

Relatore: Prof. BOSCHETTI GIOVANNI Laureanda: VEZZANI VALERIA

ANNO ACCADEMICO 2022 – 2023

10/10/2023

DIPARTIMENTO
DI INGEGNERIA
DELL’INFORMAZIONE

DIPARTIMENTO DI INGEGNERIA DELL’INFORMAZIONE
CORSO DI LAUREA MAGISTRALE IN
CONTROL SYSTEMS ENGINEERING

Path planning algorithms for autonomous
navigation of a

non-holonomic robot in unstructured

environments

Ringraziamenti

Questo capitolo vuole essere un piccolo ringraziamento e una dedica a tutti coloro che mi hanno

sostenuta e aiutata negli ultimi mesi per la scrittura della tesi. Forse non riuscirò ad essere sin-

tetica.

Prima di tutto, desidero esprimere tutta la mia gratitudine alla mia famiglia: i miei genitori e

mio fratello. Sono le persone che, giorno dopo giorno, sono state al mio fianco in modo in-

condizionato. Hanno saputo ascoltarmi, darmi preziosi consigli e, nei momenti più difficili,

sono stati un punto fermo, senza mai arrendersi, affrontando insieme a me ogni sfida. Desidero

ringraziarli per il costante sostegno che mi hanno offerto durante questi ultimi 5 anni e per

avermi dato l’opportunità di intraprendere il mio percorso universitario, che è stato per me il

periodo più straordinario della mia vita.

Voglio ringraziare il mio ragazzo Giovanni. Sei la mia persona, il primo che desidera condi-

videre con me tutte le esperienze, sia quelle positive che negative. Quest’ultimo periodo è stato

difficile per me e nonostante tutto ci sei sempre stato e hai saputo sempre tendermi una mano.

Ti ringrazio per avermi insegnato la pazienza e la dedizione che ci vogliono per arrivare fino in

fondo e per aver sempre creduto in me.

Ringrazio Mariafrancesca che con implacabile costanza riesce sempre ad essere una persona

positiva e ottimista e che ha cercato di trasmettermi tutto questo oramai da tanti anni. Ti

ringrazio per non aver mai smesso di contagiarmi con il tuo carattere e per essere un’amica

splendida.

Ringrazio Carlotta e Agnese, inseparabili amiche di sempre che hanno saputo conciliare leg-

gerezza e serietà nel sapermi aiutare. Vi ringrazio per tutto quello che riusciamo a condividere,

vicine e lontane.

Ringrazio il mio gruppo Mango Street: Giovanni, Andrea e Damiano. Siete sempre pieni di una

buona dose di follia e umorismo. Grazie per tutte le serate condivise che mi hanno alleggerito

questo periodo.

Ringrazio tutti i miei amici di Padova: i miei amici della triennale, della magistrale e i miei

iii

iv RINGRAZIAMENTI

coinquilini. Avete tutti quanti saputo rendere la mia vita lontana da casa sempre piena di pic-

cole avventure e di scherzi indimenticabili. Siete e sarete sempre il capitolo più bello.

Ci tengo tanto a ringrazia le dottoresse che mi hanno seguita negli ultimi mesi: la dott.ssa Porro

e la dott.ssa Pinelli. Vi ringrazio infinitamente per la professionalità e la grandissima umanità

con le quali mi avete profondamente e concretamente aiutata.

Desidero esprimere la mia sincera gratitudine per il mio relatore, il prof. Giovanni Boschetti,

per la sua guida, supporto e disponibilità mostrata durante la stesura di questa tesi.

Ringrazio tutte le persone conosciute all’interno del progetto formativo in E80 Group per essere

stati presenti e disponibili ad aiutarmi durante questo percorso coinvolgente.

Grazie ancora a tutti per avermi spronato a finire anche quando io stessa, non lo credevo possi-

bile.

vi RINGRAZIAMENTI

Abstract

Path planning is a crucial aspect of autonomous robot navigation, enabling robots to efficiently

and safely navigate through complex environments. This thesis focuses on autonomous

navigation for robots in dynamic and uncertain environments. In particular, the project aims to

analyze the localization and path planning problems. A fundamental review of the existing

literature on path planning algorithms has been carried on. Various factors affecting path

planning, such as sensor data fusion, map representation, and motion constraints, are also

analyzed. Thanks to the collaboration with E80 Group S.p.A., the project has been developed

using ROS (Robot Operating System) on a Clearpath Dingo-O, an indoor mobile robot. To

address the challenges posed by unstructured and dynamic environments, ROS follows a

combined approach of using a global planner and a local planner. The global planner generates

a high-level path, considering the overall environment, while the local planner handles

real-time adjustments to avoid moving obstacles and optimize the trajectory. This thesis

describes the role of the global planner in a ROS-framework. Performance benchmarking of

traditional algorithms like Dijkstra and A*, as well as other techniques, is fundamental in order

to understand the limits of these methods. In the end, the Hybrid A* algorithm is introduced as

a promising approach for addressing the issues of unstructured environments for autonomous

navigation of a non-holonomic robot. The core concepts and implementation details of the

algorithm are discussed, emphasizing its ability to efficiently explore continuous state spaces

and generate drivable paths.The effectiveness of the proposed path planning algorithms is

evaluated through extensive simulations and real-world experiments using the mobile

platform. Performance metrics such as path length, execution time, and collision avoidance are

analyzed to assess the efficiency and reliability of the algorithms.

viii RINGRAZIAMENTI

Abstract

La pianificazione di percorso è un aspetto cruciale della navigazione autonoma dei robot e

consente ai robot di navigare in modo efficiente e sicuro attraverso ambienti complessi. Questa

tesi si concentra sulla navigazione autonoma dei robot in ambienti dinamici e incerti. In

particolare, il progetto mira ad analizzare i problemi di localizzazione e pianificazione del

percorso. È stata condotta una revisione cruciale della letteratura esistente sugli algoritmi di

pianificazione di percorso. Sono stati analizzati anche vari fattori che influenzano la

pianificazione del percorso, come la fusione dei dati dei sensori, la rappresentazione della

mappa e i vincoli di movimento. Grazie alla collaborazione con E80 Group S.p.A., il progetto

è stato sviluppato utilizzando ROS (Robot Operating System) su un robot mobile indoor

Clearpath Dingo-O. Per affrontare le sfide poste dagli ambienti non strutturati e dinamici, ROS

segue un approccio combinato che utilizza un pianificatore globale e un pianificatore locale. Il

pianificatore globale genera un percorso ad alto livello, considerando l’ambiente complessivo,

mentre il pianificatore locale gestisce gli aggiustamenti in tempo reale per evitare ostacoli in

movimento e ottimizzare la traiettoria. Questa tesi descrive il ruolo del pianificatore globale in

un framework ROS. La valutazione delle prestazioni di algoritmi tradizionali come Dijkstra e

A*, così come di altre tecniche, è fondamentale per comprendere i limiti di questi metodi. Alla

fine, viene presentato l’algoritmo Hybrid A* come un approccio promettente per affrontare i

problemi degli ambienti non strutturati nella navigazione autonoma di un robot non olonomo.

Vengono discusse le concettualizzazioni principali e i dettagli di implementazione

dell’algoritmo, sottolineando la sua capacità di esplorare efficacemente spazi di stato continui

e generare percorsi praticabili. L’efficacia degli algoritmi proposti per la pianificazione del

percorso viene valutata attraverso simulazioni approfondite e esperimenti in ambiente reale

utilizzando la piattaforma mobile. Vengono analizzate metriche delle prestazioni come

lunghezza del percorso, tempo di esecuzione e evitamento di collisioni per valutare l’efficienza

e la affidabilità degli algoritmi.

Contents

Ringraziamenti iii

1 Introduction 1

1.1 Problem context . 2

1.2 Content of the thesis . 3

2 Literature review 5

2.1 Wheeled Robots . 5

2.1.1 Kinematic constraints . 6

2.2 Configuration space . 10

2.3 Path planning algorithms . 11

2.3.1 Graph-based algorithms . 12

2.3.2 Sampling-based algorithms . 24

3 Path Planning Using ROS 31

3.1 ROS architecture overview . 31

3.2 Configuration of the robot and setup . 33

3.3 Navigation stack . 35

3.3.1 Localization . 38

3.3.2 Navigation . 39

3.3.3 Global planner . 40

3.3.4 Local planner . 41

3.4 Limitations of current approach . 43

4 Hybrid A* Algorithm 47

4.1 Overview and Algorithmic Description . 47

4.2 Hybrid A* search . 48

4.3 Reeds-Shepp curves . 52

ix

x CONTENTS

4.4 Heuristics . 54

4.5 Path smoothing . 56

5 Applications and Case Studies 59

5.1 Autonomous Navigation in Unstructured Environments 59

5.1.1 Off-Road Autonomous Vehicles . 59

5.1.2 Indoor Environments . 61

5.2 Safety and efficiency . 62

5.3 Multi-robot system . 66

6 Challenges and Future Directions 69

6.1 Limitations of the Hybrid A* Algorithm . 70

6.2 Future Research Opportunities . 71

Appendix A 73

Appendix B 75

Appendix C 79

Chapter 1

Introduction

Autonomous mobile robots play a pivotal role in both our daily lives and industrial applications,

revolutionizing the way we operate and enhancing various aspects of our existence. In every-

day life, they have become indispensable in logistics and transportation, facilitating the efficient

delivery of goods, reducing traffic congestion, and ensuring timely services. Moreover, in the

industrial sector, autonomous robots streamline production processes, improve safety, and en-

hance productivity. They excel in tasks such as warehouse automation, material handling, and

even healthcare, where they assist with patient care and medication delivery. As society con-

tinues to advance, the importance of autonomous mobile robots will only grow, making them a

transformative force in modern living and industry. A mobile robot can be described as an auto-

mated system capable of moving independently. Furthermore, when it is engineered to carry out

tasks without human intervention, it achieves full autonomy. Conversely, any involvement from

remote assistance or an external tool reduces the level of autonomy exhibited by the mobile

robot. These interventions span a spectrum from teleoperation to providing access to environ-

mental data, whether complete or partial, with the source of this information not originating

from within the mobile robot itself. In the realm of robotics, the pursuit of autonomous navi-

gation for mobile robots has been a long-standing challenge and a topic of significant research

interest. The ability to guide robots through complex and dynamic environments safely and

efficiently is paramount for their real-world applicability across a wide spectrum of industries,

from logistics and transportation to healthcare and agriculture. One of the key components in

achieving this autonomy is the development and implementation of effective path planning al-

gorithms.

1

2 CHAPTER 1. INTRODUCTION

Path planning, in essence, involves the task of determining a collision-free path from a

robot’s initial position to a desired goal location, taking into account the environmental con-

straints, obstacles, and the robot’s own dynamics. It is a crucial aspect of autonomous robotics,

as it dictates the robot’s ability to make informed decisions and navigate through unstructured

and unpredictable surroundings. This thesis embarks on a comprehensive exploration of path

planning for mobile robots, with a particular focus on addressing the challenges posed by dy-

namic and uncertain environments.

1.1 Problem context

The Clearpath Dingo, depicted in 1.1, is a versatile and compact indoor mobile robot and

emerges as a capable platform for exploring path planning in dynamic and unstructured environ-

ments. This chapter elucidates the integration of the Clearpath Dingo into a case study on path

planning, leveraging the power of the Robot Operating System (ROS) and a Light Detection

and Ranging (LiDAR) sensor for accurate localization. To facilitate seamless communication

and control, ROS was chosen as the underlying software framework. ROS offers a plethora of

tools, libraries, and resources for robotics development, making it an indispensable choice for

our path planning case study. The Clearpath Dingo was equipped with ROS-compatible hard-

ware, including onboard computers and motor controllers, ensuring tight integration with the

ROS ecosystem.

The Clearpath Dingo, complemented by ROS and LiDAR-based localization, offers a formidable

Figure 1.1: Clearpath Dingo platform

platform for exploring path planning in dynamic and uncertain environments. The integration

of ROS facilitates seamless communication and control, while the LIDAR sensor ensures ac-

1.2. CONTENT OF THE THESIS 3

curate perception of the robot’s surroundings. The case study showcases the effectiveness of

combining global and local planning strategies, with the Hybrid A* algorithm showing promise

in addressing the challenges of unstructured environments.

1.2 Content of the thesis

The foundation of our study begins with a comprehensive examination of mobile robots kine-

matics and the establishment of their mathematical model. Understanding the kinematic con-

straints, wheel configurations, and motion models is essential for the subsequent stages of our

analysis. Building upon this foundation, we embark on a thorough study of the state of the art

of path planning algorithms, a critical aspect of autonomous navigation. This comprehensive

review allows us to identify and analyze the strengths and limitations of existing path planning

techniques, providing valuable insights into their applicability in various scenarios. Leveraging

the power of the Robot Operating System (ROS), we then orchestrate the precise movements of

the Dingo Clearpath within unstructured environments. This endeavor is further empowered by

the integration of a LiDAR sensor, enabling accurate and real-time localization. Our objective is

to assess the performance and efficiency of various path planning strategies within this context,

ultimately striving for enhanced autonomy and adaptability in complex and dynamic scenarios.

In our specific case, we embarked on a comprehensive study to understand the behavior of non-

holonomic robots when subjected to state-of-the-art path planning algorithms. Our aim was

to address and find effective solutions to the challenges posed by these robots in dynamic and

unstructured environments. At the culmination of our research, one path planning algorithm

distinctly stood out as particularly promising: the Hybrid A* algorithm. Its efficacy lies in its

ability to navigate the intricate dynamics of non-holonomic robots efficiently. By combining

elements of traditional A* search with continuous state space exploration, the Hybrid A* algo-

rithm showcases remarkable adaptability. It is well-suited for addressing the complexities posed

by unstructured environments, where traditional methods often encounter limitations. This al-

gorithm offers the capability to efficiently generate drivable paths by considering the continuous

nature of state spaces, making it a strong contender for optimizing the autonomous navigation

of our Clearpath Dingo within challenging terrains. In the forthcoming sections, we delve into

the core concepts and implementation details of the Hybrid A* algorithm, shedding light on its

potential to provide innovative solutions for our path planning endeavors.

Chapter 2

Literature review

To embark on the journey of designing an effective path planning solution for non-holonomic

wheeled robots using the Hybrid A* algorithm, it is crucial to first navigate the existing land-

scape of knowledge and research. This aims to explore the relevant literature, highlighting the

key topics that lay the foundation for our research. We begin by examining the fundamen-

tal principles of path planning for wheeled robots, understanding the constraints imposed by

their non-holonomic nature, and reviewing classical path planning algorithms that have shaped

the field.This comprehensive literature review sets the stage for our theoretical exploration and

analysis, offering valuable insights into the state of the art and highlighting the gaps and oppor-

tunities that our research seeks to address.

