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ABSTRACT

New dynamics from light and weakly-coupled sectors beyond the Standard Model may manifest as long-
range forces between visible matter particles. Such new forces can be searches for by means of a variety
of experimental approaches. In this thesis, we re-examine the calculation of non-relativistic potentials
mediated by new light particles coupled to the Standard Model, employing a general parametrization
of the new interactions and going beyond the leading order Born approximation. We correct and
integrate previous results, and point out as well the presence of new relevant contact terms arising at
next-to-leading order in the non-relativistic expansion.





CHAPTER 1

INTRODUCTION

The Standard Model (SM) is the foremost modern theory regarding the physics of the fundamental
interactions. Developed during the second half of the twentieth century, its predictions are still tested
nowadays both at the intensity and the energy frontiers, with experiments such as the LHC at CERN
[1]. The discovery of the Higgs boson [2, 3] at the LHC was one of the most important advances of
the past decade, confirming a fundamental prediction of the SM. Conversely, neutrino masses, the
observations of dark matter and dark energy, the matter-antimatter asymmetry of the universe and
the inclusion of gravity, provide experimental evidences for physics beyond the SM [4, 5]. The particle
physics explanations of the previously mentioned phenomena can span an enormous range of scales,
from the subnuclear to the cosmological one. While heavy new physics around the TeV scale has been
often invoked, e.g. in order to address the Hierarchy Problem of the electroweak scale, the absence
of new physics signals at the LHC has recently triggered a shift of interest towards light and weakly
coupled extensions of the SM. Popular proposals include axions, dark photons, and sterile neutrinos [6,
7, 8]. Such new particles have been proposed in order to address possible shortcomings of the SM, as
in the case of the QCD axion addressing the strong CP problem, and they belong to a hypothetical
light dark sector, which is connected to the SM via new portal interactions.
The exchange of new light particles by ordinary matter (e.g. nucleons) would generate an additional,
and potentially observable, “fifth” force between them. Searches for long-range spin-independent forces
have a long history (see e.g. [9] ), and they can be searched for via precision measurements of Newton’s
law, searches for violations of the equivalence principle, torsion balance techniques, etc. On the other
hand, long-range spin-dependent forces could lead to a broader variety of observable effects, such as
e.g. shifts in atomic energy levels. A well-studied and paradigmatic scenario is given by the QCD
axion in the presence of extra sources of CP violation, in which case the axion develops both scalar
and pseudo-scalar couplings to nucleons. This leads to so-called monopole-dipole forces, given by the
product of a scalar and a pseudo-scalar vertex, which provide a promising experimental approach
in order to test the QCD axion. In fact, a new detection concept by the ARIADNE collaboration
[10] proposes to use nuclear magnetic resonance to probe the monopole-dipole force between an
unpolarized material and a sample of nucleon spins, with projected sensitivities going much beyond
current astrophysical limits.
The calculation of non-relativistic potentials mediated by scalar/pseudo-scalar exchange can be extended
to more general Lorentz structures, including vector and axial-vector as well as tensor and pseudo-tensor
interactions (see e.g. [11]). A model-independent approach actually requires only rotational invariance
in the non-relativistic limit, and a more general classification of long-range potentials has been proposed
in Ref. [12]. This approach potentially encodes also contributions arising from the exchange of new
light particles at the loop level, the most known case being that of a neutrino pair exchange [13, 14].
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CHAPTER 1. INTRODUCTION

