
 

 

  



 

 

  



 

Table of Contents 
 

Chapter 1: Introduction ........................................................................................................... 5 

1.1 Outline: Aim and Structure ............................................................................................... 5 

1.2 Resting-State fMRI ........................................................................................................... 6 

1.2.1 Principles ............................................................................................................... 6 

 1.2.2 Advantages of rs-fMRI in Neuroimaging .............................................................. 7 

 1.2.3 Importance of rs-fMRI in Neurological Research ................................................. 8 

 1.2.4 Multi-Echo fMRI Technique ............................................................................... 10 

 1.2.4.1 Advantages of Multi-Echo fMRI ...................................................................... 12 

 1.2.4.2 Costs and Benefits of Multi-Echo fMRI .......................................................... 13 

1.3 Parkinson's Disease: Clinical and Neurobiological Aspects ........................................... 14 

1.3.1 Symptomatology .................................................................................................. 14 

1.3.1.1 Motor Symptoms ...................................................................................... 14 

1.3.1.2 Non-Motor Symptoms .............................................................................. 15 

1.3.2 Disease Stages  .................................................................................................... 16 

1.3.3 Diagnosis ............................................................................................................. 18 

1.3.4 Therapy ................................................................................................................ 18 

1.3.5 Rating scale .......................................................................................................... 19 

1.3.5.1 MDS - Unified Parkinson's Disease Rating Scale .................................... 19 

1.3.5.2 Hoehn & Yahr Scale ................................................................................. 20 

1.4 Previous Studies on Functional Connectivity in Parkinson's Disease ............................ 21 

1.5 Existing Approaches for Preprocessing Resting-State fMRI Data ................................. 23 

1.5.1 Typical rs-fMRI data Preprocessing Steps ........................................................... 23 

1.5.1.1 Evaluation of data quality ..................................................................... 23 

1.5.1.2 Slice Timing Correction ........................................................................ 23 

1.5.1.3 Motion Correction ................................................................................. 24 

1.5.1.4 Distortion Correction ............................................................................ 24 

1.5.1.5 Temporal Filtering ................................................................................. 24 

1.5.1.6 Spatial Smoothing ................................................................................. 25 

1.5.2 Available Software for rs-fMRI Data ................................................................... 25 

 

Chapter 2: Materials and Methods ....................................................................................... 27 

2.1 Dataset Characteristics .................................................................................................... 27 

2.2 Development of the Preprocessing Pipeline ................................................................... 29 



 

2.2.1 AFNI: Slice timing and Motion Correction ......................................................... 29 

 2.2.2 Tedana: Optimal Combination of Echoes ............................................................ 32 

2.2.2.1 Adaptive Mask Generation........................................................................ 32 

2.2.2.2 Monoexponential Decay Model Fit .......................................................... 34 

2.2.2.3 Optimal Combination ................................................................................ 34 

 2.2.3 AFNI: B0 Field Distortions Correction ................................................................ 37 

2.2.4 Regression for White Matter and Cerebrospinal Fluid ........................................ 40 

2.2.4.1 SPM12: Realignment and Coregistration ................................................. 40 

2.2.4.2 MatLab: Principal Component Analysis (PCA)........................................ 44 

2.2.4.3 MatLab: General Linear Model (GLM) Analysis ..................................... 45 

 2.2.5 Signal Filtering ..................................................................................................... 51 

2.2.5.1 High-Pass Filtering ................................................................................... 51 

2.2.5.2 Low-Pass Filtering .................................................................................... 52 

2.2.6 Intensity Normalization and Spatial Smoothing  ................................................. 56 

2.3 Exploration of Functional Connectivity (FC) ................................................................. 57 

2.3.1 Coregistration on Atlas and FC Maps Extraction ................................................ 57 

2.4 Intermediate Results and Evaluation Metrics .................................................................. 61 

2.4.1 Evaluation Metrics: Temporal Signal-to-Noise Ratio (tSNR) ............................. 61 

2.4.2 B0 Field Distortion Correction: Warp Selection .................................................. 62 

2.4.3 Comparison of Preprocessing Pipelines: AFNI vs FSL ....................................... 64 

 

Chapter 3: Results ................................................................................................................... 69 

3.1 Impact of the Preprocessing Pipeline .............................................................................. 69 

 3.1.1 Slice Timing, Motion Correction and B0 Field Distortions Correction ............... 69 

 3.1.2 Overall Comparison of Preprocessing Pipelines .................................................. 74 

 3.1.3 Effect of the AFNI Pipeline on tSNR ................................................................... 80 

3.2 Functional Connectivity Analysis ................................................................................... 82 

 

Chapter 4: Discussion ............................................................................................................. 87 

4.1 Summary of Results ........................................................................................................ 87 

4.2 Clinical and Scientific Implications ................................................................................ 89 

4.3 Limitations of the Study and Possible Future Implementations ...................................... 91 

4.4 Conclusions ..................................................................................................................... 93 

 

Chapter 5: References ............................................................................................................. 95 

6.1 Bibliography .................................................................................................................... 95 



 

6.2 Sitography ....................................................................................................................... 97 

 

 

 

  



 

 



5 

 

Chapter 1: Introduction  

1.1 Outline: Aim and Structure  

The human brain is a network of more than 80 billion individual nerve cells interconnected in 

neural circuits that build our perceptions of the external world, fix our attention, guide our 

decisions, and implement our actions.[1] 

 

Functional magnetic resonance imaging (fMRI) is widely used to study these brain connections 

and to investigate neurological disorders, such as Parkinson’s disease. 

The primary objective of this study is to develop an automated pipeline for preprocessing multi-

echo fMRI data at resting state: for this purpose, FSL and AFNI methodologies will be 

compared based on the evaluation of tSNR maps to evaluate the most effective preprocessing 

approach. After preprocessing, the data will be subjected to denoising with tedana. 

The optimized pipeline will then be applied to the analysis of fMRI data to study differences in 

functional connectivity between patients with Parkinson’s disease and healthy controls, 

focusing on the relationship between subcortical and cortical areas, as they can be detected 

more accurately with multi-echo data. 

By identifying differences in brain connectivity between the groups through this research, a 

better understanding of Parkinson’s disease can be gained: analysis of subcortical and cortical 

areas could reveal distinctive patterns useful for diagnosis and evaluation of the disease. The 

use of multi-echo data could also improve temporal resolution and increase sensitivity in 

detecting alterations in brain connectivity, providing valuable insights into Parkinson’s disease. 

In conclusion, this automated pipeline for processing resting-state multi-echo fMRI data in 

Parkinson’s disease facilitates the study of functional connectivity, and the analysis of 

subcortical and cortical connections contributes to the understanding of the neural basis of the 

disease and the search for biomarkers for early diagnosis and treatment monitoring. 

 

  



6 

 

1.2 Resting-State fMRI  

Functional magnetic resonance imaging (fMRI) is a noninvasive technique that provides 

comprehensive, multiparametric information on brain anatomy, function, and metabolism. [2] 

Among various fMRI techniques, resting-state fMRI (rs-fMRI) has gained significant 

advantages, revolutionizing brain mapping research and clinical studies. [3,4] 

 

1.2.1 Principles  

Resting-state fMRI was first described by Biswal et al. in 1995 and has since been widely used 

in both healthy subjects and patients with various neurological, neurosurgical, and psychiatric 

disorders.[5] 

Resting-state fMRI is a specialized functional brain imaging technique that captures 

spontaneous brain activity without requiring subjects to engage in specific tasks, offering 

several key advantages over traditional task-based fMRI [4]: unlike paradigm- or task-based 

functional MRI, rs-fMRI is acquired in the absence of a stimulus or task (at rest), thus allowing 

easy signal acquisition, requiring minimal effort on the part of patients. 

 

Functional MRI is based on blood oxygen level dependent contrast (BOLD) discovered by Seiji 

Ogawa in 1990. [4] Because of neurovascular coupling, the BOLD signal, although vascular in 

nature, is strongly correlated with neuronal activity [5], measuring associated changes in blood 

flow: when a specific brain region is active, blood flow in that area increases, resulting in 

detectable fMRI signals.[4] 

However, the delay of the hemodynamic response after neural activation is responsible for the 

relatively poor temporal resolution of fMRI, and the BOLD signal may be altered in brain 

regions where blood flow is impaired. For example, pathological conditions such as traumatic 

or anoxic brain injury may affect neurovascular coupling and thus make fMRI suboptimal for 

assessing neural activity in these pathological conditions. Therefore, these factors must be 

considered when designing calibrated BOLD experiments and interpreting functional 

connectivity data, especially in patients with vascular disease.[5] 

 

The principle of rs-fMRI is also based on the fluctuation of the BOLD signal, which is the same 

as active-task fMRI, but rs-fMRI focuses on the spontaneous alterations of the BOLD signal [5]: 

it uses the change in magnetization between oxygen-rich and oxygen-poor blood as a baseline 

measure. [6] 
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More specifically, brain activity is measured through the low-frequency BOLD signal in the 

brain [7]: the resting state signals captured in rs-fMRI are coherent low-frequency fluctuations 

in the range of 0.01-0.08 Hz. Notably, these signals represent distinct cortical network systems 

in the brain, and what was once discarded in task-based fMRI studies is now considered crucial 

for understanding spontaneous brain activity as a vital indicator of brain function.[3] 

 

Data can be acquired with a dedicated scan, in which individuals are instructed to simply rest, 

or by inferring rest state data from rest periods embedded in a series of tasks. [5] 

Rs-fMRI is commonly scanned in at least one of three different conditions: eyes closed (EC), 

eyes open (EO), and eyes fixed on a target (EO-F), usually a crosshair. In the EC case, 

participants are asked to close their eyes and remain awake during the scan; in the EO case, 

participants are asked to keep their eyes open; and in the EO-F case, participants are asked to 

keep their eyes fixed on an object, usually a crosshair presented in the center of the screen, 

during the scan.[6] 

 

Through rs-fMRI, researchers have revealed the existence and properties of several brain 

networks in the resting state. Among them, the default mode network (DMN) discovered in 

1998 is an important example: it is a functionally connected neural network that represents 

apparent brain states at rest. [4,7,8] These networks represent specific patterns of synchronous 

activity between different brain regions and play a crucial role in understanding brain function 

and communication.[8] 

The principles of rs-fMRI have thus led to the exploration of functional connectivity, which 

involves the analysis of how different brain regions communicate with each other while the 

brain is at rest. This provides valuable information about the intrinsic architecture of the brain 

and can help detect alterations in functional connectivity in various neurological and psychiatric 

conditions.[7] 

 

1.2.2 Advantages of rs-fMRI in Neuroimaging 

One of the main advantages of resting-state functional MRI is its ability to allow easy 

acquisition of the neural signal, requiring minimal effort on the part of patients.[3] 

The absence of requirements for task performance makes rs-fMRI a particularly attractive 

option for patients who may have difficulty executing task instructions: this makes it suitable 

for a wide range of populations, including those with neurological or mental disorders, 

neurosurgical and psychiatric conditions, as well as individuals with intellectual disabilities, 
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pediatric groups, and even unconscious patients. [3,5] These groups can be studied effectively 

with rs-fMRI techniques. 

 

Biswal et al. first described the importance of neural activity fluctuations in rs-fMRI in 1995: 

in their experiment, subjects performed bilateral finger tapping, and the researchers observed a 

highly correlated BOLD time course between the left somatosensory cortex and homologous 

areas in the contralateral hemisphere. Since then, fMRI has been widely used in both healthy 

subjects and patients with neurological and psychiatric disorders to study the synchronous and 

spontaneous fluctuations of various networks in the resting state.[5] 

 

In addition to its clinical and research applications, rs-fMRI offers significant clinical 

advantages over other neuroimaging techniques. In particular, it does not involve the use of 

ionizing radiation [4], making it safer than positron emission tomography (PET) and single 

photon emission computed tomography (SPECT) in the resting state. In addition, studies have 

shown promising reliability of rs-fMRI, further supporting its usefulness in various research 

areas.[3] 

Over the past two decades, the application of rs-fMRI in clinical and research settings has thus 

experienced significant growth.[5] 

 

1.2.3 Importance of rs-fMRI in Neurological Research [9] 

Functional connectivity, defined as the temporal coherence of neuronal activity patterns 

between anatomically separated brain regions, reflects functional communication between 

them. 

 

The BOLD (blood oxygen level dependent) signal provides a link between neuronal activity, 

which occurs during information processing, and MRI signal intensity. Because the BOLD 

signal has been shown to reflect the firing of neural populations with a strong correlation 

between its amplitude and local field potential data, it has been suggested that the BOLD signal 

is more related to synaptic activity than to neural activity per se, providing information about 

neuronal information processing at the synaptic level. 

Over the past decade, research has focused on spontaneous oscillations of the resting-state 

BOLD signal in both healthy and pathological brains, revealing the existence of spatially 

distributed “intrinsic” resting-state (RS) functional connectivity networks known as resting-

state networks (RSNs). 
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Independent component analysis (ICA) is the most used method to isolate functional 

connectivity networks from fMRI data, as it does not necessarily require prior hypotheses: by 

applying ICA, the spatial distribution of BOLD signal coherence between brain voxels can be 

assessed for several RSNs (Fig. 1.1), the most important of which are: 

 

• Default Mode Network (DMN): involved in introspection, mind wandering and active 

episodic memory, it is deactivated during specific goal-directed behavior. Primarily 

includes the precuneus, posterior cingulate, bilateral inferior-lateral-parietal and 

ventromedial frontal cortices. 

• Sensorimotor network (SMN): central to detect and process sensory input and prepare and 

execute motor functions. Includes primary sensorimotor cortex, supplementary motor area 

(SMA) and secondary somatosensory cortices. 

• Central executive network (CEN): involved in executive control and working memory 

function, operates in mesiofrontal areas, including the anterior cingulate and para-cingulate 

cortices. 

• Salience network (SN): Detects and responds to salient behavioral events, primarily 

involving the dorsal anterior cingulate cortex and bilateral insulae. 

• Dorsal attention network (DAN): involves voluntary orientation (top-down) and selective 

attention. Major cortical areas include the superior parietal and frontal areas, including the 

intraparietal sulcus and frontal eye fields. 

• Auditory network: used for auditory processing, includes the right and left primary auditory 

cortex, Heschl’s gyrus, lateral superior temporal gyrus and posterior insular cortex. 

• Visual network: whose cortical areas most involved are the lateral and superior occipital 

gyrus and the lingual gyrus. 
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1.2.4 Multi-Echo fMRI Technique  

In recent years, studies have revealed that functional MRI data are susceptible to various 

artifacts, such as subject head motion, cardiac and respiratory effects, and hardware issues. 

These artifacts have raised concerns about the reliability of fMRI results, particularly in the 

context of brain function and developmental studies: the presence of artifacts not only reduces 

the statistical power of fMRI investigations, but also contributes to spurious results, leading to 

a crisis over confidence in fMRI research.[10] 

 

Figure 1.1 - Resting-state functional connectivity networks most widely reported in healthy controls shown in axial view. 
Colors represent percent change in BOLD signal superimposed on mean anatomical images in standard space. DMN, default-
mode network; SN, salience network; CEN, central executive network; DAN, dorsal attention network; SMN, sensorimotor 
network; VS, visual network; AN, auditory network. [9] 
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Multi-Echo fMRI (ME-fMRI) has emerged as a promising approach to improve the fidelity of 

fMRI signals through physically guided determination of their origins, whether derived from 

BOLD contrast or artifact sources.[10] 

 

Most echo-planar imaging (EPI) sequences collect a single image of the brain following a radio 

frequency (RF) pulse at a rate known as repetition time (TR). This typical approach is known 

as single echo fMRI, as well as standard fMRI. [a] Then, after excitation, standard fMRI uses 2-

D echo planar imaging to acquire single-TE slice images, one slice at a time: at 3T, this TE is 

usually 30ms.[10] 

 

 

Figure 1.2 - TR and TE are basic parameters of the pulse sequence, typically measured in milliseconds (ms). Echo time (TE) 
represents the time between the center of the RF pulse and the center of the echo. For pulse sequences with multiple echoes 
between each RF pulse, different echo times (TE1, TE2, TE3, etc.) can be defined. The repetition time (TR) is the length of time 
between consecutive corresponding points on a repeated series of pulses and echoes. [11] 

 

In contrast, ME-fMRI uses a slightly different approach: after a standard excitation pulse, a 

slice image is acquired at the first possible TE. Without re-excitation, another image of the same 

slice is acquired immediately afterwards, at a longer TE, and so on until the desired number of 

images and TEs is reached. This operation is performed for each slice of the brain volume. 

