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“There are three things that have meaning for life. They are the moti-
vational factors for everything in your life, for anything that you do, or
any living thing does: The first is survival, the second is social order, and
the third is entertainment. Everything in life progresses in thatorder. And
there is nothing after entertainment. So, in a sense, the implication is that
the meaning of life is to reach that third stage. And once you’ve reached
the third stage, you’re done. But you have to go through the other stages
first.”
—Linus Torvalds
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Abstract

Over the years, the field ofAndroid security research has faced significant limitations due to the
absence of reliablemethods for achieving automated interactionwithmobile applications. The
lack of such tools has resulted in the widespread use of automatic exercising software, which
randomly interfaces with apps in the hopes of obtaining desired outcomes. However, this ap-
proach cannot always be considered a satisfactory solution, as it lacks solid criteria and fails
to provide any Proof-of-Reachability. In the context of my thesis, I employed Control Flow
Graphs to reconstruct pathways that lead to specified target methods within Android applica-
tions. This approach allowed me to extract high-level instructions that automatic interaction
software can accurately and reliably execute in order to reach a designated endpoint. Tests and
evaluations conducted on this technique demonstrate its potential to facilitate more precise
and goal-oriented testing. Its applications in the future could span from fuzzing and exploita-
tion to aiding in the disclosure of privacy violations.
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1
Introduction

Android, developed by Google, stands as a prominent Operating System (OS) in the realm of
mobile technology. It has gained substantial traction owing to its prevalence in smartphones,
tablets, diverse digital devices and even cars. For each of the previously mentioned instances,
Android supports their core functionality and enables the executionof amyriadof applications,
encompassing communication, gaming, navigation, and beyond. The extensive user base and
widespread adoption of Android highlight its significance in modern computing. The ecosys-
tem of Android, characterized by its open architecture, has prompted a rich landscape of re-
search endeavors aimed at enhancing its security. Researchers diligently investigate methods to
secure Android against a plethora of threats, encompassing malware, data breaches, and unau-
thorized access. Moreover, the preservation of user privacy and the safeguarding of sensitive
information occupy a pivotal role in this research domain. Through these scientific undertak-
ings, the robustness and trustworthiness of the Android platform continue to evolve, thereby
fostering a more secure digital landscape for its diverse user base.
However, over the last few years the Android security community has suffered from a lack of
an important contribution that, as stated in recent works [1] [2] [3], would greatly improve
this research landscape: path reconstruction and precise automatic interaction. These topics
are extremely relevant whenever reachability is in question. Some of themost import examples
are in vulnerability analysis and exploitation, or even testing. Notably, this is most prominent
in Android apps with a large code base; in the scenario where a vulnerability is found in one of
them, a reverse-engineer would need to spend enormous manual effort in order to prove that
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the bug can be actively triggered by an attacker. The intended objective of this endeavor is to
establish a systematic approach that facilitates the seamless and lucid delineation of a path, start-
ing from an initial entry point and culminating in a specific target method. The predominant
challenge manifests when considering the growing intricacy inherent in Android applications,
an evolution that has been ongoing since their initial iteration. Furthermore, despite similar
efforts have been made in the past in other domains, the distinctiveness of Android apps from
other forms of software enhances the difficulties encountered in this pursuit. In addition to
this, another missing feature in the community at the moment is the capacity for automated
interaction with the application, including carrying out high level operations (e.g., tapping)
under the path’s guidance, leading potentially to Proof-of-Reachability.
Over the years, some research publications have attempted to propose remedies in these par-
ticular fields. Worth noting are Flowdroid[4] and Amandroid[5], which, while initially de-
signed for the purpose of taint analysis, also allow generating Control-Flow Graphs (CFGs),
fromwhich paths could be extracted. However, bothwere introduced respectively in 2014 and
2018 and nowadays encounter challenges in terms of scalability due to the increasing complex-
ity of newer Android applications. Regarding automatic interaction, instead, solutions such
as Monkey [6] and ARES [7] are heavily employed in pseudo-random testing. This practice,
commonly referred to as exercising, seeks to increase code coverage to cause crashes or trigger
specific app’s functionalities. This is achieved through pseudo-random or model-guided inter-
actionswith the graphical components of the application. However, a notable drawback in this
process is related to the absence of a Proof-of-Reachability, emerging from the lack of guidance
during the testing procedure. Consequently, this can potentially lead to inaccurate outcomes.
In myMaster thesis, I was able to build a prototype solution that aims to solve the reachability
problem inAndroid app’s analysiswith a static approach. The tool, calledGAPS (Graph-based
Automated Path Synthesizer), seeks to make the following contributions:

• Provide a reliable and scalable method for generating Control-Flow Graphs of applica-
tions

• Statically validate the reachability of methods by constructing paths backwards starting
from a target method to an entry point, from the CFG

• Address paths with conditional statements by finding and validating states in the app
that satisfy the circumstances

• Produce high-level instructions to guide interaction and reproduce the execution of the
crafted paths

2



• Autonomously execute the extractedoperations and ascertainProof-of-Reachability (PoR)
upon successful contact with the target method.

Finally, GAPS was tested against AndroTest, an app dataset that is widely acknowledged
within the research community [8] [3] [9] [10] [11] [12] as the benchmark in the domain of
automatic testing. Furthermore, GAPSwas able to reconstruct 25% of paths over the total that
lead to an entry point and 33% of them, during automated testing, were able to produce a PoR.
Similarly, the module that generates paths that are conditionally-satisfied was separately tested
and achieved 60.71% reachable paths and 11.96% with a Proof-of-Reachability.
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2
Background

2.1 Android’s Architecture

Android’s architecture, as referenced in Figure 2.1, encompasses a set of layers with their own
specific functionalities. This distinction allows to clearly separate and assign responsibilities to
different parts of the OS in a precise manner. Starting from the top:

• System Apps - This layer contains all the apps that are pre-installed in the Android de-
vice, some examples are those used for e-mail, SMSmessaging, calendar, andmore. Their
functions can all be replaced by third-party applications, both downloaded or created by
the users.

• Java API Framework - The Java API Framework layer contains all the Java classes in
Android that can be used directly from the applications’ code.

• NativeC/C++Libraries -This layer contains somebinaries built onnative code,mainly
C and C++, that are useful for some core components, such as the Android Runtime
and the Hardware Abstraction Layer.

• AndroidRuntime (ART) - SinceAndroid 5.0, each app runs inside its ownprocess and
with its own instance of the Android Runtime (ART). ART executes the application’s
Dalvik Executable (DEX) files, a byte code format designed for Android, by relying on
the native libraries.

• Hardware Abstraction Layer (HAL) - This layer provides a standardized interface for
hardware components to be used by the JavaAPI Framework. Somenotorious examples
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are the camera and Bluetooth modules: when access is required, the respective libraries
are loaded by the system.

• Linux Kernel - The Linux Kernel is the foundation of the Android OS. A modified
version is adapted for mobile devices.

Figure 2.1: Layers of Android platform architecture

On the other hand, Android apps can be developed mainly using Java or Kotlin, while they
can also implement their ownNativeLibraries usingCorC++. Additionally, every application
also includes a wide variety of XML files that are introduced to statically define User Interface
(UI) elements or components. Themost important among them is theAndroidManifest, that
is always present and contains essential information about the app. Alternatively, most of the
statically defined features can be replaced by a programmatic approach.

2.2 App Components

Android applications, as expressed by the official developer guide [13], can be described by the
interaction of four components. These building blocks can be found in most apps and are
responsible for creating an internal ecosystem, interacting with the underlying OS and other
software installed in the device. Each of them has its own life cycle that defines how it is created
and destroyed (e.g., an Activity starts with onCreate, and it finishes with onDestroy).
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The most popular one is the Activity component that represents the entry point in the app
for the user. It consists in a single screen with a user interface but, despite being independent,
when multiple are present they can work together to form a cohesive user experience. Every
Activity can adopt and show awide range of graphical components that add dynamic behavior
in the app, some of the most popular examples are buttons, menus, switches, and many more.
Every application must define a Main Activity, a special kind that is launched whenever the
user taps on the app’s icon, and that is defined in the AndroidManifest XML file.
Services are general-purpose entry-points to an app that are used to run a task in the back-
ground. They can be defined in two different ways:

1. Started services, that tell the system to keep them running until their work is complete.
A common examples is when music is being reproduced.

2. Bound services, that can be requested by other apps or the system itself. Their usage is
similar to one ofAPIs and resemble them inhow they are also able to build dependencies.

A Broadcast Receiver, instead, is a component that lets the app receive system-wide mes-
sages through a special type of object called Intent. They are also intended as another entry-
point to the application, even when it is not currently running.
Lastly, Content Providers allow managing app data in the file system and define permissions
for it. They also serve as an additional entry-point.
The one common denominator between all these elements are the Intent objects, used as mes-
saging entities to request ”actions” and that constitute Inter-Component Communication
(ICC) on Android. Every component can register an IntentFilter either dynamically or stat-
ically and decide to receive these requests, both from other apps, the system or even other com-
ponents in the same app. Notably, this is carried out by creating an Intent object and expressing
either a fully qualified class name as a destination (e.g., anActivity) or a specific ”action”, which
is a string used to reference a component (i.e., Broadcast Receivers, Services). Finally, to send
the object it is passed as an argument to specifically designed Android API methods, for exam-
ple startActivity(Intent) can be used to show on the screen an Activity.
Thepossibility of defining andcharacterizing components bothprogrammatically and through
XML files renders the practice of static analysis more complex, since the code used for the app
is not the only source that needs to be considered. Additionally, applications differ vastly from
any other type of software in the way that, for example, every C programmust always define a
main function, from which every execution starts from. On the other side, in Android there
can be many entry points, as highlighted, from which different behaviors may carry out.
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2.3 Smali Overview

Apps, after being written either in Java or Kotlin, go through an intermediate compilation
process where an artifact is produced (e.g., .class file for Java). In Android, as represented in
Figure 2.2, this is further adapted for the architecture through another compilation stagewhere
a Dalvik Executable (DEX) file is obtained, in the format of Dalvik Bytecode. Subsequently,
the code is executed by theDalvik VirtualMachine (DVM), which nowadays is replaced by the
AndroidRuntime (ART) on newerOS versions. [14]The last compilation process into aDEX
file can be reversed to obtain an assembler-like representation of the app’s code, in the form of
Smali instructions. Smali [15] can be considered an equivalent to the assembly language for
C programs. Since every Android application must contain at least one DEX file, the Smali
code can always be retrieved and is able to offer a common representation, even if they were
originally written using either Java or Kotlin.