It is the purpose of this thesis to critically re-examine the calculation of the non-relativistic potentials
discussed above, within a general setup and going beyond the usually employed leading order Born
approximation. Apart for pointing out few discrepancies with respect to the existing literature
(cf. Section 4.2), the main novel result of the present work consists in the calculation of tree-level
potentials beyond the leading order in the non-relativistic expansion, discussed in Chapter (5). In
particular, we find the presence of new contact terms (proportional to the Dirac’s delta function) which
can provide a sizeable contribution when compared to their long-range counterparts arising at leading
order.
The thesis is structured as follows. We will first introduce in Chapter (3) the formalism of scattering
theory in non-relativistic quantum mechanics and give the formal definition of scattering potential
in terms of a Fourier transform of the scattering amplitude expanded in the non-relativistic limit.
Moreover, we will also discuss an alternative derivation of the long-range potential by means of a
dispersion relation, that is well-suited for the calculation of loop-induced potentials. In Chapter (4) we
will review the calculations of tree-level mediated potentials within a general class simplified models,
encoding (pseudo)scalar, (axial)vector and (pseudo)tensor interactions. Next, we will relax the exact
elasticity hypothesis and consider in Chapter (5) novel contributions arising at the next-to-leading
order in the non-relativistic expansion, always assuming a general class of simplified models at tree
level. Chapter (6) deals instead with loop-mediated potentials, where we extend some previous results
obtained in [15]. In (7) we discuss the model-independent approach of [12], also in relation to the
rotationally-invariant structure of the previously computed potentials. We offer our conclusions in
Chapter (8), while more technical details and further results are deferred to Appendices (A,B,C).

2



CHAPTER 2

PHYSICS OF LIGHT DARK SECTORS

The search for very light and weakly coupled new particles [16] has considerably increased in the recent
years, both from an experimental and theoretical point of view [17]. The SM of particle physics is
considered to be an incomplete theory, and among the open questions [18] we are still trying to answer,
the cosmological observations of Dark Matter [19] and the so-called strong-CP Problem [20], represent
two main issues which require physics beyond the SM.
In this Chapter we introduce two popular frameworks regarding the physics of light dark sectors,
including the QCD axion and the dark photon. Then we discuss some phenomenological aspects related
to long-range force observables associated to those light particles and conclude with a generalization of
the framework which sets the targets for the calculation of the non-relativistic potentials that will be
main subject of the present thesis.

2.1 The QCD Axion

Hypothetical new particles called Axions [21, 22, 23] have been suggested in the literature as a solution of
the strong-CP Problem [24, 25] and they turn out also to be ideal candidates for Dark Matter [26, 27, 28].

The Strong CP Problem

The strong-CP Problem arises from the non-trivial vacuum structure [29] of the QCD Lagrangian

LQCD =
∑
q

q̄(i /D −mqe
iθqγ5)q − 1

4
GaµνG

aµν + θ
g2s

32π2
GaµνG̃

aµν , (2.1)

where the linear combination of the phases θ̄ ≡ θ +
∑

q θq is responsible for CP violation in the strong

sector. Among the CP-violating observables induced by θ̄, the neutron electric dipole moment [30] is
the most sensitive one, as reviewed in the following.
The neutron electric dipole moment operator is given by the Lorentz-invariant Lagrangian

Ln = −dn
i

2
n̄σµνγ

5nFµν (2.2)

which is responsible at low-energies for the non-relativistic Hamiltonian

Ĥn = −dnE · Ŝ (2.3)
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2.1. THE QCD AXION CHAPTER 2. PHYSICS OF
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that describes the electrostatic potential to which the nucleon spin S is subjected into an external
electric field E. To relate dn to the phase θ̄, it is worth noting that the effective contribution of the
5-dimensional operator of eq. (2.2) can be deduced from dimensional analysis and loop power counting,
and it is given by

Ln ∼ e

16π2
mqe

iθ̄

mn

1

mn
n̄σµνγ

5nFµν . (2.4)

Expanding for θ̄ ≪ 1 and matching the Lagrangians, the theoretical estimate yields

|dn| ∼
e

16π2
mq

mn

θ̄

mn
∼ 10−4θ̄ eGeV−1 , (2.5)

to be compared to the experimental bound of |dn| ≲ 10−26e cm [31] leading to the following limit on
the CP-violating phase

|θ̄| ≲ 10−10 . (2.6)

Explaining the smallness of θ̄ constitutes the strong-CP Problem. The axion provides a dynamical
solution to the strong-CP Problem by promoting θ̄ to a dynamical field, a(x), which aquires a potential
in the background of QCD dynamics and relaxes to zero.

