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Abstract

Fully autonomous driving systems are equipped with sensors able to guarantee fast detec-
tion and recognition of sensitive objects in the environment. However, the resulting huge
volumes of data generated from those sensors may be challenging to handle for standard
communication technologies.

Along these lines, in this thesis we test and validate different methods to evaluate correla-
tion of automotive data on a synthetic dataset, to decide the most convenient way of trans-
mitting data.

The study investigates correlation methods such as Pearson’s correlation coefficient, the
Chamfer Distance, the Iterative Closest Point (ICP), and the Normal Distribution Trans-
form (NDT) algorithms. We also develop a new score function combining Chamfer Distance
and correlation to detect significant changes in the automotive data.

The research utilizes a synthetic dataset and examines both static and dynamic contexts.
Our findings highlight the interplay between correlation and Chamfer Distance in dynamic
environments, and demonstrate that automotive data are highly correlated, even though re-
dundancy is needed to guarantee accuracy, especially in critical areas where safety require-
ments are particularly critical.

I sistemi di guida completamente autonomi sono dotati di avanzati sensori in grado di rile-
vare e riconoscere rapidamente oggetti nell’ambiente circostante. Tuttavia, la generazione di
enormi volumi di dati da parte di questi sensori può rappresentare una sfida considerevole
per le tecnologie di comunicazione standard.

In questa tesi, ci proponiamo di esaminare e convalidare diversi metodi per valutare la
correlazione dei dati automobilistici utilizzando un dataset sintetico, al fine di determinare
il modo più efficace per trasmettere tali dati. La nostra ricerca esplora vari metodi di cor-
relazione, tra cui il coefficiente di correlazione di Pearson, la Chamfer Distance, l’algoritmo
Iterative Closest Point (ICP) e la Normal Distribution Transform (NDT). Inoltre, sviluppi-
amo una nuova funzione di punteggio che combina la Chamfer Distance e la correlazione al
fine di individuare cambiamenti significativi nei dati automobilistici.

La nostra indagine si basa su un dataset sintetico e considera contesti sia statici che dinam-
ici. I nostri risultati mettono in evidenza l’importante interazione tra correlazione e Chamfer
Distance in ambienti dinamici e dimostrano che i dati automobilistici sono intrinsecamente
correlati, pur richiedendo una certa ridondanza per garantire l’accuratezza, specialmente nelle
aree critiche in cui sono essenziali i requisiti di sicurezza.
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1
Introduction

In the ever-evolving landscape of automotive technology, the integration of sensors and data-
driven systems has become paramount in ensuring safety, efficiency, and overall performance.
The increasing complexity and volume of data generated by these sensors [1] present both
opportunities and challenges for the automotive industry. However, this surge in data pro-
duction has posed significant challenges in terms of data transmission and processing.

The use of data received from external sources is essential for several reasons:
- Broad Coverage: It provides extensive geographic coverage and global information that

a single vehicle’s sensors cannot collect.
- Safety: It enables real-time alerts about accidents, road conditions, and emergency vehi-

cles, enhancing road safety.
- Efficiency: It optimizes routes to avoid congestion and reduce travel times, contributing

to efficiency and fuel savings.
The need to optimize data transmission from vehicles to cloud-based processing machines

has become a pressing issue, driven by the desire to reduce bandwidth consumption, latency,
and processing costs.

Key processing tasks include object detection, semantic segmentation, and lane tracking
for safe navigation. Sensor fusion combines data from various sensors to enhance perception
[2]. Anomaly detection identifies unusual patterns, while mapping and localization enable
precise positioning. Additional tasks encompass traffic analysis and environmental monitor-
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ing for comprehensive automotive intelligence.
Transmitting all the raw sensor data to the cloud is not only resource-intensive but also

often unnecessary, as a substantial portion of this data remains uninformative due to static
environmental conditions.

To address these challenges, in this thesis, we analyze various correlation techniques for au-
tomotive sensor data, focusing on the study and evaluation of methods to reduce data trans-
mission to a cloud-based processing machine.

This research is rooted in the ”value of information” paradigm, as examined in [3, 4]. Our
primary objective is to evaluate the appropriateness of data transmission. We achieve this
by assessing various correlation techniques and devising a novel method that amalgamates
diverse metrics. This approach is aimed at identifying instances when the surrounding envi-
ronment has undergone significant changes, justifying the need for data transmission.

By achieving this, we aim to find the balance between the need for data accuracy and the
efficient utilization of resources.