Figure 2.2: Android app compilation process compared to a Java program

Furthermore, code is structured around 32-bit registers, which are analogous to variables in
higher-level languages. Registers are designated with the prefix ”v” followed by a number (e.g.,
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v0,v1). Smali employs a set of instructions thatmanipulate registers (e.g.,move,move-result),
perform arithmetic operations (e.g., add, sub), control execution flow (e.g., goto, if state-
ments), and more. Moreover, smali is organized into methods, each corresponding to a func-
tion in high-level languages. Each procedure is defined with labels, and their parameters and
return values are also represented through registers. Additionally, to reflect on the Java and
Kotlin counterpart, it also supports Object-Oriented constructs. For instance, the invocation
of a non-static method (e.g., an invoke-direct instruction) contains in its first register the
reference to the caller object.
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3
Design

GAPS is a static analysis tool capable of processing input applications, with the primary goal
of reconstructing clear and accurate paths, culminating in desired methods, and subsequently
verify their reachability. It is designed to be fully modular and customizable to make use of
specific functionalities, such as: indicating a specific target method to test its reachability, gen-
erating interaction-oriented high-level instructions and deriving paths that satisfy conditional
statements.

3.1 Illustrative Example

In order to better illustrate the way GAPS works on Android apps, an example can be con-
sidered. For instance, an app can be taken into account, containing the invocation of the
target_method in a class ActivityA. More specifically, its execution depends on the tap of
a button, represented by the onClick callback, that also contains a conditional statement that
verifies the value of a boolean variable. Listing 3.1 provides a code sample.

1 public class ActivityA extends AppCompatActivity {
2 ...
3

4 protected void onStart() {
5 super.onStart();
6 buttonA.setOnClickListener((view) -> {
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7 if(access == True){
8 target_method();
9 }
10 });
11 }
12 }

Listing 3.1: ActivityA contains the invocation to target_method

Furthermore,ActivityA is shown on screenwhenever the user click on another button in the
MainActivity, which is one of the entry points of the app. More specifically, an Intentmessage
is built in the callback and is subsequently sent through the startActivity API. For this case,
Listing 3.2 can be consulted.

1 public class MainActivity extends AppCompatActivity {
2 ...
3

4 protected void onStart() {
5 super.onStart();
6 buttonMain.setOnClickListener((view) -> {
7 Intent myIntent = new Intent(MainActivity.this, ActivityA.class);
8 startActivity(myIntent);
9 });
10 }
11 }

Listing 3.2: TheMainActivity starts ActivityA

In thenext sections, this app examplewill be used to illustrateGAPS’ innerworking through-
out its phases.

3.2 Requirements

In order for GAPS to produce the expected results, the following requirements need to bemet:

• Requirement 1 - Generate intra-procedural Control-Flow Graphs

• Requirement 2 - Query the data structures to extract intra-procedural paths

• Requirement 3 - Extract information related to Inter-Component Communication

• Requirement 4 - Analyze the data flow
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• Requirement 5 - Build inter-procedural path

• Requirement 6 - Retrieve IDs associated to graphical elements

3.3 Overview

The first step GAPS undertakes during its analysis is to extract for each method in the input
app its smali code and build data structures that allow to traverse their Control-Flow Graphs
(Requirement 1). Furthermore, from every instruction its numerical address can be retrieved,
and it is considered in order to visit the method’s CFG backwards and build linear sequences
of directives in the form of paths (Requirement 2). The query system has a pivotal role also for
Requirement 3, thus allowing to extract the app’s code responsible for the creation and the dis-
patch of inter-procedural messages. On top of that, these objects are analyzed by considering
their intra-procedural data flow (Requirement 4), in order to understand senders and recipi-
ents. Finally, intra-procedural paths are used as building blocks and assembled to form com-
plete sequences that from a target instruction are able to lead backwards to an entry point (Re-
quirement 5). Subsequently, the graphical elements’ ID is retrieved (Requirement 6), thanks
to Requirement 2 and 4, to achieve automatic interaction under the execution flow guidance.

3.4 Control-FlowGraphs Generation

After loading and analyzing the Android Package Kit (APK) or DEX file supplied in input,
every method defined in the app is processed to obtain an intra-procedural CFG where every
node is a smali instruction, thus satisfying Requirement 1. The edges are added by considering
the progressive execution order that is followed normally, while more than one branch can also
be present in case of control flow instructions (e.g., if statements, goto).
A pseudocode can be found in Algorithm 3.1.
The concept of externalmethods ismentioned in line 6 and is applied to refer to all theAndroid
and Java API methods that are not present statically in the DEX files and instead are loaded
during runtime. This category is, therefore, excluded at this stage. After that, for eachmethod,
its basic blocks can be retrieved and parsed (line 9). A basic block is defined as a sequence of
contiguous instructions executed without interruptions. The same principles are applied to all
the additional edges (e.g., conditional behavior, jumps), mentioned as ”childs”.
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Algorithm 3.1Dalvik Disassembler
1: percentage_chance← 0.20
2: max_random_methods← 50
3: random_methods_counter← 0
4: incremental_offset← 0
5: for eachmethod in app.get_methods()
6: if method is external
7: continue
8: method_offset← incremental_offset
9: for eachmethod_basic_block inmethod.get_basic_blocks()
10: instruction_address← method_basic_block.get_address() +method_offset
11: instructions← method_basic_block.get_instructions()
12: for each instruction in instructions
13: address_to_instruction[instruction_address]← instruction
14: if instruction ismethod_invocation or instruction is assignment_type
15: instruction_signature← instruction.get_signature()
16: signature_to_address[instruction_signature].add(instruction_address)

17: if instruction ismethod_invocation and ”Intent” in instruction_parameters
18: icc_methods_addresses.add(instruction_address)

19: if target_method_search isTrue
20: if instruction ismethod_invocation and instruction == target_method
21: instruction_signature← instruction.get_signature()
22: starting_points[instruction_signature].add(instruction_address)

23: else
24: if random.random() < percentage_chance and random_methods_counter <

max_random_methods
25: instruction_signature← instruction.get_signature()
26: starting_points[instruction_signature].add(instruction_address)
27: random_methods_counter++

28: instr_to_parent_method[instruction_address]← method
29: next_instruction_address← method_offset+ instruction.get_length()
30: instr_cfg[next_instruction_address]← instruction_address
31: instruction_address← next_instruction_address
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32: for each child inmethod_basic_block.childs
33: child_address← child+method_offset
34: instr_cfg[child_address].add(instruction_address)
35: instr_to_parent_method[child_address]← method
36: incremental_offset++

Consequently, all smali operations are used to build three essential data structures:

• address_to_instruction, allowing to translate from numerical to literal representa-
tion (line 13),

• instr_to_parent_method, which correlates every instruction address to the signature
of the parent’s method (line 28),

• instr_cfg, a dictionary that defines edges between the nodes (i.e., instructions’ ad-
dresses) in the Control-Flow Graph (line 30).

Specifically, the last one is of essential importance during path reconstruction and is built
such that every address used as key points to its predecessors (i.e., a destination points to its
sources). This, more specifically, allows performing a backwards-search, meaning that the path
reconstruction starts from the objective and, in reverse, tries to reach an entry-point.
Moreover, during disassembly, more information are stored and pre-fetched for easier access in
later stages. These are represented by the following data structures:

• signature_to_address, that maps the signature of a method or related to an assign-
ment instruction to its addresses (line 16),

• icc_methods_addresses, that acts similarly but for all the methods related to Inter-
Component Communication (line 18),

• starting_points, which holds for every method invocation their corresponding nu-
merical value (i.e., address) (line 22, 26).

These dictionaries allow taking advantage of the dynamic programming paradigm, that is:
storing results of sub-problems instead of re-computing them later. More specifically,
icc_methods_addresses guides the ICCmapping of the entire Android app subsequently,
while starting_points bootstraps the path reconstruction phase. Furthermore, all of them
prove to be an optimization with an O(1) cost, as opposed to performing a linear search over
all the instructions (i.e., O(N)).

15



For instance, in the illustrative example, every method defined in the app will be disassembled
and processed. More specifically, the address corresponding to the startActivity invoca-
tion in Listing 3.2 will be saved in icc_methods_addresses, and similarly the address of
target_method from Listing 3.1 in starting_points.