2.1 Wheeled Robots

To achieve robotic locomotion, wheeled mobile robots find extensive utility across various ap-

plications. Generally, wheeled robots offer the advantages of enhanced energy efficiency and

swifter mobility when compared to alternative locomotion methods, such as legged robots or

tracked vehicles. From a control perspective, their uncomplicated mechanisms and reduced sta-

bility concerns necessitate less control effort. While they may face challenges traversing rough

terrains or uneven surfaces, wheeled mobile robots prove well-suited for a broad spectrum of

practical environments[6]. In the study of mobile robots, two fundamental models come into

play: the kinematic model and the dynamic model. The kinematic model primarily deals with

the relationship between wheel speeds and the resulting robot velocities, while the dynamic

model delves into how wheel torques translate into robot accelerations. For the scope of this

section, we focus exclusively on kinematics and set aside the complexities of dynamics. Addi-

5

6 CHAPTER 2. LITERATURE REVIEW

tionally, we make the simplifying assumption that the mobile robots under consideration operate

on smooth, flat, and skid-free horizontal surfaces, excluding vehicles like tanks and skid-steered

systems. The mobile robot model assumes a single, non-articulated rigid-body chassis, distinct

from articulated setups like tractor-trailers. This chassis is defined relative to a fixed spatial

reference frame s in the horizontal plane. Wheeled mobile robots fall into two primary cat-

egories: omnidirectional and nonholonomic systems. Omnidirectional robots operate without

any restrictions on their chassis velocity, denoted as q̇ = (θ̇, ẋ, ẏ). In contrast, nonholonomic

robots are subject to a single Pfaffian velocity constraint denoted as A(q)q̇ = 0.1 For instance,

a car-like robot adheres to this constraint, preventing it from moving directly sideways. Despite

this limitation, the car can attain any (θ, x, y) configuration in a plane devoid of obstacles. This

velocity constraint cannot be transformed into an equivalent configuration constraint, making it

a nonholonomic constraint. The classification of a wheeled mobile robot as omnidirectional or

nonholonomic is influenced partly by the type of wheels it employs, as depicted in 2.1. Non-

holonomic mobile robots utilize conventional wheels, akin to those on an ordinary car. These

wheels rotate about an axle perpendicular to their plane and can be steered by spinning the

wheel around an axis perpendicular to the ground at the contact point. The wheels roll without

sliding sideways, and this property is the source of the nonholonomic constraint on the robot’s

chassis. Conversely, omnidirectional wheeled mobile robots typically use either omniwheels or

mecanum wheels. Omniwheels resemble regular wheels but have rollers on their outer circum-

ference that spin freely, enabling sideways sliding while the wheel moves forward or backward

without slipping. Mecanum wheels offer similar capabilities, with the spin axes of the cir-

cumferential rollers positioned differently. The sideways sliding permitted by omniwheels and

mecanum wheels eliminates velocity constraints on the robot’s chassis.

Notably, omniwheels and mecanum wheels are primarily designed for forward or backward

movement and are not intended for steering. Due to the relatively small diameter of their rollers,

they perform optimally on hard, flat surfaces. The modeling, motion planning, and control chal-

lenges encountered in wheeled mobile robots differ significantly based on whether the robot is

omnidirectional or nonholonomic.

2.1.1 Kinematic constraints

In our initial assumptions, we consider a mobile robot consisting of a rigid cart with nonde-

formable wheels, moving on a horizontal plane. The robot’s pose on this plane is defined using

1In robot motion planning, a Pfaffian constraint is a set of k linearly independent constraints linear in velocity,
i.e., of the form A(q)q̇ = 0.

2.1. WHEELED ROBOTS 7

Figure 2.1: Different examples of wheels: (left) standard wheel, (middle) omniwheel, (right)
mechanum wheel.

a posture vector

q =











θ

x

y











; (2.1)

where x and y represent the coordinates of a reference point on the cart, and θ indicates the

robot’s orientation with respect to an inertial frame. We assume that each wheel rotates around

its horizontal axis, maintaining a vertical orientation during motion. As already mentioned, we

describe two types of idealized wheels: standard and Swedish. In both cases, we simplify the

wheel-ground contact to a single point, leading to kinematic constraints that ensure the point of

contact remains motionless. For standard wheels, these constraints yield two independent con-

ditions related to wheel velocity, including a non-slip and pure rolling condition. In contrast,

Swedish wheels, due to the relative rotation of rollers, result in only one kinematic constraint,

with its direction dependent on the wheel’s construction.

Holonomic kinematic

Holonomic robots are characterized by their unique kinematic capability, which allows them to

move freely and independently in all directions within their workspace. These robots possess

full mobility, meaning they can translate and rotate instantly and smoothly without constraints

on their motion. Holonomic robots are often equipped with omnidirectional wheels or other

specialized mechanisms that enable them to navigate with exceptional agility and precision.

This kinematic freedom makes them well-suited for tasks requiring precise maneuvering and

dynamic navigation, such as indoor robots, autonomous vehicles, and certain industrial appli-

cations.

8 CHAPTER 2. LITERATURE REVIEW

Figure 2.2: Example of a robot equipped with 4 swedish wheels

The Swedish wheels, with their unique design featuring rollers set at specific angles, enable the

robot to move in any direction with ease. By understanding how each wheel contributes to the

overall motion of the robot, we can derive a comprehensive kinematic model that allows us to

control the robot’s position and orientation accurately.

Figure 2.3: Scheme for deriving kinematic

This approach not only simplifies the analysis but also provides valuable insights into the co-

ordinated movements required to achieve desired trajectories and behaviors in these versatile

robotic platforms. We start by considering the −i wheel driving speed:

ui =
[

1 tanγi

]





cosβi sinβi

−sinβi cosβi









−yi 1 0

xi 0 1



 vb; (2.2)

2.1. WHEELED ROBOTS 9

The first term on the right of the equation represents the component in the driving direction. The

second term on the right of the Equation 2.2 is the linear velocity at wheel, in the wheel frame.

The last term is the linear velocity at wheel, in the chassis frame, namely b. If we rearrange

those 3 terms in a single matrix H(0) we obatin the relation depicted in 2.4

Figure 2.4: Wheels driving speed of a 4-swedish wheel robot

Non-holonomic kinematic

Non-holonomic kinematic constraints are fundamental limitations that restrict the motion of a

system, particularly in robotics and vehicle dynamics. Unlike holonomic constraints, which can

be integrated to yield a constraint on the configuration of a system, non-holonomic constraints

cannot be expressed as such. Instead, they define constraints on the velocities or accelerations of

a system, making certain motions impossible or highly constrained. An illustrative example is

the constraint on a car-like robot, which cannot move directly sideways due to its wheel config-

uration. Our focus centers on car-like robots, given their prevalence in the industrial context of

E80 Group, where vehicles with this specific kinematic configuration are commonly employed.

The car-like robots follow the Ackermann steering geometry. [Appendix A] The differential

constraints inherent to car-like robots, often stemming from their kinematics and dynamics are

crucial considerations, ideally incorporated into the path planning process to ensure compatibil-

ity with the robot’s limitations. In cases where integrating constraints into planning is impracti-

cal, this responsibility may be delegated to the controller, even though with notable challenges.

Despite a car’s ability to reach any position and orientation in the Euclidean plane (represented

as q = (θ, x, y)), its configuration space (C) is confined to R2 × S1, meaning it cannot freely

translate or rotate but can move forward and backward. Such systems, where there are fewer

10 CHAPTER 2. LITERATURE REVIEW

possible actions than degrees of freedom, are classified as underactuated. A common scenario

like parallel parking necessitates both rotation and translation to achieve a specific configuration

(q1) parallel to the initial state (q0). The constraint preventing sideways movement is expressed

as the orthogonal velocity (v⊥) with respect to the vehicle’s heading, consistently equaling zero.

The perpendicular velocity can be expressed as:

Figure 2.5: Kinematic constraints of a car-like robot

v⊥ =
ẋ

cos(θ − π
2
)
; (2.3)

v⊥ =
−̇y

cos(θ − π
2
)
; (2.4)

This leads to the non-holonomic kinemtic constraint which is:

ẋcos(θ)− ẏsin(θ) = 0; (2.5)

2.2 Configuration space

To formulate motion plans for robots, it is essential to define the precise position of the robot.

To achieve this, we must provide a detailed specification of the coordinates for every point on

the robot, as it is imperative to guarantee that no part of the robot encounters any obstacles. This

leads us to ponder some fundamental inquiries: How much data is necessary to fully describe

the position of each point on the robot? What is the optimal way to represent this information?

What mathematical characteristics underlie these representations? And how can we factor in

the presence of obstacles in the robot’s environment when planning the robot’s trajectory? This

2.3. PATH PLANNING ALGORITHMS 11

section embarks on addressing these critical questions. Initially, we clarify the concept of a

robot’s configuration and introduce the notion of the configuration space, a pivotal concept in

the realm of robot motion planning. We will also touch upon how obstacles within the robot’s

surroundings impose constraints on the feasible paths. To clarify, we introduce the following

definitions.

• A robot system’s configuration is a full description of every point’s position in that system.

• The configuration space, denoted as C-space, represents all possible system configura-

tions. A configuration is essentially a point in this abstract space.

• We’ll use q to represent a specific configuration and Q to refer to the configuration space.

• The number of degrees of freedom in a robot system corresponds to the dimension of the

configuration space or the minimum parameters required to specify a configuration.

we can now precisely define the path-planning problem as follows: it involves finding a contin-

uous mapping, denoted as

c : [0, 1] −→ Q; (2.6)

This mapping should ensure that no configuration along the path results in a collision between

the robot and any obstacle. It is beneficial to explicitly define the group of configurations where

such collisions occur. We label this set as the "configuration space obstacle," represented as

QOi. This set encompasses all configurations where the robot intersects with an obstacle.The

free space or free configuration space Qf ree is the set of configurations at which the robot does

not intersect any obstacle, i.e.,

Qf ree = Q/(
⋃

i

QOi); (2.7)

With this notation, we define a free path to be a continuous mapping

c : [0, 1] −→ Qf ree; (2.8)

2.3 Path planning algorithms

Path planning algorithms play a pivotal role in the field of robotics and autonomous systems by

enabling robots to navigate through complex environments effectively and safely. These algo-

rithms are designed to determine a feasible path from a starting point to a goal location while

12 CHAPTER 2. LITERATURE REVIEW

considering various constraints and obstacles. Path planning encompasses a wide range of tech-

niques, from classical approaches like Dijkstra’s algorithm and A* search to more advanced

methods like Rapidly-Exploring Random Trees (RRTs) and Probabilistic Roadmaps (PRMs).

The choice of algorithm depends on the specific application and the robot’s capabilities. Some

algorithms focus on optimizing the path for speed and efficiency, while others prioritize colli-

sion avoidance and smooth trajectory generation. Path planning algorithms are fundamental in

enabling robots to perform tasks such as autonomous navigation, manipulator motion planning,

and even coordination in multi-robot systems. As technology advances, the development of

increasingly sophisticated and adaptable path planning algorithms continues to be at the fore-

front of robotics research and innovation. The navigation algorithms are divided into two types:

graph-based and sampling based algorithms.

2.3.1 Graph-based algorithms

Motion planners often use graphs to represent the configuration or state space (C-space). A

graph consists of nodes (N) and edges (E), where each edge connects two nodes, indicating a

valid move between them without obstacles. Graphs can be directed or undirected, weighted or

unweighted. Graphs can be represented more compactly as a list of nodes, each with links to

its neighbors. To find a motion plan in the free space graph, we search for a path from start to

goal. In this section, some of the most widely used graph-based algorithms are presented.

Dijkstra

Dijkstra’s algorithm, created by computer scientist Edsger W. Dijkstra in 1956 and published

three years later, is a method for discovering the shortest routes between nodes in a graph. This

graph can represent various networks, such as road systems. The algorithm comes in several

variations. Dijkstra’s original algorithm identifies the shortest path between two specific nodes.

However, a more commonly used version designates one node as the ’source’ and calculates the

shortest paths from this source node to all other nodes in the graph, resulting in a shortest-path

tree. Specifically, Dijkstra’s algorithm chooses the path that minimizes the following function:

f(n) = g(n); (2.9)

Here, n represents the next node on the path, and g(n) represents the cost of the path from

the starting node to n.

The algorithm works as follows:

2.3. PATH PLANNING ALGORITHMS 13

1. Initialization of all nodes with distance "infinite"; initialization of the starting node with

0

2. Marking of the distance of the starting node as permanent, all other distances as temporar-

ily.

3. Setting of starting node as active.

4. Calculation of the temporary distances of all neighbour nodes of the active node by sum-

ming up its distance with the weights of the edges.

5. If such a calculated distance of a node is smaller as the current one, update the distance

and set the current node as antecessor. This step is also called update and is Dijkstra’s

central idea.

6. Setting of the node with the minimal temporary distance as active. Mark its distance as

permanent.

7. Repeating of steps 4 to 7 until there aren’t any nodes left with a permanent distance,

which neighbours still have temporary distances.

As briefly explained above, the 2.6 is the pseudocode representing the required steps to find

the path.

A*

In contrast to Dijkstra’s algorithm, A* operates as a best-first search algorithm. Best-first search

entails exploring nodes within a graph in the direction of the most promising vertex, determined

by a predefined rule. This rule involves a heuristic evaluation function denoted as f(n), which

relies on the properties of the vertex v. The heuristic function calculates a cost that balances the

trade-off between achieving optimality and minimizing computation time. Consequently, the

A* algorithm opts for the path that minimizes the evaluation function, expressed as:

f(n) = g(n) + h(n); (2.10)

In this equation, g(n) signifies the cost of the path from the source vertex s to vertex v, while

h(n) represents a heuristic function estimating the cost of the most economical path from s

to v. Furthermore, by setting g(n) = 0, the algorithm focuses solely on the heuristic aspect,

transforming into a greedy best-first search. Conversely, when h(n) = 0, the algorithm reverts

to Dijkstra’s algorithm.

14 CHAPTER 2. LITERATURE REVIEW

Figure 2.6: Dijkstra’s algorithm pseudocode

The steps required to perform A*-search are shortly described:

1. Open List Creation: This involves assembling a list of nodes that have been visited but

not yet expanded, signifying pending tasks.

2. Closed List Creation: This step involves forming a list of nodes that have been both

visited and expanded, which means their successors have been explored and included in

the open list.

3. Starting Node Insertion: The algorithm inserts the starting node into the open list, assign-

ing it a cost value of f(n) = h(n).

4. Empty Open List Check: The algorithm checks whether the open list is devoid of nodes.

If it is, the algorithm concludes that a solution cannot be found.

5. Best Node Extraction: The algorithm selects and extracts the best node to visit, which is

determined by having the lowest f(n) value.

2.3. PATH PLANNING ALGORITHMS 15

Figure 2.7: A* search

6. Destination Node Check: If the extracted node matches the destination node, the algo-

rithm concludes and reports that a solution has been found.

7. Child Node Examination: The algorithm proceeds to examine the child nodes of the

currently extracted node.

8. Transfer to Closed List: Any child nodes that have already been visited and found to be

suboptimal are moved from the open list to the closed list.

9. Remaining Nodes Insertion: The algorithm inserts the remaining unvisited child nodes

into the open list.

10. Return to Empty Open List Check: Finally, the algorithm returns to step 4 and repeats the

process until a solution is found or it is determined that no solution exists.

Focused D*

The Focused D* optimizes cost updates to minimize state expansions, consequently reducing

computational expenses. It is a derived algorithm from the D* [Appendix B], which initial-

izes with current environmental knowledge and estimates the costs to reach the goal from each

location. We selected to analyse in this thesis the Focused D* algorithm due to its superior

performance over the standard D* algorithm.

Through iterative backward and forward passes, it updates these estimates while considering

obstacles and changes in costs. D* efficiently adapts to dynamic conditions, making it ideal

for real-time robot navigation and exploration. Similar to D*, Focused D* employs a heuristic

function similar to A* for propagating cost increases and directing cost reductions efficiently.

