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Abstract

Positive systems are used to model physical phenomena in which the variables
must take non-negative values. This thesis first introduces the system-theoretic
tools needed to pose the problem of model reduction for positive linear sys-
tems in the state-space representation, where all the matrices associated to the
system have non-negative entries. Next, the analysis focuses on robust positive
model reduction, a newly proposed sub-problem of the positive model reduc-
tion that seek to reduce a positive system in a more robust way with respect
to the standard model reductions techniques, that is using non-negative reduc-
tion matrices. In order to tackle this problem, the theory of monotone matri-
ces is leveraged. In fact, monotone matrices admit non-negative inverses, a key
property that will be exploited to find sufficient and necessary conditions to
ensure a robust positive model reduction. An algebraic approach to robust pos-
itive model reduction, that consists in enclosing the reachable space to a bigger
space that admits a positive reduction, is also presented. Finally, the different
approaches will be compared, giving a brief consideration on the optimality of
both approaches, that in this context consist in the smaller dimension of the re-
duced system that a technique can achieve.






Sommario

I sistemi positivi sono di interesse vista la loro utilita nel modellare fenomeni
fisici in cui le variabili in gioco devono assumere valori non-negativi. Questa
tesi vengono richiamati alcuni fondamenti della teoria dei sistemi per poi porre
il problema delle riduzioni del modello per sistemi positivi, i quali nella loro rap-
presentazione in spazio di stato presentano matrici con elementi non-negativi.
Successivamente viene analizzato il problema delle riduzioni del modello ro-
buste, un nuovo sottoproblema delle riduzioni di modello che cerca di ridurre il
modello usando matrici di riduzione anch’esse non-negative. A questo propos-
ito sono di interesse le matrici monotone, matrici che ammettono un’inversa
non-negativa. Quest’ultima proprieta viene sfruttata per trovare condizioni suf-
ficienti e necessarie riguardo l'esistenza di una riduzione di modello positiva
robusta. Viene inoltre presentato un approccio algebrico che consiste nel chi-
udere lo spazio raggiungibile in uno spazio che lo contenga e che ammetta una
riduzione di modello positiva. Vengono infine confrontatiidue approcci, facendo
una breve riflessione sull’ottimalita di quest’ultimi che in questo contesto cor-
risponde alla minor dimensione del modello ridotto che i due metodi possono

ottenere.
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Introduction

Positive systems are dynamical systems in which the state, the output and the
input only assume non-negative values. This property makes them the ideal tool
to model dynamic systems whose variables correspond to physical quantities
that are indeed non-negative. Examples of these models are the Leontif model
used economists for predicting productions and prices [11], the Leslie model
used to study age-structured population dynamics [12], and the compartmental
models commonly used in physiology [10] and epidemiology [2]. Moreover,
they naturally emerge in stochastic models that describe probabilistic evolutions,
such as the Markov Chains [5] and the Hidden Markov Models [16], as well as
phase-type distributions [14]. However, as one could expect, this type of models
are as interesting as complex. The minimal positive realization is one of the open
problems to our interest, and it will be discussed further. The work of Benvenuti
[4] provides an overview on the state-of-the-art of this topic, where general result
and different mathematical approaches are presented.

This thesis however focuses more on the problem of positive model reduc-
tion. Being capable of reducing the dimension of a system has a great impact
on the possibility of simulate and even physically implement such systems: a
smaller model might need a smaller number of sensors and actuator to fully
control or observe the system.

All the system theoretical notions that will be needed through the course of
this work will be introduced in the first Section, starting from reachability and
observability, realization theory and the standard model reduction technique
used for general linear system. The positive model reduction problem will be



posed, and the reasons why it still stands open briefly discussed. In the light
of this, the general postive model-reduction problem will be specialized to a
more constrained one, which we name robust positive model reduction. This work
is aimed to characterize this problem, identifying when it is solvable and how
to construct its solution. To this purpose, the key chapters will build a new ap-
proach to robust positive model reduction that relies on non-negative monotone
matrices.

Before presenting this approach, we introduce the notion of monotone matrix
and we present the key results of [13]. Moreover, in our case, only non-negative
matrices are of interest and hence we will specialize the results of [13] to the non-
negative monotone matrices. After gathering all tools needed, we will present
the monotone matrices approach and the algorithm that perform, when possi-
ble, the robust positive model reduction.

Finally, recent results of Ticozzi and Grigoletto [8] regarding hidden markov
models will be reviewed and extended to the general linear system setting in Sec-
tion 4. This approach relies on an algebraic approach that propose a special en-
closure of the reachable space to a vector algebra. Moreover, this approach will
manifest similar properties to the monotone matrices approach. Consequently
we will compare the two and investigate whether one or the other leads to better
solutions to the robust positive model reduction problem.

In the end, we will share some ideas about possible future work and the
directions this approach could lead to. The MatLab code to implement the al-
gorithm proposed in the course of this work is included in the appendix.



Linear system theory - a brief recap

REACHABILITY FOR LINEAR SYSTEMS

In order to make the work self contained, we start recalling the main con-
cepts of linear system theory that will be used throughout this thesis. All the
material presented here is discussed in greater detail [7] and in [3], where all
the proofs of the results included in this chapter can be found. The notions of
reachability and observability play a central role in standard model reduction
techniques. However, we will see that the the canonical reduction is not always
a viable option when dealing with positive systems. For simplicity, we will con-
sider only discrete-time systems, but as one may know the continuous-time case

is conceptually analogous.

Consider then the following state space model (X) for a linear system in

discrete-time
x(k+1)=Ax(k) + Bu(k)

y(k) = Cx(k)

(2.1)

where A € R™" B € R"™" C € RP*",

Definition 2.1.1 (Reachability matrix in k steps). The reachability matrix in k
steps of the systems (L) is defined as

Re = |BAB ... Ak—lB]



2.1. REACHABILITY FOR LINEAR SYSTEMS

Moreover, the reachable space in k is defined as its image, namely
Xllj = ImRy

In other words, the reachable space in k steps is the set of states that can be
reached by using a sequence of k inputs. It is clear that X}f is a vector subspace,
and it enjoys some important properties. Indeed, the subspaces reachable in 1,
2, ... steps satisfy the trivial chain of inclusions

XpexRe...cxPtcxX (2.2)

i+1 "

However, the reachable subspaces will eventually stop “expanding”, and this
important lemma proves that when they chain of subspaces (2.2) is stationary at
one step, it will remain stationary also for the next steps.

Lemma 2.1.1. If in the chain (2.2) two consecutives subspaces X and XX | coincide,
then the following subspaces XX, XR

. . . R
s Xiigree coincide with X:* too.

As mentioned before, there is a limit of steps for which the reachable sub-

space can continue to expand. This coincide to the dimension of the system.

Proposition 2.1.2. In a system of dimension n, the chain of subspaces (2.2) is stationary
(at least) starting from the n-th step, namely
XpexRec...cxf=xR,. ..

Moreover, XR := XX is called the reachable space and it is the set of states which is possi-
ble to steer the system starting from the zero state by applying suitable input sequences.

It is reasonable then to call the reachability matrix the reachability matrix in n
steps, namely
R=|BAB ... A"!B (2.3)

We say that a system is reachable if X® = R". Thus a necessary and sufficient
condition for the system to be reachable is rank®R = n.

Remark. Recall that by construction, the reachability subspace XX is the smallest
A-invariant subspace that includes ImB.

We will almost always deal with unreachable systems, thus it is worth to
define the truncated reachability matrix.
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Definition 2.1.2. Consider a system of dimension n where the reachable space

has dimension g < 1, namely
rankR = rank [B AB ... A”‘lB] =q

We call the truncated reachability matrix any rectangular full-rank matrix com-
posed by g columns of R. For single-input-systems, one can trivially take

p= [B AB ... Aq‘lB]

Remark. Note that the image of the reachability matrix and its truncated version
are equal. This follows directly from Proposition 2.2.1, that is because when the

reachable subspace chain becomes stationary it will remain so.

OBSERVABILITY FOR LINEAR SYSTEMS

The concept of observability refer to the possibility of determining the state
of a systems by using only the input and the output data. More precisely, an
observability problem is the estimation of the state at time t when the available
input and output data correspond to time instants subsequent to t. Consider
again the system (X).

Definition 2.2.1 (Non-observable states). A state x € R" is not observable in
[0, k — 1] if for every input sequence

u(0),u(1),...,u(k —2)

the output sequences y(-) and y’(-) obtained using that input sequence and start-
ing from the initial state x and x( = 0, respectively coincide at time 0, 1, ..., k-1,
namely if

t—1 t—1

y(t) = > CA™"IBu(j) + CA'x = )" CA™'IBu(j) = y'(¢)
=0 =0

In other words, if the output sequence obtained starting from x does not
display any difference from the output sequence obtained starting from 0, then
it is impossibile to determine whether the initial state of the system is x or 0.
One can notice that the above condition, independently of the input sequence,



2.3. DUALITY

is equivalent to check if y(t) — y/(t) = CA'x = 0, and thus x is not observable in
[0,k — 1] if and only if x € ker[CA] forallt =0,..., k- 1.