3.5 Intra-Procedural Graph Visit

The data collected during the app’s disassembly helps to bootstrap the intra-procedural path
reconstruction process, which consists in performing a backwards visit of the Control-Flow
Graph of a single method body. This process stands at a pivotal role for GAPS, and it is repre-
sented by Requirement 2. Each of the starting points found during the initial phase, whether
they correspond to the target method invocation or by random selection, provide a set of ad-
dresses to start the backwards search for each method. To better illustrate the process, Algo-
rithm 3.2 is provided. Aside from specifying a target method and class (line 6 to 9), the path
reconstruction can alsobe guidedby stating the fully qualified class name and signaturemethod
(line 4 and 5). Additionally, the acyclic and avoid_explosion boolean parameters, option-
ally specified, allowbreaking cycles when a search has already been performed for the same path
(line 10), and limit the size and number of alternative paths during the graph visit in the CFG
(line 25), respectively. Going into more depth, the process involves the initial construction of
a query identifier aimed at verifying whether it has been previously encountered among the
elements requested (line 10). This search key subsequently also serves the purpose of retriev-
ing partial outcomes from earlier saved invocations (line 12-13). This approach, akin to dy-
namic programming, proves effective in preventing redundant computations. Alternatively, if
starting addresses have not been provided, either a linear search can be performed over all the in-
struction (line 17 to 19) or, if the signature is known, direct access tosignature_to_address
can be made (line 22). Once a set of addresses is found, a Breadth-First Search (BFS) over the
Control-Flow Graph is performed (line 25). By choosing BFS over other techniques, such as
Depth-First Search, the exploration prioritizes visitingmost of the graph until a root is reached.
In this instance, the search is happening intra-procedurally, and consequently halts upon reach-
ing the initial instruction when no further additions are feasible. The algorithm used for vis-
iting follows the standard BFS implementation, using the aforementioned instr_cfg data
structure. However, it has been customized, especially when the avoid_explosion parame-
ter is enabled, to constrain each path to a maximum of 200 smali instructions and permits the
storage of up to 10 alternative paths simultaneously.

16



Algorithm 3.2 Smali Path Finding
Input

target_method: string
target_class: string, optional
target_signature: string, optional
acyclic: boolean, optional. default=False
starting_addresses: list, optional
avoid_explosion: boolean, optional. default=True

Output
paths: list

1: if not target_method
2: return array()

3: search← None
4: if target_signature
5: search← target_signature
6: else if target_class
7: search← target_class+ target_method
8: else
9: search← target_method

10: if acyclic isTrue and search in requested_queries
11: return array()

12: if search in search_results
13: requested_queries.add(search) return search_results[search]

14: if not starting_addresses
15: starting_addresses = set()
16: if not target_signature
17: for each instruction in address_to_instruction
18: if target_method == instruction.method and target_class == instruction.class
19: starting_addresses.add(address)

20: else
21: if target_signature in signature_to_address
22: starting_addresses = signature_to_address[target_signature]
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23: if starting_addresses is empty
24: return array()
25: return breadth_first_search_graph(starting_addresses, acyclic, avoid_explosion, search)

This measure is designed in order to maintain a lighter memory during execution. Since it is
performing a backwards visit, there might be cases where a pathmight unexpectedly terminate
before reaching the method’s top. For example, this can happen due to a goto instruction
pointing to a previously visited section. Therefore, the ultimate collection of paths returned
from this task is determined from the ones that come closest to the root.
This scenario is also present in the illustrative example, as the intra-procedural path starting
from the invocation of target_method in Listing 3.1 depends on a conditional statement.
Therefore, there will be two branches in the Control-Flow Graph, depending on whether the
condition is either true or false, but only the variant that will lead to the desired execution will
be saved.
Furthermore, the instr_to_parent_method dictionary consistently provides the ability to
discern the parent method’s signature based on the instruction’s address. This dictionary is
instrumental in completing the sequence effectively, since this signature is always considered in
order to concatenate more paths inter-procedurally. In the example’s case, this will correspond
to the onClick signature.
Once the resulting paths are reconstructed, the search string is added to the requested queries
and used to save the intermediate results under its key.

3.6 Inter-Component Communication Analysis

As mentioned in Chapter 2, Inter-Component Communication in apps is fundamentally im-
portant. Therefore, to properly build paths, this needs to be accounted for, as also represented
by Requirement 3. More specifically, GAPS is able to map ICC based on the knowledge that
to send the Intent object, it needs to be passed as an argument to a specific Android API. Un-
der this basis, during disassembly, a data structure called icc_methods_addresses is created
to save the method’s addresses and retrieve their intra-procedural path subsequently. Further-
more, the objective is to analyze them and retrieve the sender and receiver of the message. As
delineated in Algorithm 3.3, the initial step undertaken by GAPS involves the static retrieval
of all actions attributed to the components (line 1 and 2).
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Algorithm 3.3 ICC Information Retrieval
1: for each component in app_components
2: get_static_intent_filters(component)

3: register_receiver_paths← find_path_smali(registerReceiver)
4: for each path in register_receiver_paths
5: arguments← get_instruction_arguments(path)
6: for each argument in arguments
7: if argument is object_name
8: destination_class← get_class_from_object(argument)
9: intent_action← get_action_intent_filter(path)
10: icc[destination_class].add(intent_action)

11: icc_paths← find_path_smali_icc()
12: for each path in icc_paths
13: if intent_construction in path
14: arguments← get_instruction_arguments(path)
15: for each argument in arguments
16: if argument is class_name
17: icc[argument].add(path)
18: else if argument is string
19: destination_class← translate_action_to_class(argument)
20: icc[destination_class].add(path)

Subsequently, intra-procedural smali paths containing registerReceiver invocations are ex-
tracted (line 3). These invocations accept both a BroadcastReceiver and an IntentFilter ob-
jects as parameters. In the case of the former, the get_class_from_object method is em-
ployed (line 8) to ascertain the destination class, as this class is also responsible for implement-
ing the receiver. Conversely, for the latter situation, the corresponding action is obtained in
get_action_intent_filter (line 9). This acquired knowledge is subsequently used to cre-
ate a mapping within the icc dictionary, associating the destination class with the correspond-
ing action (line 10). To further collect all the dynamically reachable components, all the smali
paths from icc_methods_addresses are used to find, during Intent construction, which re-
ceiver is specified, both explicitly (i.e., through a fully qualified class name) (line 16 and 17) or
implicitly (i.e., through an action) (line 18 to 20). These paths are then saved in the aforemen-
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tioned icc data structure under the corresponding destination class key.

3.7 Data FlowAnalysis

In Algorithm 3.3 a specific technique is used in order to retrieve the arguments passed as pa-
rameters to a function, represented by invocations to get_instruction_arguments. This
approach uses Data Flow Analysis (Requirement 4) by taking advantage of the register-based
smali syntax. Furthermore, every invocation instruction for a method mentions a list of regis-
ters, where the first one can be recognized as the caller object in case of non-static calls, and the
rest correspond to theparameters. Subsequently,GAPS takes advantageof the intra-procedural
smali instructions in thepaths tofinddeterministic register assignments and recover themethod’s
arguments. A pseudocode of this functionality can be consulted in Algorithm 3.4.
More specifically, this procedure requires the intra-procedural path that is being considered
along with the index where the target instruction resides. From this point, the registers associ-
ated are extracted (line 3), and the goal is to find for each of them the assigning directive.
Optionally, it is possible to provide the ignore_caller argument to exclude the first argu-
ment (e.g., caller of the method if it is not static) or only_caller to be the only one consid-
ered. Subsequently, every instruction in the path is parsed to check its registers and type (line
10 to 13), more specifically, all those that overwrite values. For each, the instruction itself and
its index are saved (line 42 to 44) in the dictionary that is returned at the end of the function.
Additionally, if the instruction is interacting with a register without overwriting it, this infor-
mation is also saved and tagged as ”additional” (line 46), which is a useful feature for studying
arguments behavior before they enter an app’s method. This procedure is also adopted to find
paths that satisfy conditional statements but in a constant propagation fashion. Constant prop-
agation is a compiler optimization technique used to enhance the efficiency and performance
of code execution. It aims to replace variables with their constant values whenever possible,
reducing unnecessary computations and improving the overall speed of the program. This
feature is implemented by recursively using the data flow analysis on paths by tracking value
assignments.
In the example app, this process, combined with the ICC one previously mentioned, allows to
accurately map the creation of the Intent object that permits theMainActivity to transition to
ActivityA.
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Algorithm 3.4Data Flow Analysis
Input

path: list
start_from: int
ignore_caller: boolean, default=False
only_caller: boolean, default=False

Output
arguments: dictionary

1: results← dictionary()
2: target_instruction← path[start_from]

3: registers← get_registers(target_instruction, ignore_caller, only_caller)
4: for each register in registers
5: if register not in path[start_from+1:]
6: registers.remove(register)

7: if registers is empty
8: return results
9: to_translate← dictionary()
10: for (i=start_from+1; i < path.length; i++)
11: instruction← path[i]
12: instruction_type← get_instruction_type(instruction)
13: instruction_registers← get_registers(instruction)
14: if instruction_registers[0] in registers
15: register← instruction_registers[0]
16: to_remove← None
17: instruction_found← None
18: instruction_found_index← −1
19: if instruction_type is ”move result”
20: to_remove← register
21: instruction_found← path[i+ 1]
22: instruction_found_index← i+ 1
23: else if instruction_type is ”move between registers”
24: registers.append(instruction_registers[len(instruction_registers)− 1])
25: to_remove← register
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26: if register not in to_translate
27: to_translate[instruction_registers[len(instruction_registers) − 1]] =

instruction_registers[0]
28: else
29: prevreg← to_translate[register]
30: to_translate[instruction_registers[len(instruction_registers)− 1]] = old_reg
31: to_translate.remove(register)
32: else if instruction_type is ”overwriting register”
33: to_remove← register
34: instruction_found← path[i]
35: instruction_found_index← i
36: else
37: instruction_found← path[i]
38: if instruction_found
39: register_found← register
40: if register in to_translate
41: register_found← totranslate[register]
42: if to_remove
43: results[register_found][instruction]← instruction_found
44: results[register_found][instruction_index]← instruction_found_index
45: else
46: results[register_found][additional_instructions].append(instruction_found)
47: if to_remove
48: registers.remove(to_remove)
49: if registers is empty
50: break
51: return results
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3.8 Path Reconstruction

