced and the integration is restarted from the
last known dynamical state before the crossing. This procedure is iterated until we find
y(tf ) < " or z(tf ) < " respectively, e.g., " = 10�11. More in general we can compute the
time at which the a given trajectory crosses a generic plane ⇡ in physical space defined
as in (3.2). To do this we simply have to check for a change in sign of the quantity
f⇡ = ax+ by + cz � d, and decrease the time step iteratively as before.

3.2 The Mirror Theorem
In this section we present the Mirror Theorem [44]. This fundamental result provide us
with sufficient conditions that guarantees the periodicity of a given trajectory and lays
the basis for the symmetry-based differential correction schemes that will be presented
in Section 3.3. The Mirror Theorem for the general N�Body Problem can be stated as
follows:

Theorem 4 (Mirror Theorem). Given N point masses, subject only to mutual gravita-
tional forces, i.e., they obey (2.1), if at a certain time, each radius vector from the center
of mass of the system is perpendicular to every velocity vector, then the orbit of each mass
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after that point is a mirror image of its orbit prior to that point, and we call this a mirror
configuration. There are two possible mirror configurations:

• All the point masses lie in a plane, with all velocity vectors at right angles to the
plane and therefore parallel to each other,

• All the point masses lie on a straight line, with all velocity vectors at right angles
to that line, but not necessarily parallel to each other.

A rigorous proof of this theorem, can be found in [44]. As a corollary we have that
if at two separate points in time, a mirror configuration occurs, then the orbits of the
N point masses are periodic. The proof of the periodicity corollary is straightforward
[43], indeed if two mirror configurations xA and xB occur at t = �tf and t = 0, then
xA occurs again at t = tf , xB at t = 2tf and so on. Hence the orbits are periodic, with
period T = 2tf .

3.3 Differential corrections
To obtain highly accurate initial conditions and compute periodic orbits in the CR3BP,
a differential correction scheme becomes necessary. This iterative method adjusts the
initial conditions of an orbit until a mirror configuration is achieved, thereby ensuring
the orbit’s periodicity according to the Mirror Theorem (Theorem 4). Note that for
successful convergence, the algorithm necessitates an initial guess that is nearly periodic.

In this chapter we will illustrate various types of differential correction schemes. These
will be employed to generate periodic orbits exhibiting symmetry with respect to the xz
plane (for instance, Lyapunov and Halo orbit families), symmetry with respect to the x
axis (such as the Axial orbit families), or symmetry relative to both the xz and xy planes
(like the Vertical orbit families).

3.3.1 The state transition matrix �(t, t0)

Before proceeding we need to introduce the concept of state transition matrix, denoted as
�(t, t0). This matrix is defined as the partial derivative of the flow '(x0, t) with respect
to the initial state vector x0, expressed as follows:

�(t, t0) =
@'(x0, t)

@x0
, (3.4)

In practice �(t, t0) can be computed integrating the system of differential equations:

d�(t, t0)

dt
= ⇤(x)�(t, t0), �(t0, t0) = I6⇥6. (3.5)

where ⇤(x) is defined as in equation (2.93). It’s noteworthy to point out that equations
(2.46) and (3.5) together constitute a system of 42 first-order ODEs. These can be
integrated numerically, e.g., using an high order method of the Runge-Kutta family, to
finally obtain the state transition matrix �(t, t0).
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3.3.2 Symmetry with respect to the xz plane
Suppose that the initial state is perpendicular xz plane:

x0 = (x0, 0, z0, 0, ẏ0, 0)
T . (3.6)

Then the Mirror Theorem guarantees that if another perpendicular crossing occurs at
time tf = T/2, i.e.,

x(T/2) = (x, 0, z, 0, ẏ, 0)T , (3.7)

the orbit will be periodic with period T . In general we must expect that at the time of
the second crossing tf , the dynamical state will not be orthogonal to the xz plane due to
small but non zero components of the velocity along the plane i.e.,

x(tf ) = xf = (xf , 0, zf , ẋf , ẏf , żf )
T . (3.8)

Then the idea is to find the corrections �x0 that we need to impose to the initial dynamical
state x0, for a perpendicular crossings to occur. Let xs

f = (xs
f , 0, z

s
f , 0, ẏ

s
f , 0)

T be a mirror
state and define the deviation �xf = xf � xs

f . Then we can express �xf as:

�xf = �(tf , t0)�x0 + ẋ(tf ;x0)�tf . (3.9)

Clearly the desired changes are �ẋf = �ẋf and �żf = �żf . Now we show two strategies
proposed in [19], that can be used to compute the desired changes in the initial conditions
�x0. Imposing that �yf = 0, if we fix x0 then from equation (3.9), we obtain:

✓
�ẋf

�żf

◆
=

✓
�43 �45

�63 �65

◆
�

1

ẏf

✓
ẍf

z̈f

◆�
�23 �25

� �✓�z0
�ẏ0

◆
. (3.10)

Alternatively we can fix z0 and let x0 and ẏ0 vary, in which case we obtain:
✓
�ẋf

�żf

◆
=

✓
�41 �45

�61 �65

◆
�

1

ẏf

✓
ẍf

z̈f

◆�
�21 �25

� �✓�x0

�ẏ0

◆
. (3.11)

These procedure usually requires less than five iterations to obtain the dynamical state
that leads to a periodic orbit up to ten significant digits [4]. Once the convergence has
been achieved to obtain the desired periodic orbit the equations of motion are integrated
starting from x0 the over the period T = 2tf .

3.3.3 Symmetry with respect to the x axis
Suppose that at the initial dynamical state the massless body is lying on the x axis with
velocity orthogonal to it, i.e.,

x0 = (x0, 0, 0, 0, ẏ0, ż0)
T . (3.12)

We can choose to fix either the ẏ0 or ż0 component of the initial velocity. If we fix ẏ0
then from equation (3.9), we obtain:

0

@
�yf
�zf
�ẋf

1

A =

0

@
�21 �26 ẏf
�31 �36 żf
�41 �46 ẍf

1

A

0

@
�x0

�ż0
�tf

1

A . (3.13)
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Alternatively if ż0 is fixed, then from (3.9), we obtain:
0

@
�yf
�zf
�ẋf

1

A =

0

@
�21 �25 ẏf
�31 �35 żf
�41 �45 ẍf

1

A

0

@
�x0

�ẏ0
�tf

1

A . (3.14)

In this case the time tf can be chosen to be either the time of the crossing with the
xz plane as before, in which case y(tf ) = 0, or as the crossing with the xy plane, so that
z(tf ) = 0. In this way two types of mappings are obtained, by imposing in equations
(3.13) and (3.14), either �yf = 0 or �zf = 0 respectively. The other required changes are
�zf = �zf or �yf = �yf , respectively, depending on the mapping chosen, and �ẋf = �ẋf .
Finally the complete orbit is obtained integrating the equations of motion over a period
T = 2tf starting from x0.

3.3.4 Symmetry with respect to xz and xy planes
The orbits belonging to the L1, L2 and L3 Vertical families are symmetric with respect to
both the xz and xy plane. We present here a procedure to exploit this double symmetry.
Suppose we have an initial dynamical state x0 defined as in 3.12, and let tf be the time
of the first crossing with the xz plane. If we let x0 and ż0 vary, using equation (3.9) we
can write [14]: 0

@
0
�ẋf

�żf

1

A =

0

@
�21 �26 ẏf
�41 �46 żf
�61 �66 ẍf

1

A

0

@
�x0

�ż0
�tf

1

A . (3.15)

Then we impose �ẋf = �ẋf and �żf = �żf . Once convergence has been obtained, the
complete periodic orbit can be obtained by integrating the equations of motion over the
period T = 4tf starting from dynamical state x0.

3.4 Families of periodic orbits
Our search of periodic orbits is justified by the Cylinder Theorem [31]. This theorem
is a general result for Hamiltonian system, that guarantees that if a periodic orbit is
elementary, i.e., its monodromy matrix has exactly two unit eigenvalues, the trivial ones,
then a cylinder of periodic orbits exists that are parametrized by the Hamiltonian integral.
Recalling as we have seen in Section 2.3.1, that in the CR3BP the Hamiltonian is equal
to the Jacobi constant up to a constant factor, we can state the theorem as follows.

Theorem 5 (Cylinder Theorem). Let � be periodic orbit such that its monodromy matrix
�(T, t0), has exactly two unity eigenvalues, then there exist a unique cylinder of periodic
orbits passing through �, that are parametrized by the Jacobi constant C.

The proof of this result uses the Poincaré map of the periodic orbit. If the orbit is
elementary then applying the implicit function theorem gives a one parameter branch of
fixed points for the map, that vary with energy (see [31] for the details). Moreover the
hypotheses of the theorem on the monodromy matrix are true in the generic case and the
periodic orbits are isolated at any fixed value of the Jacobi constant [46].

31



Families of periodic orbits in the CRTBP Giulio Macrì - N. 2029061

3.5 Invariant manifolds of periodic orbits
In Section 2.7 we introduced the concept of invariant manifolds of an equilibrium point.
Here we want to extend this definition to a non constant periodic orbit. Like their
analogues for equilibrium points, the stable manifolds of a periodic orbit constitute paths
where a probe will asymptotically approach the given orbit without the need for additional
energy. On the other hand, unstable manifolds consist of trajectories where the probe
will asymptotically diverge from the orbit, also without the need for external energy.
This feature of invariant manifolds offers a significant advantage, as it can be utilized to
engineer low-energy orbital transfers. However the extension of the concept to a periodic
orbit comes with some additional difficulties, as the linearized variational equation (2.92)
now leads to a non constant Jacobian matrix ⇤. In order to reduce the dimensionality
of the problem Poincaré maps can be used. The Poincaré map retains most properties
of the original system’s periodic and quasi-periodic trajectories, making it an effective
tool for stability analysis of these orbits. The stability of a periodic orbit in the original
system is closely associated with the fixed point’s stability of the corresponding Poincaré
map, providing insights into stability and invariant manifold representations. Therefore,
a general background concerning the phase space near periodic orbits in the CR3BP is key
and a necessary component for the understanding of resonant orbits and their associated
manifolds. In addition to this basic theoretical background in invariant manifold theory,
a method for the numerical computation of the unstable and stable manifolds is also
detailed. The following theorem, which we present as in [38], provides the conditions
under which the stable and unstable manifolds of a periodic orbit exists.

Theorem 6 (Stable Manifold Theorem for Periodic Orbits). Let A be an open subset of
Rn that contains a periodic orbit � of period T and denote the flow as usual by '(x, t).
If k characteristic exponents of � have a negative real part where 0  K  n � 1 and
n �K � 1 of them have a positive real part, then there exists a neighborhood N(�) 2 A
such that the local stable manifold of �,

W s
loc(�) = {x 2 N | d('(x, t),�) ! 0 as t ! 1, '(x, t) 2 N, 8t � 0} , (3.16)

a (K+1)-dimensional, differentiable manifold which is positively invariant under the flow
'(x, t), and the unstable manifold of �,

W u
loc(�) = {x 2 N | d('(x, t),�) ! 0 as t ! �1, '(x, t) 2 N, 8t  0} , (3.17)

is an (n�K)-dimensional, differentiable manifold which is negatively invariant under the
flow '(x, t). Furthermore, the stable and unstable manifolds of � intersect transversally
in �.

For the existence of stable and unstable manifolds of a periodic orbit, the monodromy
matrix must possess at least one stable and one unstable eigenvalue. However, not all the
members in a given family of periodic orbits in the CR3BP possess a stable and unstable
eigenvalue. Therefore, it is beneficial to devise a method to identify which members
in the family do possess stable and unstable eigenvalues, and thus, stable and unstable
manifolds.

3.5.1 Stability of periodic orbits
Here we deal with assessing the stability of a non constant periodic orbit. Unlike what
we have done for the Lagrangian points, the stability of a periodic orbit can be assessed
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by investigating the eigenvalues of the corresponding monodromy matrix, i.e., the state
transition matrix computed after one full period of the orbit, �(T, t0). It is worth noting
that the values eigenvalues remain the same regardless of the point of the orbit at which
the monodromy matrix is computed, allowing us to introduce a well defined set of stability
indices associated to the periodic orbit. In the following sections we will study the
behavior of the eigenvalues of the monodromy matrix along different families of periodic
orbits. As we will see this will give us insights not only on the stability properties of the
orbits but on the presence of bifurcations along the families as well.

It can be shown that �(T, t0) is a symplectic matrix [46], that is:

�T

✓
0 I
�I 0

◆
� =

✓
0 I
�I 0

◆
. (3.18)

Moreover it holds that the determinant of a symplectic matrix is always equal to unity.As
we will see, the monodromy matrix has always two eigenvalues that are equal to unity
due to the periodicity, and as a consequence of the symplectic property [46, 31], the other
four are found in reciprocal pairs. This last property is stated in Lyapunov’s Theorem
[53].

Theorem 7 (Lyapunov’s Theorem). If �j is an eigenvalue of the monodromy matrix
�(T, t0), of a t�invariant system, then ��1

j is also an eigenvalue of �(T, t0), with the
same structure of elementary divisors.

Moreover it can be shown that � = 1 is always a characteristic multiplier of a periodic
orbit, in particular we have the following result [31].

Proposition 1. Let � be a periodic orbit of period T and let x 2 �, so that '(x0, T ) = x0.
Then � = 1 is always an eigenvalue of its monodromy matrix �(T, t0). In particular g(x)
is an eigenvector of the monodromy matrix corresponding to the eigenvalue � = 1.

Proof. From the definition of flow it holds '('(x, t), ⌧) = '(x, t+⌧). Then differentiating
both sides of this equation with respect to x and setting ⌧ = T and t = t0, we obtain

@'(x, T )

@x
'̇(t0,x) = '̇(T,x), (3.19)

which can be rewritten as
�(T, t0)g(x) = g(x). (3.20)

Since we are assuming � is a non constant periodic orbit, it must be g(x) 6= 0, hence the
thesis.

It follows from Proposition 1 and Lyyapunov’s Theorem that the algebraic multiplicity
of the eigenvalue +1 needs to be at least two in virtue, since both � = ��1 = 1. In the
following we will refer to the two unit characteristic multipliers of a periodic orbit as
its trivial eigenvalues. The trivial eigenvalues can be thought as representing one mode
along the periodic orbit, and one mode along the family of periodic orbits. [15].

Then the eigenvalues of the monodromy matrix �(T, t0) associated to a periodic orbit,
often referred to as its characteristic multipliers, always have the following form:

�1, �3 = ��1
1 , �2, �4 = ��1

2 , �5 = �6 = 1. (3.21)
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Then the four non trivial eigenvalues allow to define two stability indices, plus a third
trivial one, as the sum of each reciprocal pair:

⌫1 =
1

2
(�1 +

1

�1
), ⌫2 =

1

2
(�2 +

1

�2
), ⌫3 = 1. (3.22)

The the stability indices can be then used to assess the stability of the orbit. Clearly,
since the stability index that corresponds to the two unity eigenvalues is always equal
to unity, we can consider just the other two indices ⌫1, ⌫2. In particular the orbit is
said to be linearly stable if both |⌫1| < 1, |⌫2| < 1, in which case we say the linear
instability of the orbit is order zero. Otherwise, if either |⌫i| > 1, i = 1, 2, we say that
the orbit is unstable [3, 2], in which case stable and unstable invariant manifolds will
exist. Furthermore we say that the linear instability of the orbit is either order one or
two, if just one or both the non trivial stability indices are greater than one, respectively
[28]. When dealing with planar orbits, one of the stability indices measures the in-plane
stability, whereas the other, can be thought as a measure of the out-of-plane stability of
the periodic orbit [21, 26, 40].

For families of orbits that are symmetric with respect to the xz plane such as the
Lyapunov, DRO and Halo families, in the interest of numerical accuracy, we can proceed
as in [3] to compute the monodromy matrix �(T, t0), using �(tf , t0), i.e., the state tran-
sition matrix at half a period, therefore without the need to integrate past t = tf . If we
define �̃(t, t0) as:

�̃(t, t0) =

✓
I 0
�⌦ I

◆
�(t, t0)

✓
I 0
⌦ I

◆
, (3.23)

then �̃(t, t0) is a symplectic matrix [20]. Using the symplectic property of �̃ and the
invariance under transformations (2.55), it can be shown [3] that:

�(t0,�tf ) = B�(t0, tf )B = B

✓
0 I
�I 2⌦

◆
�T (tf , t0)

✓
2⌦ I
�I 0

◆
B (3.24)

where we B is a diagonal 6 ⇥ 6 matrix, with main diagonal elements Bjj = (�1)j+1.
Finally we can write:

�(T, t0) = �(2tf , t0) = �(2tf , tf )�(tf , t0) = �(t0,�tf )�(tf , t0) (3.25)

3.5.2 Numerical computation of the invariant manifolds
More specifically, let � be a generic periodic orbit in the CR3BP, defined as in (3.1).
If � is linearly stable, i.e., all its stability indices are less or equal to unity, then �
possesses neither stable nor unstable manifolds. For simplicity we now suppose that �
has instability of order one, so that its monodromy matrix �(T, ti) of � admits four real
eigenvalues and a complex conjugate pair, i.e., it has a pair non-trivial real eigenvalues,
which we denote by

�s < 1, ��1
s = �u > 1, (3.26)

identify the stable and unstable unit eigenvectors, which we denote by vs(ti), vu(ti)
respectively. These eigenvectors locally span the two-dimensional stable and unstable
invariant manifolds of �, W s(�) and W u(�). It is worth noting that the hypothesis above
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is satisfied by most, although not all, the orbits in the L1 and L2 Lyapunov and Halo
families. In general the stable and unstable manifolds W s(�) and W u(�), associated with
the periodic orbit �, are of dimension ns + 1 and nu + 1, respectively, where we denoted
by ns and nu the dimension of the stable and unstable spaces Es, Eu associated to the
periodic orbit � [52].

We now describe the numerical procedure to compute the stable and unstable mani-
folds. Let x(ti) be the dynamical state of a generic point on �, and consider a perturbation
of this initial state in the direction of vs and vu, by a small displacement " > 0:

xu(ti) = x(ti)± "vu(ti), (3.27)
xs(ti) = x(ti)± "vs(ti). (3.28)

where ± determines which of the two branches of the stable or unstable manifold is
computed, while the value of ✏ should be small enough, for the linear approximation
to remain valid, and it can be chosen as " ⇡ 10�6, following the discussion in [51, 12].
Then propagating (3.28) backward in time, and (3.27) forward in time, and letting vary
ti 2 [0, T ] the manifolds W s(�) and W u(�) are obtained. Then recalling the definition
of flow given (2.47), we can write

W u(�) =
[

ti2[0,T ]

'
�
x(ti)± "vu(ti), t � 0

�
, (3.29)

W s(�) =
[

ti2[0,T ]

'
�
x(ti)± "vs(ti), t  0

�
. (3.30)

Figure 3.2: Invariant manifolds of an L1 and L2 northern Halo orbits at C = 3.1, in the Earth-
Moon system. A section of the the zero-velocity surface S(C;µ) is show in gray.
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3.6 The Broucke diagram
An alternative method to identify bifurcations was introduced by Roger Broucke in [4],
this based on changes in the eigenstructure of the monodromy matrix. In this technique,
the four non-trivial eigenvalues of the monodromy matrix for each family member are
recast in terms of only two parameters ↵ and �. The following arguments follow closely
the derivation found in [15].