Definition 2.2.2 (Observability matrix corresponding to an interval). The ob-
servability matrix corresponding to the interval [0, k — 1] is defined as

C

CA
O[o,k-1] = : (2.4)

CAk—l

Moreover, the non-observable subspace in [0,k — 1] is defined as its kernel,
namely

X[ré)?k—l] = ker(‘)[olk_l]

Again by construction, the subspaces will satisfy the chain of inclusions

Xi’lO :_) XVlO ;) L X?’lO 2 Xi’lO

[0,0] = o,1] [0,k-1] = X[ok] = - (2.5)

Also for these subspaces, there are interesting properties related not to the ex-

pansion, but to the shrinking of these observability spaces.

Proposition 2.2.1. In an n dimensional system, the subspace chain (2.5) becomes sta-
tionary (at least) from the n-th steps onward

XE})‘TO] 2 Xﬁ)?l] 2 "'X[%(jn—l] = X[”O‘jk] D...

Moreover, X"° = X[’B"n_l] is called the non-observable subspace of the system and it

consists of the initial states that produce zero unforced output evolution.

We then call the observability matrix the observability matrix corresponding
to the interval [0, n — 1], namely

O = Opo,n-1]

DuALITY

The study of reachability and observability has been carried out along lines
that exhibit some form of similarity, both in the definitions and in the corre-
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sponding characterisations. This correspondence can be formally justified by

resorting to the notion of dual system.

Definition 2.3.1. Consider a system £ = (A,B,C). We call ; = (AT,CT,BT)
the dual system of L.

There is a direct correspondence between the reachability and observability
matrices of the dual system and the ones of the original system.

Proposition 2.3.1. Let R; and O be the reachability and observability matrices of the
dual system L4. Then

C

—|eT AaTeT Tyi-1-T]| = cA - o7
sz_[c ATCT .. (AT) c]_ | =0

CAn—l

Analogously,
04 =R"T

This means that reachability and observability properties are reversed in the
dual system. In the following, we will exploit this result when we need to reduce
our system to a reachable and observable one.

REALIZATION THEORY AND MINIMAL REALIZATIONS

The state-space representation allow to develop systematic procedures to de-
sign a controller, a regulator, to perform optimal control and many other control
aspects. However, often the system specification and quality indices are related
to the input/output map, better known as the transfer function of the system.
In continuous time the transfer function is described using the Laplace trans-
form, while the Z-transform is its discrete time counterpart. More precisely, the
Z-transform is a linear operator mapping sequences in Z, (sequences of time
instants) to functions of the complex variable z € C. The realization problem
focus is on determining a compatible state-space representation for a transfer
function. There may be multiple state-space that are compatible with a certain
transfer function and as we will see this is strictly dependent on the dimension
of the realization. As we are investigating model reduction techniques, a clear

vision of this topic is crucial.



2.4. REALIZATION THEORY AND MINIMAL REALIZATIONS

Consider the system ¥~ = (A, B, C). Its transfer function can be expressed
as a function of the system matrices and of the complex variable z € C in the
following way

Wr(z) = C(zI - A)"'B

The forced output behaviour can be described in function of the transfer function
and the input as
Y(z) = We(2)U(2) (2.6)

Moreover, the transfer function can be written in a Laurent series
Wy(z) = Mo+ Mz b+ Moz 2 + ...

where the M;’s are the Markov coefficients (or parameters) of the system X.
An important theorem links the Markov’s coefficients to the realization of a

transfer function.

Theorem 2.4.1. The set (A, B, C) is a realization of a transfer function W(z) if and

only if
M;=CA™p i=1,2,...

We now recall the definition of minimal realizations and the properties of

different minimal realizations.

Definition 2.4.1 (Minimal realization). Given a rational matrix transfer function
W(z), a realization £ = (A, B, C) is called minimal if for any X' = (A’, B, C’) of
W (z) one has

dimX < dimY’

where dimX is the dimension of the state-space (A, B, C).

The minimality property of a realization is strictly related to reachability and
observability.

Proposition 2.4.2 (Reachable and observable realizations). A realization ™. = (A, B, C)
of a rational transfer function W(z) is minimal if and only if it is reachable and observ-
able.

Moreover, it is possible to prove that all minimal realizations have the same

dimension.
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Proposition 2.4.3 (Algebraic equivalence of minimal realizations). Let 21 = (A;, By, C1)
and Lo = (Ag, By, Ca) be minimal realization, of dimension n, of W(z). Then there ex-

ists a non-singular matrix T € R"™" such that
A =T 'AT, Bi=T'By, Ci1=0CoT

Moreover, the Markov’s coefficient of W(z) are related to the minimal realizations as
follows
Mi+1 = C1ASB; = CLAEB,

In words, the above proposition says that all minimal realization are equiv-
alent, namely they realize the same transfer function and hence they have the
same impulse response. When dealing with reduction techniques, is crucial to
check whether these do not alter the input/output behaviour, otherwise the re-
duction would not be viable. In the following we present different model re-
ductions techniques, but first we define the notion of model reduction in a more

general sense.

Definition 2.4.2 (Model reduction). Consider a general system (X). A model
reduction is a pair of linear maps (matrices) {E, ]} , where E € R7*", ] ¢ R"™1,
g < n such that EJ = I; and such that

Y: A=EA] B=EB (C=(J
has the same input/output relation as (X), i.e.
Ws(z) = C(zl; — A)'B = Wx(z) = C(zI, - A)™'B

In other words, a model reduction consists in changing the representation
of a system, going from a high dimensional basis to a lower dimensional one,
preserving the input/output relation. We present the general technique used
to transform a realization into a minimal one. By Proposition 2.4.4, it is clear
that this consists in looking only at the reachable and observable dynamics of a
realization. For this purpose, we show the standard method where we denote
with t any left-inverse matrix that only needs to satisfy the condition T'T = I.

Theorem 2.4.4. Consider (X) to be a non reachable and unobservable system of dimen-
sion n. Consider a (non necessarily orthogonal) projection I on its reachable space, and
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IIr = JE a non square factorization in two full-rank matrices. A reachable realization
is obtained by
A, =EA] B, =EB C=CJ

where the reachable system ¥, = (A, B;, C,) has dimension q < n. In particular one
can consider | = P, the truncated reachability matrix P € R"™1, and E = P one of its
left inverses. If (X,) is not observable, applying the same procedure to the dual system
LD = (AT, C;], B]) yield a reachable and observable dual system 1) = (A],, C/\, B].).
Finally, computing the dual system of the dual, L,, = (Ao, Bro, Cro) is a minimal
realization for the original system L.

Proof. By duality, it is enough to prove that projecting onto the reachable space
provides a reduction. Consider the projector and its factorization

Tg = JE

. Recall that to to have a reduction, the reduced system has to have the same I/O
behaviour of the original system, namely the same transfer function. Moreover,
it is possible to prove that it is enough to prove that they have the same Markov’s
coefficients. Recall also that the reachable space is the smallest A-invariant sub-
space that contains B, thus IIxB = B. The Markov’s coefficient of the system
are

M;_; = CA*B = CAFTIRB = CIIRAMTIR B = (CITR)(IIg AITR)* (I B)

and thus the systems (A, B, C) and (ITrAIlg,ITrB, CIlR) are equivalent. More-
over this allow for a reduction. Indeed, exploiting the factorization, it holds that

Mj—1 = CTIRAFTIRB = (CJ)(EAF)(EB)

and hence (X,) is a reachable system of dimension g < n. |

POSITIVE SYSTEMS AND PROBLEM FORMALIZATION

Positive systems are dynamical systems in which the state and output vari-
ables assume positive (or at least non-negative) values for all times, for any non-
negative initial state and non-negative input. This feature makes positive sys-

tems an appropriate modeling tool for dynamic phenomena whose describing

10
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variables correspond to the quantities or concentrations of any type of resource
or substance. Moreover, positive systems are commonly used to model stochas-
tic phenomena as well, since probabilities are non-negative. As one can under-
stand, positive systems are remarkably useful in several applications in very dif-
ferent fields of science, ranging from biology and medicine to civil and electronic
engineering. Although the problem of determining the existence of a positive
realization and its computation has been solved, the characterization of mini-
mality for positive systems is still an open problem. For these reasons, also the
dimension reduction problem of positive systems is open as well. Recall that
minimality is often a key issue in applications. For example, when implement-
ing a filter, one wishes to reduce space occupation and power consumption, and
hence a positive realization with minimal dimension is desirable.

For the sake of notation and terminology, we say that a matrix A is non-
negative if every entry of that matrix is greater or equal than zero, and we will
denoteitas A > 0.

Before we dive into the positive dimension reduction problem, we define

positive systems and present their main properties.

Definition 2.5.1 (Positive system). Consider a discrete-time, time-invariant sys-

tem of the form
x(k +1) = Ax(k) + Bu(k)

y(k) = Cx(k)

(2.7)

A e R BeR™™" C e RPF.

* The system is said to be externally positive if and only if its forced output
(i.e. the output corresponding to a zero initial state) is non-negative for

any non-negative input function.

* The system is said to be a internally positive system if the state and output
sequences xx and yj are non-negative at any time for any non-negative

input sequence u; and for any non-negative initial state x(0) = xo.

Itis clear that external positivity is weaker than internal positivity, and as we

shall see it means that internal positive systems will enjoy stronger properties.

Proposition 2.5.1. A linear system is externally positive if and only if its impulse re-

sponse is non-negative, i.e.

hky=CAM'B>0 k>1

11
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Proof. Consider a discrete-time linear system with zero initial state. The output

is the discrete convolution of the input and the impulse response, namely

k
y(k) = ) h(ulk = j)

=0

Therefore, if the impulse response is non-negative, the output is non-negative for
every non-negative input, so that the system is externally positive. On the other
hand, if the system is externally positive, l(k) must be non-negative. Indeed, if
this were not the case, h(k) would be negative at least at one point j and hence
the output would be negative for an input function that is positive at least at k—j,

contradicting external positivity of the system. m|

For internally positive system, it follows that the non-negativity of the im-
pulse response is only a necessary condition. A necessary and sufficient condi-
tion is the following.