Thus, unlike conventional single-echo fMRI, ME-fMRI acquires multiple images of the same 

slice at varying echo times after a single excitation pulse [10], thus achieving multiple volumes 

with varying contrast levels acquired per RF pulse. [a] 

 

The fMRI signal contains important neural information (termed BOLD signal), but also “noise” 

(termed non-BOLD signal) caused by factors such as participant movement and changes in 

respiration. 
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Figure 1.3 - Several echoes can be created after a single RF-pulse by sequential gradient reversals. Generating multiple GREs 
is possible as long as complete loss of the transverse magnetization by T2* relaxation has not yet occurred. The second half of 
the first upward gradient lobe dephases the signal (De). The first half of the second downward lobe rephases these spins (Re) 
and generates a second echo. The process may be repeated, but because of T2*-decay, the maximum usable number of echoes 
is only 3-4 in most cases. The echo times for each echo are different. [12] 
 

Multi-echo data collection provides valuable information on both BOLD and non-BOLD 

signals (noise): since the BOLD signal is known to decay at a predetermined rate, the collection 

of multiple echoes allows evaluation of the non-BOLD signal, which is crucial for denoising 

and improving signal quality. 

The earliest echo time is the brightest, as the signal has had only a limited amount of time to 

decay, while the latter echo times show areas where the signal has decayed completely (“drop 

out”) due to magnetic field inhomogeneity. Using information from multiple echoes, these 

images can be optimally combined to exploit the signal from earlier echoes. [a] 

 

1.2.4.1 Advantages of Multi-Echo fMRI [a] 

There are several reasons for considering the use of multiple echo EPI (ME-EPI): 

 

• Comparison of echoes: the ME-EPI allows individual single-echo time series to be 

analyzed separately and then compared, offering insights into changes in signal 

characteristics. 

• Improvement of signal-to-noise ratio (SNR): through weighted averaging of echoes 

(“optimal combination”), ME-fMRI achieves a higher signal-to-noise ratio (SNR) and 
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increases the statistical power of analyses, especially in regions prone to signal dropouts 

such as the orbitofrontal cortex, ventral temporal cortex or ventral striatum, which are 

characterized by low T2* values. 

• Enhancement of denoising: the availability of multi-echo data allows the application of 

advanced denoising techniques, such as ICA-based denoising, including tedana, 

specifically designed for multi-echo data, enabling significant improvements in signal 

quality. 

 

1.2.4.2 Costs and Benefits of Multi-Echo fMRI [a] 

Several aspects should be considered before choosing to implement multi-echo fMRI: 

 

• Possible increase in TR: The time cost of ME-fMRI is slightly higher than that of single-

echo fMRI due to the acquisition of multiple echo times: while the shortest TE is 

essentially free (it is collected in the interval between the RF pulse and the single-echo 

acquisition) and the second one tends to roughly match the TE of the single echo, the 

additional echoes take longer. This needs to be evaluated in relation to other factors such 

as slice coverage, TR, and acceleration: if acceleration is increased, it is worth making 

an empirical comparison to ensure that there is not a nonnegligible loss of SNR or an 

increase in artifacts. 

• SNR improvement: despite the time cost, weighted averaging of echoes to optimize T2* 

weighting can offer a reliable and beneficial increase in data quality. 

• Consider long-term data use: if the dataset is intended for future analysis over an 

extended period, continued development of more powerful multi-echo denoising 

methods can add further value to the data. 

• Signal recovery in droupout areas: multi-echo fMRI enables effective signal recovery 

in brain regions prone to droupout due to low T2* values, such as the orbitofrontal 

cortex, ventral temporal cortex, or ventral striatum, providing valuable information for 

research focusing on these specific areas. 

• Cost of quality control: regardless of the fMRI approach chosen, performing thorough 

data quality control is essential. Therefore, this involves an investment of time and 

resources when examining denoising results. 
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1.3 Parkinson's Disease: Clinical and Neurobiological Aspects  

Parkinsonism is a syndrome characterized by bradykinesia and rigidity, often caused by 

increased muscle tone. Parkinson's disease (PD) is the most common cause of Parkinsonism. 

Specifically, Parkinson's disease is a chronic, idiopathic neurodegenerative disorder that 

primarily affects individuals aged 65 to 80 years, with a prevalence ranging from 0.25% to 

4%.[13] It is the second most common neurodegenerative disorder and is characterized by a 

clinical tetrad of motor dysfunction, including resting tremor, rigidity, bradykinesia (reduction 

of movements), and loss of postural reflexes (in more advanced stages).[14] 

However, PD is not defined solely by its motor symptoms; it also involves various non-motor 

symptoms (NMS) that can have a significant impact on the quality of life of those affected,[14] 

such as depression (caused by excessive inhibition of basal ganglia circuits) and dementia in 

the advanced stages. 

 

1.3.1 Symptomatology 

Pathologically, Parkinson’s disease is a multifaceted neurological disorder characterized by 

motor and nonmotor symptoms, the pathology of which involves the loss of nigrostriatal 

dopaminergic neurons and the presence of intraneuronal Lewy bodies, particularly in the 

ventrolateral and caudal segments of the substantia nigra pars compacta. 

The substantia nigra consists of the pars compacta (SNpc), which serves primarily as an input 

to the basal ganglia circuit and supplies dopamine to the striatum, and the pars reticulata (SNpr), 

which serves primarily as an output, conveying signals from the basal ganglia to various brain 

areas. 

The SNpc contains subgroups of dopamine-containing neurons, the so-called nigrosomes, of 

which nigrosome 1 is the largest, where in the PD there is the most pronounced dopaminergic 

leakage compared to other subregions of the SN. 

In later stages of the disease, further lesions occur in non-dopaminergic brain areas. 

Pathological changes in PD can be classified into three main areas: midbrain (involving loss of 

dopaminergic neurons), basal ganglia (associated with dopaminergic depletion), and cortical 

(related to functional reorganization). Collectively, these changes contribute to the complex 

motor and nonmotor symptoms observed in PD patients. [13] 

 

1.3.1.1 Motor Symptoms  

Degeneration of nigrostriatal dopaminergic neurons, resulting in disruption of basal ganglion-

thalamus-cortical circuits, underlies the classic motor signs and symptoms of PD, such as 
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tremors, reduced movement, and muscle rigidity [13] and can begin years or even decades before 

the onset of these typical motor symptoms, spreading throughout the nervous system.[9] 

In Parkinson’s, tremor is characterized by oscillatory and rhythmic activity, brought about by 

alternating contractions of agonist and antagonist muscles.  

The motor symptomatology typically seen in Parkinson’s disease consists of a reduction in the 

amplitude of some movements (as in the case of finger tapping) and some presence of tremor: 

at the onset of the disease, it may occur asymmetrically (unlike in other Parkinsonisms) in the 

left hand. 

There is also a reduction in the speed and frequency of execution of movements (assessed as 

the number of movements per unit time), especially in the prone-supination movement of the 

forearm and feet (dysdiadocokinesia). 

These symptoms tend to become more pronounced as the disease progresses: in fact, the patient 

develops marked tremor in both hands, some anteroflexion of the trunk (which shifts the center 

of gravity forward and leads to the classic festinated gait of the Parkinsonian patient), axial 

rigidity during walking, and lacks pendular oscillatory movement of the upper limbs during the 

act of walking. 

 

1.3.1.2 Non-Motor Symptoms  

Parkinson’s disease is not exclusively a pathology of dopaminergic cells: it also affects neurons 

that contain other neurotransmitters, such as norepinephrine, serotonin, and acetylcholine: it 

follows that the disease also affects other areas of the CNS and spinal cord. 

In addition to the well-known motor symptoms, in fact, PD is characterized by various 

nonmotor features that play an important role,[13] as they can have a significant impact on the 

patient’s quality of life and functional independence.[15]  

These nonmotor features include cognitive deficits, hyposmia (reduced sense of smell), mood 

alterations, depression, psychosis, and behavioral and perceptual abnormalities.[15] Some 

nonmotor symptoms may even precede motor symptoms or emerge later as the disease 

progresses[11] , and may confer greater disability than motor symptoms: autonomic dysfunction, 

in particular, is common in people with PD and is known for its strong negative contribution to 

quality of life and its association with a poorer prognosis and survival..[17] 

Depression, on the other hand, affects about 35% of PD patients and has been associated with 

decreased functioning, cognitive impairment, increased stress, and reduced quality of life. [15] 
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1.3.2 Disease Stages [16]  

i. Premotor or prodromal period: complaints such as depression, anhedonia, hyposmia, 

constipation, and sleep disturbances may be present that precede the onset of classic motor 

symptoms (bradykinesia, rigidity, tremor, and loss of postural reflexes). Some early motor 

symptoms may be shoulder pain (frozen shoulder), difficulty getting up from a chair, or 

slowing of voluntary movements.  

ii. Time 0: Degeneration of dopaminergic neurons is already underway in the premotor phase, 

but only when more than 50% of them are destroyed do the first motor symptoms, 

particularly bradykinesia, begin to appear, resulting in the diagnosis of the disease. 

iii. Early phase: includes the first 7-10 years of the disease, when the main motor symptoms 

are observed, generally in the absence of complications due to therapy or cognitive in 

nature. The cornerstones of this phase are bradykinesia and mood alterations. However, 

complaints such as exhaustion, perceived heaviness of the feet, and inability to run may also 

occur. At this stage, therapy is usually already underway. 

iv. Advanced or late phase: this is a phase in which cognitive disorders and non-motor 

disorders, particularly dysautonomic disorders (orthostatic hypotension and urinary 

dysfunction), prevail and severely affect the patient's quality of life. Complications, related 

to both cognitive dysfunction and side effects of therapy, are also observed in this phase.  

 

                                                                    

  

                                                                 
                                                     

                                                         

                          

            

          
            

                  

          

                     

                 

     

             

     

         

             

         

      

            

          
         

               

   

        

          

    

       

   

                

                       

        

 

Figure 1.4 - Clinical symptoms and time course of Parkinson’s Disease progression. 
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In addition to the symptomatology given by the disease itself, conditions associated with the 

disease may also occur: generally, after 7 to 8 years of therapy administration, problems related 

in part to the failure of the therapy may arise. 

One of the main problems faced in the treatment of this disease is that of motor fluctuations, 

caused by an inconsistent concentration of dopamine in the brain: this is reflected in the patient's 

inability to perform consistent motor performances, presenting moments when they are 

significantly better and others when they are significantly worse. 

 

So-called on-and-off moments can alternate suddenly and unpredictably throughout the day in 

the form of: 

• Wearing off: this refers to the phenomenon observed when the dose of therapy fails. The 

drug takes effect for only a few hours, after which symptoms suddenly reappear until 

the next dose is taken. This phenomenon, called end-of-dose deterioration, is partly 

responsible for daily motor fluctuations.  

• Sudden switch-off or freezing: the patient experiences motor blockade, sudden rigidity, 

so he or she cannot move. 

• Delayed onset: the benefit from therapy occurs with some latency: thus, there is no early 

response, but delayed efficacy. 

• Variable response with meals: if the dopaminergic therapy is derived from an amino 

acid taken in the diet (as in the case of Levodopa, or L-DOPA, which is derived from 

phenylalanine) intestinal absorption of the drug may be impaired: in the case where the 

meal is highly proteinic, the proteins in the meal will compete for the same amino acid 

transporters, consequently slowing absorption of the drug. 

• Yo-yo phenomenon: random and unpredictable fluctuations unrelated to therapy. 

• Episodic lack of response to LD dose.  

 

In more advanced stages, in particular, the transition from moments of blocking (off) to 

moments of excessive and involuntary movement is even more pronounced. 

These phenomena are called dyskinesias and are partly related to the therapy, partly to the 

neurodegeneration on which the therapy acts: they can lead to several negative consequences, 

such as falls and difficulty in performing gestures in a purposeful manner. 

About 10 years after the disease, non-motor off phenomena, such as depression or anxiety, can 

also occur, due to dopamine deficiency in the brain. 
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1.3.3 Diagnosis  

The clinical diagnosis of Parkinson's Disease is based on clinical evidence of motor signs [15]: 

in particular, it is based primarily on the presence of bradykinesia and at least one symptom 

among rigidity, tremor, and postural instability.[17] These manifestations may initially affect 

only one hemisphere of the body. 

However, recent findings suggest that PD may also present with nonmotor symptoms already 

at onset, such as depression, orthostatic hypotension, and REM sleep phase disturbances, which 

have good associative evidence with the disease. On the other hand, some non-motor symptoms, 

such as anxiety, have weaker evidence of association.[14] 

 

In the diagnostic work-up of patients with Parkinsonism, brain MRI is commonly used to assess 

structural anatomy and brain pathology. 

In neurodegenerative pathology, it can help make a correct diagnosis, as it can identify patterns 

of structural degradation and assess cerebrovascular damage (found in vascular Parkinsonism), 

thus being important in differentiating PD from other causes of Parkinsonism such as multiple 

sclerosis, normal pressure hydrocephalus, or Wilson's disease. In addition, it may support the 

diagnosis of atypical neurodegenerative Parkinsonism.[13] 

In addition, rs-fMRI can be used to assess regional interactions and functional connectivity in 

PD, focusing mainly on motor pathways.[13] Changes in functional connectivity, particularly 

involving cortico-striatal and mesolimbic-striatal dopaminergic circuits, provide valuable 

insights into the pathophysiological mechanisms underlying motor symptoms in PD. [9] 

 

1.3.4 Therapy [16]  

Once the dignosis of Parkinson's disease is firmly established, drug treatment is initiated. The 

most common drug therapies to address the disorder are: 

• Levodopa (L-DOPA): is the main treatment option for this disease and the most effective 

drug to date. It is an amino acid that is converted to dopamine in the CNS and goes to 

compensate for the lack of endogenous dopamine production in these patients.  After 

crossing the blood-brain barrier, it is converted to dopamine by DOPA-decarboxylase (at 

the level of the synaptic terminals of dopaminergic neurons): the newly formed dopamine 

is released into the synaptic space to go on to bind to postsynaptic receptors. 

• Botulinum toxin (BoNT-A): acts at the level of nerve endings that innervate muscles, going 

to interfere with the release of a particular neurotransmitter: acetylcholine. Botulinum toxin 

is administered only parenterally, by injection. 
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1.3.5 Rating Scales  

The degree of severity of the disease can be established through various rating scales. These 

scales, considering different items (motor and non-motor), assign the patient a score 

proportional to the severity of the disorder: the higher the score, the more advanced the disease. 

 

1.3.5.1 MDS - Unified Parkinson's Disease Rating Scale 

The most widely used scale is the MDS-UPDRS scale (Fig.1.5), which allows a common 

language about the severity of the disease in a specific patient and at a specific time in the 

course.[16] 

The MDS-UPDRS is a revision of the Unified Parkinson's Disease Rating Scale (UPDRS), 

originally developed in the 1980s, certain aspects of which have been improved by the 

Movement Disorder Society (MDS). 

The MDS-UPDRS was developed to assess various aspects of Parkinson's disease, including 

non-motor and motor experiences of daily living and motor complications. It includes a motor 

assessment and characterizes the extent and burden of the disease in various populations.[17]  

 

 

 

 

                                                        

                                

                              

                                        
            

                                           
      

                       

                        

                                       

                                      

            

         

              

                                 
           

  

                             

                                                                                             

              

           

          

                    

         

               

             

       

            

              

              

         

        

               

             

       

            

            

              

                 

          

                   

               

               

                  

           

              

       

                  

            

            

                   

        

     

            

 
 
 
  

 
  
  

 
 
 

 
 
  
 

 
 
 

 
 
  
 

 
 
 
 
  
 
  
 
 

 
 
  
 

 
 
 
 
  
 
 
  
 
 
   

   

  

 

Figure 1.5 - MDS - Unified Parkinson's Disease Rating Scale with related assessment criteria and scoring scales. 
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1.3.5.2 Hoehn & Yahr Scale 

There is also a disease staging scale: the Hoehn & Yahr scale (Fig.1.6), commonly used to 

describe the symptoms of Parkinson's disease progression. It was originally published in 1967 

in the journal Neurology by Melvin Yahr and Margaret Hoehn and included stages 1 to 5, where 

stage 5 indicates the terminal stage, with a severe reduction in the patient's autonomy.  

A modified scale was then proposed, with the addition of stages 1.5 and 2.5 to describe the 

intermediate course of the disease. [18,19] 

A stage 0, corresponding to the absence of signs and symptoms, may also be included.[16] 

  

                  

                                       
                                     
               

                                             
                                             
            

                                          
                                      
          

  

                           

                         

                                           

                                           

                                                

                                        

                                   

                                             

                                

             

                                          

          

                                                                                                                          
                                               

Figure 1.6 - Hoehn & Yahr scale with related assessment criteria and scoring scales. 
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1.4 Previous Studies on Functional Connectivity in Parkinson's 

Disease  

Neuroimaging techniques, particularly functional magnetic resonance imaging (fMRI), have 

been widely used to study the pathophysiology of neurodegenerative disorders such as 

Parkinson's disease (PD), providing valuable insights into its pathophysiological changes, 

potential treatments, and progression-related changes.[10] 

In cohorts of PD patients, advanced MRI techniques, including functional connectivity (FC) 

analysis, have shown promise in providing additional diagnostic markers for early-stage PD, as 

demonstrated by diffusion changes in the orbitofrontal region in the pre-motor phase of PD. [13] 

 

Resting-state functional magnetic resonance imaging (rs-fMRI) represents a powerful tool for 

studying depression-associated network abnormalities in PD patients, as it allows 

characterizing spontaneous brain activity and identifying brain networks with co-variant 

patterns, without the need to perform specific tasks: depressed patients with PD showed 

increased spontaneous regional neural activity in the orbitofrontal area and decreased functional 

integration within the prefrontal-limbic network, compared with non-depressed patients and 

healthy controls.[14] 

Lou et al. (2015) also showed that depressed patients with PD exhibit decreased FC in the left 

dorsolateral prefrontal cortex and right superior temporal gyrus, and increased FC in the right 

posterior cingulate cortex (PCC), compared with non-depressed patients. 