3.6.1 The characteristic equation
Consider the characteristic equation for the monodromy matrix �(T, t0), this reads:

det(�� �I) = 0. (3.31)

The roots of the characteristic equation are the eigenvalues of �(T, t0). Since the eigenval-
ues come in reciprocal pairs and two are equal to unity, then the characteristic equation
must be of the form

(�� 1)2(�� �1)(��
1

�1
)(�� �2)(��

1

�2
) = 0. (3.32)

The last equation can be expanded in the form

(�� 1)2(�4 + ↵�3 + ��2 + ↵�+ 1) = 0. (3.33)

with

↵ = �(�1 +
1

�1
+ �2 +

1

�2
) = �2(⌫1 + ⌫2), (3.34)

� = 2 + �1�2 +
1

�1�2
+

�1

�2
+

�2

�1
= 2 + 4⌫1⌫2. (3.35)

We will now show that ↵ and � can be computed directly from �(T, t0), without the need
of explicitly computing the eigenvalues. Thus reducing the numerical errors involved in
the computation of the eigenvalues. Since �(T, t0) is diagonalizable, we can write:

D = V �1�(T, t0)V. (3.36)

Therefore, �(T, t0) and D are similar matrices and both matrices have the same trace,
i.e.,

Tr(�(T, t0)) = Tr(D) = 2 + �1 +
1

�1
+ �2 +

1

�2
(3.37)

Similarly we have

D2 = V �1�(T, t0)V V �1�(T, t0)V = V �1(�(T, t0))
2V, (3.38)

thus we can write

Tr((�(T, t0))2) = Tr(D2) = 2 + �2
1 +

1

�1

2

+ �2
2 +

1

�2

2

. (3.39)

Therefore, using equation (3.38), the expressions for ↵ and � can be given as

↵ = 2� Tr(�(T, t0)), (3.40)

� =
1

2

�
↵2 + 2� Tr((�(T, t0))2)

�
. (3.41)
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The relevance if the parameters ↵ and � arise from the fact that they uniquely determine
the non trivial eigenvalues of the monodromy matrix, and thus they contain all the
information relative to the stability of the periodic orbit for which they are computed.
We will now show this fact.

Eliminating ⌫2 in equations (3.34� 3.35), yields

4⌫2
1 + 2↵⌫1 + (� � 2) = 0. (3.42)

Then, by the quadratic formula we obtain

⌫1 =
�↵±

p
�/4

4
,

�

4
= ↵2

� 4(� � 2). (3.43)

At this point, without loss of generality, we can set ⌫1 =
�↵+

p
�/4

4 , and from (3.34�3.35)

it must be ⌫2 =
�↵�

p
�/4

4 . Using the definition of the stability indices, we can write:

�2
1 � 2⌫1�1 + 1 = 0, (3.44)

�2
2 � 2⌫2�2 + 1 = 0, (3.45)

(3.46)

Each of these admits exactly to solutions, i.e.,

�1 = ⌫1 ±
q

⌫2
1 � 1, (3.47)

�2 = ⌫2 ±
q

⌫2
2 � 1. (3.48)

Then we can assign either of the two to �1 and �2, then the discarded solution will
correspond to the remaining non trivial eigenvalues, i.e., �3 = ��1

1 , �4 = ��1
2 . Moreover

it is trivially �5 = �6 = 1. Thus all eigenvalues of the monodromy matrix are uniquely
determined by ↵ and �.

3.6.2 Stability regions

As noted by Broucke in [4], stability boundaries are found in the ↵� plane corresponding
to � = 0 in 3.43 and to either ⌫2

1 � 1 = 0 or ⌫2
2 � 1 = 0 in (3.47) and (3.48), respectively.

In particular when � = 0, we find

� =
↵2

4
+ 2. (3.49)

In the ↵� plane, equation (3.49) corresponds to a parabola with vertex at (↵, �) = (0, 2)
(see Figure 3.4). On the other hand when it is either ⌫2

1 � 1 = 0 or ⌫2
2 � 1 = 0, we obtain

⇣
�↵±

p
�/4

⌘2
= 16. (3.50)

After expanding the expression and rearranging, we finally obtain

� = ±2↵� 2. (3.51)
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In the ↵� plane, equation (3.51) corresponds to two lines with slopes +2 and �2, inter-
secting in the point (↵, �) = (0,�2). Moreover the parabola defined by (3.49), is tangent
to these lines at the points (↵, �) = (±4, 6). The parabola and lines determine seven
distinct regions of stability, as shown in Figure 3.4. Additionally in each of these regions
we find a different eigenstructure. This different structures will now described in detail
[4, 15].

• Region I: Local Stability. For this region the nontrivial eigenvalues are all
complex and lie on the unit circle. In particular it is

Im(�1) < 0, Im(�2) < 0, �3 = ��1
1 = �̄1, �4 = ��1

2 = �̄2. (3.52)

Where the �̄ denotes the complex conjugate of �. The asterisk indicates complex-
conjugate. As a consequence the stability indices satisfy

�1 < ⌫1 < 1, �1 < ⌫2 < 1, (3.53)

and we have stability. Since two different modes are complex and on the unit-circle,
the periodic orbit is surrounded by two different of invariant tori [15].

• Region II: Complex Instability. For this region The nontrivial eigenvalues are
all complex, but in this case do not lie on the unit circle. In particular it is:

Im(�1) > 0, |⌫1| < 1, �2 = �̄1, �3 = ��1
1 = �̄�1

2 , �4 = ��1
2 = �̄�1

1 . (3.54)

As a consequence ⌫1 and ⌫2 are complex and it holds ⌫2 = ⌫̄1.

• Region III: Even-Odd Instability. For this region the nontrivial eigenvalues are
all real and they satisfy

�1 < �1, 0 < �2 < 1, �1 < �3 = ��1
1 < 0, �4 = ��1

2 > 1. (3.55)

Consequently also ⌫1 and ⌫2 are real, and it is:

⌫1 < �1, ⌫2 > 1. (3.56)

The four modes correspond to invariant stable and unstable manifolds. Moreover,
the negative real modes correspond to manifolds that locally have double the period
of the associated periodic orbit [15].

• Region IV: Even-Even Instability. This region is bounded by the parabola
� = ↵2/4+ 2 and the line � = �2↵� 2. The nontrivial eigenvalues are all real and
satisfy

0 < �1 < 1, 0 < �2 < 1, �3 = ��1
1 > 1, �4 = ��1

2 > 1. (3.57)

As a consequence ⌫1 and ⌫2 are real, and it is:

⌫1 > 1, ⌫2 > 1. (3.58)

The periodic orbit possesses two unstable and two stable invariant manifolds. The
eigenvalue with the largest magnitude correspond to the unstable manifolds that
is quickest in leaving the vicinity of the periodic orbit, while its reciprocal corre-
sponds to the stable manifold that is the quickest in asymptotically approaching
the periodic orbit.
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• Region V: Odd-Odd Instability.
This region is bounded by the parabola � = ↵2/4+ 2 and the line � = 2↵� 2. The
nontrivial eigenvalues are all real and satisfy

�1 < �1, �2 < �1, �1 < �3 = ��1
1 < 0, �1 < �4 = ��1

2 < 0. (3.59)

As a consequence ⌫1 and ⌫2 are real, and it is:

⌫1 < �1, ⌫2 < �1. (3.60)

The periodic orbit possesses two unstable and two stable invariant manifolds, that
locally have double the period of the associated periodic orbit.

• Region VI: Even Semi-Instability. For this region the eigenvalue �2 is complex
and lies on the unit-circle while �1 is real. Then the nontrivial eigenvalues satisfy

Im(�1) < 0, 0 < �2 < 1, �3 = ��1
1 = �̄1, �4 = ��1

2 > 1. (3.61)

Then ⌫1 and ⌫2 are real, and it is:

�1 < ⌫1 < 1, ⌫2 > 1. (3.62)

The the real positive modes corresponds to invariant stable and unstable manifolds,
while the complex one signals the presence of an invariant tori in the vicinity of the
periodic orbit.

• Region VII: Odd Semi-Instability. For this region the eigenvalue �2 is complex
and lies on the unit-circle while �1 is real. Then the nontrivial eigenvalues satisfy

Im(�1) < 0, 0 < �2 < 1, �3 = ��1
1 = �̄1, �4 = ��1

2 > 1. (3.63)

Then ⌫1 and ⌫2 are real, and it is:

�1 < ⌫1 < 1, ⌫2 < �1. (3.64)

The the real positive modes corresponds to invariant stable and unstable manifolds,
while the complex one signals the presence of an invariant tori in the vicinity of the
periodic orbit.
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Figure 3.3: Eingenvalue configuration in the different regions of the Broucke diagram (see Figure
3.4).

3.6.3 Bifurcations
In some cases changes in the value of the Jacobi constant may result in a change in the
qualitative behaviour of trajectories close to a periodic orbit, in which case we say that
a local bifurcation occurs [2]. Bifurcations may result in a change in the stability of
the periodic orbits along a family, the formation of a new family of periodic orbits, or
termination of the current family [47].

For instance, in the Section 3.8 we will show a practical procedure for computing
the family of Lyapunov originating from L1, L2 and L3. Along each of the Lyapunov
families it will be possible to determine a tangent bifurcation, that give rise to the corre-
sponding Axial and Halo families. We will now make a brief overview of different type of
bifurcations, and then illustrate how the Broucke diagram can be used to detect them.

As we have seen the stability of periodic orbit can be studied by looking at the stability
indexes ⌫i, i = 1, 2 that we derived from the non trivial eigenvalues of the monodromy
matrix, then, since the stability of an orbit reflects the behavior of nearby orbits, we
can detect local bifurcations by monitoring when the stability indices, ⌫i, i = 1, 2 pass
through some critical values. Here we briefly summarize the main types of bifurcations
that we can encounter.

• Tangent bifurcation: This type of local bifurcation occur when one pair of non-
trivial eigenvalues transition from the real axis to the unit circle through the critical
values �i = 1/�i = +1. Then at the same time, the corresponding stability index
⌫i passes through +1. In the ↵� plane this type of bifurcation correspond to a
crossing of the line � = �2↵ � 2. Notice that in this case the hypothesis of the
Cylinder Theorem on the unit eigenvalue having geometric multiplicity equal to 1
fails to be true, so that the cylinder of orbits is not necessarily unique. The tangent
bifurcation is further classified into three subtypes [47, 1]:
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– Fold bifurcation: A change of stability occurs along a single family of orbits,
without originating nor intersecting other families.

– Pitchfork bifurcation: A change in stability is accompanied with the for-
mation of two additional families of similar period, with stability properties
similar to those of the orbits in the original family prior to the bifurcation.

– Transcritical bifurcation: A family of stable orbits intersects a family of
unstable orbits, i.e., there exists a common orbit belonging to both families is
correspondence of which a stability change occurs.

• Period-multiplying bifurcations: A period-multiplying bifurcation of multi-
plying factor m 2 N occurs when two nontrivial eigenvalues evolve such that
�j,k = m

p
1 = cos(2k⇡/m) ± i sin(2k⇡/m) [1]. In this scenario it is possible to

find, in the vicinity of a periodic orbit with period T , a different periodic orbit
of period mT that belongs to a new family of periodic orbits. A period doubling
bifurcation, i.e., m = 2, corresponds to a crossing of the line � = 2↵�2, that is one
of the boundaries of the stability regions. Thus the bifurcation is accompanied by
a change in stability. For m 6= 2, however this type of bifurcation generally occurs
can a change in orbital stability [1].

• Secondary Hopf and modified secondary Hopf bifurcations: These occur
when two eigenvalues collide either on the unit circle or the real line and depart
into the complex plane, respectively, with a change in stability occurring only in
the first scenario. These bifurcations corresponds to a crossing with the parabola
� = ↵2/4+2, thus a passage from or towards the complex stability region (Region II
in Figure 3.4). Thus the eigenvalues become complex but with a magnitude greater
than unity, indicating the existence of the so called spiral manifolds, which is given
by a combination of both oscillatory as well as departing/approaching flow [5, 55].

The presence of bifurcations along a family of periodic orbits, can be detected by
looking for crossings of special lines in the ↵� plane. The equations of the lines corre-
sponding to the tangent bifurcation, period multiplying bifurcations up to m = 5, and
secondary Hopf bifurcation are show in Table 3.1 [55, 28].

Type of bifurcation Equation
Tangent � = �2↵� 2
Period doubling � = 2↵� 2
Period tripling � = ↵ + 1
Period quadrupling � = 2
Period quintupling � = ↵/(2 cos(4k⇡/5))� (cos(8k⇡/5) + 1)/ cos(4k⇡/5), k = 1, 2
Secondary Hopf � = ↵2/4 + 2, ↵ 2 (�4, 4)
Modified secondary Hopf � = ↵2/4 + 2, ↵ 2 (�1, 4] [ [4,1]

Table 3.1: Equations of the lines defining the different types of bifurcations in the Broucke dia-
gram. Notice that the secondary Hopf bifurcation and the modified secondary Hopf bifurcation
both correspond to crossings with the same parabola but in different regions of the ↵� plane.
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Figure 3.4: The Broucke diagram and the seven stability regions. The solid lines correspond
to the bifurcation lines that constitute also boundaries of the stability region, while the dotted
lines correspond to lines that only correspond to a bifurcation to bifurcation.

3.7 Resonance
We say that a periodic orbit � of period T is p : q resonant if it completes p orbits in
the same time that the primaries complete q, recalling that the in normalized units the
period of the primaries is 2⇡, we have the following resonance condition:

p

q
=

2⇡

T
, p, q 2 N. (3.65)

Since the families of periodic orbits are continuous in time and the set of rationals Q
is dense in R, according to our definition, near any periodic orbit there exist countably
many resonant orbits arbitrarily close it. However we are interested only in the resonant
orbits with p and q reasonably small.

3.8 Lyapunov families of orbits
In Section 2.7.3 we described the procedure to obtain the initial guess for a Lyapunov
orbit with small amplitude around the collinear Lagrangian point Li, i = 1, 2, 3. Here we
show in further detail a computational procedure that can be used to correct the initial
guess into an orbit that is periodic to numerical precision. Then the newly computed
periodic orbit can be used as an initial guess itself to compute an orbit with larger (or
smaller) amplitude, by moving along the cylinder of Lyapunov orbits parametrized by
the Jacobi constant that exists in virtue of Theorem 5. In the following we will refer to
this cylinder, as the family of Li Lyapunov periodic orbits.
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In order to compute the Lyapunov family around any of the collinear points, as
anticipated, we start by generating an initial guess from equation (2.124) with w =
k(1, 1, 0, 0). The Lyapunov orbits have the property of being symmetric with respect to
the xz plane, then we can employ the differential correction method described in Section
3.3.2, which should converge to a periodic orbit in just a few iterations. Note that it is
useful to choose k > 0 for L1 and L3 and k < 0 for L2, by doing so x0 will be on the
opposite side of Li with respect to the nearest major body, in our case either the Earth
or the Moon. At this point we suppose that we have the initial conditions for a small
amplitude Lyapunov orbit, which will be of the form

x0 = (x0, 0, 0, 0, ẏ0, 0)
T , (3.66)

and choose a small fixed step size �x0 that we use to generate an initial guess for a new
Lyapunov orbit as:

x0 + (�x0, 0, 0, 0, 0, 0)
T . (3.67)

We then use equation (3.10), that is the differential correction method at fixed x0, and if
�x0 is small enough the procedure will converge in just a few iterations to a new periodic
Lyapunov orbit at a slightly lower or larger value of the Jacobi constant, depending on the
sign the sign of �x0. Note that a lower Jacobi constant corresponds to larger amplitude,
and vice versa. In general choosing �x0 with sign opposite to that of k, above, will result
in a larger amplitude orbit.

In Figures 3.5, 3.7 and 3.9 we show the plots of selected orbit belonging to the L1,
L2 and L3 Lyapunov families, respectively. The Earth and Moon are plotted to scale
to put the size of the orbits into perspective and the value of the Jacobi constant is
shown as a color gradient. Along the Li Lyapunov family, we find tangential bifurcations
corresponding to an intersection with the Li Halo family and with the Li Axial families.
These new families of periodic orbits will be described in detail in Sections 3.10 and
3.11, respectively. Along the L3 Lyapunov family, we find also tangent bifurcation with
the L4/L5 Planar families. These however are not symmetric, with the exception of the
Lyapunov orbit from which they bifurcate, and cannot be computed with the differential
correction scheme presented here (see e.g., [14]). In Figures 3.6, 3.8 and 3.10, we show
the evolution of the orbital period along each of the Lyapunov families and highlight the
presence of some of the relevant resonances along the family. Interestingly the orbits of
L3 Lyapunov families have an orbital period close to 27 days across the entire family,
i.e., from the small amplitude orbits near L3 to the largest amplitude orbits intersecting
the Earth surface. The periods of the L1 and L2 Lyapunov orbits, starts from around 11
days and 15 days, respectively, for the smallest amplitude orbits near the corresponding
Lagrangian point and go up to over 30 days, for the large amplitude orbits. In Figures
3.11, 3.12 and 3.13, we show the stability indices and the Broucke diagrams corresponding
each of the Lyapunov families. It is worth noting that all orbits in the L1 and L2 families
of orbits are unstable, as one of the stability indices has modulus larger than unity through
the entire family. The same can be said for most of the orbits in the L3 Lyapunov family,
with the exception of the orbits with the largest amplitudes.
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Figure 3.5: Family of Lyapunov orbits emanating from L1.

Figure 3.6: Periods in units of days and some of the relevant resonances of the orbits of the L1

Lyapunov family.
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Figure 3.7: Family of Lyapunov orbits emanating from L2.

Figure 3.8: Periods in units of days and some of the relevant resonances of the orbits of the L2

Lyapunov family.
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Figure 3.9: Family of Lyapunov orbits emanating from L3.