However, it’s crucial to strike a balance in data transmission timing. Waiting too long to
transmit may lead to outdated or non-representative data stored in the cloud server. This, in
turn, can degrade the accuracy of autonomous driving operations. Therefore, finding the op-
timal moment for data transmission is paramount to ensure the effectiveness and reliability
of autonomous driving systems.

While the importance of data from external sources is recognized, this research focuses on
evaluating data transmission appropriateness using correlation techniques. Unlike previous
studies, this thesis aims to strike a balance by identifying instances when the environment un-
dergoes significant changes, justifying the need for data transmission. It also proposes a novel
scoring function that combines Chamfer Distance and Pearson’s Correlation Coefficient to
optimize data transmission timing, considering both metrics. This approach contributes to
the efficiency and reliability of autonomous driving systems, making it a novel contribution
to the field.

Previous work [5, 6] has primarily focused on point cloud registration and change detec-
tion utilizing segmentation and data fusion with external datasets. In other work, such as [7]
a neural network has been introduced to work in registered point clouds to detect environ-
mental changes. In contrast, this thesis concentrates on the specific domain of automotive
sensor data, with a focus on LiDAR sensor data. It explores various correlation algorithms,
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including Pearson’s correlation coefficient, Chamfer Distance, Iterative Closest Point (ICP)
registration algorithm, and Normal Distribution Transform (NDT) registration algorithm,
and their applicability in identifying meaningful changes in the point cloud data. The devel-
opment and evaluation of a new scoring function that combines multiple metrics to optimize
data transmission timing represent a unique aspect of this research.

This thesis aims to investigate and evaluate correlation techniques that can be applied to au-
tomotive sensor data, specifically data obtained from top-mounted LiDAR sensors. The
primary research objectives are as follows:

- To explore and understand the theoretical foundations and context of the study in the
automotive sensor data domain.

- Study various correlation algorithms and their applicability in both static and dynamic
contexts, focusing on Pearson’s correlation coefficient, Chamfer Distance, Iterative Closest
Point (ICP) registration algorithm, and Normal Distribution Transform (NDT) registration
algorithm.

- Investigate the evolution of LiDAR point clouds and evaluate the effectiveness of the se-
lected correlation techniques in identifying meaningful changes in the environment. More-
over, our goal is to develop and assess a new score function that combines Chamfer Distance
and Pearson’s Correlation Coefficient not only to identify significant changes in the point
cloud data but also to optimize the decision regarding when it is appropriate to transmit
data, considering both metrics.

This thesis is organized into five chapters. Each chapter builds upon the results and consid-
erations of the previous one.

- Chapter 2 provides the theoretical framework and context for the study.
- Chapter 3 delves into the detailed analysis of sensor data filtering and the study of the

correlation algorithms in different scenarios.
- Chapter 4 constitutes the core of the research, where the selected algorithms and tools are

applied to an ordered collection of environmental data points (sequence) to detect changes
in the surrounding environment and identify the optimal moment for data transmission.

- The final chapter provides a concise summary of our investigation and offers insights
into potential future research directions.

This thesis concentrated on enhancing data transmission efficiency within automotive sensor
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systems through the application of correlation techniques. The research revealed that fine-
tuning parameters, implementing downsampling, and configuring field of view settings have
substantial effects on correlation outcomes. Additionally, a novel change score function was
devised to facilitate the identification of noteworthy changes in the data. Throughout this
study, we will discuss the methodologies, results, and insights gained from our investigations.
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Autonomy will come a long way in the next few years.
There will not be a steering wheel in 20 years.

Elon Musk

2
Theory and Context of Study

This thesis exclusively relies on SELMA [8], a synthetic dataset tailored for autonomous driv-
ing research. SELMA distinguishes itself through its extensive multi-sensor data, featuring
24 different sensors, a vast and diverse dataset comprising over 20 million samples that span
various weather and daytime scenarios. Additionally, SELMA aligns seamlessly with bench-
mark datasets and maintains an open-access policy. Notably, the dataset offers numerous
scenes across varying traffic densities and locations, with an impressive sampling rate of 30
frames per second, significantly surpassing the typical 10 frames per second. This higher
framerate proves invaluable for registration algorithms and correlation calculations, facilitat-
ing enhanced data processing and precision.

The ego vehicle incorporates three LiDARs, one is positioned atop the vehicle, while the
remaining two are situated close to the front-right and front-left headlights.