16 CHAPTER 2. LITERATURE REVIEW

Figure 2.8: A* algorithm pseudocode

Additionally, it incorporates a biasing function designed to account for the robot’s motion be-

tween replanning operations, enhancing its adaptability in dynamic environments. The com-

bined result is a notable reduction in runtime, often by a factor of two to three, making it an

attractive choice for real-time robotic path planning. This paper embarks on the journey of elu-

cidating the algorithm’s underlying intuition, outlining the extensions it introduces, providing a

practical example, conducting empirical performance comparisons, and culminating in insight-

ful conclusions. The Focused D* algorithm was developed to address potential errors in the

environment map provided to a mobile robot, particularly incomplete maps. It continuously

updates the route when map changes occur, resembling the D* algorithm but with improve-

ments. Both algorithms use an open list of candidate states and employ wave propagation to

correct path errors caused by map changes. They also use heuristics and cost functions. The

key difference is that Focused D* uses a heuristic that concentrates cost calculations toward the

robot’s goal, making it computationally more efficient while still finding the lowest-cost route

in dynamic or incomplete environments. Here the steps followed by the Focused D* algorithm

are presented:

2.3. PATH PLANNING ALGORITHMS 17

1. Initial Setup: Begin with an initial environment map. The mobile robot is positioned at

the start node.

2. Map Updates: As the robot moves along its path, it detects obstacles and updates the

map, changing the classification of some nodes from free to impassable. Nodes behind

the robot may not be part of the final trajectory and are excluded from consideration.

3. Heuristic Function: Define a heuristic function g(X,R), where X represents any state,

and R is the current robot position. This function estimates the cost for the robot to move

from R to X .

4. Cost Estimate Function: Introduce a new function, the cost estimate function f(X,R) =

g(X,R) + h(G,R). Here, f(X,R) represents the estimated cost of moving the robot

from its current position to the goal position while passing through state X .

5. Sorting the Open List: In the Focused D* algorithm, sort the open list of states by their

f(X,R) values. If two states have equal f() values, compare their k values, and the state

with the lowest k is prioritized.

6. Optimal Path: Similar to the D* algorithm, consider the optimal path found when the

lowest value in the open list is equal to or greater than the cost of the robot’s path.

7. Cost Spread Focus: To address errors in the map, focus the cost spread using a procedure.

When an error is detected and the robot moves to a new position (e.g., R0 to R1), a lower

limit for the value of f(X,R1) is defined as fl(X,R1) = f(X,R1) − g(R1, R0). This

lower limit assumes the robot moved toward state X. When X is added to the open list

considering the value of fl(X,R1), it is evaluated with appropriate f(X,R1) values, and

g(X,R1) is updated accordingly. This ensures that X is correctly placed in the open list

with the accurate value of f(X,R1).

Lifelong Planning A*

Lifelong Planning A* (LPA*) is a versatile algorithm that can be applied to the same finite

search problems as A* while consistently delivering optimal solutions. What sets LPA* apart

is its ability to adapt to arbitrary changes in edge costs, making it a valuable tool in dynamic

scenarios. Remarkably, LPA* shares a strong algorithmic resemblance to A* but often out-

performs it in terms of efficiency, especially in contexts such as route planning, robot control,

18 CHAPTER 2. LITERATURE REVIEW

and symbolic artificial intelligence planning. Beyond its practical advantages, LPA* boasts

commendable theoretical properties, making it a valuable asset in various problem-solving do-

mains, including traffic management, networking, and more.

1. Initialization: Create a priority queue and set ’g’ and ’rhs’ values for nodes, while the

start node’s ’rhs’ is set to 0, and it’s inserted into the queue.

2. Compute Shortest Path: Repeat until the goal is reached or the queue is empty:

-Process the node with the lowest key in the queue.

-Update its ’g’ value based on ’rhs’ if needed.

-Update its successors and continue.

3. Node Update (updateNode): Recalculate ’rhs’ for a node and manage its position in the

queue.

-Calculate ’rhs’ as the minimum cost from predecessors.

-Adjust queue position based on ’g’ and ’rhs’ values.

4. Calculate Key (calculateKey): Determine a node’s key as a combination of ’g,’ ’rhs,’ and

a heuristic to the goal.

It repeatedly updates the ’g’ and ’rhs’ values of nodes while maintaining a priority queue to

explore nodes with the most promising estimated costs.

void main() {
initialize();
while (true) {

computeShortestPath();
while (!hasCostChanges())

sleep;
for (edge : getChangedEdges()) {

edge.setCost(getNewCost(edge));
updateNode(edge.endNode);

}
}

}

void initialize() {
queue = new PriorityQueue();
for (node : getAllNodes()) {

node.g = INFINITY;
node.rhs = INFINITY;

}
start.rhs = 0;
queue.insert(start, calculateKey(start));

}

/** Expands the nodes in the priority queue. */
void computeShortestPath() {

while ((queue.getTopKey() < calculateKey(goal)) || (goal.rhs != goal.g)) {
node = queue.pop();
if (node.g > node.rhs) {

node.g = node.rhs;
} else {

node.g = INFINITY;
updateNode(node);

}
for (successor : node.getSuccessors())

updateNode(successor);
}

}
/** Recalculates rhs for a node and removes it from the queue.
* If the node has become locally inconsistent, it is (re-)inserted into the
queue with its new key. */
void updateNode(node) {

if (node != start) {
node.rhs = INFINITY;
for (predecessor: node.getPredecessors())

node.rhs = min(node.rhs, predecessor.g + predecessor.getCostTo(node));
if (queue.contains(node))

queue.remove(node);
if (node.g != node.rhs)

queue.insert(node, calculateKey(node));
}

}

int[] calculateKey(node) {
return {min(node.g, node.rhs) + node.getHeuristic(goal), min(node.g,

node.rhs)};
}

20 CHAPTER 2. LITERATURE REVIEW

D* Lite

The D*-Lite algorithm, created by Sven Koenig and Maxim Likhachev in 2002, is a renowned

path planning technique extensively applied in robotics and artificial intelligence. D* Lite is

based on Lifelong Planning A*. Its primary purpose is to solve the challenge of determin-

ing the shortest path in environments that undergo alterations. This algorithm builds upon the

foundation of the well-established Dijkstra’s algorithm, renowned for ensuring the shortest path

from an initial node to all other nodes within a static graph. D*-Lite elevates this concept by

efficiently recalculating the optimal path whenever environmental changes transpire, rendering

it an ideal choice for dynamic scenarios. D* Lite is a variation of the A* algorithm, specifically

Figure 2.9: D*-Lite pseudocode

based on the backward LPA* approach. Unlike A* and LPA*, D* Lite conducts its search from

the goal to the start positions while estimating distances from the goal. The algorithm initi-

ates its search by executing the ’Compute Shortest Path’ function, which operates on a priority

queue initially containing only the goal node. Over time, it progressively adds predecessors of

each node in the priority queue until reaching the goal node. D* Lite distinguishes itself from

2.3. PATH PLANNING ALGORITHMS 21

Comparison
between D*-Lite and LPA*

Termination Efficiency

D*-Lite LPA* D*-Lite LPA*

-no fixed termination condition -stops when heuristic -more efficient -lifelong planning
-continue to operate when values of the start and for frequent -efficient with
changes occur in the setting goal nodes match localized changes rare changes

Table 2.1: Characteristics of LPA* and D*-Lite

LPA* by utilizing the ’g()’ estimate. Additionally, it employs ’rhs’ values, which are one-step

look-ahead values based on the ’g()’ estimates.

Jump Point Search

Jump Point Search (JPS) stands as a noteworthy enhancement to the A* search algorithm, par-

ticularly when dealing with uniform-cost grids. Its efficacy lies in the reduction of symmetrical

search paths through a process called graph pruning. By intelligently eliminating certain nodes

based on informed assumptions about the surroundings of the current node and satisfying spe-

cific grid-related conditions, JPS empowers the algorithm to leap across extended distances

along straight (horizontal, vertical, and diagonal) lines within the grid, in contrast to A*’s in-

cremental steps from one grid position to the next. Importantly, JPS retains A*’s property of

optimality while potentially achieving a remarkable order of magnitude reduction in running

time. JPS can be described in terms of two simple pruning rules which are applied recursively

during search: one rule is specific to straight steps, the other for diagonal steps. The key intu-

ition in both cases is to prune the set of immediate neighbours around a node by trying to prove

that an optimal path (symmetric or otherwise) exists from the parent of the current node to each

neighbour and that path does not involve visiting the current node.

1. Initialization: Create a priority queue and set the start node’s cost to 0.

2. Exploration Loop: While there are nodes in the priority queue:

-Explore the node with the lowest cost.

-If it’s the goal, reconstruct and return the path.

-Mark the node as explored.

3. Successor Generation:

-Identify "jump points" by pruning nodes that can be skipped.

-Consider forced neighbors based on specific conditions.

22 CHAPTER 2. LITERATURE REVIEW

-Detect jump point successors with unique paths.

4. Recursive Exploration: Recursively explore nodes in the specified direction, considering

jump points.

5. End of exploration: when an obstacle, a point of interest, or the goal is encountered.

function JumpPointSearch(start, goal):
 openSet = Priority Queue
 initialize start node
 add start node to openSet with priority 0

 while openSet is not empty:
 current = node with lowest priority in openSet
 remove current from openSet

 if current == goal:
 return reconstructPath(current)

 for each successor in IdentifySuccessors(current):
 if successor not in openSet:
 set parent of successor to current
 set g-value of successor
 calculate f-value of successor
 add successor to openSet with priority f-value

 return failure

function IdentifySuccessors(node):
 successors = empty list

 for each valid direction from node:
 neighbor = jump(node, direction)

 if neighbor is walkable:
 successors.append(neighbor)

 return successors

function Jump(node, direction):
 # Recursive function to find jump point
 if node is an obstacle:
 return None

 if node == goal:
 return node

 nextNode = node + direction

 if nextNode is not walkable:
 return None

 # Diagonal case
 if direction is diagonal:
 if Jump(nextNode, diagonal) or Jump(nextNode, horizontal) or Jump(nextNode, vertical):
 return node

 return Jump(nextNode, direction)

function reconstructPath(node):
 path = []
 while node has a parent:
 add node to path
 node = parent of node
 reverse path
 return path

24 CHAPTER 2. LITERATURE REVIEW

Figure 2.10: Example of path planning with JPS algorithm

The Jump Point Search algorithm can skip lots of nodes in comparison with A*, which can

speed up the operations of the pathfinding algorithm in orders of magnitude. The algorithm

works better on uniform-cost grids.

2.3.2 Sampling-based algorithms

These algorithms are widely employed in robotics and motion planning to find feasible paths in

complex and high-dimensional spaces. Arguably, two of the most influential motion planning

algorithms based on sampling are Probabilistic RoadMaps (PRMs) (Kavraki et al., 1996, 1998)

and Rapidly-exploring Random Trees (RRTs) (Kuffner and LaValle, 2000; LaValle and Kuffner,

2001; LaValle, 2006). While both methods share the fundamental concept of connecting ran-

domly sampled points from the state space, they diverge in their approaches to constructing the

graph that links these points.

RRT

The Rapidly-exploring Random Tree (RRT) algorithm is an efficient path planning technique

designed for navigating unknown environments and complex, non-convex spaces using stochas-

tic search strategies. RRT incrementally constructs a tree-like path by selecting random points

within the environment and moving incrementally from the nearest existing node in the tree.

This approach efficiently explores free space, making it particularly suited for path planning

problems with obstacles and differential constraints. While RRT alone may not solve all plan-

ning challenges, it serves as a valuable component that can enhance various planning algo-

rithms. However, one challenge is the potential for the tree to contain many nodes, affecting

computational efficiency. In its basic form, RRT constructs a tree structure from the start point

to the goal point, making it a versatile tool for optimizing pathfinding in complex scenarios.

2.3. PATH PLANNING ALGORITHMS 25

Figure 2.11: RRT pseudocode

RRT*

The RRT* (Rapidly-exploring Random Tree Star) algorithm is a path planning technique that

excels in complex and high-dimensional spaces. It begins by initializing a tree with the starting

configuration and iteratively expands it. In each iteration, it randomly samples a configuration,

identifies the nearest node in the existing tree, and computes a feasible path from the nearest

node to the sampled configuration. The algorithm then evaluates whether connecting the nearest

node to the new node along the path reduces the overall cost. If so, it updates the tree struc-

ture to minimize the cost. This process continues until a termination condition is met, often

involving reaching the goal state or a maximum number of iterations. RRT* ensures asymptotic

Figure 2.12: RRT* pseudocode

optimality, converging to the optimal path with increasing iterations. Finally, the optimal path is

reconstructed by tracing back from the goal node through the tree structure. RRT* is renowned

26 CHAPTER 2. LITERATURE REVIEW

for its efficiency and ability to handle complex environments.

Informed RRT*

Informed RRT* is a variant of the RRT* algorithm that preserves the same probabilistic guaran-

tees for completeness and optimality while enhancing convergence speed and the quality of the

final solution[22]. This modified approach to RRT* is presented as a straightforward adjustment

that has the potential for further extensions by advanced path-planning algorithms. Experimen-

tal results demonstrate its superior performance over RRT* in terms of convergence rate, final

solution quality, and its ability to navigate challenging passages, all while exhibiting reduced

sensitivity to the state dimension and planning problem range. This analysis in 2.13 compares

Figure 2.13: Comparison between RRT* and Informed RRT*

the performance of RRT* and Informed RRT* in terms of solution cost and computational time.

Both algorithms were executed until they achieved solutions of equal cost. In Figures (a) and

(c), we observe the final outcomes, while Figure (b) displays the relationship between solution

cost and computational time. Figure (a) vividly demonstrates that RRT* allocates significant

computational resources to explore regions of the planning problem that have no potential to

enhance the current solution. In contrast, Figure (c) illustrates the targeted and efficient search

strategy employed by Informed RRT*. InformedRRT* outperforms RRT* when utilizing an

ellipse heuristic, as in 2.14 for several compelling reasons. It employs informed sampling,

directing its exploration toward regions with a higher likelihood of reaching the goal, which ac-

celerates convergence and reduces computational time. Additionally, InformedRRT* improves

solution quality by prioritizing more efficient paths, particularly beneficial in complex envi-

ronments. It avoids exhaustive exploration of unpromising regions, making it computationally

efficient. Furthermore, InformedRRT* exhibits greater robustness in high-dimensional state

spaces and excels in scenarios with narrow passages where RRT* may falter. However, the de-

gree of superiority may vary depending on specific problem settings, including the quality of the

2.3. PATH PLANNING ALGORITHMS 27

heuristic and other algorithmic parameters. The heuristic sampling domain for an R2 problem

Figure 2.14: Comparison between RRT* and Informed RRT*

aiming to minimize path length, is an ellipse defined by xstart and xgoal as focal points. The

ellipse’s shape depends on these points, the theoretical minimum cost (cmin) between them, and

the current best solution’s cost (cbest). The ellipse’s eccentricity is determined by the ratio of

cmin to cbest.

PRM

The PRM (Probabilistic Roadmap) algorithm is a widely-used approach for motion planning in

complex, obstacle-filled environments. It operates by first defining a configuration space and

identifying the start and goal positions. Next, it randomly samples configurations within this

space, checks for collisions with obstacles, and establishes connections between valid config-

urations to form a graph. Using this graph, PRM employs a path search algorithm to find a

feasible trajectory from the starting point to the goal. While PRM excels in handling high-

dimensional spaces and intricate obstacle layouts, its effectiveness may depend on parameter

tuning to suit specific environments and requirements These following steps describe the PRM

algorithm:

1. Random Point generation: The PRM algorithm generates a limited number of random

points within a specified area.