Figure 3.10: Periods in units of days and some of the relevant resonances of the orbits of the L3

Lyapunov family.
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Figure 3.11: Plots showing the stability indices (top), and Broucke diagram (bottom) of the
L1Lyapunov families plotted against the value of x0 used to identify the different Lyapunov
orbits.
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Figure 3.12: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L2

Lyapunov families plotted against the value of x0 used to identify the different Lyapunov orbits.
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Figure 3.13: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L3

Lyapunov families plotted against the value of x0 used to identify the different Lyapunov orbits.
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3.9 DRO, DPO and LPO families of orbits
Using the same technique that we have already seen for the Lyapunov families, we now
compute four more families periodic orbits, known as the Distant Retrograde Orbit (DRO)
family, the Distant Prograde Orbit (DPO) family and the Western and Eastern Low
Prograde Orbit families (LPO). The initial guesses for starting the DRO and Western
LPO families can be determined easily by taking planar nearly circular orbits close to
the Moon’s surface, while for the Eastern LPO and the DPO family we refer to the data
provided by Jet Propulsion Laboratory’s solar system dynamics website. In any case the
initial conditions will be of the type:

x0 = (x0, 0, 0, 0, ẏ0, 0)
T , (3.68)

where for the DRO and Western LPO family x0 is taken on the left side of the Moon,
i.e., x0 < 1 � µ, and the sign of ẏ0 determines whether the prograde or the retrograde
family of orbits is computed. In particular we find the DRO family by setting ẏ0 > 0,
and the Western LPO family with the choice ẏ0 < 0. For the Western LPO and the DPO
family we take x0 > 1�µ, that is on the right side of the Moon, and ẏ0 > 0, while for the
Eastern LPO we take initial condition on the left side of the Moon, i.e., x0 < 1�µ. Then
we can proceed exactly as for the Lyapunov case by choosing appropriate �x0, and after
applying the differential correction scheme the initial guess for the next orbit is again of
the form:

x0 + (�x0, 0, 0, 0, 0, 0)
T . (3.69)

In particular with the above conventions regarding the choice of x0, it must be �x0 > 0
for the DRO and Western LPO family, and �x0 < 0 for the Eastern LPO family. In the
case of the Eastern LPO family, we find that the differential correction scheme sometimes
corrects the the guess for an Eastern LPO orbit into an orbit of the Lyapunov family at
the same value of x0 that differs only in he ẏ0 component of the velocity. To overcome
this issue it suffices to constrain the maximum value of �ẏ0, thus forcing the continuation
algorithm to remain on the LPO family.

In Figures 3.14, 3.16 and 3.20 we show the plots of selected orbit belonging to the DRO,
DPO and LPO families of periodic orbits, respectively. In Figures 3.15, 3.17 and 3.21,
we show the evolution of the periods of the DRO, LPO and DPO families, respectively,
and highlight the presence of some of the relevant resonances. Lastly, in Figures 3.22,
3.23 and 3.25, we show the stability indices and the Broucke diagrams corresponding to
the DRO, LPO and DPO families, respectively. It is worth noting that most of the orbits
in the DRO family are linearly stable, with the exception of the portion of the DRO
family with the largest amplitudes. Moreover the orbital periods of the DRO orbits span
from just a few hours, corresponding to the nearly-circular orbits are close to the Moon’s
surface, up to periods close to the 1 : 1 resonance with the Moon, i.e., about 27.3 days,
that are found for the large amplitude orbits. Large stability regions are found also for
the Western and Eastern LPO families. On the other hand all the orbits of the DPO
family are unstable, as one of the stability indices has modulus always larger than unity.

We conclude by mentioning that recently a lunar DRO has been used employed by
the Orion spacecraft. Orion was launched as part of NASA’s Artemis 1 mission via the
Space Launch System on November 16 2022. After performing a lunar flyby Orion was
injected into a lunar DRO on November 25. Orion then remained on the DRO for a
total of six days before performing a second lunar flyby and finally reentering the Earth
atmosphere. [33, 34]
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Figure 3.14: Family of DRO orbits. The colours of the orbits correspond to the Jacobi constant.
Here only the portion of the family that does not intersect the Earth’s surface is shown.

Figure 3.15: Periods in units of days and some of the relevant resonances of the orbits of the
DRO family.
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Figure 3.16: Family of Western LPO orbits. The colours of the orbits correspond to the Jacobi
constant. Here only the portion of the family that does not intersect the Moon’s surface is
shown.

Figure 3.17: Periods in units of days and some of the relevant resonances of the orbits of the
Western LPO family.
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Figure 3.18: Family of Eastern LPO orbits. The colours of the orbits correspond to the Jacobi
constant. Here only the portion of the family that does not intersect the Moon’s surface is
shown.

Figure 3.19: Periods in units of days and some of the relevant resonances of the orbits of the
Eastern LPO family.
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Figure 3.20: Family of DPO orbits. The colours of the orbits correspond to the Jacobi constant.

Figure 3.21: Periods in units of days and some of the relevant resonances of the orbits of the
DPO family.
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Figure 3.22: Plots showing the stability indices (top), and Broucke diagram (bottom) of the
DRO family plotted against the value of x0 used to identify the different DRO orbits.
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Figure 3.23: Plots showing the stability indices (top), and Broucke diagram (bottom) of the
Western LPO family plotted against the value of x0 used to identify the different LPO orbits.
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Figure 3.24: Plots showing the stability indices (top), and Broucke diagram (bottom) of the
Eastern LPO family plotted against the value of x0 used to identify the different LPO orbits.
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Figure 3.25: Plots showing the stability indices (top), and Broucke diagram (bottom) of the
Western DPO family plotted against the value of x0 used to identify the different DPO orbits.
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3.10 Halo families of orbits
The family of Halo orbits in the vicinity of the collinear point Li, emanates from the
corresponding bifurcation orbit found along the family of Li Lyapunov orbits. To accu-
rately compute the bifurcation orbit, it is necessary to employ some correction algorithm,
e.g., a bisection method with respect to the initial conditions that converges when the
nontrivial eigenvalues associated to the bifurcation are within some specified tolerance
from the bifurcation value. We note however that the exact position of the bifurcation
along the Lyapunov family is not necessary to compute the family of Halo orbits. In
fact, we find that the differential correction scheme presented in Section 3.3, is powerful
enough to converge to a Halo orbit even if the Lyapunov orbit used to start the Halo
family is only fairly close but not exactly on the bifurcation point.

With this idea in mind, we now describe the procedure that we adopted to compute
families of Halo orbits that bifurcate from L1, L2 and L3 Lyapunov orbits. Note that
because of the symmetries in the equations of motion, actually there exists two families
of Halo orbits bifurcating from the Li Lyapunov family. We call these the Northern and
Southern families of Halo orbits. In particular, each orbit in the Northern Halo family is
the mirror image of its Southern counter part with respect to the xy plane. We anticipate
that given a Northern Halo orbits the initial conditions for its Southern counterpart can
be determined simply by inverting the sign of z0 in the corresponding initial dynamical
state x0, i.e., by applying the symmetry transformation (2.54), consequently both orbits
will lie at the same value of the Jacobi constant C.

That said the procedure to compute the Li Halo family of orbits is as follows. First
of all we need to select a Lyapunov orbit computed in Section 3.8 of initial condition x0,
that is located in the vicinity of the bifurcation. Then we need to choose a small fixed
step size �z0, the sign of which determines whether the Northern or Southern Halo family
is sought, and generate the initial guess for a new orbit with out of plane component as:

x0 + (0, 0,�z0, 0, 0, 0)
T . (3.70)

We then use equation (3.11), that is the differential correction method at fixed z0, and if
�z0 is small enough the procedure will converge to a Halo orbit with small out of plane
component. We then iterate the procedure until:

|xn+1
0 � xn

0 | < |zn+1
0 � zn0 |, (3.71)

as suggested in [14]. After that x0 is fixed instead and equation (3.67) is applied. This is
done in order to avoid the necessity of using smaller and smaller step in the z direction
as the family grows out of plane.

In Figure 3.26, 3.28 and 3.30 we show selected periodic orbits belonging to the L1, L2

and L3 Northern Halo families. In Figures 3.27, 3.29 and 3.31, we show the evolution of
the orbital period along each of the Northern Halo families and highlight the presence of
some of the most relevant resonances along the family. Lastly, in Figures 3.32, 3.33 and
3.34, we show the stability indices and the Broucke diagrams corresponding each of the
Northern Halo families. In particular wa want to draw attention to the zoomed-in area in
Figure 3.34, as this correspond to the L2 NRHO region. In this region eight bifurcations
are found. In particular these are: two period doubling, two period quadrupling, three
period quintupling bifurcations, and one tangent bifurcation. The latter however is a
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fold type bifurcation and as such gives rise to no other family. The last period doubling
bifurcation (following the curve from the Lyapunov bifurcation) gives rise to the family
of the Butterfly orbits. A more detailed overview of the L2 NRHO bifurcations — with
the exception of the period quintupling ones — is given in [55, 56].

It appears evident that starting from the Lyapunov bifurcation each of the Halo fam-
ilies tends toward orbits which have a large out of plane component z and increasingly
smaller in plane components. As we move towards the end of the Halo families, closer to
one of the two major bodies, we find that the periodic orbits become thin, almost perpen-
dicular to the plane of motion of the primaries. These are known as the Near Rectilinear
Halo Orbits (NRHOs). Of particular interest are the L2 NRHO in 4 : 1 and 9 : 2 reso-
nance with the Moon’s orbit around the Earth (see Figure 3.29). The latter in particular
is the reference orbit for the NASA Lunar Gateway concept. Additionally in 2022, the
Cislunar Autonomous Positioning System Technology Operations and Navigation Exper-
iment (CAPSTONE) become the first spacecraft to be be deployed in an L2 NRHO, with
the aim of validating the mission design and operations of NASA’s Gateway [8]. Finally
we observe that the Halo orbits bifurcating near L1 and L2 grow larger, but shorter in
period, as they shift towards the Moon. In both cases a narrow band of stable orbits
can be found roughly at half distance from the Moon. We conclude by mentioning that
historically the name Halo was first used by Farquhar in 1966, when he proposed the use
of such an orbit as a communications relay station for an Apollo mission to the far side
of the Moon, i.e., in the vicinity of L2. However this idea was brought to life only in
2018, when China placed the first communications relay satellite, Queqiao, in an L2 Halo
orbit [54]. We conclude by mentioning the International Sun-Earth Explorer-3 (ISEE-3),
a collaborative mission by ESA and NASA launched in 1978 with the goal of surveying
the Earth magnetic tail. ISEE-3 was the first mission to operate in a Halo orbit near the
Sun-Earth L1 point [35].
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Figure 3.26: Family of Northern Halo orbits bifurcating from Lyapunov orbits near L1. Note
that the portion of the family with the lowest values of C intersects the Moon’s surface, moreover
the family continues to grow much further than shown here (see [15]).

Figure 3.27: Periods in units of days and some of the relevant resonances of the orbits of the L1

Halo family. Only the data of orbits not intersecting the Moon surface is shown.
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Figure 3.28: Family of Northern Halo orbits bifurcating from Lyapunov orbits near L2. The
4 : 1 and 9 : 2 resonant NRHOs are highlighted.

Figure 3.29: Periods in units of days and some of the relevant resonances of the orbits of the L2

Halo family.
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Figure 3.30: Family of Northern Halo orbits bifurcating from Lyapunov orbits near L3.

Figure 3.31: Periods in units of days and some of the relevant resonances of the orbits of the L3

Halo family.
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Figure 3.32: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L1

Halo family plotted against the value of x0 used to identify the different Halo orbits. Only the
data of orbits not intersecting the Moon surface is shown.
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Figure 3.33: Plots showing the stability indices (top), and Broucke diagram (bottom) of the
L2 Halo family plotted against the value of x0 used to identify the different Halo orbits. The
zoomed area of the diagram corresponds to the NRHO region.
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Figure 3.34: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L3

Halo family plotted against the value of x0 used to identify the different Halo orbits.
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3.11 Axial families of orbits
Similarly to the Halo families of orbits the Axial families near L1, L2 and L3 are three
dimensional orbits that emanate from bifurcation points found along the respective Lya-
punov families. However the Axial families are symmetric with respect to the x axis
so that the differential correction technique outlined in Section 3.3.3 has to be used.
Similarly to what we have already seen for the Northern and Southern Halo families of
orbits, there exists actually two families of Li Axial families originating from the same
bifurcation on the corresponding Li Lyapunov family. Following the literature we will
refer to these as the Northeastern and Northwestern Li Axial families. In this case, given
a Northwestern Axial orbit, the initial conditions for its Northeastern counterpart can
be determined simply by inverting the sign of z0 in the corresponding initial dynamical
state x0, consequently both orbits will lie at the same value of the Jacobi constant C.

That said the procedure to compute the Li Halo family of orbits is as follows. First of
all we need to select a Lyapunov orbit near the bifurcation that was previously computed
in Section 3.8 of initial condition x0, that is located in the vicinity of the bifurcation.
Then we need to choose a small fixed step size �ż0, the sign of which determines whether
the Northeastern or Northwestern Axial family is computed, and we generate the initial
guess for a new orbit with out of plane velocity component as:

x0 + (0, 0, 0, 0, 0,�ż0)
T . (3.72)

At this point we can use equation (3.14), that is the differential correction method at fixed
ż0. Initially, and as long as the out of plane component is relatively small, we employ
the mapping associated to the crossing with the xz plane, i.e., so that yf = 0, and if �ż0
is small enough the procedure will converge to an Axial orbit with small out of plane
velocity component. As the family grows vertically, the procedure will eventually break.
Then we will need to switch to the mapping associated to the crossing with the xy plane,
i.e., so that zf = 0.

In Figures 3.35, 3.37 and 3.39 we show selected periodic orbits belonging to the L1,
L2 and L3 Axial families. In Figures 3.36, 3.38 and 3.40, we show the evolution of the
orbital period along L1, L2 and L3 Axial families, respectively. Lastly, in Figures 3.41,
3.42 and 3.43, we show the stability indices and the Broucke diagrams corresponding
to L1, L2 and L3 Axial families, respectively. It is worth noting that each of the Axial
families terminates with a tangent bifurcation that gives rise to the L1, L2 and L3 Ver-
tical families of orbit, at the same time the Northeastern Axial family reunites with the
Northwestern Axial family. Finally we note that the Vertical bifurcation is the only other
bifurcation present along each Axial family, together with the tangent bifurcation with
the corresponding Lyapunov family from which the Axial family originates. Additionally,
all Axial orbits turn out to be linearly unstable.
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Figure 3.35: Family of Northeastern Axial orbits bifurcating from Lyapunov orbits near L1.

Figure 3.36: Periods in units of days and some of the relevant resonances of the orbits of the L1

Axial family.
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Figure 3.37: Family of Northwestern Axial orbits bifurcating from Lyapunov orbits near L2.

Figure 3.38: Periods in units of days and some of the relevant resonances of the orbits of the L2

Axial family.
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Figure 3.39: Family of Northeastern Axial orbits bifurcating from Lyapunov orbits near L3.

Figure 3.40: Periods in units of days and some of the relevant resonances of the orbits of the L3

Axial family.
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Figure 3.41: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L1

Axial family plotted against the value of x0 used to identify the different Axial orbits.
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Figure 3.42: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L2

Axial family plotted against the value of x0 used to identify the different Axial orbits.
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Figure 3.43: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L3

Axial family plotted against the value of x0 used to identify the different Axial orbits.
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3.12 Vertical families of orbits
The L1, L2 and L3 Vertical families of orbits emanate from the bifurcations found at the
end of the respective Axial families. The Vertical families are symmetric with respect
to both the xz and xy plane, and as such it is also symmetric with respect to the x
axis (obviously the vice versa is not true). Therefore in principle both the differential
correction techniques, previously used for the Halo and Axial families can be employed.
However a better way of proceeding is to exploit the symmetry with respect to both
planes as described in Section 3.3.4, which also prevent the differential correction scheme
to fall back into the Axial family when near to the bifurcation. Notice however that
for the specific case of the L1 Vertical family, and in particular for the branch that is
obtained when walking in the negative C direction from the L1 Axial bifurcation, the
mapping that works with fixed ẏ0, as described in Section 3.3.4, will eventually break
down. This is due to the fact that ẏ0 does not monotonically decrease along the entire
branch. As a workaround, it is possible compute the initial part of this branch using the
same mapping technique used for the L1 Axial family, and then switch to the differential
correction scheme of Section 3.3.4, when we are past the local minimum in ẏ0.

That said, the procedure can be summarized as follows. First of all we select the
Axial orbit, with initial dynamical state x0, from which the Vertical family bifurcates,
that was already computed in Section 3.11. Then we choose a small fixed step size �ẏ0,
the sign of which determines in which direction we walk through the family. To compute
the complete families both negative and positive steps have to be employed starting from
the bifurcation orbit. Then we can generate the initial guess for a new Vertical orbit as:

x0 + (0, 0, 0, 0,�ẏ0, 0)
T . (3.73)

We then use equation (3.15), where tf is the time of the crossing with the xz plane,
i.e., so that yf = 0, and if �ẏ0 is small enough the procedure will converge to Vertical
orbit.

In Figure 3.44, 3.46 and 3.48 we show selected periodic orbits belonging to the L1,
L2 and L3 Vertical families. In Figures 3.45, 3.47 and 3.49, we show the evolution of the
orbital period along L1, L2 and L3 Axial families, respectively. Lastly, in Figures 3.50,
3.51 and 3.52, we show the stability indices and the Broucke diagrams corresponding
to L1, L2 and L3 Vertical families, respectively. It is worth noting that each of the
bifurcation orbits corresponding to the termination of the respective Vertical family of
orbits is a planar orbit, i.e., lies the xy plane. Additionally all orbits of the L1 and L2

Vertical orbits are unstable, this hold also for most of the L3 Vertical orbits, with the
exception of a stable portion of the family that lives closest to the in-plane bifurcation.
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Figure 3.44: Family of L1 Vertical orbits.

Figure 3.45: Periods in units of days and some of the relevant resonances of the orbits of the L1

Vertical family.
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Figure 3.46: Family of L2 Vertical orbits.

Figure 3.47: Periods in units of days and some of the relevant resonances of the orbits of the L2

Vertical family.
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Figure 3.48: Family of L3 Vertical orbits.

Figure 3.49: Periods in units of days and some of the relevant resonances of the orbits of the L3

Vertical family.
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Figure 3.50: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L1

Vertical family plotted against the value of x0 used to identify the different Vertical orbits.
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Figure 3.51: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L2

Vertical family plotted against the value of x0 used to identify the different Vertical orbits.
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Figure 3.52: Plots showing the stability indices (top), and Broucke diagram (bottom) of the L3

Vertical family plotted against the value of x0 used to identify the different Vertical orbits.
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Chapter 4
Homoclinic and heteroclinic connections

In this Section we will outline the procedure to find, if they exist, homoclinic and hetero-
clinic connections among Lyapunov orbits of the L1 and L2 families. In this context we
call an homoclinc connection, a trajectory that connects a periodic orbit with itself, these
depart along the unstable manifold and asymptotically approach the starting periodic or-
bit along its stable manifold after some period of time. On the other hand an heteroclinic
connection is a trajectory that departs from one periodic orbits, e.g., an L1 Lyapunov
orbit, along its unstable manifold and then asymptotically approaches a different periodic
orbit, e.g., an L2 Lyapunov orbit along its stable manifold. Clearly for this to happen
the two orbits need to lie at the same level of the Jacobi constant C.

