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Abstract 

 
The pathophysiology of the type 2 diabetes (T2D) consists in a malfunctioning of the feedback loops 
between insulin secretion (β-cell disfunction) and/or insulin action (insulin resistance state) leading 
to an abnormally high blood glucose level. With the progression of the disease (advance stage T2D), 
subjects may need exogenous insulin to control their glycaemia, using fast acting insulins during 
meals and/or long-acting insulins, to control fasting (pre-breakfast) and postprandial glucose 
concentration. The current procedure to determine the optimal basal insulin dose in subjects who have 
never previously used insulin to treat diabetes (insulin-naïve) consists in a non-personalized titration 
rule. According to ADA guidelines, subjects must start the titration with a low insulin dose that is 
progressively adjusted, following predefined increments/decrements, based only on self-monitoring 
blood glucose (SMBG) pre-breakfast measurements to reach a target fasting glucose level (FPG). The 
aim of this thesis is to develop a more personalized basal insulin titration rule based on subjects’ 
specific insulin needs, continuous glucose monitoring (CGM) and common CGM metrics used by 
clinician to assess the quality of glucose control i.e., time above range (TAR), time in range (TIR), 
and time below range (TBR). We used a dataset consisting of 300 in silico subjects who underwent 
a literature titration rule (DUAL I). Subjects were then classified as high insulin needs (HIN) and low 
insulin needs (LIN), based on their final insulin dose, using a literature logistic regression model. The 
classified HIN subjects underwent four new algorithms and their GCM time metrics were compared 
with the ones obtained using DUAL I. Among the new tested algorithm, the best one, which is 
selected in terms of higher correlation with DUAL I final insulin dose (ρ=0.82, p-value<10-8), showed 
a statistically and clinically significant increase of TIR, as well as a significant decrease of TAR 
accompanied by a significant reduction in the FPG. The main drawback was a statistically significant 
increase in the TBR until the third month, anyway after this period this difference was not significant 
anymore.  
Despite the overall good results achieved, improvements could be made in the future, looking if other 
trends can add significant features which improve the decision process, but also making studies on 
how to tune the aggressiveness of the algorithms object of this thesis.  
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CHAPTER 1 

INTRODUCTION 
 
 
Here, the type 2 diabetes (T2D), its epidemiology and pathophysiology are described, with particular 
focus on 𝛽-cell disfunction and insulin resistance state (IR), followed by a representation on the 
current therapy, i.e. self-monitoring blood glucose (SBMG) and basal insulin titration for the long-
acting insulin. 
After that, the continuous glucose monitoring (CGM) approach is presented, as part of the minimally 
invasive (MI) technologies, as a much more effective method for evaluating subjects’ glycemic 
variations.  
 

1.1 Type 2 diabetes  
 

The prevalence of type 2 diabetes (T2D) is globally  rising1. In 2017 approximately 462 million 
individuals were affected by type 2 diabetes corresponding to 6.28% of the world’s population (4.4% 
of those aged 15-49 years, 15% of those aged 50-69 years, and 22% of those aged >70 years), or a 
prevalence rate of 6059 cases per 100.000. The burden is rising at a much faster rate in developed 
regions, such as Western Europe, and is projected to be 7079 individuals per 100.000 by 2030, 
reflecting a generalized worldwide rise. However, the incidence and prevalence of T2D varies 
depending on ethnicity and geographical region. T2D risk factor include a complex combination of 
genetic, metabolic, and environmental factors that interact with one another2. Despite the fact that 
genetic predisposition plays an important part in the risk of developing T2D, obesity (body-mass 
index [BMI]≥30 kg/m2) is the strongest risk factor for T2D2,3, followed by a sedentary lifestyle2.  
The pathophysiology of the T2D regards a malfunctioning of the feedback loops between insulin 
action and insulin secretion bringing to an abnormally high glucose level in blood. In figure 1.1, it is 
reported a schematic version of the consequence of 𝛽-cell disfunction, for which insulin secretion is 
reduced undermining the ability of glucose cell uptake, and insulin resistance (IR) which contributes 
to an increased glucose production in the liver and decreased glucose uptake in the muscle, liver, and 
adipose tissues. Even if both processes play a crucial role in the development of the disease 𝛽-cell 
disfunction is usually more severe than IR2. 
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Figure 1.1. Figure from Riddy, D. et.al. Pharmacol. Rev. (2018). Pathophysiolology of T2DM. 𝛽-cell dysfunction occurs following an 

increased FFA levels, obesity, insulin resistance, and inflammation. Initially, the  𝛽 -cell compensates by increasing the release of 

insulin; however, over time, this compensatory mechanism fails and reduction in  𝛽-cell mass is evident. The loss of 𝛽-cell mass occurs 

from cellular degranulation, resulting in an increase in glucagon secretion from α-cells and a decrease in insulin secretion. The reduced 

plasma insulin results in an increase in glucose levels. Glucose-sensitive tissues, including skeletal muscle and adipocytes, are unable 

to accommodate the increased glucose concentration. Increased fat accumulation in adipocytes also leads to an increase in 

proinflammatory cytokine release and increased lipolysis. A further release of FFAs stimulates the liver to increase glucose production. 

Persistent glucose release preserves the hyperglycemic environment, leading ultimately to T2DM.4 

 

Moreover, In Figure 1.2 an example on how hyperglycemia could lead to cardiovascular disease 
(CVD) is shown.  
 

 

Figure 1.2. Factors implicated in CVD from T2D and the interactions between them. The flowchart illustrates the multiple 

interactions among the implicated factors2. 
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1.2 Current diabetes therapy  
 

The first intervention in T2D subjects is the non-pharmacological therapy, in fact since the 
accumulation of adipose tissue in the abdominal region is associated to an increased IR, reducing the 
bodyweight is a powerful method for increasing the insulin sensitivity5, also coupled with a regular 
physical activity6. Despite the behavioral and diet changes in the majority of the cases the 
pharmacological treatment is required, and in this field metformin is one of the most used drug, often 
coupled with exogenous insulin6.  In particular, T2D subject can use fast-acting and long-acting 
insulin (mainly distinguished based on how quickly they work, when they peak and how long their 
action lasts) for rebuilt a proper insulinization and so to reconstruct a physiologic glycemic profile. 
Exogenous administered insulin can be characterized by considering the onset, i.e. the time before 
the insulin enters the bloodstream and starts to lower blood glucose, the peak time i.e. the time at 
which the lowering blood glucose power is maximum, and the duration i.e. how long insulin continues 
to lowering glucose concentration.7 
In particular: 

• Rapid-acting insulins effects start 15 minutes after injection, peak in about one or two hours 
after the injection, and last between two to four hours. 

• Regular or short-acting insulins usually appear in the bloodstream about 30 minutes after the 
injection, peak from two to three hours after the injection, and their effects last from three to 
six hours.  

• Long-acting insulins generally reach the bloodstream several hours after the injection, and 
lower glucose levels up to 24 hours.  

• Ultra-long acting insulins  reach the bloodstream in six hours, does not peak, and lasts about 
36 hours or longer 7.  

 
The administration of fast acting insulin few minutes before the meal determines a more effective 
suppression of endogenous glucose production, with a reduced raising of the glycemia coupled to a 
lower risk of late hypoglycemia8. Generally, the fast-acting insulin bolus is predetermined based on 
the meal amount and the target glucose value (Insulin-to- Carb Ratio, CR, and Insulin Correction 
Factor, CF).  
On the other hand, basal insulins are mainly used to maintain pre-breakfast (FPG) and between meals 
glucose concentration in a target range. However, current procedures to determine the optimal basal 
insulin dose in subject who have never used insulin before to treat T2D (insulin-naïve) consist in a 
non-personalized titration rule. In this thesis we always use insulin IDeg to compare the different 
titration rules developed. Therefore, hereafter a brief description of the Ideg molecule and the 
standard titration rule (DUAL I) are reported. 
Insulin Ideg is an ultra-long acting insulin with an half-life of more than 24 hours and a duration of 
more than 42 hours9. It is fundamental to find a personalized dose of long-acting insulin which brings 
a rebuilt of the subject basal insulinization6, thus a better regulation of the hepatic glucose production 
is achieved during the night and a more effective achievement of fast euglycemia. 
In DUALI I trial10 Ideg insulin was administered and it is proven that it allows a similar control to 
glargine (another basal insulin) but with lower nocturnal hypoglycemia rates11. To determine the 
optimal basal insulin dose a titration process is needed, working out the right amount of insulin can 
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often be a difficult task, because the optimal dose, which is not a priori known, depends on a variety 
of factor. However, for people starting insulin treatment (i.e. insulin-naïve) the American Diabetes 
Association (ADA) recommends the initiation of basal insulin at 10 U/day which is then adjusted in 
the following month for matching a specific FPG target 12. 
However, the current basal-titration procedure comes with different limitations. First, since it 
considers just a single value of the daily glycemia (FPG) through self-monitoring blood glucose 
(SMBG), the titration process typically takes up to one year for providing the final basal-insulin dose 
to the patient, without considering the glucose time course during the rest of the day. Furthermore, 
during the titration process the dose administered to the patient is not necessarily the optimal one, 
hence, the subject is exposed to hyper- and/or hypoglycemia, which in general could lead to a 
different set of related complications2.Last, in DUAL I the dose is adapted by increasing/reducing it 
weekly or twice per week based on predetermined values (more details are provided in Section 2.5.1). 
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1.3 Minimally invasive glucose measurements 
 

Several techniques to measure glucose concentration are reported in Figure (1.3). Among these, self-
monitoring blood glucose (SMBG) are based on a finger-prick test. Its effectiveness depends on 
different factors, additionally it is not a continuous monitoring process and it requires multiple testing 
to correct manage meals or physical exercise. Moreover, a non-continuous approach can miss periods 
of hyper- or hypoglycemia13.  A possible solution to the above-mentioned problems comes from 
wearable biosensors, which have the potential to provide continuous, real-time physiological 
information provided by dynamic, noninvasive measurement of biochemical markers in biofluids. 
Starting from the 1980s scientist developed new classes of glucose sensors known as enzyme-free or 
third and fourth generation glucose sensors14. Continuous techniques for glucose monitoring belong 
to fifth generation glucose sensors.    
Part of this process are minimally invasive (MI) technologies which rely on the extraction of different 
fluid from the body (i.e., tears, saliva, sweat and interstitial fluid) to measure glucose concentration 
through an enzymatic approach that correlate with BG, which is evaluated directly by invasive 
monitoring15. Continuous glucose monitoring (CGM) is an integral part of MI technologies and hence 
of wearable sensors, despite its usage in real clinical practice remains relatively low16, CGM metrics 
can be extracted. They provide more complete information on the glycemia status of the subject to 
the respect of the SMBG.  
 

 

Figure 1.3. Overview of the numerous approaches for measuring glucose17. 
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Despite SMBG may help T2D subjects which are treated with insulin, an important role is played by 
the CGM, which can be used for assessing the safety and also the inter-variability in the therapy 
response, especially for those on intensive insulin regimens18.  
Overall, it is clear that CGM could lead to significant clinical benefits16 for T2D subjects 
independently from the insulin delivery method. CGM recordings allows for direct observation of 
glycemic excursion and daily profile (unlike SBMG, and Hba1c measurements), that could inform 
about treatment effectiveness and possible lifestyle changes which must be done by the user18. 
Moreover, this signal allows to infer better quality information on glucose variability and on hypo- 
and hyperglycemia pattern16. However, potential drawbacks include the need to be actively used to 
be effective, and it could have accuracy limitation, especially with delay in recording BG changes in 
dynamic situation18. 
On the other hand, effective use of CGM metrics requires a correct interpretation of user data by 
medical doctors and this requires: common metrics assessment of CGM glycemic status, graphical 
visualization of the glucose data and CGM daily profile and clear clinical target.16 Table 1.1 shows 
10 metrics which may be most useful in clinical practice. 
 
CGM metrics   

1. Number of days CGM worn (recommend 14 days)  

2. Percentage of time CGM is active (recommend 70% of data from 14 days) (41,42)  

3. Mean glucose  

4. Glucose management indicator (GMI)  

5. Glycemic variability (%CV) target #36%  

6. Time above range (TAR): % of readings and time .250 mg/dL (.13.9 mmol/L) Level 2 
7. Time above range (TAR): % of readings and time 181–250 mg/dL (10.1–13.9 mmol/L) Level 1 
8. Time in range (TIR): % of readings and time 70–180 mg/dL (3.9–10.0 mmol/L) In range  
9. Time below range (TBR): % of readings and time 54–69 mg/dL (3.0–3.8 mmol/L) Level 1 

10. Time below range (TBR): % of readings and time ,54 mg/dL (,3.0 mmol/L) Level 2 
Table .1.1 Standardized CGM metrics for clinical care: 201916 

Moreover, is also fundamental to adapt target percentages to special diabetes populations (e.g., 
pregnancy, high-risk) for providing a safer and more effective therapeutic decision making16.  
The metric defined included three CGM measurement: 

• Time in range (TIR), percentage of readings and time within target glucose range. 

• Time below range (TBR), time below target glucose range.  

• Time above range (TAR), time above target glucose range. 
Additionally, the consensus was reached on glycemic cut point for defining the TIR for T2D subject, 
70-180 mg/dL or [3.9-10.0 mmol/L], along with the definition of cut points in the amount of time 
that T2D subject should eventually spend in each glycemic range. The percentage of time per day 
that should be strived by the patients are showed in table 1.2. 
It would be important to prove that the time metrics of the CGM could predict clinical outcomes, so 
longer-term studies should be conducted in order to understand how the time spent in the different 
glycemic range correlates to diabetes complications. However different studies show the inverse 
correlation between TIR and the development of diabetes complications19,20 as well its relationship 
with Hba1c21,22.   
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1.4 Aim  
 

The purpose of this thesis is to make evident the already discussed limitations of the current basal-
insulin titration. In fact, today one of the most used surrogate markers is the glycated hemoglobin 
(HbA1c) used for recognizing T2D subjects who can develop long-term diabetes complications. 
HbA1c reflects the average glucose over the last 2-3 months, furthermore it is an indirect measure of 
the average glycemia and, as such, it has some limitations. Moreover, the HbA1c is correlated to 
frequent SMBG23, however this technique is invasive, unpleasant, and painful. Additionally, as 
previously mentioned this will not provide a continuous monitoring process, instead will require 
multiple daily testing in order to manage high glucose level15.  
As a result, the main goal of this work was to develop a new basal insulin titration rule based on more 
complete and extensive information, such the CGM signal, which as the SBMG is correlated to  
HbA1c levels23. From the CGM signal, to finetune the decision process, different time metrics are 
computed, such as a metric that indicates the time spent in range (TIR), one that indicates the amount 
of time above the target range (TAR) and metrics that describe the time spent below the target range 
(TBR); further details are provided in the section 1.3. Furthermore, by having more powerful 
information, the rationale is also to make a quicker titration process in those subjects that require, a 
higher insulin dose due to their characteristics. 
 