2. Node Clustering: After a new node is generated, the algorithm clusters nodes into con-

nected components. Each node is associated with a connected component, which needs

to be stored for future reference.

3. Neighbor Collection: To perform clustering, the algorithm collects all nodes within a

fixed radius of the randomly generated node. These neighboring nodes are then ordered

by increasing distance or a desired metric.

28 CHAPTER 2. LITERATURE REVIEW

4. Cluster Assignment: The algorithm loops through the ordered neighboring nodes and

checks if the randomly generated node is not in the same cluster as the examined node. If

this condition is satisfied, the new node is added to the cluster. It’s important to note that

a node can belong to multiple clusters.

These steps outline how PRM constructs a roadmap, connects the start and goal configurations,

and uses a graph search algorithm to determine a path in complex, obstacle-filled environments

while maintaining probabilistic completeness. Two important parameters that the user has to

choose in this algorithm are the radius and the desired number of nodes. The radius selection

used for clustering defines the structure of the roadmap. Choosing an appropriate radius impacts

the speed and performance of the roadmap. A larger radius involves examining more neighbors

and determining their cluster relationships. The other parameter to set is the desired number of

nodes. The PRM algorithm terminates once this number of nodes is generated. Generating too

many nodes can extend the time required to create the roadmap, as more time is spent examining

regions of neighbors. The number of nodes chosen also affects the connectivity of the graph.

Too few nodes can result in a fractured graph, especially in high-density obstacle regions, where

clusters may become disconnected from the rest of the roadmap. This can lead to more irregular

paths when using a shortest path planning algorithm. RRT is efficient for quick exploration and

Figure 2.15: PRM algortithm steps

adaptability to dynamic environments but tends to find suboptimal paths. PRM is effective at

finding optimal paths and is probabilistically complete but may require more memory and time

for exploration.

The choice between RRT and PRM depends on the specific requirements of the robotic sys-

tem, including the need for optimality, memory constraints, and the nature of the environment

(dynamic or static). Some applications may benefit from a hybrid approach that combines the

2.3. PATH PLANNING ALGORITHMS 29

strengths of both algorithms.

Chapter 3

Problem formulation

In the rapidly evolving field of robotics, efficient path planning plays a crucial role in enabling

robots to navigate through complex and dynamic environments with precision and intelligence.

The Robot Operating System (ROS) has emerged as a powerful platform that not only facilitates

the development of robotic systems but also provides comprehensive tools and libraries for path

planning. In this chapter, we analyze the key principles, framework, and environment involved

in the problem of path planning using ROS. From understanding the fundamental concepts of

path planning to harnessing the capabilities of ROS for real-world applications. The goal of

this chapter is to shed light on the constraints and challenges faced when applying state-of-

the-art path planning algorithms within the context of Robot Operating System for real-world

applications. Robotics in practical environments introduces complexities such as sensor noise,

dynamic terrain, and moving obstacles, which can significantly impact the efficacy of path

planning algorithms. In the next chapter, a possible solution is shown as a potential answer to

some of these challenges..

3.1 ROS architecture overview

The Robot Operating System, or ROS, is a flexible and widely adopted framework for build-

ing robotic software. ROS follows a modular and distributed architecture, which is one of its

key strengths. At its core, ROS employs a peer-to-peer communication model, where different

software components, known as nodes, can communicate with each other. These nodes are or-

ganized into packages, each encapsulating a specific functionality or module of a robot system.

ROS also incorporates a master node that facilitates node discovery and communication within

the system. Moreover, ROS provides a wealth of tools and libraries, offering support for various

31

32 CHAPTER 3. PATH PLANNING USING ROS

hardware platforms and sensors, making it suitable for a wide range of robotic applications. It

promotes code reusability and collaboration by fostering a large and active open-source com-

munity that contributes to a vast ecosystem of pre-built packages and libraries. This modular

and collaborative architecture empowers robotics developers to efficiently design and imple-

ment complex robotic systems, making ROS a central player in the field of robotics research

and development. Here we briefly discuss the main building blocks used in ROS:

• Node: A node is a lightweight process or executable within a ROS system. Nodes can be

thought of as individual software modules that perform distinct functions, such as sensor

data processing, control algorithms, or user interfaces.

- Publisher: Nodes can publish data on specific topics. These topics are named channels

through which nodes share information. Other nodes can subscribe to these topics to re-

ceive and process the data.

- Service node: Nodes can also provide services, which are callable functions or actions

that other nodes can request. Service nodes are used for tasks like setting configurations,

requesting information, or performing specific actions. - Subscriber: Nodes can subscribe

to topics to receive data published by other nodes. When a node subscribes to a topic, it

will receive any messages published on that topic, allowing for inter-node communica-

tion.

• Topic: A topic is a named channel through which nodes can publish and subscribe to mes-

sages. Topics are used for one-to-many communication, where one node (the publisher)

sends data, and multiple nodes (subscribers) can receive and process that data. Each topic

is associated with a specific message type. This type defines the structure and content of

the messages exchanged on that topic. Nodes that subscribe to a topic must expect and

understand the message type to process the data correctly.

• Message: A message is a data structure that carries information between nodes. ROS

messages are defined in message files and can include various data types like integers,

floats, strings, arrays, and custom data types. Messages are used to represent sensor data,

commands, status updates, and more.

• ROS master: The ROS Master maintains a registry of available topics and their pub-

lishers and subscribers. It helps nodes discover and connect to the appropriate topics,

facilitating communication within the ROS network.

3.2. CONFIGURATION OF THE ROBOT AND SETUP 33

Figure 3.1: Scheme of the architecture of ROS

3.2 Configuration of the robot and setup

This section describes the configuration and setup of the Clearpath Dingo-O robot, which served

as the primary platform for our research in autonomous navigation. We provide insights into the

robot’s hardware specifications, the control system utilized, and the sensor equipment employed

for navigation. The Dingo robot is a versatile, agile indoor mobile platform tailored for both

research and educational purposes. It offers two drive systems: differential and omnidirectional,

along with expandable power and computing options, making it exceptionally adaptable to a

diverse array of robotic applications. These applications span autonomous navigation, mobile

manipulation, and mapping, showcasing Dingo’s multifaceted capabilities. Dingo seamlessly

integrates with the ROS (Robot Operating System) and Gazebo simulation environment, and it

effortlessly supports a wide assortment of robot sensors and accessories, making it a hassle-free

choice for robotic development and experimentation.

Robot Hardware

Figure 3.2: Swedish wheels mounted on Dingo-O

34 CHAPTER 3. PATH PLANNING USING ROS

• Swedish wheels: The Dingo-O is equipped with four Swedish wheels, as depicted in

3.2, allowing for omnidirectional movement. This design grants the robot exceptional

maneuverability, enabling it to navigate through intricate spaces with ease.

• Onboard Computer (Orin): To facilitate control and data processing, we utilized an

Orin, 3.3 onboard computer. Orin is capable of running ROS, serving as the central hub

for interfacing with the robot’s various components and executing navigation commands.

Figure 3.3: NVIDIA Jetson AGX Orin

• Pepperl Fuchs R2000 LiDAR: Navigation and localization are critical aspects of our

research, and the Pepperl Fuchs R2000 LiDAR, 3.4 played a pivotal role. This LiDAR

sensor provided accurate environmental mapping and robot localization capabilities, en-

abling the robot to perceive its surroundings.

Figure 3.4: Pepperl Fuchs R2000 LiDAR

3.3. NAVIGATION STACK 35

Robot Hardware

• ROS: ROS served as the overarching software framework for our robot’s control and nav-

igation. It offered a modular and extensible architecture that facilitated communication

between various hardware components and the execution of state-of-the-art algorithms.

Figure 3.5: Complete Dingo setup

3.3 Navigation stack

The ability to navigate through unstructured environments is a fundamental skill exhibited by in-

telligent beings, and it stands as a central point of interest in this research endeavor. Navigation,

in essence, constitutes a multifaceted task that hinges on the development of an internal repre-

sentation of the surrounding space. This representation is constructed with the aid of sensors.

It serves a dual purpose, concurrently supporting continuous self-localization (the awareness

of one’s current position, represented as "I am here") and the representation of the intended

destination (depicted as "I am going there"). In practical terms, this research investigates and

analyzes the 2D navigation stack used in ROS. This stack operates by assimilating informa-

tion from various sources, including odometry data, sensor input streams, and a specified goal

pose. Through a complex yet coherent process, it computes and generates safe velocity com-

mands. These commands are subsequently transmitted to a mobile base, facilitating the robot’s

36 CHAPTER 3. PATH PLANNING USING ROS

movement in a manner that ensures safety while navigating through the dynamic and often un-

predictable environments encountered in the course of the research. The Navigation Stack is

designed to offer a high degree of versatility, there are three primary hardware prerequisites that

govern its applicability:

• Compatibility with Differential Drive and Holonomic Wheeled Robots: The Naviga-

tion Stack is tailored to function seamlessly with both differential drive and holonomic

wheeled robots. It operates under the assumption that control of the mobile base involves

the issuance of desired velocity commands, specifying the velocities along the x-axis, y-

axis, and angular (theta) velocity.

• Planar Laser Requirement: A crucial component is the presence of a planar laser

mounted on the mobile base. This laser plays a pivotal role in the processes of map

building and localization.

• Considerations for Robot Shape: It’s worth noting that the Navigation Stack was ini-

tially developed with a square robot in mind, thus yielding optimal performance with

robots that approximate a square or circular shape. Although it can function with robots

of diverse shapes and sizes, larger rectangular robots navigating through tight spaces like

doorways may pose certain challenges.

Figure 3.6: Scheme of the main blocks used in navigation

The move base node is the central brain of the Navigation Stack in ROS, as depicted in 3.6.

It orchestrates the entire navigation process, from setting goals to generating safe trajectories,

3.3. NAVIGATION STACK 37

obstacle avoidance, and handling dynamic environments. This modular and well-coordinated

architecture allows robots to autonomously navigate through complex and unstructured envi-

ronments effectively.

A brief presentation of the main blocks used in the task of navigating is here listed:

• Global and Local Planning: The movebase node oversees both global and local planning.

Global planning involves creating a high-level path from the robot’s current position to

the desired goal. This is often based on a global costmap that represents the environment.

Local planning, on the other hand, deals with obstacle avoidance and fine-tuning the

robot’s trajectory in real-time using a local costmap.

• Sensor Data Fusion: It integrates data from various sensors, including odometry, laser

scans, and possibly other perception sensors. These sensor inputs are used to build and

update the costmaps that guide the robot’s movement.

• Goal Handling: The movebase node handles goal requests from higher-level systems or

user commands. When a new goal is received, it plans a path to reach that goal while

avoiding obstacles in the environment.

• Obstacle Avoidance: It continuously monitors the robot’s environment using the local

costmap and adapts the trajectory to avoid collisions with dynamic obstacles or changes

in the environment.

• Feedback and Recovery: movebase provides feedback to higher-level systems and can

trigger recovery behaviors if the robot encounters unexpected situations or gets stuck.

Recovery behaviors might include rotating in place, backing up, or attempting a different

path.

Our primary focus lies in addressing the intricate challenges of the path planning problem,

and as such, we will delve extensively into this pivotal aspect. However, it is equally essential

to provide a comprehensive understanding of the localization stack. Localization plays a crucial

role in enabling a robot to determine its precise position within its environment, a fundamen-

tal prerequisite for effective path planning and navigation. Thus, while our central emphasis

remains on path planning, we will ensure to provide insightful coverage of the indispensable

localization stack to offer a well-rounded perspective on autonomous robot navigation.

38 CHAPTER 3. PATH PLANNING USING ROS

3.3.1 Localization

Localization in ROS (Robot Operating System) is a critical component of autonomous robotic

systems, enabling robots to determine their precise position and orientation within an envi-

ronment. This information is essential for accurate navigation, as it allows robots to make

informed decisions about their movements, avoiding obstacles and reaching their intended des-

tinations [1]. Localization in ROS is typically performed using one of the following methods:

odometry-based localization, map-based localization and visual localization. Odometry-Based

localization estimates the robot’s position by tracking wheel movements, but it can drift over

time. Map-Based Localization compares sensor data to a pre-built map, matching features to de-

termine the robot’s position. Visual Localization relies on visual cues or landmarks to estimate

the robot’s position and orientation, often using SLAM techniques for mapping and tracking.

Map-based localization was selected as the method of choice to assess the robot’s behavior in

Figure 3.7: Scheme of the main blocks used in navigation

path planning, primarily due to its reliance on a fixed map generated through SLAM (Simulta-

3.3. NAVIGATION STACK 39

neous Localization and Mapping). This map, once created as in 3.7 and saved, served as a stable

reference during localization tests, aiding in evaluating the performance of the AMCL (Adap-

tive Monte Carlo Localization) algorithm [2]. AMCL is a probabilistic localization system for

a robot moving in 2D. It implements the adaptive (or KLD-sampling) Monte Carlo localization

approach, which uses a particle filter to track the pose of a robot against a known map. How-

ever, over time, a drift in the robot’s position estimation became apparent. To rectify this issue,

the SnapMAPIcp node within ROS was introduced. This additional node effectively corrected

the drift that had occurred when relying solely on the AMCL node for localization, ensuring a

more accurate and stable robot pose estimation during navigation tasks. SnapMapICP is a ROS

node that improves robot localization with AMCL. It creates a point cloud from the map and

matches it to laser scans using ICP. If enough quality matches are found and the robot’s pose

differs significantly from AMCL’s estimate, it sends a new initial pose to AMCL, correcting

drift. Parameters control its behavior, and it reinitializes at defined intervals to enhance local-

ization stability.

3.3.2 Navigation

When themovebase is activated on a properly configured robot, its primary objective is to guide

the latter towards a desired pose while maintaining a user-defined tolerance [31]. In situations

where there are no dynamic obstacles, the movebase node will persistently strive to bring the

robot within this tolerance of its target pose or, if necessary, communicate failure to the user. To

use the move base node in navigation stack, we need to have a global planner and a local planner.

There are three global planners that adhere to nav core::BaseGlobal Planner interface: carrot

planner, navfn and global planner. One of the commonly used global planners is the Dijkstra’s

algorithm, which calculates the shortest path in a map to reach the goal while avoiding obstacles.

Another popular choice is the A algorithm*, which is efficient and can find optimal paths. ROS

also provides a flexible framework, allowing users to integrate custom global planners if needed.

A prevalent choice for the local planner is the Trajectory Rollout algorithm, which generates

local paths for the robot to follow while avoiding obstacles. The Dynamic Window Approach

(DWA) is another frequently used method, which focuses on selecting velocities that lead to

collision-free navigation. Like global planners, ROS allows for customization and integration of

different local planning algorithms to suit specific robot configurations and environments. These

global and local planners work in tandem to enable ROS-based robots to navigate autonomously

40 CHAPTER 3. PATH PLANNING USING ROS

Figure 3.8: Flowchart of movebase node functioning

in diverse environments, providing adaptability and performance suitable for a wide range of

robotic applications.

3.3.3 Global planner

The global planner in ROS operates by first initializing the map of the robot’s environment,

which includes information about obstacles and free space. Once a user-defined goal pose is

provided, the global planner employs pathfinding algorithms like Dijkstra’s or A* to compute a

high-level path from the robot’s current position to the goal. This pathfinding process treats the

environment map as a graph, searching for the shortest or most optimal route while considering

a cost function that factors in parameters such as distance and terrain difficulty. The output of

this computation is a sequence of waypoints, typically represented as poses in terms of position

and orientation, providing a planned trajectory for the robot. Importantly, the global planner

periodically updates this trajectory to adapt to changes in the environment or new obstacles,

ensuring the robot can safely and efficiently navigate towards its goal while avoiding static

obstacles.