Throughout this section we will use the following notation. Let �L1 and �L2 be an
L1 and an L2 Lyapunov orbit, respectively, and assume that they are associated to the
same value of the Jacobi constant C. We denote the stable and unstable manifolds of
�Li , by W s/u(�Li) = W s/u

Li
, i = 1, 2. Moreover we introduce the following definitions.

Let ⇡ be a Poincaré section, as defined in Section 3.1, and let p 2 N be some positive
integer. Then we define �u,p

⇡ (x(t)), �s,p
⇡ (x(t)), as the dynamical state at the time of

the p�th intersection of the flow '(x(t) with the plane ⇡, in forward or backward time
respectively, relative to some reference initial time t0. Moreover given a periodic orbit �,
with a little abuse of notation we can define:

�u,p
L1

⌘ �u,p
⇡ (W u(�)) =

[

ti2[0,T ]

�u,p
⇡

�
x(ti)± "vu(ti)

�
, (4.1)

�s,q
L1

⌘ �s,q
⇡ (W s(�)) =

[

ti2[0,T ]

�u,q
⇡

�
x(ti)± "vs(ti)

�
. (4.2)

The subscript ⇡ will be dropped when doing so will not cause any ambiguity.

Before showing how heteroclinic and homoclinic connections can be constructed nu-
merically, we present some analytical results. In 1985, Llibre, Martinez, and Simó [29]
devoted their efforts to show that under appropriate conditions, the invariant manifolds
of the L1 Lyapunov orbits intersect transversely. In particular they were able to prove
two theorems that we report here [29, 25]. Together these two theorems imply that for
sufficiently small mass parameter µ and for an appropriate range of the Jacobi constant
C < C1, the invariant manifolds W s

L1
and W u

L1
intersect transversely in the interior realm,

i.e., the region surrounding P1, the largest of the primaries . Recall that in our notation
C1 is the Jacobi constant associated with the Lagrangian point L1. Moreover, we want to
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emphasize that L1 Lyapunov orbits can only exist values of the Jacobi constant smaller
than C1.

Theorem 8 (Llibre-Martinez-Simó). For µ sufficiently small, the branch of W u
L1

in the
interior realm has a projection on position space given by

d = µ
1
3
�
3N2

� 1
6 � 3 +M cos t+ o(1),

✓ = �⇡ + µ
1
3 (Nt+ 2M sin t+ o(1)),

where d is the distance to the zero velocity curve, ✓ is the angular coordinate, and N and
M are constants. In particular, for a sequence of values of µ which have the following
asymptotic expression:

µk =
1

N3k3
(1 + o(1)), (4.3)

the first intersection of this projection with the x axis is orthogonal to that axis, giving a
symmetric (1, 1)-homoclinic orbit for L1. The prefix (1,1) refers to the first intersection
(with the Poincaré section defined by the plane y = 0, x < 0) of both the stable and
unstable manifolds of L1.

Theorem 9 (Llibre-Martinez-Simó). For µ and �C = C1 � C sufficiently small, the
branch W u

L1
contained initially in the interior realm of the energy surface intersects the

plane y = 0 for x < 0 in a curve diffeomorphic to a circle. In particular, for points in
the (µ, C) plane such that there is a µk of Theorem 8 for which

�C > Lµ
4
3 (µ� µk)

2, (4.4)

where L is a constant, there exist symmetric transversal (1, 1)-homoclinic orbits.

Theorems 8 and 9 focus on studying the transversality of the invariant manifolds for
the L1 Lyapunov orbits with Jacobi constant slightly smaller than C1. Additionally in
[29], formulas for this intersection as functions of µ and �C were provided. However,
these expression are rather complex and of difficult interpretation [25]. Then main idea
behind these results is that if we have an expression for the first intersection of the
unstable manifold with the plane y = 0, which we denote by �u,1

L1
, and find an orthogonal

intersection with the x axis, i.e., ẋ = 0, then by the symmetry (2.55) of the equations of
motion, we would obtain also an intersection of the stable manifold �s,1

L1
with the same

plane, and the intersection would correspond to the same point in phase space, providing
a symmetric (1, 1)-homoclinic connection for �L1 .

4.0.1 Homoclinic and heteroclinic connections between Lyapunov
orbits in the Moon region

We will now see how the ideas presented in the previous section can be applied to nu-
merically construct different types of homoclinic and heteroclinic connections. Before
proceeding we want to stress that at a fixed µ these trajectories may exist only for some
values of the Jacobi constant C.

We have seen in Section 3.8 that there exists a unique family of Lyapunov orbits in
the vicinity of each of the collinear points, that is parametrized by the Jacobi constant
C. The idea now is to look for the zero energy transfers which connects �Li to �Lj ,
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as we anticipated if i = j we call this an homoclinic connection, or an heteroclininc
connection if if i 6= j. Homoclinic and heteroclinic connections can be found by looking
for intersections between the stable manifold of �Li with the unstable manifold of the
�Lj , indeed if such an intersection is found the corresponding trajectory will approach
asymptotically �Li in forward time and �Lj in backward time.

Suppose now that we are interested in finding an heteroclinic/homoclinic connections
from �Li to �Lj in the Moon region. Then we need to look for intersections between �u,p

Li

and �s,q
Lj

, i.e., the p�th and the q�th Poincaré cuts with the Moon plane x = 1�µ of the
unstable manifold, W u

Li
, and of the stable manifold W s

Lj
, respectively. To do this we can

simply find the intersections between �u,p
Li

and �s,q
Lj

, in the yẏ plane, and assume them to
be closed curves in this plane, then if an intersection exists at the point A = (yA, ẏA), we
can recover the value of |ẋA|, by imposing that the intersection point has Jacobi constant
equal to C and solving for ẋA, i.e.,

C = 2U(xA, yA, 0)� (ẋ2
A + ẏ2A), (4.5)

then we can determine the sign of |ẋA|, by imposing that it is consistent with the direc-
tion from which the manifolds intersects the Moon plane. Finally we can integrate the
trajectory that starts at

xA = (xA, yA, 0, ẋA, ẏA, 0)
T , xA = 1� µ, (4.6)

both forward and backward in time to find the (p, q)-homoclinic/heteroclinic connection
'(xA, t).

In summary the possible types of connection in considerations are:

• (p, q)-homoclinic connection of �Li , if �s,p
Li

\ �u,q
Li

6= ;, i = 1, 2,

• (p, q)-heteroclinic connection from �Li to �Lj , if �s,p
Li

\ �u,q
Lj

6= ;, i = 1, 2, i 6= j.

For homoclinic/heteroclinic connections in the Moon region, it is of interest the number
of times the connecting orbit goes around the Moon. It turns out [6], that the number
of loops n is:

• n = (p+ q � 1)/2, for (p, q)-homoclinic connections,

• n = (p+ q � 2)/2, for (p, q)-heteroclinic connections.

Consequently it must that  = p + q � 1, i.e., the number of times the Moon plane is
crossed, must be even for homoclinic connections and odd for the heteroclinic ones [6].

Additionally, because of the symmetry (2.55) of the equations of motion, for each
heteroclinic connection '(xA, t) connecting �L1 to �L2 , there exists one from �L2 to �L1

that is symmetric with respect to the xz plane. These two heteroclinic connections
together form a symmetric heteroclinic cycle.

It is worth noting, that the homoclinic and heteroclinic orbits do not exist for all
values of C, as the invariant manifolds do not necessarily intersect (see e.g., Figure 4.6).

We conclude with some relevant details about the numerical procedure that we de-
scribed above.

Note that In order to compute the intersection of the manifolds with the Moon plane,
we need to compute the crossing with very high accuracy, this can be done as described
in Section 3.1.1.
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The closed curves in the Poincaré section plot are obtained by computing a number
of trajectories on the order 103 belonging to each manifold. Then the intersection of the
stable/unstable manifold is computed and projected onto the chosen Poincaré section (the
Moon plane in our case). Lastly, the closed curves on the Poincaré section are obtained
by and linearly interpolating the points corresponding to each of the trajectories of the
stable/unstable manifold.

The procedure explained above requires that �L1 and �L2 have the same Jacobi con-
stant C, within some tight tolerance, e.g., ⌧ = 10�8. In order to achieve this we use
a bisection method, coupled with the same differential correction scheme that we used
for computing the families of Lyapunov orbits in Section 3.8. More specifically, let x+

0

and x�
0 , be the dynamical states of two Lyapunov orbit with Jacobi constants above and

below larger the target value C, and let �x0 = x�
0 � x+

0 . We then compute a new orbit
at x̃0 = x+

0 + �x0/2, using a differential correction scheme, and check if the value C̃ of
its Jacobi constant is equal to C within the given tolerance ⌧ , i.e.,

|C̃ � C| < ⌧, (4.7)

otherwise, either x+
0 or x�

0 is replaced with x̃0 depending on whether C̃ 7 C. This
procedure is reiterated until the condition (4.7) is satisfied.

In Figures 4.1 � 4.5 we show examples of (1, 1)-homoclinic connections for both L1

and L2 Lyapunov orbits, as well as (1, 1)-heteroclinic and (1, 2)-heteroclinic connections
among an L1 to an L2 Lyapunov orbits, at different values of C.
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Figure 4.1: In the top panel we show two (1, 2)-homoclinic connections of an L1 Lyapunov orbit
at C = 3.182, and their stable (red) and unstable (blue) manifolds. In the bottom panel we
show the Poincaré map of the first and second crossing with the Moon plane of W u

L1
and W s

L1
,

respectively, and their intersection points.
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Figure 4.2: In the top panel we show two (1, 2)-homoclinic connections of an L2 Lyapunov orbit
at C = 3.165, and their stable (red) and unstable (blue) manifolds. In the bottom panel we
show the Poincaré map of the first and second crossing with the Moon plane of W u

L1
and W s

L1
,

respectively, and their intersection points.
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Figure 4.3: In the top panel we show two (1, 1)-heteroclinic connections from an L1 Lyapunov
orbit to an L2 Lyapunov orbit at C = 3.15, and their stable (red) and unstable (blue) manifolds.
In the bottom panel we show the Poincaré map of the first crossing with the Moon plane of W u

L1

and W s
L2

and their intersection points.
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Figure 4.4: In the top panel we show two (2, 2)-heteroclinic connections from an L1 Lyapunov
orbit to an L2 Lyapunov orbit at C = 3.16, and their stable (red) and unstable (blue) manifolds.
In the bottom panel we show the Poincaré map of the first and second crossing with the Moon
plane of W u

L1
and W s

L2
and their intersection points. Notice that in this case there exists no

(1, 1)�heteroclinic connection.
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Figure 4.5: In the top panel we show two (2, 2)-heteroclinic connections from an L1 Lyapunov
orbit to an L2 Lyapunov orbit at C = 3.169, and their stable (red) and unstable (blue) manifolds.
In the bottom panel we show the Poincaré map of the first and second crossing with the Moon
plane of W u

L1
and W s

L2
and their intersection points.
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Figure 4.6: In the top panel we show the stable (red) and unstable (blue) manifolds of an L1

and an L2 Lyapunov orbit at C = 3.17. In the bottom panel we show the Poincaré map of the
first and second crossing with the Moon plane of W u

L1
and W s

L2
. Unlike the precedent cases no

intersection is found at this level of energy, and neither a (2, 2)-heteroclinic connection nor a
(1, 1)�heteroclinic connection can be constructed.
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4.0.2 Homoclinic connections among Lyapunov orbits in the in-
terior and exterior regions

In the previous Section we have seen how homoclinic and heteroclinic connections among
Lyapunov orbits can be found in the Moon region. Here we will instead show a similar
procedure that can be used to construct homoclinic connections occurring in the interior
region, i.e., the region surrounding the largest of the primaries, for the L1 Lyapunov
orbits and in the exterior region for L2 Lyapunov orbits.

As usual, let �Li be an L1 or L2 Lyapunov orbit. It In this case it will be more
convenient to use the Poincaré cuts with the plane y = 0, and look for intersection
between �u,p

Li
and �s,q

Li
in the xẋ plane. The intersections will be sought in the interior

region for L1 orbits and in the exterior region for L2 orbits, as this is the most natural
choice. Then if an intersection is found at the point A = (xA, ẋA), we can recover the
value of |ẏA|, by imposing that the intersection point has Jacobi constant equal to C and
solving (4.5) for ẏA. Finally we need again to determine the sign of |ẏA|, by imposing that
it is consistent with the direction from which the manifolds intersects the y = 0 plane.
Finally we can integrate the trajectory that starts at

xA = (xA, yA, 0, ẋA, ẏA, 0)
T yA = 0, (4.8)

both forward and backward in time to find the desired homoclinic connection '(xA, t).

In Figures 4.7 and 4.8, we show two examples of (1, 1)-homoclinic connections for an
L1 and an L2 Lyapunov orbit, that can be found in the interior and exterior regions,
respectively, as we described above.
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Figure 4.7: In the top panel we show the stable (red) and unstable (blue) manifolds of an L1

Lyapunov orbit at C = 3.12, in the interior region as well as four different (1 � 1)-homoclinic
connections. Notice that the trajectories corresponding to the intersection points B and D are
non-symmetric. In the bottom panel we show the Poincaré map of the first crossing with the
y = 0 plane of W u

L2
and W s

L2
in the interior region.
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Figure 4.8: In the top panel we show the stable (red) and unstable (blue) manifolds of an L2

Lyapunov orbit at C = 3.1, in the exterior region as well as four different homoclinic connections.
In the bottom panel we show the Poincaré map of the first crossing with the y = 0 plane of W u

L2

and W s
L2

in the exterior region.
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Chapter 5
Motion in the Earth-Moon CR3BP with

lunar gravitational field

We will now consider a model proposed by Russel & Lara in [45], to compute orbits in
an high degree and order lunar gravity model that is superimposed to the Earth-Moon
CR3BP in order to include also the third-body perturbation effects of the Earth. As in
the CR3BP assume that the Earth and Moon follow circular orbits around their common
center of mass, in reality the radius varies by ±5%. We also assume that the rotation of
the Moon is synchronous with its orbital period, so that the lunar body-fixed reference
frame coincides with the Moon centered frame, i.e., P2 = (0, 0, 0), in reality a ±8° libration
results from the Moon’s elliptic orbit and solar perturbations. Note that in this case we
place the Earth on the positive side of the x axis, i.e., P1 = (1, 0, 0), to be consistent with
the orientation of the lunar body-fixed frame in which the spherical harmonic coefficients
are given. Moreover the lunar equatorial plane is inclined by 5.2° with respect to its
orbital plane [42, 45].

The equations of motion of the CR3BP plus lunar gravitational field, in the Moon
centered rotating frame are given by:

ẍ� 2ẏ =
@U⇤

@x
, ÿ + 2ẋ =

@U⇤

@y
, z̈ =

@U⇤

@z
, (5.1)

where
U

⇤(r) =
(x� 1 + µ)2

2
+

y2

2
+

(1� µ)

rE
+

µ

r
+ V(r), (5.2)

rE =
p

(x� 1)2 + y2 + z2, r = rM =
p

x2 + y2 + z2, (5.3)
so that the potential U

⇤(r) is the sum of the effective potential of the CR3BP given
in the Moon centered frame, and the Earth on the right relative to the Moon, i.e.,
U(x � 1 + µ, y, z; 1 � µ), plus the lunar gravitational field perturbation term due to the
nonsphericity of the Moon V , expressed in the standard spherical harmonic expansion
[45], as explained in Section 5.1. As usual we can express the equations of motion as a
vector ODE as:

ẋ = g⇤(µ,x), g⇤(µ,x) =

✓
03⇥3 I3⇥3

03⇥3 2⌦

◆
x+

✓
03⇥1

U
⇤T
r

◆
. (5.4)

Notice that this system is again Hamiltonian, so that the same arguments of Section 2.3
hold. Hence there exists an integral of motion which we still call Jacobi constant and

94



Families of periodic orbits in the CRTBP Giulio Macrì - N. 2029061

denote it by C
⇤, defined as:

C
⇤(r, ṙ) = 2U⇤(r)� ṙ2. (5.5)

5.1 Spherical harmonic expansion of the gravitational
field

Consider a volume V in physical space and let ⇢(x, y, z) � 0 be the scalar function that
describes the spatial mass density within V bounded by the closed surface S = @V . Then,
indicating with

m(V ) =

Z

V

⇢ dV, (5.6)

the total mass enclosed by the surface S, the gravitational acceleration g due to m at
any point P of position external to the mass distribution is given by the vector field

g(r) = �G

Z

V

⇢(r0)(r � r0)

|r � r0|3
dV, (5.7)

where r � r0, represents the distance of P (x, y, z) from the volume element dV of V ,
located at r0.

We now prove a fundamental result known as Gauss’s theorem. This result allows
to express the flux of the gravitational acceleration field generated a massive body as a
function of its mass only. The proof follows the one presented in [7].

Theorem 10. Let F(S) be the flux of the vector field g through the surface S, this is
given by

F(S) =

Z

S

g(r) · n dS, (5.8)

where n denotes the outward normal unit vector to S at the surface element dS. Then
F(S) depends only on the total mass bounded by the enclosing surface S, in particular it
holds:

F(S) = �4⇡Gm. (5.9)

Proof. Substituting (5.7) into (5.8) we obtain:

F(S) = �G

Z

S

Z

V

⇢(r0)(r � r0)

|r � r0|3
dV

�
· n dS. (5.10)

We can now apply Fubini’s theorem to rewrite this as:

F(S) = �G

Z

V

Z

S

(r � r0)

|r � r0|3
· n dS

�
⇢(r0) dV. (5.11)

The term inside square brackets is just the integral of the solid angle ⌦ represents the
subtended at r0 by the surface element dS, of position r. It follows that as the surface
element varies over the entire surface, the integral will asume the value of entire solid
angle, hence we have Z

S

(r � r0)

|r � r0|3
· n dS =

Z

⌦

d⌦ = 4⇡. (5.12)

Finally from (5.6) it follows the thesis.
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Next we want tho show that the gravitational potential V⇤ exerted by a massive body
is an harmonic function in the space not occupied by it. In order to show this it suffices
to apply the divergence theorem in (5.8), this yields

Z

S

g(r) · n dS =

Z

V

r · g(r)dV, (5.13)

then from (5.9) and (5.6 we obtain)
Z

V

r · g(r)dV = �4⇡G

Z

V

⇢ dV. (5.14)

Since the volume V is arbitrary, this equation can be rewritten in differential form as

r · g = �4⇡G⇢. (5.15)

Now let V
⇤ be the gravitational potential associated to the mass distribution ⇢, so that

g = rV
⇤. Then at a point in space not occupied by the body, i.e., ⇢ = 0, the gravitational

potential satisfies the Laplace equation:

r ·rV
⇤ = �V

⇤ = 0, (5.16)

where �(·) denotes the Laplacian operator. A solution to the Laplace equation is called
a harmonic function. Moreover, a harmonic function that is homogeneous of degree
n, i.e., it satisfies Euler’s identity, is called a spherical harmonic. This special class of
functions has the additional property of forming an orthonormal basis. This will allow us
to represent the Moon’s gravitational potential as a series expansion in terms of spherical
harmonics.