Axion Effective Lagrangians

The axion is a periodic spin-0 field
a(x) = a(x) + 2πfa (2.7)

that always comes together with a mass scale fa, called Axion Decay Constant, and it is endowed with
a pseudo-shift symmetry, as dictated by the Peccei-Quinn mechanism

U(1)PQ : a(x) → a(x) + κfa (2.8)

that leaves the action invariant up to the term

δS =
κ

32π2

∫
d4xGaµνG̃

aµν . (2.9)

In this way, in the following effective Lagrangian

La =
1

2
∂µa∂

µa+ L(∂µa, ψ) +
a

fa

g2s
32π2

GaµνG̃
aµν (2.10)

a specific choice of the shifting parameter, κ = −θ̄, is able to cancel the strong CP-violating source.
The shift symmetry indicates the Goldstone nature of the axion that originates from the spontaneous
symmetry breaking of U(1)PQ, also anomalous under SU(3)C .
The brief review just given above involve a correction to the SM Lagrangian, which is more involved to
rely on if we focus on the low energy behaviour of hadronic physics. To uncover other properties of the
axion, it is better to change the point of view, studying the axion effective Lagrangian at the level of
the chiral perturbation theory (χPT) [32, 33], whose validity lies below about 1GeV.
Let us consider for definiteness the axion QCD Lagrangian with two flavours, q = (u, d)T , give by

LaQCD =
a

fa

g2s
32π2

GaµνG̃
aµν − q̄LMqqR + h.c.+ . . . , Mq =

(
mu 0
0 md

)
. (2.11)

To pass into the χPT description, it is useful to perform an axion-dependent field transformation on
the quark field

q 7→ e
iγ5 a

2fa
Qaq (2.12)

with Qa a generic matrix in flavour space with TrQa = 1. This anomalous rotation allows to get rid of
the aGG̃ operator, and recast all the dependence of the axion into a dressed quark mass matrix

Ma = e
i a
2fa

QaMqe
i a
2fa

Qa . (2.13)

4



2.1. THE QCD AXION CHAPTER 2. PHYSICS OF
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Now we can perform the matching with the axion Chiral Lagrangian as

LaχPT =
f2π
4

(
Tr[(DµΣ)

†(DµΣ)] + 2BTr[ΣM †
a +MaΣ

†]
)
+ . . . , (2.14)

where Dµ is the covariant derivative, fπ is the Pion Decay Constant, B is related to the chiral
condensate, while the pion fields are in included into the matrix

Σ = e
i π
fπ , π =

(
π0

√
2π+√

2π− −π0
)
. (2.15)

The specific choice of Qa = 1/2 allows to simplify the calculations of the axion-pion potential, that
reads indeed the axion potential acquires the simple analytic form (see e.g. [34])

V (a, π0) = −m2
πf

2
π

√
1− 4mumd

(mu +md)2
sin2

(
a

2fa

)
cos

(
π0

fπ
− mu −md

mu +md
tan

(
a

2fa

))
(2.16)

and its absolute minima satisfy the constraints{
⟨a⟩ = 0

⟨π0⟩ = 0
, (2.17)

thus providing a solution to the strong CP-problem. An expansion around the vacuum shows the
explicit expression of the axion mass, i.e.

ma =

√
m2
πf

2
π

f2a

mumd

(mu +md)2
≃ 5.7

(
1012GeV

fa

)
µeV , (2.18)

and since the astrophysical bounds on the axion decay constant typically imply fa ≳ 109GeV (see
e.g. [35, 36]), the axion mass is expected to be

ma ≲ 10−2÷3eV . (2.19)

Among other possible coupling that can be constructed between axions and matter fields, the axion
can have derivative couplings with matter fields of the form [34]

L(∂µa,Ψ) ⊃ Ψ̄(i/∂ −mΨ)Ψ +
cΨ
2

∂µa

fa
Ψ̄γµγ5Ψ , (2.20)

where cΨ is an order one adimensional coupling and Ψ = p, n, e. This interaction can be rewritten in a
different form via an axion-dependent field redefinition of the matter fields of the typeΨ −→ e

icΨ
a

2fa
γ5
Ψ

Ψ̄ −→ Ψ̄e
icΨ

a
2fa

γ5
. (2.21)

Thereby the operator in eq. (2.20) is traded for

L(∂µa,Ψ) ⊃ Ψ̄(i/∂ −mΨe
icΨ

a
fa
γ5
)Ψ (2.22)

and expanding the exponential, keeping only the linear terms in a, yields the pseudo-scalar interaction

