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Abstract

In thiswork,wepropose a non-conventional framework based onmachine learn-
ing (ML) able to provide equalization capabilities in a communication channel
with impairments. Traditional Pulse Shaper/Matched Filter blocks will be re-
placed by trainable FIRs aimed at the optimization of the pulse shaping in order
to compensate for channel impairments in absence of a traditional equalization
block. The speci昀椀c application case that motivated this work is the short-reach
optical link; on this scenario we will base the literature review and the prob-
lem statement. Then, in the simulations, the impaired channel we tested is a
band-limited AWGN channel whose perfect knowledge allowed us to provide
a benchmark for the obtained results, achieving the goal of validating the pro-
posed ML-based method. In the view of a more widespread adoption of ML in
communications, this work can be considered as a methodological evaluation
of a non-conventional ML-based equalization method, aimed at exploring the
opportunities that ML can enable on the Pulse Shaper/Matched Filter blocks
and, in principle, can be extended to more complex channels where the optimal
solutions have not been found yet - like the optical channel - providing e昀昀ective
improvements in terms of performance and complexity.
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1
Introduction

1.1 CONTEXT AND MOTIVATION

Due to the physical nature of the transmission media and to non-ideal hard-
ware devices in communication systems, the propagation along the communi-
cation channel causes the distortion of the transmitted signal with severe per-
formance penalties at the receiver.
In the last decades, communication engineers have developed various methods
to perform the equalization of channels, achieving low error probability, high
spectral e昀케ciency and low latency in various use cases. The most common
equalization techniques include digital pre-distortion and post-compensation
and rely on a formal de昀椀nition of the channel model and on robust algorithms
that allow to compensate - or at least to mitigate - for the channel impairments.
Currently, these methods are well-established and achieve remarkable results
or, in some cases, even approach the optimal solution de昀椀ned by the physical
limits of the considered channel [32].
However, despite the vast expert knowledge in this 昀椀eld, there are still scenar-
ios in which the current state-of-art does not provide an optimal compensation.
There are several reasons that may obstacle the achievement of the optimal per-
formance. For instance, in some scenarios, the problem of interest does not have
an analytical solution and, thus, it is not possible to adopt traditional techniques
that rely on the inversion of the channel model. Or, in other cases, the algorithm
to 昀椀nd the solution for the problem of interest is too much complex to be imple-
mented for the target scenario, especially for real-time implementations [4].
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1.1. CONTEXT AND MOTIVATION

Since the traditional methods are not applicable in the aforementioned cases, to
address the dramatic increase of the demand for high data rates, the research
昀椀eld is seeking novel non-conventional solutions to improve the performances
of communication systems.
One promising direction can be the adoption of machine learning (Machine
Learning (ML)) [56].
Exploiting the large amount of data produced by network elements, ML would
enable the development of automatable software and in principle could achieve
better performances than classic algorithms [7].
As a result, even in absence of an analytical solution for a problemof interest, ML
would be able to provide an approximated solution and, in addiction, it would
allow the development of novel algorithms with a lower level of complexity,
going beyond the current state-of-art, providing improvements in terms of per-
formance and complexity.
However, di昀昀erently from other 昀椀elds like computer vision or natural language
processing [16] where the role of machine learning is well-established, ML in
communications is still at its infancy and, to enable its widespread adoption, a
novel infrastructure must be developed before network data can be e昀昀ectively
consumed by ML applications [7] .

On this path, in this work, we investigated a speci昀椀c scenario that is a昀昀ected
by impairments where the use of ML can enable a performance improvement:
the short-reach optical link. First, we analyzed the sources of impairment that
a昀昀ect the short-reach optical link causing linear and non linear distortions, in
order to understand why ML can provide a performance enhancement. Then,
after a literature review inwhichwe analyzed themostwidely used equalization
methods in this speci昀椀c scenario, we focused on the recent research direction
that proposes ML-based solutions to perform the equalization of the received
signal.
Among them, solutions based on the optimization of the Pulse Shaping block
caught our attention and, since there was a low number of studies on this spe-
ci昀椀c task, we decided to further investigate on it.
More speci昀椀cally, in this work, we developed aML-based framework with train-
able FIR 昀椀lters that we placed instead of conventional Pulse Shaper (PS) and/or
the Matched Filter (MF) blocks resulting into three di昀昀erent scenarios. In the
昀椀rst, the trainable Finite Impulse Response (FIR) 昀椀lter is placed at the transmit-
ter and is paired with a Square Root-Raised Cosine (RRC) at the receiver, that is

2



CHAPTER 1. INTRODUCTION

one of themost widely used pulse shape; in the second, we had a FIR 昀椀lter at the
receiver and a RRC at the transmitter; 昀椀nally, in the third, both the PS and MF
are trainable and we decided to optimize them jointly, adopting the so-called
end-to-end learning that is a novel technique we found in recent literature [32].
The objective is to train the FIRs 昀椀lters in order to learn the proper pulse shapes
to provide equalization functionalities in a channel with impairments. In other
words, we want to learn the FIR taps able to compensate for the distortion in-
duced by the channel without implementing a traditional equalizer.
Because of the inexperience, in this work, we didn’t have time to test the short-
reach optical link that we had investigated in the literature and that gave rise
to this speci昀椀c ML-based implementation. The impaired channel that we actu-
ally implemented in this work was the band-limited Additive White Gaussian
Noise (AWGN) channel. Even though the channel in question does not belong
to the use cases that motivate the use of ML, this work can be considered as a
preliminary study to investigate the opportunity enabled by a non-conventional
ML-based equalization method in a channel with impairments. In this case, the
source of impairment will be the limited bandwidth that introduces intersym-
bol interference for which an equalizer is usually needed.
Therefore in this work, we will train our FIRs in the three scenarios we men-
tioned in order to compensate for the penalties of the band-limitedAWGN chan-
nel.
To validate our results, given that the band-limited AWGN channel allows us to
easily develop conventional equalization methods, we implemented traditional
post-equalizers at sample-level and also at symbol-level. As a result, we ob-
tained a benchmark for the outcomes of the proposed ML-based framework.
To sum up, this work consists in a methodological evaluation of a non conven-
tional ML-based equalization method that we tested and validated on the band-
limited AWGN channel.
In future works, the proposed framework can be extended to more complex
channel scenarios in order to exploit the potential that ML can enable in prin-
ciple and that we can not appreciate in the considered case where the optimal
solution can be achieved with traditional equalization methods.
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1.2. ORGANIZATION OF THE THESIS

1.2 ORGANIZATION OF THE THESIS

The work will be organized as follows.
In Chapter 2, we described a speci昀椀c application case in which ML can provide
an improvement in terms of performances that is the short-reach optical link
that motivated this work.
In Chapter 3, we presented both traditional and novel ML-based equalization
methods for the short-reach optical link. In addiction, we summarized recent
ML-based solutions for the optimization of the PS and MF blocks, extending
our view to optical communications in general because of the limited amount of
works that deal with this speci昀椀c topic.
In Chapter 4, we discussed more in details the opportunity to apply ML to com-
munication networks, understanding how it is di昀昀erent to traditional methods
and how it can provide signi昀椀cant improvements.
In Chapter 5, we presented the problem that we analyzed in this work from a
general point of view.
In Chapter 6, after a brief introduction about ML, we presented the ML tools
that we used in this work.
In Chapter 7, we presented the setup of the band-limited AWGN channel we
analyzed, proposing conventional equalization techniques as a benchmark.
In Chapter 8, we described the non-conventional ML-based framework we im-
plemented to perform the equalization of channel impairments and we com-
pared them with the developed conventional post-equalizers solutions.
In Chapter 9, we summarized this work and underlined the novelties of our con-
tribution. Proposals for future works conclude the thesis.
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2
Application: the short-reach optical

link

In the last decades, in the context of optical communications, short-reach op-
tical links systems have received the attention from both industry and academia.
The term short-reach is used to refer to communication systems and networks
with a transmission distance shorter than 100 km [62]. Use cases include intra-
datacenter and inter-datacenter networks, optical access networks, indoor opti-
cal wireless communications, etc. [62]. The demand for high data rates in these
applications is increasing and there are several performance limiting factors that
need to be addressed. These optical connections have indeed stringent require-
ments in terms of complexity, cost, power consumption [62]. In addiction, the
optical 昀椀ber properties interact with hardware limitations, causing performance
degradation.
To address these issues, ML has started to be involved in the equalization pro-
cess, providing e昀昀ective solutions to mitigate the impairments that a昀昀ect the
short-reach optical channel.
In this work, our problem statement and scenario were inspired on the problem
arisen by this speci昀椀c scenario. In the next Section, we will describe the channel
model and then the transceiver model, introducing non-idealities that we have
to consider when we deal with a short-reach optical communication system.
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2.1. SHORT-REACH OPTICAL CHANNEL MODEL

2.1 SHORT-REACH OPTICAL CHANNEL MODEL

The propagation of the light in optical 昀椀ber is governed by the Nonlinear
Schrödinger equation (NLSE) [1] that describes physical phenomenons thatmay
a昀昀ect the 昀椀ber, i.e. attenuation and Chromatic Dispersion (CD), both linear ef-
fects, the nonlinear Kerr-e昀昀ect, etc. It can be expressed as follows:

%�

%I
= −




2
� Linear Attenuation

− 9
�2

2

%2�

%C2
Second Order Dispersion

+
�3

6

%3�

%C3
Third Order Dispersion

− 9� |�|2� Kerr E昀昀ect

(2.1)

In short-reach links, with the proper assumptions, it is possible to neglect sev-
eral impairments like nonlinearities and Third-Order Dispersion.
In addiction, in this analysis, we decided to focus our attention and to consider
only the Second Order Dispersion, i.e. the CD, similarly as we found in [33].
As a result, we assume to model the optical 昀椀ber with the following partial dif-
ferential equation:

%�

%I
= −9

�2

2

%2�

%C2
(2.2)

where � is the complex amplitude of the optical 昀椀eld envelope, C is the time, I
represents the position along the 昀椀ber and �2 is the dispersion coe昀케cient.
It is possible to solve equation 2.2 analytically in the frequency domain. Thus, we
take the Fourier transform and we get the dispersion frequency domain transfer
function:

�(I, $) = exp

(

9
�2

2
$2I

)

(2.3)

where $ is the angular frequency.
Because of CD, di昀昀erent spectral components of the transmitted signal prop-
agate at di昀昀erent speeds in the optical channel. As a result, each transmitted
pulse broadens and interferes with the adjacent pulses. The velocity at which
the envelope of the transmitted pulse propagates is called the group velocity
that experiences the so-called Group velocity Dispersion (GVD).
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CHAPTER 2. APPLICATION: THE SHORT-REACH OPTICAL LINK

Figure 2.1: Short reach link and possible sources of impairments.

2.2 LIMITATIONS IN SHORT-REACH OPTICAL LINKS

Apart from CD - that is a source of impairment that is intrinsic to the optical
昀椀ber - there are other e昀昀ects that degrade a signal that propagates through short-
reach optical links. They are caused by both optical and electronic devices. In
this section, we will brie昀氀y present them.
In short optical links, there are strict constraints in terms of cost. As a result,
the devices that are employed in the communication links have various non-
idealities that degrade the quality of the received signal. In Figure 2.1, we can
see a block diagrams of short-reach optical links in which we represent linear
and nonlinear e昀昀ects that occur along the propagation of a transmitted signal.
The two e昀昀ects that we will consider in this analysis are:

• the linear bandwidth limitations due to the low-cost hardware devices at
the receiver;

• the nonlinear interaction between Chromatic Dispersion and the Direct
Detection performed by the Photodetector.

In the next sections we will explain more in details such impairments.

2.2.1 BANDWIDTH LIMITATIONS

The low-cost implementation in short-reach optical links results into the em-
ployment of devices with several non-idealities. In this section, we focus on the
bandwidth limitation, that is the channel impairment that we have analyzed in
this work.
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2.2. LIMITATIONS IN SHORT-REACH OPTICAL LINKS

Given G: the transmitted signal and H: the received signal - processed by a band-
limited device - we can express the relationship between them with the follow-
ing formula:

H: = �: +

∞
∑

==0, =≠:
�=G:−= + E: (2.4)

where : is the instant at which the signal is sampled.
{�=}=∈Z is the sequence of transmitted symbols and �: represents the desired
information symbol at the :-th sampling instant.
The second term in the equation represents the Intersymbol Intereference (ISI)
that consists in an amplitude and phase distortion of the transmitted signal that
will cause a performance degradation at the receiver.
Finally, E: is the sampled version of the additive white Gaussian noise.