Proposition 2.5.2. A discrete-time linear system X = (A, B, C) is (internally) positive
ifand onlyif A>0,B >0,C > 0.

Proof. (<) Letting x(0) = 0, positivity implies x(1) = Bu(0) > 0 for every u(0) >
0, thatis B > 0. Moreover, y(0) = Cx(0), and hence positivity (y(0) > 0 Vx(0) >
0) implies C > 0. Finally, choosing u(k) = 0 Vk, x(1) = Ax(0) has to be non-
negative for any x(0), hence A > 0.

(=) Trivial: for any x(0) > 0 and for any u(k) > 0, the non-negativity of the
matrices is enough to ensure that the state and output are non-negative at any
time. O

Note that as mentioned before, the non-negativity of the impulse response
can be obtained with system matrices that are not non-negative, so internal pos-
itive systems are also externally positive, but the converse does not hold. The
non-negativity of the system matrices have consequences on various system
properties, most importantly on the reachability and observability. Indeed, the

reachability and observability matrices also enjoy a similar property.

Proposition 2.5.3. Given a positive system (L), both the reachability matrix and the
observability matrix are non-negative matrices.

12
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Proof. The power of a non-negative matrix is a non-negative matrix. The product
of two non-negative matrices is trivially a non-negative matrix. By construction,
it follows that R and O are non-negative. |

The problem we want to front is, starting from a positive system, to find
model reduction technique that preserve the positivity of the system matrices

and transform the system into an equivalent one of smaller dimension.

Problem 1 (Positive model reduction). Consider the positive system (X) of di-
mension n. Suppose now that it is not reachable, i.e. its reachability matrix has
rank g <n

rank® = rank |B AB ... A”‘lB] - 2.8)

we want to find a reduced system () of dimension g, satisfying the positivity
constraints, such that the two systems are equivalent.

As one may expect, the general method used to obtain a minimal realization
from a realization of greater dimension does not work. Indeed, although both
the reachability and observability matrix of a positive system are non-negative,
there may not exists respective non-negative pseudo-inverses. However, we
show through an example that this is not enough to prevent the reduction to
be positive.

Example 2.5.1. Consider the system

1100 1
1020 1
A= B =
0012 0
00 31 0
Its reachability matrix is
1 2 3 4
1123
R =
0000
0000

which has rank equal to 2. Hence, the truncated reachability matrix and its

13
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pseudo-inverse are

-1 2 00
1 -1 00

S O = =
S O =N

where V' < 0. However, the reduced system

. 0 1
A=VTAV =

is positive.

Despite these special cases may be interesting, they are also fragile. As a mat-
ter of fact, small uncertainties on the system’s model might cause the reduction
to not be positive.

Example 2.5.2. Consider the same system of Example 2.5.1. We now show that
introducing noise in some specific entries can make the model reduction non
positive. Consider

1 1+e 0 0 1
1 2 1+

A" = ! N R
0 0 12 0
0 0 31 0

Take now € = 0.1. The reduced system using the reduction matrices V' and
V1 will result in a non positive system

0.1 0.9 1.2
Vi =
1.1 1.1 —0.1

We will focus on a more “robust” type of reduction, namely the cases in

VAV =

which the reduction matrix and its inverse are both non-negative.

Problem 2 (Robust positive reachable model reduction (RPMR)). Consider the
positive system (X) of dimension n. Suppose now that it is not reachable, i.e. its

14
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reachability matrix has rank g < n
rank® = rank [B AB ... A"—lB] —y 2.9)

we want to find a non-negative reduction matrix | € R7" that admits a non-

negative inverse E and such that the reduced system (X)

is positive and equivalent to (X).

One can easily understand that using the duality theory properties revised
in section 2.3 these two problems can be extended also to unobservable systems.
Moreover, also the techniques that we derive can be trivially extended to these
systems by duality. We later see how to address this problem when dealing with
unobservable and unreachable systems. In the following, for the better under-
standing of the reader and to avoid redundancies, we only deal with observable

positive systems.

15






Monotone matrices approach to

Robust positive model reduction

MONOTONE MATRICES FOR RPMR

Monotone matrices are a family of matrices that enjoy a key property for our
goal: the inverse of a monotone matrix is non-negative. This means that if we
can find a monotone reduction matrix, the robust positive reduction problem
is solved. Nonetheless, these matrices have a particular form that prevent us
to develop a general systematic method to get a robust positive reduction. We
study the cases in which the problem can be solved, trying to expand the systems
that allow such reduction.

MONOTONE MATRICES AND NON-NEGATIVE MONOTONE MATRI-

CES

First and foremost, we recall the definition and main properties of monotone
matrices and ultimately we extend the work of [6] and [13] to the class of matrices
in our interest, non-negative monotone matrices.

A n X q real matrix A is said to be of monotone kind if
Ax>20 = x>0

The characterization of rectangular monotone matrices have been derived in
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[13]:

Theorem 3.1.1 ([13] ). Let A be a n X q rectangular real matrix, g < n. Then the
following statements are equivalent:

(a) A is (left)-monotone;

(b) A has a non-negative left inverse. In other words, there exists an q X n matrix
Y > 0such that YA = I;

(c) cone(A) 2 Ri

where cone(A) denote the conical hull of the rows of A, i.e.
cone(A) ={c Rl c=A"Tx, x >0}

Proof. (a = b) Suppose that A is monotone, i.e. Ax > 0 implies x > 0. Denote
by y; the i-th row of Y. Then, recalling that YA = I, it follows that y;A > 0 is the
the i-th canonical vector, and hence y; > 0 for every row y; of Y, thatis Y > 0.
(b = a) For the reverse implication, suppose A admits a left-inverse Y > 0.
Then, if Ax > 0, x = YAx > Y0 = 0 and hence A is monotone.

(b © c) Suppose that Y > 0 such that YA = I. Let y; be the i-th row of Y. Then
y;A is equal to the i-th canonical vector, and it has to hold for all i meaning that all
canonical vectors can be obtained by a conical combination of the rows of A since
yi > 0 Vi. But this is equivalent to the statement that each canonical vector is
contained in cone(A), which implies that (c) holds. On the other hand, if (c) holds
there exist a conical combination of the rows that gives each canonical vector.
Stacking in a matrix Y the coefficients of such linear combinations (with the i-th
row corresponding to the coefficients that return the i-th canonical vector) we

thus obtain a left inverse. O

In other words, these matrices induce the non-negativity on their left-inverse.

We provide some examples of monotone and non-monotone matrices:

Example 3.1.1 (Monotone matrices).

Aq

O O = =

_ O = O
S = = O
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Aj: it is sufficient to look at the rows 1,3,4 alone positively span R3.
2 3/2
1/2

it is a square matrix it admits one unique inverse.

Ay: for this case, note that A, = [ . Clearly since Aj is non-singular and

Example 3.1.2 (Non-monotone matrices).

100
111 11
A = Ay =
0 0 1 01
0 10

Aj: the rows do not positively span R3. Indeed [1 0 0] ¢ cone(Aq)

Aj: Recall that the conical combinations have only positive coefficients. [1 0] ¢
cone(Ay).

Remark. Note that a (left) rectangular monotone matrix do not admits a unique
inverse. Clearly non-singular square monotone matrices admits a unique in-

verse.

We now try to characterize better this property for non-negative matrices,
since we are dealing with a positive system and hence with a non-negative reach-
ability matrix. We will see that these are simpler to understand and have strong
properties that make easy to check whether a matrix is monotone even in high
dimensions.

Firstly, let us give some definitions.

Definition 3.1.1. Let x € R" be a real vector of dimension n. Its support is
defined as
supp(x) = span{e; € R" | e x # 0}

where ¢; are the canonical vectors. We also define the support of a vector space.
Let X C R". Its support is defined as

supp(X) = span{e; € R"| Ix € X : ¢ x # 0}

For the next result, we firstly have to investigate the notion of orthogonality
when treating non-negative vectors. What follows is a simple but important
characterization to our aims.
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Proposition 3.1.2. Let u € R" and v € R" be two non-negative vectors. Then they are
orthogonal under the standard scalar product, i.e.

(u,9)=u'v=0
if and only if they have disjointed support, namely

supp(u) N supp(v) = 0

We next need to introduce the concept of frame for a cone and define a gen-
eralized permutation matrix.

Definition 3.1.2. A frame is a minimal set of generators of a cone.

One may be familiar with the definition of permutation matrix, which is a
matrix that has exactly one entry of 1 in each row and each column and zeroes
elsewhere. A generalized permutation matrix, as the name suggest, is defined
in the following way:

Definition 3.1.3. A generalized permutation matrix is a matrix with only one
non-zero entry on each row and each column. Moreover, a non-negative gener-
alized permutation matrix is a generalized permutation matrix where the non-

zero entries are positive.

With these notions we are ready to present the main results that are crucial
for our analysis and will clarify the constraints of the problem.

Proposition 3.1.3. Let A € R™*" be a square non-negative matrix. Then it is monotone

if and only if it is a non-negative generalized permutation matrix.