Our primary focus will center on the data obtained from the LiDAR sensor positioned
atop the vehicle, as it offers a comprehensive 360-degree field of view. In contrast, the other
sensors are largely redundant for our study and do not contribute substantial information
relevant to our specific applications.

Each LiDAR sensor produces a point cloud consisting of three-dimensional vectors. Since
SELMA is a synthetic dataset, we have access to additional valuable information: We can asso-
ciate each point with the specific object or actor it belongs to and we have precise information
about the position of every object.
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2.1 LiDAR point cloud transformation

The point clouds will undergo preprocessing steps such as Voxelization and Downsampling.
Additionally, we will register the evolving point cloud, aligning it to the previous ones to
account for the ego vehicle’s movement during data acquisition.

Voxelization [9] is the process of converting a three-dimensional object or space into a grid
of volumetric pixels, known as voxels, which can be thought of as the 3D equivalent of 2D
pixels. Each voxel represents a small cubic element within the 3D space and can store various
properties or attributes, such as color, density, or material information.

Downsampling [9] a point cloud via voxelization is a process that reduces the density of
point data while preserving important structural information. In this study, we performed
the following steps:

- We divided the 3D space containing the point cloud into a grid of equally sized cubic
voxels.

- We placed each point from the original point cloud into the voxel it falls within, finding
the voxel’s coordinates that correspond to the point’s location.

- If more than one point falls in the same voxel, an averaging aggregation operation is
performed. This aggregates the attributes of the points within each voxel into a single value.

The resulting point cloud will have fewer points than the original, but it retains the overall
structure and important features of the original data. Downsampling via voxelization has
mainly been useful for reducing the computational load, and also for simplifying our data
for visualization.

Registration refers to the process of aligning two or more 3D point clouds in a common
coordinate system. This alignment is crucial when dealing with data obtained from sensors
like LiDARs, as it ensures that the information collected from different viewpoints or time
instances can be effectively combined and analyzed.

The Normal Distribution Transformation (NDT) and The Iterative Closest Point (ICP)
algorithms are fundamental techniques for LiDAR point cloud registration.

ICP [10] operates iteratively to find the optimal transformation (translation and rotation)
that minimizes the distances between corresponding points in two point clouds.

The NDT algorithm [11] models the distribution of points in the 3D space using Gaussian
distributions. It is particularly suitable for aligning point clouds with complex structures or
in environments with limited features.

6



2.2 LiDAR point cloud evaluation metrics

Pearson’s correlation coefficient [12, 13] is a statistical measure used in Lidar data analysis to
quantify the degree of linear dependence between two sets of 3D point clouds. Understand-
ing the correlation between different parts of a scene can aid in detecting objects and tracking
their movement.

This coefficient is especially valuable for the change detection analysis we will perform. It
will be used in conjunction with Chamfer Distance to determine the optimal transmission
timing by utilizing correlation as one of the key factors.

It is obtained as follows:

C(ai, bi) =

∑N

j=1
(aj − ā)(bj − b̄)

√

∑N

j=1
(aj − ā)2

∑N

j=1
(bj − b̄)2

Where:

- C(ai, bi) is the normalized cross-correlation between points ai and  bi.

- N is the number of corresponding points.

- ā and b̄ are the centroids of point clouds A and B, respectively.

- aj  and  bj . are the coordinates of the j-th corresponding point.

The Chamfer Distance metric addresses the problem of measuring the dissimilarity be-
tween two shapes by quantifying the cost or distance required to transform one shape into
another. This cost is typically determined by the Euclidean distance between corresponding
points, but variations of the algorithm may use different distance metrics based on specific
application requirements.

In our study, the Chamfer Distance is calculated by summing the Euclidean distance be-
tween each point of one point cloud and the closest neighbor in the other point cloud divided
by the total number of points in the starting point cloud:

Chamfer(A,B) =

∑

a∈A minb∈B distance(a, b)
size(A)

Chamfer(B,A) =

∑

b∈B mina∈A distance(b, a)
size(B)

The total chamfer distance between the point clouds is the resulting sum:
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Chamfer = Chamfer(A,B) + Chamfer(B,A)

We performed all calculations within the MATLAB environment, utilizing the Computer
Vision Toolbox [14].

Specifically, we employed the following algorithms which were already present in the tool-
box: pcregistercorr for correlation, pcregisterndt for NDT registration, and pcregistericp for
ICP registration.
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Our goal is to make it safe and easy for people to move
around. This technology can save thousands of lives, give
people greater mobility, and free us from a lot of the things
we find frustrating about driving today.