The partial intra-procedural paths previously obtained can be intended as ”seeds” to start the
inter-procedural reconstruction that also takes advantage of the pre-computed ICC informa-
tion stored. This process is represented byRequirement 5. The pseudocode for this procedure
can be consulted in Algorithm 3.5.
In this phase, path reconstruction is performed in BFS fashion too, since alternative paths are
stored in order to resume their visit in the next iterations. In the innermost loop (line 10 to
24), the path is built by first considering the retrieval of graphical elements IDs (line 12) that
might be associated to a callback (e.g., onClick). Subsequently, the find_next_paths func-
tion tries and concatenate new ”building blocks” to the intermediate results (line 13) by con-
sidering explicit invocations of the last path’s parent method. To further elaborate, this means
that the parent method’s signature will be used as a reference to find its usages over the whole
app code, which consists in finding the possible callers. In Android, this is not always pos-
sible, since there might be classes that instead use implicit calls, for example those associated
to components’ life cycles. Therefore, GAPS interprets their instances based on their correct
usage to append the corresponding code portions. For instance, AsyncTasks are used for mul-
tithreaded execution, therefore if while building a path the last path placed is one of its meth-
ods (e.g., onPostExecute), GAPS searches and add the portions of code that initialize and
start the object (i.e., the method execute). The same practice is repeated similarly for Han-
dler and Thread classes. Additionally, the both dynamic and static nature of the Fragment
is also accounted for, offering additional insights to address its dual nature. This process is
iteratively performed and the add_partial_pathsmethod adds the first intra-procedural re-
sult to the current path (i.e., corresponding to path_index) (line 16 and 22), while the rest, if
more than one is present, is used to generate alternatives that are completely visited in the next
cycles. These additions are prioritized over the ICC ones through the skip_icc variable (line
18). Moreover, Inter-Component paths are retrieved using the icc data structure mentioned
in Section 3.6 only when other programmatic interactions cannot be found, as previously ex-
plained. Finally, if during the last iteration there were not any new additions (line 23 and 24),
the last path appended is checked to see if any root in the graph was reached (line 25). GAPS
considers a root either reaching the app’s main activity or a component that is reachable from
outside (i.e., BroadcastReceiver). Furthermore, the initiation of conditionally-satisfiable path
generation hinges on two conditions: the conditional flag being set to True and the attain-
ment of an entry point (line 26 and 27).
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Algorithm 3.5 Inter-procedural Path Reconstruction
Input

partial_paths: list
conditional: boolean

Output
paths list

1: set_paths← set()
2: paths← array()
3: path_index← 0
4: for each partial_path in partial_paths
5: paths.append(partial_path)
6: last_path← partial_path
7: complete← False
8: while not complete
9: path_available← True
10: while p ath_available isTrue
11: skip_icc← False
12: find_graphical_id(last_path)
13: paths_to_add← find_next_paths(last_path)
14: last_path← array()
15: if paths_to_add is not empty
16: last_path← add_partial_paths(paths_to_add, paths, pathindex)
17: if last_path is not empty
18: skip_icc← True

19: if skip_icc is False
20: icc_path← find_icc_paths(last_path.last_class_name)
21: if icc_path is not empty
22: last_path← add_partial_paths(icc_path, paths, path_index)

23: if last_path is empty
24: path_available← False

25: root_reached← is_root_reached(last_path)
26: if conditional isTrue and root_reached isTrue
27: find_conditional_paths(paths, path_index)

28: set_paths.add(paths[path_index])

24



29: if path_index != paths.length
30: path_index++
31: last_path← paths[path_index].last_path
32: else
33: complete← True
34: path_index++

35: return list(set_paths)

Consequently, in the event that alternative paths are queued for completion, the subsequent
iteration selects one and formulates the next path (line 29 to 31). Conversely, if no alternative
paths await (line 33), the next partial path is considered, also known as the next ”seed” (line 34).
The set of paths collects all the results and return them as a list of unique elements (line 28).
At this stage, the illustrative example analysis has a clear understanding of the execution flow,
obtained by assembling the building blocks retrieved in the previous examples. More specifi-
cally, the information at hand would be found in the following order:

• target_method is executed in ActivityA’s onClickmethod,

• ActivityA is reachable by theMainActivity, which is one of the app’s entry points and
constructs an Intent for this purpose,

• the Intent construction and dispatch is bound to another onClick event, on theMain-
Activity’s UI.

3.9 Graphical Elements’ ID Retrieval

In Android app development, callbacks are methods that are invoked whenever certain events
are triggered. The most common examples are the implementation of buttons in applications
that execute a series of operations whenever they are clicked. As mentioned in Section 3.8,
GAPS during the path reconstruction phase tries to retrieve the graphical elements’ ID in order
to accessorize the results. This additional information, represented by Requirement 5, allows
carrying out automatic interaction and guide amore precise and objective oriented app exercis-
ing. In this scenario, it needs to be noted that visual objects can be defined both dynamically
and statically, too. In the former case, knowledge about how callbacks are used is needed, as
each of them is associated with a listener class that triggers the action whenever the requested
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event happens. For example, the onClick method is implemented inside an OnClickListener
object, that is passed as argument to the setOnClickListener method. Therefore, GAPS, using
its smali intra-procedural path retrieval capabilities and data flow analysis, can retrieve the por-
tion of code that sets the listener and find the caller, which is also the graphical element’s object.
This one, when created, is also associated with an ID, therefore leading to the desired objective.
A practical code samples can be consulted in Listing 3.3.

1 Button button = (Button) findViewById(R.id.button1);
2

3 button.setOnClickListener(new OnClickListener() {
4 public void onClick(View v) {
5 target_method();
6 }
7 });

Listing 3.3: Graphical Element example

This mechanism is able to work on every graphical element that is similarly implemented,
which includes buttons but also switches, text fields, checkboxes and more. On top of this,
GAPS is also capable of recognizing callbacks associated to menu screens. In Android, these
can usually be found in the top-left corner and, when clicked, can show a list of entries to
choose from. In order to decide which one would be the correct one to interact with, in smali
the ID of the graphical element is compared and, depending on the value, execution jumps to
a different section of the code. Therefore, since path building is performed backwards, GAPS
can match the current invocation investigated to the matching entry’s ID.
Lastly, callbacks can also be statically specified in the activities XML files, where all the graphi-
cal elements are listed. In these cases, a lookup is performed in the corresponding record, where
matching the method name also leads to the ID retrieval as it is one of the values in the XML
tag.
Following the example app’s analysis, during this step, the aforementioned operations are per-
formed in order to discern the two separate IDs connected to the onClick callbacks invoca-
tions.

3.10 Conditionally-SatisfiablePathReconstruction

During path reconstruction, as mentioned in Section 3.8, it is possible to analyze the condi-
tional statements encountered and retrieve paths that satisfy them. Just like in many program-

26



ming languages, these instructions involve the comparison between two elements or against
zero. Currently, GAPS supports conditional statements that involve:

1. variables, primitive types such as int, String, float, and more

2. objects, which can be compared against null, represented by 0 in smali, or against an-
other object (i.e., aliasing, pointing to the same address)

3. methods, in case they are recognized as ”getters”, thus considering the ”setter” counter-
part (e.g., getString becomes setString)

The tool uses the dynamic flow analysis previously mentioned to first retrieve the signatures
of the elements involved. Then, by using this identifying string, GAPS can take advantage of
the information stored during disassembly (Chapter 3), referenced by the
signature_to_address, to retrieve the intra-procedural paths. Furthermore, the register
corresponding to the value appointed is analyzed and, if the element gets an assignment from
another variable, constant propagation is performed in order to recursively resolve for all the
bindings in the whole app’s code. Finally, when all constant values are retrieved, a check is
performed for the satisfiability of the conditional statement. In the case that the outcome is
positive, then the partial paths can be fully reconstructed to provide, as a final result, a set of
initial instructions that need to be performed before the main path is executed. Additionally,
if the conditional statement can be satisfied in more than one unique way, alternative condi-
tionals paths are also appended and can act as a fallback approach.
For example, the sample appmentioned in Section 3.1 will see a combination of data flow anal-
ysis and constant propagation applied in order to find a satisfying state in the code that is able
to fulfill the conditional statement, shown in Listing 3.1. More specifically, every assignment
involving theaccess variablewill be analyzed to find those that set its value toTrue. If the con-
dition depends on another assignment, the process is recursively performed until a constant is
found. This procedure is used in order to improve chances of reachability for a target method.

3.11 Automatic Interaction

The last step of this generation phase is the extraction of high-level instructions, which encom-
pass all the previously retrieved graphical elements’ ID that need to be tapped during automatic
interaction. Additionally, if the path requires contacting an exported component through an
intent, specifications in order to do this are also included. Subsequently, these operations are
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performed by a separate GAPS’s module that is able to recognize the current activity and tap
elements on the screen based on their ID, along with assembling and sending Intents, support-
ing both real devices and emulators.
For the example followed throughout the chapter, the automatic interaction steps that would
need to be performed consist in:

• performing any action that would guarantee access to be True, as a prerequisite

• launching the app, i.e., starting from theMainActivity

• clicking the correct button in the screen

• tapping another button in ActivityA corresponding to the ID found

Subsequently, a Proof-of-Reachability of the correct execution of target_method is ex-
pected.
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4
Implementation

GAPS is a Python-based tool that is able of extracting the application’s smali code to derive
and summarize their inner workings, ultimately to reconstruct paths and abstract high-level
instructions out of them for automatic interaction purposes. A search can be guided by a target
method specified through a command line argument, or, if it is not indicated, a random set of
50 invocations is chosen during the disassembling phase.