Proof. (<) Recall that a non-generalized permutation matrix has only one pos-
itive entry for each row and column, hence the rows are vectors proportional
to the canonical vectors, and this is enough to prove that the conical hull of the
rows is equal to R’}. We thus conclude using Theorem 3.1.1.

(=) Since we are dealing with a square non-negative matrix and R} is the biggest
positively generated space by a set of n non-negative vectors, the third condition
of Theorem 3.1.1 is equivalent to cone(A) = R’}. The main observation is that
conical combinations of non-negative vectors can only expand the dimension of
the support. More precisely, call u,v € R} and call dim(supp(u)) the dimen-
sion of supp(#). Then dim(supp(f)) > max{dim(supp(u)), dim(supp(v))}, where
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f =au+po, a,p € Ry. This can clearly be expanded to conical combinations
of n non-negative vectors. This inevitably imply that to positively generate R
with non-negative vectors, these have to be proportional to the canonical base.
But then monotonicity imply that A has to be non-singular and have columns
(and rows) proportional to the canonical vectors. This is indeed a non-negative

generalized permutation matrix. m|

Putting together the last properties, we can give a specific characterization

for non-negative rectangular monotone matrices.

Proposition 3.1.4. Let A € R with q < n be a full-rank non-negative matrix.
Then it is monotone if and only if it contains a set of q distinct orthogonal rows. This
is equivalent to say that it is monotone if and only if it contains q distinct rows that are

non-negative and proportional to the canonical vectors.

Proof. (=) Suppose that A is monotone, hence cone(A) 2 RY. This is equivalent
to say that g rows of A generate the cone R since all others 1 — g rows are lin-
early dependent and hence are inside the cone generated by these g rows. Stack-
ing these g rows to the top, we obtain a square g X 4 monotone matrix, and by
Proposition 3.1.3 it is a non-negative generalized permutation matrix and hence
its rows are orthogonal.

(&) Suppose now that A contains a set of g distinct orthogonal rows. A permu-
tation of the rows of A is equivalent to left-multiply A by a permutation matrix
P. This operations does not alter the row space, namely the span of the rows of
A. Indeed span(AT) = span(ATP"). Then, stacking the g orthogonal rows to the
top, we would get a matrix of the form

A=

where G € R7* is square a non-negative generalized permutation matrix with
orthogonal rows, and hence a monotone matrix by Proposition 3.1.3. Note that a
square non-negative generalized permutation matrix has rows that are propor-

tional to the canonical vectors. O
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ROBUST POSITIVE REDUCTIONS FOR POSITIVE REACHABLE SPACES

One can now imagine how this result can be applied to systems that have a
truncated reachability matrix that is monotone. What follows is that for these

systems the standard reduction method provides a positive reduction.

Remark. It is very important to understand that in the case of multi-input sys-
tems, the choice of the truncated reachability matrix P is not unique. Indeed,
by definition, it is a rectangular full-rank matrix composed by any rankR = ¢
columns of R. This give us the choice to choose the g linearly independent
columns of R. However, how we will see further into this thesis, it is possible to
overcome this problem.

By Theorem 2.4.4, this corollary follows.

Corollary 3.1.4.1. Consider an unreachable system X = (A, B, C) of dimension n. Sup-
pose that its reachable subspace has dimension q < n and that its truncated reachability
matrix P is non-negative monotone. Then (X) admits the following reduced positive
system of dimension q

Y.: A,=PtAP B, =P'B C.=CP

Proof. From Theorem 2.4.4, TIg = PP is a projection onto the reachable space.
Moreover, by monotonicity of P it follows that P* > 0. Trivially (£ ) is a positive
system. O

There is still one important remark yet to be made. One may ask if a rect-
angular monotone matrix can admit different non-negative inverses. We show
that this is the case and we explain what is the effect of choosing different left-
inverses through an example.

Example 3.1.3. Consider the following system

011 1
A=11 0 1 B=10
1 01 0
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Its reachability matrix and its truncated version are

=

Il
S O =
—_ = O
— = N

!

Il
o O =
_ = O

Note that

1 00 1 00 1 0 0 1 0 0
Ny = N3 = Ny =
010 0 01 0 1/2 1/2 0 2 -1

are left inverse for P. Clearly for our purpose we consider only the non-negative

N, =

ones. The different projectors are

100 100 1 0 0
IMy=10 1 0 =10 0 1 I =10 1/2 1/2
010 00 1 0 1/2 1/2

Notice that by construction, Im(l_[%) = span(P) for all i. Thus the choice of
the left inverse does not change the space in which we project. Notice also that
IT3 is the only orthogonal projector out of the 3 possible ones.

|

This example make us wonder whether there is a characterization of all left-
inverses of P and hence also a characterization of all projectors on the reachable

space XR. Recall that a projector IT = PN has to satisfy the following properties:
1 =11, Im(IT) = XK

One can verify that any left-inverse N can be parametrized with the help of an

arbitrary non-singular square matrix | € R in the form
N =(PTJP)"'PT]

while satisfying the above properties. Note that however with this closed form
there is not guarantee that N is non-negative. From the monotone matrices char-
acterization we know that when P is monotone a non-negative N exists. How-
ever this could be not unique, and even with the latter formulation it could be
difficult to find a | such that N is non-negative. In the next section, we provide
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an intuitive and fast way to compute a non-negative left-inverse.

COMPUTATION OF THE NON-NEGATIVE LEFT-INVERSE

Coming from this last example, one can intuitively understand how to obtain
the non-negative left-inverse. Building on this intuition, we provide a systematic
routine to compute it. As it is well known, the computation of the left-inverse of
a matrix is a onerous operation, and for this reason the big advantage of this ap-
proach is that none or little computational effort is required. Before introducing
the method, it is worth remarking, that the left-inverse of a rectangular mono-
tone matrix is not unique. We will show how to compute one particular inverse
that may not lead to an orthogonal projector, but still works for our purposes.
The characterization of monotone non-negative matrices of Proposition 3.1.4 is
all we need to build this routine. Indeed given a non-negative monotone matrix
A € R™1, we know that there are a set of g distinct orthogonal rows. The main
idea is to exploit the result of Proposition 3.1.2, that says that these g row vectors
have to have disjointed support. Moreover, from the fact that the row vectors live
in RY, it is easy to conclude that these g row vectors have to be proportional to
the first g vectors of the canonical base of R7, namely they will have only one en-
try different from zero. Let now denote by a; € RY the i-th row of A, and by 4;;
the j-th entry of ;. We will call B € R7*" the non-negative left-inverse of A such
that BA = I;. Each of the g orthogonal rows will contribute building one of the
columns of B. Let’s start from one of the orthogonal rows of A, a;. As pointed
out before, it will have only one entry different from zero. We will denote it as
aij. The corresponding column of B, b;, will have to have all entries to zero but
the j-th element, that has to be equal to % Repeating this procedure for each
of the g distinct orthogonal rows of A we will be left with n — g columns of B to
compute. Choosing all of these columns equal to the zero vector will complete

our procedure.

EXTENSION OF ROBUST POSITIVE REACHABLE SPACES THROUGH

QR DECOMPOSITION

Although we have found sufficient conditions to robustly reduce a positive

system, monotonicity requires a very stringent form of the reachability matrix.
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We try to extend our approach to a broader family of matrices through the
known QR decomposition. The aforementioned factorization decompose a gen-
eral matrix into a product of an orthogonal matrix and an upper-triangular ma-
trix. However, from the proof of Proposition 3.1.4 one can observe that for
monotonicity we actually need a particular lower-triangular matrix. Consequently,
we will use the similar LQ decomposition. The LQ decomposition is a factoriza-
tion of a matrix into a product of a lower triangular matrix and a orthogonal
matrix. We can then decompose P € R as

P=7JQ

Notice that span(P) = span(J), hence ] still spans the reachable subspace of the
system. If ] = PQT is monotone, then it admits a non-negative inverse. However,
this decomposition does not induce positivity on ], as one can see through the
following example.

Example 3.1.4.

P =

— O
—_ =

Its LQ decomposition is the following;:

L=|-v2/2 v2/2 Q
_\/5 0

V20 [—«ﬁ/z —«5/2]

~V2/2 2/2

Recall that how it has been shown in Example 3.1.3, the choice of the left
inverse do not change the subspace in which we project. Summarizing, when the
reachability matrix P can be decomposed into a non-negative monotone matrix
and an orthogonal matrix as | = JQ, we can pick E non-negative such that E] =
I; by monotonicity of ]. What follows is that

I[Ig = JE

is a projector onto the reachable space. Moreover, the non-negativity constraints
on | imply that the QR decomposition (and hence the LQ decomposition) is
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unique.

Proposition 3.1.5. Let A € R7*" be a rectangular non-negative matrix with q < n.
Consider its QR decomposition A = QR. If A is invertible and it is required that the
diagonal elements of R are positive, such decomposition is unique.

Proof. Suppose there exist two distinct QR decomposition A = Q;[R; N;| and
A = Q2[R N2] where R; are invertible upper triangular matrices, N; are g X (n —
q) matrices. Note that this implies Q;R; = Q2R2 where Q] Q1 = Q, Q2 = I, .
Then

R{R; =R (Q/Q1)R; =ATA

ATA =R;(Q3Q2)R2 = Ry Ry

Hence (R;')TR] = RoR;'. Inthis equation, the left hand-side is a lower-triangular
matrix while the right-hand side is a upper-triangular matrix. Hence both must
be diagonal. Let «; and B; be the diagonal entries of Ry and R» respectively.
Then it follows that
a; _ Pj
B ai
Thus, a; = B;i Vi,jand (R;')R] = RoRy! = I,. This proves that Ry = Ry. By
Theorem A.0.1, since Ry = SRy, it holds that S = I;. Moreover, the theorem also
proves that Q; = Q2S5 and N; = SN» and hence the decomposition is unique. O

Notice that in our case we will apply the LQ decomposition to our truncated
reachability matrix P that is, by construction, invertible. Therefore also ] will be
invertible by the trivial fact that multiplication (left or right) by a full-rank matrix
(Q) does not change the rank. Hence, taking also into account the requirement
of non-negativity of J, uniqueness of the decomposition is insured.