3.3. NAVIGATION STACK 41

Figure 3.9: Global plan (green) using Dijkstra’s algorithm

3.3.4 Local planner

At its core, local planning revolves around the continuous search for an appropriate local path

within each control cycle. This involves generating a set of potential trajectories and assessing

their viability. Each trajectory is carefully examined to determine if it collides with obstacles,

and a rating is assigned to facilitate the selection of the most suitable option. It’s crucial to

note that the implementation of this principle can vary significantly based on factors such as the

robot’s physical shape, its actuators, and the specific environment it operates in. Numerous spe-

cialized methods exist for trajectory generation and exploring the space of potential trajectories

to identify the optimal one. To accommodate this variability, a range of interfaces and classes

have been designed to encapsulate these fundamental local planning principles in a generic

manner. These abstractions provide a framework that can be tailored to specific requirements.

In the Robot Operating System (ROS), there are several local planners that can be used for path

planning and obstacle avoidance. Some of the main local planners used in ROS include:

• base local planner: This is a widely used local planner in ROS, and it provides a set of

local planning algorithms, including Trajectory Rollout and Dynamic Window Approach

(DWA), to generate feasible robot trajectories while avoiding obstacles.

42 CHAPTER 3. PATH PLANNING USING ROS

• dwa local planner The Dynamic Window Approach (DWA) is a specific local planner

that focuses on generating feasible trajectories by considering the robot’s dynamics, max-

imum velocity, and acceleration constraints. It is part of the base local planner package.

• teb local planner: The Timed Elastic Band (TEB) local planner is designed for holonomic

and non-holonomic robots. It optimizes trajectories in time-space and considers dynamic

constraints, making it suitable for complex and dynamic environments.

• eband local planner: The Elastic Band local planner is based on a potential field method

and uses an elastic band to generate paths that avoid obstacles while minimizing path

length. It is particularly suitable for mobile robots and manipulators.

For our trials, we predominantly relied on the dwa local planner and teb local planner within

the Robot Operating System (ROS) due to their exceptional suitability for addressing the spe-

cific characteristics and challenges posed by non-holonomic robots.

dwa local planner

The Dynamic Window Approach (DWA) local planner is a key choice when dealing with

non-holonomic robots [26]. Non-holonomic robots have limitations on their motion, such as

maximum velocity and acceleration constraints, which can significantly impact their ability to

navigate effectively. DWA takes these constraints into account during path planning, making it

ideal for non-holonomic robots, as in 3.10.

• Velocity Constraints: DWA considers the robot’s dynamics, allowing it to calculate feasi-

ble trajectories by considering the robot’s maximum achievable velocity and acceleration.

This ensures that the robot can follow the generated paths more accurately, even in chal-

lenging environments.

• Obstacle Avoidance: DWA excels at obstacle avoidance. It evaluates multiple poten-

tial trajectories and selects the one with the lowest risk of collision. This is crucial for

non-holonomic robots, which may have difficulties making sharp maneuvers to avoid ob-

stacles.

teb local planner

The Timed Elastic Band (TEB) local planner is another excellent choice for non-holonomic

robots. It offers unique advantages, especially when navigating in complex, dynamic environ-

ments [33].

3.4. LIMITATIONS OF CURRENT APPROACH 43

Figure 3.10: Global plan (blue), local plan obtained by using DWA approach (green)

• Dynamic Environment Handling: TEB optimizes trajectories in time-space, which is ben-

eficial for non-holonomic robots operating in dynamic surroundings. It can adjust paths

and timings to account for moving obstacles or changing conditions, making it particu-

larly robust.

• Holonomic and Non-Holonomic Support: TEB is versatile and can accommodate both

holonomic and non-holonomic robots. This adaptability allows you to use it across dif-

ferent robot platforms while maintaining high-quality navigation performance.

In summary, the selection of the dwa local planner and teb local planner for your trials was

driven by their ability to address the specific challenges posed by non-holonomic robots. These

planners take into account the robot’s dynamics, velocity constraints, and obstacle avoidance

needs, making them valuable tools for achieving precise and reliable navigation results in a

variety of dynamic environments.

3.4 Limitations of current approach

The ROS navigation stack is a powerful tool for enabling autonomous navigation in a wide

range of environments. However, when the transition is made from controlled, structured envi-

ronments to real-world industrial settings, certain challenges and limitations become apparent.

One of the critical limitations pertains to the repeatability of navigation, and this limitation pri-

44 CHAPTER 3. PATH PLANNING USING ROS

marily arises due to the unpredictable behavior of the local planner.

1. Unpredictable Local Planner Behavior: In industrial environments, robots often en-

counter dynamic and cluttered spaces with various obstacles and machinery. The lo-

cal planner, responsible for real-time obstacle avoidance and trajectory generation, may

struggle to exhibit consistent and predictable behavior in such complex scenarios. The

local planner’s responses can vary depending on the specific arrangement of obstacles,

sensor noise, and other dynamic factors, making it difficult to achieve precise and repeat-

able movements.

2. Repeatability Challenges: In industrial automation and manufacturing, repeatability is

a fundamental requirement. Robots must execute tasks with a high degree of accuracy,

returning to the same positions and orientations reliably. The inherent unpredictability

of the local planner can hinder this repeatability, leading to inconsistent performance in

repetitive tasks, which is a critical concern in settings where precision is paramount.

3. Customization Challenges: To mitigate the limitations, industrial users often resort to

customizing and fine-tuning the local planner’s parameters. While this approach can im-

prove performance to some extent, it requires in-depth expertise and substantial effort,

which may not always be practical in industrial settings with rapidly changing require-

ments.

4. Safety Considerations: The unpredictable behavior of the local planner can also raise

safety concerns, as robots may occasionally make unexpected movements when trying to

avoid obstacles. In industrial environments, ensuring the safety of human operators and

adjacent equipment is of utmost importance.

5. Alternative Solutions: In response to these challenges, some industrial applications opt

for alternative navigation solutions, including specialized motion planning algorithms,

external sensors (e.g., vision systems), and more deterministic control methods. These

approaches provide more control over robot behavior but may require additional integra-

tion efforts.

Even when "limiting" the local planner to follow the global planner, this results in a poor navi-

gation. In fact, the global planner typically generates a sequence of positions as a path without

taking into account the robot’s orientation or its kinematic constraints. In practice, industrial

robots have specific limitations regarding their motion, such as maximum joint velocities, accel-

eration, and payload considerations. When the global planner fails to consider these constraints,

3.4. LIMITATIONS OF CURRENT APPROACH 45

it may produce paths that are geometrically sound but impractical for the robot to follow pre-

cisely. Moreover, industrial robots often require agility and precise maneuvering, especially

when navigating through constrained spaces or when performing tasks that demand intricate

movements. The global planner’s focus on minimizing distance may not align with the robot’s

ability to make sharp turns or adjustments, leading to paths that are suboptimal for the robot’s

maneuverability. As a result, when industrial robots attempt to follow paths generated solely

by the global planner, they may exhibit erratic behavior, struggle with precise positioning, or

even fail to execute the path altogether. This disconnect between global path planning and local

execution can lead to inefficiencies, safety concerns, and challenges in achieving the required

level of repeatability and precision that are critical in industrial applications. To address these

concerns, industrial navigation often involves a combination of custom local planning, sensor

feedback, and careful consideration of the robot’s kinematics and constraints to ensure that the

generated paths are not only optimal in theory but also practical and navigable in the real-world

industrial environment.

Chapter 4

Hybrid A* Algorithm

In the context of the industrial landscape at E80 Group, the imperative need for an advanced

path planning algorithm became evident as the decision to transition away from the Robot Op-

erating System (ROS) was made. While ROS had been instrumental in facilitating research and

development, the industrial vehicles deployed were non-holonomic car-like robots, presenting

unique challenges for navigation. Traditional algorithms such as Dijkstra or A*, while effective

in certain scenarios, yielded paths with sharp and edgy turns that were ill-suited for the precise

and safe navigation demanded in industrial environments. Moreover, to ensure seamless oper-

ations and avoid costly replanning actions by a "local planner," it was fundamental to find an

algorithm capable of simultaneously accommodating the kinematic constraints and the unique

shape of the robot. This quest marked a pivotal shift in the pursuit of efficient and streamlined

operations at E80 Group, calling for the development of a versatile path planning solution tai-

lored to the specific needs of the industrial context.

4.1 Overview and Algorithmic Description

Hybrid A* is a path planning algorithm designed for vehicles with continuous state spaces,

making it well-suited for smooth and efficient navigation, particularly in complex, real-world

environments. It starts by initializing the start and goal states and utilizes cost and heuristic

functions to guide its search. The algorithm explores a discretized state lattice, efficiently eval-

uating potential states and prioritizing them based on cost. Once the goal is reached, Hybrid A*

reconstructs an optimal path, considering vehicle dynamics and constraints, ensuring feasible

and smooth trajectories. Its key strengths lie in its ability to handle continuous state spaces, effi-

ciently explore them, and generate paths tailored to a vehicle’s kinematic constraints, making it

47

48 CHAPTER 4. HYBRID A* ALGORITHM

invaluable for autonomous vehicles and robots operating in dynamic and intricate surroundings.

4.2 Hybrid A* search

The Hybrid A* algorithm demonstrated its effectiveness in the DARPA Urban Challenge, a

robotics competition orchestrated by the U.S. Government back in 2007. In the subsequent

years, Dolgov et al. provided valuable insights into the algorithm in their publications. The

behavior of the Hybrid A* algorithm closely resembles that of the A* algorithm. However, the

critical distinction lies in the fact that state transitions occur in continuous space, as already de-

Figure 4.1: Different node expansions between A* and Hybrid A*

scribed, rather than in a discrete manner. One of the most significant shortcomings of earlier ap-

proaches to path planning for non-holonomic robots is that the resulting paths are discrete, often

leading to non-executable trajectories due to abrupt changes in direction. The Hybrid A* search

implicitly constructs the graph on a discretized grid, allowing vertices to access any continuous

point on the grid. To manage the infinite nature of a continuous search space, the algorithm

employs grid cell discretization, thus constraining the growth of the graph. Since transitions be-

tween vertices lack a predefined structure, it readily accommodates the non-holonomic nature of

state transitions. Typically, the search space is three-dimensional, encompassing the state space

X comprising x, y, and θ, forming a discretized cuboid. The base of this cuboid represents the

x, y position, while the height denotes the heading θ of a vertex. Further in the description are

outlined the steps involved in the Hybrid A* search [4]. Similar to the conventional A* search,

it begins by establishing empty sets O and C, along with setting the predecessor state of the

initial state to null. The initial state is then placed on the open list. The while loop starts, con-

tinuing until either the open list is empty or the goal state is reached. If the currently expanded

4.2. HYBRID A* SEARCH 49

Figure 4.2: Comparison between A* (left), Field D* (centre) and HA* (right)

vertex is not the goal vertex, new successors are generated for all available actions u ∈ U(x).

If the successor is not already in C, the algorithm calculates the cost-so-far for the vertex. If the

vertex is not in O or if the cost-so-far is smaller than the cost for a vertex with the same index

in O, the successor is assigned a pointer to its predecessor, and the cost-so-far and cost-to-come

are updated. Subsequently, the vertex is either pushed onto the open list or its key is reduced

using the new value f(xsucc). It’s worth emphasizing that even though Hybrid A* rounds the

state to prune similar branches, the expansion always occurs from the actual state value rather

than the rounded one. In this section the search used in Hybrid A* algorithm is analyzed and

deeply studied. The schematic description is given:

1. Initialization: The algorithm begins by initializing the start and goal states. These states

are represented in continuous space but are converted into grid coordinates to work within

the discrete grid-based map. The start node is assigned a COST of 0. Two dictionaries,

namely openList and ClosedList, are created to keep track of explored and unexplored

states.

2. Heuristic Estimation: To aid in the search process, the algorithm employs a heuristic

function called CALC DISTANCE HEURISTIC. This function calculates an es-

timate of the cost from the goal for all non-obstacle nodes on the map. It does so by

expanding nodes starting from the goal and assigning a cost based on the distance to the

goal. This information is used to guide the search.

3. Priority Queue (PQ) Initialization: A priority queue (PQ) is initialized to efficiently ex-

plore states. The start node is inserted into the openList.

4. Search Loop: The core of the algorithm is a search loop that continues until a path is

found or determined to be infeasible. In each iteration of the loop: - The node with the

lowest combined cost is ’popped’ from the PQ, and its cost and index are obtained. - If

50 CHAPTER 4. HYBRID A* ALGORITHM

the popped node’s index is already in the openList, it is removed from there and added to

the ClosedList. - The algorithm identifies a promising node by exploring whether a fea-

sible path to the goal can be found. This is done using the UPDATE NODE WITH

ANALY TIC EXPANSION function, which tracks whether a feasible path can be

constructed from the current node. If successful, it calculates the cost of the path consid-

ering direction changes and other factors. - If a promising node is found, it is treated as

a potential solution. If not, the search continues. - Neighbor Exploration: The algorithm

explores neighboring nodes in the continuous space. The GET NEIGHBORS func-

tion returns neighboring nodes, considering various steering angles to explore different

directions. For each direction and steering angle, it calculates the next node and checks

for collisions. It also computes the cost associated with changing direction and updates

the node’s cost based on the motion performed.

5. Termination: The search loop terminates when a path to the goal is found or when it’s

determined that no feasible path exists.

4.2. HYBRID A* SEARCH 51

Figure 4.3: Pseudocode of the Hybrid A* algorithm

52 CHAPTER 4. HYBRID A* ALGORITHM

Figure 4.4: Pseudocode of the Hybrid A* algorithm

4.3 Reeds-Shepp curves

In 1990, Reeds and Shepp tackled a problem that appeared similar to the one Dubins addressed

in the appendix. They devised a solution for calculating paths with an upper bound on curvature

while considering that a car could move both forwards and backward. This was a significant

advancement, as it allowed vehicles to reverse during path planning.The shortest paths for a

car with a reverse gear, sometimes called the Reeds±Shepp car in honor of the mathematicians

4.3. REEDS-SHEPP CURVES 53

who first studied the problem, use only straightline segments and minimum-turning-radius arcs.

Using the notationC for a minimum-turning-radius arc,Ca for an arc of angle a, S for a straight-

line segment, and | for a cusp (a reversal of the linear velocity). The Reeds-Shepp solution

aims to find a path with a maximum of 2 cusps (points where the curvature changes suddenly

due to reversing). Among the numerous possible paths, the one with the minimum length is

considered the solution. Like Dubins Curves, Reeds-Shepp curves are composed of curved and

straight segments, but they accommodate the added complexity of reversing. Paths generated

using Reeds-Shepp curves typically consist of at most five segments, following a pattern like

CCSCC (C for curve and S for straight), depending on the specific requirements of the path.

This advancement in path planning has been especially valuable in robotics and autonomous

vehicle navigation, allowing for more versatile and efficient maneuvers. In the context of the

Figure 4.5: Examples of shortest paths for a car with a reverse gear.