 

  

 TIR  TBR  TAR 
Diabetes group % of readings; 

time per day 
 
Target range 

 % of readings; 
time per day 

 
Below target level 

 % of readings; 
time per day 

 
Above target level 

Type 2  >70% 
>16 h, 48 min 

70-180 mg/dl 
(3.9-10.0 mmol/L) 

 <4%; 
<1 h 
<1%; 
<15min 

<70 mg/dL 
(3.9 mmol/L) 
<54 mg/dL 
(<3.0 mmol/L) 

 <25% 
<6h 
<5%; 
<1 h, 12min 

>180 mg/dL 
(>10.0 mmol/L) 
250 mg/dL 
(>13.9 mmol/L) 

Older/high-risk 
type 2 

>50% 
>12 

70-180 mg/dL 
(3.9-10 mmol/L) 

 <1%; 
<15 min 

<70 mg/dL 
(<3.9 mmol/L) 

 <10%; 
<2h, 24min 

>250 mg/dl 
(13.9 mmol/L) 

Table 1.2. Guidance on target assessment of glycemic control for adults with type 2 diabetes and older/high-risk 

individuals16 
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1.5 Thesis Content  
 

In the Methods section, it is briefly described the database and the T2D simulator and how the IDeg 
kinetics equations are integrated within the simulator. Following, a nod is done on the in-silico 
cloning of virtual populations. Then, a classifier is presented, which is used for discriminating 
between HIN and LIN. Subsequently, the state of the art of basal titration rule is outlined (i.e., DUAL 
I), then a detailed description of the common features of the new algorithms is reported and followed 
by the description of each version of the algorithm, characterized by one or more new features that 
improves their decision-making process. Finally, the best one is selected, and its Results are showed 
and commented in the Discussion, where the limitations of the method are also presented. The last 
part of the Discussion also includes the possible future improvements.   
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CHAPTER 2  

METHODS 
 

In this section of the thesis the method part is described. Firstly, it is presented a description of 
population used for carrying out the simulation. Then, the type 2 diabetes simulator (T2DS) is 
described. In particular, the system identification and the equations describing the glucose and insulin 
kinetics are outlined. Moreover, since the purpose of this work regards the basal insulin titration, the 
integration of the IDeg insulin equations is proposed to the reader.  
Then, a nod is done to the in-silico cloning of the population, which is a fundamental part of the in-
silico trial. Then, a machine learning approach used to classify subjects based on their insulin need, 
is presented. In fact, it makes sense to use more aggressive titration rule in those subjects who need  
higher doses (HIN) and be more cautious with those who need lower doses (LIN), but, this 
information is not known a priori, and for this reason a classifier which discriminates between HIN 
and LIN is needed.  
Then, a brief description of the IDeg titration rules setup implemented in the T2DS is presented 
followed by the state-of-the-art titration-rule (DUAL I). Hence, the new algorithms are described, 
starting with the common parts containing filtering and feature extraction performed on the CGM 
signal and finally, each of the four versions of the algorithm is described in detail.  
 

2.1 Database 
 

The database used in this study consisted in an in-silico population (N=300), obtained using the 
method reported in 24 (described in detailed in section 2.3) to match the population described in25. 
Holst et.al.25 study involved a cohort of 260 patients from the DUALI trial (122 female, Age = 55±9 
years, BMI = 32.4±4.5 kg/m2) which was used to tune the T2Ds to an insulin-naïve type  2 diabetes 
(T2D) population. Subjects was randomized in three treatment arms, IDegLira, IDeg or Liraglutide, 
and two standardized meal test was administered: before (visit 1) and at the end of a 26-week period 
in which once-daily treatment was given (visit 2); in each visit subject consumed a single, 
standardized, liquid meal containing ~96 g of carbohydrates. The concentration of plasma glucose, 
insulin and C-peptide were measured at different time instants. In Table 2.1, the population baseline 
characteristics are reported. Moreover, the simulated response of the above-mentioned population (N 
= 300) is represented below in Fig. 2.1. 
 
 
 

Population Characteristics (N = 300) Mean ± SD 

BMI (kg/m2) 31±4.6 

Basal glucose (mg/dl) 167±24.84 
Basal Insulin (pmol/L) 72±32.38 

Basal C-peptide (pmol/L) 952±300.31 
#Male 103 

#Female 197 
Table 2.1 Population baseline characteristics reported as mean±SD. 
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Figure 2.1. Simulated mean±SD (black line and gray areas) glucose (left), insulin (center) and c-peptide (right) 

concentrations of the population (N = 300) in response to the administration of a meal containing ~75 g of carbohydrates. 
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2.2 T2D Simulator 
  

In silico trials, also known as virtual clinical trials, are customized and individualized computer 
simulations that are used to assess a medical product, device, or intervention offering significant 
advantages over current in vivo animal clinical trials. 
Thus, in silico trials are a fundamental part of the 3 Rs approach (Replacement, Reduction, and 
Refinement) which go for a more respectful use of laboratory animals27.  
The T2Ds is a milestone in this field since it allows to simulate the glucose-insulin dynamics in  T2D 
subject using a meal simulation model of glucose, insulin and C-peptide made of 15 differential 
equations and 39 parameter which was identified in Visentin et al.28 using a system decomposition 
and forcing function Bayesian strategy on data of 51 T2D subject.  
The model showed in the fig. 2.2 represent the transit of the glucose through the gastrointestinal tract, 
how the action of insulin influence the glucose utilization and its endogenous production, as well as 
the control applied by the glucose on the insulin secretion28. The model derives from that proposed 
by Dalla Man et al. 29  
 
 

 

Figure 2.2 Figure from Visentin R., et.al. Diabetes Technol. (2020). Scheme of the T2D simulation model. Continuous lines 

indicate metabolic fluxes, while dashed lines represent control actions28. 

 
Like in the original model the glucose subsystem is described by a 2-compartment model: the first 
one indicates the glucose mass in plasma and rapidly equilibrating tissues 𝐺𝑝  (mg/kg), the second 

compartment indicates the glucose mass in the slowly equilibrating tissues 𝐺𝑡 (mg/kg), lastly the 
glucose plasma 𝐺 (mg/dl) is considered as the output of this model (fig. 6). The model Equation are 
shown in (2.1) below. 
The suffix 𝑏 denotes a basal state; the 𝐸𝐺𝑃 is the glucose endogenous production (mg/kg/min); 𝑅𝑎 
is the glucose rate of appearance in plasma (mg/kg/min); 𝐸 is the renal excretion (mg/kg/min); 𝑈𝑖𝑖 
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and 𝑈𝑖𝑑  are the insulin-independent and -dependent glucose utilizations respectively (mg/kg/min); 𝑉𝐺 

is the distribution volume of the glucose (dl/kg); 𝑘1 and 𝑘2 (min-1) are the rate parameters. 
 
 

{  
  𝐺̇𝑝(𝑡) = 𝐸𝐺𝑃(𝑡) + 𝑅𝑎(𝑡) − 𝑈𝑖𝑖 − 𝐸(𝑡) − 𝑘1 ∙ 𝐺𝑝(𝑡) + 𝑘2 ∙ 𝐺𝑡(𝑡)    𝐺𝑝(0) = 𝐺𝑝𝑏𝐺̇𝑡(𝑡) =  −𝑈𝑖𝑑(𝑡) + 𝑘1 ∙ 𝐺𝑝(𝑡) − 𝑘2 ∙ 𝐺𝑡(𝑡)                                            𝐺𝑡(0) = 𝐺𝑡𝑏 𝐺(𝑡) = 𝐺𝑝𝑉𝐺                                                                                                       𝐺(0) = 𝐺𝑏        
 

 
 
 
(2.1) 

 
 
 

 

 

Figure 2.3. compartmental model used by Dalla Man et al.29  for describing the glucose PK. 

 
Furthermore, Dalla Man et. al29 described the insulin kinetics using a two-compartmental model 
which is shown in fig. 2.4, where 𝐼𝑝 (pmol/kg) is the insulin mass in the plasma and 𝐼𝑙  (pmol/kg) is 

the insulin mass in the liver; 𝐼 (pmol/L) is the plasma insulin concentration, and the suffix 𝑏 stands 
for basal;  𝑆 is the insulin secretion (pmol/kg/min); 𝑉𝐼 is the distribution volume of the insulin (l/kg), 
and 𝑚1, 𝑚2 and 𝑚4 are rate parameters (min-1). The equations are showed in (2.2) below.  
 
 

{  
       𝐼𝐿̇(𝑡) =  −(𝑚1 +𝑚3(𝑡)) ∙ 𝐼𝐿(𝑡) + 𝑚2𝐼𝑝(𝑡) + 𝑆(𝑡)𝐵𝑊           𝐼𝐿(0) = 𝐼𝐿𝑏𝐼𝑝̇(𝑡) =  −(𝑚2 +𝑚4) ∙ 𝐼𝑝(𝑡) + 𝑚1𝐼𝐿(𝑡)                              𝐼𝑃(0) = 𝐼𝑝𝑏  𝐼(𝑡) = 𝐼𝑝(𝑡)𝑉𝐿                                                                                                         

 

(2.2) 

 

 

Figure 2.4. compartmental model used by Dalla Man et al.29 for describing the insulin kinetic. 
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Where 𝐵𝑊 is the individual bodyweight (kg). In this model 𝑚1, 𝑚4 are the rate parameters to be 
estimated, 𝑚2 is fixed to 0.268 min-1 and  𝑚3 (min-1) is a time-varying parameter which, according 
to Dalla Man et al.29: 
 
 𝑚3(𝑡) = 𝐻𝐸(𝑡) ∙ 𝑚11 − 𝐻𝐸(𝑡)  

 
(2.3) 

 𝐻𝐸 is the hepatic insulin excretion, In the basal state:  
 
 𝐼𝑝𝑏 = 𝐼𝑏  (2.4) 

 
 𝐼𝐿𝑏 = 𝑚2 ∙ 𝐼𝑝𝑏 + 𝑆𝑏/(𝐵𝑊)𝑚1 +𝑚3(0)  

 
(2.5) 

 
Where: 
 
 𝑚3(0) = 𝐻𝐸𝑏 ∙ 𝑚11 − 𝐻𝐸𝑏  

 
(2.6) 

 
Moreover, is possible to obtain the basal and the total index of the hepatic insulin excretion:  
 
 𝐻𝐸𝑏 = 𝑆𝑏𝐵𝑊 −𝑚4 ∙ 𝐼𝑝𝑏𝑆𝑏𝐵𝑊 +𝑚2 ∙ 𝐼𝑝𝑏  

 
(2.7) 

 
 𝐻𝐸𝑡𝑜𝑡 = ∫ 𝑚3(𝑡) 𝑑𝑡𝑇0∫ (𝑚3(𝑡) + 𝑚1) 𝑑𝑡𝑇0  

 
(2.8) 

 

In the model also the hepatic sensitivity so insulin is considered: 
 
 𝑆𝐼𝐻𝐸 = −𝜕𝐻𝐸(𝑡)𝜕𝐼 |𝑠𝑠 = 𝑎𝐼  

(2.9) 

 

Where, the subscript 𝑠𝑠 indicates the steady state.  
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However, for describing the PK of the insulin in 28 they used a three- compartment model to represent 
the PK in the liver, in the plasma and in the extravascular space30:  
 
 

{  
  𝐼𝐿̇(𝑡) = −(𝑚1 +𝑚3(𝑡)) ∙ 𝐼𝐿(𝑡) + 𝑚2𝐼𝑃(𝑡) + 𝑆(𝑡)𝐵𝑊 ∙ 𝑉𝑃             𝐼𝐿(0) = 𝐼𝐿𝑏𝐼𝑃̇(𝑡) = −(𝑚2 +𝑚4 +𝑚5) ∙ 𝐼𝑃(𝑡) +𝑚1𝐼𝐿(𝑡) +𝑚6𝐼𝐸𝑉(𝑡)     𝐼𝑃(0) = 𝐼𝑃𝑏𝐼𝐸̇𝑉(𝑡) = 𝑚5𝐼𝑃(𝑡) − 𝑚6𝐼𝐸𝑉(𝑡)                                                   𝐼𝐸𝑉(0) = 𝐼𝐸𝑉𝑏  𝐼(𝑡) = 𝐼𝑃(𝑡)                                                                                                             

 

 
 
(2.10) 

 

 

In the (2.11), in which the only quantities that are not already defined for the (2.2) are 𝑚5, 𝑚6 which 
are rates parameters (min-1), and 𝐼𝐸𝑉 is the insulin mass in the extra-vascular space. 
  
Moreover, a model composed by two compartment is used for describing the kinetic of the C-
peptide31: 
 
 {𝐶𝑃1(𝑡) =  −(𝑘01 + 𝑘21) ∙ 𝐶𝑃1(𝑡) + 𝑘12 ∙ 𝐶𝑃2(𝑡) + 𝐼𝑆𝑅(𝑡)𝑉𝐶              𝐶𝑃1(0) = 𝐶𝑃𝑏𝐶𝑃2(𝑡) = 𝑘21 ∙ 𝐶𝑃1(𝑡) − 𝑘12𝐶𝑃2(𝑡)                                     𝐶𝑃2(0) = 𝐶𝑃𝑏 ∙ 𝑘21/𝑘12 

 
(2.11) 

 
Where 𝐶𝑃1 and 𝐶𝑃2 (pmol/L) are C-peptide concentrations in the accessible and in the peripheral 
compartment, 𝐶𝑃𝑏 (pmol/L) is the basal plasma C-peptide concentration,  𝐼𝑆𝑅 (pmol/min) is the 𝛽-
cell insulin (and C-peptide) secretion rate (like S(t) in (2.11)). 𝑉𝐶 (L) is the C-peptide distribution 
volume in compartment 1 and  𝑘01, 𝑘21, 𝑘12 (min-1) are transfer rate parameters. 
 