We can now use this tool to extend the family of matrices for which a RPMR

exists.

Theorem 3.1.6. Consider (X) and its truncated reachability matrix P. Let P = JQ be
its unique LQ decomposition requiring the diagonal element of | to be positive. If | is a
non-negative monotone matrix, then it admits a non-negative left-inverse E and hence

Y,: A.=FEA] B.=EB C,=CJ 3.1)

is a positive realization of dimension q < n.
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Proof. This directly follows from Theorem 2.4.4. Indeed I1 = JE is a projector
onto the reachable space, since X® = Im(P) = Im(PQT) = Im(J). O

This theorem gives us a sufficient condition for the robust positive model
reduction. We can formulate a systematic approach to RPMR (Algorithm 1).

Algorithm 1 RPMR through LQ

Require: £ =(A,B,C)
n <« dimX
R |[B AB ... A"'B]
if rankR = n then
Stop: the system is reachable and hence cannot be reduced.
else if rankR = g < n then
P~ |[B AB ... A'!B]
if P monotone then
Y., = (PTAP, P*B, CP) where PT > 0 left-inverse of P
else if P is not monotone then
U, Ql « 1g(P)
if | is non-negative monotone then
Y, = (EAJ,EB,C]J) through (E, ]), where E > 0 left-inverse of |
else
Stop: Inconclusive. A reachable RPMR may still exists.
end if
end if
end if

The algorithm can be understood as the following: the first step is clearly re-
quiring a unreachable system. If now the truncated reachability matrix is mono-
tone, we can perform a RPMR through (P, P), if not we can try applying the LQ
decomposition. If | is monotone, a RPMR exists through (E, J), E being a non-
negative pseudo-inverse of J. If neither of these two conditions are verified, the
algorithm is inconclusive and we can say that a reachable RPMR does not exist.

We now make some considerations on whether the Theorem 3.1.6 gives us
necessary conditions for a RPMR. Unfortunately this is not the case. To under-
stand why, we have to do a step backward and dive deeper on what monotonic-
ity means to our problem and how we can manipulate the truncated reachability
matrix P to get a monotone matrix. What is clear is that monotonicity is a nec-
essary and sufficient condition for a RPMR: indeed, by the definition of RPMR
we require a non-negative inverse, and that is the definition of monotonicity.

What is less clear is what are the operations on P that are permitted to get to a

27



3.1. MONOTONE MATRICES FOR RPMR

monotone matrix. What we want to preserve is not the matrix P itself, but its
image, that correspond to the reachable space. For this reason, the question be-
comes what are the operations that preserve the column space, i.e. the image, of
P. The answer that column operations do the trick is equivalent to saying that
right multiplication of P by invertible matrices preserves the column space of P.
This is enough to say that the LQ decomposition consider only a part of the al-
lowed operations, since it consists in right multiplying by an orthogonal matrix,
that is by definition invertible. However, for some particular matrix there may
be also some non-invertible transformations that preserve the column space, but
this happens only if we consider singular matrices, that is not our case since P
is non-singular by definition. The next section is then devoted to take into con-
siderations all linear transformations that can be applied to P preserving the
reachable space.

MONOTONICITY THROUGH LINEAR TRANSFORMATIONS

In this section we exploit the fact that right-multiplying the truncated reach-
ability matrix P by a non-singular matrix T does not alter its column space, i.e.
the reachable space. Moreover, we now show that the transformed reachability
matrix still grants a projector onto the reachable space. Let T be an invertible
matrix in R7*7. Now let

J =PT e R™1

be the transformed reachability matrix. By choosing the left-inverse of | as E =
TPt this is equivalent to show that I'lg = PPt =TI =JE.

I1=PTT'Pt = PPt =TIy

Moreover, [12 = I1 by the simple fact that E is a left-inverse for J. This is trivial
since we have chosen E as the transformation of the left-inverse of P. However
this is not the only choice and it may happen that E has negative entries, violating
the non-negativity constraint.

As mentioned in Example 3.1.3, we now show more formally that not only we
can freely chose the left-inverse of P, but also the left inverse of J. Suppose that
J is monotone and choose K # T~'P' as a left-inverse. The projector becomes
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IT = JK = PTK and it is idempotent
[1? = PTKPTK = PTK =11

Moreover, recall that the choice of the left-inverse do not alter the projection
space, hence Im(IT) = Im(I'lg) = XX.
In conclusion, we have shown that if we can find any invertible matrix T € R7*1
that makes | = PT monotone, any non-negative choice of the left-inverse E
grants (E, |) to be a RPMR, thanks to Theorem 2.4.4. The next question is what
are the conditions on the existence of such T.

For now, suppose to have a truncated reachability matrix that has g linearly
independent rows stacked up on the top.

Observe that Py is a invertible non-negative square matrix in R7*1. Right-multiplying
P by P, would result in

Py

1

1‘7
Plpo_l

-1 _

] =PP;' =

that is monotone thanks to the identity in the upper block (Proposition 3.1.4).
However, we must not forget the non-negativity constraint on |, hence using

P;! to diagonalize Py is a good choice only if P;P;! is non-negative.

Remark. Supposing that the linearly independent rows are stacked up top is ac-
tually only useful for the sake of visualization. If this is not the case, the rows of
Py would be scattered throughout the matrix, and this would just imply that the
identity block of ] would be also scattered. However, as one could remember
from Theorem 3.1.1, this would not ruin the monotonicity property of J. Notice
instead that rearranging the rows of the reachability matrix is not allowed, as it
would result in a change of the space we project into that is not admissible to
our aims, as the reduction works only if we project on the reachable space.

Another observation can be made. Recall that by Proposition 3.1.4, | is non-
negative monotone if and only if it has g distinct rows that are proportional to the
canonical vectors, so we do not require the identity block. However, requiring

the rows to be proportional to the canonical vectors is equivalent to say that the
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upper block has to be a matrix of the form DO € R7*, where D, € R is
a diagonal matrix with positive entry on the diagonal, whereas O € R7*7 is a

permutation matrix. This would result in

D.O
PiP;'D,O

Py

= PP'D,O =
J o D+ P,

P;'D.O =

and since by the upper block this matrix is monotone, we would still require
that P1P; ID,O > 0. Being D, and O non-negative matrix by definition, the
condition would still be P;P;! > 0. This shows that D, and O do not give us any
further degrees of freedom, hence it is sufficient to focus on obtaining PoP; ' = I.
Before presenting the next theorem, we give a definition that will be useful in

the following.

Definition 3.1.4. Let M € R™1 be a matrix. A row sub-matrix is a matrix S €

R¥*7 composed of k < 1 rows of M.

We are now ready to give the most general theorem of this work regarding
RPMR.

Theorem 3.1.7. Consider an unreachable system (L) with rankR = g where R is the
reachability matrix. (L) admits an RPMR on XR if and only if for all P made of q
linearly independent columns of R there exists a full-rank row sub-matrix Py € R7*1
of P such that P\P;* > 0 where Py € RU"=D*1 is the sub-matrix made of the rows not

included in Py.

Proof. (<) Suppose that, having fixed P, such P exists and hence P, P;' > 0. If
this is the case then

I q
PP 6 1

] =PP;! = >0,

where we have assumed as before that the linearly independent rows are stacked
on top for the sake of visualization, as in general might be distributed differently.
This is equivalent to say that | is monotone and non-negative. Therefore (E, J) is
an RPMR where E > 0 exists and is a non-negative left-inverse of . In particular
one can choose E = [I,|0].