2.2.2 NONLINEAR INTERACTION BETWEEN CD AND DD AT THE RE-
CEIVER

Aswe discussed, because of CD, every portion of the transmitted pulse spec-
trum experiences a di昀昀erent delay and, thus, the signal broadens causing inter-
symbol interference.
In addiction, short-reach optical links are commonly implemented with the Di-
rect Detection (DD) method that performs the detection relying on the signal
amplitude, loosing the phase information at the receiver. It is a technologi-
cally simple and cost-e昀昀ective approach that is widely used for instance in intra-
datacenter communication with a coverage up to tens of kilometers [57].
The combination of CD - that causes ISI - with direct detection - that does not
provide any knowledge about the signal phase - produces a power-fading e昀昀ect
[63] that makes the overall channel throughwhich the signal propagates nonlin-
ear. For this reason, the compensation of CD is a signi昀椀cant challenge that has
to be carefully considered in the design of short-reach optical links.
The power-fading e昀昀ect causes notches, i.e. spectral zeros in the spectrum of

the signal. In Figure 2.2, we can see the magnitude response of a 28 Gbaud sys-
tem with di昀昀erent 昀椀ber lengths (15 km, 50 km and 100 km respectively) [37]. As
the 昀椀ber length increases, there will be more and more spectral zeros, from hav-
ing none to one and then to three. Observing the Figure, we can notice that in
the high frequency the probability of frequency notches is greater. This means
that at high-speed transmission the power-fading e昀昀ect is stronger and, thus, it
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Therefore, the received signal is .(C):

.(C) = .′(C) ∗ 6AG(C). (2.8)

that will be sampled at a rate 1

)′
B
(the oversampling factor is B?B = )B

)′
B
samples per

symbol).
To sumup, the overall channel is a昀昀ected by linear impairments, such as CD and
the limited bandwidth of hardware devices at the receiver, and also nonlinear
e昀昀ects, that are due to the interaction of CD with the e昀昀ect of the PD.
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3
Literature review: the road towards

an alternative pulse shaping
optimization

3.1 CONVENTIONALEQUALIZATIONMETHODS IN THE SHORT-
REACH OPTICAL LINK

In order to mitigate the impairments in short-reach optical links, several dig-
ital equalization technologies have been proposed. In the next section, we will
introduce two of the most common equalizers that are employed to compensate
for these impairments. We will focus on the description of the 昀椀rst, the feed-
forward equalizer that works in a linear regime and, thus, we can directly relate
it with the framework that we implemented in this work. Whereas, for the latter,
i.e. Volterra Nonlinear Equalizer (VNLE), we will provide only some hints for
a high-level description. Afterwards, more recent ML-based solutions will be
described.

3.1.1 CONVENTIONAL FFE/DFE

The Feed Forward Equalizer (FFE) is a widely used method to compensate
for linear impairments. The most important component of FFE is the FIR 昀椀lter
that we can see in Figure 3.1a. The FIR acts on a given input G(:) and generate
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3.3. RECENT WORKS AUTOENCODER-BASED FOCUSED ON PS

In the speci昀椀c context of communications, the goal of an autoencoder is to learn
how to represent the information data in order tominimize the probability of er-
ror at the receiver, augmenting the robustness of the transmitted message with
respect to the distortion induced by the channel. While a common autoencoder
removes redundancy and compress the input data, an autoencoder in the con-
text of ML for communications adds redundancy and aims at learning an in-
termediate representation of data that ensures robustness with respect to the
channel impairments [32].

3.3 RECENTWORKS AUTOENCODER-BASED FOCUSEDONPS

In this section, after an introduction to the advent of ML in the context of
Optical Communications, we will do a brief recap of some of the most recent
papers that investigated the optimization of the PS block. Due to the limited
number of works in such direction, we will not consider only works tailored to
the short-reach optical link, but we will extend the research to the more general
context of Optical Communications.

THEADVENTOFDEEP LEARNING INOPTICALCOMMUNICATIONSAND THEWIDESPREAD
ADOPTION OF AUTOENCODERS

As we discussed, recently, the use of machine learning has become widely
used in the context of Optical Communications. We can mention three methods
that have been applied to optical channel scenarios: we can refer to the 昀椀rst as
a more traditional learning method, then we have the end-to-end learning and
the physics-based learning.
The 昀椀rst consists in the replacement of a single signal processing block by a neu-
ral network. In this way, it is possible to learn e昀케cient and/or less complex al-
gorithm through data-driven optimization [23].
The second method was presented in [32] in 2017. It proposed a new way to
think about communication systems: a transceiver can be designed as an au-
toencoder, i.e. an end-to-end reconstruction task that aims at jointly optimiz-
ing transmitter and receiver components in a single process. This method was
adopted for the 昀椀rst time in the context of optical communications by Karanov
et al. in 2018 [25]. This is a ”black-box” method that does not allow to easily in-
corporate existing domain knowledge into the learning process and, moreover,
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provides domain solutions that are di昀케cult to interpret.
The third method was presented in [17] in 2020. Its purpose is to 昀椀nd a trade-
o昀昀 between the black box solution provided by an end-to-end process and the
potentially sub-optimal approach that applies deep learning techniques to indi-
vidual signal processing blocks carrying out an individual task [17]. Instead of
relying on a generic Neural Network (NN), this methods starts from an existing
model and extensively parametrize it. It enables the possibility to initialize the
model with clear hyperparameters choices, provides a proper initialization for
gradient-based optimizers and allows to interpret the learned solutions provid-
ing insight into the problem [17].
Recently, plenty of works have developed new frameworks based on these ap-
proaches; among them, we have found several works focused on the design of
the pulse shaping block with the use of autoencoders. An autoencoder is a pow-
erful tool that can learn how to communicate e昀케ciently over the optical 昀椀ber
channel: for instance it can jointly optimize geometric constellations and pulse
shaping, while also taking into account linear and nonlinear impairments such
as chromatic dispersion and Kerr-nonlinearity.
The 昀椀rst block-based autoencoders were implemented as FFNNs [26].
To further improve the performances and to reduce the transceiver complexity
novel solutions were developed.
For instance, Karanov et al. [26] did one of the 昀椀rst works that enabled the po-
tential of end-to-end optimized transmission via deep learning with the use of
an end-to-end sliding window Bidirectional Recurrent Neural Network (BRNN)
that achieved a signi昀椀cant reduction of the bit-error-rate. In addiction, it en-
abled higher data rates at a lower computational complexity with respect to sys-
tems employing state-of-the-art nonlinear equalizers. The target was a nonlin-
ear channel with memory, such as the short-reach optical channel model that
we presented in Chapter 2.
Given these premises, in the next paragraph, we will do a recap of some recent
works that propose deep learning techniques in Optical Communications, fo-
cusing on the optimization of the pulse shaping block.
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NOT EXHAUSTIVE ROADMAP OF RECENT WORKS ON THE OPTIMIZATION OF THE PULSE
SHAPING BLOCK

In [54], Uhlemann et al. proposed a novel design for coherent system. The
transmitter implementation involves a trainable symbol mapper and a trainable
pulse shaping 昀椀lter. They proved that the pulse shape 昀椀lter can be trained to
compensate the impairments of the nonlinear optical channel such as chromatic
dispersion and Kerr nonlinearity.
In [2], Aoudia and Hoydis presented an end-to-end learning approach to de-
sign the pulse shaping and the constellation geometry jointly. This end-to-end
optimization of the constellation and of the pulse shaping uses a conventional
architecture and, thus, it does not increase the transmitter complexity; tested
and validated on the AWGN channel, this technique can be applied to any chan-
nel model.
Starting from the framework proposed in [54], Song et al. [45] proposed an au-
toencoder to perform a joint optimization of the constellation, of the pulse shap-
ing 昀椀lter and of themodulator to achieve amitigation of the nonlinearities of the
channel. While in [54] it was developed for a single channel, in [45] the target
was the design of a superchannel system aimed at minimizing the signal band-
width and the interchannel interference. Compared to early works, where the
autoencoders were implemented as black boxes, in the aforementioned works,
the transmitter was split into a concatenation of simpler NNs, each correspond-
ing to one functional block of a conventional communication system and, thus,
the NNs parameters can be initialized such that they initially perform close to
their conventional counterparts. As a result, the proposed schemes had a bet-
ter interpretability and reduced training complexity compared to a conventional
autoencoder.
Following this direction - that consists in the adoption of the so-called physics-
based model - other studies were performed on the individual pulse shaping
block.
For instance, in [22], He et al. experimentally veri昀椀ed the concepts introduced
in [45], taking advantage of the learned pulse shaping 昀椀lter in a superchannel
system. For the same Digital Signal Processing (DSP) complexity, the proposed
method improves the spectral e昀케ciency compared with traditional RRC 昀椀lters.
In addiction, the ML-based pulse shaping 昀椀lter induces a signi昀椀cant reduction
in the number of equalizer taps required, enabling lower DSP complexity and
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lower power consumption.
In [55], expanding the linear architectural template of [54], Uhlemann et al. chose
thewell-known autoencoder as an approach to 昀椀nd an appropriate scalable non-
linear pulseshaping. The proposed framework is realized as a convolutional
neural network at both transmitter and receiver. The novelty consists in the in-
troduction of a �-lifting training procedure tailored to the nonlinear optical 昀椀ber
channel. As a result, the autoencoder provides a more stable convergence and
the design of pulse shape block is achieved. This framework reaches an informa-
tion rate able to outperform the classic scheme of split digital back propagation
at high input powers. In this work, it was considered only a single channel and
single polarization scenario, but the idea can be extended to a multi-channel
systems or to more complex architectures.

3.4 SUMMARY OF RECENT ADVANCEMENTS OF INTEREST

We can sum up recent progresses - from the general introduction of deep
learning in optical communications to works about the optimization of the indi-
vidual pulse shaping block - as follows:

• the advent of deep learning in communications [32];

• 昀椀rst application of deep learning to the speci昀椀c 昀椀eld of optical communi-
cations [25];

• thewidespread adoption of the autoencoders alongwith the so-called end-
to-end optimization process;

• early studies provided ”black box” solutions and were focused on single-
channel implementations;

• more recent studies proposed solutions adopting the so-called physics-
based learning [17], implementing the framework as more conventional
setups in order to avoid the potential additional complexity that a ”black
box” process may imply and also to facilitate the initialization of the pa-
rameters and to make the solutions easier to be interpreted; in these new
frameworks, the system is made of several blocks implemented as inde-
pendent neural networks that are optimized jointly (for instance constel-
lation and pulse shaping jointly [2]) in an end-to-end process;

• the speci昀椀c structure that promotes the joint optimization of the constella-
tion and of the pulse shaping has been proved to have the same computa-
tional complexity of more conventional setups [2];
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• recent studies extended previous frameworks to superchannel scenarios
to provide a better spectral e昀케ciency and to reduce the interchannel inter-
ference;

• some studies have focused their attention on the pulse shaping block: the
optimization of the pulse shape split between the transmitter and the re-
ceiver to enable an end-to-end optimization seems to be a promising re-
search direction; studies have proposed a linear implementation and also
a nonlinear implementation of the pulse shape block.

3.5 THE IDEA OF THIS WORK

In the research papers we analyzed, the optimization of the Pulse Shaping
blockwas aimed at achieving various objectives: enabling highdata rates, reduc-
ing the Symbol-Error-Rate (SER) and the power consumption, compensating for
the channel penalties, reducing the complexity and, for multi-channel scenario,
improving the Spectral E昀케ciency (SE) compared to traditional RRC 昀椀lters, re-
ducing the interchannel interference, etc.
To sum up, there have been proposed several studies on the Pulse Shaping block
that have shown promising directions towards the long-term goal of implement-
ing e昀케cient, reliable and less complex optical communication links.
In this view, in this work we decided to focus our attention on the Pulse Shaping
block in order to further investigate the opportunities that the research in this
昀椀eld has enabled and has started to explore.
In particular, we decided to focus on the issues due to the limited bandwidth.
Compared to the aforementionedworks, implementedwith deep learningmeth-
ods, the proposed framework is much easier and set the less ambitious goal to
do a preliminary methodological study on the Pulse Shape block in a scenario
with an impaired communication channel. More speci昀椀cally, we will design a
ML-based non-conventional equalization method that we will test and validate
on the band-limited AWGN channel, comparing the obtained results with the
performances of traditional equalization methods.
InChapter 5, wewill state the purpose of thisworkpresenting a non-conventional
setup with ML-based FIR 昀椀lters that we want to train in order to achieve the
equalization task, compensating for the channel non-idealities.
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4
Machine Learning applied to

Communication Systems

In this Chapter, we will discuss motivations and use cases for ML applied to
the context of Digital Communication Systems.

4.1 ML IN THE CONTEXT OF DIGITAL COMMUNICATIONS

On the contrary of 昀椀elds like image and natural language processing, where
ML is already well-established, the application of ML techniques in Commu-
nications is a novel research direction. Within this context, there are plenty of
aspects that in principle could be solved throughMachine Learning techniques:
for instance, at the Physical Layer ML could manage baseband signals using
channel state information; at the Network Layer ML could be employed for as-
pects related to the location and tra昀케c loads; 昀椀nally, at the Application Layer it
could compute loads and user preferences [27].
In the next Section, we will explain how the ML approach di昀昀ers from a tra-
ditional engineering design 昀氀ow. Afterwards, we will do an excursus of the
advantages that can provide to Communications, mentioning several use cases
at the Physical Layer. Finally, some challenges and future directions will be dis-
cussed.
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4.1.1 HOW IS IT DIFFERENT FROM THE CONVENTIONAL ENGINEERING
APPROACH?

ML methodology can be considered a promising alternative to the conven-
tional engineering approach for the design of an algorithmic solution. Which
are the main di昀昀erences of the two approaches - the conventional engineering
design 昀氀ow and a novel ML-based methodology? They are represented in Fig-
ure 4.1.
Let us start with a brief explanation of a traditional design 昀氀ow. The acquisition
of domain knowledge is the starting point of the conventional 昀氀ow. The prob-
lem of interest is analyzed thoroughly under the assumption of a physic-based
model that gives an accurate representation of the set-up under study. Then, the
problem is represented by a mathematical model that captures the physics of
the problem and that allows the de昀椀nition of an optimization problem aimed at
the design of an algorithm that in principle could achieve optimal performances
[44]. The model selection and the design of the algorithm is performed at hand;
then the algorithm is implemented and its performance evaluated.
In contrast, providing that it is possible to perform a real experiment in which
the system is fed with input data that will be paired with the outputs of the
experiment, a Machine Learning based methodology can operate even in the
absence of a well-established mathematical model.
It startswith the collection of the examples of the training set from the real exper-
imental setup. This task is potentially easier than the conventional acquisition
of domain knowledge, assuming that a su昀케ciently large number of examples
with the desired behaviour is provided. These samples are fed to an algorithm
that learns the desired task by the optimization of a performance criterion [43].
Going a step further, it is even possible to include the available domain knowl-
edge in the ML learning process as it can dictate the choice of a speci昀椀c hypoth-
esis class to use in the training process [44].