 

Figure 2.5. C-peptide secretion and kinetics model30. 
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The following step is to integrate the equation that describes the PK of the subcutaneous absorption 
of IDeg into the T2DS, which is described by a three-compartment model 32: 
 
 

{  
  𝐼𝑞̇1(𝑡) =  −𝑘𝑑 ∙ 𝐼𝑞1(𝑡) + 𝐹 ∙ 𝐷                   𝐼𝑞1(0) = 0𝐼𝑞̇2(𝑡) =  −𝑘𝑑 ∙ 𝐼𝑞2(𝑡) + 𝑘𝑑 ∙ 𝐼𝑞1(𝑡)         𝐼𝑞2(0) = 0𝐼𝑞̇3(𝑡) =  −𝑘𝑎 ∙ 𝐼𝑞3(𝑡) + 𝑘𝑑 ∙ 𝐼𝑞2(𝑡)         𝐼𝑞3(0) = 0𝑅𝑎𝐼 =  𝑘𝑎 ∙ 𝐼𝑞3(𝑡)                                                              

 

(2.12) 

 

 

Where 𝐷 (mU/kg/min) is the insulin dose administered subcutaneously,  𝐹 (dimensionless) represent 
the bioavailability, 𝑘𝑑 (min-1) is the rate constant of molecular complex conversion, 𝑘𝑎  (min-1) is the 
rate constant of insulin absorption to plasma, and 𝑅𝑎𝐼 is the insulin rate of appearance in plasma.  
Then the PK of the IDeg was incorporated into the T2Ds model and the individual insulin PK 
parameters were obtained as a random realization of a joint parameter distribution created from T1D 
data and adapted to T2D by updating the average parameter vector24.  
  



 

19 

2.3 In silico Cloning  
 

The simulations used to test all the different versions of the algorithm are based on a virtual population 
in which each virtual subject is represented by a vector containing the model parameters, p28: 
 𝒑 = [𝑝1, 𝑝2, … , 𝑝𝑁𝑝]𝑇 

 

(2.15) 

 

where  𝑁𝑝 indicates the number of the model parameter. There are different ways for defining this 

vector, one is to consider it as a realization of an appropriate joint parameter distribution, which under 
the assumption of normality, must be well represented by the average vector 𝝁𝒑 and the covariance 

matrix 𝚺𝒑. They were obtained by identifying the large-scale T2Ds model on data coming from both 

T2D and healthy subject. However, to make the T2Ds representative of an insulin-naïve T2D 
population an update of the joint parameter distribution is required. The flowchart explaining the 
tuning procedure is showed in Fig. 2.5). 
 
 

 

Figure 2.5. Flowchart of the tuning procedure to clone a desired T2DS population24 

  

 

The up mentioned update was done in 24 by fitting the T2Ds model 28,29,33 with the average data 
coming from the first visit, hence before the treatment, available from 25. The visit 1 was chosen to 
fit the models in order to identify, using the Maximum a Posteriori (MAP) estimator based on the 
prior of 28, population’s key parameters, which describe the rate of absorption, insulin sensitivity and 
insulin secretion indexes24. These were used to update the parameter distribution means and then to 
generate the cohort of 300 subjects described in section 2.1. 
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2.4 Insulin Needs Classifier  
 

One of the goals of the new algorithms is to reach the optimal basal insulin dose in a less amount of 
time for reducing the risk of long-term hyperglycemia related complication. However, to be able to 
achieve faster administration of optimal doses higher increments are needed, and it makes sense to 
apply more aggressive titrations only in those patients requiring them, thus those having a higher 
insulin demand. The reason behind the different insulin need can be due both to inter-subject 
variability in parameter characterizing the insulin response or because the subject has a complete 
deficiency in endogenous insulin production. However, this information is not a-priori known, 
therefore for distinguishing between a higher- or lower- demand subject a machine learning approach 
is used. In particular, the classifier proposed by Bonet et al.26 was used. The data were generated by 
the T2Ds simulator using the same population of this thesis. The in-silico subject underwent two 
experiments, the first was a standard oral glucose tolerance test (OGTT), while the second was a 
standard 52-week basal insulin titration trial (DUAL I) to find the subject-specific optimal degludec 
insulin dose (OID), starting from 10 U. The up-titrating process was FPG based and the dose adjusting 
was done twice a week (+2U or -2/-4U) depending on the distance on the measured FPG from the 
range [70-90] mg/dl.  
Once the OID was found for each subject, they were divided in 2 insulin needs classes: high insulin 
need (HIN) if OID≥ 44 U, and low insulin need (LIN) otherwise. They developed a logistic 
regression model to apply the mentioned classification using some measurable features, the model 
equation is:  
 
 𝑙𝑜𝑔𝑖𝑡(𝑃) = 𝑙𝑛 ( 𝑃1 − 𝑃) = 𝛽0 + ∑ 𝛽𝑗𝑋𝑗𝑁𝑗=1  

 
(2.16) 

 
 
Where 𝑃 is the probability to classify subjects as HIN, 𝛽 = [𝛽0, 𝛽1, … , 𝛽𝑁] is the vector of the model 
coefficient, 𝛽0 is the intercept while 𝛽𝑗  is the parameter assigned to the 𝑋𝑗 feature. For this purpose, 

as input features were considered sex, BW, BMI, age and the baseline plasma glucose, insulin and C-
peptide concentrations, measured at 0 minutes (subscript 0), 120 minutes (subscript 120) and 180 
minutes (subscript 180) after glucose intake.  
In the first place a 70/30 split between the training set and test set of the original dataset was 
performed. Then, a feature selection was done using a 100-bootstrap-resampling of the training-set. 
During the training, the models were kept, in which all features were statically significant in at least 
70 % of the internal training sets and at the same time the average deviance was statically different 
from the one of the null model (i.e., model in which only the intercept is considered).  
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Figure 2.6 schematic representation of models training and testing procedures26 

During the training phase, a grid-search approach was used in each internal test set for defining the 
optimal 𝑃𝑡ℎ , which is then used in (2.25) as the cut off probability for the classification rule:  
 
 𝑃𝑡ℎ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑃(𝑚𝑒𝑎𝑛(𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦) ∙ 𝑚𝑒𝑎𝑛(𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦)) (2.17) 

 
With the 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 and the 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 defined as follows: 
 
 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  𝑇𝑃𝑇𝑃 + 𝐹𝑁 

 
(2.18) 

 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  𝑇𝑁𝑇𝑁 + 𝐹𝑃 
 
(2.19) 

 
With 𝑇𝑃 the number of true positive, 𝐹𝑁 the number of false negative, 𝑇𝑁 the number of true negative 
and 𝐹𝑃 the number of false positive. The 𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦, the 𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 and the AUC-ROC was used 
also in the model testing, furthermore the other performance metrics was calculated such as:  
 
 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 = 𝑇𝑃𝑇𝑃 + 𝐹𝑃 

 
(2.20) 

 
 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 = 𝑇𝑃 + 𝑇𝑁𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁 

 
(2.21) 

 
 𝐹1 − 𝑠𝑐𝑜𝑟𝑒 = 2𝑇𝑃2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 

 
(2.22) 

 
 
Moreover, the area under the receiver operating characteristic curve (AUC-ROC) was computed 
using the internal test sets, and the model with the highest average AUC-ROC was selected.  
Among the candidate logistic models, the one chosen has as covariates the subject OGTT glucose 
and C-peptides measurements: 
 
 𝑙𝑜𝑔𝑖𝑡(𝑃) =  −5.2351 + 0.0742 ∙ 𝐺0 − 0.0389 ∙ 𝐺180 + 0.003 ∙ 𝐶𝑝0− 0.0038 ∙ 𝐶𝑝120 + 0.0036 ∙ 𝐶𝑝180 

 
(2.23) 

 
After the training phase the developed model (2.23) was used in the test set. For each subjects the 
estimated probability was: 
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 𝑃̂ =  𝑒𝑥𝑝(𝑙𝑜𝑔𝑖𝑡(𝑃))1 + 𝑒𝑥𝑝(𝑙𝑜𝑔𝑖𝑡(𝑃))  

(2.24) 

And the classification rule was: 
 
 {𝐻𝐼𝑁     𝑖𝑓 𝑃̂ > 𝑃𝑡ℎ𝐿𝐼𝑁     𝑖𝑓 𝑃̂ ≤ 𝑃𝑡ℎ  

 
 (2.25) 

 
Where 𝑃𝑡ℎ is the threshold probability, determined in the in the model training phase (2.17). The 
performances of the model are shown in the table 2.2. 
 

Performance metrics Model performance 

Sensitivity 87% 
Specificity 91% 
Precision 91% 
Accuracy 89% 
F1-score 0.89 

AUC-ROC 0.94 
Table 2.2 Model performances of the model (22) 

 

2.5 IDeg titration Rules 
 
In order to assess the efficacy of different titration rules we used the DUAL I11 as . A 1-year in silico 
trial has been performed, in which each insulin-naïve HIN T2D subject assumed 3-meal/day. The 
starting dose was setted at 10 U, as recommended by ADA12, and adjusted every 3 days. Insulin dose 
was gradually increased until reaching an individualized optimal dose but the update process, the 
parameters evaluated for deciding whether to administer an increment/decrement and their magnitude 
depend on the specific rule.  
 

2.5.1 DUAL I 
 

As common practice, literature therapy is simulated and considered as the baseline to compare with 
the new algorithm. As previously discussed in the section 2.4, during the in-silico trial the dose was 
changed every 3-day following the indication provided by the DUAL I rule, which is implemented in 
the T2Ds. 
Firs, the titration algorithm assumes a prebreakfast glucose (FPG) target between ~72 mg/dL and ~90 
mg/dL, furthermore 3 hypoglycemic thresholds were defined: the first one at 70 mg/dL, the second 
at 60 mg/dL and the last one at 50 mg/dL, the last one marking a severe hypoglycemic event; 
moreover, each BG threshold is coupled with a maximum percentage of time which can be spent by 
the subject below it. For the first the threshold is 7.5%, for the second 5% and for the third threshold 
is 2.5%, these values correspond to ≈8% tolerance which is almost 2 hours per day. 
The rule bases its dose adjustment just on the value of the FPG, in fact:  

• If FPG is lower than 72 mg/dL, which is the lower bound of glucose target range, the subject 
is considered in hypoglycemia, hence the dose is decreased by 2 U or by 4 U based on the 
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gravity of the hypoglycemic event: if the first two thresholds are overcome, the new dose 
proposed to the subject is decreased by 2 U, while if the tolerance time threshold associated 
to 50 mg/dL is overcome the decrement administered is 4U. 

• If FPG is greater than 90 mg/dL, which is the upper bound of glucose target range, the subject 
is considered in hyperglycemia, hence the dose is increased by 2 U. 

• Within the rule, it is also implemented a system to evaluate if a possible severe hypoglycemic 
event has occurred. 

Average FPG values are then computed over a period of 3 days, and this process is repeated until the 
rule finds an optimal insulin dose, i.e. a dose that keeps the prebreakfast glucose of the subject in the 
range [72-90] mg/dL without causing hypoglycemia. This optimal dose is personalized in the sense 
that each subject requires a specific amount of insulin to reach the prebreakfast glucose target. Indeed, 
this is influenced by the inter- and intra- subject variability and also by different parameters which 
modify the insulin response of the subject, such being pathologically overweight34, this typically 
induces insulin resistance34 hence lowering the insulin sensitivity of the subject  leading to higher 
treatment difficulties.  
 

2.5.2 New Titration Algorithms  
 
In this section the new 4 tested rules are presented. The features common to all the algorithms are 
outlined first. Then, each of them is described in detail. Figures 2.9 ,2.12, 2.16 and 2.19 show a 
schematic representation of algorithms 1, 2, 3, and 4 respectively. 
 

2.5.2.1 Common features 
 

As previously discussed, DUAL I dose adjustment is based on evaluation of FPG. Moreover, it does 
not take into account how the glucose concentration varies during the day, the decision boundaries 
which are applied to the subject FPG values are not individualized and based on the ADA 
guidelines12.  
The new algorithms were implemented to not consider just a single, or a small set, of values coming 
from the SMBG, the goal was to make a more extensive and accurate evaluation on how the patient 
glycemia changes during the day. Each new algorithm uses as input the 3-days simulated CGM, (see 
Introduction section 1.3), and as output the new proposed insulin dose which satisfies certain criteria.  
Each titration algorithm is based on the evaluation of the CGM signal, provided by the T2Ds, which 
is processed to extract some characteristics to better understand the glycemic status through the 3-
days period.  
The simulated CGM has some noise superimposed on it, which could compromise the following 
steps, for this reason a filtering step was applied first. The filtering operation chosen is the gaussian 
smoothing. Firstly, for doing a smoothing operation, and then for each point, the value of the kernel 
function (i.e., a function that taking 2 vector returns a scalar, which typically is the dot-product of the 
2 input vectors taken to a higher dimension space) is calculated, hence the weighted average of data 
point is computed by using as weights the kernel function values. In practice, the data points of the 
CGM signal are modified so that the individual points that are higher than the adjacent points are 
reduced, and points that are lower than the adjacent points are increased. In gaussian smoothing the 
kernel used is Gaussian: 
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 𝐾(𝑥∗, 𝑥𝑖) = exp (− (𝑥∗ − 𝑥𝑖)22𝑏2 ) 

 
(2.26) 

 
where b defines the width of the kernel, 𝑥𝑖 are the data point and 𝑥∗ is their mean, thus the (𝑥∗ − 𝑥𝑖)2 
term is the squared Euclidean distance. The reason behind choosing such a filtering operator is 
because it is able to achieve a tradeoff between successfully removing the high frequency noise 
superimposed on the CGM signal and not filtering lower-frequency information which are related to 
the subject glycemia variation due to a meal or to a physical activity. 
After filtering the signal, another signal processing operation is performed on the CGM. Specifically 
a trend decomposition process using the singular spectrum analysis (SSA)35. The SSA is a 
nonparametric technique that works with arbitrary statistical processes, whether linear or nonlinear, 
stationary or non-stationary, Gaussian or non-Gaussian36. Hence, it is a very general technique which 
studies the “separability” that characterizes how well different signal components can be separated 
one from each other. 
Furthermore, real time series, such as the CGM, usually have a complex structure and time varying 
dynamics. Thanks to its properties, the SSA method works best when applied to real world signals 
such as the up mentioned CGM36. 
 