4.1 CFG and Path Generation

At its core, the Androguard Python library is used. Androguard[16] is a reverse-engineering
andpentesting tool forAndroid applications. It canbeusedby command line, through a graph-
ical frontend or purely as a library to implement custom scripts. Furthermore, it supports
all major app formats, most notably APK, DEX and Optimized DEX (ODEX), offering also
the possibility of decompiling and disassembling their code, and analyze XML and resource
files. Androguard in GAPS is used to load and analyze the APK or DEX files in input through
some built-in functions: AnalyzeAPK and AnalyzeDex, that permit accessing information
contained in the app. More specifically, the Analysis object obtained from this procedure
allows analyzing the MethodAnalysis construct for each of the methods and, consequently,
access their basic blocks. During this disassembly phase, showcased in Chapter 3, all the data
structures that are created are saved to aGAPS class instance, that orchestrates all operations in
the framework and represents the current analysis. These objects are used inmany occurrences,
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some examples are the intra-procedural graph visit, the ICC analysis and the path reconstruc-
tion,mentioned inChapter 3. It is important to acknowledge that the actual addresses of smali
instructions are substituted with an alternative system utilizing an incremental offset. This ad-
justment is necessary due to instances where the same address would recurmultiple times. The
reason behind this behavior becomes evident upon considering that all APKs can encompass
multiple DEX files and a single one has the limitation of accommodating only up to 65,536
methods. Moreover, this constraint results in occasional overlapping of the address space in
different DEX files.

4.2 Graphical Elements’ ID retrieval

The app disassembly is required for graphical elements’ ID retrieval and is also performed by
external tools, more specifically Apktool[17] for APKs and baksmali[15] for DEX files. All
the resulting files from this process are temporarily saved in the /tmp directory and accessed
during static analysis phases that require information that, currently, cannot be retrieved solely
through Androguard. For instance, this is required when retrieving the graphical elements’
ID, since in smali, after the process explained in Section 3.9, a numerical version is obtained.
In order to convert this to a literal representation, GAPS consults a file produced by Apktool
called public.xml, where the string IDs are stored.
Furthermore, menus in Android are usually implemented through a single method with a
switch-case construct that confronts the identifier connected to the entry and executes the
corresponding portion of code. Meanwhile, the smali counterpart is represented by a
sparse/packed-switch that complicates a bit the syntax by using labels and a table where
for each ID a jump corresponds. Currently, Androguard is not able to provide this degree of
information, therefore static analysis on the smali files disassembled by Apktool is performed.
More specifically, the label associated to the targeted portion of code is retrieved and used as a
reference to find the graphical elements’ ID.
Apktool also generates a decoded version of the AndroidManifest file that is consulted during
the Inter-Component analysis to recognize components that are exported, meaning they can
be contacted with an Intent from outside the application.
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4.3 Automatic Interaction

The GAPS module for automatic interaction uses the high-level instructions generated dur-
ing path reconstruction in a json format to test the target’s reachability. This script requires
a device or an emulator connected via Android Debug Bridge (ADB), which is used initially
to install the app’s APK. Then, for each entry in the json file, the key of the internal dictio-
nary represents the signature of themethod considered, and the values are the set of operations
that should lead to it. All the paths should either start from the main activity, which is also
the default behavior, or by sending an intent to an exported component (e.g., an Activity) or
through an implicit intent broadcasted to the system. Subsequently, each tap on a graphical
element is represented by a pair of strings, consisting in the name of the Activity where it needs
to performed and the ID itself. In order to check that the current UI displayed is the correct
one, the ADB utility, through the command adb shell dumpsys window, can provide in-
formation about the focused Activity name. Since apps may display unpredictable behaviors
(e.g., loading screens, ads), attempts to recognize the correct screen are performed every 5 sec-
onds for a total of 5 times. Then, the AndroidViewClient [18] Python library is adopted for
tapping the correct graphical element based on the specified identifier. Optionally, through
the frida command line argument for the module, it is possible to exercise the app and receive
a Proof-of-Reachability response when the method is executed through Frida [19], a dynamic
instrumentation framework that can trap invocations tomodify their behavior. When enabled,
if the device is rooted and Frida is installed, GAPS can automatically create a Javascript file to
add a hook for the target method and receive a message upon arrival, proving that the path was
correctly visited.
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5
Evaluation

Evaluation of automatic interaction tools on Android, in the last few years, has been largely
performed on a popular dataset called ”AndroTest”, as attested by the numerous mentions in
literature [8] [3] [9] [10] [11] [12]. Since AndroTest was originally created in 2015 and is not
available anymore through its authentic source, I manually re-created the dataset by download-
ing the applications in their latest versions. In some cases, however, this was not possible since
the original developer deleted their repository. The lack of some of the original applications
was compensated by adding additional newer ones found on F-Droid[20], an open-source app
repository. The full list of apps used in the evaluation can be consulted in Table 5.1. Using this
set is especially useful for tools like GAPS because:

• it is composed of real-world open source applications published by developers on the
F-Droid repository,

• apps are simple enough to test some of themost popular functionalities inAndroid (e.g.,
interactionswith graphical components) butwithout the struggle ofmanaging complex
UIs (e.g., login screens, advertisement),

• obfuscation can be ignored, since apps can be compiled from their source code.

To further illustrate on the last point, obfuscation is a term commonly used in Android app
development to refer to the practice of reducing DEX file sizes by shortening names of classes
and members. Although this feature does not currently constitute a limitation for GAPS, in
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this initial prototypical phase I decided to avoid the increasing complexity that thiswould bring
while analyzing the results.

# App name App Size PlayStore Downloads

1 A2DP Volume 2.7M 100.000+
2 aagtl 328K not available
3 Aard2 4.1M 10.000+
4 Addi 2.2M not available
5 ADSDroid 100K not available
6 aGrep 348K 10.000+
7 AirGuard 21M 100.000+
8 Alarm Clock 180K 10.000+
9 aLogCat 148K not available
10 Amazed 29M not available
11 Androidmatic Keyer 88K not available
12 AnyCut 32K not available
13 AnyMemo 4.7M 100.000+
14 App Cache Cleaner 6.3M 100.000+
15 Auto Answer 100K not available
16 Based Cooking 23M 50+
17 Battery Dog 24K 10.000+
18 Bites 96K 1000+
19 Blokish 12M 100+
20 Book Catalogue 3.3M 100.000+
21 DeepL 2.1M 5Mln+
22 DuckDuckGo 64M 10Mln+
23 Easy XKCD 17M 50.000+
24 F-Droid Client 12M not available
25 Flipper Zero 38M 100.000+
26 Frozen Bubble 8.4M 1Mln+
27 Hacki 26M 1000+
28 HotDeath 7.7M not available
29 KeePass2 32M 1Mln+
30 Linux Command Library 22M 1Mln+
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# App name App Size PlayStore Downloads

31 Lock Pattern Generator 132K 5Mln+
32 LolCatBuilder 44K not available
33 ManPages 60K 1000+
34 Mileage 376K 50.000+
35 Mini Note Viewer 164K not available
36 Multi SMS Sender 84K 500.000+
37 Munch Life 420K not available
38 MyExpenses 39M 1Mln+
39 MyLock 52K 10.000+
40 Nectroid 200K not available
41 PasswordMaker 4.5M 5000+
42 PCAPDroid 11M 100.000+
43 Sanity 628K 500+
44 Stoic Reading 9.1M 10+
45 SwiFTP 6.1M 1000+
46 Weight Chart 116K not available
47 WhoHasMyStuff 2.8M 5000+
48 Wikipedia 24M 50Mln+
49 WorldClock 1.2M 100.000+

Table 5.1: List of apps used for GAPS evaluation

In the following sections, results of GAPS’ analysis are illustrated, more specifically:

• the first measurements concern path reconstruction capabilities, assessing the analysis
time and the number of paths that are able to reach an entry point over the total gener-
ated

• the latter is related to the assessment of the automatic interaction, thatwill test the reach-
ability of the previously generated paths to gather a Proof-of-Reachability for each of
them.

In each case, the analyses were carried out both with andwithout the conditionalitymodule
enabled. The motivation behind this choice is that finding paths that satisfy conditional state-
ments can be quite computationally cumbersome, and can therefore be optionally enabled by
the user through the command line arguments.
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5.1 Evaluation on Path Reconstruction

In the initial testing phase, GAPS selects for each app a total of 50 random targetmethods, and
its path reconstruction feature is evaluated by measuring:

• the time in seconds it takes to complete the building of paths and the extraction of high-
level instructions,

• the total number of paths generated,

• the number of paths that are considered reachable, meaning that starting from an entry
point in the app (i.e., main activity or an exported component) the target method is
accessible.

Tests were run on an Ubuntu 20.04 VM on a server with 64GB of RAM.

5.1.1 GAPS without ConditionalityModule

All the applications in the dataset are correctly analyzed, and their statistics can be consulted in
Table 5.2.