4.1.2 MOTIVATIONS FOR THE USE OF ML IN DIGITAL COMMUNICA-
TIONS

In the last decade,ML and itswidespread adoption inmany昀椀elds has started
to draw the attention even to the the 昀椀eld of communications thanks to its high

24





4.1. ML IN THE CONTEXT OF DIGITAL COMMUNICATIONS

to-end to achieve the best metrics jointly, considering all components, avoiding
a well de昀椀ned and limiting block structure.

Parallelization: With respect to the conventional ”hand-written” algorithms,
the use of ML will lead to a high parallelization of processes and, thus, the al-
gorithms obtained from ML will have the potential to be executed faster and at
a lower energy cost.

A better exploitation of hardware architectures: The actual algorithms and
the use of high-level programming languages are not able to exploit all the po-
tential in terms of computations and energy e昀케ciency that the novel concur-
rent architectures with distributed memories such as Graphical Processing Unit
(GPU) can provide. Thanks to their intrinsic concurrent nature, Neural Net-
works represent a promising solution to implement e昀케cient algorithms capa-
ble of exploiting the parallelism of the hardware architectures. Authors of [32]
believe that special purpose code will not be used anymore for algorithms in
computing and communications and ML will provide new algorithms trained
and optimized for end-to-end loss functions. It will be a versatile approach in
which parameters will be readily modi昀椀ed to optimize di昀昀erent tasks exploiting
highly concurrent architectures.

Currently, among the subset ofMachine Learning, Deep Learning has gained
signi昀椀cant attention in the literature, inWireless Communications [9] and, more
recently, even in Optical Communication links [29]. The application of Deep
Learning to communication consists in the design of Arti昀椀cial Neural Networks
that can replace or augment DSP blocks (such as equalization and decoding).

WHICH ARE THE MOST COMMONLY USED METHODS TO PERFORM THE LEARNING?

The data-driven optimization strategy can learn new algorithms that can
achieve in principle better performances than the traditionalDSP blocks in terms
of accuracy and computational load.
We can distinguish three di昀昀erent approaches that can be adopted to perform
the learning in the context of Communications:

• ”Traditional” Learning;

• End-to-end Learning;

• Parametrization of an existing model.
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In the ”Traditional” Learning, every single block is optimized individually
to approximate an input-output function. Whereas, another possible approach
consists in the modelling of the entire transceiver design as an end-to-end task
in which transmitter and receiver can be optimized jointly.
These two approaches are usually implemented with NNs and, thus, they have
the disadvantage that the NN structure is not related to the problem at hand
and their high-level operations are di昀케cult to interpret as they are used like
”black boxes”. On the contrary, a conventional DSP algorithm is based on well-
understood mathematical models and relies on a robust theoretical framework.
There exists a third approach that does not include the NN implementation: it
is possible to start from an existing model and parametrize it; it can be advanta-
geous w.r.t. a conventional NN because hyperparameters can be selected more
intuitively and can provide good initialization for gradient-based optimization.
As a result, the obtained solutions can be interpreted more clearly, providing
signi昀椀cant insight into the problem [5].

4.1.3 USE CASES

How canML provide remarkable solutions that can be applied in the context
of Digital Communications?
In this Section, we will analyze more in details several aspects that can be im-
proved in Digital Communications with use of Machine Learning and, more
speci昀椀cally, of Deep Learning. To sum up, we will present two more practical
use cases based at the Physical Layer. Even though there already exist optimal
solutions for Digital Signal Processing problems at the Physical Layer of Com-
munication Systems, for instance the well-established estimation, detection, and
optimization theory, there are also practical problem still without acceptable so-
lutions [4].
Firstly, there are many problems that can rely on a known algorithm to 昀椀nd the
optimum, but it is too complex for real-time implementation. Secondly, there
are cases where the standard system models are inadequate or incomplete [4].
It is important to underline that it is not possible to completely eliminate errors at
the Physical Layer of Communication Systems and this issue is conventionally
managed using retransmissions. However, the application of Deep Learning
methods can provide an improvement in Communications and give robustness
to unexpected behaviours with atypical signals that occasionally occur and that
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are not considered and not taken into account in the traditional design 昀氀ow,
represented by an ideal mathematical model that is fed only with typical input
signals [4]. On the other hand, the intrinsic fault-tolerance of Physical Layer can
turn into a disadvantage because attackers can also exploit atypical signals to
perform jamming more e昀케ciently [42].

Use case 1: approximating algorithms Machine Learning - andmore precisely
Deep learning - can be used to reduce computational complexity of known it-
erative algorithms that take a long time to reach the convergence [49] in case
in which there is a strict latency constraint. There are many optimization prob-
lems to be solved in Communication Systems that are prohibitive with real-time
applications. A NN can be trained to learn approximately how the solution de-
pends on the input data.
In this stage, the use of domain knowledge for a pre-processing is recommended
because in this way the learning process will not start from scratch and redis-
cover known features of the input data, but it will focus on the actual problem
that it is supposed to solve.
Using one of the approaches discussed in the previous Section, whether start-
ing from a ”black box” design or using a pre-de昀椀ned model, the NN is capable
of implementing a shortcut-algorithm to achieve a good tradeo昀昀 between ac-
curacy and computational complexity. In addiction, they can solve a practical
problem related to hardware implementation and its time-to-market, i.e. the
time it takes from the algorithmic design to the launch of a new product. In
order to implement on hardware a new algorithm, instead of implementing a
dedicated circuit based on it, with the help of Deep Learning, it is possible to
use a general-purpose circuit that implements a NN. The NN can be trained to
perform the required algorithmic task and, 昀椀nally, the learned parameters can
be loaded onto the circuit. As a result, the time-to-market for the hardware im-
plementation can be signi昀椀cantly reduced. However, the generation of desired
outputs is highly computationally-demanding: the training can take a lot of time
if the algorithm is complex and this means that basically the complexity issue is
moved from the algorithmic run time to the design process [4]. Therefore, it is
important to be careful and to 昀椀nd a tradeo昀昀 between these two aspects in order
to exploit the bene昀椀t that Machine Learning can provide.
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Use case 2: inversion of an unknown function Another important application
is the inversion of an unknown function, in particular in the case of a non-linear
hardware or channels.
Conventionally, the distortion is inverted as follows: an appropriate parametrized
model is identi昀椀ed, then the parameters are estimated frommeasurements, and
昀椀nally the inverse function is created. However, this approach is suboptimal
and error-prone.
Training a NN to invert the function is an alternative that works without de昀椀n-
ing a model or estimating the parameters explicitly. It is important to underline
that only if suboptimal conventional algorithms exist, a learned algorithm can
theoretically provide better performance and robustness (under the assumption
that the training is carried out successfully).
This application can be useful for time-varying channels because it can enable
online-learning by sending occasionally prede昀椀ned reference signals to gener-
ate new training data.
To sum up, the aim of a successful utilization of Machine Learning is to iden-
tify tasks in Communication Systems that currently lack an optimal solution be-
cause in these speci昀椀c cases it actually represents an opportunity to go beyond
the current state-of-art [4].

4.1.4 FUTURE DIRECTIONS AND OPEN RESEARCH CHALLENGES

On the contrary of other 昀椀elds inwhichML is pervasive andwell-established,
the context of Communications still lacks open datasets and benchmarks to com-
pare the performance of ML models and algorithms.
Therefore, it is desirable to develop standardized datasets and a set of problems
to allow the possibility to compare novel algorithms.
Which are the aspects that need to be considered and de昀椀ned in the context of
ML for Communications?

Development of benchmarks One of themost important challenge in theML-
based communications is the development of benchmarks and open datasets. In
other 昀椀elds like computer vision or voice recognition, there already exist com-
mon datasets like MNIST7 or ImageNet8 for this purpose [32]. One main dif-
ference with other 昀椀elds is that, in Communications, the signals are generated
synthetically and, thus, establishing a set of common problems and associated
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datasets could be done with standard routines. As a result, researchers could
easily benchmark and compare the developed new models and algorithms.

How to represent data, choose the loss-function and implement the training?
The binary signals that are injected into the communication channel have been
commonly represented as one-hot vectors, complex symbols or integers [32].
The optimal representation depends on the model architecture, on the learning
objective and on the loss function. In addiction, another issues that raises in this
context is at which SNR values the training should be performed. The system is
supposed to operate over any SNR and, thus, the results should be tested and
generalized to arbitrary SNR. However, if the test is performed at certain SNR
ranges, it does not necessarily imply that the test will succeed at di昀昀erent ranges.
If the training is performed at low SNR, we are still blind on high SNRs scenar-
ios. As a possible suggestion to deal with this generalization issue, in [15] it has
been observed that if the training is started at high SNR and then it is gradually
lowered with the epochs, the performance improved for that speci昀椀c applica-
tion.
Furthermore, it is important to make a proper and careful choice of the loss
function that is very model-dependent. For instance, a typical choice for a clas-
si昀椀cation problem is the Cross-Entropy. In general, the choice is not obvious,
especially for such a novel 昀椀eld. A bad choice of the loss function can turn into
poor results [32]. Even other practical choices such as themodel architecture and
the parameters of the training for the application of the Stochastic Gradient De-
scent (SGD) algorithm (e.g. the learning rate) have to be evaluated thoroughly.
There exist some guidelines [43] that can be followed, but the research in this
昀椀eld is still in progress for other important aspects such as the hyperparameters
selection.
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Problem statement

Starting from the issues experienced in the real scenario of the short-reach
optical link (see Chapter 2) and from the ideas we came up with after the Liter-
ature Review (see Chapter 3), in this work, we decided to evaluate a Machine
Learning-based non-conventional setup with the long-term aim to provide a
possible solution to complex nonlinear scenarios that can not be solved analyti-
cally such as the optical channel that we analyzed.
Because of the inexperience and limited amount of time, we tested and vali-
dated the proposedmethod only on the band-limited AWGN channel. In future
works, this method can be extended to more complex channel like the nonlinear
short-reach optical channel that motivated and gave rise to this work.
Therefore, in this work, we placed ourselves at a preliminary stage in which the
query is still at the methodological level. The method that we propose consists
in the development of a system with non-conventional Pulse Shape 昀椀lter and
Matched Filter implemented as trainable FIRs provided with a Machine Learn-
ing framework. The goal of the ML framework is to train the FIR taps to ensure
an optimal performance and to compensate for the channel impairments that
degrade the signal along the propagation. Assuming a time-varying nonlinear
channel, such as the short-reach link optical channel, the long-term objective of
this method is to enable the equalization of the channel with an online Machine
Learning process implemented with low complexity and able to adapt and to
respond to the time variation and to the nonlinearities of the channel. In other
words, wewant to ensure an ISI-free transmission in a nonlinear and noisy chan-
nel relying on an end-to-end learning process that involves a Pulse Shape 昀椀lter

31



5.1. THE SYSTEM MODEL

at the transmitter and a Matched Filter at the receiver, that are hence optimized
jointly.
On this path, in this work we have a short-term and less ambitious purpose: our
focus is on the Pulse Shaping block of the communication system and our goal
is to test and validate the proposed ML-based method.
To achieve this goal, we decided to simulate our ML-based structure on the
band-limited AWGN channel whose response is well-known and, thus, can be
inverted analytically to achieve the channel equalization. As a result, it allowed
us to increase the interpretability of the obtained results and to easily provide a
benchmark to achieve our 昀椀nal goal, the validation of the proposed method.
In the view of extending the proposed framework to more complex channels
like the short-reach optical link that inspired this work, the validation is an es-
sential task that has to be completed in order to make our framework a reliable
structure, potentially suitable to any type of channel. In general, without the
validation step, we would not be able to extend a framework to further experi-
ments on problems that still lack a solution.
To sumup,with our preliminary analysis, we tested andvalidated a non-conventional
ML-based equalization method on the band-limited AWGN channel. In this
way, we started exploring the opportunities that the standalone Pulse Shape
block can enable and seeing whether it can be promising for further investiga-
tions on scenarios with a more complex channel.

5.1 THE SYSTEM MODEL

In Figure 5.1, we can see the block diagram of the considered system model.
As we said, in this work, we simulated only the band-limited AWGN channel,
that is a linear and static model. However, the problem statement involves an
arbitrary time-variant noisy channel that may be distorted by both linear and
nonlinear e昀昀ects. As we saw in Chapter 4, ML can be a powerful tool in context
where the nonlinearity makes the simple inversion of the channel infeasible or
even in case in which there is not well-de昀椀ned channel model to rely on.
In order to compensate for the channel impairments, we propose three di昀昀erent
equalization setups.

Scenario 1): learning the parameters at the transmitter. In the 昀椀rst scenario,
the system is provided with an adaptive trainable FIR PS and with a RRC at

32





5.2. PERFORMANCE METRICS

5.2 PERFORMANCE METRICS

In order to evaluate the results of the simulations, we divide the metrics we
used in this work into quantitative and qualitative metrics.

5.2.1 QUANTITATIVE METRICS

Mean Squared Error (MSE) We used the MSE as a loss function ℒ(·) in the
training of the ML model. It is de昀椀ned as the average of the squared di昀昀erences
between predicted and true values. Given # , the number of the FIR parameters
to be optimized we can de昀椀ne the loss function as follows:

"(� =
1

#

#∑

:=1

(H: − Ĥ:)2 = E[(H − Ĥ)2] (5.1)

where H: is the target, Ĥ: is the predicted value.