(=) First notice that the choice of P is indeed arbitrary since any set of g lin-
early independent column of R span the reachable space, and any other P takes
the form P = PT for some invertible T. It follows that all projectors onto the

30



CHAPTER 3. MONOTONE MATRICES APPROACH TO ROBUST POSITIVE MODEL
REDUCTION

reachable space are of the form
Ty = PP = PTT'P

Let | = PT. In order to have an RPMR, | has to be non-negative and admit a
non-negative left-inverse E. To admit a non-negative left-inverse, by Theorem
3.1.1 ] must be monotone. To satisfy the latter condition, by Proposition 3.1.4 |
must have g distinct rows proportional to the canonical vectors. Without loss of
generality, we can suppose that these g rows are stacked on top. Hence | has to

be of the form
Py

1

D.O

:PT: T: ~
J B,

where D, € R7*7 is a positive diagonal matrix, O € R7*7 is a permutation matrix
and T = P;'D,O. Notice that if the g rows are not stacked on top, the rows
of DO would be scattered throughout | and the conditions of Theorem 3.1.4
would still hold. We can now choose

E=T'P' =] 0"D;' [0 | 20

and observe that | is non-negative (and hence (], E) gives an RPMR) if and only
if P, = PT = P1PO_1D+O > 0 that is equivalent to P1Pa1 > 0 since D, and O are

non-negative by construction. O

From the computational point-of-view, a brute force approach can be under-
taken. Indeed the choices of Py are finite, more precisely (n_”—q'),q, Notice however
that the dimension of Py does not depend on 7, and hence when n — oo only
the choices of Py grow. On the other hand, the dimension grows proportionally
with g. Recall that the computation of an inverse is a very onerous operation,
and thus g plays a key role on the algorithmic complexity. We can now propose
an algorithm to check whether a RPMR exists (Algorithm 2).
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Algorithm 2 Existence of an RPMR

Require: £ =(A,B,C)
n <« dim
R« [B AB ... A"'B]
if rankR = n then
Stop: the system is reachable and hence cannot be reduced.
else if rank®R = g < n then
P~ [B AB ... A1'B]
if P already monotone then
Y., = (PTAP, P*B, CP) where P* > 0 left-inverse of P
else if P is not monotone then
for any choice of Py € R7*7 non-singular matrix do
P; € R"=DX4 composed by the rows not included in Py
if P1P;! > 0 then
J = PP;! monotone
X, = (EAJ,EB,CJ) through (E, ]), where E > 0 left-inverse of |
Stop: X, is the reduced positive model.
end if
end for
Stop: Inconclusive. A reachable RPMR do not exists.
end if
end if
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ExamprLE: LESLIE MODEL

We propose a physical example in which the monotone matrices approach
grants an RPMR. [1] The Leslie model is a dynamical model which describes
the time evolution of populations in which fertility and survival rates of indi-
viduals strongly depend on their age. In the Leslie model, the time ¢ is dis-
crete and denotes the year (or the reproduction season), while the state vari-
ables x;(t), x2(t), ..., xn(t) represent the number of females (or individuals or
couples) of age 1,2, ...,n at the beginning of year t. Assuming that there are
no differences in the survival rates of males and females and that the sex ratio is

balanced, one can describe the “aging” process by means of the equations:

Xip1(t+1) = s;x(t) i=1,...,n—-1 (3.2)

where s;, is the survival coefficient at age i, that is, the fraction of females of
age 1 that survive at least for 1 year. The first state equations take into account

the reproduction process, and are therefore

xl(t + 1) = S()(flxl(t) + f2x2(t) + ...+ fnxn(t)) (33)

where s is the survival coefficient during the first year of life and f; is the
fertility rate of females of age i, that is, the mean number of females born from
each female of age i. These equations are a positive linear autonomous model
x(t +1) = Ax(t) where A is the Leslie matrix

[s0fi Sofe ... Sofa1 Sofu]

S1 0 0 0

A= 0 S9 0 0
0 0 ... s 0

Consider now a Leslie model of dimension n = 4. We can introduce an input

u(t) that enter the system through the matrix B, making the system no longer
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3.1. MONOTONE MATRICES FOR RPMR

autonomous

o O = O

that means that at the beginning of year ¢, u(t) females individuals of age 1 are
introduced in the population. The system equation then becomes

x(t+1) = Ax(t) + Bu(t)

Let now s3 = 0. The reachability matrix is

0 sofa Sofife+sos2fs *
1 0

R - S0 f251 *
0 59 0 *
0O 0 0 0

The truncated reachability matrix is

0 sofo Sofife+s0s2f3

1 0

P S0f251
0 S9 0
0 O 0

Note that it is not monotone. However a trivial RPMR exists. Indeed

0 sofe sofife+sos2fs
PO =11 0 Sof251
0 S9 0

and clearly P; = [O 0 O] Pyt > 0. It result that

L 00 1000

010
]:PPO—l:OO1 E=10 10 0

00 0 0010

and hence (EA], EB) is positive. This is easily interpreted, and could have been
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REDUCTION

predicted, since setting s3 = 0 means that we have set the survival rate of female
individuals of age 3 to zero, and hence there will never be an individual of age 4.
It makes sense then to consider the reduced system made of only the individuals
ofage1,2,3.

MINIMAL POSITIVE REALIZATIONS

The problem that will now be addressed is the following: when can we re-
duce a positive system such that the reduced system is a minimal positive real-
ization? This question has great interest in the literature, since often the dimen-
sion of the minimal positive realization does not coincide with the dimension of
the minimal realization. The interested reader can find more about this topic in
the survey paper [4]. For low dimensional systems of dimension one or two, the
non-negativity of the impulse response is a necessary and sufficient condition
for the existence of a positive minimal realization [15]. For greater dimension,
the minimum dimension of a positive realization is still an open problem. Note
that the minimum dimension of a positive realization may be greater than the
dimension of the minimal realization. Indeed, non-negativity of the system ma-
trices impose some limitations on the locations of their eigenvalues. For exam-
ple, when the eigenvalues of a minimal realization of dimension 7 are outside
of the Karpelevic region, that consist in the region where an n X n non-negative
matrix must have its eigenvalues within, a positive realization of dimension 7
does not exists. However, our approach enable us to have a minimal positive

realization through robust reduction when it is possible.

Theorem 3.2.1. Consider a positive system L. = (A, B, C). Suppose that conditions of
Theorem 3.1.7 holds. Compute the reduced system ¥ through Algorithm 2. Suppose now
that the same conditions holds for L4, that is the dual system of ¥.. Then, reducing in the
same way the dual system to dei” , it holds that ©™" is a minimal positive realization
for X.

In words, this theorem says that if we can find a minimal realization of a
system using only RPMR, then we can say that it is the positive system of min-
imum dimension. However, the conditions for this to happen are stringent. As
said before, the minimal dimension of a positive realization is still an open prob-
lem, and to say something stronger we would need to further develop the non-
robust positive model reduction techniques. Indeed, if we cannot find an RPMR
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3.2. MINIMAL POSITIVE REALIZATIONS

to positively reduce our system, there could still be a non-robust reduction that
admits a positive reduced system of smaller dimension. However, this work will
not study in detail this problem, but we continue investigating into the robust
positive reduction, giving an overview over a different approach that has been
developed to reduce positive systems through the enclosure of the reachable
space.

36



Algebraic approach

In this section we will review an approach to model reduction that exploits
algebraic methods to reduce positive systems. We resort to the work of Ticozzi
and Grigoletto [8], where the algebraic approach has been used to reduce Hid-
den Markov Models in a probabilistic setup, and on [9] where they extended the
method from a classical point of view to a quantum one. The idea is to close the
reachable (or observable) space to an algebra & so that a RPMR is possible. We
prove that it is always possible to project onto an algebra and obtain a positive
model. Moreover, we show that the reachable algebra has crucial properties for
our approach. For this purpose, we make some considerations comparing this
approach to our approach based on monotone matrices, highlighting the paral-
lelism and the differences between them. In this chapter, we use and thus denote
the vectors of all ones, denoted by 1, and the vector of all zeros, denoted by 0.

We also use the concept of support defined in Section 3.1.1.

DEFINITIONS AND STRUCTURE

We start from the definition of a vector algebra equipped with the element-

wise multiplication.

Definition 4.1.1 (Element-wise multiplication operator). Let x,y € R". The

element-wise multiplication operator is defined as following:

[x Ayli = [x]ily]i
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where with [x]; we denote the i-th entry of the vector x, and with [x A y]; we

denote the i-th entry of the vector x A y.

Definition 4.1.2 (Vector algebra). We define a vector algebra & over R" as a vec-
tor space that is closed under the element-wise multiplication operation and
such that the element-wise multiplication operation is bilinear and associative.
More precisely, the following identities hold for all element x, y,z € R" and all
scalarsa,b € R:

e x+y)Az=xAz+YyAz
* ZA(X+Y)=zAX+zZAY
* ax ANby =(ab) A(x Ny)

* xAY)Az=xAN(yAz)
Note that being a vector space is also hold that av + pw € &, with a, f € R.

More precisely, by closeness under element wise multiplication we mean
thatif v,w € o thenv A w € . Clearly R" is a vector algebra. Moreover, it
is unital, since it contains 1. A non-unital algebra still contains the vector 14,
which has entries 1 on the support of & and 0 otherwise and acts as the prod-
uct identity in /. Without further ado, we can understand better how a vector
space can be extended to an algebra, and then present the main relevant prop-
erties that such algebra exhibit. Given a vector space V 2 R", its closure to
algebra, i.e. oy = alg(V) is the span of all the vectors contained in V plus all the
possible vectors generated by the element wise operation between two vectors
in the algebra itself. This indeed assures that the algebra is closed under element

wise multiplication.

Proposition 4.1.1. Given a vector subspace V 2 R", its closure to algebra oy = alg(V)
is given by

,va=Span{vi,vj,...,vi/\Z)]',...,(Z),'/\TJ]')/\U](,...}

One can understand that it could happen that the algebra is equal to the
whole R". It can be shown through examples that the algebra has dimension
smaller than n when there exists at least 2 indices {7, j} for which the following

holds for every generator vy of the subspace:

[okli = [o:]i,  [wlj = [ve]; Vk,
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CHAPTER 4. ALGEBRAIC APPROACH

The main relevant property of these algebras is that they are generated by
vectors that have a specific form. Indeed, it has been proved that an algebra
can always be generated by special and convenient vectors of zeros and ones
with disjointed supports. We call them idempotent generators, since they are

idempotent with respect to the element wise multiplication.

Proposition 4.1.2. Given a vector subspace V 2 R", there exists a set of idempotent
generators f; , i =1,...,q such that its closure gfy can be written as

aly = spanf{fi} Zﬁ:1

Moreover, this generators are orthogonal and they are composed only of zeros and ones.