 

Furthermore, specific patterns of functional coupling/decoupling between resting state 

networks (RSNs) have been observed in PD patients, particularly within neurocognitive 

networks critical for efficient behavioral and cognitive performance.[9] 

A recent meta-analysis by Helmich et al. found reduced coupling between the posterior putamen 

and the inferior parietal cortex in PD, demonstrating that reduced functional connectivity within 

the posterior putamen and its severity correlate with PD symptoms.[11] This subcortical area and 

its cortical projections are modulated by levodopa administration.[9] 

In contrast, the anterior putamen showed increased connectivity with the inferior parietal cortex, 

a finding interpreted as compensatory: indeed, these results suggest that dopamine depletion in 

PD leads to a remapping of brain connectivity, affecting the sensorimotor circuitry and 

sensorimotor integration. 

Thus, changes in functional connectivity are associated with tremor in PD: given also the 

increased functional connectivity in the cerebellothalamic circuit of internal globus pallidus and 
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putamen and the correlation of dopamine depletion of the globus pallidus to the severity of 

clinical tremor, the presence of pathological interactions between the basal ganglia and the 

cerebellothalamic circuit in patients with tremor-dominant PD is inferred.[13] 

 

Rs-fMRI literature supports that aberrant functional interaction within corticostriatal loops may 

represent a potential early biomarker of PD-related neurodegeneration, even in subjects at high 

risk of developing clinical PD. 

Longitudinal studies have also revealed compensatory effects and treatment-related changes 

during disease progression: an increase in resting-state functional connectivity within the 

primary motor cortex (M1) has been demonstrated in PD patients. This increase in connectivity 

may in fact represent a compensatory response of networks to local neuronal injury, allowing 

the same global performance to be maintained, or a loss of dynamic network properties. [9] 

 

Postmortem and molecular imaging studies have provided fundamental insights into alterations 

in dopaminergic and nondopaminergic neurotransmission within the hypothalamus in the early 

and late stages of PD. However, more generally, the autonomic dysfunction observed in PD 

may reflect alterations in functional communication between the hypothalamus and other 

regions involved in the regulation of autonomic function.[20] 

 

Overall, fMRI and rs-fMRI studies have contributed significantly to the understanding of PD 

pathophysiology and potential biomarkers for early diagnosis and monitoring of disease 

progression. However, further research is needed to resolve inconsistencies between studies and 

better understand the complexity of the disease.[9]  
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1.5 Existing Approaches for Preprocessing Resting-State fMRI 

Data 

Before subjecting raw fMRI data to any kind of statistical analysis, some crucial preprocessing 

steps are commonly performed to ensure the quality and reliability of subsequent analyses. 

 

1.5.1 Typical rs-fMRI data Preprocessing Steps [a][b] 

To ensure the reliability and accuracy of rs-fMRI data, a series of basic preprocessing steps are 

usually performed: 

 

1.5.1.1 Evaluation of data quality 

As a first step, individual aberrant slices in the fMRI acquisition are identified and excluded: 

these slices may be affected by random variations in signal intensity, such as noise spikes, 

appearing too bright or too dark, or containing artifacts. These can arise from physiological 

sources (patient motion, breathing, heart rate, anxiety, drowsiness, medications) or from the 

scanner itself (field inhomogeneities, eddy currents, gradient heating, electronics). Timely 

identification and exclusion of these problematic slices, a process also known as “scrubbing”, 

are critical to avoid potential deterioration of the entire experiment. This can be done through 

visual inspection of the starting images in montage mode, or by resorting to more sophisticated 

graphical and semi-automatic methods. 

 

1.5.1.2 Slice Timing Correction 

In most fMRI studies, slices are acquired one at a time, resulting in differences in the timing of 

slice acquisition: the signal recorded from one slice may be offset in time by up to several 

seconds from another. The situation is further complicated depending on whether slices were 

acquired in sequential order (1,2,3,4,5,6...) or interleaved (1,3,5...2,4,6...) and whether 

simultaneous multislice imaging was used. This carries the risk of introducing errors, especially 

in rapid, event-related fMRI studies; therefore, it is critical to correct for differences in slice 

timing to ensure accurate results. 

 

Two basic strategies are generally used to correct slice timing: 

• Data shifting: is the most used method, in which recorded points are shifted to reflect their 

correct offset relative to the time of the stimulus. An interpolation of the points is made to 

fit the fixed TR-based timing grid, thus producing some blurring and degradation of the 

data. 
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• Model shifting: the predicted position of the hemodynamic response function (HRF) is 

varied, treating the slice position as an additional independent variable in the subsequent 

statistical analysis. Sometimes, to improve accuracy, time derivatives of the HRF are also 

incorporated into the model. 

 

1.5.1.3 Motion Correction 

Head movement is a major source of error in fMRI studies, requiring the development of 

various strategies to deal with this problem: head restraint by padding and straps is essential, 

and more rigid restraints such as bite bars and masks are sometimes used. Training and 

education of subjects before imaging are also important. 

Prospective motion correction can be performed using echo navigators, but retrospective 

motion correction where the head is treated as a rigid body with three directions of translation 

(displacement) and three axes of rotation is more common. Having chosen a single functional 

volume in a run as a reference, each volume is aligned to this by an iterative procedure to 

minimize a cost function (as the mean-squared difference). Visualization of the rotation and 

translation parameters provides valuable insight into the effects of motion. 

 

1.5.1.4 Distortion Correction 

The fMRI/BOLD sequences acquire gradient echoes and are therefore sensitive to magnetic 

inhomogeneity (T2*) effects, resulting in spatial distortions and signal dropouts, especially near 

the skull base and in regions such as the anterior frontal and temporal lobes. Techniques such 

as field mapping and "unwarping" methods are available to mitigate these distortions: although 

they are essential for sophisticated neuropsychological experiments, they are not as commonly 

used in mapping the baseline eloquent cortex for clinical fMRI studies. 

 

1.5.1.5 Temporal Filtering 

fMRI data often exhibit slow drift of the baseline signal over time and rapid fluctuations due to 

noise. Detrending, i.e., removal of low-frequency drift, can be carried out using a high-pass 

filter after the Fourier transform or time-domain averaging methods. Alternatively, confounding 

predictors, such as a discrete cosine transform basis set, can be added later in the data analysis 

to account for low-frequency fluctuations to remove gradual drifts. 

High-frequency signal fluctuations (noise) can instead be removed through a low-pass filter, 

but this is generally not recommended for most studies because it can bias the estimation of 

individual HRFs and reduce the fMRI signals of interest. 
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1.5.1.6 Spatial Smoothing 

Spatial smoothing consists of averaging the signals of adjacent voxels: it improves the signal-

to-noise ratio (SNR) but reduces the spatial resolution by blurring the image and smeared 

activated areas in adjacent voxels. However, this process is justified by the fact that neighboring 

brain voxels are often intrinsically related in terms of function performed and blood supply. 

For spatial smoothing, Gaussian filters are commonly used to convolve ("multiply") the fMRI 

data: a weighted average of the signals from neighboring voxels is computed, with weights 

decreasing with increasing distance from the target voxel. 

The choice of optimal kernel size takes into account several factors, such as slice thickness, in-

plane resolution, and the need to spatially separate small regions of activation. In general, a 

full-width half-maximum (FWHM) value of about 4-6 mm is preferred for single-subject 

studies and 6-8 mm for multi-subject analyses. 

 

1.5.2 Available Software for rs-fMRI Data [a][c] 

In fMRI data analysis, most major MRI manufacturers offer basic integrated software for fMRI 

processing (e.g., GE's BrainWave and Philips' I View BOLD), sufficient for fMRI studies based 

on simple tasks used for clinical cortical mapping. 

However, more complex experiments require third-party solutions: many software programs 

are free and open source, and can provide robust toolsets for experimental design, data 

processing and analysis. Among the most widely used independent fMRI software, those of 

interest for this discussion are: 

 

• AFNI (Analysis of Functional Neuroimaging): is a large collection of free C-based programs 

for processing, analyzing and visualizing fMRI data. Originally developed by Robert Cox 

at the Medical College of Wisconsin in the mid-1990s, AFNI is now housed at the National 

Institute of Mental Health (NIMH) in Bethesda, MD. Additional tools include a skull 

removal program and SUMA for cortical surface-based fMRI analysis. It runs on Unix, SGI, 

Solaris, Linux, and Mac OS X. 

 

• FSL (FMRIB Software Library): is a suite of free applications from the Functional Magnetic 

Resonance Imaging of the Brain (FMRIB) laboratory at the University of Oxford. The first 

version of this software was released in 2000, and FSL has continued to grow exponentially 

since then. It is designed primarily for Mac OS X and Linux but can also be used on 

Windows in a virtual machine environment. The most widely used modules include FEAT 
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(a model-based analysis for task-based fMRI), MELODIC (a model-free ICA-based 

analysis for resting-state fMRI), BET (for brain extraction), FAST (for tissue segmentation) 

and MCFLIRT (for motion correction). Tools are also available for tractography and 

diffusion analysis, as well as ASL-based perfusion and fMRI measurements. 

 

• SPM (Statistical Parametric Mapping): was created in the late 1980s by Karl Friston to 

analyze PET images at the voxel level. Within five years, SPM became the dominant 

method for analyzing PET and fMRI data (an emerging technique at the time). Today SPM 

is in its 12th version under continuous development by members and collaborators of the 

Wellcome Trust Centre for Neuroimaging at University College London. SPM is free and 

runs on Windows, Linux, and Mac OS X provided the MATLAB core is installed. SPM has 

all the necessary functionality for processing, analyzing and visualizing fMRI data: like 

most other fMRI software, SPM uses the General Linear Model (GLM) for its main 

analysis, since Friston was an early proponent of this technique. 

 

• Brain Connectivity Toolbox: contains over 120 statistical and brain connectivity functions 

designed primarily for complex network analysis (graphs) and is widely used to analyze 

resting-state fMRI studies. This free site is the work of several researchers, mainly Olaf 

Sporns of Indiana University and Mikail Rubinov of Cambridge. MATLAB installation is 

required, although some functions may run on Octave. 

 

• tedana (TE-dependent analysis): is a Python library for denoising multi-echo functional 

magnetic resonance imaging (fMRI) data. tedana originally began as part of the ME-ICA 

pipeline, although it has since differentiated itself: whereas the ME-ICA pipeline originally 

performed both pre-processing and TE-dependent analysis of multi-echo fMRI data, tedana 

now assumes that one is working with data that have been previously pre-processed. 
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Chapter 2: Materials and Methods 

2.1 Dataset Characteristics 

The dataset used in this study includes magnetic resonance imaging (MRI) scans of a group of 

105 subjects with Parkinson's disease (PD) and 63 healthy control individuals (HC). 

The scans were acquired at the San Camillo Hospital Institute using a magnetic imaging system 

manufactured by Philips using the Ingenia_CX model, with a magnetic field of 3 Tesla and an 

imaging frequency of 127,759 Hz. During the MRI imaging sessions, subjects were in a resting 

state, keeping their eyes open and without a specific target to focus on. Before the start of the 

acquisitions, the patients' attention was called, and their vigilance state was checked. 

 

For each subject, data are available regarding both the anatomical structure of the brain (using 

T1w3D, T2w3D, and FLAIR3D sequences) and brain function during the resting state, 

including processes related to blood oxygenation. Specifically, data are available on the BOLD 

signal acquired using three different echo times (TE): 10 ms, 20 ms and 30 ms, with a repetition 

time (TR) of 2 seconds. 

The image slices were acquired in interspersed order with phase coding in the antero-posterior 

direction using the SENSE technique with an acceleration factor of 3.3. 

In addition, for a volume of data associated with the third echo time, acquisitions of the BOLD 

signal are available in both the antero-posterior direction (AP sequence) and the postero-

anterior direction (PA sequence). This was done to allow correction of magnetic field 

distortions. 

 

 

Figure 2.1 - Distribution by sex (females in blue and males in orange) and age in the cohort of healthy subjects (HC) and patients 
with Parkinson's disease (stratified by duration of the disorder, dis_dur). 

 

Healthy controls and patients underwent the same clinical, behavioral, and cognitive assessment 

protocol. As shown by the similarity of age and sex distributions between the two cohorts in 
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Fig. 2.1 on the previous page, healthy subjects cover the same age range as the sample of 

subjects with Parkinson's disease. 

 

Detailed information on symptoms manifested at disease onset and cognitive status of the 

participants was also made available (Fig. 2.2 below). it is possible to identify, from a cross-

sectional perspective, healthy versus Mild Cognitive Impairment (MCI) subjects in the healthy 

cohort and all three cognitive states in the cohort of subjects with Parkinson's disease (dementia, 

MCI at two levels of severity, and no MCI). 

 

 

Figure 2.2 - Information regarding the numerosity (y-axis) and cognitive status (x-axis) of the subjects in the dataset. For the 
cohort of healthy subjects (HC) the condition of Mild Cognitive Impairment is indicated with HC-MCI and with NC-MCI the 
condition of No Cognitive impairment. In the cohort of subjects with Parkinson's disease (PD), the condition of Dementia is 
indicated with D, the condition of Mild Cognitive Impairment-Major Depression with PD-MCI-MD, the condition of Mild 
Cognitive Impairment-Severe Depression with PD-MCI-SD, and the condition of No Cognitive Impairment with PD-NC. For PD 
patients, the duration of the disorder (dis-dur) is also indicated. 

 

From this data set, a 70-year-old healthy subject and a 60-year-old patient with Parkinson's 

disease, both with an MMSE score of 30, were considered to fine-tune the data preprocessing 

pipeline. 

 

  

Count and Cognitive Status of Acquired Subjects 
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2.2 Development of the Preprocessing Pipeline 

2.2.1 AFNI: Slice timing and Motion Correction  

TA K TOOL  O  AN  O TION  

 OTION 
 A A ETE  
E TI ATION 

     3dvolreg 

                                               
                                            _     
                                           
       

 LI E TI ING      3dTshift 
                                                  
                                            
                                       

 OTION 
 O  E TION 

     3dAllineate 
         _                                    
                        

AFNI TO NIFTI  ATA 
FO  AT 
 ONVE  ION 

     3dAFNItoNIFTI 
                                               
                                             

Table 2.1 - commands used to implement slice timing and motion correction in AFNI. 

 

In the context of multi-echo EPI (ME-EPI) data analysis, it is essential to follow several 

preprocessing steps to ensure accurate results: among these, slice timing and motion correction 

emerge as crucial steps.  

 

In fMRI data acquisitions, two-dimensional pulse sequences are often used to collect images 

one slice at a time. This means that during a single repetition time (TR), several slices are 

acquired at temporally distinct times. This temporal variation can become a significant problem, 

especially when longer TRs are used. Therefore, discrepancies in the acquisition times of 

different slices must be addressed and corrected. 

In parallel, another critical aspect is motion correction: this stage aims to align the time series 

of images so that the brain is consistently positioned in each image. This correction is critical 

to ensure that variations in head or brain position between different acquisition times do not 

compromise the accuracy and interpretation of the analysis results.[21] 

 

One prominent software for analyzing and visualizing functional MRI data is AFNI: it is open 

source and was initially created in 1994 to meet the needs of researchers at the Medical College 

of Wisconsin. Initially focused on mapping activations in the Talairach-Tournoux coordinate 

system, AFNI has evolved over time into a comprehensive tool for analyzing fMRI data. One 

of the main strengths of AFNI is its flexibility and transparency. 
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In recent years, further improvements have been made to the user experience of the fMRI data 

processing flow in AFNI, including the introduction of "super-scripts" that simplify the entire 

analysis process and the addition of graphical interfaces to manage these operations 

intuitively.[22] 

 

AFNI's 3dvolreg software was used to estimate the movement parameters. The algorithm is 

based on iterating linearized weighted least squares to make each sub-brick as similar as 

possible to the base brick. The resulting parameters (Fig. 2.3 and Fig. 2.4 on the following page) 

from the motion correction process include information on translations and rotations of the 

subject's head during image acquisition: translations refer to movements along the spatial axes 

(x, y and z), while rotations refer to changes in orientation around the same axes. Describing 

the small movements of the head during image acquisition is essential to the quality of the data: 

they are crucial in compensating for any unwanted movement, ensuring that volumes are 

aligned with each other correctly. The -1Dfile option of 3dvolreg saves these parameters in a 

text file, while the -1Dmatrix_save option saves the transformation matrices for each volume.[d] 

 

For slice timing correction, AFNI's 3dTshift is used, which shifts the voxel time series from the 

input dataset so that the separate slices are aligned to the same time origin. The -tpattern 

parameter specifies the slice acquisition pattern: in the case of an alternative acquisition pattern, 

starting with an even slice, the 'altplus' option is used.[e] 

 

Finally, motion correction is performed using AFNI's 3dAllineate. The estimated motion 

parameters can be applied to each echo using the -1Dmatrix_apply option. This step ensures 

alignment between the different echoes in the dataset. 