 

Figure 2.7 Smoothed (upper panel) and original (lower panel) CGM signal after filtering using a Gaussian kernel 

 
Here it follows a briefs description of the SSA algorithm: 
Let consider a time series 𝑌𝑇 = (𝑦1,… , 𝑦𝑟) . Fix 𝐿 (𝐿 ≤ 𝑇/2), the window length, and let 𝐾 = 𝑇 −𝐿 + 1: 
Step 1. (Computing the trajectory matrix): this transfers a one-dimensional time series 𝑌𝑇 =(𝑦1, … , 𝑦𝑟) into a multi-dimensional series 𝑋1, … , 𝑋𝑘 with vectors 𝑋𝑖 = (𝑦𝑖 , … , 𝑦𝑖+𝐿−1) ∈  ℝ𝐿, where 
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𝐾 = 𝑇 − 𝐿 + 1. The single parameter of the embedding is the window length 𝐿, an integer such that 2 ≤ 𝐿 ≤ 𝑇. The result of this step is the trajectory matrix 𝑿 = [𝑋1, … , 𝑋𝑘]: 
 
 𝑿 = (𝑥𝑖𝑗)𝑖,𝑗=1𝐿,𝐾 = ( 𝑦1 𝑦2 𝑦3𝑦2 𝑦3 𝑦4 ⋯ 𝑦𝐾𝑦𝐾+1⋮ ⋱ ⋮𝑦𝐿 𝑦𝐿+1 𝑦𝐿+2 ⋯ 𝑦𝑇 ) 

 
 
(2.27) 

 
 
 
Note that the trajectory matrix 𝑿  is a Henkel matrix, which means that all the elements along the 
diagonal 𝑖 + 𝑗 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 are equal.  
 
Step 2. (Constructing a matrix for applying the singular value decomposition [SVD]): compute the 
matrix 𝑿𝑿𝑇.  
 
Step 3. (SVD of the matrix 𝑿𝑿𝑇): compute the eigenvectors of the matrix 𝑿𝑿𝑇, and consider 𝑿𝑿𝑇 =𝑃Λ𝑃𝑇. Here Λ = diag(λ1, … , 𝜆𝐿) is the diagonal matrix of eigenvalues of 𝑿𝑿𝑇 ordered as 𝜆1 ≥ 𝜆2 ≥⋯ ≥ 𝜆𝐿 ≥ 0 and 𝑃 = (𝑃1, 𝑃2, … , 𝑃𝐿) is the corresponding orthogonal matrix of eigen-vectors of 𝑿𝑿𝑇. 
 
Step 4. (Selection of eigen-vectors): select a group of 𝑙 (1 ≤ 𝑙 ≤ 𝐿) eigen-vectors 𝑃𝑖1, 𝑃𝑖2, … , 𝑃𝑖𝑙. 
The grouping step correspond to splitting the elementary matrices 𝑿, into several groups and 
summing the matrices within each group. Let 𝐼 = {𝑖1, … , 𝑖𝑙} be a group of indices 𝑖1, … , 𝑖𝑙. Then the 
matrix 𝑿𝐼  corresponding to the group 𝐼 is defined as: 
 
 𝑿𝐼 = 𝑿𝑖1 +⋯+ 𝑿𝑖𝑙  (2.28) 

 
Step 5. (Reconstruction of the one-dimensional series): compute the matrix: 
 
 𝑿̃ = ‖𝑥𝑖,𝑗‖ = ∑𝑃𝑖𝑘𝑃𝑖𝑘𝑇𝑿𝑙

𝑘=1  
 
 (2.29) 

 
As an approximation to 𝑿. Transition to the one-dimensional series can now be achieved by averaging 

over the diagonals of the matrix 𝑿̃. 
 
In MATLAB these steps are implemented by using trenddecomp.m function which finds trends in a 
vector of data (i.e., CGM) by considering them as an additive decomposition:  
 
 𝐶𝐺𝑀 = 𝐿𝑇 + 𝑆𝑇 + 𝑅 (2.30) 

Where: 

• 𝐿𝑇 is the long-term trend in the data. 

• 𝑆𝑇 is the seasonal, or oscillatory, trend (or trends). 
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• 𝑅 is the remainder (i.e., what is left of time series data after removing the long-term 
component and the seasonal components, thus is the random fluctuation that cannot be 
explained by the other trends). 

For the sake of this work just the long-term (LT) trend is considered. In fact, the rationale was to 
understand whether the trend of the CGM was rising or not during the simulated 3 days. Thus, a 
possible way for getting this information was to evaluate the mean slope of the LT trend. Defining 
the first order interpolating polynomial as:  
 
 𝑦𝑖𝑛𝑡 = 𝑝1 ∙ 𝑡 + 𝑝2 (2.31) 𝑦𝑖𝑛𝑡 is the value of the polynomial function, 𝑝1 is the mean slope of the polynomial, hence the LT 

trend average slope and 𝑝2 is the intercept on the y-axis. A graphical representation is shown in figure 
2.8. However, since the computation of the mean slope is affected by an error, this must be considered 
to understand whether the trend is significantly positive, negative or indistinguishable from zero. 
 
First, the residuals are computed as:  
 
 𝑟 = 𝐶𝐺𝑀𝑠𝑚𝑜𝑜𝑡ℎ𝑒𝑑 − 𝑦𝑖𝑛𝑡 (2.32) 

Then the degrees of freedom: 
 
 𝑑𝑓 = 𝑁𝐶𝐺𝑀 − 2 (2.33) 

 

 

Figure 2.8 Smoothed CGM (upper panel), and CGM LT trend (lower panel) with the first-grade interpolating polynomial 

where 𝑁𝐶𝐺𝑀 is the number of samples of the CGM. Then, the standard error of the slope estimate is 
computed: 
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 𝑠 = √∑𝑟(𝑖)2𝑑𝑓𝑖  
 
(2.34) 

 
Then, considering the (2.34): 
 𝑆𝑒 =  

𝑠√∑ (𝑡(𝑖) − 𝑎𝑣𝑔(𝑡))2𝑖  
 
(2.35) 

 
 

Knowing the slope estimate standard error, one can retrieve the correspondent t-value: 
 
 𝑡 = 𝑝1𝑆𝑒 

 
(2.36) 

 
From the value of the functional 𝑡 the correspondent p-value can be extracted from the t-student 
cumulative probability density function37; this will be used to understand whether the slope is 
significantly positive or negative, therefore this information is used for understanding if the glycemia 
of the subject is significantly rising or not, hence algorithms can recognize if the subject needs an 
incremented new insulin dose. 
One of the main difference that characterizes these new algorithms is the calculation and the 
evaluation of 4 different time metrics which are computed from the raw CGM and are almost the 
same defined by the ADA 18: 
 

1) Time in range (TIR), which is the time that the subject spends, during the 3 days, between 70 
mg/dl and 180 mg/dl (3.9 mmol/L-10.0 mmol/L). 

2) Time in hypo 1 (TH1), which is the time that the subject spends, during the 3 days, between 
60 mg/dl and 70 mg/dl (3.4 mmol/L-3.9 mmol/L). 

3) Time in hypo2 (TH2), which is the time that the subject spends, during the 3 days, between 
50 mg/dl and 60 mg/dl (2,8 mmol/L-3.4 mmol/L). 

4) Time in severe hypo (TSH), which is the time that the subject spends, during the 3 days, below 
50 mg/dl (0 mmol/L-2.8 mmol/L). 
 

It is easy to understand that considering this metrics instead of the FPG provides a more complete 
and powerful information for better understanding and managing eu/hyper/hypo glycemia. Moreover, 
they are coherent to Battelino et al.16, (Introduction, section 1.3), on the importance of having a metric 
which indicates a glycemic target (TIR), metrics that characterize the time spent by the subject below 
the target (TH1, TH2, TSH), and also metrics which define the time above the glycemic target (TAR). 
Despite there is not an explicitly defined TAR, it can be easily retrieved knowing both the TIR and 
TBR information. 
As seen in DUAL I, time thresholds are applied to the hypoglycemic time metrics (i.e., TH1, TH2, 
TSH), in particular the thresholds chosen are the same used in the DUAL I rule: TH1 should not 
exceed 7.5%, TH2 should not exceed 5 % and TSH should not be over 2.5%; thus, these values 
correspond to a tolerance of the 8 % which correspond to almost 2 hours per day. 
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Moreover, given that each version of the new algorithm uses all CGM samples collected during the 
last 3 days (i.e. this allows to not miss any hypo- or hyperglycemia), 8 different hypoglycemic cases 
are considered: 
 

1) TH1<7.5%, TH2<5%, TSH<2.5%, euglycemia or hyperglycemia. 
2) TH1≥7.5%, TH2<5%, TSH<2.5%, mild hypoglycemia. 
3) TH1<7.5%, TH2≥5%, TSH<2.5%, moderate hypoglycemia. 
4) TH1≥7.5%, TH2≥5%, TSH<2.5%, moderate hypoglycemia. 
5) TH1<7.5%, TH2<5%, TSH≥2.5%, severe hypoglycemia. 
6) TH1<7.5%, TH2≥5%, TSH≥2.5%, severe hypoglycemia.  
7) TH1≥7.5%, TH2<5%, TSH≥2.5%, severe hypoglycemia.  
8) TH1<7.5%, TH2<5%, TSH≥2.5%, severe hypoglycemia.  

 
In addition, in each “severe hypoglycemia” case, a flag (SevereHypo) is set to 1 and the current dose 
will not be assigned to the subject anymore. 
For the sake of argument, each version of the algorithm will be divided in 2 cases regarding the 
ExitFlag, i.e., a flag which indicates whether the optimal dose is found (ExitFlag = 1) or not (ExitFlag 
= 0). When the optimal basal-insulin dose is not found, the eight previously mentioned cases will be 
treated. Furthermore, each time metrics computed on the CGM (TIR, TH1, TH2, TSH) is composed 
of 3 values, one for each day. 
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2.5.2.2 Titration Algorithm 1  
 
At the beginning, a flag is set to zero (ExitFlag = 0) 

 
When ExitFlag = 0, it means that the optimal Dose has not yet been found. Therefore, the algorithm 
is asked to search a better basal-insulin dose. To do that, first, then algorithm tests if the subject is in 
eu- or hyperglycemia. If this is the case, the subject did not exceed the hypoglycemic threshold 
defined above (i.e., TH1, TH2 and TSH). The TIR is calculated and the following conditions may 
occur: 
 

o The current measured TIR is the highest obtained so far 

If 10%<TIR<95%, the LT trend of the smoothed CGM is computed and interpolated by a first-
order polynomial. From Eq 2.31, the 𝑝1 is evaluated as the mean slope of the LT trend. As 
discussed in 2.5.2.1, the value of the t functional is computed (tvalue) and the corresponding p-
value is obtained. This last is used for understanding if the 𝑝1 estimate is statistically significant. 

▪ If 𝑝1>0, p-value<0.05 

In this case the average slope is significantly greater than zero, meaning that, on average, the 
LT trend based on 3-days CGM is raising. As a result, the algorithm increments the dose by 
10 U to achieve at least the minimum clinically significant improvement in TIR (i.e., 5%)16 
▪ If 𝑝1>0, p-value>0.05;  𝑝1<0, p-value<0.05;  𝑝1<0, p-value>0.05 

In all this cases, the algorithm keeps the current dose  
Moreover, if the maximum of the TIR vector is greater than 95%, the ExitFlag is set to 1 and the 
current dose is considered the optimal since no further clinically relevant improvement in TIR is 
possible. On the other hand, if the maximum of TIR is lower than 10% a doubled (20 U) increment 
is administered to significantly reduce the TAR, since it means that the subject is in a severe 
hyperglycemic state. 
 
o The current TIR is not the greatest obtained so far 
This case is interpreted by the algorithm as the subject cannot improve his TIR any further. If the 
previous maximum TIR was between 10% and 95%, the LT trend of the smoothed CGM is 
computed and interpolated by a first-order polynomial. Again, the 𝑝1 is evaluated as the mean 
slope of the LT trend; the t-value is computes and the corresponding p-value is obtained.   

▪ If 𝑝1>0, p-value<0.05 

The information provided by the interpolation of the CGM-LT indicates that the CGM on 
average is still significantly rising, even if the current TIR is not the greatest and the subject 
has not experienced hypoglycemia. Thus, the algorithm proposes a 10 U increment to the 
dose. In this case, since the subject stopped his improvement phase, before administering the 
dose, the algorithm checks if the new dose is associated to previous severe hypoglycemic 
events: when the TSH tolerance threshold is exceeded, the SevereHypo flag is activated, hence 
the dose is associated to a severe hypoglycemic state and will not be administered anymore; 
if the previous severe hypoglycemic check is positive, then the current dose is kept, if the 
check is negative the incremented dose is proposed as new dose for the next iteration. 
▪ 𝑝1>0, p-value>0.05;  𝑝1<0, p-value>0.05 
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In these two cases the information coming from the mean slope of the LT trend is not 
statistically significant, and since the subject is in an eu/hyperglycemia state the current dose 
is kept.  
▪ 𝑝1<0, p-value<0.05 

The slope of the interpolating polynomial is significantly negative; therefore, the subject is 
not improving anymore, and its 3-days glycemic state trend on average is descending. 
However, since the goal of the algorithm is to maximize the TIR, due to the up mentioned 
conditions, a search of the past maximum TIR is done with its correspondent dose. However, 
before assigning it to the subject, the algorithm checks the value of the previous maximum 
TIR: if is lower of 50%, the search continues, in fact in this case the dose was not high enough 
to treat the hyperglycemia, bringing the subject to spend a major part of the time above the 
glycemic target range. While, if the maximum TIR is greater than 50% the dose associated to 
the previous maximum TIR is administered to the patient as optimal and ExitFlag is set to 1. 
The 50 % threshold on the time in range was set in agreement with what reported by Battelino 
et. al 16 as guidance on target for assessment on glycemic control for older/high-risk adult with 
type 2 diabetes. 

If the previous maximum of the TIR is lower than 10%, the subject is in a marked hyperglycemic 
state, thus a 20 U incremented administered applied to the current dose to reduce the time spent 
above the target range. As last case, if the previous maximum TIR is greater than 95%, since is 
the last improvement which can be done by the subject, the correspondent dose is considered to 
be optimal (ExitFlag = 1) and is administered to the patient.  