For convenience we will now switch to a polar coordinate representation. Let us denote
� = (r,�,�), the spherical coordinates vector, where � and � represent the geocentric
latitude and longitude angle respectively, and they are related with the Cartesian position
vector r = (x, y, z) by

sin� = z/r, sin� = y/
p
x2 + y2, cos� = x/

p
x2 + y2. (5.17)

Note that in spherical coordinates the Laplace operator now has the expression:

�V =
1

r2
@

@r

✓
r2
@V

@r

◆
+

1

r2 cos�

@

@�

✓
cos�

@V

@�

◆
+

1

r2 cos2 �

@2
V

@�2
. (5.18)

Before proceeding, it is worth noting that for a body that is spherically symmetric, and
with homogeneous mass density ⇢, Newton’s Shell Theorem holds. Hence, in a reference
frame with origin coinciding with the center of mass of the body, and at radial distance
r greater than the body’s radius, the gravitational potential acts as if all of the mass
were concentrated at its center, i.e. the potential is simply µ/r. Now let Pn,m denote the
associated Legendre function of degree n, and order m, as defined in Section 5.1.1. Then,
the spherical harmonic expansion of the gravitational potential due only to the asphericity
of the Moon, i.e., V = V

⇤
� µ/r, can be written in terms of the Stokes coefficients Cn,m,

Sn,m of degree n and order m as in [50]:

V(�) =
µ

r

1X

n=2

nX

m=0

✓
RM

r

◆n �
Cn,m cosm�+ Sn,m sinm�

�
Pn,m(sin�). (5.19)
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Parameter Value
C̄2,0 �9.088083466222⇥ 10�5

C̄2,1 1.232336842695⇥ 10�10

S̄2,1 1.013126827836⇥ 10�9

C̄2,2 3.467379822995⇥ 10�5

S̄2,2 �2.489004351630⇥ 10�10

C̄3,0 �3.197467349260⇥ 10�6

C̄3,1 2.636804553722⇥ 10�5

S̄3,1 5.454519551956⇥ 10�6

C̄3,2 1.417152872119⇥ 10�5

S̄3,2 4.877963012362⇥ 10�6

C̄3,3 1.227495055506⇥ 10�5

S̄3,3 �1.774395591200⇥ 10�6

Table 5.1: Normalized gravity coefficients up to order n = 3, from the GRAIL Gravity Model
(GL0660B) [24].

where the term of degree n = 0, i.e., µ/r has been left out since it is already included
in (5.2). While the terms of order n = 1 are not included because the corresponding
coefficients C1,0, C1,1, S1,0, S1,1 are all equal to zero, since the coordinate system’s origin
is chosen to coincide with center of mass of the Moon [24, 11]. Often (5.19) is rewritten
introducing the notation Cn,0 = �Jn, and Pn,0 = Pn, i.e.,

V(�) = �
µ

r

1X

n=2

✓
RM

r

◆n

JnPn(sin�) (5.20)

+
µ

r

1X

n=2

nX

m=1

✓
RM

r

◆n �
Cn,m cosm�+ Sn,m sinm�

�
Pn,m(sin�).

The gravitational field coefficients Jn, Cn,m and Sn,m are usually referred with the follow-
ing special names:

• Jn = �Cn,0, are the zonal coefficients,

• Cn,m, Sn,m for n = m, are the sectorial coefficients,

• Cn,m, Sn,m for n 6= m, are the tesseral coefficients.

The Jn notation is the one used historically in satellite geodesy, while most modern
references often use exclusively the Cn,m, Sn,m nomenclature [11]. Notice that the gravi-
tational field coefficients must be used together with the specific gravitational parameter
µ and reference radius RM , for which the coefficients are calibrated, in order to obtain
the correct results [11]. In practice the expansion in spherical harmonics of the potential
given in (5.19), is truncated up to some maximum values for degree n and order m, and
we will refer to this truncation as the n⇥m gravitational field expansion.

The gradient of the potential can be computed as:

rU
⇤(x, y, z) = rU(x� 1 + µ, y, z; 1� µ) +rV(x, y, z), (5.21)
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where the components of rU are given in equations (2.41 � 2.43), while to obtain the
components of rV(r) = @V/@r, we first compute the gradient in spherical coordinates,
this is given by [41]:

rV(�) =
@V

@r
r̂ +

1

r

@V

@�
�̂+

1

r cos�

@V

@�
�̂, (5.22)

where r̂, �̂, �̂ are the spherical coordinates unit vectors. Notice the presence of the
longitudinal singularity at the poles, i.e., at � = ±⇡/2. This of course is only an artifact
due to the spherical coordinates representation, and can be addressed this as described
in [41]. Then, recalling that

@r�n

@r
= �

n

r2

✓
1

r

◆n�1

, (5.23)

we can compute the partial derivatives with respect to the spherical coordinates, i.e.,
@V/@�, that are given by [7, 41]:

@V

@r
= �

µ

r2

1X

n=2

nX

m=0

(n+ 1)

✓
RM

r

◆n �
Cn,m cosm�+ Sn,m sinm�

�
Pn,m(sin�), (5.24)

@V

@�
=

µ

r

1X

n=2

nX

m=0

✓
RM

r

◆n �
Cn,m cosm�+ Sn,m sinm�

� d

d�
Pn,m(sin�), (5.25)

@V

@�
=

µ

r

1X

n=2

nX

m=0

✓
RM

r

◆n

m
�
Sn,m cosm�� Cn,m sinm�

�
Pn,m(sin�). (5.26)

Finally we can transform the gradient back into into Cartesian coordinates as in [45],
using:

0

@
@V/@x
@V/@y
@V/@z

1

A =

0

@
cos� cos� � sin� cos� � sin�
cos� sin� � sin� sin� cos�

sin� cos� 0

1

A

0

@
@V/@r

(1/r)@V/@�
(1/(r cos�))@V/@�

1

A . (5.27)

It is worth noting that the following recurrence relation holds [45]:

sinm� = 2 cos� sin(m� 1)�� sin(m� 2)�, (5.28)
cosm� = 2 cos� cos(m� 1)�� cos(m� 2)�. (5.29)

which can be used together with (5.17) to compute the terms corresponding to m � 2
inside (5.19).

5.1.1 Legendre polynomials and associated Legendre functions
We denote the associated Legendre function of degree n, and order m, by Pn,m. The
associated Legendre functions of order zero, which we denote by Pn = Pn,0, are known as
the Legendre polynomials. The Legendre polynomials and associated Legendre functions,
are defined by the equations:

Pn(x) =
1

2nn!

dn

dxn
(x2

� 1)n, (5.30)

Pn,m(x) = (1� x2)m/2 dm

dxm
Pn(x). (5.31)
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n\m 0 1 2 3
0 1
1 x

p
1� x2

2 1
2(3x

2
� 1) 3x

p
1� x2 3(1� x2)

3 1
2(5x

3
� 3x) 3

2(5x
2
� 1)

p
1� x2 15x(1� x2) 15(1� x2)3/2

Table 5.2: Associated Legendre functions Pn,m(x) up to order n = 3.

The definition (5.30) is known as Rodrigues’ formula. One can easily see from these
definitions that, for m > n, Pn,m must be identically zero. Note that sometimes authors
use a different definition of Pn,m, which differs from (5.31) by a factor (�1)m, known as
Condon-Shortley phase.

For practical purposes the Legendre associated functions can be computed more con-
veniently by using the following recursion formulas:

Pm,m(sin�) = (2m� 1) cos�Pm�1,m�1(sin�), (5.32)

Pn,m(sin�) =
2n� 1

n�m
sin�Pn�1,m(sin�)�

n+m� 1

n�m
Pn�2,m(sin�), n 6= m. (5.33)

The explicit expressions of Pn,m of low degree and order given in Table 5.2 can be used
to start the recursion formulas. The recurrence relation (5.33) for m = 0, i.e., for the
Legendre polynomial Pn, is known as Bonnet’s recursion formula.

The first order derivative of the associated Legendre functions dPn,m/dx can be ob-
tained using the following recursion formula:

(1� x2)
d

dx
Pn,m(x) =

p

1� x2Pn,m+1(x)�mxPn,m(x). (5.34)

Then using the chain rule and (5.34), we can write:

d

d�
Pn,m(sin�) = Pn,m+1(sin�)�m tan�Pn,m(sin�), (5.35)

that is the expression needed to evaluate (5.25). The expression for the second order
derivative of the associated Legendre functions can be derived as in [41], and it is:

d2

d�2
Pn,m(sin�) = Pn,m+2(sin�)� (2m+ 1) tan�Pn,m+1(sin�) (5.36)

+m(m tan2 �� sec2 �)Pn,m(sin�). (5.37)

5.1.2 Normalization
The gravity coefficients become very small as the degree increases. For the most part
this is due to the fact that the associated Legendre functions Pn,m tend to large values
as the degree n increases. Then for numerical reasons it is good practice to normalize
both the Legendre functions and the gravity coefficients. The normalization is achieved
by multiplying the gravitational field coefficients by scale factor ↵n,m that depends on the
degree and order of the coefficients. The associated Legendre functions are normalized
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by the corresponding inverse factor 1/↵n,m. Then if we denote the normalized coefficients
by J̄n, C̄n,m, S̄n,m, we can write their relationship with the unnormalized ones as [23]:

✓
C̄n,m

S̄n,m

◆
=

s
(n+m)!

(2� �m,0)(2n+ 1)(n�m)!

✓
Cn,m

Sn,m

◆
= ↵n,m

✓
Cn,m

Sn,m

◆
, (5.38)

where �m,0 is the Kronecker delta, i.e., it is equal to unity if m = 0, and it is zero oth-
erwise. Recalling that Jn = �Cn,0 we can write also Jn = ↵n,0J̄n. The corresponding
associated Lagrange functions are normalized by the inverse factor, denoting the normal-
ized associated Lagrange functions by P̄n,m we have:

P̄n,m =
Pn,m

↵n,m
. (5.39)

We can now write the normalized version of (5.19), that is:

V(�) =
µ

r

1X

n=2

nX

m=0

✓
RM

r

◆n �
C̄n,m cosm�+ S̄n,m sinm�

�
P̄n,m(sin�). (5.40)

5.2 Differential corrections revisited
The differential correction techniques of Section 3.3 exploited the symmetries of the fam-
ilies of periodic orbits. The presence of the lunar gravitational field in the equations of
motion forces us to introduce new strategies to find periodic orbits in the nonsymmetric
case. We proceed as in [45], by using directly the Jacobi constant C⇤ as the continuation
parameter to generate the families of periodic orbits. Moreover, the technique presented
in [45], employs the singular value decomposition to tackle the issue of the degenerate
Jacobian associated to a periodic orbit, also in the specific case of a bifurcation orbit, in
which case the Jacobian contains an additional degenerate direction that leads to a new
periodic orbit [45]. To reduce the dimension of the problem we will always start from an
initial guess on the xy plane, therefore it is useful to introduce the reduced state vector
⇠ that is obtained removing the variable z, i.e.,

⇠ = (x, y, ẋ, ẏ, ż), (5.41)

and stopping the integration at the n-th crossing with the xy plane, the crossing time
tf is computed as we have already discussed in Section 3.1.1. In the following we will
use the notation ⇠(tf ) = ⇠f . Suppose now that we want to compute a periodic orbit at
a given value of the Jacobi constant C

⇤, and that the initial dynamical state of a near
periodic initial guess at time t0 is given by ⇠(t0) = ⇠0. We define the constraint vector:

K =

✓
⇠f � ⇠0
C
⇤
0 � C

⇤

◆

6⇥1

, (5.42)

where C
⇤(t0) ⌘ C

⇤
0 = C

⇤(tf ) ⌘ C
⇤
f , denotes the current value of the Jacobi constant of the

orbit. Our aim is to drive K to zero, in order to do so we need iteratively modify the
initial conditions, at each iteration the variation of the initial dynamical state is given by
�⇠0, that is the solution of the linear system:

dK

d⇠0
�⇠0 = �K. (5.43)
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Notice that (5.43) is an overconstrained linear system. It is possible to reformulate the
problem to have an equal number of constraints and unknowns, here instead we proceed
as in [45], where a least square method is proposed in order to enforce the constraint
on the solution regardless of the number of unknowns. The 6⇥ 5 Jacobian matrix of K
admits the following singular value decomposition (SVD):

@K

@⇠0
= UDV T , (5.44)

where U and V are square orthogonal matrices of dimensions 6 and 5, respectively, and
D is a 6⇥5 diagonal matrix. The diagonal elements of D are non negative and are called
the singular values of the Jacobian. [45]. Consider now the pseudoinverse of the Jacobian
matrix of K, i.e.,

✓
@K

@⇠0

◆+

= V SUT , Si,i =

(
1/Di,i, if " > 0,

0, if " < 0,
(5.45)

Furthermore when one or more the singular values are zero (or < "), the least squares
solution with the smallest magnitude is given by [27, 45]:

�⇠0 = �

✓
@K

@⇠0

◆+

K (5.46)

The Jacobian of K can be computed from:

@K

@⇠0
=

 
@⇠f
@⇠0

� I5⇥5
@C⇤

0
@⇠0

!

6⇥5

, (5.47)

where the derivative of the Jacobi constant with respect to ⇠0 is given by:

@C⇤
0

@⇠0
=

✓
2
@U⇤

@x
, 2

@U⇤

@y
,�2ẋ,�2ẏ,�2ż

◆ ����
x=x0

. (5.48)

Finally we need to address the computation of

@⇠f
@⇠0

= �⇤(tf , t0)i 6=3, j 6=3 �
1

żf
⇠̇f�

⇤(tf , t0)i=3, j 6=3, (5.49)

where the sate transition matrix �⇤(tf , t0)⇤, is defined analogously to what we have done
in (3.4), as:

�⇤(tf , t0) =
@'⇤(x0, tf )

@x0
=, (5.50)

The state transition matrix �(tf , t0)⇤ obeys the differential equation:

d�⇤(t, t0)

dt
= ⇤⇤(x)�(t, t0), �⇤(t0, t0) = I6⇥6, (5.51)

where ⇤⇤(x) is the 6⇥ 6 matrix defined as:

⇤⇤(x) =
@g⇤(µ,x)

@x
=

✓
03⇥3 I3⇥3

U
⇤
rr 2⌦

◆
, U

⇤
rr =

0

@
U

⇤
xx U

⇤
xy U

⇤
xz

U
⇤
xy U

⇤
yy U

⇤
yz

U
⇤
xz U

⇤
yz U

⇤
zz

1

A . (5.52)
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Notice that
U

⇤
rr(x, y, z) = Urr(x� 1 + µ, y, z; 1� µ) + Vrr(x, y, z), (5.53)

therefore we need to compute the second order partial derivatives of V . Consider first
the chain rule, which can be written as:

@(·)

@↵
=

@(·)

@r

@r

@↵
+

@(·)

@�

@�

@↵
+

@(·)

@�

@�

@↵
, ↵ = x, y, z. (5.54)

Then applying (5.54) to V twice, yields the general expression for the components of Vrr.
Let ↵, � = x, y, z, then we can write:

V↵� =
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V
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=

@2
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@r2
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+

@2
V

@r@�

@r

@↵

@�

@�
+

@2
V

@r@�

@r

@↵

@�

@�
(5.55)
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The explicit expressions of the six distinct partial derivatives with respect to the spherical
coordinates, that appear in (5.55), is the following [41]:
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r3
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nX

m=0

(n+ 1)(n+ 2)

✓
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(5.56)
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(5.57)
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The first order partial derivatives of the spherical coordinates with respect to the
Cartesian ones are given by [41]:
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=

x

r
,
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@y
=

y
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,
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, (5.62)
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While the second order partial derivatives are given by:
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=

y2 + z2

r3
,
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@y2
=
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,
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, (5.65)
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5.2.1 The osculating orbital elements
Recall that an unperturbed Keplerian orbit can be determined, although not always un-
ambiguously [7], by a set of six parameters that uniquely determine the orbit, which we re-
fer to as the orbital elements. Here we will use the set of orbital elements: (a, e, i,⌦,!,M0).
These are defined as follows.

• Semi-major axis, a: this element defines the size of the orbit. For an elliptical
orbit, it is the distance from the center of the ellipse to the furthest point on the
perimeter, i.e., either the apocenter or pericenter of the orbit.

• Eccentricity, e: this element defines the shape of the orbit. The value e = 0
corresponds to a circular orbit, values of the eccentricity in the range 0 < e < 1
correspond to increasingly elongated ellipses. Here we are interested only in the
elements of a closed orbit, however for the sake of completeness we must note that
the limiting case e = 1 corresponds to a parabola (if the angular momentum is
non-zero, otherwise it corresponds to radial motion), and for e > 1 the trajectory
is a hyperbola.

• Inclination, i: this is the tilt of the orbit, or the angle between the plane of the
orbit and the reference plane, which for our purposes is the Moon’s orbital plane,
i.e., the xy plane.

• Longitude of the ascending node, ⌦: this is the angle between a given reference
direction, e.g., the x axis, and the point where the orbit crosses the reference plane
from South to North, hence the name.

• Argument of pericenter, !: this is the angle between the ascending node and
the orbit’s point of closest approach to the central body, i.e. the pericenter of the
orbit.
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• Mean anomaly at epoch, M0: the mean anomaly M = n(t � ⌧), is the angle
swept by the radius vector of a fictitious body which orbits the ellipse at a constant
angular velocity equal to the mean motion n = 2⇡/T , since the passage from
pericenter ⌧ . Thus the mean anomaly at epoch can be written as

M0 = n(t0 � ⌧), (5.72)

where the epoch t0 is the reference time to which the orbital elements are referred.

Additionally we define the true anomaly f , as the angle between the periapsis of the
orbit and the radius vector of the orbiting body as it moves along its path. The elements
a, e, and M0 are known as the phoronomic elements, while i, ⌦, and ! are known as
the angular elements [7]. An orbiting object is considered to be in direct motion if its
inclination is i < 90°. Conversely, its motion is regarded as retrograde if 90° < i  180°.
A polar orbit describes the boundary case when i = 90°. In the special cases of i = 0°, 180°
the orbit is referred to as direct equatorial or retrograde equatorial, respectively [7]. The
uniqueness of the representation of the dynamical state through the Keplerian elements
does not hold when the orbit is circular, i.e., e = 0, and/or when i = 0. Indeed in the first
case the argument of pericenter ! loses its meaning and consequently also the instant of
passage through the pericenter, while in the second case the longitude of the ascending
node ⌦ loses its meaning [7]. Note that other parametrizations are often used, for instance
the argument of pericenter !, can be replaced by the longitude of the pericenter !̃ = !+⌦.
This is especially convenient when the inclination is close to zero, i.e., when the line of
nodes becomes nearly indeterminate [7]. Note also that for parabolic orbits, e = 1, the
elements a and e can be replaced by the focal distance q, thereby reducing the number
of orbital elements required to describe the orbit to five.