Energy per bit to noise power spectral density ratio. Communication systems
are designed to compensate for distortions at the receiver and this capability
depends on the tradeo昀昀 between the power of the signal and the power of the
noise. The relation between the signal and the noise is called the Signal-to-Noise
Ratio (SNR):

(#' =
%B86=0;

%=>8B4
, (5.2)

where %B86=0; is the average power of the transmitted signal and %=>8B4 is the
average power of the noise. Since it is the ratio between two powers, the SNR
is a dimensionless quantity. In our framework, instead of adopting the SNR,
we used the energy per symbol to noise power spectral density ratio, that is
a normalized SNR, more suitable to the context of digital communications in
which we operate. It is expressed as:

�B
#0

(5.3)

where �B is the average symbol energy that considers both In-Phase (I) and
Quadrature (Q) samples; #0 is the average Power Spectral Density (PSD) of the
noise [11].
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6
Machine Learning: theoretical

background

After a brief introduction to Machine Learning, in this Chapter, we will fo-
cus on the subset of Supervised Learning that we used in this work. First, we
will present the ML process in the context of Supervised Learning and then we
will present speci昀椀c tools that we adopted in this work, such as optimizers and
optimization algorithms.

6.1 INTRODUCTION TO ML

Machine Learning (ML) can be de昀椀ned as the ability of Arti昀椀cial Intelligence
systems to acquire knowledge capturing patterns from data [31]. The unprece-
dented availability of data and computing resources have shed light on such
data-driven ML techniques on a vast number of engineering 昀椀eld, from speech
to imagine analysis [16] to communications [23].
ML theory is rooted in classical linear algebra and probability [7], more specif-
ically it relies on decades old algorithms - for instance backpropagation [21] -
and on other mathematical tools such as regularization techniques and adap-
tive learning rate schedules [44].
In the next Section, we will provide a classi昀椀cation of ML methods.
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6.1.1 TAXONOMY OF MACHINE LEARNING METHODS

ML methods can be divided into three main classes, depending on how the
data are fed into the system.

Supervised learning: In supervised learning, the a training set - the input sam-
ples alongwith their own labels - is fed to the the learning process and, thus, the
ML is applied in order to learn the mapping between input and output spaces.
We can distinguish into two di昀昀erent tasks in Supervised Learning: in the 昀椀rst
instance, there is the regression problem, where the prediction is a continuous
variable, and the second is the classi昀椀cation task, where the input associated to
a discrete prede昀椀ned output [27].

Unsupervised learning: In unsupervised learning, the input data are not la-
belled, thus the training set consists of inputs without any assigned output.
Therefore, the goal of unsupervised learning is that of 昀椀nd patterns and clus-
ter together data, hence assigning a label to each input point.

Reinforcement learning: Reinforcement learning lies in between supervised
and unsupervised learning. After selecting an output for a given input or obser-
vation, a feedback from the environment is received by the reinforcement learn-
ing algorithm that expresses the degree to which the output ful昀椀ls the goals of
the learner. Reinforcement learning requires a more complex analytical frame-
work that takes advantage of Markov Decision Processes [51].

Among the three presented classes, Supervised learning is the most common
type of learning, has a robust theoretical basis [56] and relies onwell-established
algorithmic tools [44]. In the next sections, we will focus on Supervised Learn-
ing, that will be the subset of Machine Learning that we will use in this work.

6.2 THE SUPERVISED LEARNING PROCESS

In this Section, we will de昀椀ne the Supervised Learning process. Given a
training set D of cardinality # where (G= , H=) are the input-output pairs with
= = 1, ..., # , we have a Supervised Learning problem in which we want to pre-
dict the output H for an unobserved input G, thus an input that is not present in
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6.2.1 FORMAL DEFINITION OF SUPERVISED LEARNING

The 昀椀rst assumption is that in the training setD we have input-output pairs
generated as (G= , H=) ∼ ?(G, H), with = = 1, ..., # . In other words, each pair
(G= , H=) is an independent and identically distributed sample that comes from
the same joint distribution ?(G, H).
The predictor Ĥ thatwe are seeking should performwell on any possible relevant
input G and, thus, any test pair (G, H) ∼ ?(G, H) independently generated from the
pairs of the training setD should be accurately classi昀椀ed by the predictor Ĥ [44].
Given a test sample (G, H), the prediction is evaluated by a loss functionℒ(H, Ĥ(G)).
One of the most commonly used loss functions is the quadratic lossℒ(H, Ĥ(G)) =
(H − Ĥ)2 for regression problems. While, for classi昀椀cation problems, a common
choice is the error rate ℒ(H, Ĥ) = 1(H ≠ Ĥ) that returns a 0 is the sample is cor-
rectly classi昀椀ed, 1 otherwise.
The learning process is aimed at minimizing the so-called generalization loss,
that is the average loss on the test set. Assuming the popular frequentist ap-
proach [43], given a predictor Ĥ, we can formally de昀椀ne the generalization loss
as follows:

ℒ?(Ĥ) = �(G,H)∼?(G,H)[ℒ(H, Ĥ(G)]. (6.1)

6.2.2 MODEL SELECTION, LEARNING AND INFERENCE

Assuming that there is no domain knowledge and the distribution ?(G, H) is
not known, in order to solve the learning problem, we need to 昀椀nd a predictor
that minimizes the generalization loss ℒ?(Ĥ).
The Machine Learning process can be divided into the three following phases:

1. Model selection (inductive bias): The 昀椀rst phase consists in the de昀椀nition of
a speci昀椀c class of hypotheses, that represents the so-called model. The selection
of the hypothesis class is a pre-requisite for learning. Assuming a probabilistic
framework, the hypothesis class, or model, consists in a set of probability dis-
tributions parametrized by a vector �. In Supervised Learning, the model can
be:

• Generative: when it speci昀椀es a family of joint distributions ?(G, H |�); the
structure that is present in the data can be captured in amore accurate way
and, as a result, the performance of the predictor can be improved [6];
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• Discriminative: when it parametrizes directly the predictive distribution
as ?(H |G, �); it means that no assumptions are made about the distribution
of the input G and, thus, it is less likely to be biased.

In both cases, the hypothesis class is selected among a set of probability dis-
tributions that results into e昀케cient learning algorithms in Phase 2.

2. Learning: The second phase consists in the optimization of a learning cri-
terion with the aim of 昀椀nding a parameter vector � and identifying a distribu-
tion ?(G, H |�) or ?(H |G, �), if we are considering a generative or a discriminative
model respectively.

3. Inference: At this third phase, in the inference step, the predictor Ĥ(G) is
obtained from the learned model:

Ĥ(G) = arg min
Ĥ
�H∼?(H |G)[ℒ(H, Ĥ)|G]. (6.2)

The test data on which the predictor Ĥ is evaluated have to be di昀昀erent from the
training set D. In the next Section, the learning process will be analyzed more
in detail and also the model selection will be explained thoroughly [44].

LEARNING:

The goal of learning is to obtain a predictor able to minimize the generaliza-
tion error. However, since we do not know the true distribution ?(G, H), this task
in not achievable.
Thus, we have to rely on the training setD to have an alternative learning crite-
rion. Having a probabilistic model, a commonly used learning criterion is Max-
imum Likelihood (ML). This criterion allows the selection of a value of � in the
parametrized set of models ?(G, H |�) or ?(H |G, �). The problem is solved maxi-
mizing the log-likelihood function:

maximize ln ?(D|�) (6.3)

where ?(D|�) is the probability of the datasetD for a given value of �. Assum-
ing that we are using a discriminative model and that data points in � are i.i.d.,
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we can rewrite the log-likelihood as follows:

ln ?(� |�) =
#∑

==1

= ln ?(H= |G= , �). (6.4)

There is rarely an analytical solution and typically Stochastic Gradient Descent
is used to solve it.
At each iteration, the mini-batches, i.e. subsets of examples, are selected from
the training set and the parameters � are updated by a quantity proportional to
the gradient of the log-likelihood function. The learning rule is the following:

�← � + �∇?(H= |G= , �) (6.5)

where � > 0 is the learning rate.
In the context of neural networks, the gradient is computed with the backprop-
agation algorithm [16], [43]. The learning algorithm is de昀椀ned by several hy-
perparameters; one of them is the learning rate. In order to improve the ML
process, regularization techniques can be used [16], [43]. During the learning,
the selection of the model can be enhanced via validation.
When regularization is performed, a penalty term �-dependent has to be added
to the log-likelihood. In this way, it is possible to avoid that the learned parame-
ters � assume values that are a priori unlikely and that could be a possible index
that over昀椀tting has occurred.

MODEL SELECTION

The selection of themodel consists in the de昀椀nition of the inductive bias used
in the learning process. There are plenty of aspects that are considered within
this stage: the model order selection, the inclusion of domain knowledge and
the tuning of the hyperparameters of the learning algorithm.
In this Section, we will consider only the model order selection as an example of
the model selection phase.
Thus, given a set of models with di昀昀erent order of complexity, we want to select
the model order that will be used during the learning phase.
Let us analyze a regression problem whose output H is a polynomial function
of order " of the input G plus zero-mean and standard deviation equal to 1
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from the validation is a biased estimate of the true generalization loss because of
the Model Selection phase. The test set do not have to be used during the learn-
ing process and should only be used once in order to test the trained predictor
[44].

6.3 OPTIMIZATION TASK

Up to now, we have provided a description of the learning process, that con-
sists in adjusting the parameters � in order to minimize the loss functionℒ. The
problem to 昀椀nd the best choice for the parameters � is an optimization problem
and can be solved with the use of optimization algorithms. To achieve the learn-
ing task, there are several types of optimizers that can be used by the model,
from gradient-based algorithms to derivative-free optimizers. In the next Sec-
tion, after a brief introduction about optimizers and how to classify them, we
will explore more in details the algorithms used in this work.

6.3.1 OPTIMIZERS

Most Machine Learning problems can be solved as optimization problems.
The optimization task has to deal with di昀昀erent di昀케culties and challenges. Op-
timizers are the algorithms that are used to minimize or maximize an objective
function, the so called loss function ℒ(·). During the training process, they ad-
just the model parameters with the aim of 昀椀nding the optimal set of parameters
that result in the best performance of the Machine Learning model on the given
task.
The application of the Machine Learning models relies on the e昀昀ectiveness of
the numerical optimization algorithms. The development of the optimization
methods is hence a crucial aspects in Machine Learning to achieve good perfor-
mances. On the basis of the gradient knowledge, it is possible to divide opti-
mization methods into three categories [50]:

• 昀椀rst-order optimization methods such as the stochastic gradient method
and its variants;

• high-order optimization methods, such as the Newton’s method;

• heuristic derivative-free optimizationmethods, for instance the coordinate
descent method.
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Thedi昀昀erence between昀椀rst-order andhigh-order optimizationmethods con-
sists in the fact that the former converges at a lower speed than the latter, but
they deal with less computational complexity.
The 昀椀rst-order and the high-order algorithms are both gradient-based optimiza-
tion algorithms as they rely on the availability of the gradient to be executed. The
gradient has be computed with a proper algorithm, for instance with the well-
known Backpropagation.
In some some cases, the derivative of the objective function is di昀케cult to com-
pute or it does not exist. Therefore, instead of using a gradient-based methods,
derivative-free optimization methods are applied. These methods can be im-
plemented with a heuristic search based on empirical rules or they can 昀椀t the
objective function with samples. Derivative-free optimization methods can also
work in conjunction with gradient-based methods.
The choice of the optimizer has to be performed carefully because it can have a
signi昀椀cant impact on the training process, convergence speed, and 昀椀nal model
performance [50]. For this reason, in practice, di昀昀erent optimizers and learning
rates are explored in order to 昀椀nd the best combination for a particular prob-
lem.
On this path, in this work, we will take advantage of 昀椀rst-order optimization
methods - SGD and Adam Optimizers - and even of Simultaneous Perturba-
tion Stochastic Approximation (SPSA) algorithm, a derivative-free optimization
method [50].

6.4 GRADIENT-BASED TECHNIQUES:

In this Section we will introduce the Backpropagation, Gradient Descent al-
gorithm and two of its variants that we used in this work. Related to Backprop-
agation, it is important to underline that in the context of Supervised Learning
as we are, the Backpropagation algorithm is not a common choice as it is typi-
cally used for training neural networks with multiple hidden layers. However,
in view of expanding this framework to more complex and realistic channels,
we decided to adopt it anyway in our linear regression model.
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6.4.1 BACKPROPAGATION: COMPUTATION OF THE GRADIENT

The Backpropagation algorithm [40], [41] is a widely used technique in Deep
Learning as it allows to compute the gradient with a simple and inexpensive
procedure, overcoming the computational complexity that a numerical evalua-
tion of the gradient could imply. Backpropagation algorithm is commonly used
within multi-layer Neural Networks, but in principle it can compute derivatives
for any function (providing that it is possible to de昀椀ne them) [16]. As we out-
lined, Backpropagation is usually coupled with a learning algorithm, such as
SGD, to perform the learning task using the computed gradient.
In learning algorithms, the Gradient that is needed is the Gradient of the loss
function w.r.t. to the parameters � to be learned. In addiction, there could be
other Machine Learning tasks that require the computation of the derivatives
and the Backpropagation algorithm can be applied as well. Themain idea of the
Backpropagation algorithm consists in the propagation of the computed deriva-
tives through a network (and for this reason it is used to train NNs), avoiding
redundant and unnecessary calculations [16].