 
During the optimal dose search phase, also hypoglycemic events are managed, since there are three 
different time metrics which make the algorithm capable of recognizing the severity of the 
hypoglycemia and act accordingly. As discussed in the Common parts section 7, different possible 
situations are considered by each version of the algorithm and the proposed dose decrement is 
proportional to the severity of the hypoglycemic event. 

o TH1≥7.5%, TH2<5%, TSH<2.5% 

This is the lightest hypoglycemic state that the subject can experience. If this case occurs in the 
first iteration of the algorithm, a 2U decrement is assigned, while, if it occurs from the second 
iteration, the algorithm searches for the previous maximum TIR. However, before assigning the 
dose associated to the previous time in range the algorithm checks if the maximum TIR is 
associated to a TH1>7.5% and/or to a TH2>5%. If so, a 2 U decrement is administered to the 
subject, while, if the hypoglycemic tolerance thresholds are not exceeded the correspondent 
maximum TIR dose is proposed as new dose.  
o TH1<7.5%, TH2≥5%, TSH<2.5% 

Since the second time threshold is exceeded (i.e., associated to the [50-60] mg/dL range), the 
hypoglycemic event is considered more severe. Hence, the dose is decremented of 4 U  
o TH1≥7.5%, TH2≥5%, TSH<2.5% 

This is the other thresholds combination identifying a moderate hypoglycemic event. However, 
in this case, both the tolerance thresholds associated to the [60-70] mg/dL range and [50-60] mg/dl 
range are exceeded. Hence, since this is associated to a more severe hypoglycemia than the 
previous case, a 6 U decrement is administered to the subject.  
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o TH1<7.5%, TH2<5%, TSH≥2.5%; TH1<7.5%, TH2≥5%, TSH≥2.5%; TH1≥7.5%, 

TH2<5%, TSH≥2.5%; TH1<7.5%, TH2<5%, TSH≥2.5% 

These 4 different tolerance threshold combinations have in common the exceeding of the severe 
hypoglycemic threshold, associated to <50 mg/dL range. This kind of hypoglycemic events are  
very dangerous because they result in feeling shaky and confused, seizures, and death38. For these 
reasons, it is fundamental to minimize this kind of events. However, when they occur, the 
algorithm is strictly conservative thus it administers a 10 U decremented dose to raise the 
glycemia of the subject.  

 

• ExitFlag = 1  
 
The ExitFlag is set to 1 by the algorithm when a certain dose is considered to be optimal, and this is 
kept until at least one of hypoglycemic tolerance threshold is exceeded (i.e., TH1 ≥7.5% ∨ TH2≥5% ∨ TSH≥2.5%). In this case, the ExitFlag is set again to zero and the research, described in the 
previous part, restarts.  
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  Figure 2,9  Flowchart of Algorithm 1, Eu/hyperglycemia management (above), handling of ExitFlag = 1 (middle) and 

management of hypoglycemic events (below) 
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2.5.2.3 Titration Algorithm 2 
 

One of the main problems of the first version of the algorithm was its instability. In fact, due to subject 
glycemic variation, due to meal variability and/or to physical activity, the first version of the 
algorithm was proposing increment that led to recurrent hypoglycemic events. Hence, periodic 
increments were proposed to the subject bringing a higher insulin concentration that raises all the 
TBR metrics. In figure 2.10, an example of this behavior is shown.  
Thus, one of the possible solutions was to implement a flag (Back) which marks when a previous 
administered dose is proposed again to the subject, a counter is then associated to each dose which is 
incremented when Back is setted to one, hence it represents how many times the dose is administered 
to the subject. When a dose is proposed for the third time throughout the entire trial, it is considered 
as optimal dose. Furthermore, Back is set to 1 when the severe hypoglycemia check prevents the 10 
U increment, thus forcing the dose to remain at a certain value through different iterations without 
labeling it optimal, even if it is so. Hence, the up mentioned counter is increased when the severe 
hypoglycemia check is positive to prevent the blockage in this situation, in which the first version of 
the algorithm tended to be stuck. 
 

 

 

Figure 2.10 Insulin dose profile (left panel) administered by algorithm 1 during the first 180-days, in red dashed line 

the optimal basal-insulin dose. 180-days CGM (right panel) with the different ranges: in green it is represented the 

CGM target range (green), TH1associated CGM range (yellow), TH2 associated CGM range (orange), TSH 

associated CGM range (red). 
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As before for Algorithm 1, two cases depending on the value of ExitFlag are evaluated: 
 
At the beginning, both   flags (ExitFlag and Back) are setted to zero. Therefore as seen for Algorithm 
1, it is asked to search a better basal-insulin dose. To do that, the algorithm tests if the subject is in 
eu- or hyperglycemia by using the TIR, and the following cases are considered: 
: 

o The current measured TIR is the greatest obtained so far 

In this case, when the subject TIR is improving no changes were made. Hence, the decision-
making process and the struct of this part are unchanged to the respect of Algorithm 1. 
 
o The current TIR is not the greater obtained so far 
In this case some changes were made with respect to Algorithm 1: when it proposes a previously 
administered dose because it is associated to a maximum TIR, the Back flag is set to one; thus, 
the algorithm  interprets this event as the subject stopped his improvements phase.  
Therefore, if the previous maximum TIR is between 10% and 95%, the LT trend of the smoothed 
CGM is computed and interpolated by a first-order polynomial. Again, the 𝑝1 is evaluated as the 
mean slope of the LT trend; the t-value is computes and the corresponding p-value is obtained. 

▪ If 𝑝1>0, pvalue<0.05 

If the subject glycemia on average is still significantly raising, the algorithm proposes a 10 U 
incremented dose. Before administering the dose, it checks if the new dose is associated to 
previous severe hypoglycemic events: if the severe hypoglycemic check is positive, the 
increment is rejected, and Back is setted to one. 
▪ If 𝑝1>0, pvalue>0.05;  𝑝1<0, pvalue>0.05 

In these two cases the slope of the LT trend is not statistically significant, as in the previous 
version the current dose is kept. 
▪ If 𝑝1<0, pvalue<0.05 

The slope of the interpolating polynomial is significantly negative; therefore, the subject is 
not improving anymore, and the 3-days CGM on average is descending. In this case, when 
the past maximum TIR is greater than 50% the associated dose is proposed as optimal 
(ExitFlag = 1) and the Back flag is setted to one  

 
The steps used to manage hypoglycemic events remain the same of Algorithm 1:  

o TH1≥7.5%, TH2<5%, TSH<2.5% 

The only change was made when the subject experiences a mild hypoglycemia, in fact when the 
algorithm looks back for the dose associated to a maximum TIR and assigns it to the subject, the 
Back flag is set to one. 
 

  



 

35 

• ExitFlag = 1  
 
When the ExitFlag is setted to one by the algorithm the handling done is the same to the respect of 
the first version. 
 
Finally, these changes brought more stability and limited the undesired behavior. This can be seen in 
the figure 2.11, where the same subject of the figure 2.10 was simulated in the same condition using 
the second version of the algorithm. As one can see, despite the first peak, the algorithm founds out 
as best dose 60 U, 10 U less then algorithm 1 and keeps it until the end of the in-silico trial, showing 
that the goal of more stability is achieved.  
 
 

 
  

 

Figure 2.11 Insulin dose profile (left panel) administered by Algorithm 2 during the first 180-days, in red dashed line 

the optimal basal-insulin dose. 180-days CGM (right panel) with the different ranges: in green it is represented the 

CGM target range (green), TH1associated CGM range (yellow), TH2 associated CGM range (orange), TSH associated 

CGM range (red). 
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Figure 2.12 Flowchart of Algorithm 2, Eu/hyperglycemia management (above), handling of ExitFlag = 1 (middle) and 

management of hypoglycemic events (below) 
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2.5.2.4 Titration Algorithm 3 

 

Once the stability was achieved by the changes done in the second version of the algorithm, now the 
focus was shifted to integrate new features that makes the algorithm more individualized. In 
particular, the previous two versions can administer only a rigid increment of 10 U, however it can 
occur that, both due to the subject characteristic or to the glycemic profile, the amount of the 
increment overcomes the actual insulin needs. Hence, a TIR proportional increment is needed.  
Considering the generic iteration, different from the first, the mean 3-days TIR is used to determine 
the proportional increment. In fact, as previously said the TIR is characterized by 3 values associated 
to each day, which make up an iteration, here the average TIR of both the actual iteration (ATIR) and 
the previous one (PTIR) are used. Initially, two cases are considered: 

• ATIR>PTIR 
In this case, on average, TIR of the current iteration is greater to the previous one, hence the respective 
dose is considered. Therefore, for proposing a proportional increment a new bidimensional space is 
built, where the x-axis it has the mean values of the TIR, and y-axis has the values of insulin doses. 
Thus, a generic point of the space of the i-th iteration:  
 
 𝑃𝑖 = (𝐴𝑇𝐼𝑅𝑖 , 𝐷𝑖) (2.37) 

 
Where, 𝐴𝑇𝐼𝑅𝑖 is the mean 3-days TIR and 𝐷𝑖 is the correspondent insulin dose. Hence, when 
considering two consecutives iterations, there will be two points which defines univocally an 
interpolating first grade polynomial, which in this space will be defined as:  
 
 𝐷 = 𝑠1 ∗ 𝑇𝐼𝑅 + 𝑠2 (2.38) 

 
This will be used for administering the proportional increment, in fact the information on which is 
built are based on the last 6 days. In figure 2.13 there is a graphical representation of the space and 
of the interpolating first grade polynomial described in (2.38). 
 

 
Figure 2.13 Cartesian axes used for obtaining the proportional increment. In blue the two points each relative to an 

iteration. The pedis 1 and 2 indicates the iteration  
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The information coming from ATIR and PTIR and the respective doses is used for the interpolation:  
 

 𝐷1 = 𝑠1 ∗ 𝑃𝑇𝐼𝑅 + 𝑠2 (2.39) 

 𝐷2 = 𝑠1 ∗ 𝐴𝑇𝐼𝑅 + 𝑠2 (2.40) 

 

Once 𝑠1 and 𝑠2 are obtained from the information coming from the iterations, the target time in range 
(TTIR) can be defined as:  
 
 𝑇𝑇𝐼𝑅 = 𝐴𝑇𝐼𝑅 + 5% (2.41) 

 

Since the minimum clinical relevant increment in TIR is 5%, by substituing TTIR in the (2.38) the 
dose at which the subject will have, theoretically, a 5% TIR increment is retrived. Thus, 
mathematically: 
 
 𝐷𝑖𝑛𝑐 = 𝑠1 ∗ 𝑇𝑇𝐼𝑅 + 𝑠2 (2.42) 

 
Since TTIR can be computed, also 𝐷𝑖𝑛𝑐  can be easly calculated since 𝑠1 and 𝑠2 coefficients are the 
same calculated from the (2.39) and (2.40). Once 𝐷𝑖𝑛𝑐  is known, the proportional dose increment 
(Propotional Increment) can be obtained:  
 
 𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 = 𝐷𝑖𝑛𝑐 − 𝐷2  (2.43) 

 

Depending on the two doses, 𝑃𝑟𝑜𝑝𝑜𝑡𝑖𝑜𝑛𝑎𝑙 𝐼𝑛𝑐𝑟𝑒𝑚𝑒𝑛𝑡 (PI) can be both positive or negative, hence 
respectively 𝐷𝑖𝑛𝑐 > 𝐷2 ∨ 𝐷𝑖𝑛𝑐 < 𝐷2. Therefore, the sign of this quantity is dictated by the insulin 
doses which depends by the mean values of the TIR. In the figure 2.14 a grafic representation of the 
proportional increment is presented. 
Within the algorithm, different evaluations are performed in fact in the previous description was 
evaluated the case for granted that TTIR > PTIR, however the algorithm is built for condering also 
the opposite, this is fundamental when considering to build the x-axis. Furthermore, additional checks 
are implemented in order to limit the values of proportional increment: if 𝑠1 is negative and PI is more 
negative than -10 U, since in this case the subject is not in hypoglycemia, the current dose is kept thus 
the decrement is discareded; if the PI is greater of 10 U, the dose is still incremented by 10 U for 
safety reason and finally if the PI is zero (𝐷𝑖𝑛𝑐 = 𝐷2) a 10 U increment is administered, this because 
this part is executed when the 3 days trend is significally raising. Ultimately, if PI overcomes all the 
checks, it is then summed to the current insulin dose and proposed to the subject.  

• PTIR>ATIR  
TIR achieved in the previous iteration is greater than the actual TIR, since the proportional increment 
is implemented when the LT trend of  3 days CGM is significally raising, this case is considered as a 
particular one. Hence, the a stardard 10 U increment is proposed to the subject. 
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Figure 2.14 Proportional dose increment, the dashed line indicates the dose extrapolation corresponding to the TTIR of 

the interpolating polynomial defined by (PTIR, D1) and (ATIR, D2). The green point (TTIR, Dinc) defines the target point 

at which the TIR is incremented by 5%. The arrow on the black line indicates the direction of the PI operation, starting 

from the TTIR with the interpolating polynomial Dinc is obtained. 

 
As for the previous two versions of the algorithm, Algorithm 3 is divided in two macroareas 
depending on the value of the ExitFlag:  
 

At the beginning, Exitflag and back are set to zero  

 
Thus, it means that the optimal Dose has not yet been found. Therefore, the algorithm is asked to 
search a better basal-insulin dose. To do that, first, then algorithm tests if the subject is in eu- or 
hyperglycemia. If this is the case, the subject did not exceed the hypoglycemic threshold already 
defined (i.e., TH1, TH2 and TSH). The TIR is calculated, and the following conditions may occur: 
 

o The current measured TIR is the greatest obtained so far 

If 10%<TIR<95%, the LT trend of the smoothed CGM is computed and interpolated by a 
first-order polynomial. From Eq 2.31, the 𝑝1 is evaluated as the mean slope of the LT trend. 
As discussed in 2.5.2.1, the value of the t functional is computed (tvalue) and the 
corresponding p-value is obtained. This last is used for understanding if the 𝑝1 estimate is 
statistically significant. 
▪ If 𝑝1>0, pvalue<0.05 

In this case the average slope is significantly greater than zero, meaning that on average the 
LT trend based on 3-days CGM is raising. As results, the algorithm proportionally increments 
the dose. The procedure is described more in details above. 
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▪ If 𝑝1>0, pvalue>0.05;  𝑝1<0, pvalue<0.05;  𝑝1<0, pvalue>0.05 

As previously seen, when the pvalue is greater than 0.05 the algorithm keeps the current dose, 
since the information are not statistically relevant. At the same time, when the mean slope is 
significantly lower than zero, the algorithm does not provide an increment because the subject 
glycemia, on average, is already descending.  