−mΨcΨ
fa

aΨ̄iγ5Ψ ≡ −gPΨaΨ̄iγ5Ψ . (2.23)

In the presence of new sources of CP-violation beyond QCD the axion can also acquire a scalar coupling
to matter fields [37]

La ⊃ −gSΨaΨ̄Ψ . (2.24)

Those couplings break the axion shift symmetry, and hence they are expected to be more suppressed
compared to the standard pseudo-scalar couplings. For nucleons, N = p, n, the typical expectation is
(see e.g. [38, 39])

gSN ∼ 10−12θeff

(
1010 GeV

fa

)
, (2.25)

where θeff ≡ ⟨a⟩/fa, with |θeff | ≲ 10−10, is due to an axion vacuum expectation value induced by new
sources of CP violation at high energies.
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2.2 Dark Photons

Dark Photons [7] are another type of hypothetical particles engineered in a way to interact through a
portal with ordinary matter. The vector portal allows for interactions with the SM due to the kinetic
mixing between a new U(1)X gauge boson X̂µ and the hypercharge U(1)Y gauge boson B̂µ, as described
by the following renormalizable Lagrangian

Lmix = −1

4
X̂µνX̂

µν +
1

2
M2
XX̂µX̂

µ − 1

4
B̂µνB̂

µν − ϵ

2
B̂µνX̂

µν − g′JYµ B̂
µ . (2.26)

Here, X̂µν and B̂µν are the respective fields strength, whereas g′ is the hypercharge guage coupling
and JYµ the hypercharge current. Due to the kinetic mixing, the hat fields inside the Lagrangian are
not canonically normalized and the corresponding gauge fields need to be redefined. The first step
consists of a non-orthogonal rotation G(ϵ) in the space of the fields, such that B̂µŴ 3

µ

X̂µ

 = G(ϵ′)

BµW 3
µ

Xµ

 , (2.27)

in which W 3
µ denotes the SU(2)L gauge boson, and

G(ϵ′) =

1 0 − ϵ′√
1−ϵ′2

0 1 0
0 0 1√

1−ϵ′2

 . (2.28)

With such transformation, the mass matrix of the massive gauge boson is altered and in the ϵ′ ≪ 1
limit becomes

M2 =
v2

4

 g′2 −gg′ −g′2ϵ′
−gg′ g2 gg′ϵ

−g′2ϵ′ gg′ϵ′ 4M2
x

v2
(1 + ϵ′2) + g′2ϵ′2

+O(ϵ′3) (2.29)

where g the SU(2)L gauge coupling and v the Higgs vacuum expectation value. The mass eigenstates
are reached through a combination of two block-diagonal rotations around the Weinberg angle θw and
an additional angle ξ, in this way

R1(ξ)R2(θw)M
2R2(θw)

TR1(ξ)
T =

M2
γ 0 0

0 M2
Z 0

0 0 M2
A′

 , (2.30)

with

tan 2ξ =
2ϵ′ sin θw

1− M̂2
X/M̂

2
Z

+O(ϵ′2) , M̂Z =
v
√
g2 + g′2

2
. (2.31)

To the leading order (LO) in ϵ the masses of the new vector boson remain unaltered before and after
the transformation, i.e.

M2
A′ =M2

X̂
(1 +O(ϵ′2)) . (2.32)

As a result, the couplings between the gauge boson mass eigenstates and the fermion currents are given
by the interaction (

eJµem
e

sin θw cos θw
JµZ 0

)
K

AµZµ
A′
µ

 , (2.33)

in which

K ≡
(
R1(ξ)R2(θw)G

−1(ϵ′)R2(θw)
−1
)−1

=

1 0 −ϵ
0 1 0
0 ϵ tan θw 1

+O(ϵδ, ϵ2) (2.34)

6



2.3. PHENOMENOLOGY OF NEW MACRO-
SCOPIC FORCES

CHAPTER 2. PHYSICS OF
LIGHT DARK SECTORS

and ϵ ≡ ϵ′ cos θw. Dealing with canonically normalized fields, the interaction between the hidden
photon and the matter fields is represented by

Lint = −gVA′ψJ
µ
emA

′
µ , (2.35)

by further defining gVA′ψ ≡ ϵe.
In extensions of the dark photon framework, there could also be direct couplings to SM fields and in
particular to axial currents, as described by the following interaction term