6.4.2 GRADIENT DESCENT

InMachine Learning, themost commonly used optimizers are based on Gra-
dient Descent. Gradient Descent method is an iterative procedure that consists
in the update of the parameters to be learned in the opposite direction of the
gradient of the objective function [50]. As a result, the parameters vary and
gradually lead to an optimal value for the objective function. At each iteration
the Gradient is multiplied by the learning rate � and determines the step size on
which depends the number of iterations needed to reach the convergence [39].
Let us provide a formal expression of the Gradient Descent method. Given a lin-
ear regression model, we have that 5 (G) = Ĥ is the function to be learned, ℒ(�)
is the loss function and � the parameters that we want to optimize. Applying
Gradient Descent allows to minimize the loss function:

ℒ(�) = 1

2#

#∑

8=1

(H 8 − 5 (G 8))2 (6.8)

where 5 (G) = ∑�
9=1

�9G 9 is the estimated output, # is the number of training
samples, � the number of input features, G 8 is an independent variable with
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G 8 = (G 8
1
, G 8

2
, ..., G 8

�
) for 8 = 1, ..., # and H 8 is the target output.

The Gradient Descent procedure involves the two following steps:

1. Compute the partial derivative of ℒ(�)w.r.t. to each �9 in order to get the
gradient:

%ℒ(�)
%�9

= − 1

#

#∑

8=1

(H 8 − 5 (G 8))G 89 . (6.9)

2. Update each �9 in the opposite direction of the Gradient in order to mini-
mize the loss function:

�′9 = �9 + � ·
1

#

#∑

8=1

(H 8 − 5 (G 8))G 89 . (6.10)

The implementation of Gradient Descent is quite simple. When the objective
function is convex, we obtain the global optimal. Since in each iteration step all
the training data are used, this method is also called the batch Gradient Descent.
Given# samples and aD-dimensional independent variable G, the computation
complexity is$(#�) at each iteration. It is a high computational cost, especially
if we deal with large-scale data. In order to overcome the complexity issue, other
methods were developed such as the SGD.

6.4.3 A GRADIENT DESCENT VARIANT: STOCHASTIC GRADIENT DE-
SCENT

SGD [38] is more lightweight than Gradient Descent in terms of computation
and, thus, it allows an online update of the parameters.
Instead of directly calculating theGradient, at each iteration, Stochastic Gradient
Descent selects one sample 8 randomly and afterwards - on the basis of such
sample - it updates the Gradient. Even though the stochastic Gradient does not
use all the samples to compute theGradient, it is an unbiased estimate of the true
Gradient [38]. SGD is advantageous as its cost is independent from the number
of samples and it can reduce the update time and thus, accelerate signi昀椀cantly
the calculations, reducing some computational redundancy [50].
InGradientDescent, the loss functionwas computed considering all the samples
G8 with 8 = 1, ..., # as we saw in Equation 6.8. Whereas, in Stochastic Gradient
Descent, a random sample 8 is selected and the the loss function will be ℒ∗(�):

ℒ∗(�) = 1

2
(H 8 − Ĥ 8)2. (6.11)
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As a result, the Gradient update will be reduced to:

�′ = � + �(H 8 − Ĥ 8)G 8 . (6.12)

The computation complexity for each iteration is $(�) where � is the number
of features. On the one hand, using SGD allows a much faster update rate than
that of Gradient Descent applied to a very large number # of samples. On the
other hand, more iterations will be necessary to reach the convergence. Never-
theless, given the small cost of each iteration, the SGD is still able to reduce the
computational complexity and to accelerate the convergence, achieving a signif-
icant improvement in terms of e昀케ciency w.r.t. the Gradient Descent [50].
However, SGD has a drawback: the random selection of the sample 8 introduces
some noise in the process and, thus, the Gradient directionwill oscillate because
the search process proceeds blindly in the solution space.
In Gradient Descent, the update of the parameters is always directed to the opti-
mal value. Whereas, the direction of the update in SGD is biased. In order to 昀椀nd
a tradeo昀昀 between the two methods, the Mini-batch Gradient Descent (MSGD)
method was developed [38]. To address the problem of the high variance of the
Gradients and the instability of SGD algorithm, at each iteration MSGD uses
1 independent identically distributed samples (usually a value between 50 and
256 [39]) to update the parameters.
In the deterministic batch Gradient Descent, it may happen that the algorithm
generates an outcome that is just a local minimum of the objective function.
Whereas, in SGD - because of its stochastic nature - it is more likely to 昀椀nd a
global optimum solution as the algorithm explores di昀昀erent minimum thanks
to the 昀氀uctuations of the algorithm. On the other hand, these 昀氀uctuations may
decelerate the convergence of SGD.
Another crucial aspect to be considered in SGD is the choice of the learning rate
[39]. If it is too small, the convergence will occur in a longer time. Even a too
large learning rate is an obstacle to reach the convergence as it would cause the
昀氀uctuation of the loss function around a minimum. To address this problem, it
is possible to set a list of learning rates to be tested and tune the learning rate
online, during the learning process [8]. However, the list has to be de昀椀ned in
advance on the basis of the speci昀椀c dataset. In any case, this solution provides
only one learning rate for all the parameters and, on the contrary, theymay need
di昀昀erent rates to to be updated properly [10].
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In addiction, another challenge is to allow the objective function to escape from
the trap of an in昀椀nite number of local minimum or from ”saddle points” [13].
This latter are quite insidious because they have a positive slope in one direc-
tion and a negative in the other direction and gradient values in all directions
are zero.

6.4.4 SGD IMPROVEMENTS: ADAPTIVE LEARNING RATE METHODS

As we explained, in SGD the learning rate has to be regularized ”at hand”.
It a very important aspect because it considerably in昀氀uences the e昀昀ectiveness of
the SGD. For this reason, adaptive methods aimed at adjusting the learning rate
automatically have been proposed. They are characterized by the fact that they
do not need to adjust parameters and converge quite fast, achieving remarkable
results.
Some of the most widely used SGD-based algorithms with an adaptive learning
rate is AdaGrad [10]. In AdaGrad, the learning rate is adjusted dynamically on
the basis of gradients computed in the previous iterations. The learning rate is
updated as follows:




6C =
%!(�C)
%�

,

+C =
√∑C

8=1
(68)2 + &,

�C+1 = �C − � 6C+C ,

(6.13)

where 6C is the gradient of the parameter � at iteration C, +C expresses the gra-
dient history at iteration C, and �C is the value of the parameter � at iteration C.
To sum up, compared to Gradient Descent, AdaGrad implements an automatic
update of the learning rate based on the historical gradients accumulated.
AdaGrad presents two issues: 昀椀rst, the global learning rate � needs to be set
manually and, second, the accumulated gradient increases inde昀椀nitely through
the iterations and, thus, the learning rate will tend to zero and the update of the
parameters will be ine昀昀ective.
Because of this, other algorithms were developed to improve AdaGrad perfor-
mances. Some examples are AdaDelta, RMSProp and Adam [50]. In this work,
we used Adam (Adaptive moment estimation) algorithm and for this reason we
will introduce it more in detail.
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Adam: Adam [28] is an advanced SGD method. Adam combines the adaptive
learning rate method with another strategy called the momentum method. The
latter method considers only the gradients that lie in a pre-de昀椀ned window and
uses the exponential moving average to calculate the exponentially decaying av-
erage of past gradients <C and of squared gradients +C :

<C = �1<C−1 + (1 − �1)6C , (6.14)

+C =
√
�2+C−1 + (1 − �2)(6C)2, (6.15)

where �1 and �2 are exponential decay rates. In addiction, in Adam, each pa-
rameter to be learned has its own adaptive learning rate. The formula to update
the parameters � is:

�C+1 = <C − �
√

1 − �2

−�1

<C

+C + &
. (6.16)

The default values of �1, �2 and & are suggested to be set to 0.9, 0.999 and 10−8,
respectively. In practice, Adam is a common choice in the context of ML as it
performs well and can be favourably compared to other adaptive learning rate
algorithms [50].

6.5 DERIVATIVE-FREE OPTIMIZATION

Derivative-free optimization is a discipline ofmathematical optimization that
allows to 昀椀nd the optimal solution even though the gradient of the objective
function is not available (for instance in cases in which it is too much di昀케cult
to compute or it does not exist). In this 昀椀eld, there are two strategies that can
be implemented. The 昀椀rst method follows empirical rules and, thus, it is based
on the experience with the use of methods that have already been used in other
contexts and that achieved signi昀椀cant results. Since the theoretical support for
heuristic methods is usually weak, sometimes it is more desirable to adopt an-
other method that consists in 昀椀tting a function according to the samples of the
objective function, attaching some constraints to the considered search space in
order to derive the samples.
To sum up, derivative-free algorithms do not require the detailed knowledge of
the functional relationship between the parameters to be adjusted (optimized)
and the loss function being minimized that is required in gradient-based algo-
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rithms.
In the next Section, we will describe the Simultaneous Perturbation Stochastic
Approximation (SPSA) algorithm, that we used in this work. Even though in
the context of a band-limited AWGN channel, the derivative can be computed
easily, we decided to implement this algorithm in the view of expanding this
work to more complex (realistic) channels.

6.5.1 SPSA

Simultaneous Perturbation Stochastic Approximation (SPSA) [47], [48] is an
optimization algorithm that belongs to the class of stochastic approximation
derivative-free algorithms. Thismethod involves an iterative procedure inwhich
the parameters to be optimized are updated on the basis of the estimation of the
gradient obtained from a randomperturbation of the parameters of the objective
function.
In order to understand how it produces the estimates of the gradient and how
it updates the parameters, let us provide a summary of it.

• Step 1: Initialization of the parameters. Counter : is set to 1. 0, 2, �, 
, and
� are initialized with non-negative coe昀케cients, following the guidelines
provided by the author [46]. Then they are used to compute the gain se-
quences 0: =

0
(�+:)
 and 2: =

2
:� ; this choice is very critical to the perfor-

mance of SPSA.

• Step 2: Simultaneous perturbation vector. A ?-dimensional random pertur-
bation vectorΔ: is generated from a zero-mean probability distribution. A
straightforward (and theoretically-robust) choice is that of using aBernoulli
±1 distribution where ± 1 outcomes have equal probability (1

2
).

• Step 3: Evaluate the loss function. At the :-th iteration, the current param-
eter vector is �: . Perturbing its value with the computed simultaneous
perturbation vector Δ: , we obtain two versions of the loss function ℒ(·):
H(�̂: + 2:Δ:) and H(�̂: − 2:Δ:).

• Step 4: Approximate the Gradient. The approximation of the gradient is gen-
erated on the basis of the two obtained loss functions as follows:

6̂:(�:) =
H(�̂: + 2:Δ:) − H(�̂: − 2:Δ:)

22:



Δ−1

:1
Δ−1

:2
...

Δ−1

:?



(6.17)

where Δ:8 is the 8-th component of the Δ: vector.
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• Step 5: Update � estimate. Then the estimation of the parameter � at itera-
tion : + 1 is computed as follows:

�̂:+1 = �̂: − 0: 6̂:(�̂:). (6.18)

• Step 6: Iteration or end condition. Go back to Step 2) replacing : with : + 1.
If several successive iterations exhibit only a little change or the maximum
allowable number of iterations has been reached, the algorithm terminates.

Relying on these guidelines, we implemented it in our framework.
Even though it is di昀케cult to compare gradient-based with gradient-free meth-
ods due to the di昀昀erent information needed, as a general rule, the gradient-
based algorithms will reach the convergence faster than the gradient approx-
imations (assuming to measure the speed with the number of iterations). In
particular, it is possible to derive the optimum rate of convergence that depends
on how much the obtained parameter estimate is far from the true optimal pa-
rameter �. Given : the number of iterations, it is proportional to :− 1

2 for the
gradient-based algorithms and to :− 1

3 for gradient-free algorithms, thus, as we
said, the former is faster than the latter because of the additional information
that is used in gradient-based algorithms [48].
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7
System basic structure and

conventional equalization method:
design and analysis

7.1 OUTLOOK ON THE WORK

The simulation software developed for this study is written in Python. The
contents include Jupyter notebooks and code modules. For the ML-based part,
we used the Pytorch framework, SciPy and other Python libraries.
The project objectives are 1) the design and 2) the validation of a non-conventional
ML-based technique aimed at compensating for the distortion of a transmitted
signal caused by a communication channel with impairments.
To achieve these goals, in this work, we will implement two di昀昀erent setups:

1. the 昀椀rst is the actual ML-based structure whose purpose is to optimize
the PS and/or MF to compensate for the channel impairments without
implementing conventional digital signal processing blocks/algorithms;

2. the second is a more conventional setup with a post-equalizer that will be
used as a benchmark for the ML-based solution.

The ML framework will be presented in detail in the next Chapter 8. While
here, in Chapter 7, we will present the conventional setup that we will use to
validate the proposed ML-based framework. More speci昀椀cally, in this Chapter,
昀椀rst, we will describe the design of the communication system with the AWGN
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plemented BPSK, QPSK and 8-PSKmodulation formats with 2, 4 and 8 symbols
respectively. We will refer to the constellation symbols with the following nota-
tion: {B"%( 

:
}:=1,...," .

In Figure 7.3, we show the constellation plot of the QPSK a昀昀ected by di昀昀er-
ent values of AWGN. With more complex simulation setup, from now on, we
will show only QPSK simulation and for results connected to IQ samples (for
instance, the discrete-time waveforms or the Eye-diagrams) we will show the
In-Phase samples only for simplicity, as the Quadrature samples lead to compa-
rable results.

UPSAMPLING

Upsampling is used in pulse shapingwith the aimof creating smootherwave-
forms for the transmission through the medium.
In order to map the symbols {B:} ∈ C to their upsampled version, we took the I
and theQ components individually andwe appended B?B−1 samples initialized
to zero to each of them before the pulse shaper at the transmitter.

PULSE SHAPER

In communication systems, the pulse shape should provide the two follow-
ing functionalities:

• generating band-limited channels;

• reducing ISI.