 

o The current TIR is not the greater obtained so far 
This portion of the algorithm was changed only in the case in which the TIR is between 10% and 
95% and the interpolating polynomial of the LT trend has a slope that is significantly greater than 
zero (i.e., 𝑝1>0, 𝑝𝑣𝑎𝑙𝑢𝑒<0.05). Thus, when this happens the algorithm administers the 
proportional increment instead of the fixed one.  
 
Finally, the management of hypoglycemic events and the handling of the subject glycemia when 
the ExitFlag is set to one by the algorithm are the same as the previous versions of the algorithm. 
In the figure the first 180 days simulated CGM, and dosing scheme are presented.  
 

 

Figure 2.15 Insulin dose profile (left panel) administered by Algorithm 3 during the first 180-days, in red dashed line the 

optimal basal-insulin dose. 180-days CGM (right panel) with the different ranges: in green it is represented the CGM 

target range (green), TH1associated CGM range (yellow), TH2 associated CGM range (orange), TSH associated CGM 

range (red). 
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Figure 2.16 Flowchart of Algorithm 3, Eu/hyperglycemia management (above), handling of ExitFlag = 1 (middle) and 

management of hypoglycemic events (below) 
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2.5.2.5 Titration Algorithm 4 
 

In this version, the attention was shifted on the behavior of the algorithm when the ExitFlag was set 
to 1.  In the previous versions, there was an evaluation of the Hypoglycemic thresholds (i.e., TH1, 
TH2 and TSH), if one of them was exceeded the ExitFlag was setted to 0 and the algorithm restarted 
a new search by doing the sequence of operations extensively described previously. However, the 
reset to zero of the ExitFlag, especially when the dose was near to the optimal one, raises the 
probability of overshooting it or administering again a lower dose which raises the time that the 
subject spends above the glucose target.  
 

At the beginning, Exitflag and back are set to zero  

 
 
In this case, nothing was changed to the respect of the previous versions of the algorithm 
 
 

• ExitFlag = 1  
 
The handling was radically changed for the reason described above. In particular, it was inspired on 
the functioning of DUAL I. In fact, when the ExitFlag is set to 0 big steps are done towards the 
optimal dose until the ExitFlag is set to 1 by the algorithm. In the previous versions, when at least 
one of the hypoglycemic thresholds were exceeded, the ExitFlag was set to 0 again by the algorithm 
bringing it again into the eu/hyperglycemia loop. In this last version this possibility was eliminated:  
 

o TH1<7.5%, TH2<5%, TSH<2.5% 

The optimal basal-insulin dose has been administered to the patient and there is not a significant 
hypoglycemic event, therefore the mean TIR on the 3 days is still computed:  

▪ Mean TIR < 50% 
In this case since the subject is not at risk for hypoglycemia, most of the time is spent above 
the glycemic target range. Thus, a 2 U increment is administered to try to lower the TAR  
▪ Mean TIR > 50% 
Also, the minimum time threshold for older/high-risk adult with type 2 diabetes15 is achieved, 
hance the algorithm keeps the current dose and, as for the previous versions, it continues to 
monitor that the subject is not exceeding any of the hypoglycemic thresholds.  
 

o TH1>7.5% 

This case is considered by the algorithm as a mild hypoglycemic case.  Thus, to not exceed TH1 
threshold again a 2 U decrement is administered  
 
o TH2 > 5% 

When the TH2 threshold is exceeded, the algorithm detects a moderate hypoglycemic event, 
however still a 2 U increment is administered  
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o TSH>2.5%  

In this situation, despite the flag was setted to one by the algorithm, a severe hypoglycemic event 
has occurred, this can happen due to variation in the physical activity coupled with a reduced 
carbohydrate intake. However, a 4 U decrement is administered to reduce the time spent below 
the 50 mg/dL.  

 
In figure 2.17 a representation of possible dosing scheme which shows the big steps done when the 
ExitFlag is setted to zero, and finer movement done when the ExitFlag value is equal to 1.  
 

 

Figure 2.17 Two Possible situations after which the ExitFlag was set to one: on the left, an overshoot of the optimal dose 

(54 U) with the gradual descend, on the right the gradual increment done when the mean TIR is lower than 50%.  The 

black vertical line marks the time from which the ExitFlag is equal to 1. 

  



 

44 

Finally, as for the other versions of the algorithm the 180 days simulated CGM and the dosing scheme 
of subject 39 are showed. 

Figure 2.18 Insulin dose profile (left panel) administered by Algorithm 4 during the first 180-days, in red dashed line the 

optimal basal-insulin dose. 180-days CGM (right panel) with the different ranges: in green it is represented the CGM 

target range (green), TH1associated CGM range (yellow), TH2 associated CGM range (orange), TSH associated CGM 

range (red). 
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Figure 2.19 Flowchart of Algorithm 4, Eu/hyperglycemia management (above), handling of ExitFlag = 1 (middle) and 

management of hypoglycemic events (below) 
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2.5 Statistical and Clinical analysis  
 

In this section, the statistical tests used to compare the new algorithms, in terms of CGM-time metrics, 
optimal dose and FPG, and the DUAL I are reported.  
First, it is fundamental to assess whether the distribution of the considered metric is normally 
distributed or not. To do this, the Shapiro-Wilk test39 is used, which uses two variance estimators:  
 

• A non-parametric statistic estimator based on the linear combination of the rank order of a random 
variable.  

• A parametric variance estimator which provides the sample variance. 
 
These two statistical estimators are used for building the functional 𝑊:  
 
 𝑊 = (∑ 𝑎𝑖𝑥(𝑖)𝑛𝑖=1 )2∑ (𝑥𝑖 − 𝑥̅)2𝑛𝑖=1  

 
(2.44) 

 
Where 𝑥(𝑖) is the i-th smallest sample value, hence the rank I. Moreover, 𝑥̅ is the sample arithmetic 

mean:  
 
 𝑥̅ = 𝑥1 +⋯+ 𝑥𝑛𝑛  

 
 (2.45) 

 

The constants 𝑎𝑖 are defined as: 
 
 (𝑎1, … , 𝑎𝑛) = 𝑚𝑇𝑉−1(𝑚𝑇𝑉−1𝑉−1𝑚)12 

 
(2.46) 

 
 
The vector 𝑚 is defined as:  
 
 𝑚 = (𝑚1, … ,𝑚𝑛)𝑇 (2.47) 

 
where 𝑚1, … ,𝑚𝑛 are the expected values of the ranks and 𝑉 it is the ranks covariance matrix. By 
definition, the functional 𝑊 can assume value between 0 and 1 and it is used to the test the normality 
of parameter distributions. Thus, if the test is not able to refuse the null hypothesis the samples value 
(i.e., the CGM metrics distribution) are normally distributed, vice versa they are not. 
The Shapiro-Wilk test is applied to each CGM time metric (TIR, TAR and TBR) and on FPG. As 
discussed in section 2.4, the test was done on the HIN classified subject.  
In the results section this test is first used and then, if the metrics are normally distributed, they are 
be represented as: 
 
 𝑚𝑒𝑡𝑟𝑖𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅ ± 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  (2.48) 



 

47 

 
Where, 𝑚𝑒𝑡𝑟𝑖𝑐̅̅ ̅̅ ̅̅ ̅̅ ̅ is the mean value of the generic CGM time metric and 𝜎𝑚𝑒𝑡𝑟𝑖𝑐  is the relative SD. 
Meanwhile, if the metrics are not normally distributed, they will be showed as:  
 
 𝑚𝑒𝑡𝑟𝑖𝑐̃  & 𝐼𝑄𝑅𝑚𝑒𝑡𝑟𝑖𝑐 (2.49) 

 
In which, 𝑚𝑒𝑡𝑟𝑖𝑐̃  is the median of the generic CGM time metric and 𝐼𝑄𝑅𝑚𝑒𝑡𝑟𝑖𝑐  is the associated IQR.  
Furthermore, assessing if the distribution of the metrics is normal or not is fundamental for choosing 
the right test to assess whether 2 different algorithms provide results which are statistically different. 
In fact, if the metrics are normally distributed the paired two-tailed t-test40 is used:  
 
 {𝐻0:  𝜇𝑑 = 0𝐻1:  𝜇𝑑 ≠ 0 

 
(2.50) 

 
Where,  𝜇𝑑 is the true mean difference. On the other hand, if the data are not normally distributed the 
Mann-Whitney U-test41 for paired data is applied on the CGM metric sample to find median 
differences: 
 {𝐻0:  𝑚1 = 𝑚2𝐻1:  𝑚1 ≠ 𝑚2 

 

(2.51) 

Where 𝑚1 and  𝑚2 are the median of two CGM time metrics associated to the specific titration rule. 
However, a fundamental step is choosing the algorithm with the best performances. For normally 
distributed metrics the F-test in one-way analysis of variance (ANOVA) is performed on CGM 
metrics. It is used to assess whether the expected values of a quantitative variable within several pre-
defined groups differ from each other. The ANOVA test is based on the F-test statistic, which for this 
purpose is formulated as follows:  
 
 𝐹 = 𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒𝑢𝑛𝑒𝑥𝑝𝑙𝑎𝑖𝑛𝑒𝑑 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 = 𝑏𝑒𝑡𝑤𝑒𝑒𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦𝑤𝑖𝑡ℎ𝑖𝑛 − 𝑔𝑟𝑜𝑢𝑝 𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  

 
(2.52) 

 
 
Generally, the ANOVA tests if the means of a certain number of groups are significant different. 
Thus, the null hypothesis (𝐻0) in the comparison regards if the means of the groups are all the same, 
however, the alternative hypothesis (𝐻1) typically is formulated for assessing if at least one of the 
groups mean is different. The ANOVA test was applied to each normally distributed metric produced 
by the algorithms. Hence, it was used for finding differences between the 4 means of the metrics 
compared at 4 different cumulative time checkpoints (i.e., third, sixth, nineth, twelfth month). 
For non-normally distributed metrics the Kruskal-Wallis test42 is used. It is a non-parametric version 
of the one-way ANOVA based on the extension of the Mann-Whitney U test to more than 2 groups, 
thus the data are pooled and ranked from the smallest to the largest, then the sums of ranks in each 
subgroup are added up, and the probability is calculated. The statistic H is defined as follows:  
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 𝐻 = (𝑁 − 1) ∑ 𝑛𝑖(𝑟̅𝑖 − 𝑟̅)2𝑔𝑖=1∑ ∑ (𝑟𝑖𝑗 − 𝑟̅)2𝑛𝑖𝑗=1𝑔𝑖=1  
 
(2.53) 

 
Where, 𝑛𝑔 is the number of observations in the group g, 𝑟𝑖𝑗 is the rank of the observation 𝑗 within the 

group 𝑖, 𝑁 are the observations of all groups and 𝑟̅𝑖 is defined as follows:  
 
 𝑟̅𝑖 = ∑ 𝑟𝑖𝑗𝑛𝑖𝑗=1𝑛𝑖  

 
(2.54) 

 
Moreover, beyond the statistical tests used for inferring information on the metric distributions and 
on metric differences which can occur due to the application of different titration protocol, also some 
clinical assessment should be taken in consideration. Despite differences in the population regarding 
the possibility of reaching standardized CGM time metric target values, there are guidelines to assess 
the efficacy of glycemic control for adult and/or older/high-risk T2D patient16.  
In particular, TIR needs to be above 70%, i.e., 16 hours and 48 minute per day spent in the glycemic 
target range, while for the Older/high-risk subject the TIR lower boundary is equal to 50%, hence at 
least 12 hours must be spent by the subject within the glycemic target. For the two up mentioned 
categories, 5% is the clinically relevant TIR improvement since this increment brings clinically 
significant benefits to the patient.  
Concerning TBR, it is fundamental to stick it as much as possible to the guides provided by the 
international consensus. The percentage of the reading for standard T2D patient should be less than 
4% (i.e., less than 1 hour) when considering values lower than 70 mg/dL, while for older/high-risk 
subjects the percentage drops to 1% or equivalently less than 15 min spent daily below the target 
glycemic range. Meanwhile, in the case of the TAR, the percentage of CGM samples acquired should 
be less than 25% (i.e., less than 6 hours) spent above 180 mg/dL and less than 5% (<1 hour and 12 
minutes) above 250 mg/dL. For older/high-risk categories just the percentage of samples time which 
lay above 250 mg/dL is defined and it should be less than 10% (i.e., <2 hours and 24 minutes). In 
figure 2.20, a visual representation of the CGM time target along with the time metrics is shown. 
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Figure 2.20 CGM-based target for T2D subject (left) and for older/High-risk patients (right). Adapted from 16 

 
Finally, the best algorithm is selected after comparing the different metrics at each time points using 
the ANOVA or Kruskal-Wallis tests, furthermore a posteriori analysis is done. In fact, for each 
algorithm the Pearson correlation (𝜌) and the coefficient of determination (𝑅2) are computed using 
the HIN subject final doses of DUAL I and of the specific algorithm. Thus, the Pearson correlation 
measures the strength of the linear relationship between 2 variables. Let 𝑂𝐼𝐷𝐷𝑈𝐴𝐿𝐼 be the final doses 

computed by DUAL I and 𝑂𝐼𝐷𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑥  that provided by the algorithm x where x is the version:  

 
 𝜌 = 𝑐𝑜𝑣(𝑂𝐼𝐷𝐷𝑈𝐴𝐿𝐼, 𝑂𝐼𝐷𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑥)𝜎𝐹𝐷𝐷𝑈𝐴𝐿𝐼𝜎𝐹𝐷𝐴𝑙𝑔𝑜𝑟𝑖𝑡ℎ𝑚𝑥  

 
(2.55) 

 
Where, 𝑐𝑜𝑣 is the covariance operator and 𝜎 is the SD. The algorithm that has the higher correlation 
with DUAL I will be considered as the best one. In fact, this means that the best version of the 
algorithm administers a dose which will be linearly correlated with the one provided by DUAL I, 
therefore the major difference lays in the time used for administering the optimal dose and not in the 
dose itself.  
This is a fundamental step in basal-insulin titration algorithm, in fact, lowering the titration time will 
result in less time spent above the glycemic target and in an increase of TIR. Furthermore, if the final 
dose is correlated to the one administered by DUAL I, the FPG relative to the new algorithm should 
match the clinical boundaries (even if this metric is not considered at implementation level for the 
new algorithms). Hence, even if the new CGM-based approaches do not consider the subject fasting 
glucose, which is used and clinically accepted, they are still able to bring this value within safety 
ranges.  
Moreover, to further understand the relationship occurring between the 2 final dose sets also a simple 
linear regression is performed, from which the  𝑅2 statistic was extracted and evaluated, beyond the 
analysis done on the correlation. In fact, the 𝑅2 indicates the proportion of variance in the dependent 
variable (i.e., algorithm x final doses) that can be explained by the independent variable (i.e., DUAL 
I final doses). It can be defined as:  
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 𝑅2 = 1 − 𝑆𝑆𝑅𝑆𝑆𝑇 = 1 − ∑(𝑦𝑖 − 𝑦̂𝑖)2∑(𝑦𝑖 − 𝑦̅𝑖)2 

 
(2.56) 

 𝑆𝑆𝑅 is the residual sum of squares, where 𝑦𝑖 is the actual value of 𝑦 while 𝑦̂𝑖 is the predicted value. 𝑆𝑆𝑇 is the total sum of squares which is squared the sum of the distance between the data and the 
mean (i.e., 𝑦̅𝑖). 
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CHAPTER 3 

 Results 
 

3.1 Best Titration Algorithm Selection 
 

In this section, the new algorithms are compared using the statistical tests described in section 2.5, 
and this was done to determine the best one in terms of performance and similarity with DUAL I.  
The first step was to evaluate the normality of the distributions (Tables 3.1, 3.2, 3.3, 3.4 and 3.5) and 
then the proper test was used to investigate possible statistical differences among them (tables 3.6, 
3.7, 3.8 and 3.9). In most cases the TIR are normally distributed, as well as for the TAR and the FPG. 
However, the TBR is never normally distributed. Also, the FPG relative to the first month checkpoint 
is never normally distributed, this can be because algorithms require more time to uniform the fasting 
glucose of HIN subjects. Finally, the DUAL I rule provides metrics which are not normally 
distributed at all cumulative time checkpoints.  
 