Lint ⊃ −gAA′ψψ̄γ
µγ5ψA′

µ . (2.36)

2.3 Phenomenology of New Macroscopic Forces

As suggested long ago by Moody and Wilczek [37], a possible way to detect light particles (axions, dark
photons, etc.) coupled with ordinary matter, is to look for new macroscopic forces mediated by the
exchange of such light new particles (see also [12, 40]). These forces are associated to non-relativistic
potentials acting at laboratory scales. First of all, we must define between which objects, and at which
scales, these forces could act. Throughout the work we will remain general about which fermions
might be involved in these new processes, merely saying that they are particles belonging to the SM.
Macroscopic objects consist of electrons, neutrons and protons. Consequently, the total potential
between these objects must be a sum of the pairwise interactions of fermions belonging to the two
different bodies. However, we should keep in mind that this is only an approximation since a part to
the total masses come from the nuclear binding energies, so the effect of long-range forces would not
be taken into account only by summing over fermion pairs.
Long-range forces are searched for via different type of experiments, based on precision measurements
of Newton’s law, searches for violations of the equivalence principle, torsion balance techniques, shifts
in atomic energy levels and nuclear magnetic resonance (for a review see e.g. [41]). However, the
theroertical interpretation of those bounds has been mostly focussed on setting limits for axion-like
particles and dark photons, as reviwed in the following.

2.3.1 Axion-mediated Forces

Axion-mediated potentials give rise to interactions among nucleons of three types: monopole-monopole
(gSN -gSN ), monopole-dipole (gSN -gPN ) and dipole-dipole (gPN -gPN ). Long-range spinless interaction between
monopoles arises from the exchange of scalar particles at the LO of the non-relativistic expansion.
The effectiveness of the force lies nearby distances comparable to Compton wavelength λ ∼ 1/ma. It
can therefore be tested in laboratory searches, as reported in fig.(2.1), where the best experimental
constraints on its parameter space are highlighted. The main potentials upon which the experimental
research has focused so far concern interactions between monopoles and dipoles. Anticipating our
results of Chapter (4), at the LO in the non-relativistic expansion they are given by

VMM (r) = −
gSNg

S
N

4πr
e−mar , (2.37)

VMD(r) = −
gPNg

S
N

8πmN
σσσ · r̂

(
ma

r
+

1

r2

)
e−mar , (2.38)

VDD(r) = −
gPNg

P
N

16πmNmN ′

[
σσσ · σσσ′

(
ma

r2
+

1

r3
+

4π

3
δ3 (x)

)
− (σσσ · r̂)(σσσ′ · r̂)

(
m2
a

r
+

3ma

r2
+

3

r3

)]
e−mar ,

(2.39)
where mN,N ′ ∼ GeV are the nucleon masses while σσσ,σσσ′ are the spin vectors of the interacting particles.
The Yukawa potential in eq. (2.37) leads to departures from Newton’s inverse-square law and the
weak equivalence principle, hence searches in this direction are important in the exploration of possible
modifications of gravity. The parameter space probed by these experiments allows to estimate a bound
for the magnitude the nucleon scalar coupling of

|gSN | ≲ 10−20 (2.40)
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around the centimeter scale, improving the astrophysical limits.
Difficulties in handling large quantities of polarized atoms make in general spin-dependent forces less
sensitive. Nevertheless, they can still be tested by searching for the spin depolarization of nucleons when
exposed to surrounding bulk matter. Laboratory and astrophysical tests already probed a large region
of the parameter space, as shown in fig.(2.2), for the mixed interaction in eq. (5.27). A fundamental
improvement will be achieved by the experiment ARIADNE [42], for which the projections in the
figure seem to indicate that this could be the first experiment to overcome the limitations posed by
astrophysical considerations and current laboratory bounds [43]. The strategy for its possible detection
consist in rewriting the spin-dependent interaction energies using an axion potential as

−∇∇∇Va · σσσ′ (2.41)

where ∇∇∇Va is the gradient of eq. (4.10, 4.14) if an axion can be exchanged between two spins. Hence,
the axion potential by polarized or unpolarized objects acts on nearby fermions just like an effective
magnetic field such as

Beff =
2

ℏγf
∇∇∇Va (2.42)

in which γf is the fermion gyromagnetic ratio. Notice that this field is couples differently from a
classical magnetic field since interacts to the spin of the particle, is independent from the fermion
magnetic moment and distinguish between neutrons and electrons.