Chris Urmson

3
Study of Algorithms in static and dynamic

contexts

In this chapter, we aim to fine-tune the voxelization parameters in terms of autocorrelation
and cross-correlation, maximize the performance of registration algorithms, and conduct a
comparison between correlation and the evolution of the machine’s position.

3.1 Study of Correlation in a Static Environment

Our investigation commenced with an examination of the correlation algorithm consider-
ing a single data point. Initially, we delved into the autocorrelation analysis of the top-
mounted LiDAR with itself, followed by an exploration of the cross-correlation between
the top-mounted LiDAR and the combined data from the pair of front-mounted LiDARs.
In both instances, our objective was to attain correlation results as close to 1 as possible.

The pcregistercorr algorithm offers flexibility through two key parameters: Grid Size and
Grid Step. Grid Size denotes the dimensions of the square occupancy grid, expressed as a
scalar value in meters. Conversely, Grid Step represents the size of individual grid cells, also
expressed as a scalar value in meters. This iterative algorithm aims to determine the optimal
transformation between the input pair of point clouds. In each step, it computes the correla-
tion between the point clouds. Upon completion, it provides the best match as the output:
the transformation with the highest correlation (correlation peak).
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In order to enhance our results and optimize performance, we implemented some filtering
steps. Points in close proximity to the vehicle(< 3m) have been eliminated to mitigate ”blind
spots” between sensors, which can lead to reduced correlation between the two point clouds.
Such points serve no specific purpose and do not contribute meaningful information.

Similarly, points located at a significant distance from the vehicle(> 30m) have been re-
moved for similar reasons. Given that sensors have varying perspectives, the captured views
of objects in the environment can exhibit substantial differences. Consequently, this leads
to the emergence of distinct point clusters at considerable distances from the vehicle, further
diminishing the correlation between the two point clouds. While such information would
certainly be beneficial for detecting distant vehicles and pedestrians, it is deemed unnecessary
for the current analysis.

We also employed downsampling by selecting a voxel size of 0.5 meters for each voxel.
This downsampling approach proved valuable in reducing the data density while preserving
essential information, contributing to more efficient processing and analysis.

Additionally, points associated with the road have been removed due to their potential
interference with the applied algorithms. We employed a straightforward selection criterion
based on point height, removing points below 0.35 meters. Floor points, which represent
the ground surface, tend to be stationary in a point cloud dataset regardless of the vehicle’s
motion. As the vehicle moves, these floor points remain in relatively fixed positions within
the point cloud.

As a result, when analyzing the point cloud data, a high concentration of these stationary
floor points can create an imbalance in the distribution of points. This imbalance can af-
fect the calculation of correspondences or similarities between points from different scans or
viewpoints. The point of maximum correspondence, which is the point in the point cloud
that matches most closely with another point, tends to be biased towards these stationary
floor points due to their abundance.

Consequently, by removing the floor points during downsampling or preprocessing, the
point cloud is left with a more balanced distribution of points, reducing the influence of sta-
tionary features and allowing for more accurate correspondences to be established, especially
with objects or structures that are not part of the ground surface.

Furthermore, without removing the floor points, we would inevitably observe a higher
correlation between independent samples, which is an undesirable outcome.

To investigate the influence of parameter adjustments on correlation peaks, we executed
the algorithm with numerous parameter combinations.
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Figure 3.3: Top-Mounted LiDAR Auto Correlation Peak Results varying both parameters

In figure 3.1 we can see that increasing the grid size enhances the match, whereas in figure
3.2 increasing the grid step yields the opposite effect.

An interesting aspect to consider is when the correlation value surpasses 0.5 as the grid
size expands to approximately 4-5 times the maximum distance. Beyond this threshold, the
correlation appears to plateau at around 0.56 for larger values. In contrast, maintaining the
grid step at acceptable levels (below 0.5 meters) has a minimal impact on the final outcome.
However, it is worth noting that exceeding a certain value in the grid step poses a challenge to
maintaining meaningful results, as it disrupts the coherence of the point cloud data analysis.

This divergence between the expected correlation values of 1 and our results can be at-
tributed to the voxelization process, where the transformation of point cloud data into volu-
metric elements affects the alignment and matching of points. Figure 3.3 is a good summary
of our results.

To complete this initial study, we assessed the cross-correlation between the union of the
front LiDARs and the top-mounted LiDAR.