Algorithm 1 
Time Metric 1 month  3 months  6 months 

 
9 months 

 
12 months 

 

TIR 0.89 0.59 0.87 0.85 0.74 

TAR  0.89 0.27 0.48 0.62 0.51 

TBR 1.76 ∗ 10−11 2.55 ∗ 10−7 3.49 ∗ 10−7 3.33 ∗ 10−7 3.29 ∗ 10−7 

FPG 0.05 0.19 0.51 0.62 0.30 

Table 3.1 Algorithm 1 p-values of the Shapiro-Wilk test. 

 

Algorithm 2 
Time Metric 1 month   3 months  6 months 

 
9 months 

 
12 months 

 

TIR 0.89 0.17 0.04 0.04 0.04 

TAR  0.89 0.08 0.02 0.03 0.03 

TBR 1.76 ∗ 10−11 2.67 ∗ 10−7 3.55 ∗ 10−7 4.21 ∗ 10−7 3.51 ∗ 10−7 

FPG 0.05 0.38 0.66 0.69 0.66 

Table 3.2 Algorithm 2 p-values of the Shapiro-Wilk test. 

 
Algorithm 3 
Time Metric 1 month   3 months  6 months 

 
9 months 

 
12 months 

 

TIR 0.89 0.95 0.97 0.88 0.85 

TAR  0.89 0.78 0.94 0.77 0.72 

TBR 4.84 ∗ 10−12 5.39 ∗ 10−8 2.33 ∗ 10−7 3.15 ∗ 10−7 5.55 ∗ 10−7 

FPG 0.02 0.64 0.92 0.27 0.64 

Table 3.3 Algorithm 3 p-values of the Shapiro-Wilk test. 
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Algorithm 4 
Time Metric 1 month   3 months  6 months 

 
9 months 

 
12 months 

 

TIR 0.89 0.95 0.99 0.91 0.84 

TAR  0.89 0.74 0.99 0.80 0.57 

TBR 4.84 ∗ 10−12 2.69 ∗ 10−8 3.46 ∗ 10−7 1.08 ∗ 10−6 3.63 ∗ 10−6 

FPG 0.02 0.79 0.79 0.07 0.63 

Table 3.4 Algorithm 4 p-values of the Shapiro-Wilk test. 

 

Table 3.5 DUAL I p-values of the Shapiro-Wilk test 

 

Subsequently, the ANOVA test was employed to compare each CGM-time metric among the 4 new 
Algorithm. The results of the ANOVA test can be found in tables 3.6, 3.7, 3.8, and 3.9, which display 
the two-group comparisons alongside the corresponding p-values.  
  

DUAL I 
Time Metric 1 month   3 months  6 months 

 
9 months 

 
12 months 

 

TIR 3.84 ∗ 10−8 3.85 ∗ 10−8 6.79 ∗ 10−7 2.10 ∗ 10−5 2.66 ∗ 10−5 

TAR  3.75 ∗ 10−8 1.83 ∗ 10−8 2.61 ∗ 10−7 8.81 ∗ 10−6 1.45 ∗ 10−5 

TBR 0 0 0 0 0 
FPG 0.01 4.09 ∗ 10−9 4.56 ∗ 10−10 2.52 ∗ 10−8 6.45 ∗ 10−9 
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Table 3.6 TIR ANOVA test p-values after 3rd, 6th, 9th and 12th months. 

Table 3.7 TAR ANOVA test p-values after 3rd, 6th, 9th and 12th months. 

Table 3.8 TBR Kruskal-Wallis test p-values after 3rd, 6th, 9th and 12th months. 

Table 3 FPG ANOVA test p-values after 3rd, 6th, 9th and 12th months. 

 
 
 
  

TIR ANOVA test  

Algorithm i  Algorithm j 3rd month 6th month 9th month 12th month 

1  2 1 1 1 1 

1  3 1 1 0.96 0.97 
1  4 1 0.99 0.96 0.96 

2  3 1 0.98 0.91 0.91 
2  4 1 0.97 0.89 0.89 

3  4 1 1 1 1 

TAR ANOVA test  

Algorithm  i  Algorithm j 3rd month 6th month 9th month 12th month 

1  2 1 1 1 0.99 

1  3 1 1 1 1 
1  4 1 1 1 1 

2  3 1 1 1 0.95 
2  4 1 1 0.99 0.94 

3  4 1 1 1 1 

TBR Kruskal-Wallis test  
Algorithm i  Algorithm j 3rd month 6th month 9th month 12th month 

1  2 1 0.98 0.97 0.89 
1  3 0.91 0.65 0.36 0.31 

1  4 0.91 0.77 0.32 0.25 
2  3 0.91 0.86 0.62 0.74 

2  4 0.91 0.93 0.58 0.68 
3  4 1 0.99 1 0.99 

FPG ANOVA test  
Algorithm i  Algorithm j 3rd month 6th month 9th month 12th month 

1  2 1 0.94 0.98 0.98 
1  3 0.97 1 1 1 

1  4 0.98 0.98 1 1 
2  3 0.99 0.96 0.98 0.99 

2  4 1 1 0.98 0.98 
3  4 1 1 1 1 
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 In the figure 3.1, TIR, TAR, TBR and FPG are reported for each of the new Algorithms.  
 

 

Figure 3.1 Time metrics of the different versions of the algorithm: Algorithm 1 (gray), Algorithm 2 (green), Algorithm 3 

(blue) and Algorithm 4 (red); The metric showed are the TIR (upper left panel), the TAR (upper right panel), the TBR 

(lower left panel) and FPG (lower right panel).  

Despite the absence of statistical differences among CGM metrics between the different versions of 
the Algorithm, some conclusions regarding the best one can still be outlined. Visually, the last two 
versions of the Algorithm show the absence of outliers at 3-,6-, and 12-month in TIR, coherently they 
are not present also in the TAR metric. Moreover, for the TIR, the TAR and the FPG, the last 2 
versions of the Algorithm have narrower boxplot, meaning that the metric has a lower IQR. However, 
the last version of the Algorithm does not exceed the 4 % tolerance boundaries on the TBR. Hence, 
also this criterion suggests that Algorithm 4 is the best among the other versions. 
Furthermore, when considering the mean dose computed on the population for the whole in-silico 
trial duration (see figure 3.2), one can see that the last version of the Algorithm is not the faster in up-
titrating subjects (table 3.10), but on average the optimal dose is achieved after 61 days, which is still 
way less than the half of the mean time that DUAL I needs for administer its optimal dose.  
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Titration rule Mean Time for administering the optimal dose (days) 
DUAL I 151 (max = 187, min = 49) 

Algorithm 1 43 (max = 46, min = 28) 
Algorithm 2 40 (max = 43, min =28) 
Algorithm 3 64 (max = 112, min = 22) 
Algorithm 4 61 (max = 67, min =22) 

Table 3.10 Mean, maximum and minimum time for administering the optimal dose in each new algorithm. 

 

Figure 3.2 The lines are the mean dose computed on the population considering the whole 52-week in-silico trial: DUAL 

I in green, Titration Algorithm 1 (TA1) in blue, Titration Algorithm 2 (TA2) in red, Titration Algorithm 3 (TA3) in yellow 

and Titration Algorithm 4 (TA4) in violet. The vertical black line indicates on average the amount of time needed by each 

algorithm for administering the relative optimal insulin dose. 

 

Finally, another difference between the Algorithm 4 and the other versions obtained from the figure 
3.2 is the smoothness: the last version of the Algorithm is much smoother and flat when considering 
the pathways after the mean convergence time; meaning that, on average, the fourth version of the 
Algorithm is the most stable, i.e. it avoids administering abrupt dose changing which can be caused 
by daily fluctuation of the subject glycemia.  
Finally, the optimal end doses of each Algorithm are compared with those obtained with DUAL I in 
terms of correlation and R2. In figure 3.3, different scatter plots with the regression line for all the 
different versions of the Algorithm are reported. 
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Figure 3.3 Scatter plots of optimal insulin dose of DUAL I vs. Algorithm 1 (left higher panel), Algorithm 2 (right higher 

panel), Algorithm 3 (left lower panel) and Algorithm 4 (right lower panel). In red the linear regression lines. In the box the 

linear correlation coefficient (𝜌) and the coefficient of determination (R2) are showed 

 
In conclusion, as one can immediately see through the different versions of the Algorithm, there is a 
clear improvement in the 𝑅2 statistic, starting from 0.39 is almost doubled (0.68) in the last version 
of the Algorithm meaning that the linear relationship between the final DUAL I doses, and the optimal 
Algorithm 4 doses has significantly improved. This is also supported by the progress made in the 
linear correlation. In fact, there is a remarkable improvement when considering the first two versions 
of the Algorithm and the third one (i.e., from 0.65/0.63 to 0.81), as well as a smaller improvement 
going from the third to the fourth version (i.e., from 0.81 to 0.82). Regarding these results the last 
version of the Algorithm was chosen with this criterion. 
In the end, for all the reasons presented above and accordingly to the various criteria mentioned, 
Algorithm 4 is considered as the best algorithm among the others. The results achieved will be 
presented and compared to the ones provided by DUAL I in section 3.2 of this work.  
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3.2 Best Titration Algorithm vs DUAL I  

 
In this section, the best algorithm selected in section 3.1 (i.e., Algorithm 4) is compared with the state 
of the art of the basal-insulin titration rule, thus, DUAL I. For understanding possible differences 
which can occur within the cohort of T2D patient, the metrics are evaluated until the first, third, sixth, 
nineth and twelfth month; hence, each CGM-time metric and the FPG will be presented and evaluated 
(figure 3.4).  
First, one can immediately see that statistical differences are found in the first and third months for 
the TIR and the TBR, for the TAR statistical differences are also found at the sixth month, while, for 
the FPG, the difference is statistically significant only at the first month. 
Regarding the statistical difference at the first month in TIR, Algorithm 4 achieved a median TIR of 
44%, while DUAL I 36%. As previously said the minimum increase in the TIR which could lead to 
clinical relevant improvement is 5%16: Algorithm 4 was able to almost double this value within the 
first month; furthermore, the IQR is lower (28% for the Algorithm 4 vs. 39% provided by DUAL I). 
Thus, when applying a faster titration rule such as Algorithm 4, TIR value results more bunched up 
around the median. Hence, limiting possible variations in the population response to basal-insulin 
titration rules, that can occur due to inter- and intra-variability allows to better stick to clinical CGM 
target; this tendency to have much lower IQR values is preserved through until the last time 
cumulative checkpoint (i.e., twelfth month). The difference is maintained also at the third month 
(Algorithm 4 showed a median TIR of 57% and DUAL I of 48%).  Hence, not only the almost doubled 
clinically significant difference with DUAL I is preserved, but using Algorithm 4 for 2 more months 
leads to a TIR improvement of 13 %. The sixth, nineth and twelfth comparisons were not statistically 
significant.  
For what concerns the TBR, in figure 28 the 4 % tolerance threshold used in the clinical practice is 
highlighted. As for the TIR, statistical differences are found only in the first and third months. 
Especially, when considering the first month, median values for both Algorithm 4 and DUAL I were 
zero, despite this the Mann-Whitney test indicates a statistical difference. Moving to the third month, 
the last version of the Algorithm performs slightly worse with respect to DUAL I, in median within 
3 months subjects spend 0.06% below 70 mg/dL. However, there are several outliers which lays near 
the tolerance threshold without going above it. In general, up-titrated subjects using the Algorithm 4 
have an overall higher probability of experimenting hypoglycemic event:  more aggressive rules tend 
to arrive faster to the target (i.e., normalize the glycemia of the subject), but the likelihood of 
overshooting the target is higher. Despite this, the TBR differences are not statistically significant 
when considering sixth, nineth and twelfth month assessments.  
The TAR metric is the one that provides the greater improvement. As already discussed in the 
introduction, spending time above the glycemic target raises the risk of experimenting different 
pathologies, CVD for instance, and thus it is fundamental to reduce time spent above the glycemic 
target range. Thanks to Algorithm 4, the statistics regarding the TAR are heavily improved with 
respect to DUAL I. In fact, this is the only metric which shows a statistical difference with DUAL I 
at the sixth month. There is a significant reduction at 1 month, in fact Algorithm 4 provides a median 
TAR of 54%, while DUAL I shows a median of 62%. Moving to the third month evaluation, the 
statistical difference is preserved, as well as for a marked reduction of the TAR metric (Algorithm 4 
TAR = 41%, DUAL I TAR = 51%). When considering the sixth month the TAR difference is reduced, 
this is because (the same goes for the TIR) DUAL I has enough time to reach high dosages that 
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normalize the subject glycemia. As a consequence, there is the absence of statistical difference at nine 
and twelve months. However, for all the time considered, and especially for the sixth, nineth and 
twelfth month, the IQR provided by the Algorithm 4 are much lower than those associated to DUAL 
I. The benefits of IQR reduction are already described for the TIR.  
Finally, looking at the FPG, a statistical difference is observed within the first month of the trial 
showing a reduction in the FPG, thus, the Algorithm 4 median FPG is 134 mg/dL while for DUAL I 
is 156 mg/dL. However, the FPG value evaluated at the third month of the in-silico trial is almost the 
same and considering the sixth, nineth and twelfth month assessment the median FPG of Algorithm 

4 tends to be higher. Nevertheless, there are not statistical differences with the DUAL I ones. 
Moreover, despite the first and third month, considering the sixth, the nineth and twelfth month the 
IQR provided by the Algorithm 4 are higher.  
Tables 3.11, 3.12, 3.13, 3.14 and 3.15 show the numeric value of the metrics and the p-values of the 
statistical tests.  
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Figure 3.4 CGM-metrics and FPG after 1st, 3rd, 6th, 9th and 12th months for DUAL I (blue) and Algorithm 4 (red). In the 

upper left panel the TIR result are showed, in the upper right panel the TBR results are presented, while in the lower left 

panel the TAR results are showed and in the lower right panel there are the FPG results. Statistical differences are 

marked by black crosse 
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TIR (%) comparison  

Time 1st month 3rd month 6th month 9th month 12th months 

Algorithm 4 44.55[28.10]  57.07[16.75]  60.51[13.18] 61.98[12.35]  62.90[11.24] 
DUAL I 36.42[39.43]  48.20[33.36] 59.39[30.23] 62.18[26.74] 62.18[23.64]  

p-value 𝟐. 𝟕𝟖 ∗ 𝟏𝟎−𝟖  𝟒. 𝟐𝟓 ∗ 𝟏𝟎−𝟓 0,05  0.31  0.55 
Table 4 TIR (median [IQR]) comparison at different time points between Algorithm 4 (first line) and DUAL I (second line). 