 

To maintain preprocessing consistency, it is recommended to apply the same motion correction 

transformation to all echoes. [a] This approach avoids possible shifts in the mean or voxelwise 

scale that could affect subsequent analyses. Instead of calculating and applying the head motion 

correction parameters to individual echoes, it is therefore advisable to calculate these 

parameters from one echo and apply the resulting transformation to all echoes.[a] The motion 

parameters were estimated on the echo closest to T2, i.e. the third echo (TE=30 ms). 

 

Slice timing correction is essential prior to multi-echo denoising with tools such as tedana. This 

correction makes it possible to assume synchronous events between the different slices. If the 

repetition time (TR) is 1 second or more, slice timing correction must be performed before 
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applying tedana. This correction is particularly important for multi-echo datasets, where 

differences in timing between echoes can affect the results. Furthermore, it is essential to 

maintain consistent slice timing between all echoes. Since the slice timing is defined as the time 

of the excitation pulse for each slice, it remains constant regardless of the timing of the echo. 

Therefore, it is recommended to use the same slice timing for all echoes in a ME-EPI series, 

otherwise differences in slice timing may affect the echo-dependent estimates. [a] [23] 

 

 

Figure 2.3 - Motion parameters (MoCo) estimated by the 3dvolreg command of AFNI in the third echo (TE=30ms) acquired in 
the patient with Parkinson's disease. The first 3 parameters refer to translation in mm (top graph) along the x-axis (left-right, 
in blue), y-axis (front-rear, in red), z-axis (top-bottom, in yellow) respectively. The second 3 parameters refer to rotation in 
degrees (bottom graph) along the x-axis (roll, in blue), y-axis (pitch, in red), z-axis (yaw, in yellow). 

 

 

Figure 2.4 - Motion parameters (MoCo) estimated by the 3dvolreg command of AFNI in the third echo (TE=30ms) acquired in 
the healthy control. The first 3 parameters refer to translation in mm (top graph) along the x-axis (left-right, in blue), y-axis 
(front-rear, in red), z-axis (top-bottom, in yellow) respectively. The second 3 parameters refer to rotation in degrees (bottom 
graph) along the x-axis (roll, in blue), y-axis (pitch, in red), z-axis (yaw, in yellow). 
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2.2.2 Tedana: Optimal Combination of Echoes [a] 

TA K TOOL  O  AN  O TION  

E  OE  
 O BINATION 

       t2smap 
                                    
           

Table 2.2 - commands used to implement the optimal combination of echoes in tedana. 

 

Tedana is a data processing technique used to decompose multi-echo Blood Oxygen Level 

Dependent (BOLD) data through the application of principal component analysis (PCA) and 

independent component analysis (ICA). This method aims to identify components of the data 

that exhibit TE-dependent (echo time) and TE-independent characteristics. Components that 

exhibit TE-dependent behavior are classified as BOLD, while those that exhibit TE-

independence are considered non-BOLD and are removed as part of data cleaning. 

In the approach implemented by tedana, time series data acquired from all echo times (TE) 

collected are merged and subjected to decomposition. This process leads to the identification of 

components that can be classified as BOLD or non-BOLD. 

 

In the specific context discussed, tedana was used only to optimally combine the three echoes, 

with the goal of obtaining a single functional magnetic resonance imaging (fMRI) signal. The 

optimal combination is achieved through a series of steps that include: 

• Monoexponential decay model fit 

• Adaptive mask generation 

• Optimal combination 

 

2.2.2.1 Monoexponential Decay Model Fit 

The main step involves fitting a mono-exponential decay model to the data. This model helps 

to estimate voxel-specific values of T2* and S0, where T2* represents the rate of signal decay 

over time, affecting aspects such as signal dropout and BOLD sensitivity, while S0 indicates 

the initial signal intensity within a voxel before decay (reflecting coil sensitivity). 

 

Since T2* and S0 naturally fluctuate over time, estimating them on a volume-by-volume basis 

with a limited number of echoes produces noisy results, so the average maps of T2* and S0 are 

considered. To facilitate model fitting, tedana performs logarithmic transformation of the 

BOLD data using log(|S|+1), where S denotes the BOLD signal and echo times are multiplied 

by -1. A linear regression is then applied to the transformed data to obtain a simple line. 

https://tedana.readthedocs.io/en/latest/approach.html#id5
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Figure 2.5 - Example of model fit: the BOLD data are subjected to logarithmic log(|S|+1) transform, where S denotes the BOLD 
signal and echo times are multiplied by -1, and a linear regression is applied to these to obtain a simple line. From the values 
of intercept B0 and slope B1, it will be possible to derive the values of interest S0 and T2*. [a] 

 

The key values of interest in the decay model, S0 and T2*, can be obtained through simple 

transformations of the intercept (B0) and slope (B1) of the line, respectively, illustrated in Eq. 

2.1 and Eq.2.2 below. 

 

𝑆0  =  𝑒𝐵0    𝑇2
∗  =  

1

𝐵1
 

 

 

The resulting values can be used to show the single-exponential decay model fitted to the 

original data, as can be seen in Fig.2.6 below. 

 

 

Figure 2.6 - Continuation of the example described in Fig. 2.5: The values of S0 and T2* obtained by applying equations 1 and 
2 to the values of B0 and B1 derived from the linear regression can be used to apply a single-exponential decay model to the 
original data. [a] 

Equations 2.1 and 2.2 - Voxel-specific values of S0, the initial signal intensity within a voxel before decay, and T2*, the rate 
of signal decay over time, respectively. 
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2.2.2.2 Adaptive Mask Generation 

Some brain regions, such as the orbitofrontal cortex and temporal poles, experience signal 

dropout especially at longer echo times. To avoid using the poor-quality signal of the affected 

echoes when calculating parameters such as T2* and S0 for a given voxel, tedana generates an 

adaptive mask:  in this mask, a value is assigned to each voxel, indicating the number of echoes 

with reliable signal. When calculating the values of T2* and S0, only the first n echoes are 

considered, where n corresponds to the value of the adaptive mask for that voxel. 

 

2.2.2.3 Optimal Combination 

Using the estimated values of T2*, tedana combines the signal of different echoes through a 

weighted average. The weights assigned to each echo are determined by the equation 2.3 below. 

 

𝑤𝑇𝐸  =  𝑇𝐸 ∗  𝑒
− 𝑇𝐸

𝑇2
∗

 

 

The calculated weights are then normalized across all echoes. These normalized weights are 

used to calculate a weighted average, taking advantage of the higher signal content in the 

earliest echoes and the higher sensitivity in the later echoes.  

 

 

Figure 2.7 - Continuation of the example described in Fig. 2.5: The distribution of values resulting from the optimal combination 
of data lies between the distributions of individual echoes. [a] 

 

The distribution of values resulting from this optimal combination of data lies between the 

distributions of the individual echoes (Fig. 2.5 above). 

Equation 2.3 - weights assigned to each echo to combine them through a weighted average. 
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In addition, the time series of the optimally combined data has the characteristics of a mixture 

of other echoes, as it effectively represents a combination of such echoes. 

 

 

The results of the optimal combination of echoes with tedana is shown in Fig. 2.8 below for the 

subject with Parkinson's disease (PD) and the healthy control, respectively. 

For each subject, the three separate echoes (TE=10,20,30 ms), as well as the result of slice 

timing and motion correction in AFNI, are shown initially, followed by the result of their 

optimal combination in tadana: the first echo time is the brightest, due to the limited signal 

decay time, while darker areas (so-called "drop out") are observed in the last echo times, due to 

complete signal decay, because of the inhomogeneity of the magnetic field. The image obtained 

from the optimal combination of echoes uses the information from all three images, exploiting 

the signal from the earlier echoes to cope with the drop out phenomenon. [a] 

 

 

Figure 2.8 - Representation of the signal at echo times TE=10,20 and 30ms in the two subjects considered in the study and 
result after the optimal combination of the three echoes using tedana, respectively in the patient with Parkinson's disease (on 
the top) in the healthy control (on the bottom). 

 

Fig. 2.9 on the following page also shows the histograms derived from an analysis of the 

temporal signal-to-noise ratio (tSNR) maps (see Section 2.4.1 "Evaluation Metrics: Temporal 

Signal-to-Noise Ratio (tSNR)" for more information). The results confirm what has just been 

said: the tSNR maps follow a decreasing trend as the echo time increases, with the image 
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optimally combined with tedana presenting higher tSNR values demonstrating better overall 

signal quality, especially in the regions affected by the dropout. 

 

 

Figure 2.9 - Histograms of the temporal signal-to-noise ratio (tSNR) maps of the single-echo acquisitions (TE=10ms in yellow, 
TE=20ms in orange and TE=30ms in red) and of the optimal combination of echoes performed with a tedana (in light blue), 
respectively for a patient with Parkinson's disease (on the left) and healthy control (on the right). For this evaluation, the 
images were normalised to make their tSNR values comparable. 

 

The image corresponding to the first echo time (TE=10 ms) is more uniformly bright for both 

subjects, with a higher average tSNR among the single-echo acquisitions, justified by the short 

echo time that did not allow the signal to undergo significant decay. 

In the image corresponding to the second echo time (TE=20 ms), the signal starts to undergo 

some decay due to the longer echo time. This is reflected in the tSNR map: a decrease in the 

average tSNR is observed compared to the image with TE=10 ms. However, as the echo time 

is still relatively short, the image is still uniform without very dark areas. 

In contrast, the image corresponding to the third echo time (TE=30 ms) has the lowest average 

tSNR of the three due to the very long echo time. The signal undergoes significant decay, 

leading to the presence of darker areas where the signal has been completely lost: the tSNR 

map reflects this signal loss with lower values than the other two images. 

 

Finally, the optimally combined image with tedana, using information from all three images to 

improve signal quality, presents a better tSNR map than the individual images, as expected. In 

fact, higher tSNR values are observed in regions where the images with longer TE lost signal, 

as the information from the images with shorter TE is used to fill these gaps. 
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2.2.3 AFNI: B0 Field Distortions Correction  

TA K TOOL  O  AN  O TION  

B0  I TO TION 
E TI ATION 

     3dQwarp 
               "                  "           
                                       

B0  I TO TION 
 O  E TION 

     3dNwarpApply                               

Table 2.3 - commands used to implement B0 distortions correction in AFNI. 

 

Any step that alters the relationship between the signal quantities and the echoes, such as field 

distortion correction or filtering, must take place after the combination of the echoes to prevent 

the intensity gradients and subsequent calculation of T2* values at voxel level from being 

distorted or incorrect. An aggressive temporal filter or spatial smoothing could similarly distort 

the relationship between echoes at each time point. [a] 

 

In the context of multi-echo MRI data processing, it is crucial to accurately address the 

correction of B0 field distortions to obtain reliable results, as it can cause inaccuracies in the 

spatial representation of the data. 

For this purpose, once the three echoes with tedana were optimally combined, AFNI's 3dQwarp 

command was used to calculate the displacement field to correct distortions in brain images: it 

is a mathematical representation of the spatial deformations applied to the base image to align 

it with the source image. In this case, the meet-in-the-middle deformation technique was used 

with the baseline sequences in the antero-posterior direction (AP sequence) and the source 

sequence in the postero-anterior direction (PA sequence). The displacement field is generated 

by comparing the base image with the source image using motion correction and alignment 

algorithms to calculate the displacement field that represents the geometric transformation 

required to match the two images. 

 

The 3dQwarp command generates a positive warp and a negative warp: 

• The positive warp (or warp plus) represents the spatial deformation required to align the 

base image with the source image. 

• The negative warp (or warp minus) represents the spatial deformation required to align 

the source image with the base image. 
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In summary, 3dQwarp generates plus and minus warps, i.e., positive and negative warps, by 

calculating the displacement field that aligns the base image with the source image and vice 

versa. These displacement fields are then applied to the respective images to achieve the desired 

alignment. 

 

Once the deformations of the B0 field have been estimated, their correction is performed using 

AFNI's 3dNwarpApply command, developed specifically for this task. 

Since the analyzed images were acquired in the antero-posterior (AP) direction, negative 

(minus) warp transformations were applied to correct distortions. Using a minus warp, the 

calculated displacement field between the source image (PA in this case) and the base image 

(AP in this case) is applied to the source image itself, producing an image aligned with the base 

image. Then, MINUS deformation is used to align the source image with the base image. [f] 

The application of negative warp for distortion correction was also confirmed by comparing 

tSNR maps computed on the same image, corrected using positive warp, negative warp, and 

the combination of the two, respectively. 

 

 

The results of B0 field distortion correction using negative strain in AFNI are shown in Fig. 

2.10 and Fig. 2.11 on the following page for the subject with Parkinson's disease (PD) and 

healthy control, respectively. 

For more details on choosing the type of warp to be used, see Section 2.4.2 “B0 field distortion 

correction: Warp selection”. 

 

 

The same pre-processing steps performed with AFNI were also performed with the FSL (the 

FMRIB Software Library) software. More details on the comparison between the two tools can 

be found in section 2.4.3 “Comparison of preprocessing pipelines: AFNI vs FSL”.  
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Figure 2.10 - Temporal signal-to-noise ratio (tSNR) maps of the fMRI signal in Parkinson's Disease (PD) patient after correction 
of B0 field distortions. 

 
Figure 2.11 - Temporal signal-to-noise ratio (tSNR) maps of the fMRI signal in the healthy control after correction of B0 field 
distortions. 
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2.2.4 Regression for White Matter and Cerebrospinal Fluid  

As part of fMRI signal analysis, regression of white matter (WM) and cerebrospinal fluid (CSF) 

is a crucial process to remove the effect of these physiological components from the neural 

signal of interest. Before applying regression, tissue segmentation was performed on T1w 

images using FAST (FMRIB's Automated Segmentation Tool) in FSL, generating probabilistic 

maps for the GM, WM, and CSF compartments. From these probabilistic maps, binary masks 

were then derived, which, when applied to the fMRI signal, allowed identification of the white 

matter and CSF regions.[24]  

Through Principal Component Analysis (PCA), regressors were obtained separately for WM 

and CSF voxels to remove these physiological influences from the fMRI signal. This approach 

was standardized using a fixed number of principal components, ensuring uniformity of 

analysis across subjects. The residuals obtained were subsequently used to analyse the neural 

activities of interest using the general linear model (GLM). 

 

2.2.4.1 SPM12: Realignment and Coregistration 

Before proceeding with the implementation of the regression for white matter (WM) and 

cerebrospinal fluid (CSF), SPM12 software was used to perform some preliminary operations: 

initially, to realign the volumes of the fMRI signal to create an averaged image, which was 

subsequently used for coregistration of the fMRI image in structural space to enable the 

application of the WM and CSF masks to the signal. In the context of functional MRI data 

analysis, the realignment and coregistration steps are crucial to ensure accurate alignment of 

the acquired images and correction of motion-related artifacts. 

 

In the realignment process, temporal images obtained from the same subject are aligned through 

a 6-parameter spatial transformation (rigid body) obtained by a least-squares approach. The first 

image of the acquisition sequence is chosen as the reference, and subsequent images are aligned 

to it by obtaining estimates of the translation and rotation parameters for each image. After the 

realignment process, the images are reprocessed (resliced) to match the voxel positions of the 

reference image and a volume-averaged image is generated.. [25] 

 

In the process of coregistration, the goal is to align different imaging modalities, such as in this 

case aligning fMRI data with structural images such as FLAIR (fluid-attenuated inversion 

recovery) scans. Using a rigid-body transformation model, which includes three translation and 

three rotation parameters, an attempt is made to maximize the similarity between the images to 
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be aligned. The choice of objective function depends on the mode of the images involved (same 

mode or different modes). Through the coregistration process, the transformation parameters 

that optimally align the image to be moved (in this case, the fMRI image) with the reference 

image (in this case, the structural image) are estimated. Then, the images are reprocessed 

(resliced) to match the voxel positions of the reference image. 