The reader may now see the direction we are going, but before reaching the
focal point of this chapter we need to make some considerations. We want to
close the reachable (or observable) space to an algebra &% and then see if pro-
jecting onto this algebra we obtain a positive model reduction. As anticipated
and as proved in [8], this holds. We will now set up the problem and show that
it is possible to prove this also through the non-negative monotone matrices the-

ory.

POSITIVE REDUCTION ONTO THE REACHABLE (OR OB-

SERVABLE) ALGEBRA

Consider now the positive system (X) of dimension n. We again suppose
that the system is not reachable, hence the reachability matrix is singular and P
is its truncated version. We can now define the reachable subspace XX that is
generated by the columns vectors of P, denoted by p;. Namely,

xR = span{pi, p2, ... /Pq}

The algebra containing XX is o/x . As pointed out before, it could happen that
dx = R", and in this case projecting into the algebra would not provide a system
of smaller dimension. This is why we suppose that @y is generated by q < n
idempotent vectors. Recall that, by definition, the idempotent generators are

non-negative. Let now group the generators of @/ as columns of a matrix J. The
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4.2. POSITIVE REDUCTION ONTO THE REACHABLE (OR OBSERVABLE) ALGEBRA

following result highlight the main parallelism between the algebraic approach

and the monotone matrices approach.

Proposition 4.2.1. Let | € R™, q < n be the matrix with the idempotent generators

of an algebra as columns. Then cone(]) = RZ, i.e. | is monotone.

Proof. Call f; the columns of |. Recall that the f; , the columns of ], are orthogo-
nal vectors of only ones and zeros and that }}; fi = 1, namely J1 = 1. By the or-
thogonality of the non-negative vectors { f;}, their supports have to be pair-wise
disjointed, and hence the rows of | have to be canonical vectors in R7. Moreover,
by the linear independence of the columns, g rows of | are distinct canonical vec-

tors. By Proposition 3.1.4, it holds that | is monotone. m|

Finally, we can now apply the same procedure for RPMR as in the previous
chapters to get the positive reduction. We formalize the procedure into a theo-
rem.

Theorem 4.2.2. Consider a positive system ¥. = (A, B, C). Let its truncated reachabil-
ity matrix be defines as
P=|BAB ... ATB|

The reachable subspace is X® = span{P}, i.e. the span of the columns of P. Consider
now the closure of the reachable subspace to an algebra ofx = alg(XR). Let now | € R"™*
be the matrix with the idempotent generators of the algebra as columns and E be a non-

negative left inverse. Then,

is a positive realization of dimension k. Moreover, if k = q, the pair (E, ]) is a RPMR.

Proof. By 4.2.1 it holds that the matrix J, composed by the generators of o/ is a
monotone matrix, hence it admits a non-negative left inverse E. It immediately
follows that (E, ]) is a non-negative linear change of basis, since both E and |
are non-negative matrices. Thus, (X;) still is a positive realization. Clearly if the
dimension of the algebra o/ is less than the dimension of the system (X), we
obtain a positive system of dimension less than n, and therefore by definition
(E,J)is a RPMR. What is left to prove is showing that projecting onto an algebra
preserve the dynamics of the system. Recall that | is the matrix constructed
with the idempotent generators as columns. Firstly build the projector Iy, = JE.
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CHAPTER 4. ALGEBRAIC APPROACH

Consider now also the projector into the reachable space Ilx as defined in the
proof of Proposition 2.4.4. Since alg{R} 2 XR, namely the algebra contains the
reachable space, it also holds that alg{XR} contains B, hence I1yB = B and

[Ty Tl = Ig
The Markov’s coefficient of the system are
M1 = CA*B = CAM14B = CAMTIxI14B = CTIxATIxI1y B = CI14TIRA TIRI1,B
Hence I1yI1g = IIxI1y = Ilg, concluding that
= CIIxATIgB = CI1,A*T1,B = (C])(EA*])(EB)
and thus the systems X and ¥, are equivalent. |

This result show that it is always possible to project onto the reachable alge-
bra and robustly obtain a positive model. Indeed, we have shown that closing
the reachable space to an algebra always grant that the matrix with the genera-
tor of such algebra as columns is monotone. By duality, it is easy to extend this
result to the projection onto the observable algebra, and for this reason we will
not present it.

DISTORTED ALGEBRAS

As presented in [8], sometimes it may be more efficient to project onto a more
restrictive space rather than the algebra itself. For this reason we introduce the
concept of distorted algebra, that is similar to the algebra but with a more general
definition, as it allows for different multiplicative operations. Firstly, we define

the element-wise multiplication operator with respect to a vector.

Definition 4.3.1. Let v € R". The element-wise multiplication operator with
respect to v denoted as A, is defined such that taking two vectors x, y € R"

[x Ao yli =

Clearly, the standard element-wise multiplication operator can be seen as A1.
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Definition 4.3.2 (Distorted algebra). A distorted algebra is an algebra (4.1.2) that
is closed under a element-wise multiplication operator with respect to a vector
v. More precisely, let v € R" be a vector and X C R" be a subspace. Let X be
the matrix with the generators of V as columns. The closure of X to a distorted

algebra 9@y = alg,(X) is given by
Dy = span{xi,xj, e, Xi Ny Xjyeon ,(xl- Ny Xj) No Xk, }

Moreover, a relation between distorted and “standard” algebras can be obtained

[8]:
Dy =v Aalg(v™! A X) = diag(v) alg(diag(v™1)X)

Although the standard algebra and the distorted algebra are similar concepts,
we think it is worth to understand more deeply the key aspects and differences
between the two. To this purpose, we provide a brief section and a meaningful

example.

VISUALIZING DISTORTED ALGEBRAS

We devote this section of this chapter to highlight in a more intuitive way the
role of the distorted algebras with respect to the standard algebra. We start by
defining what a subvector is.

Definition 4.3.3. Let v € R” be a vector and v; its i-th entry. Let & be a subset of
indices between 1 and n. Then

is a subvector of v with respect to the subset of indices 8§ = {1, i3, ..., ix} where
k < n is the cardinality of 8. (Note that if k = n the subvector would coincide
with the vector itself)

With this definition, we are ready to show how the distorted algebra is a more
general definition with respect to the standard algebra that we are considering.
As we have previously noticed, the closure to algebra could result in the algebra
being the whole space R". We now show when this is not the case.
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Proposition 4.3.1. Let X C R" bea subspace spanned by a q vectors, i.e. span{xy,...,x;} =
X. Let o = alg(R) be its closure to algebra. Then o/ ¢ R" if there exists a subset of
indices § = {iy,12,...,ix} with k > 2, where for all generators x; of X the following
holds

/\j[ln]g = [x]']g Vi=1,...,q ,A]' eR

Proof. Note that if such 8 exists, the element-wise multiplication between any
of the x;’s would still result in a vector that has 1’s in the entries of indices in
8. This means that closing to algebra the subspace, those components can be
generated only by one vector that has ones in the k entries of indices in § and
zero elsewhere. Take now this vector as one generator of the algebra. Since k > 2,
taking the other generators as canonical vectors orthogonal between each other,

we would have n — k + 1 generators and hence & ¢ R". m|

In other words, the algebra has not maximum dimension n when all of its
generators have subvectors that are proportional to the vector of all ones. As
we will show, it is in this aspect that the distorted algebra is by definition more
general with respect to the standard algebra.

Proposition 4.3.2. Let X C R" bea subspace spanned by a q vectors, i.e. span{xy, ..., x;} =
X. If there exist a subset of indices 8 = {i1, 12, ..., ix} with k > 2 and a vector v € R"
where for all generators x; of X the following holds

/\j[v]g = [x]']g Vj= 1,...,q,A]' eR

we will have that @ C R", where & = alg,(X) is the closure to distorted algebra of the
reachable space equipped with the A, operator.

Proof. Using the same method as in the proof of Proposition 4.3.1, we can take as
generator the vector that has the same components of v in the entries of indices in
8 and zero elsewhere. Again, taking all the other generators as canonical vectors
orthogonal between each other, we would have n — k + 1 generators with k > 2
and hence & ¢ R". O

We now present an example where the distorted algebra approach provides

an optimal RPMR, while the standard algebra approach provides a reduced

model with a bigger dimension than the minimal.
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Example 4.3.1 ([8]). Let us consider the following system:

2/5 0 1/5 1/5 Lo
A=|0 2/5 1/5|, b=]1/5], C:[oo 1‘
3/5 3/5 3/5 3/5

We can compute the following;:

1/5
XR = span{[1/5
3/5

Then it is easy to compute its closure to algebra

1 0
o = alg(XR) = span< |1], [0
0] (1

The reduction matrices are then

0 0 1

~
[l
[ R O

0
ol E:[1/2 1/2 0]
1

The reduced system is

Yy L] IS LA R
’ 6/5 3/5|" 7 3517 7 0 1

and has dimension 2. However, notice that b is an equilibrium, i.e. Ab = b.

Hence, if we consider the algebra with respect to the vector v = b, we get

1
D, =v Aalg(v™' A XR) = span{ |1
1
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Thus the reduction matrices are

1/5
J=11/5], E:[l 1 1]
3/5

and hence the reduced systems is
A+:1, b+:1, C+: [2/5 3/5]

and has dimension 1, that is the optimal solution. This example shows that in
some cases projecting onto a distorted algebra can give better results then pro-
jecting onto the standard one.