Figure 2.1: Figure from [41]. Experimental searches for the axion-nucleon scalar coupling. The literature
on these tests usually shown constraints between the axion mass ma, or its Compton wavelength λ, and the
scalar coupling gSN . The astrophysical bound is represented by the upper green band, in red are tests of the
inverse-square law whereas those in purple are tests of the weak equivalence principle. The excluded region from
black hole spin arguments is depicted in gray and, lastly, the diagonal yellow band shows the expected range for
the QCD axion scalar coupling.

A similar search strategy is pursued the QUAX-gsgp experiment [44] (located at the INFN Labs of
Legnaro), axion-mediated force in between unpolarized nucleons and polarized electrons. The most
stringent limit so far can be derived for |gSNgPe,N | from the combination of astrophysical and laboratory
bounds shown e.g. in fig. (2.2,2.3). Remaining on the macroscopic centimeters scales, the upper limit
for these couplings are around

|gSNgPe | ≲ 10−33 , |gSNgPN | ≲ 10−30. (2.43)

8
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Figure 2.2: Figure from [41]. Bounds for the mixed scalar pseudo-scalar couplings between nucleons. The solid
lines are all existing limits on this parameter space, the dashed lines correspond to a combination of laboratory
scalar searches and astrophysical pseudoscalar bounds, and the dotted lines are all projections. In green the
astrophsical limits while the QCD band is depicted in yellow.

Figure 2.3: Figure from [41]. Experimental searches for the scalar pseudo-scalar mixed coupling of electrons and
nucleons. The solid lines corresponds to existing laboratory bounds, the dotted lines are the future projections
while the dashed lines represents the combination of laboratory and astrophysical bounds. In blue are reported
the results of QUAX-gpgs whereas in purple are other searches for monopole-dipole forces. The green band
corresponds to the astrophysical bound and the axion QCD band is shown in yellow.

9
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Dipole-dipole forces, in eq. (5.29), can also be searched for in laboratory experiments, but their results
are much less restrictive than the corresponding astrophysical limits. It should be mentioned that
other types of experiments [45] are usually employed to hunt for the axion, such as helioscopes, which
rely on the additional assumptions that the axion comprises dark matter.

2.3.2 Dark Photon Phenomenology

The parameter space of dark photons has been probed by a plethora of experiments, from cosmological
to laboratory searches. In fig. (2.4) is reported the landscape of bounds on dark photons lighter than
0.1MeV and the kinetic mixing parameter with photons. Similar techniques can be borrowed from
ARIADNE experiment, for light massive gauge boson searches, yielding a projected sensitivity [41]
for the mixing parameter of ϵ ≲ 10−12 . Many model-independent bounds on dark photon have been
obtained also through tests of the Coulomb force law and the photon mass. Direct cosmological searches
set bounds on the hidden photon as dark matter candidate, while astrophysical limits at higher masses
are those based on stellar cooling arguments applied to the Sun, horizontal branch stars, and red giant
stars. Purely laboratory bounds come from atomic spectroscopy and microscopy. Outside the sphere
of dark photons, precision molecular spectroscopy experiments are used to test new physics below the
angstrom scale using the transition frequencies of simple molecular systems. Indeed, the presence of
dark forces shift the energy levels of quantum. The most relevant ones are the hydrogen molecule, the
molecular hydrogen-deuterium ion and the exotic muonic molecular deuterium ion. Certain of these
results have recently been used to bound short-distance modifications of gravity. The same types of
bounds can be obtained also from the scattering of cold neutrons on nuclei measured via optical and
transition methods and Bragg diffraction.

Figure 2.4: Figure from [46]. Bounds on dark photon mass and the kinetic mixing parameter. In blue are
cosmological limits, experimental bounds in red and astrophysical searches in green. The grey region is excluded
from arguments about the superradiance effects in black holes. The white line corresponds to dark photon limits
as dark matter candidate.