 

In both processes, parameters such as the type of interpolation used, wrap-around handling in 

the image directions, and masking can be adjusted to handle regions where data sampling has 

been compromised by subject motion.[25] 

 

 

The results of the coregistration of the fMRI image on the FLAIR-T2w structural image with 

SPM12 and the masks to extract the white matter and CSF signals from the resulting image are 

shown in Fig. 2.12 and Fig. 2.13 on the following pages, for the subject with Parkinson's disease 

(PD) and the healthy control, respectively. 
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Figure 2.12 - Result of the coregistration of the fMRI image on the FLAIR-T2w structural image with SPM12 (A) and 
corresponding masks used to extract the white matter (B) and CSF (C) signal in the subject with Parkinson's disease (PD). 
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Figure 2.13 - Result of the coregistration of the fMRI image on the FLAIR-T2w structural image with SPM12 (A) and 
corresponding masks used to extract the white matter (B) and CSF (C) signal in the healthy control (HC). 
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2.2.4.2 MatLab: Principal Component Analysis (PCA) 

In the context of functional connectivity (FC) analysis using task-free functional magnetic 

resonance imaging (fMRI) data,[28] i.e., under resting conditions, the handling of noise is 

critical, as its complex spatiotemporal structure can introduce bias into connectivity 

estimates.[27] 

 

Noise signals, which are uncorrelated signals with the phenomenon of interest and therefore 

must be regressed from the data, can be computed using mathematical models or data-driven 

methods. The data-driven approach involves the direct extraction of noise signals from fMRI 

data by separating useful signals from noise through multivariate decomposition methods, such 

as Principal Component Analysis (PCA).[27] 

The latter is a technique developed to identify the main modes of variation in high-dimensional 

data and plays a key role in this context: by projecting the raw fMRI data into orthogonal spaces 

called principal components (PCs), which represent the largest variance in the original 

dataset,[28] it allows the identification of the eigenvalues (amount of variation) and eigenvectors 

(direction of variation) of the data's covariance matrix.[26] 

 

In this work, signals from cerebrospinal fluid (CSF) and white matter (WM) are considered as 

noise signals because they are believed to contain mainly physiological and hardware noise, 

devoid of neural signals. Using these signals as noise estimates and regressing them from the 

data improves the signal-to-noise ratio in gray matter (GM), the region of interest. A commonly 

used approach to calculate noise signals related to the CSF and WM is based on extracting the 

fMRI time series from the CSF and WM masks, respectively, and calculating the representative 

signals by PCA,[24][27] followed by regressing these component time series from the data. 

The use of PCA on the fMRI signal to which the white matter and CSF masks were applied led 

to the identification of principal components for each subject: the practical challenge, however, 

is to choose the number of these principal components of the CSF and WM compartments to 

be selected for regression from the data. 

 

Several criteria emerge from the literature, such as identifying "significant" components not 

due to random noise or ensuring that the selected components explain a significant part of the 

variance of the time series. These estimates are subject-specific but are often treated as fixed 

values in fMRI-based neuroimaging software and studies. A frequent choice is to extract five 

regressors from CSF and WM signals, respectively, as shown in the CONN toolbox 
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(https://www.nitrc.org/projects/conn), where they are used as defaults, but also in many other 

studies using different software (e.g., Baniqued et al., 2018). [27] 

 

In accordance with these results, five principal components were identified for each CSF and 

WM signal and for each subject (Fig. 2.14), keeping the choice of the number of principal 

components to be considered consistent across subjects: this uniformity in the choice of the 

number of regressors was maintained to avoid a variation in model complexity across 

participants.  

The overall extraction of ten principal components per subject, obtained from both the fMRI 

signal with the white matter mask applied and the fMRI signal with the CSF mask applied, 

provided the set of regressors needed to implement the General Linear Model (GLM). This 

GLM-based approach facilitated the calculation of the residuals, which represent the fMRI 

signals devoid of the influences of white matter and CSF. 

 

 

Figure 2.14 - Regression matrices used in the general linear model (GLM) to regress the white matter (WM) and cerebrospinal 
fluid (CSF) signal. Each subject's matrix consists of 10 regressors: 5 principal components obtained from PCA on the masked 
fMRI signal for CSF (in orange) and 5 principal components obtained from PCA on the masked fMRI signal for WM (in blue). 

 

2.2.4.3 MatLab: General Linear Model (GLM) Analysis [24] 

The General Linear Model (GLM) analysis is a widely used technique in the field of functional 

magnetic resonance imaging (fMRI) to study the relationship between experimental 

observations and predicted responses. In this method, fMRI time series data, denoted as y, are 

modeled as a linear combination of various factors, including predicted task responses, and a 

https://www.nitrc.org/projects/conn
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white Gaussian distributed additive noise term ε. The model can be expressed through the Eq. 

2.4 below: 

𝑦 =  𝛽0  + 𝛽1𝑥1  +  𝛽2𝑥2 + . . . + 𝛽𝑛𝑥𝑛  +  𝜀  

 

 

Here, xi represents each model factor, and βi is the parameter weight associated with the 

contribution of each factor to the dependent variable y. This model represents a linear mixture 

of factors that can be used to capture the relationship between the experimental conditions and 

brain activity. 

 

The GLM analysis involves statistical testing to evaluate how well the time series of each voxel 

in the brain is explained by this linear combination of model factors. The fitted results are 

converted into t- or F-statistics, allowing the assessment of the significance of each model 

factor's contribution to y. This testing assumes a null hypothesis where the parameter weights 

βi for the model factors are zero, indicating no contribution from those factors. 

The GLM approach offers flexibility in shaping the predicted responses by modifying the model 

factors, accommodating inconsistent temporal delays and variability of hemodynamic response 

function (HRF) shapes across different brain regions. 

 

This process is analogous to correlational analysis, but compared to traditional correlation 

analysis, the GLM approach is more versatile and can accommodate complex experimental 

designs involving multiple cognitive conditions. It can also incorporate various sources of 

variability as model factors, such as motion parameters, physiological fluctuations, subject-

related information, and environmental factors. The GLM technique finds applications beyond 

basic correlation analysis, including characterizing impulse responses in event-related designs, 

studying psychophysiological interactions among brain regions, and exploring relationships 

between fMRI and other imaging modalities. 

 

However, the GLM has its limitations. Its validity relies on assumptions about relationships 

between model factors, noise, and the structure of the noise term. Unfortunately, these 

assumptions are often not thoroughly discussed in practice. Additionally, the GLM assumes 

linearity of blood oxygen level-dependent (BOLD) responses, which might not hold true in all 

cases. In such situations, more complex higher-order models need to be considered. 

Equation 2.4 - General Linear Model (GLM) equation. y represents the dependent variable (fMRI time series data) modeled 
as a linear combination of xi factors. βi is the parameter weight associated with the contribution of each factor to the 
dependent variable y. ε represents a distributed Gaussian white additive noise term. 

 



47 

 

 

Figure 2.15 - Most model-based and model-free analyses in fMRI studies can be incorporated into a consistent matrix 
decomposition scheme. Specifically, the 4-D fMRI dataset can be reorganized into a 2-D matrix by aligning all voxels from the 
same time point in a row; several approaches (e.g., GLM (a), MVPA (b), ICA/PCA (c)) attempt to decompose the 2-D matrix into 
subcomponents by imposing various assumptions on the structure of the decomposed matrix (blue rectangles), then extract 
spatial patterns (network patterns, pink rectangles) of neuron-related contributions.[27] 
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In this context, the General Linear Model (GLM) was employed with the purpose of regressing, 

for each subject, the rs-fMRI signal for white matter (WM) and cerebrospinal fluid (CSF). The 

five principal components obtained from PCA, known as "scores," derived from WM and CSF 

signals, were used as predictors. This resulted in a total set of ten predictors, or regressors. 

 

The design matrix X (Fig. 2.14 on previous pages), also known as the predictor matrix, was 

assembled by combining the motion correction parameters (see section 2.2.1: “AFNI: Slice 

Timing and Motion Correction”) with the WM and CSF space scores derived from the principal 

component analysis. This generated a matrix of size 240 x 16, where 240 represents the number 

of time series and 16 indicates the number of predictors. 

When processing the fMRI data, represented by the variable y, the β parameter was estimated 

using the Weighted Least Squares (WLS) method, as shown in Eq. 2.5 below. The weights for 

each volume were assigned considering the corresponding Framewise Displacement (FD) 

value, with one volume being considered an outlier in the case of FD>0.4. 

 

𝛽 =  (𝑋𝑇 𝑑𝑖𝑎𝑔(𝑤) 𝑋)−1 𝑋𝑇 𝑑𝑖𝑎𝑔(𝑤) 𝑌 

where 𝑋 = [𝑀𝑜𝐶𝑜𝑝𝑎𝑟𝑎𝑚𝑠  𝑠𝑐𝑜𝑟𝑒1
𝐶𝑆𝐹 … 𝑠𝑐𝑜𝑟𝑒5

𝐶𝑆𝐹 𝑠𝑐𝑜𝑟𝑒1
𝑊𝑀 … 𝑠𝑐𝑜𝑟𝑒5

𝑊𝑀] 

 

 

The fMRI signal reflecting the effect of WM and CSF was obtained by a regression process. 

These are the residuals resulting from the application of the WM, defined by the difference 

between the original fMRI signal and the response predicted by the model for each data point, 

considering the associated weights. In other words, the wres quantity was calculated as in Eq. 

2.6 below, where w represents the weights assigned to each volume, Y represents the initial 

fMRI signal and 𝑌̂ denotes the response predicted by the model. The resulting signal is thus the 

fMRI signal cleaned of WM and CSF artifacts. 

 

w𝑟𝑒𝑠 =  𝑤 (𝑌 −  𝑌̂)   where  𝑌̂  =  𝑋 𝛽 

 

 

Equation 2.5 - Estimation of parameter β using the WLS method. X represents the design matrix, or predictive matrix, 
obtained by concatenating the 6 motion correction parameters (3 for translation and 3 for rotation) subjected to 
appropriate demeaning, the 5 principal components of the CSF and the 5 principal components of the WM resulting from 
the PCA. W represents the weights associated with each volume, estimated from the Framewise Displacement (FD) value 
of each volume. Y represents the raw fMRI signal to be regressed for the CSF and WM signals. 

Equation 2.6 - Calculation of the weighted residuals of the general linear model (GLM), wres, as the difference, weighted 

by w, between the original (raw) fMRI data and the predicted model response. Y represents the initial fMRI signal and 𝑌̂  
indicates the predicted response from the model, calculated as the product of the design matrix, X, and the estimated 
parameter β. 
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The results of the rs-fMRI signal regression for cerebrospinal fluid (CSF) and white matter 

(WM) using the General Linear Model are presented in Figures 2.17 and 2.18 on the following 

page. These figures show the results for the subject with Parkinson's disease (PD) and the 

healthy control, respectively. 

 

Fig 2.16 below shows the temporal signal-to-noise ratio (tSNR) maps obtained with the 

corresponding histogram, which provide further details on the signal evaluation (see section 

2.4.1 “Evaluation metrics: Temporal signal-to-noise ratio (tSNR)” for more information). It is 

observed that when regressing the signal for white matter and cerebrospinal fluid, the mean 

tSNR values increase exponentially, indicating a clear signal improvement with this step. 

 

 

Figure 2.16 - Histogram of the temporal signal-to-noise ratio (tSNR) maps obtained by regressing the signal for white matter 
and cerebrospinal fluid (a). Below, images of the tSNR maps are presented for the subject with Parkinson's disease (b) and the 
healthy control (c), respectively. 

b) c) 

a) 
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Figure 2.17 - Regression result for WM and CSF on rs-fMRI signal on subject with Parkinson's disease. 
 

 
Figure 2.18 - Regression result for WM and CSF on rs-fMRI signal on healthy subject. 
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2.2.5 Signal Filtering  

Analysis of fMRI data involves dealing with different sources of signal variation and noise to 

extract meaningful neural information. One challenge is the presence of slow drift of the 

baseline signal over time, along with rapid fluctuations due to noise.[a][b] 

 

Resting-state fMRI studies have highlighted the importance of low-frequency fluctuations 

(LFFs) in the range of 0.01-0.08 Hz. These fluctuations are believed to have physiological 

significance and reflect spontaneous neuronal activity, as demonstrated by Biswal et al. in 1995 

and Lu et al. in 2007. Specifically, low-frequency oscillations (0.01-0.073 Hz) have been shown 

to be predominantly attributable to gray matter (GM), while higher-frequency oscillations 

(0.073-0.25 Hz) are more confined to white matter (WM). In addition, Cordes et al. observed 

that respiratory and aliased cardiac signals fall within the relatively high frequency band. 

For this reason, the data are generally subjected to a band-pass filter, e.g., 0.01-0.08 Hz, to 

attenuate the influence of low-frequency and high-frequency physiological noise.[21] 

 

Considering these findings from the literature, practical implementations were applied to filter 

resting-state functional magnetic resonance imaging (rs-fMRI) data: in particular, filtering 

techniques were employed to deal with both low-frequency and high-frequency noise, including 

low-frequency drift handling in the latter case, ensuring the extraction of reliable information 

on neural activity. 

 

2.2.5.1 High-Pass Filter 

Before applying a high-pass filter to the rs-MRI data, a crucial step was performed to improve 

the quality of the data analysis: the fslmaths command was used with the -Tmean option to 

average the original signal between voxels over time. This average represents the low-

frequency component of the signal, often referred to as the "baseline" or "trend." 

Next, after averaging the signal, the original signal was subjected to a high-pass filter using the 

same fslmaths command, this time with the -bptf option. The high-pass filter was designed to 

remove the low-frequency components, emphasizing the high-frequency variations within the 

signal. 

 

The implementation of the high-pass filter in FSL involved the definition of the parameter σ, 

which is required as an input by the function fslmaths for applying a temporal filter to the data: 
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its value is determined by applying Eq. 2.7 on the following page, considering a specific value 

of the repetition time interval (TR) of 2 seconds and a cutoff frequency (fcutoff) of 0.008 Hz. 

 

𝜎 =  
1

2 ∙  𝑇𝑅 ∙  𝑓𝑐𝑢𝑡𝑜𝑓𝑓
 

 

 

The σ parameter modulates the attenuation effect of the filter, influencing the amplitude of the 

filter response. A higher σ value results in a wider frequency response, which intensifies high-

pass filtering and promotes noise reduction. 

 

It is important to note that the low-frequency component of the signal before filter application 

may contain relevant information. Therefore, to preserve this information, a sum is made 

between the high-pass filtered signal and the previously calculated average, again using the 

fslmaths command, this time specifying the -add option. In this way, the effect of the trend or 

low-frequency component can be removed from the filtered signal, better isolating the high-

frequency variations. 

This process ensured that the corrected low-frequency signal maintained its calibrated level, 

effectively counteracting signal drift. 

 

2.2.5.2 Low-Pass Filter 

A sixth-order Chebyshev low-pass filter was implemented in Matlab. This filter was evaluated 

with cut-off frequencies of 0.08 Hz and 0.2 Hz. 

 

The choice of filter type and order was determined on the basis of previous research conducted 

by the research team: through a comparison of Butterworth and Chebyshev filters and the use 

of the buttord and cheb2ord functions to estimate the optimal order of the filter, it was found 

that, for the data in question and considering the cutoff frequencies of interest, a sixth-order 

Chebyshev filter was the most suitable choice. 

 

Then, evaluating the temporal signal-to-noise ratio (tSNR, see Section 2.4.1 “Evaluation 

Metrics: Temporal Signal-to-Noise Ratio (tSNR)” for more information) maps of the resultant 

images, the one at 0.08 Hz was chosen as the optimal cutoff frequency: in fact, as can be seen 

in Fig. 2.19, it implies a better average tSNR, demonstrating a prevalence of signal over noise.  

Equation 2 7 - Calculation of the  parameter that determines the degree of filter attenuation, considering TR=2s and 
fcutoff=0.008Hz. 
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Figure 2.19 - Histogram of the distributions of temporal signal-to-noise ratio (tSNR) values along voxels after low-pass 
filtering, in the case of cutoff frequency of 0.08 Hz (first distribution) and 0.2 Hz (second distribution) in patient with 
Parkinson's disease (left) and healthy control (right). 

 

 

The results after high-pass filtering with cutoff frequency of 0.008 Hz and low-pass filtering 

with Chebyshev filter of order 6 with cutoff frequency of 0.08 Hz are shown in Figs. 2.20 and 

2.21 on the next page, for the subject with Parkinson's disease (PD) and healthy control, 

respectively, later including a view of the obtained fully pre-processed tSNR maps in Figs. 2.22 

and 2.23. 
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Figure 2.20 - Result of high-pass filtering (with cut-off frequency of 0.008 Hz) and low-pass filtering (with Chebychev filter of 
order 6 and cut-off frequency of 0.08 Hz) of the rs-fMRI signal of subject with Parkinson's disease (PD). 

 
Figure 2.21 - Result of high-pass filtering (with cut-off frequency of 0.008 Hz) and low-pass filtering (with Chebychev filter of 
order 6 and cut-off frequency of 0.08 Hz) of the rs-fMRI signal of healthy control. 
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Figure 2.22 - Temporal signal-to-noise ratio (tSNR) obtained after low-pass filtering with a cut-off frequency of 0.008 Hz in the 
Parkinson's disease patient. 
 

 
Figure 2.23 - Temporal signal-to-noise ratio (tSNR) obtained after low-pass filtering with a cut-off frequency of 0.008 Hz in 
the healthy control. 
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2.2.6 Intensity Normalization and Spatial Smoothing [a][b] 

As a final step in the pre-processing pipeline, two processes were implemented: intensity 

normalization and spatial smoothing. These processes are essential to improve the performance 

of subsequent image analyses, such as functional connectivity analysis, in the context of this 

study. Their inclusion is common in the pre-processing phase of rs-fMRI data, as they contribute 

significantly to intra- and inter-subject comparability. 