App name Analysis time (seconds) Reachable paths Total paths

A2DP Volume 90,81 845 1338
aagtl 7,74 66 179
Aard2 43,10 0 531
Addi 12,16 18 67
ADSDroid 5,23 0 177
aGrep 4,02 51 90
AirGuard 194,73 0 204
AlarmClock 5,15 38 141
aLogCat 5,39 94 104
Amazed 4,62 34 138
Androidmatic Keyer 4,69 17 52
AnyCut 3,12 23 26
AnyMemo 64,33 0 291
App Cache Cleaner 73,27 59 78
Auto Answer 3,30 4 7
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App name Analysis time (seconds) Reachable paths Total paths

Based Cooking 16,16 0 480
Battery Dog 2,76 5 7
Bites 3,90 51 55
Blokish 61,21 136 290
Book Catalogue 23,54 0 231
DeepL 37,76 0 457
DuckDuckGo 292,29 0 218
Easy XKCD 85,75 0 82
F-Droid Client 191,76 48 308
Flipper Zero 324,87 0 70
Frozen Bubble 10,33 255 657
Hacki 35,72 0 56
HotDeath 5,07 0 82
KeePass2 150,28 24 720
Linux Command Library 99,89 0 65
Lock Pattern Generator 3,53 29 43
LolCatBuilder 3,78 32 40
ManPages 3,00 15 18
Mileage 7,37 0 156
Mini Note Viewer 5,17 190 220
Multi SMS Sender 3,62 31 35
Munch Life 2,94 4 4
MyExpenses 510,74 0 56
MyLock 3,64 23 73
Nectroid 3,93 42 84
PasswordMaker 57,78 3 53
PCAPDroid 134,21 55 464
Sanity 5,85 60 247
Stoic Reading 68,12 44 48
SwiFTP 70,97 9 188
Weight Chart 3,54 34 74
WhoHasMyStuff 35,62 2 63
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App name Analysis time (seconds) Reachable paths Total paths

Wikipedia 164,73 0 52
World Clock 3,79 18 24

Table 5.2: Results on GAPS path reconstruction without conditionality enabled

Furthermore, some statistics can be observed in Table 5.3. Overall, it took GAPS around 50
minutes to inspect all the samples, averaging 60.31 seconds per app. Moreover, a total of 9143
paths were generated in total, around 186 each, and among those, the paths that are considered
to be reachable are 2359, which are 48.14 per app on average. Additionally, 25% of the paths
reconstructed are able to draw a clear connection between one of the app’s entry points and a
randomly selected target method.

Analysis time (seconds) Reachable paths Total paths

Total 2955,28 2359 9143
Average 60,31 48,14 186,59

Table 5.3: Statistics on GAPS path reconstruction without conditionality enabled

5.1.2 GAPS with ConditionalityModule

By enabling the conditionality module, GAPS’ analysis complexity grows. More specifically,
this depends on how intricate the conditional statements is, since it may involve, for instance,
two variable whose value involves a long chain of assignments. In these cases, constant propaga-
tion is recursively performed in order to retrieve the possible values assigned over thewhole app
code. Therefore, this can quickly become exponentially complex and lead to out-of-memory
crashes. For this reason, not all the apps from the dataset have been correctly analyzed in this
modality, thus fully analyzing 39 out of 49. A list can be consulted in Table 5.4. It needs to be
noted that the set of target methods tested were randomly selected and, therefore, are different
from the ones previously mentioned.

App name Analysis time (seconds) Reachable paths Conditional paths Total paths

A2DPVolume 1100,79 817 3179 3594
Aard2 168,57 0 0 917
Addi 10,72 0 21 74
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App name Analysis time (seconds) Reachable paths Conditional paths Total paths

ADSDroid 5,95 0 1 293
Air Guard 466,22 0 8 258
Alarm Clock 25,67 1 915 1013
aLogCat 9,59 395 439 452
Amazed 4,26 0 53 302
Androidmatic Keyer 5,90 16 21 68
AnyCut 2,91 0 21 24
AnyMemo 251,04 0 0 324
App Cache Cleaner 114,07 621 703 724
Auto Answer 3,14 0 9 22
Based Cooking 17,18 0 0 440
Battery Dog 3,58 2 13 21
Bites 3,93 0 65 74
Book Catalogue 111,60 0 0 387
DeepL 66,48 0 2 1184
DuckDuckGo 17684,11 0 0 377
Easy XKCD 296,19 0 0 221
Frozen Bubble 68,63 162 2445 2760
Hacki 67,16 0 0 291
Linux Command Library 120,42 0 0 183
Lock Pattern Generator 3,22 0 38 68
LolCatBuilder 6,24 54 122 133
Man Pages 3,16 0 21 23
Mileage 10,39 0 0 276
Mini Note Viewer 36,35 8 960 1060
Multi SMS Sender 4,04 3 56 111
Munch Life 3,36 0 4 4
MyExpenses 1715,99 0 0 77
MyLock 20,86 271 1356 1398
Nectroid 12,21 108 264 330
PasswordMaker 165,15 176 397 509
Sanity 15,73 27 215 516
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App name Analysis time (seconds) Reachable paths Conditional paths Total paths

Stoic Reading 77,94 0 49 74
Weight Chart 4,73 1 33 120
WhoHasMyStuff 47,44 0 2 111
World Clock 3,96 2 40 48

Table 5.4: Results on GAPS path reconstruction with conditionality enabled

Compared to previous analysis modality, Table 5.5 shows that the execution time grows
drastically, lasting around 6.5 hours and averaging almost 10 minutes per app. Furthermore,
out of the total number of paths reconstructed, 60.71% are reachable from an entry point. A
subset of 2664 of these has a set of paths found by GAPS that satisfy conditional statements,
which out of 11452, constitutes the 23%.

Analysis time (seconds) Reachable paths Conditional paths Total paths

Total 22738,90 11452 2664 18861
Average 583,05 293,64 68,31 483,62

Table 5.5: Statistics on GAPS path reconstruction with conditionality enabled

5.1.3 Limitations

Several of themost common factors contributing to the inability to fully reconstruct a path and
reach an entry point are intrinsically linked to the complexity of components within Android
apps. GAPS is currently supporting the most frequently used constructs, such as AsyncTasks
andFragments, but every application can implement their own andhave thembehave uniquely.
Furthermore, at the current state, Inter-Component Communication is only working when
the Intent object is built inside the samemethod that sends it (i.e., as a result of intra-procedural
analysis). While at the moment these limitations are influencing negatively the results, with
enough engineering effort GAPS can overcome them and improve in the future.
In the case of the conditionality module enabled, the increase in computational complexity
also needs to be accounted for. Therefore, future improvements should consider limiting the
amount of paths parsed, in order to reduce memory usage.
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5.2 Evaluation on Automatic Interaction

The second evaluation performed on GAPS consists on measuring correctness in producing
Proof-of-Reachability (PoR) following the high-level instructions generated during the path
reconstruction phase. Therefore, the following results are a direct consequence of the previ-
ously illustrated sections. Tests were performed on a rooted Pixel 2 device with Frida running
Android 8.1.

5.2.1 GAPS without ConditionalityModule

A comprehensive list of all the apps can be found in Table 5.6.

App name Paths with PoR Total interactive paths

A2DP Volume 31 63
aagtl 0 0
Aard2 0 0
Addi 0 1
ADSDroid 0 0
aGrep 13 44
Air Guard 0 0
AlarmClock 6 21
aLogCat 15 19
Amazed 0 0
Androidmatic Keyer 0 0
AnyCut 0 11
AnyMemo 0 0
Appca Cache Cleaner 0 8
Auto Answer 0 2
Based Cooking 0 0
Battery Dog 0 0
Bites 0 0
Blokish 0 16
Book Catalogue 0 0
DeepL 0 0
DuckDuckGo 0 0
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App name Paths with PoR Total interactive paths

Easy XKCD 0 0
F-Droid Client 0 9
Flipper Zero 0 0
Frozen Bubble 9 23
Hacki 0 0
HotDeath 0 0
KeepPass2 0 24
Linux Command Library 0 0
Lock Pattern Generator 7 9
LolCatBuilder 0 0
ManPages 1 8
Mileage 0 0
Mini Note Viewer 5 31
Multi SMS Sender 8 12
Munch Life 0 0
MyExpenses 0 0
MyLock 0 10
Nectroid 1 1
PasswordMaker 0 0
PCAPDroid 0 51
Sanity 1 49
Stoic Reading 43 44
SwiFTP 1 9
Weight Chart 0 21
WhoHasMyStuff 0 0
Wikipedia 0 0
World Clock 6 10

Table 5.6: Results on GAPS automatic interaction without conditionality enabled

In Table 5.7 it is shown that 445 unique paths with high-level instructions were extracted,
from which 33% (147) produced a Proof-of-Reachability through Frida upon executing the
target method.
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Paths with PoR Total interactive paths

Total 147 445
Average 3,06 0,27

Table 5.7: Statistics on GAPS automatic interaction without conditionality enabled

5.2.2 GAPS with ConditionalityModule

Similarly, apps that completed the path reconstruction analysis were also tested, and the full
list is provided with Table 5.4.

App name Paths with PoR Total interactive paths

A2DPVolume 31 495
Aard2 0 0
Addi 0 0
ADSDroid 0 0
Air Guard 0 8
Alarm Clock 6 17
aLogCat 15 46
Amazed 0 0
Androidmatic Keyer 0 10
AnyCut 0 10
AnyMemo 0 0
App Cache Cleaner 0 25
Auto Answer 0 4
Based Cooking 0 0
Battery Dog 0 2
Bites 0 0
Book Catalogue 0 0
DeepL 0 0
DuckDuckGo 0 0
Easy XKCD 0 0
Frozen Bubble 9 108
Hacki 0 0
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App name Paths with PoR Total interactive paths

Linux Command Library 0 0
Lock Pattern Generator 7 9
LolCatBuilder 0 2
Man Pages 0 7
Mileage 0 0
Mini Note Viewer 5 31
Multi SMS Sender 9 20
Munch Life 0 1
MyExpenses 0 0
MyLock 0 130
Nectroid 1 31
PasswordMaker 0 24
Sanity 0 31
Stoic Reading 43 49
Weight Chart 0 21
WhoHasMyStuff 0 0
World Clock 6 22

Table 5.8: Results on GAPS automatic interaction with conditionality enabled

In this instance, performances areworse as the percentage of pathswith PoR are only 11.96%
over 1103 paths with possible interactions.