For a purely Keplerian elliptic orbit, the orbital elements are constants. This is a
consequence of the fact, that in the Two-Body Problem, the shape, size, and orientation
of the orbit remain unchanged with time. While this fails to be true when purturbative
terms are introduced, for a perturbed non Keplerian orbit we can still define its osculating
orbital elements, these are defined as the instantaneous orbital elements, that a Keplerian
orbit would have, if it had the same position and velocity of the perturbed orbit at some
specified point in time.

In order to compute the orbital elements, we first have to move to a quasi-inertial,
reference frame, i.e., a non rotating frame whose origin coincides with the central body
of interest, i.e., the Moon. Let x = (r,v) be the Cartesian state vector of a spacecraft
in the quasi-inertial reference frame, and relabel for the moment the usual state vector
in the synodic reference frame by xs = (rs,vs). In practice, x can be obtained using the
following transformations. First we need to perform a translation from the Moon-centered
synodic reference frame, in which the equation of motion (5.4) are given, to the center-of-
mass synodic reference frame, subsequently apply the transformation to obtain the state
vector in the inertial reference frame with origin in the center of mass, xi = (ri,vi) , i.e.,

ri = Rrs, vi = Rvs + Ṙrs, (5.73)

where R is the rotation matrix, about a vertical axis passing though the center of mass
of the Earth-Moon system, i.e., the z axis. This is given by

R(t) =

0

@
cos t � sin t 0
sin t cos t 0
0 0 1

1

A . (5.74)
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ê1

ê2
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Figure 5.1: Visualization of an elliptic orbit and its orbital elements.

Notice that in (5.74), we used the fact that the Earth-Moon system has unit angular
velocity in the normalized coordinates. The same transformation can be then applied
to obtain the state vector of the Moon in the inertial frame, which we denote by xM =
(rM ,vM). Lastly, the state vector of the spacecraft in the quasi-inertial frame is obtained
by taking the relative position and velocity with respect to the Moon in the inertial frame,
i.e.,

x = xi � xM . (5.75)

It’s worth noting that the same result could have been achieved without converting from
the Moon-centered synodic frame to the center-of-mass synodic frame, which would also
eliminate the need for the final conversion (5.75). At this point let us denote the specific
angular momentum vector by h = r⇥v, and its magnitude by h = khk, and let r = krk,
v = kvk. In the following we will denote the unit vectors of the quasi-inertial Cartesian
reference frame by:

ê1 = (1, 0, 0)T , ê2 = (0, 1, 0)T , ê3 = (0, 0, 1)T . (5.76)

This last definition shall not arise confusion with the eccentricity vector e. Finally we
are ready to state the transformation between Cartesian state vector in the quasi-inertial
frame and the osculating elements, i.e.,

e =
1

µ

⇣
v2 �

µ

r

⌘
r �

r · v

µ
v, e = kek, (5.77)

a = �
µ

2

✓
v2

2
�

µ

r

◆
, (5.78)

i = cos�1

✓
h · ê3

h

◆
. (5.79)
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Now let N = ê3 ⇥ h, be the vector defining the direction of the line of nodes. Then the
longitude of the ascending node and the argument of pericenter of the orbit are given by

⌦ =

(
cos�1(N ·ê1

kNk ), N · ê2 � 0,

2⇡ � cos�1(N ·ê1
kNk ), N · ê2 < 0,

(5.80)

! =

(
cos�1( N ·e

kNke), e · ê3 � 0,

2⇡ � cos�1( N ·e
kNke), e · ê3 < 0.

(5.81)

Moreover we can obtain the following expression for the true anomaly:

f =

(
cos�1(e·rr e ), r · v � 0,

2⇡ � cos�1(e·rr e ), r · v < 0.
(5.82)

This can be used to compute the eccentric anomaly E, trough the relationships

sinE =

p
1� e2 sin f

1 + e cos f
, cosE =

e+ cos f

1 + e cos f
. (5.83)

Finally the mean anomaly M can be computed from the well-known Kepler’s equation:

M = E � sinE. (5.84)

It is worth mentioning that while computing the mean anomaly given the eccentric
anomaly is straightforward, the Kepler equation is transcendental in the unknown E,
and lacks a closed-form solution. Then a solution for E can be expressed as a series
expansion or computed numerically using one of a wide range of available methods, a
Newton-Rhaphson’s method being the simplest approach.
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5.3 Repeating Ground Track orbits
Orbits that cover periodically the same ground track over the central body have appli-
cations in many different missions. This are usually known as Repeating Ground Track
(RGT) orbits. Since we assumed that the Moon’s rotational period is synchronously
locked with its orbital period, i.e., the rotation rate is equal to the orbital mean motion,
the periodic orbits in the present model are indeed RGT orbits [45]. As in the standard
CR3BP, these periodic orbits exists in families that are parametrized by the Jacobi con-
stant C

⇤. In the case of high-altitude nearly polar RGT, varying C
⇤ across a family of

orbits has the effect of varying the average inclination i of the orbit, which happens to
be very convenient, since i is a fundamental parameter in the process of mission design
[45]. In particular both the period T of the orbit and its average inclination i increase
monotonically in the same direction of the Jacobi constant C

⇤, as can be seen in the
bottom panel of Figure 5.3. Additionally the period of the repeating orbit is given by
T = 2⇡ +�⌦. With �⌦ being the total change in the longitude of the ascending node
during one period of the spacecraft orbit [45].

A natural way of classifying the families of RGT orbits is the number of revolutions
n that the massless body, i.e., a spacecraft, completes in a full repeat period. Accord-
ingly, the families will be referred as the n�cycle families of RGT orbits. Modifying the
parameter n allows to vary the altitude of the orbits in the n�cycle family in discrete
steps, with higher values corresponding to lower altitudes [45].

In order to compute families of RGT orbits in the C3BP with the addition of the
lunar gravitational field, the following algorithm can be employed [45]:

• Select the discrete number of cycles n of the RGT orbit family to be computed.

• Provide an initial guess x0 for a nearly polar. It will be enough to compute the
initial conditions for a polar orbit around the point-mass Moon in the Two-Body
Problem starting in the plane of the Moon’s equator, i.e., the xy plane, for a polar
orbit that completes n revolutions during one lunar revolution, i.e., in a time interval
of length T = 2⇡. The two-body orbit is usually a good approximation at nearly
polar inclination and will usually converge in the perturbed model [45].

• Use the initial guess x0 in conjunction with the differential correction scheme de-
scribed in Section 5.2 to converge on a periodic orbit of the n�cycle RGT family.
Since this is the first orbit of the family, we can simply remove the constraint
corresponding to the Jacobi constant in equations (5.42) and (5.47).

• Select a small step �C
⇤, and use the differential correction scheme to converge on

a new orbit of the RGT family imposing in (5.42) that the target Jacobi constant
C
⇤ equals the Jacobi constant of the last converged solution increased by �C

⇤.

In order to asses convergence we check the normalized miss distance defined as [45]:

d =
kr(t0)� r(tf )k

kr(t0)k
+

kṙ(t0)� ṙ(tf )k

kṙ(t0)k
+

����
C
⇤
0 � C

⇤

C⇤

���� . (5.85)

The value of " in (5.45) affects the convergence of the differential correction scheme. If
" is too large, the algorithm will overconstrain the search space and d will stabilize at
a larger value. On the other hand, if " is too small, the algorithm will underconstrain
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the search space causing d to oscillate indefinitely [45]. Here we use values in the range
" 2 [10�6, 10�4] as suggested in [45]. The integration of the equations of motion (5.4), is
performed using a Runge-Kutta 9(8) integrator and the relative and absolute tolerances
are chosen so that the Jacobi constant C

⇤ is conserved to at least 12 digits over the
course of a full orbital period, i.e., about 27.3 days, even with the inclusion of the lunar
gravitational field truncated to degree and order 8⇥ 8.

When only the third-body perturbations are included, i.e., n = m = 0, we are able to
generate families of n�cycle RGT orbits, using values up n = 330, corresponding to an
altitude of just 112 km over lunar surface. The orbits in this families vary in inclination
and starting from a polar initial guess we are able to continue the families up to very
low inclinations. For instance we generated orbits of the 100�cycle RGT family, with
inclinations as low as 1° and as high as 175° (see Figure 5.3). When only third body
perturbations are considered, convergence is achieved with normalized miss distance on
the order d ⇡ 10�11, which corresponds to just a few millimeters in position, or lower.
We must note however that when a realistic Moon’s gravitational field is included, the
convergence precision decreases substantially for orbits with higher or lower than polar
inclination. For n = 100, at the polar inclination, we are able to achieve convergence on
the order d ⇡ 10�11 with a lunar gravitational field truncated at degree and order 8⇥ 8
(see Figure 5.4). To achieve this level of precision, the Two-Body polar initial guess, needs
to be first corrected into a polar RGT orbit in the CR3BP, then an increasingly extended
gravitational field is used to reach convergence to a new RGT orbit that will serve as the
initial guess for the successive step, up to the desired values of degree and order of the
gravitational field. An alternative method would be that of using a continuation process
in the gravitational field parameters Cn,m and Sn,m.

In Figures 5.4 � 5.8 we show the plots of the orbits and orbital elements of selected
from the 100, 200 and 300�cycle RGT orbit families, at different inclinations. Lastly, in
Figures 5.9� 5.13 we show the evolution of the eccentricity vector over one period of the
same selected orbits.

5.3.1 Polar initial guess
Here we show how the initial conditions of the initial guess for a polar orbit in the Two-
Body Problem can be derived. Since we are interested in the n�cycle RGT family, the
polar orbit needs to complete n revolutions per synodic period. Thus, in normalized
units, the period of one single revolution must be T = 2⇡/n. The semi-major axis can
then be determined using Kepler’s third law, and it is

a3

T 2
=

µ

4⇡2
. (5.86)

Solving for a, and substituting the expression for a single revolution period, we find an
expression for the semi-major axis as a function of the number of revolutions n:

a =

✓
T 2

· µ

4⇡2

◆1/3

=
⇣ µ

n2

⌘1/3
. (5.87)

Then we can compute the velocity v of the body using the vis-viva equation,

v2 = µ

✓
2

r
�

1

a

◆
. (5.88)
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For a circular orbit, the distance from the focus to the body, i.e., the radial distance r,
is equal to the semi-major axis a at all times, thus for a circular orbit, we can impose
r = a, and equation (5.88), reduces to

v =

r
µ

a
, (5.89)

More in general, for an eccentric orbit, i.e. e 6= 0, the radial distance depends on the
true anomaly f . In particular it is

r =
a(1� e2)

1 + e cos f
. (5.90)

Finally, assuming the initial conditions are taken on the xy plane, the initial velocity
must be oriented in the z direction for the orbit to be polar, i.e., i = 90°. Then we can
set the initial conditions for a polar orbit with longitude of the ascending node ⌦, as

x0 = (r0, ṙ0), r0 = (r cos⌦, r sin⌦, 0) , ṙ0 = (0, 0, v). (5.91)

Figure 5.2: Semi-major axis of the n�cycle RGT polar orbits as a function of the number of
revolutions n per synodic period, computed from equation (5.87).
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Figure 5.3: Plots showing the stability indices (top), and period (bottom) of the 100�cycle RGT
family as a function of the inclination. Recall that the period is given by T = 2⇡ +�⌦.
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Figure 5.4: Example of an orbit of the 100�cycle RGT family, with initial inclination i0 = 90°,
computed in the CR3BP with an 8 ⇥ 8 lunar gravitational field expansion. Convergence is
achieved with normalized miss distance d ⇡ 10�11.
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Figure 5.5: Example of an orbit of the 300�cycle RGT family, with initial inclination i0 = 91°,
computed in the CR3BP with an 8⇥ 0 lunar gravitational field expansion.
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Figure 5.6: Example of an orbit of the 100�cycle RGT family, with initial inclination i0 = 60°,
computed in the CR3BP.
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Figure 5.7: Example of an orbit of the 200�cycle RGT family, with initial inclination i0 = 40°,
computed in the CR3BP.
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Figure 5.8: Example of an orbit of the 300�cycle RGT family, with initial inclination i0 = 70°,
computed in the CR3BP.
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Figure 5.9: Eccentricity vector of the 100�cycle RGT family, with initial inclination i0 = 90°,
computed in the CR3BP with an 8⇥ 8 lunar gravitational field expansion, shown in Figure 5.4.

Figure 5.10: Eccentricity vector of the 300�cycle RGT family, with initial inclination i0 = 91°,
computed in the CR3BP with an 8⇥ 0 lunar gravitational field expansion, shown in Figure 5.5.
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Figure 5.11: Eccentricity vector of the 100�cycle RGT family, with initial inclination i0 = 60°,
shown in Figure 5.6.

Figure 5.12: Eccentricity vector of the 200�cycle RGT family, with initial inclination i0 = 40°,
shown in Figure 5.7.
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Figure 5.13: Eccentricity vector of the 300�cycle RGT family, with initial inclination i0 = 70°,
shown in Figure 5.8.

5.4 Transfers from an NRHO to a Lunar RGT Orbit
We are interested in computing impulsive transfers from a Near Rectilinear Halo Orbit
(NRHO) to a Repeat Ground Track (RGT) orbit around the Moon. In particular we
will focus on RGT orbits with nearly polar inclinations, since these are the ones of most
practical interest because of their global coverage properties. The transfer will be com-
puted assuming a 2-impulse maneuver. We proceed as in Section 4.0.1, by computing
the unstable eigenvectors of the selected NRHO. It is worth noting that for the NRHOs
the unstable eigenvectors are close to unity. In practice, this translates to trajectories
that require a considerable amount of time to leave the orbit, especially for low values
of the parameter " in (3.27). In order to reduce the time of transfer we have to choose
relatively large values of ". However, bear in mind that when working with relatively
large values of ", a significant displacement in position also occurs when approximating
the unstable manifold. As a workaround, we modify (3.27) to give the perturbation not
in the direction of the full unstable eigenvector vu, but rather in its velocity space com-
ponents only. The projection is obtained by simple scalar multiplication with the vector
w = (0, 0, 0, 1, 1, 1)T , i.e.,

xu = x+ "vu ·w. (5.92)

At this point the main goal remains that of minimizing the energy cost of the transfer,
which we measure in terms of the total required �V . The minimum �V transfer is
sought using a grid search algorithm. The procedure is outlined as follows:

• Select an NRHO, for example, the 4 : 1 or the 9 : 2 resonant L2 Southern NRHO.
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• Select a value for n and one target orbit from the n�cycle RGT family, for instance,
based on the target inclination.

• Select a number k of points, equispaced in time, from the selected NRHO and
integrate the trajectories departing from the NRHO in the unstable direction for
a range of j equispaced values of " in a given range, e.g., " 2 (10�2, 10�1), and
compute the cost of the first maneuver as:

�VA = k"vu ·wk. (5.93)

• Find the trajectories that approach the target RGT orbit in physical space within
a certain threshold, for instance d = 1 km, and save the time spent on the transfer
trajectory �t from the �VA maneuver up to closest approach. In this phase it may
be necessary to exclude those trajectories that impact the Moon prior to closest
approach.

• Compute the second �VB for the orbits of the preceding step as:

�VB = k (xu(�t)� xRGT(�t)) ·wk, (5.94)

where xRGT(�t) denotes the dynamical state of the RGT orbit corresponding to
the closest approach with the transfer trajectory.

• Choose the trajectories that satisfy the requirements relative to the total time of
transfer and select the one that minimizes the total �V = �VA +�VB.

Recall that the periodic orbits obtained in Chapter 2 were computed in the center-
of-mass synodic reference frame, with the Earth being placed on the negative side of the
x axis, to the left of the Moon. That convention differs from the one that we use to
compute the families of RGT orbits. In fact, to accommodate for the inclusion of the
spherical harmonic expansion of the lunar gravitational field, the new reference frame is
the Moon-centered synodic frame, and this time the Earth is located to the right of the
Moon along the x axis. However in order to obtain the initial conditions of any periodic
orbits with the present convention it will be enough to apply the transformation (2.56)
to account for the fact that the Earth is now on the right side of the x axis with respect
to the Moon, i.e., at P1 = (1, 0, 0), followed by a translation to account for the shift in
the origin of the reference frame that is now the center of the Moon, i.e., P2 = (0, 0, 0).
Moreover recall that the initial conditions of a Northern Halo orbit can be mapped into
those of the Southern Halo family with the same Jacobi constant by using the symmetry
transformation (2.54).

5.4.1 Lower bound for the transfer cost
The velocity impulse at the second injection point, i.e., �VB, is considerably larger than
the first impulse along the unstable manifold. This is a simple consequence of the presence
of the factor " in (5.92). Here we are interested in making an estimate of the lower bound
for �VB. This can be computed by considering the difference in the Jacobi constant of the
transfer trajectory, C⇤

u = C(xu), and the that of the target RGT orbit, which we denote
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by C
⇤
RGT = C(xRGT). Introducing the notation, xu = (ru, ẋu), and xRGT = (rRGT, ṙRGT),

we can write

�C
⇤
B ⌘ C

⇤
RGT � C

⇤
u =

⇥
2U⇤(rRGT)� ṙ2

RGT

⇤
�
⇥
2U⇤(ru)� ṙ2

u

⇤
. (5.95)

Since at injection point the orbits intersect in physical space, in particular it must be
U

⇤(ru) = U
⇤(rRGT). Then (5.95) can be rewritten as

ṙ2
RGT � ṙ2

u = �C
⇤
B. (5.96)

Note that the l.h.s. of (5.96) can be decomposed as

ṙ2
RGT � ṙ2

u = (ṙRGT � ṙu) · (ṙRGT + ṙu) (5.97)

The norm of the sum of the velocities in the r.h.s. of (5.97) can be rewritten as

kṙRGT + ṙuk =
q
ṙ2
RGT + ṙ2

u + 2kṙRGTkkṙuk cos �B. (5.98)

Moreover, since it is �VB = kṙRGT� ṙuk, taking the norm of the r.h.s. of equation (5.96),
applying the Cauchy-Schwartz inequality and then rearranging, we obtain

�VB �
|�C

⇤
B|p

ṙ2
RGT + ṙ2

u + 2kṙRGTkkṙuk cos �B
(5.99)

Then a lower bound for �VB can be determined by minimizing the r.h.s. of (5.99), or
equivalently by maximizing the term at the denominator. Inspecting the quantities in
the denominator of (5.99), we find that this is maximized for cos �B = 1, i.e., �B = 0°.
As we might have expected, this happens when the velocity vectors, ṙu and ṙRGT, are
aligned and point in the same direction. Finally we can express the lower bound as

�VB � min
�B

�VB =
|�C

⇤
B|p

ṙ2
RGT + ṙ2

u + 2kṙRGTkkṙuk.
(5.100)

5.4.2 Outcomes
In Table 5.3 we show the costs in terms of �V relative to the 2-impulse transfers departing
from 9 : 2 and 4 : 1 Southern NRHOs towards orbits that belongs to the 100, 200 and
300�cycle RGT families at different inclinations. As already mentioned, we are mainly
interested in RGT orbits at nearly polar inclinations because of their global coverage
properties, thus only inclinations as low as i = 70° are considered.