 

The main purpose of intensity normalization is to make acquisitions comparable with each 

other. In this context, the 4D EPI series of each subject were rescaled so that the average was 

100. 

 

On the other hand, spatial smoothing was implemented through convolution with a Gaussian 

kernel to increase statistical power and reduce noise. This process consists of averaging the 

signals of adjacent voxels, improving the signal-to-noise ratio (SNR). However, it must be 

considered that this operation tends to reduce spatial resolution, causing image blurring and 

diffusion of the activated areas into adjacent voxels. This is justified by the fact that neighboring 

brain voxels are often correlated in terms of functions performed and blood supply. 

 

For spatial smoothing, a Gaussian filter was used as standard to convolve the fMRI data. This 

filter calculates a weighted average of the signals of neighboring voxels, with weights 

decreasing with increasing distance from the target voxel. The optimal kernel size was selected 

taking into account the resolution in space: given the size of the acquisition voxel (3x3x3.3), an 

FWHM width of 4 mm was chosen, which corresponds to the width of the reliable trigger signal.  
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2.3 Exploration of Functional Connectivity (FC) 

Connectivity represents the study of the interaction between different brain regions, which can 

be categorized in terms of anatomical, functional, and effective connectivity: 

• Anatomical connectivity. This form of connectivity involves the physical connections or 

interactions between different anatomical areas of the brain. Its analysis can be conducted 

using structural imaging techniques in combination with methods such as diffusion tensor 

tractography.[3] 

• Functional connectivity (FC). Functional connectivity seeks to establish links between 

spatial regions of interest based on the linear temporal correlation between neuronal 

signals.[3] This type of connectivity is widely examined using resting-state fMRI: several 

research studies (Biswal et al., 1995; Lowe et al., 1998; Xiong et al., 1999; Cordes et al., 

2000; Greicius et al., 2003; Fox et al., 2005, 2006; Fransson, 2005; Vincent et al., 2006) 

have exploited this technique to obtain information on functional connectivity.[21] 

• Effective connectivity. This more advanced level of functional connectivity analysis focuses 

on the underlying direct causal connections between functionally related regions. Effective 

connectivity is based on a mechanistic model that considers how data influence the neural 

system. It specifically refers to the influence that one neural system exerts on another.[3] 

 

2.3.1 Coregistration on Atlas and FC Maps Extraction 

A promising approach in research is the use of resting state functional connectivity (RSFC). 

This technique makes it possible to assess the synchronization of rs-fMRI signals between 

different brain regions while the subject is in a resting state inside the MRI machine, without 

requiring the performance of specific tasks. It should be noted that although RSFC is not a 

direct measure of anatomical connectivity, it is closely related to brain anatomy, thus providing 

information about the organization of large-scale brain circuits and is strongly associated with 

neural networks activated during specific tasks. Furthermore, RSFC is heritable and correlates 

with gene expression in the cerebral cortex, making it a valuable tool in estimating large-scale 

brain networks.[29] 

Measuring functional connectivity involves calculating the temporal correlation between pairs 

of time series extracted from regions of interest (ROIs) or brain voxels.[k] The correlations 

observed in spontaneous BOLD fluctuations could reflect correlations between neuronal 

activity in different brain regions. In this context, the meantime course of a region of interest is 

used to generate a functional connectivity map by voxel-by-voxel correlation analysis.[21] 
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There are two main approaches to parcellating the brain using rs-fMRI: the local gradient 

approach and the global similarity approach. The local gradient approach, also known as 

boundary mapping, exploits the fact that RSFC patterns can vary significantly from one spatial 

location to another. These sudden changes can be detected by calculating local gradients in the 

RSFC patterns of the entire brain: this approach is particularly effective in delineating cortical 

areas, as the detection of abrupt changes in the RSFC is similar to the histological delineation 

of cortical areas. 

On the other hand, approaches based on global similarity, such as mixture patterns and spectral 

clustering, group brain regions based on similarity in the temporal patterns of the rs-fMRI or 

RSFC patterns. These approaches often do not take spatial distance into account, which means 

that distant regions in the brain can be clustered in the same predefined network. However, 

some of these approaches try to avoid labelling spatially separate or neighboring regions 

separately. Since global similarity approaches try to aggregate voxels or vertices with similar 

temporal patterns, the resulting plots may appear very consistent in terms of connections, 

suggesting that they may reflect possible neurobiological units. Furthermore, these graphs can 

be used to reduce the complexity of rs-fMRI data in applications where it is difficult to process 

voxel-level data with the original resolution. In these applications, each graph can be 

represented by averaging the temporal signals of the voxels or vertices contained in the graph, 

and ideally, the voxels or vertices within the same graph should show very similar fMRI 

temporal patterns. 

 

Local gradient-based approaches tend to generate consistent graphs because they implicitly 

favor consistency and discourage high RSFC gradients within a graph. In contrast, global 

similarity-based approaches explicitly seek to maximize the coherence of connections and, 

theoretically, may produce more cohesive graphs than local gradient-based approaches. 

However, local gradient-based approaches appear to be more sensitive in detecting certain 

biological boundaries than global similarity-based approaches. Therefore, an integrated 

approach combining both methodologies could be useful for generating meaningful and 

neurobiologically informative brain maps, especially in applications requiring dimensionality 

reduction.[29] 

 

In this study, to ensure the quality and reliability of the data before proceeding with functional 

connectivity analysis, rs-fMRI data were subjected to a censoring process in order to exclude 

outliers among the volumes, using an exclusion criterion based on a framewise displacement 

(FD) of 0.4 as a threshold. 



59 

 

Data registration was then performed with the cortical atlas of Schaefer et al. (2018), available 

at https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation, 

using SPM12 software. These new plots are based on the influential brain networks published 

by Thomas Yeo in 2011 and add further detail by partitioning the global networks using a 

gradient-weighted Markov random field model (gwMRF) that combines local gradient and 

global similarity approaches.[29] The plots come in different versions, which subdivide the 

cortex at different resolutions, up to a maximum of 1000 regions based on rs-fMRI.[l] 

 

Two Nifti files for each parcel resolution, FSLMNI152_1mm and FSLMNI152_2mm, aligned 

to the 1 and 2 mm FSL MNI models respectively, can be found at the link provided. These 

parcels were derived from the fsaverage6 space and transferred into the MNI volumetric space. 

Each plot was associated with one of the seven or seventeen functional networks previously 

defined by Yeo et al.[g] 

 

For the registration of the data in the present study, 200 cortical parcels, with a thickness of 1 

mm, were considered, divided into 17 networks (Fig. 2.24 below). 

 

 

Figure 2.24 - Map of the division of the brain into 200 plots and 17 networks from Schaefer's atlas (2018).[30] 

 

 

The results obtained by coregistering the previously described Schaefer atlas on the FLAIR-

T2w structural image using the SPM12 software (see section 2.2.4.1 “SPM12: Realignment and 

Coregistration” for details regarding recording in SPM12) are shown in Fig. 2.25 on the 

following page, for the patient with Parkinson's disease (in the figure above) and the healthy 

control (in the figure below), respectively.  

https://github.com/ThomasYeoLab/CBIG/tree/master/stable_projects/brain_parcellation
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Figure 2.25 - Results of the 
registration of the Schaefer 
atlas (200 parcels, 17 networks) 
on the FLAIR-T2w structural 
image with SPM12 in the patient 
with Parkinson's disease (on the 
top) and the healthy control (on 
the bottom). 
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2.4 Intermediate Results and Evaluation Metrics 

2.4.1 Evaluation Metrics: Temporal Signal-to-Noise Ratio (tSNR) 

In science and engineering, signal-to-noise ratio (SNR) is a measure that compares the intensity 

of a desired signal with the background noise level. In the context of data obtained by magnetic 

resonance imaging (MRI), this evaluation is commonly used to compare different aspects of 

imaging hardware, imaging protocols and acquisition sequences. In this specific context, SNR 

is conceptualized by comparing the signal present in the MRI image with the noise floor of the 

image itself. Mathematically, the SNR represents the ratio of the average signal intensity 

measured in a region of interest (ROI) to the standard deviation of the signal intensity in a 

region that lies outside the area of the object under examination (i.e., a region where the tissue 

signal is absent) or the standard deviation of the noise distribution, if the latter is known. 

 

SNR can be increased by variations in factors such as field of view, scanning parameters, 

magnetic field strength and layer thickness, as these parameters affect the noise floor. From 

another perspective, scanning hardware plays a significant role in the SNR levels of data from 

fMRI (functional magnetic resonance imaging). For example, SNR increases approximately 

linearly with magnetic field strength and is largely influenced by the receiving coils. 

 

However, translating the concept of SNR from MRI images to fMRI images is a more complex 

process than it might seem. First, the noise in fMRI images does not correspond to the 

background noise in MRI images: in fMRI images, system noise affects the image, as does 

noise generated by the subject (such as heart beats, breathing, and movement) and by the 

activity performed itself. Using time series outside the brain to measure noise is not sufficient 

to capture all noise data. 

Second, since the main goal of fMRI studies is to detect minute fluctuations over time, the SNR 

of the image may not be an adequate indicator. For this purpose, one can resort to the use of the 

temporal SNR (tSNR), described in Eq. 2.8 below, which considers the temporal (mean) trend 

of the signal. 

 

𝑡𝑆𝑁𝑅 =  
𝑆̅

𝜎𝑁
 

 

Equation 2.8 - Calculation of the temporal signal-to-noise ratio (tSNR) value as the ratio of the mean intensity, 𝑆̅, to the 

standard deviation of the background, N. 
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The baseline values are deeply influenced by the specific scanning parameters used to acquire 

the fMRI data. Moreover, since BOLD signal fluctuations are very small in magnitude, this 

definition does not provide any meaningful information about the strength of the activation 

signal, which makes it probably inadequate for task-related fMRI data: in fact, the higher the 

baseline value of the data, the lower the impact of the activation signal on the overall SNR. 

Therefore, the SNR value of a particular voxel alone is not sufficient to distinguish active from 

inactive voxels. 

 

In contrast, tSNR can be particularly useful in the evaluation of fMRI under resting conditions, 

as it provides clear and easily interpretable information regarding the change in noise level in 

the brain: in practice, for each voxel, the mean and standard deviation of the corresponding time 

series are calculated and subsequently used to determine tSNR. 

It should be emphasized that the interpretation of tSNR turns out to be applicable only in gray 

matter.[31] 

 

2.4.2 B0 Field Distortion Correction: Warp Selection  

To correct the B0 field distortions in the fMRI signal derived from the optimal combination of 

echoes in tedana, it is necessary to specify which warp to use in the 3dNwarpApply command 

of AFNI. 

 

Since the images were acquired in the anteroposterior (AP) direction, and the field distortions 

were computed with the 3dQwarp command using the AP sequence as the base and the 

posteroanterior (PA) sequence as the source, we expect to apply the negative warp (MINUS) 

generated by the command itself to the signal. This choice is supported by the fact that the use 

of a MINUS warp results in applying the calculated displacement field between the source 

image (PA) and the base image (AP) to the source image itself, aligning the source image with 

the base image. 

 

However, the application of the correct warp was investigated by comparing the tSNR maps of 

the signal, defined as the ratio between the mean value of the fMRI signal over time to its 

standard deviation, considering three conditions: application to the signal of the negative warp 

only (MINUS), the positive warp only (PLUS) and both warps together (PLUS+MINUS). 
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The results confirm that the correct warp to be applied to the fMRI signal to correct the B0 field 

distortions in a signal acquired in the AP direction is the negative warp, in the case of using the 

AP sequence as the base and the PA sequence as the source for the calculation of the 

displacement field. In fact, the tSNR map obtained by applying this warp to the signal shows 

higher tSNR values than the other conditions, demonstrating a prevalence of the signal of 

interest over noise (Fig. 2.26 below). 

 

Further confirmation was obtained by comparing the correlation between fMRI signal in the 

three different applied warp conditions and the relative T1 structural image considering repere 

points: the highest correlation is again obtained with the application of negative warp (Fig.2.27 

on the following page).  

 

 

 

Figure 2.26 - Temporal Signal-to-Noise ratio (tSNR) maps of the fMRI signal with B0-field distortion correction using: negative 
warp (tSNR MINUS), positive warp (tSNR PLUS) or both (tSNR PLUS+MINUS) in the 3dNwarpApply command of AFNI. The 
results confirm that the correct warp to be applied to the fMRI signal to correct the B0 field distortions in a signal acquired in 
the AP direction is the negative warp, if the AP sequence is used as the base and the PA sequence as the source for the 
calculation of the displacement field with AFNI's 3dQwarp. 
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Figure 2.27 - Result of correcting the B0 field distortion of the fMRI signal using negative warp (MINUS), positive warp (PLUS) 
or both (PLUS+MINUS) in AFNI's 3dNwarpApply command. The fMRI signals are compared with the structural T1w image to 
verify that the brain structure is preserved during distortion correction. It is observed that with the application of the positive 
warp, strong distortions are introduced that lead to a brain structure that differs from the original, particularly in the frontal 
lobe (evident in the axial and sagittal views). The application of both warps draws more of the original structure but not 
completely, confirming instead that the application of the negative warp preserves the original cranial structure. 

 

 

 

 

2.4.3 Comparison of Preprocessing Pipelines: AFNI vs FSL 
 
 

TA K TOOL  O  AN  O TION  

 EA   OTION 
 A A ETE  
E TI ATION 

    mcflirt 

   mcflirt                                       

                                                

      

   mcflirt                                     

                                                

                                 +                    

*_                           

 LI E TI ING     slicetimer 

                                                           

                   

   slicetimer                                   

          

 OTION 

 O  E TION 
    flirt 

   flirt                                             

                                                 

   

Table 2.4 - commands used to implement slice timing and motion correction in FSL. 

 



65 

 

TA K TOOL  O  AN  O TION  

B0  I TO TION 
E TI ATION 

    topup 

                               

   topup                                   

              

B0  I TO TION 

 O E TION  
    applytopup applytopup                             

Table 2.5 - commands used to implement B0 distortions correction in FSL. 

 

The same preprocessing steps performed with the AFNI software described above (slice timing 

and motion correction, before the optimal combination of the echoes in the tedana, and the 

subsequent correction of the B0 field distortions on the signal resulting from the combination 

of the echoes) were replicated in FSL (the FMRIB Software Library) with the corresponding 

commands, shown in Tab. 2.4 on the previous page and Tab. 2.5 above. 

FSL is a comprehensive library of analysis tools for functional, structural and diffusion brain 

MRI data, written primarily by members of the Analysis Group, FMRIB, Oxford.[32] 

 

For motion correction in FSL, rigid registration of each volume of the BOLD image with respect 

to the central volume was used, using the mcflirt function.[33] 

mcflirt proceeds by loading the entire time series and selecting the central volume as the initial 

reference image. Then, an approximate search phase of motion parameters is initiated with a 

margin of 8 mm, using the specified cost function. This is followed by two additional search 

steps with a margin of 4 mm, with increasingly tight tolerances. All optimizations are performed 

with trilinear interpolation. 

In the initial 8-mm search step, the transformation between the central and adjacent volumes is 

assumed to be identical. This initial transformation is then applied as an estimate of the 

transformation between the central volume and the volumes beyond the adjacent volume. In 

complex situations, this strategy does not penalize the quality of the final correction. 

If averaged registration is adopted, the current motion correction parameters are applied to the 

time series. Then, the volumes are combined to create a new image model. Using this new 

averaged model, the three-stage correction step is performed again. 

Finally, if a four-stage correction is opted for, an additional optimization step is performed using 

sinc interpolation (at the internal level) to achieve higher accuracy. However, this stage takes 

longer than the previous correction stage. On average, for a time series of 100 volumes, the 

correction phase should take about 10 minutes. It is important to note that this internal 
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interpolation is independent of the final resampling interpolation, specified via sinc_final or 

spline_final. 

This approach has the advantage of precisely handling the final slices of a volume. Unlike other 

methods, in which voxels that leave the field of view (FOV) due to slight head movements are 

excluded or treated as null values, in this case volumes are extended by adding a duplication of 

the first and last slices in the z plane. This allows the data outside the FOV to be interpolated 

with appropriate values, preserving the maximum amount of useful information in the data.[h] 

 

Slice timing correction was performed using the slicetimer function, a preprocessing tool 

specifically designed to mitigate sampling deviations present in EPI acquisition sequences, 

relative to individual slices. 

The temporal evolution of each voxel is processed individually, and intensities are temporarily 

delayed reflecting the interpolated value of the signal at a reference instant common to all 

voxels. This process provides a snapshot of the data rather than a series of samples distributed 

across volumes. Synchronous interpolation, using a Hanning window as the kernel, is applied 

to each time series to compute the new interpolated values. 

Since the slices were acquired in an interleaved order (0, 2, 4 ... 1, 3, 5 ...), the "--odd" option 

was enabled to make the appropriate correction. 

In case the slices were not acquired in a regular order, it is necessary to use a slice sequence file 

or a slice timing file. When using a slice sequence file, simply create a text document containing 

a single number on each line: numbering begins with 1 for the first slice, 2 for the second, and 

so on. 