Paths with PoR Total interactive paths

Total 132 1103
Average 3,38 28,28

Table 5.9: Statistics on GAPS automatic interaction with conditionality enabled

5.2.3 Limitations

A major limitation in this category is the missing support for additional graphical elements,
from which to retrieve the IDs for automatic interaction. Furthermore, currently GAPS sup-
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port all the UI components that are defined through a combination of XML and Java/Kotlin
code (i.e., buttons, switches, text views, and more). Although these are natively introduced by
Android and recognized as themost popular types, others canbeused in applications nowadays
and support needs to be manually introduced through engineering effort. Additionally, some
components can be recognized as reachable entry points through implicit Intent, whose ac-
tions are considered privileged by Android. Despite this being a feature of these apps to collect
information about the device current state (e.g., an Intent is sent whenever the device is charg-
ing), some can only be sent by the system itself, otherwise exceptions are thrown. Therefore,
in the future these cases will need to be managed to avoid testing paths that are, consequently,
categorized as unreachable.

5.3 ICC Analysis Comparisonwith Amandroid

The Inter-Component Communication module implemented in GAPS can be directly com-
pared to Amandroid [5], a state-of-the-art tool that provides the same type of information,
among other things. During these analyses, I generated only the ICC-related data with GAPS
over the AndroTest dataset Table 5.1, and similarly for Amandroid in its two variants:

• component, that performs an analysis based on knowledge about Android components,
deemed to be more complex,

• work unit, alternative that uses a different ”work-unit” analysis, based on Amandroid
original implementation.

More specifically, since the analyses can take a lot of time I established a timeout of one hour
and a half (5000 seconds). In this section, for each of the solutions and their variants, the ICC
retrieval capabilities are measured by assessing:

• analysis time, measured as the required amount in order to produce the output or as the
timeout, if it is exceeded,

• total number of Intent links, that are retrieved from the Json files that are produced by
each solution.
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5.3.1 Analysis Time

In Table 5.10 a full list of the applications analyzed can be consulted along with the Analysis
Time (A.T.) required for each solution to terminate and produce their results.

App name GAPS A.T. Amandroid Component A.T. Amandroid WorkUnit A.T.

A2DP Volume 22,71 753,96 1021,03
aagtl 3,43 2310,44 5000,01
Aard2 42,85 1548,94 365,80
Addi 4,68 994,31 1004,23
ADSDroid 1,97 165,42 97,24
aGrep 0,62 112,85 232,29
AirGuard 166,52 1061,29 879,76
Alarm Clock 0,87 70,66 65,01
aLogCat 1,92 39,71 40,50
Amazed 1,07 8,00 7,65
Androidmatic Keyer 1,72 419,77 762,44
AnyCut 0,47 22,37 28,15
AnyMemo 65,61 5000,00 5000,01
App Cache Cleaner 61,99 390,05 230,24
Auto Answer 0,47 17,67 19,44
Based Cooking 6,09 74,42 56,98
Battery Dog 0,57 15,67 26,38
Bites 0,82 177,68 51,70
Blokish 49,73 457,23 1033,71
Book Catalogue 19,50 5000,00 5000,02
DeepL 13,44 127,85 229,13
DuckDuckGo 225,08 5000,01 5000,02
Easy XKCD 72,87 1687,32 164,63
F-Droid Client 112,85 5000,00 5000,01
Flipper Zero 368,90 5000,00 5000,02
Frozen Bubble 1,82 1417,06 2516,70
Hacki 25,08 2554,92 747,67
HotDeath 1,62 82,74 410,81
KeePass2 141,21 808,41 679,73
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App name GAPS A.T. Amandroid Component A.T. Amandroid WorkUnit A.T.

Linux Command Library 82,22 59,03 48,70
Lock Pattern Generator 0,72 41,35 74,37
LolCatBuilder 0,52 39,58 44,37
ManPages 0,57 35,99 43,11
Mileage 3,13 5000,00 53,25
Mini Note Viewer 1,32 5000,00 5000,02
Multi SMS Sender 0,77 184,07 252,98
Munch Life 0,42 24,04 26,19
MyExpenses 506,10 5000,00 5000,01
MyLock 0,57 61,02 65,90
Nectroid 1,12 154,66 565,20
PasswordMaker 55,71 642,12 437,01
PCAPDroid 67,41 1480,15 913,98
Sanity 2,28 1879,89 740,63
Stoic Reading 33,51 5000,00 5000,03
SwiFTP 63,67 71,78 101,97
Weight Chart 0,87 74,33 125,54
WhoHasMyStuff 29,60 61,91 28,54
Wikipedia 164,22 5000,00 5000,02
WorldClock 0,87 177,26 29,01

Table 5.10: ICC analysis time (seconds) comparison between GAPS, Amandroid Component and Amandroid WorkUnit

Overall, GAPS never exceeded the one hour and a half timeout. Furthermore, the app that
took most of the time is ”MyExpenses”, with 506.10 seconds (8.43 minutes). Instead, Aman-
droid Component andWorkUnit exceeded the time limit in 10 instances, sharing 9/10 cases.
Moreover, Table 5.11 shows that GAPS required 40.53 minutes to complete the analysis, av-
eraging 49.63 seconds. This result is also coherent with the path reconstruction statistics pre-
viously mentioned, that requires 60.31 seconds per app, without the conditionality module
enabled. Therefore, the Inter-Component Communication information retrieval is a key step
during the pre-processing phase of GAPS’ analysis, occupying 82% of the average time, com-
bined with the disassembling operation.
Meanwhile, Amandroid Component and WorkUnit completed their analysis in 19.52 and
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17.83 hours, respectively. Furthermore, averaging 23.91 and 21.84 minutes correspondingly.

GAPS A.T. Amandroid Component A.T. Amandroid WorkUnit A.T.

Total 2432,09 70305,94 64222,14
Average 49,63 1434,82 1310,66

Table 5.11: Statistics on ICC analysis time (seconds) comparison between GAPS, Amandroid Component and Amandroid
WorkUnit

5.3.2 Intent Links Retrieval

The results of the ICC analysis for all the solutions are produced in the formof Json files, where
all the retrieved Intent Links (I.L.) are shown in output. In Table 5.12 the amount of informa-
tion collected is compared across GAPS, Amandroid Component andWorkUnit.

App name GAPS I.L. Amandroid Component I.L. Amandroid WorkUnit I.L.

A2DP Volume 33 172 55
aagtl 2 4 5
Aard2 11 3 3
Addi 5 6 8
ADSDroid 1 2 2
aGrep 8 10 9
AirGuard 34 0 1
Alarm Clock 10 1 1
aLogCat 5 1 4
Amazed 1 0 0
Androidmatic Keyer 3 3 3
AnyCut 4 5 4
AnyMemo 88 0 3
App Cache Cleaner 2 0 3
Auto Answer 4 0 3
Based Cooking 16 0 0
Battery Dog 4 2 2
Bites 9 0 0
Blokish 5 4 6
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App name GAPS I.L. Amandroid Component I.L. Amandroid WorkUnit I.L.

Book Catalogue 62 0 54
DeepL 6 1 3
DuckDuckGo 59 0 0
Easy XKCD 22 0 4
F-Droid Client 151 0 32
Flipper Zero 48 0 1
Frozen Bubble 7 6 6
Hacki 27 0 0
HotDeath 1 2 2
KeePass2 44 110 1
Linux Command Library 5 1 1
Lock Pattern Generator 3 2 3
LolCatBuilder 0 0 0
ManPages 1 1 2
Mileage 22 0 1
Mini Note Viewer 14 0 15
Multi SMS Sender 7 6 6
Munch Life 1 1 1
MyExpenses 101 0 0
MyLock 21 4 5
Nectroid 12 23 13
PasswordMaker 11 4 5
PCAPDroid 29 1 21
Sanity 40 184 16
Stoic Reading 633 0 632
SwiFTP 41 0 6
Weight Chart 5 8 10
WhoHasMyStuff 8 0 1
Wikipedia 46 0 0
WorldClock 2 2 2

Table 5.12: ICC information (Intent Links) retrieval comparison between GAPS, Amandroid Component and Amandroid
WorkUnit
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Moreover, Table 5.13 shows that GAPS acquired 1674 Intent Links, 294% and 175% more
compared to Amandroid Component andWorkUnit. Furthermore, on average, GAPS found
34.16 ICC-related information in each app, while the counterparts 11.61 and 19.49 respec-
tively.

GAPS I.L. Amandroid Component I.L. Amandroid WorkUnit I.L.

Total. 1674 569 955
Average 34,16 11,61 19,49

Table 5.13: Statistics on ICC information (Intent Links) retrieval comparison between GAPS, Amandroid Component and
Amandroid WorkUnit

5.3.3 Considerations

Overall, GAPS, compared to Amandroid Component andWorkUnit, is able to extract a larger
amount of information related to Inter-Component Communication in the test applications
and in a fraction of their time (3.45% and 3.78% respectively). However, currently there is
not an available automatic mean of testing the results’ correctness across all the solutions, aside
frommanually reverse-engineering the apps to test the validity of the results, which can require
a lot of time. In the future, these output should be actively compared to measure their accu-
racy, either through automated tests or by manual effort. Furthermore, GAPS is currently
only retrieving ICC information through intra-procedural paths and is planned to also work
inter-procedurally, similarly to howAmandroid does it. The addition of this feature can greatly
increase the number of Intent Links retrieved.
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6
Use Cases

At the current state, GAPS can be used to reconstruct paths to test the method’s reachability
for an Android application. The process through which this is achieved involves:

• generating the Control-Flow Graph of app’s methods,

• finding Inter-Component Communication information,

• performing data flow analysis on method arguments and variable assignments,

• retrieving IDs associated to graphical elements to draw precise automatic interaction.