Indeed, the pulse shaping allows to minimize sharp transitions of the sig-
nal, bounding the frequency components within a certain range, with the aim
of achieving spectral and power e昀케ciency [14]. In addiction, the pulse should
have a speci昀椀c shape such that it should exhibit zero crossing at all the sampling
points except one, i.e. the instant that corresponds to the symbol associated to
the pulse [30]. This condition is formalized by the Nyquist criterion, that pre-
vents from ISI, avoiding the overlapping of adjacent symbols at the optimum
sampling point.

Matched Filtering paradigm It is convenient to split the pulse shaping opera-
tion equally between the transmitter and the receiver since both can take advan-
tage of the low-pass 昀椀lter property of the pulse shaping: at the transmitter it is
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desirable to have a low-pass 昀椀lter to reduce the amount of spectrum used by the
signal and at the receiver the low-pass 昀椀lter is advantageous to remove from the
signal as much noise/interference as possible. This strategy is called ”matched
昀椀ltering”.
In our setup, we used a Root-Raised Cosine (RC) pulse shape that is the most
typically used since it provides a good tradeo昀昀 between spectral e昀케ciency and
design complexity [24], [59]. We also adopted the matched 昀椀ltering paradigm,
splitting the RC into two identical RRC pulse shapes.
In the next section, we will provide the function of the RC, from which we will
derive the RRC formula.

THE RC AND THE RRC PULSE SHAPES

RC昀椀lter Given)B , the symbol period, and �, the roll-o昀昀 factor, in the frequency
domain, the RC 昀椀lter is described by the following formula:

�'�( 5 ) =




1, | 5 | ≤ 1−�
2)B

1

2

[
1 + cos

(
�)B
�

[
| 5 | − 1−�

2)B

] )]
,

1−�
2)B

< | 5 | ≤ 1+�
2)B

0, otherwise.

(7.1)

The RC plays a fundamental role in digital communication system because of its
ISI-free property (known as Nyquist theorem), that can be expressed as follows:

ℎ'�(=)B) = �(=) =



1 = = 0

0 = = ±1,±2, ...
(7.2)

where �'�( 5 ) is the frequency response and ℎ'�(C) is the time response of the
channel.
As we said in the previous section, in practical communication systems, the RC
昀椀lter is split between the transmitter and the receiver.

Splitting a Filter in Half The combination of the PS and of the MF is a con-
volution. Recalling that the convolution corresponds to a multiplication in the
frequency domain:

ℎ''�(C) ∗ ℎ''�(C) ←→ �''�( 5 ) · �''�( 5 ), (7.3)
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in order to split the RC 昀椀lter between the transmitter and the receiver side, it
is possible to take the square root of the frequency response. Therefore, the
frequency response�''�( 5 ) of the transmitted waveform ℎ''�(C) should be the
square root of �'�( 5 ), i.e.,

�''�( 5 ) =
√
(�'�( 5 ))

ℎ''�(C) = ℱ −1(�''�( 5 ))
(7.4)

where ℱ is the Fourier transform and ℱ −1 its inverse.
Splitting the RC 昀椀lter between the transmitter and the receiver allows to take
advantage of the band-limiting capability of the RRC. Moreover, because of the
associative property of the convolution, their combined e昀昀ect is the same as a
single RC 昀椀lter and, thus, the ISI-free condition is met.

RRC 昀椀lter Computing the inverse Fourier Transform of Equation 7.4, we ob-
tain the impulse response of a RRC:

ℎ''�(C) =




1

)B

(
1 + �( 4

�
− 1)

)
, C = 0

�

)B
√

2

[(
1 + 2

�

)
sin

(
�

4�

)
+
(
1 − 2

�

)
cos

(
�

4�

)]
, C = ±)B

4�

1

)B

sin

[
�
C

)B
(1 − �)

]
+ 4�

C

)B
cos

[
�
C

)B
(1 + �)

]

�
C

)B

[

1 −
(
4�

C

)B

)2
] , otherwise

(7.5)

The pulse shape that is used in real setup is the discrete-time version of the
RRC pulse shape [58]. As an example, in Figure 7.4, we can see a RRC with
roll-o昀昀 � = 0.6 and )B = 0.25 s that we selected for several simulations.

PS ENERGY NORMALIZATION

In our AWGN channel setup, the RRC was normalized in order to have uni-
tary energy �ℎ''� . As a result, the energy of the raw symbol and its upsampled
version after the PS will be the same.
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per symbol to noise power spectral density ratio. In order to be consistent with
all the modulation formats, we de昀椀ned the energy per symbol to noise power
spectral density ratio as the ratio between the energy of a symbol and the power
spectral density of the noise, considering both I and Q channels:

�B
#0

=
symbol energy

noise power spectral density . (7.7)

Given that the symbol energy is �B is 昀椀xed to 1, the PSD of the noise #0 can vary
to obtain a speci昀椀c value of the SNR in a range that spans from 0 dB up to 40
dB. The selected SNR range provides an insight into SER values that are much
smaller than the precision that we are able to provide in our simulations that is
around 10−5. This value was dictated by the order of magnitude of the samples
we used within the simulations. Indeed, because of the limited computational
resources, we fed our system with samples of 105 symbols at maximum. There-
fore, assuming to use the QPSK modulation format, the SNR useful range for
the computation of the SER goes from 0 dB to 12 dB because when the SNR is at
12 dB, the SER value is in the order of 10−4 on the AWGN channel (as we can see
in Figure 7.2). However, even though we were not able to compute an accurate
SER beyond this SNR value, we were still able to evaluate other metrics, such
as the MSE loss and the Eye-diagrams and, thus, we decided to train and to test
our model up to 40 dB, to get insight into higher SNR values where the impact
of noise is much lower.

MATCH FILTER AND DOWNSAMPLING

Going on with the scheme we have in Figure 7.1, after that the AWGN block
was added to the signal, we convolved the noisy signal with the MF that is a
RRC matched with the PS. Afterwards, we downsampled the signal, selecting
only one sample per symbol.
Downsampling is an operation used in signal processing in which the sampling
rate of a discrete-time signal is reduced by removing samples. In this case, we
downsampled the received signal A(:)):∈Z of a factor of B?B = 32, and, thus, we
only maintained the samples A(< · B?B · ))<∈Z .
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Property Symbol Value
Symbol-rate 'B 4 Hz
Symbol time )B

1

'B
= 0.25 s

Roll-o昀昀 factor � 0.6
Sampling frequency 5B0<?;8=6 128 Hz
Samples per symbol B?B 32

RRC length !''� 311
Spectral width of RRC �''�

1

2

1+�
)B

= 3.2 Hz
LPF order >A34A 2

LPF critical frequency 52A8C820; [0.5, 0.295, 0.273] · �''�
Energy per symbol to noise PSD �B

#0
[0, 1, ..., 19, 20] dB

Table 7.1: Simulation parameters.

SYMBOL DETECTION

In order to detect the transmitted symbol, we applied the Maximum Likeli-
hood criterion that in the context of AWGN is equivalent to the Minimum Dis-
tance criterion [3].
Therefore, given the constellation symbols {B"%( 

:
}:=1,...," , we computed the

Euclidean distance between each symbol of the constellation and the received
IQ samples, obtained from the two downsampled signals A(< · B?B · ))<∈/, one
relative to the I and one to the Q channel. The symbol with the minimum dis-
tance will be selected as the detected symbol {B̂<}<=1,..,; .

7.3 SIMULATION PARAMETERS

In the developed framework, there are many parameters that we need to
set in order to run the simulation. Some of them were chosen quite arbitrar-
ily since it was su昀케cient that the ratio between them was matched. In Table 7.1,
we present a speci昀椀c choice of parameters that we used to run the simulations
whose outcomes are displayed in the Figures of this Chapter. The 昀椀rst param-
eters we set were the symbol rate 'B and the roll-o昀昀 factor � of the traditional
RRC that we have at the PS and MF of the AWGN channel simulator. The roll-
o昀昀 factor � is a measure of the excess bandwidth occupied by the transmitted
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waveform, whose spectral width can be computed as follows:

�''� =
1

2

1 + �

)B
= 3.2�I. (7.8)

Afterwards, we set the sampling frequency parameter 5B0<?;8=6 , that is the rate
at which the symbol is sampled at the receiver. In the design of a real communi-
cation system, an essential condition that has to be matched is the Nyquist sam-
pling theorem that states that the sampling frequency 5B0<?;8=6 must be greater
or equal to twice the bandwidth �''� occupied by the considered signal. Ap-
plied to this speci昀椀c scenario, we can express it as follows:

5B0<?;8=6 ≥ 2�''� . (7.9)

In order to operate in a regime in which the Nyquist sampling theorem is met,
we set 5B0<?;8=6 to 128 Hz. As a result, we will have 5B0<?;8=6

'B
= 32 samples per

symbol and, thus, the Nyquist sampling theorem will be matched: 128 Hz ≥ 6.4

Hz. Another important aspect to evaluate in the design is the condition for zero-
ISI. In the traditional AWGN channel scenario, this condition, i.e. the Nyquist
criterion, is set by design because we selected the RC pulse shape - split as a
RRC at transmitter and a matched RRC at the receiver - that belongs to the fam-
ily of the Nyquist pulse shapes and has been designed exactly to achieve this
purpose [59]. As we discussed in the previous section, RC meets indeed the
zero-ISI condition as it exhibits zero crossing at all the sampling points except
at the optimum sampling point of the considered symbol [30].
Let us disclose that, in the design of the ML-based framework, the condition for
zero-ISI will be a fundamental condition to satisfy. Indeed, in order to achieve
the purpose of optimizing the PS and/or the MF, the convolution between the
two 昀椀lters and the LPF impulse response has to be a Nyquist pulse shape able
to avoid the overlapping of adjacent symbols at the optimum sampling point,
preventing from intersymbol interference.
Going back to the AWGN channel setup, since both the sampling theorem and
theNyquist condition aremet in our design, at the receiverwewill prevent alias-
ing and also maintain the integrity of the signal.
Aswe discussed in Chapter 4, currently, there is a limited knowledge about opti-
mal data representation, loss function, and training strategies, etc., in the context
of ML applied to Digital Communications. In absence of previous expertise, we
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spent a lot of time to 昀椀nd the proper length of 昀椀lters to represent the data. On
the one hand, the number of taps should be su昀케cient to represent the signals.
For instance, the RRC is an in昀椀nite time signal, but since we are representing
it in a 昀椀nite system, we accurately tuned its length to show enough ripples to
clearly see the e昀昀ect of ISI in the band-limited channel. We followed the recom-
mendations we found in [58] that states that - for realizability considerations -
the discrete-time transmit pulse shaping 昀椀lter and receiver matched 昀椀lter with
a modulation with a small cardinality (as in the considered case) should have
at least a length that spans ±4)B in order to perform a proper simulation. In the
considered case, ±4)B corresponds to ±4 · 32 = ±128, that is 256 samples in total.
For this reason, we started to explore some possible values for the length of our
昀椀lter starting from 256.
On the other hand, at the same time we didn’t want to employ a too large 昀椀l-
ter, 昀椀rst, because the adaptive FIR 昀椀lter would have had unnecessary taps to
learn (and we do not want to overcomplicate the problem) and this would lead
to undesired results for the simulation and also not desirable in practice, since a
longer FIR length implies a higher hardware implementation cost.
Many choices and combinations were explored, but for the purpose of doing a
complete analysis, we selected a speci昀椀c combination of parameters using the
GridSearch() algorithm. As an example, in Figure 7.5 we plotted the SER com-
puted at SNR = 12 dB for di昀昀erent lengths of the trainable FIR 昀椀lter placed at
the transmitter. As we can see, the length of the trainable 昀椀lter in昀氀uences the
SER. At !''� = 311 we achieved a slightly lower SER than the other consid-
ered values and for this reason we decided to use it in our simulation. Similar
considerations were done for other parameters like the hyperparameters of the
ML-framework.

7.4 BAND-LIMITED AWGN CHANNEL SETUP

In order to emulate a bandwidth-limited receiver and tomove to amore real-
istic - but still easy to understand - channel, we added a LPF to the basic system
with AWGN. Figure 7.6 shows the block diagram we used in this new setup.
In general, in order to characterize a LPF, we need to specify the cuto昀昀 frequency
52DC> 5 5 , that is the frequency at which the 昀椀lter gain is 1√

2
(that corresponds to

−3 dB) with respect to the passband (unitary) gain (i.e. 0 dB). Depending on the
value of 52DC> 5 5 with respect to the bandwidth of the transmitted signal (in our
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8
ML framework: implementation and

discussion

In this work, we propose a ML-based framework aimed at providing equal-
ization capabilities in a channel with impairments. The channel we used to test
the proposed framework is the well-known band-limited AWGN channel, but,
in principle, this preliminary study could be extended to more complex sce-
narios where the available equalization methods haven’t achieved the optimal
solutions yet and, thus, where ML could enable a performance improvement.
Starting from the structure we presented in Chapter 7, instead of performing the
equalization via conventional techniques, we replaced the PS and/or MF blocks
with trainable FIRs 昀椀lters.
First, we will describe the design of the proposed ML model and explain the
methodology we used to perform the training.
Afterwards, we will present the results we obtained expressed in terms of met-
rics like the SER and the Eye-diagrams. Then, we will compare them with the
outcomes of the post-equalizers implementations in order to achieve our 昀椀nal
goal: proving the e昀昀ectiveness of the proposedML-based framework and, even-
tually, validating it.
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8.1 ML-BASED METHODOLOGY

Since we are working on a Linear Time-Invariant (LTI) system a昀昀ected by a
LPF and by additive white Gaussian noise, we implemented a ML framework
that can be formally de昀椀ned as a linear regression model, capturing linear rela-
tionships between feature data and target data.