Hybrid A* algorithm, the incorporation of Dubin or Reeds-Shepp curves plays a pivotal role

in enhancing the efficiency and accuracy of path planning for autonomous vehicles. Dubin

curves [Appendix C], characterized by their simplicity and limited maneuverability, are often

employed when vehicle dynamics are relatively straightforward, making them a suitable choice

for scenarios where turning radius and speed are constrained. On the other hand, Reeds-Shepp

curves, with their ability to model more complex vehicle dynamics and account for reverse

gear, are preferred in situations where precise path tracking, reverse maneuvers, and obstacle

avoidance are paramount. By seamlessly integrating these curve models into the Hybrid A*

algorithm, it becomes capable of generating optimal paths that adhere to the vehicle’s kinematic

constraints while navigating through diverse environments, making it a valuable tool in the

realm of autonomous navigation and robotics.

54 CHAPTER 4. HYBRID A* ALGORITHM

Figure 4.6: Successor selection in continuous domain when robot can move backward

4.4 Heuristics

In order to identify the most efficient path, it’s crucial for the search process to follow a sys-

tematic approach. The primary distinguishing factor among various search algorithms lies in

how they expand vertices. To prevent the wasteful exploration of unpromising areas within a

graph, the search should be as well-informed as possible, expanding only those nodes with the

potential to belong to the optimal path. When the search incorporates information that results in

the omission of expanding a particular node, and consequently fails to find the optimal path, it

compromises admissibility. An ideal heuristic would furnish the true cost associated with a ver-

tex. Heuristics serve as a valuable tool for approximating solutions, particularly in cases where

computational power limitations necessitate a substantial reduction in the search space. Given

that a finite amount of time allows for only a finite number of computations, this constraint

is not surprising but remains a significant impediment for problems that exhibit exponential

growth in search depth. During the exploration of a graph, the search must make decisions

about which vertex to expand and which edge to follow. Information aimed at addressing this

question is referred to as a heuristic. Such a heuristic may rely on cost estimates between the

current vertex and the goal vertex. A heuristic essentially functions as a tool that provides es-

sential information, expediting the algorithm’s convergence toward the desired goal. However,

it’s worth noting that only an admissible heuristic can lead to optimal outcomes. While the ul-

timate aim is to generate viable solutions that approach optimality, it is crucial to leverage A*’s

nature as an informed search algorithm. This involves implementing heuristics that expedite the

algorithm’s convergence towards a solution. In the case of HA*, it utilizes estimates from two

distinct heuristics. Both of these heuristics are admissible, and for any given state, HA* selects

the maximum value between them. These two heuristics address very different aspects of the

4.4. HEURISTICS 55

problem.

Constrained Heuristic (Accounting for Vehicle Characteristics): The constrained

Figure 4.7: An evaluation of the advantages offered by both the constrained and unconstrained
heuristics.

heuristic takes into consideration the unique characteristics of the vehicle while disregarding

environmental factors. It typically employs Dubins or Reeds-Shepp curves, introduced before,

as suitable candidates. These curves represent paths of minimal length while adhering to upper

bound curvature constraints, both for forward and forward/backward driving cars, respectively.

This heuristic considers the current heading and turning radius, ensuring that the vehicle ap-

proaches the goal with the correct orientation, especially when it nears the goal. For efficiency,

56 CHAPTER 4. HYBRID A* ALGORITHM

this heuristic can be precomputed and stored in a lookup table since it does not involve obstacles

and, thus, doesn’t rely on environmental information. However, it primarily improves perfor-

mance and doesn’t significantly impact the quality of the solution, so a lookup table may not

always be implemented. Given that both Dubins and Reeds-Shepp curves represent minimal

paths, this heuristic is clearly admissible.

Unconstrained Heuristic (Focusing on Obstacles):

The unconstrained heuristic, in contrast, disregards the vehicle’s characteristics and concen-

trates solely on obstacle avoidance. It estimates the shortest distance between the goal node

and the currently expanded vertex. This distance is calculated using standard A* search in two

dimensions (x, y position) with an Euclidean distance heuristic. Notably, the two-dimensional

A* search employs the current vertex as the goal and the goal vertex of the HA* search as the

starting point. This is advantageous because the closed list of the A* search stores all short-

est distances g(x) to the goal and can thus serve as a lookup table, eliminating the need for a

new search as HA* progresses. The unconstrained heuristic guides the vehicle away from dead

ends and aids in navigating around U-shaped obstacles. Since HA* can potentially reach any

point within a cell, the unconstrained heuristic needs to be adjusted by the absolute difference

between the continuous coordinates of the current and goal vertices.

4.5 Path smoothing

The paths generated by the hybrid-state A* algorithm often fall short of optimality and require

further enhancement. In our empirical observations, we have found that these paths are in-

deed navigable, but they may exhibit unnatural swerves, demanding excessive steering input.

Consequently, we have devised a two-stage optimization process to refine the output of the

hybrid-state A* algorithm. In the initial stage of optimization, we formulate a non-linear opti-

mization program that focuses on the coordinates of the path’s vertices. This optimization aims

to improve both the length and smoothness of the solution. We employ the conjugate-gradient

(CG) descent technique, known for its efficiency in numerical optimization. The primary goal

of this first optimization stage is to enhance the smoothness of the path by adjusting the posi-

tions of its vertices while preserving the path’s original discretization. However, the resulting

path from the first stage may still have a coarse discretization, making it unsuitable for precise

control of a physical vehicle (typically with a granularity of approximately 0.5 meters). To

address this, we proceed to a second stage, where we perform non-parametric interpolation on

4.5. PATH SMOOTHING 57

the output of the first stage. This interpolation is accomplished through another iteration of

the conjugate-gradient method. As a result, the interpolated paths possess a higher-resolution

discretization, typically in the range of 5 to 10 centimeters, making them well-suited for the

smooth and precise control of the robot.

To achieve this objective, a gradient descent smoother can be employed, which seeks to min-

imize P. P is comprised of the following four terms, and the minimization is carried out with

respect to the path.

P = Pobs + Pcur + Psmo + Pvor; (4.1)

Further elaboration on these four terms is provided in the description, with each term being

explained in the context of its particular purpose.

Obstacle Term

Pobs = wobs

N
∑

i=1

σobs(|xi − oi| − dobs); (4.2)

This term imposes penalties for collisions with obstacles. It applies to all vertices xi within a

range defined as |xi − oi| ≤ dobs, with the cost Pvor being calculated based on the distance to

the nearest obstacle. Here, xi represents the x, y-position of a path vertex, while oi signifies

the location of the nearest obstacle to xi. The threshold dobs determines the maximum distance

over which obstacles can affect the path’s cost. To impose a more significant penalty as the

path approaches obstacles, σobs is employed as a quadratic penalty function. The weight wobs

is utilized to modulate the extent of its impact on the path’s alterations.

Curvature Term

Pcur = wcur

N−1
∑

i=1

σcur(
∆Φi

|∆xi|
− kmax); (4.3)

In order to ensure driveability the curvature term upper-bounds the instantaneous curvature of

the path at every vertex. It is defined when the term inside parenthesis is > 0. The displacement

vector at the vertex xi is defined as ∆xi = xixi1 . The change in tangential angle at a vertex

can be expressed by ∆Φi. The maximum allowable curvature is denoted by kmax. Deviations

from the maximum allowable curvature are penalized with a quadratic penalty function σcur.

The curvature weight wcur controls the impact on the change of the path.

Smoothness Term

Psmo = wsmo

N
∑

i=1

(∆xi+1 −∆xi)
2; (4.4)

The smoothness term assesses the displacement vectors between vertices, effectively assigning

a cost to vertices that exhibit uneven spacing or abrupt changes in direction. The parameter

58 CHAPTER 4. HYBRID A* ALGORITHM

wsmo signifies the weight of the smoothness term and, consequently, its influence on altering

the path.

Voronoi Term

Pvor = wvor

N
∑

i=1

(
α

α + dobs(x, y)
)(

dvor(x, y)

dobs + dvor(x, y)
)(
(dobs(x, y)− dvor)

2

dvo2r
); (4.5)

This term influences the path to steer clear of obstacles. When dobs is less than or equal to dvor,

the cost Pvor comes into play, taking into account the node’s position within the Voronoi field.

Here, dobs represents the positive distance to the nearest obstacle, dedg is the positive distance

to the closest GVD edge, and dvor denotes the maximum distance at which obstacles influence

the Voronoi potential. The parameter α, which is greater than zero, governs the rate at which

the field diminishes, while wvor, the Voronoi weight, determines its impact on the path.

Gradient Descent

The gradient descent technique is an optimization algorithm that leverages the function’s gradi-

ent to seek a local minimum. It advances iteratively with step sizes proportional to the negative

gradient: ∆x = −▽f(x). Instead of the common practice of using the absolute gradient value

as a stopping criterion, usually a predetermined number of iterations is adopted to maintain

consistent runtime efficiency.

Figure 4.8: Pseudocode of the Gradient Descent.

Chapter 5

Applications and Case Studies

Unfortunately, due to time constraints and certain inconveniences encountered during my in-

ternship with the E80 Group, we were unable to conduct testing of the Hybrid A* algorithm on

the Dingo. However, to provide valuable insights and results regarding the application of this al-

gorithm, we have included some illustrative cases for reference. Therefore, in the final chapters

of this thesis, we transition from the theoretical underpinnings of the Hybrid A* algorithm to

its practical applications and case studies. This chapter is subdivided into four comprehensive

papers, each offering a deeper understanding of how Hybrid A* can be harnessed and enhanced

in various real-world scenarios and simulations.

5.1 Autonomous Navigation in Unstructured Environments

5.1.1 Off-Road Autonomous Vehicles

In the realm of off-road autonomous vehicles, Hybrid A* has emerged as a game-changer. We

delve into the successful deployment of Hybrid A* in rugged terrains such as deserts, forests,

and agricultural fields. Through detailed case studies, we illustrate how this algorithm empow-

ers robots and vehicles to navigate through challenging landscapes while ensuring safety and

efficiency. The algorithm’s adaptability to diverse terrains and its ability to find feasible paths

amidst uneven topography are highlighted. In the paper "Application of Hybrid A* to an Au-

tonomous Mobile Robot for Path Planning in Unstructured Outdoor Environments" [15], the au-

thors presented the HA* applied to a nonholonomic mobile outdoor robot in order to plan near

optimal paths in mostly unknown and potentially intricate environments. The paper presents an

upgraded version of the HA* algorithm in order to address the specific challenges of the real-

world environment. In fact, the authors considered and handles some of the limitations of the

59

60 CHAPTER 5. APPLICATIONS AND CASE STUDIES

scenario and incorporate them into heuristics for the algorithm. The main challenges addressed

are:

• Handling Waypoints Sequences

• Terrain Characteristics

• Waypoints Beyond the Local Map

• Wall Following for Large Obstacles

This paper describes the application of the Hybrid A* algorithm in path planning for au-

tonomous mobile robots in unstructured outdoor environments. The algorithm considers ve-

hicle kinematic constraints and surface conditions, ensuring generated paths are feasible and

drivable. Notably, it can explicitly plan through multiple waypoints, guaranteeing drivability,

and employs cost functions and heuristics to accommodate constraints like on-road preferences.

Additionally, the algorithm efficiently handles waypoints lying beyond the local map using suit-

able heuristics, enhancing its adaptability to complex real-world scenarios. In 5.1, the results of

Figure 5.1: The path planned within an urban setting (left), actual minimum cost minθ g (cen-
ter), and predicted minimum cost minθ f (right).

the planning process in an urban environment are shown. The left figure displays the generated

path, which remains on the road thanks to the incorporation of an off-road penalty in the path

costs, avoiding shortcuts through off-road areas. Furthermore, the Hybrid A* algorithm pri-

oritizes the road network exploration, as evidenced by Figure 5’s center, illustrating the actual

costs (g), and the right, illustrating the predicted costs (f). The rightmost figure clearly demon-

strates that the cell expansion during the path search to reach G2 is guided through the goal

region G1 of the first waypoint.

5.1. AUTONOMOUS NAVIGATION IN UNSTRUCTURED ENVIRONMENTS 61

5.1.2 Indoor Environments

Indoor environments pose unique challenges for autonomous navigation due to constrained

spaces and dynamic obstacles. In this subsection, we explore how Hybrid A* is utilized in

scenarios such as warehouse automation and indoor robotics. Practical examples and simu-

lations demonstrate how the algorithm aids in path planning within tight confines, enabling

robots to operate efficiently in industrial and home environments. In the study "Improved Ana-

lytic Expansions in Hybrid A-Star Path Planning for Non-Holonomic Robots" [17], the Hybrid

A* algorithm for non-holonomic robots in indoor environments is explored. The investigation

uncovers issues in different algorithm phases, such as RS curves being generated too close to

obstacles and routes containing unnecessary turns. To address these challenges, the study pro-

poses generating multiple RS curves with varying curvature values and using a cost function

to select the safest path among them. Additionally, a fine-tuning approach is suggested to re-

duce unnecessary turns without complex smoothing techniques. These improvements enhance

the algorithm’s safety performance for indoor robot applications. Experimental demonstrations

validate the effectiveness of the proposed method in simulations, resulting in smoother routes

with lower collision risks and reduced turning points compared to conventional methods. Al-

though the computation time increases moderately, the study highlights the potential of Hybrid

A* in indoor autonomous driving scenarios, where safety and efficiency are paramount. In

simulations of the Hybrid A* algorithm in indoor environments, issues arose with non-smooth

segments in the path generated by the forward search (blue lines) and the proximity of RS path

results (green lines) to walls, particularly at corners. This proximity raised concerns about po-

tential collisions due to measurement errors or motor control errors. To address these problems,

the study aims to enhance the algorithm’s analytic expansions by leveraging a unique property

of RS curves. Achieving a safer route for a car-like robot involves adjusting the curvature value.

Multiple paths are generated with varying curvatures, and the selection of a safer path from the

start to the goal state is crucial. To evaluate each path, an objective function is proposed, com-

prising two cost functions.

G = σ1 · v + σ2 ·m; (5.1)

The first function, represented by ’v,’ calculates the cost of the Voronoi field, emphasizing safer

distances from obstacles. The second function, denoted as ’m,’ assesses the cost of movement

along the RS path, considering factors like path length, steering angles, and steer switching. By

combining these functions with appropriate weights (σ1 and σ2), a balance is struck between

selecting a safer but potentially longer path or a faster but riskier one for the car-like robot.

62 CHAPTER 5. APPLICATIONS AND CASE STUDIES

Figure 5.2: Original Hybrid A-star path planning in simulations. The black ellipses show the
critical part of the generated RS curves.

The relative values of σ1 and σ2 determine the robot’s preference between safety and speed.

Following adjustments to the motion primitives without exhaustive search, they determined that

a value of 1.5 for the motion primitive yielded satisfactory results. As depicted in 5.3, the

Figure 5.3: Tuning the improved hybrid A-star path planning.

tuning process has notably enhanced the algorithm’s performance by ensuring a safe distance

from walls and eliminating unnecessary swerves in the path.

5.2 Safety and efficiency

The academic paper "Improved Hybrid A-Star Algorithm for Path Planning in Autonomous

Parking System Based on Multi-Stage Dynamic Optimization" [19] focused on enhancing path

planning in autonomous parking systems. It introduces the popularity of autonomous parking

and the use of the Hybrid A-star algorithm for path planning due to its simplicity and practi-

cality. The paper proposes two significant improvements: a safety-enhanced design that con-

siders path safety by incorporating Voronoi field potential and an efficiency-enhanced design

5.2. SAFETY AND EFFICIENCY 63

that employs multi-stage dynamic optimization. Simulation experiments confirm that these en-

hancements result in safer paths, with greater distance from obstacles, and significantly improve

search efficiency in terms of time and space. This modified version of the Hybird A* algorithm

aims to achieve two fundemental conditions: safety and efficiency. To verify the proposed

improved algorithm, they preset a scenario illustrated in 5.4. The parking area features two

entrances. The black lines represent the parking lot’s perimeters, while the orange lines mark

the boundaries of the accessible parking spaces. All of these lines are regarded as obstacles that

the vehicle must steer clear of to prevent collisions.