For each of the aforementioned tasks, further enhancements can be made in the future that
can adapt GAPS to numerous use cases.

6.1 Alternative Static Analysis Approaches

Although static analysis has been largely explored over the years, especially among the Android
research community [21] [22] [23] [24], the adoption of smali in this domain has been over-
looked compared to examining the source and decompiled Java code. Furthermore, the rigor-
ous smali’s semantic can be advantageous for its clear usage of registers in handling operations.
Therefore, GAPS by relying on this can provide insights that, compared to other approaches,
can appear clearer and less subject to intricate syntax. Furthermore, since path reconstruction

51



works in a backwards fashion starting from a target method and is based on the Control-Flow
Graph, conditional branches are also considered as they lead to uniquely different sets of in-
structions. This allows to study alternative intra-procedural code in the form of a linear se-
quence of directives. Moreover, this renders static analysis much simpler and affordable thanks
to the direct relationship between instruction’s addresses that is established during the app dis-
assembly, which is not as easy when considering decompiled Java code. These features, in ad-
dition to path reconstruction and data flow analysis that GAPS provides, can open up room
for unexplored approaches in static analysis that can benefit of these scalable and accurate tech-
niques.

6.2 ICC Analysis and Testing

Inter-Component Communication in Android is a complex mechanism that has been exten-
sively studied [25] [26] [27] [28] [29] [30] [31] [32] for its nature and tendency to leading to
security threats. Applications that are registering as available in receiving Intents from external
sources and handling their requests can inadvertently expose themselves to a range of attacks,
such as Denial of Services, Spoofing and Hijacking. Furthermore, users can consequently be-
come victim of data leaks and privilege escalation. GAPS can statically recover ICC informa-
tion over the whole app and precisely and automatically map senders and receivers involved for
eachmessage. Moreover, the data flow analysis used to retrieve this information can be further
extended and utilized to study the messages’ construction, such as to detect additional data
that can be appended. Consequently, this knowledge can help uncover vulnerabilities in apps,
for instance it could be used in fuzz testing and use the Intents format to accurately generate
inputs that can lead to crashes.

6.3 Taint Analysis

Currently, GAPS can perform intra-procedural data flow analysis using the registers involved
in the smali instructions and resolve variable assignments through constant propagation. This
functionality can be further extended thanks to the path reconstruction feature to perform this
type of analysis over the whole path, therefore inter-procedurally. The expected use case would
be similar to those of Flowdroid [4] andAmandroid [5], which perform taint analysis by using
the Control-Flow Graph of the app. Furthermore, this feature could be applied to GAPS for
discovering and studying information leaks inside Android applications and, combined with
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the extraction of high-level instructions, automatically trigger the target methods andmeasure
the user’s exposure to threats.

6.4 IntegrationwithVulnerabilityDetectionTools

The Android research community, over the years, has produce a multitude of solutions that
aim to provide automatic vulnerability detection through static analysis, such as SPECK [33].
However, one key limitation is that every flaw that can be proven to be a threat also needs to
be manually verified to be a reachable portion of code by malicious entities. On top of that,
Proof-of-Concept exploits should be usually implemented and this can cause trouble in the
cases where, in order to be effective, one or more conditions need to be triggered through in-
teractions with the vulnerable app. In the past, in order to try and solve this issue application
exercisers have been used, such as Monkey [6] and ARES [7], although they cannot provide
a guarantee of reaching the desired state. This scenario is the optimal use case for GAPS that
would use the information found by the vulnerability detection solutions and draw a path to
prove the reachability of the end point, along with instructions for automatically interacting
with the app and generate a Proof-of-Reachability. Subsequently, launching an exploit that
previously did not produce the expected results might then prove to be effective. On top of
that, GAPS is built as a Python module that can be easily integrated in any project.
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7
RelatedWorks

Understanding the existing body of research in Android security is crucial for contextualiz-
ing the current study and identifying shortcomings that warrant further investigation. In this
section, an overview of relevant literature that inspired GAPS is provided, focusing on recent
studies related to static analysis and automatic interaction of applications. By reviewing the
current state of knowledge, the goal is to identify areas where GAPS contributes and addresses
existing inadequacies.

7.1 Control-FlowGraph Generation

Notoriously, Flowdroid [4] and Amandroid [5] are static taint analysis tools that generate the
app’s Control-FlowGraph in order to carry their tasks and draw a connection between sources
and sinks. Both of them employ data flow analysis techniques to develop a CFG in a forward-
visit approach, that is, every branch is visited during the initial phases. Moreover, this approach
has proven tobe resource-intensivewhen integratedwith the escalating intricacy ofAndroid ap-
plications. As a result, the computational demands have increased significantly, causing these
tools to frequently encounter crashes due tomemory exhaustion. Similarly, Soot [34] also pro-
vides Control-Flow Graph generation for Android apps by creating an intermediate represen-
tation of the Java bytecode, called ”Jimple”, which contains information about the relationship
with other parts of the app’s code.
Compared to these solutions, GAPS is based on the generation of intra-procedural CFGs for
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each of the app’s methods through Androguard and then paths are reconstructed in a back-
wards fashion, therefore starting from the endpoint to all possible entry points. Backdroid
[35] also uses a similar technique to perform taint analysis. Moreover, this ensures that compu-
tations are performed strictly when required to avoid wasting additional resources in branches
that should be never traversed. Consequently, compared to the counterparts, GAPS build its
inter-procedural Control-Flow Graph on-demand and only for the building blocks required
along the pathway, as opposed to doing it over the whole app during pre-processing.

7.2 Mapping Inter-Component Communication

In the past, the problemofmapping communication between components in the app andwith
the OS itself has been largely discussed in literature. For instance, Octeau et al. [36] in 2013
presented a scalable solution to statically identify ICC vulnerabilities in the Android platform.
Furthermore, ICC-Inspect [37] similarly profiles Intents dynamically to trace call graphs and
collects statistics. Elish et al. [38] applied these techniques to detect andpreventmalicious tasks
involving Intents. On top of that, IccTA [30] and Flair [26] have explored the matter of Inter-
Component information leakage and vulnerabilities, respectively. Moreover, Amandroid [5]
also allows retrieving knowledge about ICC links and created a benchmark suite to test other
tools efficiencies in this domain. GAPS also intends to make a contribution in this regard by
generalizing the search for methods accepting Intents as parameters and studying their intra-
procedural code to gather information about their construction. Furthermore, in the future
this feature could be evaluated using the Amandroid’s ICC test suite and, most importantly,
real-world applications.

7.3 Automatic Interaction

Automated interaction constitutes a relevant subject within Android research due to the com-
plex challenge posed by the management of various graphical components and corresponding
events, which can vary significantly based on the specific goal. Currently, one important em-
ployment is app exercisingwith the goal of increasing code coverage. Some of themost popular
examples in these cases are Monkey [6], which is able to generate pseudo-random interactions
with the app UI, and MonkeyRunner [39], which instead can be used to specify commands
to perform and create custom scripts, both released officially by Google. Furthermore, recent
trends in the last few years consist in trying to make smarter explorations by integrating Ma-
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chine and Deep Learning models, such as Reinforcement Learning in the case of ARES [7].
Moreover, similar attempts have also been performed using stochastic models [9]. However,
this type of pseudo-random app exercising cannot always produce the expected results, as big-
ger real-world apps usually have a lot of code that would need to be covered.
GAPS, as opposed to previous work in literature, aims to combine path reconstruction and au-
tomatic interaction to obtain a precise app exercising tool that can be adopted to reach an app
state deterministically. A similar attempt was made by Liu et al. [40] in 2018, but they limited
their analysis to consider only buttons, while GAPS abstracts their behavior and applies it also
to other graphical elements.
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8
Conclusions

In this Master thesis, I present GAPS, a static analysis tool that aims to offer path reconstruc-
tion through the generation of Android app’s Control-Flow Graphs, and abstract from them
high-level instructions that can be used for automatic interaction. This solution is built us-
ing the Androguard Python module to access the Dalvik bytecode and uses a backwards tech-
nique to draw the sequence of smali instructions and method invocations that are required to
reach a target method. The path reconstruction phase concatenates app’s invocations between
each other, along with information related to Inter-Component Communication. Addition-
ally, paths that satisfy conditional statements can be generated, to further enhance chances
of reaching the desired end point. Furthermore, IDs associated to graphical UI elements are
retrieved thanks to Apktool and automatic interaction is achieved through the AndroidView-
Client Python package. Ultimately, GAPS was tested against the AndroTest open-source app
dataset that is widely recognized as the standard for automatic interaction tools. In light of the
results obtained, future improvements can be made to enhance performances, such as adding
support formoreAndroid components, graphical elements, andmore. Furthermore, data flow
analysis based on smali registers is used solely intra-procedurally at the moment; performances
could greatly benefit from extending this functionality to also work across more invocations.
Through engineering effort, these improvements can facilitate GAPS’ adoption in many uses
cases, that range from integration to vulnerability and information leakage detection tools, to
also work as a standalone static and taint analysis solution.
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