2.4 Thesis Goals and Direction

The main goal of this thesis work is to revise the calculation of non-relativistic potentials mediated
by new light particles, going beyond the simplified scenarios offered by axion-like particles and dark
photons. To this end, we will first introduce in Chapter (3) the formalism of scattering theory and the

10
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tools in order to compute the non-relativistic potentials. In Chapter (4) we will revise the calculations
of tree-level mediated potentials within simplified models. Next, we will relax the exact elasticity
hypothesis and consider in Chapter (5) novel contributions arising at the next-to-leading order (NLO)
in the non-relativistic expansion. Chapter (6) deals instead with loop-mediated potentials, while in (7)
we aim at a general model-independent approach.
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CHAPTER 3

NON-RELATIVISTIC POTENTIALS

In this Chapter we provide the theoretical tools needed to derive the non-relativistic potentials mediated
by new light particles coupled to the SM fields. At the leading-order these are obtained by taking
the Fourier transform of the elastic scattering amplitude in QFT expanded in the non-relativistic
limit. An alternative formulation based on dispersion theory, that is well-suited for the calculation of
non-relativistic potentials beyond tree level, will be also introduced.

3.1 Scattering Theory and Lippmann-Schwinger Equation

Scattering Theory (see e.g. [47, 48]) is a framework for studying the scattering of particles that interact
under the influence of a potential V . For our purposes it is sufficient to treat only quantities that do
not change in time, so let us suppose to have a time-independent scattering described by

H = H0 + V , H0 =
p2

2m
(3.1)

with H0 the free-Hamiltonian whose eigenstates are plane waves of momentum p. If the scattering
is elastic, the energies of the particles are the same before and after the process and, requiring to
obtain the free case as V → 0, we look for a solution of the Schrödinger equation with the same energy
eigenvalue, i.e.

H0|ϕ⟩ = E|ϕ⟩ Elastic−−−−−−→
Scattering

(H0 + V )|ψ⟩ = E|ψ⟩ . (3.2)

In both cases the energy spectrum is continuos and the well-known solution is provided by the
Lippmann-Schwinger equation

|ψ(±)⟩ = |ϕ⟩+ V |ψ(±)⟩
E −H0 ± iϵ

(3.3)

making E slightly complex to avoid singularity problems. Projecting on the coordinate space, this
results into the integral equation

⟨x|ψ±⟩ = ⟨x|ϕ⟩+
∫
d3x′⟨x| 1

E −H0 ± iϵ
|x′⟩⟨x′|V |ψ±⟩ , (3.4)

while in momentum space

⟨p|ψ±⟩ = ⟨p|ϕ⟩+ 1

E − p2/2m± iϵ
⟨p|V |ψ±⟩ , (3.5)
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recalling that

⟨x|ϕ⟩ = eip·x

(2π)3/2
,∫

d3x⟨p′|x⟩⟨x|p⟩ = δ3(p− p′) .

(3.6)

Working in the position representation, the expectation value of the energy operator has to be evaluated
[47]. Starting from eq. (3.4) and inserting a completeness relation

⟨x| 1

E −H0 ± iϵ
|x′⟩ =

∫
d3p′d3p′′⟨x|p′⟩⟨p′| 1

E − |p′|2/2m± iϵ
|p′′⟩⟨p′′|x′⟩ =

=

∫
d3p′

(2π)3
eip

′·(x−x′)

E − |p′|2/2m± iϵ
.

(3.7)

Then, setting E ≡ k2/2m, via the Residue Theorem the integral reads

2m

(2π)2

∫ ∞

0
p′2dp′

∫ 1

−1
d(cos θ)

eip
′|x−x′| cos θ

k2 − p′2 ± iϵ
=

=
2m

8π2i|x− x′|

∫ ∞

−∞
dp′p′

(eip
′|x−x′| − e−ip

′|x−x′|)

k2 − p′2 ± iϵ
= −2m

4π

e±ik|x−x′|

|x− x′|
.

(3.8)

After substituting into eq. (3.4) we obtain

⟨x|ψ±⟩ = ⟨x|ϕ⟩ − m

2π

∫
d3x′

e±ik|x−x′|

|x− x′|
⟨x′|V |ψ±⟩ , (3.9)

which shows that the wave function ⟨x|ψ±⟩ in the presence of the scatterer is written as the sum of he
wave function of the incident wave ⟨x|ϕ±⟩ and a term that represents the effects of the scattering.
To extract an explicit behaviour for ⟨x|ψ±⟩ let us consider the specific case where V is a local potential,
i.e.