Figure 5.4: Layout of the parking lot.

Safety-enhanced Design

The primary concern is to improve the safety of the generated trajectories. The existing algo-

rithm is capable of producing smooth paths that satisfy the vehicle’s non-holonomic constraints

but may not guarantee a safe distance from obstacles. To address this issue, the authors intro-

duce a safety term based on the Voronoi field, which considers the trade-off between path length

and proximity to obstacles. The Voronoi field is defined mathematically and offers several ad-

vantages, including scalability and ease of navigation through narrow openings. The overall

cost function is then modified to incorporate this safety term alongside motion and heuristic

costs. This safety-enhanced design aims to produce safer trajectories in complex environments

64 CHAPTER 5. APPLICATIONS AND CASE STUDIES

with multiple obstacles, without compromising maneuverability in narrow spaces, such as park-

ing lots.

Efficiency-enhanced Design

The conventional hybrid A-star algorithm, while effective, can be time-consuming and com-

putationally intensive when dealing with such obstacles. To address this, the authors propose

a multi-stage planning framework based on the hybrid A-star algorithm, incorporating safety

enhancements. In this approach, parking path planning is divided into two stages. The first

stage focuses on planning a path from the entrance of the parking lot to a midpoint near the

target parking spot, which is relatively easier as it involves mainly road driving without many

obstacles. The second stage deals with planning a more complex path from the midpoint to the

target parking spot while avoiding intersections with surrounding border lines and adhering to

the vehicle’s non-holonomic constraints. To enable this two-stage approach, an available list of

middle points around the target parking spot is constructed. These middle points are selected

dynamically through an optimization framework during the first planning stage. Once the first

stage is completed, the second stage becomes more efficient since it is guaranteed to find a

collision-free path from the middle point to the target parking spot. The method introduces a

neighboring interest area around the target state, and the state space is discretized with resolu-

tion parameters to create a discrete state set. Then, collision-free RS (Reeds-Shepp) paths from

each state in the set to the target state are checked, and the states that can be connected by such

paths are added to the admissible set. The dynamic selection of the best middle point is done

through an optimization scheme, where a cost function considers four cost subitems, each with

specific objectives. These subitems include measures of Voronoi field potential, the gradient of

this potential with respect to the heading angle, the integral of potential along the RS path, and

the difference between heading angles. These subitems guide the selection of the middle point

to stay away from obstacles, align with the direction of the drivable road, find safer paths, and

accelerate the first planning stage. The method offers flexibility for various cost functions to be

used in practical engineering applications under this dynamically optimized multi-stage plan-

ning framework, allowing for customization based on specific intentions and requirements. In

essence, this approach aims to make parking path planning more efficient and safe by breaking

it into two stages, dynamically selecting intermediate points, and using a cost-based optimiza-

tion framework to guide the planning process.

Testing

Initially, the safety-enhanced design is implemented, prioritizing path safety in autonomous

driving scenarios. Subsequently, the efficiency-enhanced design is deployed to improve the

5.2. SAFETY AND EFFICIENCY 65

efficiency of path planning. The results of both these design approaches are illustrated in the

accompanying figures.

Figure 5.5: Searching results of conventional hybrid A-star algorithm.

In contrast to the conventional hybrid A-star algorithm, the enhanced algorithm they propose

not only produces a safer path, maintaining a greater distance from obstacles, but also notably

reduces the complexity of the search process, resulting in improved efficiency. While deploying

the improved algorithm does require some additional pre-processing work, it’s worth noting that

these efforts can be leveraged repeatedly for subsequent use.

66 CHAPTER 5. APPLICATIONS AND CASE STUDIES

(a) Searching results of the improved hybrid A-
star algorithm with only safety-enhanced design.

(b) Searching results of the improved hybrid A-
star algorithm with both safety-enhanced design
and efficiency-enhanced design.

Figure 5.6: Results of both enhancing designs

5.3 Multi-robot system

Multi-robot path planning is a challenging yet crucial aspect of robotics and autonomous sys-

tems, where multiple robots must navigate through complex environments while avoiding col-

lisions and optimizing their paths. Leveraging the Hybrid A* algorithm has proven to be highly

successful in addressing this intricate task. This advanced algorithm not only ensures the ef-

ficient planning of individual robot trajectories but also orchestrates their coordinated move-

ments, allowing multiple robots to navigate seamlessly through unstructured environments

while adhering to kinematic constraints, avoiding obstacles, and optimizing their collective

paths. This breakthrough in multi-robot path planning showcases the versatility and effec-

tiveness of the Hybrid A* algorithm in real-world applications, paving the way for enhanced

robotic cooperation and efficiency in various domains. The article "A divide-and-conquer con-

trol strategy with decentralized control barrier function for luggage trolley transportation by

collaborative robots" [16]focuses on addressing complex constraints in a transportation system

consisting of a luggage trolley queue and two collaborative robots (a leader and a follower).

To tackle this challenging task, a divide-and-conquer control strategy is proposed, aiming to

manage various constraints separately. The system’s complexity arises from the need to handle

nonholonomic constraints due to the robots’ differential structures while maintaining a stable

formation between them. Traditional path planning algorithms like basic A* are unsuitable

5.3. MULTI-ROBOT SYSTEM 67

Figure 5.7: The luggage trolley transportation system

for this task, leading the authors to adopt the Hybrid A* algorithm for global path planning.

The proposed strategy employs a hierarchical approach, involving a high-level global plan-

ner to generate smooth paths and a low-level controller to track these paths while preserving

the formation. Extensive simulation and physical experiments confirm the effectiveness of this

approach, demonstrating the ability to smoothly transport the luggage trolley queue while main-

taining formation and adhering to nonholonomic constraints.

68 CHAPTER 5. APPLICATIONS AND CASE STUDIES

Figure 5.8: The kinematic model incorporates nonholonomic constraints, and the system com-
prises two differential robots, designated as 0 (leading) and 1 (following), respectively. Ad-
ditionally, the illustration includes representations of the inter-robot distance (L), the system’s
yaw angle (ψ), and the steering angles of the robots relative to the system (φ0 and φ1).

Figure 5.9: Results from the simulation experiments include distance maintenance statistics,
represented by mean and standard deviation values, and angle maintenance, where the safe
region is visually depicted with a boundary and shaded in green.

Chapter 6

Challenges and Future Directions

In this thesis we have explored a spectrum of state-of-the-art path planning algorithms with a

particular emphasis on the Hybrid A* algorithm. While the research conducted thus far has pro-

vided valuable insights into path planning for non-holonomic robots operating in dynamic and

unstructured environments, several noteworthy challenges and promising future directions have

emerged. One of the key challenges lies in real-time implementation and optimization of path

planning algorithms to ensure their practicality in dynamic, real-world scenarios. Additionally,

enhancing the adaptability of these algorithms to varying environmental conditions and uncer-

tainties remains a critical research area. Looking ahead, it is essential to consider the context

of the E80 Group’s future goal, which involves developing path planning algorithms for multi-

robot systems. This endeavor introduces a unique set of challenges and difficulties. Coordina-

tion, communication, and collision avoidance among multiple robots will become paramount

concerns. Designing algorithms that efficiently distribute tasks and ensure cooperation among

robots while avoiding conflicts is a complex undertaking. Scalability and the ability to handle

a growing number of robots in a seamless manner will also be a significant challenge. More-

over, the incorporation of machine learning and swarm intelligence techniques to improve the

collective decision-making of multi-robot systems presents exciting opportunities and research

avenues. Thus, the future of path planning in the E80 company and similar applications holds

the potential for groundbreaking developments but necessitates addressing the complexities as-

sociated with multi-robot coordination and navigation in unstructured environments.

69

70 CHAPTER 6. CHALLENGES AND FUTURE DIRECTIONS

6.1 Limitations of the Hybrid A* Algorithm

The Hybrid A* algorithm, while a powerful tool for path planning in various scenarios, does

have some limitations:

• High Computational Demands: Hybrid A* can be computationally expensive, particu-

larly in environments with many obstacles or complex terrain. The discretization of the

state space and the generation of a hybrid state graph can result in a large number of nodes

to explore, leading to increased computation time.

• Grid Resolution: The quality of the generated path depends on the resolution of the

grid used to discretize the environment. If the grid resolution is too coarse, the algorithm

might miss narrow paths or fail to account for intricate obstacle shapes. On the other

hand, increasing the resolution can significantly increase computational requirements.

• Memory Consumption: Storing the hybrid state graph can be memory-intensive, espe-

cially in large and cluttered environments. This can limit the algorithm’s applicability on

resource-constrained platforms.

• Handling Dynamic Environments: Hybrid A* assumes that the environment is static

during planning. Adapting it to dynamic environments, where obstacles or conditions

change over time, is a non-trivial challenge and often requires real-time updates and re-

planning.

• Smoothness of Paths: The paths generated by Hybrid A* may not always be the smoothest,

which can be a limitation for applications where path smoothness is crucial, such as in

controlling certain types of robots or vehicles.

• Limited Sensor Models: The algorithm relies on accurate sensor data to build the state

space representation. Inaccuracies or limitations in sensor data can lead to incorrect path

planning outcomes.

• Scalability: While Hybrid A* works well for single-robot systems, extending it to multi-

robot scenarios can be challenging, particularly in scenarios with high robot density and

complex interactions.

Despite these limitations, Hybrid A* remains a valuable choice for path planning in many con-

texts. Addressing these limitations often involves a trade-off between computational complexity

6.2. FUTURE RESEARCH OPPORTUNITIES 71

and path quality, and researchers continue to work on improving the algorithm’s efficiency and

adaptability to a wide range of real-world scenarios.

6.2 Future Research Opportunities

The field of path planning algorithms for autonomous robots is continuously evolving, present-

ing several exciting future opportunities:

• Multi-Robot Coordination: As multi-robot systems become more prevalent, develop-

ing efficient algorithms for cooperative path planning and coordination among multiple

robots will be crucial. These algorithms will need to account for both inter-robot com-

munication and collision avoidance.

• Uncertainty Handling: Path planning algorithms that can effectively handle uncertainty,

whether it’s due to sensor noise, environmental variability, or perception limitations, will

be essential for robust autonomous navigation.

• Human-Robot Interaction: Developing path planning algorithms that consider human-

robot interaction and take into account human intentions and safety preferences will be

essential for robots coexisting with humans in shared spaces.

• Energy Efficiency: Energy-efficient path planning algorithms will be crucial for resource-

constrained robots, such as drones and mobile robots, extending their operational capa-

bilities and reducing environmental impact.

• Machine Learning Integration: The integration of machine learning techniques, partic-

ularly deep reinforcement learning and neural networks, can enhance path planning by

allowing robots to learn and adapt to complex and dynamic environments. End-to-end

learning for path planning and decision-making is an emerging area of research.

• Autonomous Exploration: Path planning for autonomous exploration in unknown or

partially known environments, including underwater exploration, planetary exploration,

and search and rescue missions, remains a significant research area.

• Ethical Considerations: Addressing ethical considerations and guidelines for path plan-

ning, especially in situations where robots must make decisions that involve ethical and

moral implications, such as autonomous vehicles.

72 CHAPTER 6. CHALLENGES AND FUTURE DIRECTIONS

In summary, the future of path planning for autonomous robots holds immense promise, with

opportunities ranging from advanced machine learning integration to addressing the complexi-

ties of multi-robot coordination and human interaction. These advancements will be instrumen-

tal in enabling robots to navigate and operate effectively in a wide range of environments and

applications.

Appendix A

Ackermann steering geometry

The Ackermann steering geometry represents a specific configuration of mechanical linkages

within the steering system of an automobile or any other vehicle. Its primary purpose is to ad-

dress the challenge that arises when the wheels on the inner and outer sides of a turn must fol-

low paths with differing radii. This innovative steering arrangement can be attributed to Georg

Lankensperger, a skilled carriage builder from Munich, who first conceptualized it in 1816.

Subsequently, Rudolph Ackermann (1764±1834), Lankensperger’s representative in England,

secured a patent for this design in 1818, specifically for horse-drawn carriages. Interestingly,

there is historical speculation that Erasmus Darwin might have laid claim to an earlier version

of this steering system dating back to 1758, motivated by a personal injury resulting from a

carriage overturning. Consider a low-speed cornering manoeuvre, where all tyres are in pure

rolling condition, and there is no vehicle sliding present. As the vehicle travels along a curved

path, all four tyres follow unique trajectories around a shared turn centre, as defined by the blue

arcs, in 1. The different curvature radii mean that to avoid sliding, the steering geometry must

Figure 1: Simplified depiction of Ackermann Steering configuration.

steer the inside front tyre at a larger angle than the outside front. Ackermann Steering refers

73

74 APPENDIX A

to the geometric configuration that allows both front wheels to be steered at the appropriate

angle to avoid tyre sliding. Let’s consider the optimal configuration. Upon turning, it becomes

apparent that the inner wheel needs to pivot at a more pronounced angle compared to the outer

wheel. In the accompanying diagram, in 2:

Figure 2: Scheme of the Ackermann model

• L represents the wheelbase of the vehicle, denoting the distance between its two axles.

• T signifies the track, representing the distance between the center lines of each tire.

• R stands for the turn radius as perceived from the vehicle’s centerline.

• αi corresponds to the angle of the inner wheel relative to the straight-ahead position.

• αo represents the angle of the outer wheel relative to the straight-ahead position.

If we make certain assumptions, such as maintaining a constant speed (neglecting weight trans-

fer and external forces), disregarding body roll or suspension effects, and considering only the

front wheels for steering, we can employ basic trigonometry to determine the optimal wheel

angles:

αi = tan−1(
L

R− T
2

); (1)

αo = tan−1(
L

R + T
2

); (2)

Ackerman steering solves most of the problems of turntable steering: The space required (fore-

and-aft travel) by each wheel is significantly reduced, and the moment arm transmiting back

imperfections in the road is reduced.

Appendix B

D* Algorithm

It was originally developed by Anthony Stentz at Carnegie Mellon University. D* stands for

"Dynamic A*," and it is an improvement upon the A* algorithm, which is also used for pathfind-

ing. The key feature of D* is its ability to efficiently update the path when there are changes

in the environment or the robot’s position. It is particularly well-suited for scenarios where the

robot needs to recompute its path in real-time as new information becomes available. D* uses a

heuristic to estimate the cost of reaching the goal from a given position and iteratively updates

this estimate as it explores the map.

Basic Idea:

- The fundamental idea behind D* is to iteratively update the path as new information becomes

available or the robot’s position changes. This is in contrast to static path planning algorithms

like A* that plan a path once and assume a fixed environment. D* relies on cost maps that

represent the terrain or environment. These maps assign costs to different cells or locations in

the environment, indicating the desirability of traversing those areas. It maintains a path from

the start to the goal, which can be updated as needed. Like A*, D* uses a heuristic function

to estimate the cost from any cell to the goal. The core of the Original D* algorithm revolves

around two primary functions:

• PROCESS-STATE: This function computes the optimal path costs to reach the goal.

• MODIFY COST: It is responsible for altering the cost function of arcs, denoted as c(),

and introducing changes to states listed in the OPEN set.

These functions rely on a set of variables as follows:

• t(x): A tag variable that assumes the value NEW if state x has never appeared in the OPEN

list, OPEN if it is currently listed, and CLOSED if it has been removed from the OPEN list.