In the cross-correlation results, a noteworthy distinction becomes evident: reducing the
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however, the steps are so large that the results lose significance as the predicted transforma-
tion drifts out and becomes incorrect. We have also experimented with other scenarios, such
as a turn at a busy intersection with many nearby vehicles, and these observations hold true
even in critical conditions (though, naturally, the correlation value is lower in such cases).

3.2 Study of Correlation in a Dynamic Environment

The next step is the analysis of a dynamic scenario. Here we tested the performance of the 3
registration algorithms in our study.

Based on the results of the previous section, it has been determined that reasonable pa-
rameters for the study of dynamic scenes can be set as Grid Step = 0.5m and Grid Size =

FOV(m) ∗ 3.5.
The accuracy of registration through pcregistercorr and pcregisterndt is intimately tied to

the judicious selection of voxelization parameters. In the previous section, we conducted a
study in a controlled environment to identify acceptable parameters that yield meaningful re-
sults (with low Root Mean Square Error and translation vector) without imposing excessive
computational demands.

While ICP does not require any specific parameters, NDT involves voxelizing the space
using a grid step value similar to the one employed in the correlation algorithm. Both algo-
rithms follow a coarse-to-fine approach, implying that it is advisable to supply the algorithm
with an initial predicted transformation. This initial transformation serves as the starting
point for the iterative process. Consequently, we will propagate the transformation acquired
from the previous time step into the subsequent one.

The accuracy of registration algorithms can be enhanced by expanding the area under con-
sideration. By doing so, the sensor’s field of view encompasses more static points from the
background, which aids in the registration process.

Expanding the field of view enhances registration accuracy and fosters stability, particu-
larly in instances far away from the initial reference point. Conversely, reducing the field of
view reduces the computational complexity but at the cost of diminished accuracy.

The accuracy of the transformation operation can be measured against the true data (i.e.,
our ground truth) available from SELMA. Figure 3.9 presents the results obtained for a field
of view of 35m and figure 3.10 for 70m.

We also computed the Root Mean Square Error (RMSE) between the actual translation
magnitude and the predicted value generated by each algorithm. On average, in the first
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understanding of the environment and its dynamics.
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Fully self-driving cars are here. It’s not a promise; it’s not
a research project. It’s not a limited pilot, a demo, or a
beta test. It’s here.

John Krafcik

4
Study of change detection in LiDAR point

clouds

Change Detection is the process of identifying and quantifying differences or alterations in
the environment as observed through automotive sensor data. In this chapter, we delve into
the evaluation and optimization of change detection in automotive sensor data using corre-
lation and Chamfer Distance metrics. We will discuss the methodologies employed to deter-
mine the parameters, their implications in various scenarios, and the potential for parameter
optimization.

4.1 A Novel Change Detection Score Function

Our approach involves calculating the correlation and Chamfer Distance peaks (after point
cloud registration) to assess changes in the environment. A simple change score can be intro-
duced: it is defined with a percentage coefficient, α, and consequently ( 1 - α ), allowing us to
weigh the importance of correlation and Chamfer Distance differently. Our change score is
formulated as:

score = α

(

1

correlation
− 1

)

+ (1− α) · Chamfer Distance (4.1)
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5
Conclusion and Future Works

This thesis has delved into the intricate world of automotive sensor data, with a specific focus
on correlation techniques to optimize data transmission and resource utilization. Through
an in-depth study of algorithms in static and dynamic contexts, including Pearson’s corre-
lation coefficient, Chamfer distance, ICP, and NDT, we have gained valuable insights into
their applicability and performance.

In static scenarios, we observed the importance of parameter adjustments, such as grid size
and grid step, in optimizing correlation results. Downsampling and the removal of irrelevant
points, such as those near the vehicle or on the road, were shown to enhance correlation
outcomes. Furthermore, the analysis of dynamic scenes emphasized the significance of field
of view settings in registration algorithms, with NDT displaying superior accuracy.

The study of change detection in LiDAR point clouds revealed the nuanced behavior of
correlation and Chamfer distance metrics in response to environmental changes. By devising
a change score function, we provided a practical means of identifying significant changes.
Our experiments highlighted the influence of traffic intensity, actor speed, and sensor field
of view on the retransmission point, offering valuable guidance for parameter optimization.

While our chosen parameter values strike a balance for various scenarios, there is poten-
tial for further optimization, such as through machine learning techniques. Future research
could explore automated parameter selection and adaptive change detection strategies to en-
hance the robustness of automotive sensor systems.
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