In the case of a slice timing file, on the other hand, it is necessary to enter a value (one for each 

slice) on each line of the text file. The unit of measurement is TR, where 0.5 represents no 

displacement. Therefore, reasonable values are in the range [0,1].[i] 

 

For the correction of B0 field distortions, however, the topup function was used, as well as a 

tool to estimate the induced susceptibility field. 

The strategy employed by the topup method to determine the off-resonance susceptibility field 

is based on the use of at least two acquisitions with different acquisition parameters. This allows 

for distinct field mapping (distortions) between the acquisitions. A conventional example of this 

approach involves using two acquisitions with reversed polarity of the "blips" in the phase 

encoding. In practice, this means that the same magnetic field causes distortions in opposite 

directions in the two acquisitions. 
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With the help of these two images and knowledge of the acquisition parameters, the topup 

process attempts to estimate the susceptibility field by finding the field that, when applied to 

the two volumes, maximizes the similarity between the undeformed versions of the volumes. 

This similarity is measured by the sum of the quadratic differences between the images that 

have not been subjected to normalization. This particular measurement criterion allows the 

Gauss-Newton method to be used to jointly simulate the susceptibility field and any motion that 

might have occurred between the two acquisitions.[j] 

 

 

The images obtained after preprocessing with AFNI and FSL were compared by generating 

temporal signal-to-noise ratio (tSNR) maps to assess the quality and consistency of the images 

processed by the two different approaches (see Chapter 3, section 3.1 “Impact of the 

Preprocessing Pipeline”). 

 

 

  



68 

 

  



69 

 

Chapter 3: Results 

3.1 Impact of the Preprocessing Pipeline 

3.1.1 Slice Timing, Motion Correction and B0 Field Distortions Correction 

This study assessed the impact of AFNI and FSL software in combination with tedana, used to 

develop two different pre-processing pipelines in the analysis of multi-echo rs-fMRI data in a 

subject with Parkinson's disease and a healthy control. 

 

The initial data pre-processing steps included slice timing and motion correction to mitigate the 

effects of temporal bias and subject motion during data acquisition. For both pipelines, the 

motion correction parameters were estimated using the third echo image (TE=30 ms). Next, in 

both pipelines, the tedana algorithm was used to optimally combine the echoes, generating a 

single pre-processed image with a better separation between BOLD and non-BOLD signals. 

Finally, the B0 field distortion correction was performed. This last step was performed using 

AFNI software in the pipeline where AFNI was used for slice timing and motion correction, 

while FSL software was used in the pipeline where FSL performed the same pre-processing 

steps. 

 

To quantify the differences in impact at these stages between the two pipelines, histograms of 

the obtained tSNR maps were analysed after co-registering the images in structural space. These 

histograms represent the distribution of tSNR values between voxels, divided into intervals (or 

'bins'), for each of the two pipelines. The number of intervals was determined by dividing the 

entire range of tSNR values into 50-unit intervals, and the data were normalised so that the sum 

of the bar heights was less than or equal to 1, thus representing the relative probability of 

occurrence in each interval. 

 

The results show that in the patient with Parkinson's disease (Fig. 3.1 on  following pages), the 

AFNI pipeline produced a mean tSNR value of 82.31, while the FSL pipeline generated a mean 

value of 88.46. In both cases, the histograms show a similar distribution of values with a higher 

concentration around the mean value. However, it should be noted that the AFNI pipeline has 

slightly more concentrated tSNR values between the voxels than the FSL pipeline, with higher 

probability density peaks around the mean, which explains the lower mean tSNR value. 
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In the healthy control subject (Fig. 3.2 on  following pages), the AFNI pipeline produced a 

mean tSNR value of 125.37, while the FSL pipeline generated a mean value of 130.66. Again, 

the histograms show a similar distribution, with most values concentrated around the mean, but 

with more extensive tSNR values in the FSL pipeline. However, the probability density peaks 

around the mean are less pronounced than in the AFNI pipeline. 

 

Comparing the performance of the two pipelines in the two subjects, it is observed that the 

healthy control has higher tSNR values than the voxels of the patient with Parkinson's disease. 

In fact, in the Parkinson's disease patient, both pipelines show lower probability density peaks 

than in the healthy subject, suggesting less variability in tSNR values. Furthermore, differences 

in the shape of the distributions between the two subjects suggest that the choice of one pipeline 

over the other affects the distribution of values differently. 
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Figure 3.1 - Histograms of the temporal signal-to-noise ratio (tSNR) maps obtained with the AFNI preprocessing pipeline (in 
yellow) and FSL (in purple) after the slice timing, motion correction and B0 distortion correction steps for the PD patient. 

 

 

Figure 3.2 - Histograms of the temporal signal-to-noise ratio (tSNR) maps obtained with the AFNI preprocessing pipeline (in 
yellow) and FSL (in purple) after the slice timing, motion correction and B0 distortion correction steps for the healthy control. 
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The results show similar mean tSNR values and shapes of the distributions in both pipelines 

and for both subjects, with a larger deviation in the peak probability density and right tail of the 

distributions. 
 

To better understand how pipelines affect data preprocessing, the latter was investigated by 

conducting an additional analysis considering the absolute differences between the tSNR maps 

obtained with the AFNI-based pipeline and that obtained with the FSL-based pipeline. 

 

Studying the histograms of the differences in the absolute values (Fig. 3.3 on following pages), 

the differences in the distributions of tSNR values between the two pipelines are more 

pronounced in healthy control subjects (with a mean tSNR value of 29.64) than in subjects with 

Parkinson's disease (with a mean tSNR value of 19.94). It could be inferred from these results 

that pipelines may have a different impact on data variability, particularly in healthy subjects. 

However, since the study was based on only two subjects, it would be appropriate to verify 

these claims by including a larger group of subjects in the study. 

 

In addition, visual inspection of images of the tSNR maps obtained with the two pipelines (Tab. 

3.1 on the next page) shows a greater disparity in tSNR values within the primary motor cortex 

for both subjects, where the AFNI pipeline has higher values than the FSL-based pipeline. This 

could be explained by a different impact of the two softwares in correcting B0 field distortions 

or by a different impact of the coregistration programs, which differ in the two pipelines 

(SPM12 in the AFNI pipeline and ANTs in the FSL pipeline). 

In addition, a divergence in tSNR map values is also observed within the parieto-occipital area. 

This phenomenon is prevalent only in the healthy subject, where higher tSNR values are found 

with the FSL pipeline than with the AFNI pipeline. 

 

These results imply that the choice of preprocessing pipeline may affect the quality of tSNR 

maps, particularly when healthy subjects are involved, exerting an impact on the interpretation 

of functional MRI data in these types of subjects.  

Researchers should therefore choose the pipeline to use based on the objectives of the study, 

such as the areas and population of interest. However, it would be advisable to conduct further 

statistical analysis to evaluate and determine the significance of these observed differences, 

possibly including a larger pool of subjects for analysis.  
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PD PATIENT HEALTHY CONTROL 

tSNR maps obtained using AFNI 

a)  b)  

tSNR maps obtained using FSL 

c)  d)  

Absolute Value Difference between tSNR of AFNI and tSNR of FSL 

e)  

f)  

Table 3.1 - Summary of results obtained after slice timing, motion correction and B0 distortions corrrection steps with AFNI 
and FSL pipelines. Fig.s a) and b) show the tSNR maps obtained with AFNI, while Fig.s c) and d) show those with FSL, 
respectively for PD and HC subjects. Fig.s e) and f) show the absolute value difference between the previously described maps 
for PD and HC subjects, respectively. 
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Figure 3.3 - Comparison of the distributions of absolute differences between the temporal signal-to-noise ratio (tSNR) maps 
obtained with the AFNI pre-processing pipeline and with FSL after the slice timing, motion correction and B0 distortion 
correction steps for the patient with Parkinson's disease (in red) and the healthy control (in blue). 

 

3.1.2 Overall Comparison of Preprocessing Pipelines 

The comparison between the AFNI- and FSL-based pre-processing pipelines was also 

performed after all data pre-processing steps were completed, which included regression for 

white matter and cerebrospinal fluid using the General Linear Model (GLM), high-pass filtering 

at 0.008 Hz and low-pass filtering with a Chebyshev filter of order 6 at 0.08 Hz, followed by 

normalization and spatial smoothing at 4 mm FWHM on both subjects. 

 

Again, tSNR maps obtained from both pre-processing pipelines on both subjects were analyzed 

using histograms for quantitative evaluation. 

 

On average, the tSNR values obtained using the FSL preprocessing pipeline appear to be higher, 

with an average of 545.67 for the patient with Parkinson's disease and 636.82 for the healthy 

control. In comparison, the values obtained by using AFNI show an average of 446.43 and 

594.11, respectively (as shown in Figs. 3.4 and 3.5 on the next page). These results suggest a 

general tendency for the FSL pipeline to produce tSNR maps with higher values for both groups 

of subjects. 
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However, a closer look at the histograms reveals some variability in the distribution of tSNR 

values obtained from both pipelines on both subjects. In particular, the distributions in the 

healthy control show a long tail toward the higher values, suggesting the presence of some 

regions with higher-than-average tSNR values. This means that both pipelines can detect brain 

regions with high tSNR. 

 

The most pronounced differences are also found this time around the average tSNR values, 

where the AFNI pipeline shows higher peaks. In addition, the distribution of tSNR values shows 

a more pronounced right tail in the FSL pipeline than in AFNI, especially in the subject with 

Parkinson's disease.  Indeed, in the latter, AFNI shows much smaller tSNR values than the FSL 

pipeline, although with higher peak probability densities. This suggests that the FSL pipeline 

may identify regions of even higher tSNR in individuals with Parkinson's disease than the AFNI 

pipeline. 

 

These differences could be relevant in the context of functional MRI image analysis, as regions 

with higher tSNR could affect the ability to detect brain activity. 

However, it is again emphasized that to have confirmation of these results, the pool of subjects 

to be analyzed should be expanded, as with only two subjects, the results cannot be considered 

representative for the entire population. 
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Figure 3.4 - Histograms of the temporal signal-to-noise ratio (tSNR) maps obtained with the preprocessing pipeline of AFNI (in 
yellow) and FSL (in purple) after completing the preprocessing for the subject with Parkinson's disease. 
 

 

Figure 3.5 - Histograms of temporal signal-to-noise ratio (tSNR) maps obtained with the preprocessing pipeline of AFNI (in 
yellow) and FSL (in purple) after completing preprocessing for the healthy control. 
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Examining the absolute differences between the tSNR maps obtained with the AFNI and FSL 

pipelines for the two study subjects, it was observed that the mean absolute differences between 

the tSNR maps obtained with the two pipelines was 142.25 in the case of the patient with 

Parkinson's disease and 124.9 in the healthy control subject. These results show that, overall, 

the two pipelines produce tSNR maps with differences between them in both subjects, although 

with a smaller difference in the healthy control subject than in the Parkinson's patient. 

 

Analyzing the histograms of absolute differences between the tSNR maps obtained with the 

two pipelines (Fig. 3.6 on the next page) shows that most of the differences are concentrated in 

relatively low values, with a long tail toward higher values. This suggests that the two pipelines 

are capable of generating tSNR maps with variations in certain brain regions. 

 

Visual inspection of the images of the tSNR maps (Tab. 3.2 on the following pages) also reveals 

that, in both cases, higher brain regions, particularly the parieto-frontal area, are excluded in 

the images obtained with the FSL-based pipeline. Although this can produce tSNR maps with 

better values overall than the AFNI-based pipeline, the clipping of some regions could be a 

significant limitation, especially when specific brain areas, such as those related to motor 

functions, are to be studied. 

 

To address this problem, it would be necessary to analyze in more detail the coregistration and 

regression implementation steps via GLM, which differ between the two pipelines. 

It is also pointed out that the optimal echo combination step could also introduce divergences 

in the results: performing it via t2smap produces different results than the combination of 

echoes obtained during the denoising process via tedana, where it is provided in output already 

masking the brain based on the voxels considered reliable. In addition, the results could also 

vary depending on the space over which it is performed. 

 

In both pipelines, the optimal combination of echoes was performed using t2smap, which 

considers temporal variations in brain tissue susceptibility, which can vary greatly from subject 

to subject. Rather, the main difference between the two pipelines lies in the fact that 

coregistration in structural space was performed at two different points in time: in the AFNI 

pipeline, it was performed after correction of B0 field distortions, whereas in the FSL pipeline 

all preprocessing steps were conducted in functional space, performing coregistration in 

structural space only at the end of the process. 
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The greater evidence of motor areas in the tSNR maps obtained with the AFNI pipeline, both 

after correction for B0 field distortions and at the end of the data preprocessing steps, suggests 

that this may be a more appropriate choice for studying brain regions related to motor activities 

or other specific functions. 

 

Overall, the results obtained indicate that the choice of pre-processing pipeline may influence 

the distribution of tSNR values. In particular, the FSL pipeline shows a tendency to produce 

higher values than the AFNI pipeline at various stages of data pre-processing, although it 

struggles to capture all brain areas, excluding, for example, the primary motor cortex. However, 

considerable data variability is evident in both pipelines, demonstrating their success in 

improving signal quality in both subjects. 

 

These results underscore the importance of considering the specific goals of the analysis, the 

brain regions of interest, and the population of subjects under study when selecting the data pre-

processing pipeline, as these differences may influence the interpretation of the data. It is again 

suggested that further statistical analysis and the inclusion of more subjects in the study be 

considered to assess in more detail the significance of these divergences in the data. 

 

 

Figure 3.6 - Comparison of the distributions of the absolute differences between the temporal signal-to-noise ratio (tSNR) maps 
obtained with the AFNI pre-processing pipeline and with FSL after completing the pre-processing for the patient with 
Parkinson's disease (in red) and the healthy control (in blue). 
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PD PATIENT HEALTHY CONTROL 

tSNR maps obtained using AFNI 

a)  b)  

tSNR maps obtained using FSL 

c)  d)  

Absolute Value Difference between tSNR of AFNI and tSNR of FSL 

e)  
f)  

Table 3.2 - Summary of the results obtained after preprocessing with the AFNI and FSL pipelines. Fig. a) and b) show the tSNR 
maps obtained with AFNI, while Fig. c) and d) show those with FSL, for PD and HC subjects respectively. Fig. e) and f) show the 
absolute difference between the previously described maps for PD and HC subjects, respectively. 
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3.1.3 Effect of the AFNI Pipeline on tSNR 

Fig. 3.7 on the following page provides a clear representation of the increase in mean tSNR 

through the different phases of the AFNI-based rs-fMRI image processing pipeline, showing a 

significant improvement in data quality. 

 

After performing the optimal combination step with tedana, which allowed the optimal fusion 

of the three rs-fMRI echoes, tSNR values of 67.79 for the patient with Parkinson's disease and 

100.44 for the control subject were obtained. This combination of echoes made it possible to 

exploit the information from the shorter times to recover the signal in the drop-out regions, 

resulting in a higher average tSNR than the images obtained from the single echoes (see Fig. 

2.9 in Section 2.2.2 “Tedana: Optimal Combination of Echoes”). This suggests the effectiveness 

of integrating the echoes into a single image. 

 

Subsequently, with the application of the B0 field distortion correction in AFNI, the mean tSNR 

further improved for both subjects. Compared to the previous phase, there was a percentage 

increase of 21.41% for the patient with Parkinson's disease and 24.83% for the healthy control. 

These results confirm the importance of this correction to compensate for magnetic variations 

in the electromagnetic field, ensuring greater accuracy of the rs-fMRI images. 

 

The application of regression with the General Linear Model (GLM) for white matter (WM) 

and cerebrospinal fluid (CSF) in the next step showed a further improvement in signal quality, 

especially for the subject with Parkinson's disease. The percentage increase in mean tSNR 

values was 106.06% for the Parkinson's disease patient and 51.97% for the healthy subject 

compared to the previous B0 distortion correction phase. 

 

The “HP&LP Filtering” phase shown in the figure, comprising high-pass filtering with a cutoff 

frequency of 0.008 Hz and low-pass filtering with a cutoff frequency of 0.08 Hz, further 

contributed to the increase in mean tSNR. At this stage, there was a percentage increase of 

78.30% for the patient with Parkinson's disease and 65.15% for the healthy control compared 

to the previous regression phase. 

 

Finally, the application of Spatial Smoothing with FWHM=4mm resulted in an overall 

percentage increase in mean tSNR of 46.98% for the patient with Parkinson's disease and 

66.78% for the control subject compared to the temporal filtering phase. 
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The mean tSNR values reached considerable levels during this process, particularly for the 

control subject, where a final mean tSNR of 594.11 was reached. 

Although the healthy control had a better initial tSNR, the AFNI pipeline proved to be 

particularly efficient in improving the tSNR for the Parkinson's disease patient as well, 

especially during the regression phase for the white matter and CSF, where the average tSNR 

value increases from 82.31 to 169.94. 

 

These results clearly and quantifiably demonstrate the effectiveness of each pipeline step in 

improving signal quality, reducing noise, and improving signal sensitivity. Furthermore, they 

emphasize the importance of each step in the process of improving rs- fMRI data. 