Bold p-values (third line) represent statistical differences between the two rules according to Mann-Whitney test. 

 

TAR (%) comparison  

Time 1st month 3rd month 6th month 9th month 12th months 

Algorithm 4 54.19[27.64]  41.00[16.67]  37.42[12.79] 36.41[11.63]  36.35[11.06] 
DUAL I 62.59[39.41]  50.58[33.36] 39.19[29.91] 36.30[26.91] 35.20[23.69]  

p-value 𝟐. 𝟕𝟖 ∗ 𝟏𝟎−𝟖  3. 𝟐𝟕 ∗ 𝟏𝟎−𝟓 0.04  0.20  0.42 
Table 3.12 TAR (median [IQR]) comparison at different time points between Algorithm 4 (first line) and DUAL I (second 

line). Bold p-values (third line) represent statistical differences between the two rules according to Mann-Whitney test) 

 

Table 3.13 TBR (median [IQR]) comparison at different time points between Algorithm 4 (first line) and DUAL I (second 

line). Bold p-values (third line) represent statistical differences between the two rules according to Mann-Whitney test) 

 

  

TBR (%) comparison 

Time 1st month 3rd month 6th month 9th month 12th months 

Algorithm 4 0[0]  0.06[0.65]  0.08[1.00] 0.11[1.2]  0.08[1.51] 
DUAL I 0[0]  0[0.11] 0.23[0.34] 0.28[0.30] 0.27[0.28]  

p-value 0.01  2. 𝟐𝟎 ∗ 𝟏𝟎−𝟑 0.17  0.13 0.11 

FPG (mg/dL) comparison 

Time 1st month 3rd month 6th month 9th month 12th months 

Algorithm 4 134.81[23.26]  119.70[32.95]  114.92[38.16] 118.32[35.78]  111.34[31.65] 
DUAL I 156.16[34.59]  120.77[41.15] 104.37[26.02] 104.86[23.54] 101.25[18.48]  

p-value 0.01  2. 𝟐𝟎 ∗ 𝟏𝟎−𝟑 0.17  0.13 0.11 
Table 3.14 FPG (median [IQR]) comparison at different time points between Algorithm 4 (first line) and DUAL I (second 

line). Bold p-values (third line) represent statistical differences between the two rules according to Mann-Whitney test) 
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As mentioned in this thesis, one of the strengths of the novel CGM approaches is the possibility to 
provide a faster titration to patients. This can be seen in the average track of the FPG computed using 
the HIN population, as well as for the HIN population mean dose (figure 3.5). As one can see in the 
lower panel of the figure 3.5, the Algorithm 4 provides, on average, a steep descend of the FPG and 
brings this metric to values comparable to the ones achieved by DUAL I in about 60 days, while 
DUAL I takes about 130 days to do the same job. Thus, the novel approach can provide faster 
lowering of the FPG, bringing the subject to be less exposed to the risks related to hyperglycemia. 
However, since the FPG is not considered in the Algorithm 4, the FPG SD is higher than the one 
associated to DUAL I.  
 

 

Figure 3.5 In the upper panel the mean±SD dose of Algorithm 4 (blue line and area) and of  DUAL I dose (red line and 

area) are showed. In the lower panel the average HIN population FPG is presented.  
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The FPG results showed that the statistical differences are limited to the first months of the trial. This 
occurs because the insulin needs of T2D patients do not change when changing the titration rule, 
hence the final dose needed by subjects remains the same. What changes is the velocity at which the 
patients arrive to the optimal dose and the criteria that it should satisfy. When considering the 
velocity, as showed by the table 3.10, the mean convergence time (i.e., when the optimal insulin dose 
is found) of the Algorithm 4 is located way before of the one achieved by DUAL I. For this reason, it 
is interesting to assess possible statistical differences which can occur when comparing the metrics 
computed until the mean time at which the Algorithm 4 starts to administer its optimal dose, i.e. 61 
days. Since this is a new cumulative time checkpoint the normality test were performed again, to 
understand which statistical test use. In the table 3.15 the Shapiro-Wilk test results are showed for 
the mean convergence time.  
 

Algorithm 4 DUAL I 

Time Metric 61 Days Time Metric 61 Days 

 TIR 0.81 
0.40 7.55 ∗ 10−9 
0.68 

TIR 0.19 
0.20 3.34 ∗ 10−11 
0.57 

TAR TAR 

TBR TBR 

FPG FPG 
Table 3.15 Algorithm 4 and DUALI Pvalues of the Shapiro-Wilk test 

This shows the possibility for the TIR, the TAR and the FPG of using the paired t-student test instead 
of the Mann-Whitney test, since both Algorithm 4 and DUAL I, provides normal distributed metrics 
according to the Shapiro-Wilk test.  
In figure 3.6, a graphical representation of the results is showed. It is confirmed what said for the 
previous analysis, by applying the new Algorithm for the first 61 days of the in-silico trial, statistical 
differences are found in all the metric. Confirming the better performances of the Algorithm 4 for the 
TIR, the TAR and the FPG. However, at 61 days the differences are confirmed by a more powerful 
test such as the t-test. Although, there is also a statistical difference in the median of TBR, which 
indicates that there is a significant shift in the median when using Algorithm 4 of  5.7 ∗ 10−3 %, 
which is quite small and not clinically significant. In table 3.16, the mean/median with the relative 
SD/IQR are reported for the Algorithm 4 and DUAL I.  
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Figure 3.6 Shows the results at 61 days (i.e., the mean time at which Algorithm 4 administer its optimal dose) for DUAL 

I (blue) and Algorithm 4 (red). In the upper left panel, the TIR result are showed, in the upper right panel the TBR 

results are presented, while in the lower left panel the TAR results are showed and in the lower right panel there are the 

FPG results. Statistical differences are marked by black crosses. 

 

 

 

CGM-metrics comparison at convergence time 

Time TIR (%) TBR (%) TAR (%) FPG (mg/dL) 

Algorithm 4 55.53±13.99 5.7 10-3 [0.48] 45.02±13.97 113.98±27.72 
DUAL I 42.55±22.32 0 [0] 56.51±22.43 138.26±27.30 

Pvalues 3.98 10-7 (#) 2.32 10-4 ($) 3.03 10-7 (#) 8.80 10-4 (#) 
Table 3.16 61-days comparison between Algorithm 4 (first line) and DUAL I (second line). TIR, TBR, TAR and FPG are 

reported as median [IQR] if not normally distributed, mean±SD instead. Bold p-values (third line) represent statistical 

differences between the two rules according to Student-T test (#) or Mann-Whitney test ($). 
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CHAPTER 4 

 Conclusion 
 

This thesis presented a novel CGM based basal-insulin titration rule for type 2 diabetes. First, the 
common back bone of each Algorithm was presented to the reader, followed by the part describing 
how to compute the CGM long-term trend and extracting relevant features from it (i.e., the mean 
slope of the curve), as well as the computation of the CGM metrics (TIR, TAR, TBR and, FPG). In 
fact, they can be used as a solid information for up-titrating patients to their optimal basal-insulin 
dose, rather than using just average three-days FPG, which is used by the state-of-the-art method, i.e. 
DUAL I rule.  
Then, the four different version of the Algorithm implemented were outlined. Each one is 
characterized by different improvements, which corrected one or more undesired behaviors that can 
occur with the previous version. In fact, the first version of the Algorithm had the tendency to provide 
doses that brings the patient to periodic hypoglycemic event, even severe. The following versions 
avoided this way of acting thanks to the implementation of a specific flag, coupled with a dedicated 
system for saving the previous administered doses.  
Another pitfall was the prefixed 10 U increment. Thus, the next step was to implement a proportional 
increment system based on some subject information. The solution was found by considering an 
increment related to the minimal clinically significant TIR improvement (i.e., a 5% variation), thus, 
an increment that provides relevant clinically benefits to the subject. Moreover, the information 
needed came from the current and the previous iteration: the correspondent TIR values were evaluated 
within a cartesian plane to find the dose increment that satisfies the up mentioned criterion. 
Lastly, the fourth version was focused on improving the behavior before the convergence to the 
optimal insulin dose is reached, using a smoother and less aggressive dosing scheme. 
Another important step was understanding which Algorithm had the best performances. In the first 
place each version was compared one with the others by using an appropriate version of the ANOVA 
test: there were no statistical differences between the new proposed Algorithms, however one can 
appreciate the improvements done for some of the outliers in the TBR as well for the TAR. Therefore, 
the best algorithm was picked considering the Pearson correlation calculated between the final 
optimal doses administered by DUAL I and the ones administered by each version of the algorithm. 
Algorithm 4 was picked as the best algorithm given it provides the highest correlation coefficient 
(𝜌=0.82) with DUAL I. Thus, the results between the last version of the Algorithm and DUAL I are 
discussed in this work.  
At the beginning, when considering the comparison between the best algorithm and DUAL I, five 
different cumulative time check points were considered: 1 month, 3 months, 6 months, 9 months, and 
12 months. For all the CGM metrics, differences were found for the first- and third-month cumulative 
time checkpoints. Moreover, for the TAR the statistical median difference was preserved also for the 
sixth month checkpoint. This is expected because, ideally, the dose needed by the subject does not 
depend on the specific titration rule used, but only on the time needed to reach the optimal insulin 
dosage. Thus, one of the main points of strength of the new approaches is the velocity of the titration 
process. Looking at the table 14, one can immediately see that the best algorithm has a mean 
convergence time of 61 days, versus the 151 days needed by DUAL I. The benefits are obvious, if a 
patient is up-titrated faster he will sake of an improved glycemia, which is reflected by better CGM 
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time metrics and FPG. To support the importance of administering faster titration rule, another 
cumulative time checkpoint was considered: the mean convergence time of the Algorithm 4; as 
expected, the TIR, the TAR and the FPG were improved to the respect of DUAL I.  
On the other hand, there are some drawbacks of administering a more aggressive basal-insulin 
titration rule. First, as discussed in this thesis, it makes sense to apply such rules only in subject that 
needs them, thus, in those in which the insulin need is higher. However, when considering the 
Algorithm 4 applied to the HIN population statistical differences were found in TBR at the first-, 
third-month cumulative time checkpoints, as well as at the Algorithm 4 mean convergence time. This 
is a natural consequence of a faster titration. In fact, it is expected that reaching the target faster using 
higher dose increments, the probability of providing to the subject a dose which is over the optimal 
one is higher. Practically, this was reflected in slightly higher values of the TBR metric. However, 
these differences were found only in the first and third month of the trial, and even in those time 
checkpoint the median differences were low (i.e., 0.06% TBR variation when applying the Algorithm 

4 titration). Moreover, at the sixth-, the nineth- and the twelfth-month checkpoint differences are not 
found anymore, and all the Algorithm 4 outliers are below the 4% threshold defined by the 
international consensus. Resulting that the safety of the T2D Algorithm user is not compromised.  
It is important to underly that when considering the HIN population, the Algorithm 4 provide an 
almost doubled clinically significant improvement of the TIR and the TAR within the first 3 months, 
bringing a risk reduction of hyper-glycemia related complications. Moreover, insulin-naïve T2D 
subjects experiment an improvement of the quality of life, deriving from a more effective and efficient 
glycemic control. Finally, the first month and the sixty-first day FPG are significantly reduced even 
if this metric is not considered into the implementation of Algorithm 4.  
However, further improvements to the proposed method can be made. In fact, the trend analysis of 
the CGM signal proved to be a powerful tool for controlling the glycemia of T2D subject. It provided 
information which can be used for the implementation of new basal insulin titration rule which are 
faster and more effective. For this reason, future improvement concerns the aggressiveness of the 
Algorithm 4. In fact, studies that aims to better tune the aggressiveness of the titration rule can be 
carried out to provide a more general rule, thus, not limited to HIN patients. Furthermore, considering 
a titration rule with an optimized aggressiveness, it could be associated to a lower probability of 
administering too high doses, resulting in an improved TBR, which is the only pitfalls of the 
Algorithm 4 when comparing it to DUAL I. Moreover, another future improvement can be the usage 
of the other trends (ST and R) to achieve even a better glycemic control with respect to the one 
obtained with Algorithm 4. Sticking to the LT trend improvements, future study can focus on 
extracting more than one feature, also coming from other domains (i.e., frequency). Finally, all the 
extracted features could be unified into an index, which can be used within the decision-making 
process in order to better understand the subject glycemic status.  
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