8.1.1 PROBLEM OUTLINE: A LINEAR REGRESSION MODEL

In this work, our communication system will be modelled as linear regres-
sion model in which we will learn the parameters to achieve the optimization
the Pulse Shape to be injected into a band-limited AWGN channel.
Given the regression equation, the training is aimed at 昀椀nding the linear depen-
dence between two or more independent and dependent variables expressed
quantitatively by the following mathematical expression:

ŷ = �0 + �1G1 + �2G2 + ... + �=G=

=

=∑

9=0

�9G 9

= )
)
x

(8.1)

Applied to our communication scenario, the vector ) represents the FIRweights
that we want to learn; the dependent variable Ĥ will be the estimate of the re-
ceived symbols; G1, G2, ..., G= , the n-dimensional independent variable repre-
sents the samples of the transmitted signal captured before the convolutionwith
the FIR that we want to learn; 昀椀nally, the multiple linear regression model aims
at 昀椀tting the relationship between the received symbols Ĥ and the samples G of
the signal. In the formal de昀椀nition, �0 is the regression constant and�1, �2, ..., �=

are the regression coe昀케cients.
Finally, the Mean Squared Error will be our loss function ℒ(�) that can be ex-
pressed as follows:

ℒ(�) = 1

<

<∑

8=1

(Ĥ(8) − H(8))2 (8.2)

where< is the cardinality of the set Ĥ that contains the estimated symbols at the
receiver. Therefore, < represents the length of the message that we transmitted
through the channel.
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THREE DIFFERENT SCENARIOS

In communication systems, the PS is usually 昀椀xed to a well-known wave-
form, such as the RRC, and the system is provided with other blocks that imple-
ment strategies to compensate for distortion, like post-equalization.
In this work, the system will not be provided with equalizers, but the pulse
shaper and/or the matched 昀椀lter will be replaced by a linear model that we will
train in order to learn the optimum PS and/or MF to be injected into the chan-
nel.
In other words, we want to learn the parameters of a FIR able to compensate
for the distortion introduced by the band-limited AWGN channel. In the con-
ventional AWGN channel scenario, there exists a well-known theory and the
solution to avoid ISI can be found analytically. However, in this work, we are
interested in a novel ML-based methodology to understand whether the linear
model, i.e. one single FIR that we train, can replace both the Pulse Shaper and
the Equalizer components.
With this aim, we will analyze three di昀昀erent scenarios:

1. Learning the parameters at the transmitter with a RRC at the receiver;

2. Learning the parameters at the receiver with a RRC at the transmitter;

3. Learning the parameters at the transmitter and at the receiver jointy.

In Figure 8.1, we can see the setups for the ML-based framework of the three
scenarios, that will be described thoroughly in the next paragraphs.

Energy normalization In Chapter 7 we normalized the energy of the RRC of
the conventional AWGN channel simulator to 1. Similarly, a crucial aspect that
was considered in the ML part was the energy normalization of the FIR weights
to be learned. We introduced a normalization block in order to ensure that the
learning weights have always an energy equal to 1 at each execution of the For-
ward function in our model. As a result, we will be consistent with the value
of the SNR given to the model as an input and we will not alter it during the
simulation. Without this normalization, we obtain outstanding performances at
the receiver, but we are cheating the results because this is the consequence of
an energy enhancement and not the result of an energy-e昀케cient optimization of
the parameters of the FIR 昀椀lter.
In Figure 8.2 - that is relative to Scenario 1) - we can see that the FIR 昀椀lter weights
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wewant to 昀椀x, that include the SNR at which the signal is transmitted and, thus,
the power spectral density of the noise #0 that a昀昀ects the signal along the prop-
agation, the number of symbols ; that we want to simulate, the parameters that
de昀椀ne the RRC such as the symbol period )B and the roll-o昀昀 �, etc. At the be-
ginning, we initialized the parameters to random values taken from a Gaussian
distribution with zero mean � = 0 and standard deviation � = 1. Then, follow-
ing suggestions of the authors of [32] - that encourage to take advantage of the
channel knowledge to facilitate the learning process - we initialized the param-
eters of the Pulse Shaper and/or Matched Filter (depending on the considered
scenario) to a conventional RRC.
After the de昀椀nition of themodel and the implementation of its Forward function
with all the pre-de昀椀ned blocks inherited from the conventional band-limited
AWGN channel implementation, in order to implement the learning procedure,
we set a loss criterion, e.g. the MSELoss() provided by the Pytorch Library, and
we selected an optimizer. In our work, we implemented both a gradient-based
and a gradient-free optimization algorithms that we described in Chapter 6. In
a gradient-based method, the update of the parameters of the trainable FIR is
made possible by the well-known SGD optimizer or by Adam optimizer that
rely on the Backpropagation algorithm to compute the gradient. Whereas, in
gradient-free methods, we selected the SPSA stochastic optimizer that uses an
approximation of the Gradient to update the parameters.

PERFORMANCE OF GRADIENT-BASED AND GRADIENT-FREE OPTIMIZERS IN THE CON-
SIDERED SCENARIO

In this section, we will do some considerations about Adam algorithm, as
representative of the gradient-based optimizers, and SPSA algorithm, that is in-
stead a gradient-free optimizer.
As we discussed in Chapter 6, gradient-free optimizers can be essential in use
cases in which it is not possible to compute the derivative of the loss function
ℒ(·), for instance when it is too complex to calculate or when it does not exist.
In the considered case of the band-limited AWGN channel, there are no issues
in the computation of the derivative of the loss function with respect to the FIR
parameters that we want to learn and, thus, a gradient-free method would not
be necessary. However, in the view of extending this work to more complex
scenarios, such as the short-reach optical link we presented in Chapter 2, we
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decided to implement also a gradient-free optimizer, i.e. SPSA. The algorithm
was very sensitive to the choice of hyperparameters whose selection was more
di昀케cult than in the case of Adam, where we just need to set the learning rate.
Finally, following the suggestions we found in [46] about the initialization of the
hyperparameters (0, 2, �, 
, and � that we presented in Chapter 6), the imple-
mentation of SPSA succeeded and the algorithm was able to converge.
Assuming to evaluate the complexity of an algorithm with the number of iter-
ations needed to reach the convergence, the SPSA algorithm took much more
iterations than the considered gradient-based algorithm (in this case Adam).
In case in which the computation of the derivative has a high computational
complexity, using SPSA is convenient as it approximates the derivative instead
of computing it. However, since it relies on an approximation, it will take more
iterations to converge. In the context of a band-limitedAWGNchannel, avoiding
the computation of the derivative is not advantageous and, thus, in the consid-
ered case, we only experience the drawback of having more iterations to reach
the convergence without any improvement in terms of the cost of a single itera-
tion since the derivative itself is not so complex to compute.
As a proof of concept, in Figure 8.3, we plotted theMSE loss computed at the end
of each batch for both Adam (in orange) and SPSA (in blue) optimizers that we
obtained for Scenario 1) (learning the parameters at the transmitter). These are
the results of speci昀椀c simulations where the model was fed with input datasets
of the same size; also the number of epochs and the batch size were the same
in the two implementations. In the considered example, Adam converges quite
fast, after a few hundred of iterations, while SPSA reaches the convergence after
the 3000-th iteration, continuing to exhibit a slightly oscillatory and noisy be-
haviour.
To sum up, we selected the same simulation parameters except the optimizer
and then we compared the obtained MSE loss. To prove the higher complexity
of SPSA algorithm in the considered case, we have shown that the SPSA MSE
loss is noisier and takes more time than the Adam MSE loss to converge.
Given the limited computational resources we had, since in our speci昀椀c case it
is not strictly necessary to use a gradient-free optimizer, for further analysis, we
decided to use only gradient-based optimizers like Adam and also SGD, that led
to similar results in terms of complexity.
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Strategies andmethods: In this paragraph, we will describe more in detail the
strategies that we used to train our model within the simulations.
At the beginning, the learning of the parameters was performed on an arti昀椀cial
channel characterized by the absence of the AWGN and by the only presence of
the Bessel 昀椀lter. In this simulation, we were able to compensate completely for
the penalty introduced by the LPF, i.e. converging to a zero-forcing approach.
After this preliminary simulation with a noiseless band-limited channel, we
gradually started to introduce the noise. We adopted the following strategy:
at the beginning of a simulation with a new SNR value, the weights of the 昀椀lter
to be trained were initialized to the values of the parameters that were learned
in the previous iteration. We started from the case SNR = 40 dB and then we
iteratively decreased the value of the SNR of a step of 5 dB. Therefore, we simu-
lated the cases with SNR equal to 35 dB, 30 dB, 25 dB and 20 dB. As soon as we
reached the case SNR = 20 dB, we started proceeding slowly, training the model
decreasing the SNR of one unit until we reached 0 dB.
This approachwas suggested by the authors of [15], that state that, in the context
ofML applied toDigital Communications, it is convenient to use the preliminary
knowledge about the communication system to improve the performance of the
model.

8.2 SER PERFORMANCE ANALYSIS

In this section, we will describe and evaluate the computed SER for each of
the three scenarios individually.

LEARNING THE PARAMETERS AT THE TX

In the 昀椀rst scenario, the aim is to learn the parameters of the PS in order to
compensate for the channel impairments. At the receiver we set a conventional
RRC 昀椀lter.
The trainable FIR that we want to learn should be the convolution between the
RRC 昀椀lter and a pre-distortion block able to invert the distortion introduced by
the channel. In Figure 8.5, we can see the SER vs SNR curve in this context: the
training is able to mitigate the distortion introduced by the channel, but there
is a remaining gap with respect to the AWGN-only case. In this scenario the
ML model should be able to learn the convolution of two 昀椀lters in one shot. We
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The obtained SER is shown in Figure 8.7. Observing the Figure, we can see that
for low SNR values the e昀昀ect of the learned parameters is even worsening the
performance that the system would have had without any compensation strat-
egy. Whereas, as soon as the SNR increases, an improvement can be noticed,
but anyway the performance is the worst among the three considered scenarios.
In this scenario, we are trying to learn the convolution of three 昀椀lters in one
single step - thinking about a traditional implementation, two RRCs and a post-
equalizer split between the transmitter and the receiver - one of which is placed
at the transmitterwhere there is no channel knowledge and this task seemsmore
challenging to be performed.

8.3 ANALYSIS OF THE THREE SCENARIOS

In this section, we will describe more in detail the results we achieved in the
three scenarios showing the obtained FIR parameters in time domain and in fre-
quency domain for several SNR values and also Eye-diagrams at SNR = 40 dB.
Furthermore, we will compare the three ML outcomes between each other.
The best result and actually the only one that is able to compensate completely
for the channel impairment is Scenario 2), where the learned FIR is placed at the
receiver and it acts as the convolution between the MF and the post-equalizer.
Its performance matches the performance of the post-equalizer implemented at
sample-level, with the di昀昀erence that it incorporates into one single block the
two components of the conventional setup. Whereas, the performances of the
other two scenarios - learning the parameters at the transmitter (Scenario 1) and
at the transmitter and at the receiver jointly (Scenario 3) - are quite far from the
AWGN channel SER curve. In Figure 8.10, 8.11 and Figure 8.12, we can see the
shape of the pulses (time domain) and their magnitude responses (frequency
domain) captured at the receiver, thus they are the results of the convolution
between the PS, the LPF and the MF for all the three considered scenarios, in
time and frequency domain respectively.
Let us compare these plots with the ideal RC that we would have obtained if we
did not have the LPF in between.
In Scenario 1), observing the time domain plot, the learned waveforms are quite
similar between each other and, decreasing the SNR,we can notice a broadening
e昀昀ect in which the peak exhibits a slightly lower energy and, thus, the energy
of the pulse - normalized to be equal to 1 - is spread on a larger time interval.
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Let us recall the Nyquist criterion: it says that there must be zero crossings in
correspondence of all the peaks adjacent to the considered symbol to avoid ISI.
Looking at the time domain plot (Figure 8.10a), we can notice that in this case
the RC’s and the learnedwaveforms zero crossings are notmatched. This results
into a poor performance in terms of SER that proves that the learned waveforms
are weakly able to mitigate the e昀昀ect of ISI. Observing the frequency domain
plot (Figure 8.10b), going towards lower SNR values, we can see that the high-
est frequencies exhibit a progressively lower ampli昀椀cation. Finally, comparing
them with the RC spectrum, in general, we can notice that the spectrum of the
learned waveforms lacks the high frequency components that would have al-
lowed to reproduce the original RC pulse shape. In addiction, observing the
Eye-diagram in Figure 8.9a - even though it has a shape that recalls the shape
of the target one (Figure 8.8) - we can notice that the learned waveform is not
accurate and the ISI is still present. Indeed, the ISI implies the reduction of the
opening of the eye and hence the detector will be able to recover the transmitted
symbol only in presence of a small amount of addictive noise. Moreover, the
ISI is also responsible for the distortion of the position of the zero crossings that
cause the system to be sensitive to synchronization errors [35].
Scenario 2) (Figure 8.11) is the only one that provides an almost perfect compen-
sation of the signal. However, as we can see from Figure 8.11a, the learnedwave-
forms do not match perfectly with the original RC waveform and they exhibit
di昀昀erent shapes depending on the SNR value: we notice that the learned spec-
trum (Figure 8.11b) implements the ampli昀椀cation of the high frequency compo-
nents; this ampli昀椀cation increases with the decrease of the SNR. Such condition
is similar to what we experienced with the post-equalizers’ setup: at the be-
ginning, we implemented a zero-forcing equalizer that was able to invert the
channel frequency response with the collateral e昀昀ect of enhancing the noise (re-
member Figure 7.16). Similarly, the learned spectrum in Scenario 2) is such that
the high frequencies have a larger magnitude as the SNR decreases. Comparing
the Eye-diagram (Figure 8.9b) with the target one (Figure 8.8), we can state that
the two shapes match each other. Even though the learned waveform is not as
accurate as the target, it is accurate enough to ensure an almost perfect compen-
sation for the channel impairments as we saw in Figure 8.6.
Di昀昀erently from the other Scenarios, in Scenario 3) (Figure 8.12), we can notice
that the learnedwaveforms are far from the ideal RC: instead of having a fast de-
cay of the pulse - that is generally good to reduce the intersymbol interference
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- they exhibit several ripples. As a result, the available energy is more spread
along the taps instead of being concentrated on the main peak. Furthermore,
the learned waveforms exhibit several zero crossings that are unfortunately not
well-tuned as there is still a lot of interference between symbols at the receiver
and, thus, a high SER, that is the worst among the three considered Scenarios.
Looking at the spectrum of the learned waveforms (Figure 8.12b), we can real-
ize that they are quite far from the desired one: the high frequency components
should be much more enhanced to mimic the RC spectrum. Moreover, we can
notice that the lower the SNR, the lower the ampli昀椀cation of the high frequency
components. For instance, when SNR = 0 dB, the learned spectrum shows that it
does not have high-pass 昀椀lter properties, while it ampli昀椀es low frequency com-
ponents and, thus, worsens the distortion of the signal. Indeed, remembering
the SER curve in Figure 8.7, at low SNR, Scenario 3) showed a worse perfor-
mance than the band-limited AWGN channel with RRCs at the Transmitter and
at the Receiver. Indeed, in the time domain, with the decrease of the SNR, we
can see that the learnedwaveform ripples are more evident: they carrymore en-
ergy that is ”subtracted” from the main peak (that is hence slightly smaller) and
that a昀昀ects the adjacent symbols. As a result, we experience a worsening of the
performances and, thus, a higher SER. For what concerns the Eye-diagram (Fig-
ure 8.9c), we can notice that the waveform’s shape is di昀昀erent from the shapes
that we see in the other scenarios: as we said, it exhibits di昀昀erent ripples and
zero crossings, that apparently do not coincide with the zero crossings that we
should have if theNyquist criterionwasmet given the bad performance in terms
of SER that we obtained in this scenario. To sum up, in Scenario 1) and Scenario
3), the proposed ML framework mitigates only partially for the channel impair-
ment. Indeed, the SER exhibits only a weak improvement, except for low SNR
values in Scenario 3)where the training evenworsens the performance. Between
these two scenarios, the learning at the TX (Scenario 1) exhibits a slightly better
performance than the end-to-end learning scenario (Scenario 3). The evaluation
of the Eye-diagrams in all the three scenarios asserted this analysis.
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characteristic is unknown.