• b(x): A backpointer from state x to the next state, denoted as y.

75

76 APPENDIX B

• c(x, y): Represents the cost of traversing an arc from state y to state x. When this value is

positive, it signifies that states x and y are neighbors.

• h(x): This variable represents the path cost estimate, approximating the sum of arc costs from

state x to the goal (G).

• k(x): The key variable classifies a state x within the OPEN list as either a RAISE state, indicat-

ing information about path cost increases, or a LOWER state, indicating information about path

cost reductions. The variable kmin represents the minimum value among all k(x) values, while

kold represents the state of kmin prior to the most recent removal of a state from the OPEN list.

In the PROCESS-STATE function, the state x with the lowest k() value is removed from the

OPEN list. If x is a LOWER state i.e,(k(x) = h(x)), its path cost is optimal since h(x) is equal

to the previous kmin. Cost changes are propagated to each neighbor y that has a backpointer

to x, regardless of whether the new cost is greater or less than the old cost. These states, being

descendants of x, are influenced by any change in the path cost of x. The backpointer of y is

adjusted as necessary to establish a monotonic sequence. All neighbors receiving a new path

cost are placed in the OPEN list, allowing them to propagate cost changes to their respective

neighbors. For RAISE states, whose path cost may not be optimal, their optimal neighbors are

examined before propagating cost changes to their descendants. If x can lower the path cost of

a state that is not an immediate descendant, it is placed back on the OPEN list to prevent the

creation of closed loops in backpointers. If a suboptimal neighbor can reduce the path cost of

x, that neighbor is also placed back on the OPEN list. Consequently, the update is ’postponed’

until the neighbor attains an optimal path cost. In the MODIFY-COST function, the arc cost

function is updated with a new value. Since the path cost for state y is expected to change,

state x is placed on the OPEN list. When x is expanded via PROCESS-STATE, it computes a

new h(y) = h(x) + c(x, y) and adds y to the OPEN list. Subsequent state expansions transmit

cost changes to the descendants of y. The MAIN algorithm demonstrates the use of PROCESS-

STATE and MODIFY-COST to navigate the robot from state S through the environment to G

via an optimal route. It initializes by setting t() to NEW for all states, setting h(G) to 0, and

placing G on the OPEN list. The algorithm repeatedly calls PROCESS-STATE (line 7) until it

either finds an initial path to the robot’s states (t(S) = CLOSED) or concludes that no path exists

(val = NO-VAL and t(S) = NEW). The robot then follows the backpointers in the sequence R

until it reaches the goal or detects a discrepancy between the sensor measurement of an arc

cost s() and the stored arc cost c(), which can result from obstacles. Such discrepancies can

occur anywhere, not just within the R sequence. MODIFY-COST is utilized to rectify the arc

77

cost function c() and includes affected states in the OPEN list. The function returns GOAL-

REACHED if the goal is reached and NO-PATH if the goal is unreachable. To emphasize

the presence of two new sub-functions: LESS(a, b), which returns True if a < b and False

otherwise, and COST(x), which returns h(x) for state x. In summary, the D* algorithm is

a dynamic path planning method that allows robots to adapt their paths in real-time as they

navigate through changing environments or when their positions are uncertain. It achieves this

through iterative updates to the path and cost estimates based on updated information from the

environment.

78 APPENDIX B

Figure 3: Pseudocode of Original D* algorithm

Appendix C

Dubins curve

A Dubins curve is a path that connects two points in a two-dimensional space while respecting

certain constraints. These constraints typically include a minimum turning radius or curvature

for the path, which is particularly important in scenarios involving vehicles with limited turning

capabilities, such as cars or aircraft. There are three basic types of Dubins curves:

- LSL (Left-Straight-Left): This path starts with a left turn, followed by a straight segment, and

ends with another left turn.

- RSR (Right-Straight-Right): Similar to LSL, but it starts with a right turn, has a straight seg-

ment in the middle, and ends with a right turn.

- LSR (Left-Straight-Right): This path begins with a left turn, followed by a straight segment,

and ends with a right turn.

Dubins curves are commonly used in robotics and autonomous vehicle navigation to find the

shortest path between two points while adhering to the vehicle’s constraints. They have appli-

cations in various fields, including aerial vehicle flight planning, ground vehicle path planning,

and even in modeling the motion of biological organisms. The simplicity and optimality of

Dubins curves make them a valuable tool in motion planning, especially when it’s important to

minimize travel distance and obey specific constraints. It was demonstrated that when consider-

ing the Dubins car, the shortest path between any two configurations can always be expressed as

a combination of at most three basic motion primitives. Each of these motion primitives enacts

a constant action over a specific period of time. Furthermore, to traverse these shortest paths,

only three distinct actions are required, represented as u ∈ −1, 0, 1.

79

80 APPENDIX C

The primitives and their corresponding symbols are visually depicted below.

Symbol Steering: u

S 0

L 1

R -1
Specifically, the S primitive propels the car straight ahead, while theL andR primitives execute

the sharpest possible left and right turns, respectively. Utilizing these symbols, any conceivable

Figure 4: Main types of Dubins’ paths

shortest path can be denoted as a sequence of three symbols, signifying the order in which

these primitives are applied. Such a sequence is referred to as a "word." It’s important to note

that consecutive primitives of the same type can be merged into a single primitive, making two

consecutive primitives of the same type unnecessary. Given this insight, there are ten potential

words of length three. However, Dubins’ analysis revealed that only the following six words

are potentially optimal:

LRL,RLR,LSL, LSR,RSL,RSR (3)

The shortest path between any two configurations can always be characterized by one of these

words. These are called the Dubins curves. o provide a more precise description. It’s essential

81

to specify the duration of each primitive. For the L or R primitives, we can use subscripts to

indicate the total amount of rotation accumulated during their application. Similarly, for the S

primitive, a subscript can denote the total distance traveled. With these subscripts, we can more

accurately characterize Dubins curves as:

Lα, Rβ, Lγ, ;Rα, Lβ, Rγ, ;Rα, Sd, Lγ, ;Rα, Sd, Rγ (4)

where α and γ are constrained to the interval [0, 2π), β falls within the range (π, 2π), and d is

greater than or equal to zero. It is crucial noting that β must be greater than π (if it is less, then

some other word becomes the optimal choice). To enhance clarity and group together quali-

tatively similar paths, a compressed form of these words can be introduced, which will prove

especially valuable when discussing Reeds-Shepp curves, as there are 46 of them, compared to

the 6 Dubins curves. Let’s denote a symbol as C, representing eitherR or L. Using this symbol,

the six words used before can be compressed into just two base words:

CCC,CSC (5)

In this compressed form, it’s important to remember that two consecutive Cs must always be

filled in by distinct turns (RR and LL are not allowed as subsequences). In this compressed

notation, the base words can be precisely specified as:

Cα, Cβ, Cγ, ;Cα, Sd, Cγ (6)

with α and γ confined to the interval [0, 2π), β in the range (π, 2π), and d greater than or equal

to zero.

Bibliography

[1] Webster, J.G., Huang, S. and Dissanayake, G. (2016). Robot Localization: An Introduction.

In Wiley Encyclopedia of Electrical and Electronics Engineering, J.G. Webster (Ed.).

[2] Wallace Pereira Neves dos Reis, Guilherme José da Silva, Orides Morandin Junior, et al.

(2021). Extended Analysis on Tuning The Parameters of Adaptive Monte Carlo Localization

ROS Package in an Automated Guided Vehicle. Preprint Version 1. Available at Research

Square.

[3] C. Roesmann, W. Feiten, T. Woesch, F. Hoffmann, and T. Bertram (2012). Trajectory Mod-

ification Considering Dynamic Constraints of Autonomous Robots. In ROBOTIK 2012; 7th

German Conference on Robotics, Munich, Germany, 2012.

[4] K. Kurzer, (2016)Path Planning in Unstructured Environments: A Real-time Hybrid A*

Implementation for Fast and Deterministic Path Generation for the KTH Research Concept

Vehicle. Retrieved from https://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-198534

[5] Portugal, David; Araújo, André; and Couceiro, Micael (2021). Improving the Robustness

of a Service Robot for Continuous Indoor Monitoring: An Incremental Approach. From

International Journal of Advanced Robotic Systems.

[6] Introduction to Mobile Robotics. Slides adopted from: Wolfram Burgard, Cyrill Stachniss,

Maren Bennewitz, Kai Arras, and Probabilistic Robotics Book.

[7] Probabilistic Robotics. Probabilistic Motion and Sensor Models. Slides adopted from: Wol-

fram Burgard, Cyrill Stachniss, Maren Bennewitz, Kai Arras, and Probabilistic Robotics

Book.

[8] Zammit, Christian; van Kampen, Erik-Jan (2018). Delft University of Technology. Com-

parison between A* and RRT Algorithms for UAV Path Planning. Zammit, Christian; van

Kampen, Erik-Jan. Published in Proceedings of the 2018 AIAA Guidance, Navigation, and

Control Conference.

83

84 BIBLIOGRAPHY

[9] Anthony (Tony) Stentz. (1995). The Focused D* Algorithm for Real-Time Replanning. In

Proceedings of 14th International Joint Conference on Artificial Intelligence (IJCAI ’95),

pp. 1652±1659.

[10] Lu, J.; , Y.; , Q.; Liu, Y.; Lu, J. (2023). Jump Point Search Algorithm. Encyclopedia.

Available online: https://encyclopedia.pub/entry/24246

[11] Dolgov, D.; Thrun, S.; Montemerlo, M.; Diebel, J. (2010). Path Planning for Autonomous

Vehicles in Unknown Semi-structured Environments. The International Journal of Robotics

Research.

[12] David Ferguson and Anthony (Tony) Stentz. (2005). Field D*: An Interpolation-based

Path Planner and Replanner. In Proceedings of 12th International Symposium on Robotics

Research (ISRR ’05) pp. 239±253.

[13] Karaman, S.; Frazzoli, E. (2011). Sampling-based Algorithms for Optimal Motion Plan-

ning. The International Journal of Robotics Research.

[14] Robotic Systems (draft) of Kris Hauser notes from courses at Indiana University, Duke

University, and University of Illinois at Urbana-Champaign, Section III. MOTION PLAN-

NING.

[15] Janko Petereit, Thomas Emter, Christian W. Frey. Application of Hybrid A* to an Au-

tonomous Mobile Robot for Path Planning in Unstructured Outdoor Environments. Fraun-

hofer Institute of Optronics, System Technologies and Image Exploitation IOSB, Karlsruhe,

Germany;

[16] Gao, Xuheng; Luan, Hao; Xia, Bingyi; Zhao, Ziqi; Wang, Jiankun; Meng, Max Q.-H.

(2023). A Divide-and-Conquer Control Strategy with Decentralized Control Barrier Func-

tion for Luggage Trolley Transportation by Collaborative Robots. Robotica, 1±16.

[17] Dang, C.V.; Ahn, H.; Lee, D.S.; Lee, S.C. (2022). Improved Analytic Expansions in Hybrid

A-Star Path Planning for Non-Holonomic Robots. Appl. Sci..

[18] Kevin M. Lynch and Frank C. Park. (2017). Modern Robotics: Mechanics, Planning, and

Control.

[19] Meng, T., Yang, T., Huang, J., et al. (2023). Improved Hybrid A-Star Algorithm for Path

Planning in Autonomous Parking System Based on Multi-Stage Dynamic Optimization. Int.

J. Automot. Technol.

BIBLIOGRAPHY 85

[20] Christoph Rösmann, Frank Hoffmann, Torsten Bertram. (2017). Integrated Online

Trajectory Planning and Optimization in Distinctive Topologies. Robotics and Au-

tonomous Systems, [Online]. Available: https://www.sciencedirect.com/science/article/pii/

S0921889016300495

[21] ROS (Robot Operating System) https://www.ros.org/

[22] Jonathan D. Gammell, Siddhartha Srinivasa, and Timothy D. Barfoot. (2014) Informed

RRT*: Optimal Incremental Path Planning Focused through an Admissible Ellipsoidal

Heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent

Robots and Systems (IROS)

[23] Robin R. Murphy. (2000). Introduction to AI Robotics. A Bradford Book, The MIT Press,

Cambridge, Massachusetts, London, England.

[24] Roland Siegwart, Illah R. Nourbakhsh, and Davide Scaramuzza. (2004). Introduction to

Autonomous Mobile Robots, second edition. The MIT Press, Cambridge, Massachusetts,

London, England.

[25] Howie Choset, Kevin M. Lynch, Seth Hutchinson, George A. Kantor, Wolfram Burgard,

Lydia E. Kavraki, and Sebastian Thrun. (2005). Principles of Robot Motion: Theory, Algo-

rithms, and Implementations. The MIT Press.

[26] D. Fox, W. Burgard, and S. Thrun, (1997) The Dynamic Window Approach to Collision

Avoidance in IEEE Robotics & Automation Magazine, vol. 4, no. 1, pp. 23-33.

[27] H. Quang, T. Manh, C. Manh, P. Tin, M. Van, N. Tien Kiem, and D. Nguyen Duc, An

Approach to Design Navigation System for Omnidirectional Mobile Robot Based on ROS,

International Journal of Mechanical Engineering and Robotics Research, pp. 1502-1508

[28] Bartøomiej Cybulski, A. Wegierska, Grzegorz Granosik ,(2019) Accuracy Comparison of

Navigation Local Planners on ROS-based Mobile Robot Conference: 2019 12th Interna-

tional Workshop on Robot Motion and Control

[29] Xuexi Zhang, Jiajun Lai, Dongliang Xu, Huaijun Li, and Minyue Fu, (2020), 2D Lidar-

Based SLAM and Path Planning for Indoor Rescue Using Mobile Robots

[30] Y. Abdelrasoul, A. B. S. H. Saman, P. Sebastian, (2016), A quantitative study of tuning

ROS gmapping parameters and their effect on performing indoor 2D SLAM 2nd IEEE In-

ternational Symposium on Robotics and Manufacturing Automation (ROMA).

86 BIBLIOGRAPHY

[31] Kaiyu Zheng, (2016), ROS Navigation Tuning Guide.

[32] Looi, C. Z., Ng, D. W. K. (2021). A Study on the Effect of Parameters for ROS Motion

Planner and Navigation System for Indoor Robot. International Journal of Electrical and

Computer Engineering Research

[33] Pablo Marín, Ahmed Hussein, David Martín Gómez, Arturo de la Escalera. Journal of

Advanced Transportation, (2018), Global and Local Path Planning Study in a ROS-Based

Research Platform for Autonomous Vehicles. Pages 1-10.

	Ringraziamenti
	Introduction
	Problem context
	Content of the thesis

	Literature review
	Wheeled Robots
	Kinematic constraints

	Configuration space
	Path planning algorithms
	Graph-based algorithms
	Sampling-based algorithms

	Path Planning Using ROS
	ROS architecture overview
	Configuration of the robot and setup
	Navigation stack
	Localization
	Navigation
	Global planner
	Local planner

	Limitations of current approach

	Hybrid A* Algorithm
	Overview and Algorithmic Description
	Hybrid A* search
	Reeds-Shepp curves
	Heuristics
	Path smoothing

	Applications and Case Studies
	Autonomous Navigation in Unstructured Environments
	Off-Road Autonomous Vehicles
	Indoor Environments

	Safety and efficiency
	Multi-robot system

	Challenges and Future Directions
	Limitations of the Hybrid A* Algorithm
	Future Research Opportunities

	Appendix A
	Appendix B
	Appendix C