It appears evident that a relationship is present between the inclination, i, and the
total change in velocity, �V , required for the transfer. However this should not be a
surprise, and a very rough explanation is given by the fact that the NRHOs — object
of this study — are nearly polar, so that the higher amount of �V , required to transfer
towards an RGT with relatively low inclination, must account for the change in inclination
as well. More specifically, this can be understood in terms of equation (5.99), where the
relationship between the cost of �VB and the angle between the velocity along the transfer
trajectory and that of the RGT orbit at the second injection point, appears.

The RGT families are associated with significantly higher values of the Jacobi constant
(see Tables A.16 � A.18), when compared with those of the NRHOs (see Table A.8).
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Moreover the Jacobi constant of the 4 : 1 NRHO is slightly higher that of the 9 : 2
NRHO, hence closer to that of a RGT orbit. Consequently, (5.99) suggests that the
required �V should be lower for a transfer departing from the 4 : 1 NRHO with respect
to that of the 9 : 2 NRHO, towards the same target RGT orbit. However such a difference
in Table 5.3, appears evident only in the transfers towards the higher altitude, 100�cycle
RGT orbits.

The cost of the second transfer, �VB, is found to be around 10% to 20% higher than
the lower bound of equation (5.100), for small values of �B corresponding to near polar
inclinations, e.g., i0 > 85°. However, the lower bound is surpassed by up to 40%, at the
lower than polar inclinations, as correspondingly we find an increase in the �B angle.

In our numerical experiments we find significant variations in the total time of transfer
�t for the selected trajectories, which appear to be uncorrelated to both inclination and
altitude. However this is a consequence of the fact that for this investigation we have
chosen the total �V cost as the sole optimization parameter. Indeed we find that optimal
transfer corresponding for different choices of the initial NRHO and the target RGT orbit,
lead to transfer trajectories that vary in geometry as they depart on different points along
the NRHO, as indicated by the parameter ⌧ . This parameter is defined as ⌧ = t/T , where
T is the period of the corresponding NRHO, and t is the time needed to reach the insertion
point corresponding to �VA, starting from the initial state x0, i.e., the apolune of the
NRHO.

We should note that the outcomes of this study may exhibit slight variations de-
pending on the dimension of the parameter space being utilized. In other words, slight
improvements could be found if we considered a greater number of test trajectories along
the unstable manifold. The number of the test trajectories is essentially the product of
the number of points that discretize the selected NRHO, in this case, k = 102, and the
number j, of equally spaced values for " 2 (10�2, 10�1). For this study we used j = 10.
Therefore the number of test trajectories for each NRHO and RGT orbit transfer pair is
j ⇥ k = 103.

In Figures 5.14 � 5.19 we show the trajectories of sample transfers selected from
Table 5.3. We observe that the geometry of the transfer trajectory can significantly vary
depending on the characteristics of the target RGT orbit, i.e., inclination and number of
revolutions, as well as the chosen initial NRHO.
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p : q n ⌧ i0 [deg] �t [days] �V [m/s] �VA [m/s] �VB [m/s] �A [deg] �B [deg]

4 : 1

100

0.5001 90.0000 7.1531 546.3307 61.3146 485.0161 2.2834 10.5134
0.6901 85.0435 25.1229 494.4779 17.3146 477.1633 3.1050 10.1198
0.3201 80.0377 19.5498 603.3343 30.5479 572.7864 1.9764 17.6198
0.2400 75.0468 21.8260 891.9938 5.4155 886.5783 0.9151 35.3598
0.3401 70.0332 19.4721 849.1826 24.5647 824.6179 1.2455 32.1728

200

0.4001 90.0000 19.8364 591.7332 9.5217 582.2115 0.3873 7.4464
0.8902 84.9058 4.5768 758.9467 59.1323 699.8144 23.9902 15.5061
0.5901 80.0233 24.5987 757.2337 19.6741 737.5596 1.9443 17.7144
0.9902 75.0606 9.8481 1067.0184 26.4347 1040.5838 10.0035 31.6840
0.0500 69.9742 9.3647 1180.6326 25.8234 1154.8093 8.4286 36.5424

300

0.0700 90.0000 2.8259 835.7723 24.7618 811.0105 8.9789 15.7855
0.2901 85.0432 13.4892 907.7479 54.2404 853.5075 5.8088 17.9842
0.3301 80.0468 13.3724 819.2955 31.6652 787.6302 1.8215 14.7446
0.9202 74.9683 10.5249 1328.9162 49.0835 1279.8328 22.2848 34.8190
0.6601 70.0723 24.3058 1298.8591 27.3236 1271.5356 4.1389 34.5378

9 : 2

100

0.5901 90.0000 6.9988 539.6553 48.5815 491.0738 3.7153 10.7826
0.7902 85.0435 3.9024 763.1652 47.7217 715.4435 14.4961 26.3058
0.0600 80.0377 2.7538 807.5109 19.4438 788.0672 7.8200 30.1883
0.1400 75.0468 2.4038 985.5890 38.7126 946.8764 16.4561 38.7152
0.6101 70.0332 6.6745 979.2114 47.1918 932.0195 4.0416 37.5313

200

0.6101 90.0000 6.3662 593.8873 37.7535 556.1339 3.2896 3.4706
0.3301 84.9058 0.9410 794.7517 62.5758 732.1759 4.2916 17.0458
0.1300 80.0233 27.0043 818.4677 22.5188 795.9490 9.9474 20.7064
0.7201 75.0606 13.0934 1070.4049 73.0802 997.3246 10.4672 29.6635
0.1000 69.9742 26.8678 1191.6394 6.9254 1184.7140 3.3717 37.8862

300

0.6901 90.0000 5.6407 686.6940 39.6214 647.0726 5.1973 4.4433
0.7401 85.0432 5.3654 908.8207 48.3521 860.4686 8.3339 18.0759
0.1800 80.0468 26.0470 934.9298 39.9717 894.9581 13.6716 19.8014
0.8602 74.9683 3.9668 1255.6864 14.4203 1241.2661 5.9370 33.4428
0.2000 70.0723 19.6953 1367.4012 14.3466 1353.0546 3.8720 37.5878

Table 5.3: Parameters of different 2-impulse transfers from a p : q resonant NRHO to a lunar
n-cycle RGT orbit. The table specifies the initial inclination i0 of the RGT orbit, the total time
of transfer, �t, the magnitude of the total �V required for the transfer, the magnitudes of �VA

and �VB, as well as the angles, �A and �B, that are between the velocity vectors before and
after each the impulsive maneuvers at the injection points A and B respectively. The maximum
�t is constrained to one synodic period T ⇡ 27.3 days.
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Figure 5.14: Sample of a 2-impulse minimum �V transfer from the 4 : 1 Southern NRHO to a
100�cycle RGT with initial inclination i0 = 90°.

Figure 5.15: Sample of a 2-impulse minimum �V transfer from the 9 : 2 Southern NRHO to a
100�cycle RGT with initial inclination i0 = 90°.
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Figure 5.16: Sample of a 2-impulse minimum �V transfer from the 4 : 1 Southern NRHO to a
200�cycle RGT with initial inclination i0 = 90°.

Figure 5.17: Sample of a 2-impulse minumum �V trasnfer from the 9 : 2 Southern NRHO to a
200�cycle RGT with initial inclination i0 = 75°.
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Figure 5.18: Sample of a 2-impulse minimum �V transfer from the 4 : 1 Southern NRHO to a
300�cycle RGT with initial inclination i0 = 85°.

Figure 5.19: Sample of a 2-impulse minumum �V trasnfer from the 9 : 2 Southern NRHO to a
300�cycle RGT with initial inclination i0 = 80°.

125



Chapter 6
Conclusions and Future Prospects

This thesis set out on an explorative journey into the Circular Restricted Three-Body
Problem (CR3BP), and how its understanding can facilitate the design of efficient space-
craft trajectories, particularly in the context of lunar missions. Through various sections,
we delved into the fundamentals of the CR3BP, studied periodic orbits, explored differ-
ential corrections, investigated invariant manifolds, and examined potential applications
in lunar mission planning. In the initial sections, we laid the foundation by discussing
core concepts such as the Jacobi constant, zero-velocity surfaces, and the five Lagrangian
equilibrium points. These concepts are critical to understanding the behavior of bodies
under the gravitational influence of two primary bodies. Subsequently, we delved into
the fascinating realm of periodic orbits. Through differential correction techniques that
exploit different symmetries, we managed to compute and characterize families of peri-
odic orbits like the Lyapunov, Halo, Axial, Vertical, Distant Prograde Orbits, Distant
Retrograde Orbits, and Low Prograde Orbits. We introduced methods that can be used
to examine the stability of these orbits and the detect different types of bifurcations us-
ing Broucke diagrams. However, the differential techniques we presented are limited by
their very nature, and can be used only for obtaining periodic orbits that posses some
kind of symmetry, e.g., with respect to the xz plane or the x axis (see Section 3.3). In
order to compute non-symmetric periodic orbits, such as the L4 and L5 Planar families
of orbits, we need to resort to a different approach. One alternative, although not the
only one, is that of using a correction scheme based on the singular value decomposition
of the Jacobian, like the one that we later used for generating the Repeating Ground
Track (RGT) orbit families (see Section 5.2). Another option for computing branches
of periodic orbit families is the use of pseudo-arclength continuation methods, such as
the one implemented in the software AUTO [10]. These methods can be more robust
for cases where the solution curve exhibits bifurcations, and also to avoid issues related
to the geometry of the family of periodic orbits in consideration, such as those that we
encountered with the Halo orbit families. In that case, for instance, as the family of peri-
odic orbits grows out-of-plane direction, we are required to manually change the mapping
technique to address the specific geometric constraints.

A pivotal concept in our study was that of invariant stable and unstable manifolds.
Through these manifolds, we identified paths for spacecraft where energy requirements
for orbital maneuvers are minimized. We demonstrated that by using Poincaré maps and
sections, homoclinic and heteroclinic transfers between L1 and L2 Lyapunov orbits can
be engineered with minimal thrust, which has significant implications for the efficiency
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of spacecraft trajectories, especially in the Earth-Moon system. In this investigation
we limited our attention to planar transfers. In a future research phase a natural goal
would be to expand the methods presented here to three-dimensional orbits. This will
come with additional complications, indeed a direct extension of the techniques that we
presented in this thesis to compute different types of planar heteroclinic and homoclinic
transfers (see Sections 4.0.1 and 4.0.2), would lead us to look for intersections between
the stable and unstable manifolds not in a two dimensional section in phase space, but
on a four-dimensional surface, with the two additional dimensions corresponding to the
degrees of freedom associated with out of plane motion. Some research in this direction
has been carried out, for instance, in [52].

To incorporate higher fidelity modeling of lunar gravity, we introduced a CR3BP
model enhanced with the spherical harmonic expansion of the lunar full-potential using
the GRAIL Gravity Model (GL0660B). This high-fidelity model enabled us to compute
families of lunar Repeat Ground Track (RGT) orbits, which are particularly relevant for
missions requiring persistent monitoring of the lunar surface. Indeed RGT orbits, espe-
cially those with nearly polar inclinations, could be instrumental in missions that require
comprehensive lunar surface coverage. For instance a Synthetic Aperture Radar (SAR)
on an RGT orbit can enable high-resolution radar imaging, offering detailed insights into
the lunar surface, including topography, mineralogy, and ice-water distribution. A high-
light of this study was examining the prospects of utilizing Near Rectilinear Halo Orbits
(NRHOs) as conduits for spacecraft transfers to RGT orbits, exploiting once again the
presence of unstable manifolds for constructing efficient transfer trajectories. In particu-
lar we focused on the 4 : 1 and 9 : 2 resonant NRHOs. The latter constitutes the reference
trajectory for the NASA Gateway, a fundamental component of the ongoing Artemis pro-
gram, whose aim is that of establishing a permanent base on the Moon, with the ultimate
goal of facilitating the feasibility of human missions to Mars.

It is crucial to recognize that the transfer trajectories that we constructed within this
investigation should be treated as initial guesses, serving as starting points for further
optimization in higher-fidelity, ephemeris models (see e.g., [37]). These models would
necessitate the specification of the mission’s intended launch date and include, alongside
an high-degree and -order expansion of the lunar gravitational field, the accurate position
of the Earth, the Sun, and the gravitational influence of other planets in the solar system,
along with the solar radiation pressure perturbations. Furthermore, the study of effective
orbit maintenance strategies would be indispensable to secure the long-term success of
the mission.
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Appendix A
Tables of initial conditions

The following appendices provide a collection of tables that outline the initial conditions
for selected orbits that belongs to the Lyapunov, Halo, Axial and Vertical families, as
well as the DRO, DPO and LPO families, that were computed in Section 3. For each of
the selected orbit we show the relevant initial conditions, i.e., the nonzero phase space
coordinates in initial dynamical state x0, given in the synodic frame with origin in the
center of mass of the system. We include also the period T , in normalized units, and the
Jacobi constant C. Additionally, the nontrivial stability indices ⌫i, i = 1, 2 of the selected
orbits are included as well, and the presence of the most relevant bifurcations have been
highlighted. Finally we show the initial conditions, starting on the xy plane in the Moon
centered synodic frame, of selected orbits belonging to the 100, 200 and 300�cycle RGT
families computed only with third body perturbations, i.e., in the CR3BP. Along the
Jacobi constant, period in normalized units and the stability indices we provide also the
initial inclination i0 of the orbit.
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Family x0 ẏ0 T C |⌫1| |⌫2|

L1 Lyapunov

0.8327 0.0366 2.6956 3.1872 0.9857 1324.3917
0.8235 0.1253 2.7422 3.1746 0.9997 1182.9324
0.8234 0.1263 2.7430 3.1548 1.0000 1183.2789 L1 Halo
0.8225 0.1358 2.7516 3.1721 1.0025 1156.8706
0.8021 0.3428 3.2491 3.0831 1.1066 456.7727
0.7919 0.4026 3.6091 3.0462 1.0982 285.5306
0.7817 0.4428 3.9465 3.0216 1.0015 201.0126
0.7816 0.4432 3.9500 3.0216 1.0000 200.2815 L1 Axial
0.7793 0.4507 4.0218 3.0170 0.9666 187.4602
0.6977 0.6435 5.8763 2.9398 1.5075 60.3354
0.6569 0.7359 6.4245 2.9164 2.7228 53.8590
0.5753 0.9401 7.0627 2.8694 4.7833 61.0470
0.4937 1.1769 7.3471 2.8136 7.3117 81.5920

Table A.1: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Lyapunov orbits.

Family x0 ẏ0 T C |⌫1| |⌫2|

L2 Lyapunov

1.1618 -0.0341 3.3750 3.1713 0.9683 721.0569
1.1784 -0.1382 3.4054 3.1566 0.9924 631.5058
1.1808 -0.1553 3.4152 3.1523 1.0000 606.9093 L2 Halo
1.1950 -0.2740 3.5549 3.1069 1.0817 387.6062
1.2192 -0.4250 4.2871 3.0153 1.0146 130.5768
1.2200 -0.4277 4.2871 3.0153 1.0000 127.7214 L2 Axial
1.2768 -0.5410 5.7582 2.9544 1.0880 58.7355
1.3432 -0.6394 6.9339 2.9215 3.1540 49.7617
1.4760 -0.8306 8.3306 2.8661 2.5756 78.1626
1.5424 -1.0198 6.0671 2.6538 0.1153 0.9906
1.6088 -1.1312 6.1553 2.5666 0.2181 0.9971
1.7416 -1.3619 6.2490 2.3373 0.3715 1.0001
1.8080 -1.4832 6.2737 2.1842 0.4370 1.0002

Table A.2: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Lyapunov orbits.

Family x0 ẏ0 T C |⌫1| |⌫2|

L3 Lyapunov

-1.0176 0.0254 6.2184 3.0120 0.9995 1.6766
-1.0836 0.1560 6.2186 3.0056 0.9995 1.6733
-1.1166 0.2199 6.2189 2.9989 0.9995 1.6699
-1.1496 0.2831 6.2192 2.9898 0.9995 1.6653
-1.1826 0.3456 6.2196 2.9783 0.9995 1.6595
-1.3422 0.6403 6.2227 2.8875 0.9996 1.6138
-1.4742 0.8780 6.2271 2.7636 0.9998 1.5523
-1.6062 1.1149 6.2333 2.5858 0.9999 1.4644
-1.6966 1.2794 6.2391 2.4237 1.0000 1.3830 L3 Halo
-1.7382 1.3566 6.2424 2.3348 1.0000 1.3368
-1.8702 1.6156 6.2572 1.9596 1.0001 1.1189
-1.8966 1.6723 6.2617 1.8575 1.0000 1.0487 L3 Axial
-1.9118 1.7064 6.2647 1.7918 0.9998 0.9999

Table A.3: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Lyapunov orbits.
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Family x0 ẏ0 T C |⌫1| |⌫2|

DRO

0.9798 1.2340 0.0412 4.4343 0.9991 0.9992
0.9014 0.4780 1.2504 3.0277 0.3205 0.5221
0.8230 0.5006 2.8583 2.9398 0.0826 0.6467
0.7446 0.6097 4.2791 2.8934 0.4021 0.7293
0.6662 0.7652 5.1888 2.8465 0.4849 0.7669
0.5878 0.9543 5.6850 2.7888 0.2074 0.9243
0.5094 1.1756 5.9516 2.7167 0.0029 0.9768
0.4310 1.4356 6.1002 2.6272 0.1515 0.9934
0.3526 1.7501 6.1867 2.5168 0.2613 0.9985
0.2742 2.1517 6.2388 2.3799 0.3497 1.0000
0.1958 2.7138 6.2709 2.2069 0.4282 1.0002
0.1174 3.6494 6.2909 1.9780 0.5062 1.0002
0.0390 6.0375 6.3031 2.2289 0.6277 0.9996

Table A.4: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected DRO orbits.

Family x0 ẏ0 T C |⌫1| |⌫2|

Western LPO

0.9800 -1.2363 0.0399 4.5191 0.9992 0.9992
0.9524 -0.5518 0.4064 3.3365 0.9114 0.9309
0.9248 -0.3821 1.0479 3.2033 0.4114 0.8602
0.8972 -0.2341 1.2707 3.1909 0.0548 0.9081
0.8696 -0.1263 1.6525 3.1864 0.4290 0.7283
0.8578 -0.0952 2.0782 3.1846 0.7437 0.9771
0.8543 -0.0951 2.4226 3.1830 0.5260 7.3773

Eastern LPO

0.9305 -0.4507 1.3433 3.1827 0.0791 1.0007
0.9394 -0.5287 1.4145 3.1808 0.0407 0.8377
0.9482 -0.6268 1.5830 3.1771 0.3190 0.5691
0.9571 -0.7560 1.8950 3.1731 0.1087 0.7643
0.9659 -0.9447 2.4263 3.1703 0.7593 0.9713
0.9748 -1.2833 3.0644 3.1674 0.1624 8.5695
0.9818 -1.9459 3.4424 3.1614 0.5043 34.5451

Table A.5: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Western LPO.