What is left to understand is how to choose v such that the choice is optimal
with respect to the dimension of the algebra that we obtain. We resort to [8],
where the proofs of the following Lemma and Theorem can be found, to prove
the optimal choice of v.

Lemma 4.3.3 ([8]). Given a vector space X C R" with generators {x;}, X = span{x;}
there exists a vector v := }; Aix; with A; # 0 for all i and such that supp(v) = supp(X).

Remark. Notice that in our case the vector v will be always non-negative. In-
deed since all generators of the reachable space XX are non-negative, to have
that supp(v) = supp(XX) we can choose any A; > 0 for all i. This comes from
the fact that positive combinations of non-negative vectors can only increase the
dimension of the support. The conclusion is that v can always be chosen non-

negative.

The following theorem proves the optimality of the choice of this choice of

Theorem 4.3.4 ([8]). Consider a vector space X € R" and a vector v as in Lemma 4.3.3.
Then there exists a unique algebra o of minimal dimension such that X € w A o for
some w € R™. Moreover, o = alg{v™! A X} and its unital over the support of X, i.e.

1supp(f)C) € .

So far we have understood that projecting onto the reachable algebra is al-
ways possible, but often it does not grant a model reduction. We have also seen
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the natural extension of the algebras to distorted algebras, that enable us to per-
form an RPMR to a broader family of systems. However, we still have to under-
stand which is the correlation between the algebraic approach and the mono-
tone matrices approach. The rest of this chapter is devoted to understand better
whether a RPMR is possible if and only if we project onto an algebra, namely if
the reachable (or observable) subspace is already an algebra. If this is the case,
the two approaches are equivalent and one can immediately see if a RPMR is
possible on the system.

ALGEBRAIC APPROACH VS MONOTONE MATRICES AP-
PROACH
In order to develop some intuition, we try to find examples where the mono-

tone matrices approach could lead to a reduction while the algebraic approach
does not. Recall that the idempotent generators of a vector algebra {f;} satisfy

S

This is a condition that is not required by the columns of a monotone matrix,

the following equality

hence we construct an ad hoc reachability matrix that do not satisfy that equality.
Consider the system

010 0
A=11 00 B=|1
0 01 1

The truncated reachability matrix is

)U
Il
== =
T

that is trivially monotone by the first two rows and hence admits a non-negative
100
010
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B=P'B= H
1

However, if we try to close the reachable space XR = span(P) to an algebra we

The reduced system would be

. 0 1
A=PtAP =

would get

o = alg(X®) =spani |0],|1], |0
0

that has dimension equal to 3 and hence would result in a reduced system of
that dimension.

This simple example proves that for some systems the monotone approach could
be more promising than the algebraic approach. This also imply that the mono-
tone matrices approach could be the optimal approach to RPMR, since in the best
case it provides a reduced system of lower dimension then the reduced system
obtained through the algebraic approach. However, the algebraic approach is
more flexible since we can try to enclose the reachable space in a bigger space
until we take R", for which we have seen that it does not grant a reduction.
The proposed monotone approach do not have this freedom. Indeed, either an
RPMR exists and we reduce the system to a reachable system of dimension g, or
we don't. Future works will try to find a method, if it exists, to extend the mono-
tone matrices approach with the aim of enclosing the reachable space until an
RPMR exists.
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Conclusions and Future Works

The theory of monotone matrices has been specialized to non-negative mono-
tone matrices, finding interesting properties and characterizations that proved
useful in the study of Robust Positive Model Reduction (RPMR). Towards RPMR,
it has been first proposed a solution of low computational effort, that is the re-
duction through the LQ decomposition, but it has also been shown that it could
be generalized removing the orthogonality constraint on the Q matrix. In the
end, a necessary and sufficient condition has been found to prove the existence
of an RPMR. The latter exploits the freedom of choice of the projection onto the
reachable space, finding, if it exists, a non-negative monotone matrix that spans
the reachable space. The next steps will be taken with the aim of generalizing
this approach so that if the reachable space do not admits an RPMR, it can be
enclosed as little as it needs to satisfy the properties required by the monotone
matrices approach. The monotone matrices approach has proved to be very ef-
fective, but still leaves open questions. In particular, the (non-robust) positive
model reduction problem still remains open. To this aim, a further effort could
be made to understand better the cases in which a non-robust positive reduction
still grant a positive reduced system. Finally, we adapted the existing algebraic
approach for hidden markov model reduction to general linear systems with in-
puts, highlighting remarkable similarities to the monotone matrices approach.
We thus think it is worth further investigating how to adjust it in order to be also
optimal in the cases in which it could not provide a reduced model of the same

dimension of the monotone matrices approach.

49






Useful theorems

Theorem A.0.1 (QR decomposition for rectangular matrices). Let A € R7*" be
a full rank rectangular matrix with g < n. If A = Q1[R1 Ni]and A = Q2[R Na] are
two QR decomposition, then

Q1=Q25 , Ry=SR;y , N; =8N,

where S € R is a diagonal matrix with entries +1.

Proof. Consider now Q1R; and Q2R3. These are two QR decomposition of a
square matrix, hence Q1R; = Q2R, implies Q;'Q1 = RoR['. The left hand side
is an orthogonal matrix, whereas the right hand side is upper triangular. A ma-
trix that is orthogonal and upper triangular can only be a diagonal matrix with
entries £1. Then by Q;lQl = S it follows that Q; = Q2S5 and from RgRIl =Sit
follows that Ry = SR;. To prove the last part, we use the proven fact Q; = Q25
on the equation Q1 N; = Q2N», that becomes Q2SN; = Q2Ns. Left-multiplying
it by Q, and then by S proves that N; = SN». m|
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26

clear

clc

MATLAB code

%% Robust Positive Model Reduction

%% System matrices definition

A=1T[110 0;
B =[1; 1; 0;
C=1[100 0];

1020; 0012; 003 1];
01;

%% Reachability matrix and monotonicity check

R = ctrb(4A,B);
q = rank(R);
n = size(A,1);

%% Build P as

P = [1;
for i=1l:q

P = [P R(:
end

the first rankR=q columns of R

, 1)1

%% build indices to build all possible P_O

indices = nchoosek(1l:n, q);

5 %% Build P_O,

P_1 and check for the existence of a RPMR
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7 n_iterations = size(indices, 1); %n!/(n-q)!*q! are the number of all
possible P_0 (taking into account also the singular ones)

s P_0 = [1;

29 RPMR_found = false;

30

31 for i=1:n_iterations

32 for j=1:q

33 P_.0 = [P_O; P(indices(i,j), :)1;
34 end

3 if rank(P_0) ~= q %sanity check

36 continue

37 end

38 % building P_1 as rows of P not included in P_O

39 P_1 = [];

40 for j=1:n

41 if ~ismember(j, indices(i, :))
2 P_1 = [P_1; P(j, )1;

43 end

44 end

45 if isNonnegative(P_1/P_0) Ychecks if P_1 * P_0"{-1} >= 0
16 RPMR_found = true;

47 break %RPMR found

48 end

49

50 % clearing the matrices P_0O and P_1
51 PO = [];

52 P_1 = [1;

53

54 end

56 1f RPMR_found

57 J = P/P_O;

58 E = leftInverse(J); %find the trivial non-negative left inverse
59 if isnan(E)

60 disp('Left Inverse failed');

61 end

62

63 % computing the reduced positive system

64 A r = ExAxJ;

65 B_r = ExB;

66 C_r = CxJ;

67

68 if ~check_equivalence(ss(A,B,C,0), ss(A_r,B_r,C_r, 0), 50)
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69 disp('Original system and Reduced system seems to not have

the same Markov coefficients');

70 end
71
7 disp('P:'); disp(P);
73 disp('P_0:"); disp(P_0);
74 disp('J:"'); disp(J);
75 disp('E:"'); disp(E);
76 else
77 disp('An RPMR does not exists')
78 end
Code B.1: Main script
1 function [flag, indices] = isMonotone (A)

2 % isMonotone returns flag=true if J is left-monotone.

3 flag = false;

4 n = size(A,1);

5 q = size(A,2);

6 indices = [];

7 % if A is singular it cannot be monotone.

8 if rank(A) ~= ¢

9 return

10 end

11 id = eye(q);

12

13 for i=1:mn

14 e_neq_zero = 0;

15 for j=1:q

16 if A(i,j) ~= 0

17 e_neq_zero = e_neq_zero + 1;

18 end

19 end

20 if e_neq_zero == 1

21 [isValid, idx] = ismember (A(i,:)/norm(A(i,:)), id, 'rows'
)5

2 if isValid

23 id(idx, :) = [];

2 indices = [indices, i];

25 end

26 end

27 end

28 if isempty(id)

29 flag = true;
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30

31 end

end

Code B.2: Checking monotonicity

1 function flag = isNonnegative (A)

2 % isNonnegative Check if a matrix or vector A is non-negative entry

12 end

-wise

flag = true;

for

end

i=l:size(A,1)
for j=1:size(A,2)
if A(i,j) < O
flag = false;
end

end

Code B.3: Checking non-negativity

1 function E = leftInverse(J)

2 % leftInverse compute, if it exists, the simplest non-negative left

3 % Inverse of the matrix J

13
14
15
16

17 end

n = size(J,1);
q = size(J,2);
E = NaN;
[isMon, indx] = isMonotone(J);
if ~isMon
return
end
E = zeros(q,n);
for i=1:q
E(:,indx(i)) = pinv(J(indx(i), :));
end

Code B.4: Computing a left inverse
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