Scenario 3) with the post-equalizer at symbol-level. With this analysis, our
aim is that of providing a validation of the proposed ML-based setup. Look-
ing at the SER that we obtained in Figure 8.13, as we discussed, we can see that
the post-equalizer at symbol-level is barely able to compensate for the combined
e昀昀ect of the noise and of the bandwidth limitation of the channel. The more tra-
ditional implementation of the post-equalizer provides us a benchmark, i.e. the
post-equalizer at symbol-level can help us to interpret and to give an explana-
tion to our results.
In the considered symbol-level post-equalizer setup, we achieved only a weak
mitigation of the penalties induced by the combination of the LPF and theAWGN.
Aswe discussed in Chapter 8, if the communication channel is a昀昀ected by severe
intersymbol interference, a symbol-level post-equalizer might not be su昀케cient
to ensure the channel equalization as well as the sample-level equalization does
[35].
Indeed, due to the downsampling operation, we loose a big amount of informa-
tion and this could be responsible of the fact that we are not able to recover for
the impairments at the receiver.
The obtained results with the symbol-level post-equalizer can help us to provide
a possible explanation to the outcomes of the proposedML-framework, increas-
ing their interpretability. We can compare the SER we got in the post-equalizer
symbol-level implementation with the SER of Scenario 3). As we can see in Fig-
ure 8.15, Scenario 3) of the ML framework exhibits a SER that is comparable to
the symbol-level post-equalizer SER. Let us describe the two curvesmore specif-
ically. We can notice that the symbol-level equalizer is able to provide a very
weak mitigation of the performance at any SNR value. Whereas, Scenario 3) has
a slightly di昀昀erent behaviour. For low SNR values (more precisely from 0 dB
up to 10 dB), the learned FIR parameters even worsen the channel’s distortion,
resulting in a SER that is higher than the SER we have without implementing
any equalization method. Within the learning process, in such scenario, the dis-
tortion is so severe that the learning over昀椀ts it, enhancing the noise, even more
than what happens in the post-equalizer symbol level scenario. Going on with
the analysis, considering higher SNR values (starting from 11 dB), we can notice
that the post-equalizer and Scenario 3) SER exhibits a similar trend, with the
ML-based framework SER slightly better than the results that the post-equalizer
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was a time-consuming task. At the beginning it was performed ”at hand”, but
then we implemented it with the GridSearch algorithm to tune the parameters
more systematically.
A parameter that we maintained for every setup we simulated is the loss func-
tion, i.e. MSE. In future works, other frameworks can be explored, for instance
making a di昀昀erent choice of the loss function, given that ML is very sensitive to
the choice of parameters, hyperparameters and loss function used in the simu-
lations [44].
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9
Conclusions and Future Work

In this work, we tested and validated a non-conventional ML-based frame-
work aimed at the equalization of a channel with impairments. For the goal of
this work, the channel that we selected was the band-limited AWGN channel,
thus, a simple source of impairment, that allowed us to easily implement more
conventional equalizationmethods - such as post-equalizers - to benchmark and
validate the proposed ML-based framework.
The 昀椀rst step was the implementation and the validation of a traditional AWGN
channel simulator, provided with a RRC Pulse Shape 昀椀lter at the transmitter
and its corresponding Matched Filter at the Receiver. Then, as a source of im-
pairment, we added a Bessel LPF that introduced distortion into the channel,
causing intersymbol interference. Instead of adopting traditional equalization
methods (like FFE or DFE), in order to compensate for the ISI, we proposed
a non-conventional framework in which we replaced the two RRC 昀椀lters with
trainable FIRs. We proposed three setups: in the 昀椀rst we had one trainable FIR
placed at transmitter, in the second the trainable FIR was at the receiver and in
the third we had two FIRs one at the transmitter and one at the receiver that
we trained jointly, in the so-called end-to-end learning approach, quite popular
in recent literature. The training procedure aimed to learn the optimum pulse
shapes - i.e. the proper taps for the trainable FIRs in practice - that ensure a
correct transmission and reception, given the non-idealities of the band-limited
AWGN channel.
In order to provide a benchmark for the proposed framework, we implemented
a more conventional setup with post-equalizers. We realized two versions, one
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at sample-level and another at symbol-level. The latter was done to cope and
to be consistent with further use cases where number of samples per symbol is
limited and where the equalization usually occurs at symbol-level.
In order to compare the obtained results, we relied on:

• quantitative metrics such as the MSE, the loss function we used for the
training, and the SER, that we computed after the detection of the received
signal;

• qualitative metrics, such as the Eye-diagram and the constellation dia-
gram, that allowed us to display the signal, providing insight into its char-
acteristics and behaviour.

In this way, we were able to analyze the obtained outcomes and to compare
the performances we achieved in the three di昀昀erent proposed scenarios with
the two setups with conventional post-equalizers. As a result, we achieved the
validation of the ML-based proposed framework, that was the main objective of
this work.
Tout court, in this work, we performed a methodological evaluation of a non-
conventional equalization technique whose novelty consists in the following as-
pects and their interaction:

• the focus on Pulse Shaping and Matched Filter blocks;

• the application of ML-based techniques in the context of Digital Commu-
nication;

• the use of such innovative ML techniques to optimize the pulse shaping,
providing our frameworkwith trainable 昀椀lters able to learn a proper pulse
shape to mitigate the channel impairments.

More speci昀椀cally, we took advantage of some of the recent techniques and
practical strategies used in recent research papers about ML for Communica-
tions that we consulted within the literature review.
For instance, we adopted the so-called end-to-end training, a popular strategy
that consists in the joint optimization of the transceivers. Applied to our speci昀椀c
scenario, we used this technique to train the transmitter and the receiver pulse
shaping 昀椀lters jointly. It represents a step forward compared to the traditional
learning technique in which a block-based optimization is performed and, thus,
where each block is optimized individually.
Another practical strategy we adopted is connected with the speci昀椀c context of
Communications where there aren’t well-established practical methods on how
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to perform the training yet. We tested our scenario on di昀昀erent SNR values start-
ing from high SNRs (more speci昀椀cally 40 dB) and then we gradually decreased
it until we reached 0 dB. At every new iteration, we initialized the parameters
of the trainable FIRs with the outcomes of the previous iteration to simplify the
learning process. Thus, we tried to incorporate the domain knowledge into the
training process with the aim of improving our results, following suggestions
we found in recent research papers [15].
In general, in this work we wanted to follow the novel path that promotes the
application of ML to the context of Communications.
As we discussed, the use of ML in this 昀椀eld is a quite novel research direction.
The goal is to exploit the vast expert knowledge in ML with the long-term aim
to incorporate Arti昀椀cial Intelligence to Communication Systems, making them
more robust and versatile. In addiction, among the various use cases that we
analyzed, this approach can be particularly useful for the following Communi-
cation’s scenarios:

• scenarios that have a knownoptimal solution, but that rely on an algorithm
that is too complex for a real-time implementation;

• scenarios that still lack a proper model de昀椀nition and for which the opti-
mal solution is hence still unknown;

• scenarios for which - despite the availability of a mathematical model - no
perfect analytical solutions are available.

This latter case includes the short-reach optical link thatmotivated this work.
In such context, ML can be an important tool to achieve performance enhance-
ments, meanwhile considering carefully the complexity of the solution that is
the most critical factor in the speci昀椀c case of short-reach optical links.
In thiswork, because of the limited amount of time, we tested and validated only
the band-limited AWGN channel, that does not lie into the aforementioned use
cases in whichML can provide an e昀昀ective improvement since there already ex-
ist well-established techniques and methods to obtain the optimal performance
whose bounds are well-known.
However, in order to incorporate ML in Communication Systems, the essential
starting point is to test howdoesMLperform inwell-known contexts and scenar-
ios. In principle, ML has an outstanding potential as it has already been proved
in other 昀椀elds like computer vision or natural language processing [16].
Whereas, Communications is another story and, in the view of amore important
role of ML in Communications, before adopting it on more complex scenarios
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in which we could achieve e昀昀ective improvements, as a preliminary stage, its
applicability has to be tested and validated in scenarios in which we have an
overall knowledge that allows us to increase the interpretability of our results
and to perform a proper validation of the ML-based method comparing it with
well-established traditional solutions.
This is exactly what we did in this work: we tested and validated a ML-based
framework in the well known context of the band-limited AWGN channel.
Thanks to the validation process, the developed framework can be considered
as a general-purpose structure that can be applied to more complex scenarios -
for instance to channels a昀昀ected by nonlinear impairments like the short-reach
optical link - provided that it has been proved to be a valid alternative to more
conventional methods in a well-known Communication scenario. In such use
cases, in principle ML could enable the opportunity to improve performances
and even to reduce the complexity of the systems, leading to the development
of a novel generation of Communication Systems where it would play an essen-
tial role.

Future work In this 昀椀nal section, we will mention some straightforward and
even more further extension for this preliminary work.
As we discussed, in this work, we explored the opportunities that a ML could
o昀昀er in the 昀椀eld of communication focusing on the speci昀椀c block of Pulse Shap-
ing/Match Filter blocks with the goal of achieving the equalization of the chan-
nel impairments.
The 昀椀rst step that we have already anticipated and that actually motivated this
work is the possibility to extend this ML-based framework to scenarios in which
MLwould enable an e昀昀ective performance improvement like the short-reach op-
tical channel. The adoption of an optical channel model would produce a more
realistic scenario that would enable the setting of new parameters for the sim-
ulations. For instance, we could include parameters connected to the physical
nature of the Optical Fiber and its deployment, such as the Chromatic Disper-
sion �2, the attenuation, and also the 昀椀ber length to consider the losses that oc-
cur when the signal propagates along the transmission medium. Along with a
characterization of the optical channel, with the aim of making our setting more
realistic, we can also simulate the presence of other hardware devices - optical
or electronics.
For instance at the receiver we could add a photodetector, whose e昀昀ect paired
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with theChromatic Dispersion �2 would result into nonlinear e昀昀ects. To address
the nonlinearity issue, on the path of workswe found in the literature review, we
could implement an autoencoder based on a NN would provide further insight
into the Pulse Shaping and Match Filtering blocks that we started exploring in
this work. Of course, the described scenario would need a novel implementa-
tion with new design choices, from the loss function (Mutual Information can
be considered as an alternative choice) to the tuning of the hyperparameters that
would require new thorough analysis and considerations.
Furthermore, in this work, we focused only on the proper delivery of data and
on the equalization capability of the developed ML-based framework, evaluat-
ing metrics such as the SER. However, the role of PS/MF blocks is also that of
limiting the bandwidth occupied by the signal.
In this view, it is possible to train the model to learn the optimal pulse shape
aimed at the optimization of the occupied bandwidth. To achieve this purpose,
other metrics should be introduced such as the SE that would allow us to 昀椀nd
a trade o昀昀 between the data rate and the occupied bandwidth. Furthermore,
the single channel scenario could be extended to a multi-channel scenario with
the implementation of Wavelength Division Multiplexing (WDM). A possible
optimization would be aimed at reducing the Interchannel Interference (ICI) for
which the already adopted SER could be a useful metric.
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