Family x0 ẏ0 T C |⌫1| |⌫2|

DPO

1.0635 0.3787 2.1648 3.1456 0.7345 9.3820
1.0485 0.5171 3.3433 3.0954 0.9382 163.5741
1.0335 0.6551 4.1374 3.0607 0.4627 456.5749
1.0185 0.8497 5.1642 3.0252 1.0852 901.1284
1.0145 0.9216 5.5252 3.0153 1.9453 1042.4225
1.0127 0.9606 5.7156 3.0105 2.4637 1111.6428
1.0108 1.0038 5.9216 3.0055 3.0679 1182.1496
1.0089 1.0520 6.1453 3.0005 3.7653 1253.6836
1.0070 1.1066 6.3892 2.9953 4.5576 1326.0971
1.0052 1.1692 6.6565 2.9900 5.4347 1399.5564
1.0033 1.2422 6.9506 2.9845 6.3660 1474.9350
1.0014 1.3292 7.2753 2.9787 7.2868 1554.5161
0.9995 1.4355 7.6350 2.9726 8.0830 1643.5066

Table A.6: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected DPO orbits.
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Family x0 z0 ẏ0 T C |⌫1| |⌫2|

Northern L1 Halo

0.8234 0.0000 0.1263 2.7430 3.1548 1.0000 1182.9324 L1 Lyapunov
0.8235 0.0350 0.1444 2.7510 3.1641 0.9675 987.5838
0.8249 0.0700 0.1823 2.7705 3.1363 0.7793 588.6324
0.8287 0.1050 0.2206 2.7870 3.0971 0.2448 255.7307
0.8496 0.1750 0.2631 2.5606 3.0084 0.8663 11.6417
0.8844 0.1949 0.2157 2.0756 2.9992 0.6227 1.2448
0.9194 0.2122 0.1375 1.8075 3.0032 1.0794 2.4515
0.9334 0.2472 0.0905 1.9227 2.9806 1.3619 2.8702
0.9308 0.2822 0.0819 2.1057 2.9514 1.1881 1.9208
0.9292 0.2912 0.0817 2.1453 2.9436 0.6525 1.0000 L1 Axials
0.9233 0.3172 0.0838 2.2688 2.9207 2.9102 2.9102
0.9129 0.3522 0.0908 2.4057 2.8886 6.3163 6.3163
0.9003 0.3872 0.1010 2.5191 2.8548 10.5010 10.5010

Table A.7: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Northern Halo orbits.

Family x0 z0 ẏ0 T C |⌫1| |⌫2|

Northern L2 Halo

1.1808 0.0000 0.1553 3.4152 3.1523 1.0000 606.9093 L2 Lyapunov
1.1803 0.0240 0.1591 3.4108 3.1496 0.9908 580.2584
1.1785 0.0480 0.1679 3.3965 3.1423 0.9570 509.2933
1.1696 0.0960 0.1935 3.3350 3.1151 0.7324 300.4808
1.1618 0.1200 0.2063 3.2820 3.0964 0.4749 198.5540
1.1513 0.1440 0.2172 3.2038 3.0751 0.0715 114.8364
1.1368 0.1680 0.2244 3.0782 3.0517 0.4798 53.9435
1.1151 0.1908 0.2234 2.8382 3.0276 0.9744 16.1721
1.1091 0.1948 0.2210 2.7605 3.0232 1.0000 11.1979 Dragonfly
1.0911 0.2014 -0.2088 2.5056 3.0159 0.8199 2.8524
1.0431 0.1936 -0.1448 1.7952 3.0293 0.3908 1.6888
1.0191 0.1800 -0.0968 1.4727 3.0495 0.7109 1.2391
1.0118 0.1739 -0.0799 1.3743 3.0316 0.4414 1.0000 Butterfly

Southern L2 Halo 1.0265 0.1850 -0.1129 1.5708 3.0422 0.6337 1.4400 4 : 1
1.0134 0.1754 -0.0837 1.3963 3.0560 0.7576 1.0559 9 : 2

Table A.8: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Northern Halo orbits.

Family x0 z0 ẏ0 T C |⌫1| |⌫2|

Northern L3 Halo

-1.6966 0.0000 1.2794 6.2391 2.4237 1.0000 1.3830 L3 Lyapunov
-1.6882 0.1920 1.2730 6.2390 2.4096 1.0000 1.3796
-1.6623 0.3840 1.2531 6.2386 2.3680 0.9999 1.3697
-1.6184 0.5760 1.2196 6.2378 2.2987 0.9999 1.3536
-1.5553 0.7680 1.1715 6.2366 2.2020 0.9997 1.3314
-1.4713 0.9600 1.1076 6.2347 2.0783 0.9995 1.3039
-1.3631 1.1520 1.0257 6.2318 1.9280 0.9992 1.2720
-1.2252 1.3440 0.9219 6.2271 1.7520 0.9987 1.2370
-1.0484 1.5348 0.7891 6.2192 1.5529 0.9979 1.2003
-0.8564 1.6913 0.6448 6.2068 1.3725 0.9965 1.1671
-0.6644 1.8059 0.4999 6.1877 1.2304 0.9944 1.1350
-0.4724 1.8837 0.3541 6.1543 1.1268 0.9898 1.0983
-0.2804 1.9225 0.2083 6.0779 1.0636 0.9759 1.3080

Table A.9: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Northern Halo orbits.
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Family x0 ẏ0 ż0 T C |⌫1| |⌫2|

L1 Axial

0.7816 0.4432 0.0000 3.9500 3.0216 1.0000 201.0126 L1 Lyapunov
0.7820 0.4415 0.0370 3.9511 3.0211 1.0040 200.8604
0.7833 0.4364 0.0740 3.9543 3.0202 1.0155 202.3969
0.7855 0.4277 0.1110 3.9597 3.0187 1.0328 204.9465
0.7886 0.4153 0.1480 3.9673 3.0167 1.0532 208.4898
0.7928 0.3990 0.1850 3.9769 3.0141 1.0731 212.9936
0.7980 0.3783 0.2220 3.9885 3.0111 1.0886 218.4022
0.8044 0.3527 0.2590 4.0018 3.0076 1.0957 224.6193
0.8121 0.3214 0.2960 4.0166 3.0038 1.0912 231.4764
0.8214 0.2830 0.3330 4.0320 3.0000 1.0740 238.6745
0.8325 0.2354 0.3700 4.0470 2.9962 1.0463 245.6801
0.8459 0.1745 0.4070 4.0594 2.9932 1.0161 251.5234
0.8623 0.0917 0.4430 4.0652 2.9918 1.0000 254.2394 L1 Vertical

Table A.10: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected L1 Axial orbits.

Family x0 ẏ0 ż0 T C |⌫1| |⌫2|

L2 Axial

1.2200 -0.4277 0.0000 4.2871 3.0153 1.0000 127.7223 L2 Lyapunov
1.2192 -0.4250 0.0000 4.2871 3.0153 1.0146 130.5768
1.2191 -0.4261 0.0360 4.3119 3.0131 1.0132 128.5384
1.2121 -0.4147 0.1080 4.3233 3.0077 1.0998 133.4866
1.2061 -0.4046 0.1440 4.3328 3.0033 1.1511 137.4383
1.1984 -0.3914 0.1800 4.3446 2.9980 1.1900 142.0502
1.1892 -0.3750 0.2160 4.3581 2.9922 1.2059 147.0358
1.1787 -0.3550 0.2520 4.3725 2.9862 1.1945 152.0896
1.1544 -0.3033 0.3240 4.4004 2.9752 1.1086 161.1361
1.1411 -0.2706 0.3600 4.4115 2.9710 1.0570 164.5121
1.1274 -0.2322 0.3960 4.4190 2.9682 1.0172 166.7602
1.1134 -0.1865 0.4320 4.4221 2.9671 1.0002 167.6629
1.1123 -0.1823 0.4350 4.4222 2.9671 1.0000 167.6713 L2 Vertical

Table A.11: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected L2 Axial orbits.

Family x0 ẏ0 ż0 T C |⌫1| |⌫2|

L3 Axial

-1.8966 1.6723 0.0000 6.2617 1.8575 1.0000 1.0487 L3 Lyapunov
-1.8924 1.6744 0.0720 6.2617 1.8315 1.0000 1.0567
-1.8803 1.6831 0.1440 6.2619 1.7479 1.0002 1.0758
-1.8578 1.6965 0.2160 6.2623 1.6054 1.0003 1.1034
-1.8208 1.7123 0.2880 6.2629 1.4013 1.0004 1.1325
-1.7629 1.7253 0.3600 6.2637 1.1386 1.0005 1.1541
-1.6774 1.7272 0.4320 6.2645 0.8393 1.0006 1.1606
-1.5649 1.7100 0.5040 6.2653 0.5526 1.0005 1.1527
-1.4386 1.6749 0.5760 6.2659 0.3274 1.0004 1.1390
-1.3140 1.6303 0.6480 6.2663 0.1770 1.0002 1.1272
-1.2000 1.5834 0.7200 6.2665 0.0887 1.0001 1.1195
-1.0988 1.5379 0.7920 6.2666 0.0447 1.0000 1.1155
-1.0010 1.4903 0.8720 6.2666 0.0307 1.0000 1.1142 L3 Vertical

Table A.12: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected L3 Axial orbits.
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Family x0 ẏ0 ż0 T C |⌫1| |⌫2|

L1 Vertical

0.8379 0.0017 0.0763 2.7896 3.1825 0.9772 1599.4160
0.8623 0.0917 0.4430 4.0652 2.9918 1.0000 254.2394 L1 Axial
0.8653 0.0989 0.5420 5.0251 2.8951 2.4009 169.5561
0.8744 -0.0298 0.7310 5.8518 2.6720 6.1431 189.2101
0.8957 -0.5156 1.0436 6.2114 1.8872 8.8669 164.5771
0.9007 -0.7046 1.0932 6.2420 1.5632 8.9253 141.3930
0.9050 -0.8936 1.1111 6.2607 1.2333 8.7748 117.2399
0.9085 -1.0826 1.0984 6.2730 0.8992 8.4419 93.3395
0.9116 -1.2716 1.0536 6.2817 0.5617 7.9089 70.4504
0.9144 -1.4606 0.9719 6.2881 0.2216 7.1198 49.1705
0.9169 -1.6496 0.8424 6.2930 -0.1208 5.9624 30.0823
0.9192 -1.8386 0.6363 6.2968 -0.4651 4.2059 13.8757
0.9213 -2.0276 0.1740 6.2998 -0.8110 1.2107 1.6710

Table A.13: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Vertical orbits.

Family x0 ẏ0 ż0 T C |⌫1| |⌫2|

L2 Vertical

1.1551 -0.0013 0.0475 3.5209 3.1699 0.9606 973.5467
1.1124 -0.1763 0.4320 4.3839 2.9717 0.9664 171.2133
1.1119 -0.1813 0.4360 4.4236 2.9669 1.0000 167.5494 L2 Axial
1.0973 -0.3513 0.6414 5.8165 2.6721 6.1075 221.0354
1.0849 -0.5263 0.8296 6.1197 2.2631 9.0291 237.8383
1.0780 -0.7013 0.9379 6.2008 1.8724 9.6352 207.8020
1.0734 -0.8763 0.9990 6.2373 1.4904 9.5202 169.9207
1.0701 -1.0513 1.0238 6.2578 1.1128 9.0613 132.7773
1.0676 -1.2263 1.0162 6.2707 0.7378 8.3798 99.0989
1.0656 -1.4013 0.9763 6.2796 0.3644 7.5114 69.8735
1.0640 -1.5763 0.9001 6.2860 -0.0078 6.4470 45.4274
1.0627 -1.7513 0.7774 6.2908 -0.3794 5.1336 25.8093
1.0616 -1.9263 0.5796 6.2945 -0.7504 3.4394 10.9857
1.0608 -2.1013 0.0737 6.2975 -1.1210 0.9643 1.1060

Table A.14: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Vertical orbits.

Family x0 ẏ0 ż0 T C |⌫1| |⌫2|

L3 Vertical

-1.0050 0.0063 0.1128 6.2499 2.9994 0.9995 1.6816
-1.0041 0.1813 0.5767 6.2504 2.6467 0.9995 1.6097
-1.0032 0.3563 0.7684 6.2510 2.2948 0.9995 1.5391
-1.0024 0.5313 0.8867 6.2518 1.9436 0.9995 1.4698
-1.0016 0.7063 0.9593 6.2528 1.5931 0.9995 1.4018
-1.0009 0.8813 0.9961 6.2542 1.2432 0.9995 1.3352
-1.0003 1.0563 1.0012 6.2561 0.8940 0.9996 1.2699
-1.0000 1.2313 0.9750 6.2589 0.5454 0.9997 1.2060
-1.0000 1.4063 0.9151 6.2633 0.1971 0.9999 1.1435
-1.0010 1.4903 0.8720 6.2666 0.0307 1.0000 1.1142 L3 Axial
-1.0045 1.7563 0.6548 6.2920 -0.5013 1.0011 1.0236
-1.0255 1.9313 0.3888 6.3920 -0.8678 0.9569 1.0059
-1.1707 2.1063 0.0000 7.0168 -1.3495 0.5352 0.9602

Table A.15: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected Vertical orbits.
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Family x0 y0 ẋ0 ẏ0 ż0 i0 [deg] T C |⌫1| |⌫2|

100�cycle RGT

0.0106 -0.0003 0.0315 1.0581 0.0342 1.8500 6.2375 4.1185 0.9954 1.0000
0.0106 -0.0001 0.0084 0.8801 0.5918 33.9159 6.2449 4.1138 0.9988 1.0000
0.0106 -0.0001 0.0045 0.7019 0.7969 48.6249 6.2524 4.1091 1.0000 1.0016
0.0106 -0.0000 0.0023 0.5241 0.9252 60.4712 6.2599 4.1044 1.0000 1.0037
0.0107 -0.0000 0.0010 0.3465 1.0067 71.0052 6.2675 4.0997 1.0000 1.0053
0.0107 -0.0000 0.0002 0.1693 1.0524 80.8600 6.2751 4.0950 1.0000 1.0062
0.0107 -0.0002 -0.0002 -0.0075 1.0672 90.4034 6.2828 4.0903 1.0000 1.0065
0.0106 -0.0008 -0.0138 -0.1834 1.0526 99.9129 6.2905 4.0856 1.0000 1.0062
0.0107 -0.0008 -0.0277 -0.3590 1.0074 109.6675 6.2983 4.0809 1.0000 1.0054
0.0107 -0.0008 -0.0409 -0.5343 0.9275 120.0156 6.3061 4.0762 1.0000 1.0039
0.0107 -0.0008 -0.0532 -0.7093 0.8027 131.5425 6.3140 4.0715 1.0000 1.0019
0.0107 -0.0008 -0.0638 -0.8840 0.6063 145.6270 6.3220 4.0668 0.9993 1.0000
0.0107 -0.0007 -0.0645 -1.0592 0.1738 170.6979 6.3300 4.0621 0.9962 1.0000

Table A.16: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected 100�cycle RGT.

Family x0 y0 ẋ0 ẏ0 ż0 i0 [deg] T C |⌫1| |⌫2|

300�cycle RGT

0.0067 -0.0004 0.0799 1.3318 0.1183 5.0684 6.2602 4.7815 0.9989 1.0000
0.0067 -0.0002 0.0263 1.1120 0.7478 33.9113 6.2640 4.7778 0.9997 1.0000
0.0067 -0.0001 0.0140 0.8905 1.0027 48.3883 6.2677 4.7741 1.0000 1.0004
0.0067 -0.0001 0.0070 0.6691 1.1633 60.0912 6.2715 4.7704 1.0000 1.0009
0.0067 -0.0000 0.0029 0.4479 1.2659 70.5170 6.2753 4.7667 1.0000 1.0013
0.0067 -0.0000 0.0007 0.2268 1.3244 80.2819 6.2791 4.7630 1.0000 1.0015
0.0067 -0.0000 0.0000 0.0060 1.3444 89.7458 6.2829 4.7593 1.0000 1.0016
0.0067 -0.0000 -0.0009 -0.2087 1.3290 98.9245 6.2866 4.7557 1.0001 1.0016
0.0067 -0.0001 -0.0034 -0.4291 1.2758 108.5889 6.2905 4.7520 1.0001 1.0014
0.0067 -0.0001 -0.0079 -0.6492 1.1801 118.8195 6.2943 4.7483 1.0003 1.0010
0.0067 -0.0001 -0.0150 -0.8691 1.0299 130.1630 6.2982 4.7446 1.0005 1.0008
0.0067 -0.0002 -0.0269 -1.0887 0.7955 143.8536 6.3021 4.7409 0.9999 1.0000
0.0067 -0.0003 -0.0581 -1.3072 0.3297 165.8586 6.3059 4.7372 0.9991 1.0000

Table A.17: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected 200�cycle RGT.

Family x0 y0 ẋ0 ẏ0 ż0 i0 [deg] T C |⌫1| |⌫2|

300�cycle RGT

0.0051 -0.0003 0.1010 1.5239 0.1561 5.8346 6.2678 5.3397 0.9995 1.0000
0.0051 -0.0005 0.1150 1.2907 0.8243 32.4608 6.2701 5.3367 0.9999 1.0000
0.0051 -0.0005 0.0994 1.0599 1.1078 46.1398 6.2724 5.3338 1.0000 1.0001
0.0051 -0.0005 0.0804 0.8295 1.2914 57.1635 6.2747 5.3308 1.0000 1.0004
0.0051 -0.0005 0.0597 0.5994 1.4146 66.9341 6.2771 5.3279 1.0000 1.0005
0.0051 -0.0005 0.0379 0.3696 1.4926 76.0227 6.2794 5.3249 1.0000 1.0006
0.0051 -0.0005 0.0151 0.1400 1.5322 84.7508 6.2817 5.3220 1.0000 1.0007
0.0051 -0.0000 -0.0000 -0.0899 1.5366 93.3475 6.2840 5.3190 1.0000 1.0007
0.0051 -0.0000 -0.0001 -0.3203 1.5061 102.0076 6.2863 5.3161 1.0000 1.0007
0.0051 -0.0000 -0.0002 -0.5507 1.4386 110.9459 6.2887 5.3131 1.0000 1.0006
0.0051 -0.0000 -0.0002 -0.7809 1.3285 120.4462 6.2910 5.3102 1.0000 1.0004
0.0051 -0.0000 -0.0003 -1.0109 1.1638 130.9780 6.2934 5.3072 1.0000 1.0002

Table A.18: Initial conditions, period T , Jacobi constant C, and modulus of the stability indices
⌫i, i = 1, 2 of selected 300�cycle RGT.
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