 

 

 

Figure 3.7 - Increased mean values of tSNR in the various stages of the AFNI software-based pipeline for the patient with 
Parkinson's disease (red) and the healthy control (blue), respectively. From the B0 field distortion correction step, rs-fMRI 
images coregistered on structural space are considered. 
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3.2 Functional Connectivity Analysis 

After pre-processing the rs-fMRI data, the images output from the AFNI-based pipeline were 

chosen to conduct a functional connectivity (FC) analysis. 

The choice of pipeline was justified by the fact that although the average tSNR values obtained 

from the FSL pipeline were higher, signals attributable to the primary motor cortex were 

excluded to a greater extent. In order not to neglect this area from the analyses, the AFNI-based 

pipeline was therefore chosen between the two, as it provided an acceptable compromise 

between a good yield in the average tSNR value and the ability to capture a wider range of 

areas. 

Considering therefore the two previous subjects, the Parkinson's disease subject and the healthy 

control subject, after pre-processing their data with the AFNI pipeline, a Sheafer atlas was used 

to subdivide the brain images into 200 parcels, which in turn were grouped into 17 distinct brain 

networks. 

 

To assess functional connectivity, time activity curves (TACs) were extracted for each of the 

200 parcels, and correlations between them were subsequently calculated. This process led to 

obtaining a functional connectivity matrix reflecting the relationships between the different 

brain regions, of which the Z-Fisher transform was considered in order to obtain a more stable 

representation of the correlations and greater comparability between subjects. To consider only 

the most significant correlations, a statistical significance criterion was applied, keeping only 

those correlations with a p-value of less than 0.05. 

 

In the patient with Parkinson's disease, the strongest positive correlations were found between 

the Dorsal Attention Network (dorsalAttentionB in Fig. 3.8) and the Sensorimotor Network 

(somatomotorA in Fig. 3.8) and vice versa, both in the left hemisphere. The most significant 

negative correlation in absolute value was instead observed between the Salience Ventral 

Attention Network (salienceVentralAttentionA in Fig. 3.8) of the left hemisphere and the Visual 

Peripheral Network (visualPeripheral in Fig. 3.8) of the right hemisphere, and vice versa.  

In the healthy control subject, a similar pattern of positive correlations emerged between the 

Dorsal Attention Network (dorsalAttentionB in Fig. 3.9) and the Sensorimotor Network 

(somatomotorA in Fig. 9) of the left hemisphere, whereas the most pronounced negative 

correlation in this case occurred between the Default Mode Network (defaultB in Fig. 3.9) of 

the left hemisphere and the orbitofrontal cortex of the limbic system (limbicOrbitofrontal) of 

the right hemisphere, and vice versa. 
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The Dorsal Attention Network (DAN) involves voluntary orientation (top down) and selective 

attention, whereas the Sensorimotor Network (SMN) is central to detecting and processing 

sensory input and preparing and executing motor functions.[9] 

The positive correlation between Dorsal Attention Network and Sensorimotor Network in both 

subjects is consistent with what was expected, as, considering that data acquisition occurred in 

both subjects in a resting state by calling them to attention to check their waking state, it could 

reflect their concomitant activation during the normal waking and attention states. 

This result could indicate that when people are awake and alert, the cognitive and motor 

activities involved in spatial attention (Dorsal Attention Network) and sensory and motor 

information processing (Sensorimotor Network) are more effectively integrated. The positive 

correlation between these networks in this context therefore suggests that these neural networks 

work together in a synchronized manner when individuals are awake and alert, which is 

consistent with their role in regulating spatial attention and sensory and motor information 

processing. 

 

The negative correlation in opposite hemispheres detected in patients with Parkinson's disease 

between the Salience Network (SN), which detects and responds to salient behavioral events, 

and the Visual Network, which is involved in processing visual information, could be indicative 

of a deficit in visual stimulus recognition, suggesting that the PD patient shows less functional 

communication between these two neural networks than would be expected in a healthy 

individual. [9] This could indicate that the PD patient may have difficulty recognizing or giving 

importance to salient visual stimuli. 

A negative correlation could therefore reflect an impaired ability of the SN to pick up on 

relevant visual cues or respond to them appropriately, resulting in less co-ordination between 

the SN and the Visual Network. 

Furthermore, the fact that it occurs between opposite hemispheres could reflect an asymmetry 

in brain response in PD patients, which could thus be indicative of specific Parkinson's disease 

alterations in different parts of the brain. 

 

By contrast, the negative correlation found in the healthy individual between the Default Mode 

Network (DMN), involved in introspection and the wandering mind, and the orbitofrontal 

cortex, involved in functions related to emotions and decision-making, is consistent with what 

one would expect to find in a healthy individual. 

The DMN is in fact known to be anticorrelated with certain brain networks involved in external 

or attentional tasks when the brain is in a state of wakefulness and attention. This anticorrelation 
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reflects the alternation between DMN and orbitofrontal cortex activity, and the fact that it occurs 

in opposite hemispheres indicates that they are active at different times or in response to 

different tasks. [9] 

The negative correlation could also reflect a dynamic balance between times when the brain is 

more oriented towards introspection and times when it is more oriented towards emotional 

response or decision-making, as could also be specific to the experimental conditions used in 

the study. For example, it could reflect a response to specific tasks or stimuli that require a 

change in the activity of these brain regions. 
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Figure 3.8 - Statistically significant correlations (p<0.05) found in the subject with Parkinson's disease. In the upper image the 
positive correlations (in green) between Dorsal Attention Newtork and Sensorimotor Network belonging to the same 
hemisphere are highlighted, while in the lower image the negative correlations (in red) between Salience Ventral Attention 
Network and Visual Peripheral Network belonging to opposite hemispheres are highlighted. 
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Figure 3.9 - Statistically significant correlations (p<0.05) found in the healthy control. In the upper image the positive 
correlations (in green) between Dorsal Attention Newtork and Sensorimotor Network belonging to the same hemisphere are 
highlighted, while in the lower image the negative correlations (in red) between Default Mode Network and orbitofrontal 
cortex of the limbic system belonging to opposite hemispheres are highlighted. 
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Chapter 4: Discussion 

4.1 Summary of Results 

This study consisted of two phases: in the first part, two different pipelines, based on AFNI and 

FSL software, were tested in a subject with Parkinson's disease and in a healthy control to pre-

process multi-echo rs-fMRI data; in the second part, after selecting the most appropriate 

pipeline for the purpose, the data pre-processed by this pipeline were used to conduct a 

functional connectivity analysis. 

 

The results for the first part of the study indicated that both pipelines can produce similar tSNR 

maps in terms of mean values and distribution of values, although with slight differences. 

A tendency was observed for the FSL pipeline to generate slightly higher mean tSNR values 

with greater variability than those generated by the AFNI-based pipeline. The discrepancy in 

the output of the two pipelines was found to be greater for the subject with Parkinson's disease 

than for the healthy control, as evidenced by an absolute difference between the tSNR maps 

that was greater at both mid-pre-processing and completed pre-processing. 

In addition, the pipelines showed a different impact on the representation of some brain regions, 

particularly motor areas that were excluded in the FSL pipeline. 

 

In general, these results suggest a potential influence by the choice of pipeline on the quality of 

tSNR maps and, consequently, on the interpretation of functional fMRI data preprocessed with 

it. Selection of the preprocessing pipeline should therefore be based on the specific objectives 

of the study to be conducted and the population of subjects to be analyzed, considering observed 

differences. 

Further statistical analysis, possibly on a larger sample of subjects, is recommended to assess 

the significance of these differences and improve understanding of the impact of pipelines on 

rs-fMRI data quality. 

 

For the second part of the study, preprocessed images from the AFNI-based pipeline were 

chosen to conduct a functional connectivity (FC) analysis. 

Among the two pipelines studied, in fact, the AFNI pipeline offered an acceptable compromise 

between overall signal quality and the ability to capture brain areas, particularly the primary 

motor cortex, in a more extensive manner. 

After using this pipeline, the brain images were divided into 200 regions, grouped into 17 

distinct brain networks. Next, correlations between the activity over time (TAC) curves of each 
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region were calculated, generating a functional connectivity matrix, of which only statistically 

significant correlations (with a p-value less than 0.05) were considered. 

 

In both subjects, strong positive correlations were found between the Dorsal Attention Network 

(DAN) and the Sensorimotor Network (SMN), both in the left hemisphere. 

In addition, strong negative correlations were observed between networks belonging to opposite 

hemispheres, particularly between Salience Network (SN) and Visual Network in the patient 

with Parkinson's disease, and between Default Mode Network (DMN) and orbitofrontal cortex 

of the limbic system in the healthy control subject. 

 

These results suggest potential variability in functional connectivity between healthy 

individuals and patients with Parkinson's disease, with possible implications for visual 

perception and response to salient stimuli. The positive correlation between the Dorsal 

Attention Network and Sensorimotor Network in both groups suggests a more effective 

integration of cognitive and motor activities during wakefulness and attention. On the other 

hand, negative correlations between brain networks in opposite hemispheres may reflect 

asymmetries in brain responses in Parkinson's patients and experimental condition-specific 

activity dynamics. 

 

In this study, the importance of detailed comparative analysis between pre-processing pipelines 

before conducting a specific study emerged to optimize data quality and ensure accurate results 

in the analysis of multi-echo rs-fMRI data. In this context, it has indeed been shown that 

pipelines based on different software have different performance depending on variables such 

as subject groups or brain regions analyzed. These factors should indeed be given due 

consideration, as they may affect the interpretation of the results of analyses conducted on this 

type of data. 

 

In the context of functional connectivity analysis between an individual with Parkinson's 

disease and a healthy individual as a control, an AFNI software-based pre-processing pipeline 

appears to be more fit for purpose than an FSL software-based pipeline. In fact, the AFNI 

pipeline was found to be particularly appropriate because of its greater ability to identify and 

capture disease-relevant brain areas, such as motor regions, in the individual with Parkinson's 

disease. 
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4.2 Clinical and Scientific Implications 

This work helped to enrich the clinical and neuroscientific landscape by providing 

considerations that could be considered in future research based on multi-echo resting-sate 

fMRI data. 

 

In the first part of the study, it was found that the choice of pre-processing pipeline for multi-

echo rs-fMRI data can significantly affect the quality of tSNR maps and the representation of 

certain brain regions, especially motor areas. This suggests that pipeline selection should be 

made according to the specific objectives of the study and the population of subjects analyzed, 

as the latter may require a special focus on certain areas that may be better highlighted using 

some pipelines than others. 

This result thus underscores the importance of customizing pre-processing pipelines based on 

the subject population being studied, a factor that should be given greater consideration in a 

clinical setting. As shown in this study, the use of AFNI might be preferable when working with 

patients with Parkinson's disease, as it ensures the inclusion of the primary motor cortex 

compared with FSL. 

 

In addition, the functional connectivity analysis performed helped reveal differences in 

correlations between brain networks between the Parkinson's disease subject and the healthy 

control individual. Strong positive correlations emerged between the Dorsal Attention Network 

and the Sensorimotor Network in both groups, suggesting more effective integration of 

cognitive and motor activities. In contrast, negative correlations between Parkinson's disease 

patient brain networks in opposite hemispheres revealed potential asymmetries in brain 

responses. These findings may carry important implications for research pertaining to visual 

perception, response to salient stimuli, and brain activity dynamics specific to this condition. 

 

Thus, with this study, the importance of carefully considering the implications of software 

choices for processing multi-echo rs-fMRI data and tailoring the pre-processing approach to 

the specific context of the study was emphasized, thereby improving the validity and 

applicability of neuroscience research. 

The adoption of the AFNI software-based pipeline proved to be particularly suitable for 

analyzing functional connectivity in disease-relevant brain regions, providing insights in this 

context. Through this study, a contribution has been made to the understanding of the pathology, 
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paving the way for the possibility of considering therapeutic approaches targeted to the 

population of interest. 

 

However, it is again emphasized that further statistical analysis on a larger sample of subjects 

is recommended to confirm these findings to better understand the impact of pipelines on rs-

fMRI data quality. 
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4.3 Limitations of the Study and Possible Future Implementations 

In the course of this study, it is important to consider some limitations that could affect the 

interpretation of the results and that could provide insights for future implementations of the 

study. It is important to note that this was a project started from scratch, which required a 

considerable amount of time to develop a coherent research topic and plan the necessary steps. 

 

The most important limitation concerns the sample of subjects considered in the study, as it 

included only two participants and turned out to be extremely limited: a 60-year-old patient 

with Parkinson's disease and a healthy 70-year-old individual, both of whom had MMSE scores 

of 30. Because of such a small size, the considerations made may not be representative of the 

general population and, consequently, the results obtained may not be generalizable. 

In addition, the selection of these subjects was not based on specific criteria but was done 

randomly from a larger dataset, which could introduce a potential bias in the representativeness 

of the participants. 

 

Another limitation relates to methodological differences in the implementation of the two 

preprocessing pipelines, such as the coregistration software used: SPM12 was used in the 

AFNI-based pipeline, while ANTs were used in the FSL-based pipeline. This discrepancy may 

have influenced the results, making it difficult to determine whether the observed differences 

between the two preprocessing pipelines are attributable to the specific coregistration 

methodologies or other factors. 

In addition, the implementation of the data regression model and the low-pass filter was 

performed using functions specific to two different programming languages: MatLab was used 

in the AFNI-based pipeline, while Python was used in the FSL-based pipeline. Although this 

choice of implementation should not have a significant impact on the results, it would be worth 

considering this difference in future studies to reduce the disparity between the two pipelines 

and make the results more directly comparable. 

 

Finally, connectivity analysis was conducted using a Schaefer atlas with 200 parcels and 17 

networks, on coregistered data in structural space. Future research might consider using 

different atlases or conducting the analyses on spaces other than structural space to further 

explore brain connectivity. 
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Future implementations of the study should include a larger and more representative sample of 

participants, greater control over the consistency of the methodologies used between the two 

pipelines, and the use of different atlases in the functional connectivity analysis, while also 

exploring other spaces. 

The implementation of an integrated approach of both pipelines, AFNI and FSL, could also be 

considered: their use in a complementary way could be advantageous as it would allow the 

strengths of each software to be exploited according to the needs of the analysis. 

These improvements could contribute to a deeper and more reliable understanding of brain 

connectivity in subjects with Parkinson's disease and healthy controls.  
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4.4 Conclusions 

In conclusion, this study demonstrated the critical role played by the choice of pre-processing 

pipeline in the analysis of multi-echo rs-fMRI data and the subsequent influence exerted by it 

on data quality and interpretation. 

 

Considering a subject with Parkinson's Disease and a healthy control subject, two pre-

processing pipelines were implemented and compared: one based on AFNI, and one based on 

FSL. 

It was made clear that the choice of pipeline should be made taking into consideration the 

specific objectives of the research and the characteristics of the investigated subject population, 

encouraging the customization of the pipeline according to the study context to obtain more 

accurate and reliable results. 

Although both pipelines have been shown to be able to produce similar tSNR maps in terms of 

mean values and distribution, with a higher yield of FSL in terms of mean tSNR, it was found 

that the AFNI pipeline seems to be more suitable for analyzing functional connectivity, 

especially in brain regions relevant to Parkinson's disease such as motor areas. With this aspect, 

the impact on the results exerted by the choice of preprocessing software was emphasized, as it 

can significantly influence the interpretation of the data and the quality of the resulting images. 

 

With this study, differences in correlations between brain networks between the two subjects 

analyzed were also investigated: the strong positive correlations between the Dorsal Attention 

Network and the Sensorimotor Network in both suggest greater integration of cognitive and 

motor activities during wakefulness and attention. On the other hand, negative correlations 

between Salience Network (SN) and Visual Network in the patient with Parkinson's disease 

could reflect asymmetries in brain responses specific to this condition, with implications for 

visual perception and response to salient stimuli. 

 

However, it is important to recognize the limitations of this study, chief among them the sample 

size of subjects used: the presence of only two participants, a patient with Parkinson's disease 

and a healthy individual, could limit the generalization of the results. In addition, the random 

selection of these subjects may have introduced a potential bias in the results, as no specific 

inclusion criteria were applied. Future implementations of the study should aim to address these 

limitations by considering a larger and more representative sample of subjects. 
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Another factor to take into consideration concerns the methodological differences between the 

two compared pipelines: the fact that they differ in terms of coregistration software and means 

of implementing regression models and low-pass filters may have contributed to the 

discrepancies observed in the results. Therefore, it would be advisable for a more direct 

comparison to standardize the methodologies between the pipelines to make the results more 

comparable. 

In addition, a more comprehensive perspective of the results could be had by considering 

conducting the analyses in spaces other than structural and implementing an integrated 

approach using both pipelines, exploiting the strengths of AFNI and FSL as needed. 

 

Despite these limitations, this study thus highlighted the critical importance of pre-processing 

pipeline selection in the analysis of multi-echo rs-fMRI data, paving the way for potential 

therapeutic interventions targeting specific brain regions especially in the context of Parkinson's 

disease. It also indicated the need for further research with larger samples and more 

standardized methods to confirm and expand these findings. The implications of this study 

could thus improve the understanding of brain connectivity in health and disease conditions.  
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