⟨x|V |x′⟩ = V (x)δ3(x− x′) , (3.10)

in this way the matrix element returns

⟨x′|V |ψ±⟩ = V (x′)⟨x′|V |ψ±⟩ . (3.11)

The integral Lippmann-Schwinger equation now becomes

⟨x|ψ±⟩ = ⟨x|ϕ⟩ − m

2π

∫
d3x′

e±ik|x−x′|

|x− x′|
V (x′)⟨x′|ψ±⟩ (3.12)

and to proceed further it is necessary to approximate this expression. To do so, notice that x is the
position of the detector at which the wave function is evaluated, while the integrated coordinate x′

represent the region of space where is active the potential. In scattering processes we are interested in
studying the effect of the scatterer at a point far outside the range of the potential, since we cannot
put a detector at short distance near the scattering center. As consequence, the region in fig. (3.1)
described by the position x′ is reasonably smaller respect to the detector position, x, so we can safely
set

|x| ≫ |x′| (3.13)

and expand the difference as

|x− x′| =
√
|x|2 − 2|x||x′| cosα+ |x′|2 ≃ |x| − r̂ · x′ , (3.14)

where r̂ is the unit vector pointing at x, while α is the angle subtended by the two positions. Thus,
the plane wave becomes

e±ik|x−x′| ≃ e±ik|x| e∓ik
′·x′

, k′ ≡ kr̂ . (3.15)
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Figure 3.1: The region where the potential is active, covered by x′, is much smaller than the position x in which
the wave function ⟨x|ψ±⟩ is evaluated.

defining k′ as the propagation vector for waves reaching the observation point.
In the long-distance limit then

⟨x|ψ±⟩ Long−−−−→
Range

⟨x|ϕ⟩ − me±ik|x|

2π|x|

∫
d3x′e∓ik

′·x′
V (x′)⟨x′|ψ±⟩ (3.16)

and by renaming x ≡ r we arrive at the known equation in scattering theory in which, after the
scattering, we have the original wave propagating along k plus an outgoing spherical wave with
amplitude f(k,k′), called scattering amplitude, given by

f(k,k′) ≡ −m

2π

∫
d3x′e−ik

′·x′
V (x′)⟨x′|ψ±⟩ , (3.17)

⟨x|ψ+⟩ Long−−−−→
Range

1

(2π)3/2

(
eik·x +

eikr

r
f(k,k′)

)
, (3.18)

where the positive solution was taken because it is difficult to prepare a system satisfying the boundary
condition appropriate for the negative one. At the end, the scattering amplitude is directly related to
the differential cross-section, indeed the ratio between the number of particles scattered into the solid
angle dΩ and the number of incident particles crossing the unit area, per unit time, is

dσ

dΩ
dΩ =

r2|jscat.|
|jinc.|

dΩ = |f(p,p′)|2dΩ , (3.19)

where jinc. and jscat. are the flux densities of incoming and scattered particles.
Having a direct connection to an experimental quantity is good for our purposes. However, the
expression of the scattering amplitude is still too formal to be used directly in calculations, due to the
lack of knowledge of ψ+(x). If the effect of the scatterer is not very strong, we may assume a plane
wave approximation for the behaviour of the scattered wave, replacing

⟨x′|ψ+⟩ −→ ⟨x′|ϕ⟩ = eip·x
′

(2π)3/2
(3.20)

inside the integral. This method, known as Born Approximation, allows us to re-express the scattering
amplitude as follows

f(p,p′) = −m

2π

∫
d3x e−iq·xV (x) , q = p′ − p , (3.21)

or, apart for a multiplicative factor, to connect the amplitude and the potential via a Fourier transfor-
mation.
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All that is left is to connect this last formula to the Feynman amplitude of the QFT formalism [49,
50] by building a bridge between a more fundamental QFT and the non-relativistic potentials to be
measured in the laboratory.
Recalling the covariant normalization for quantum states in the relativistic mechanics

⟨p|p′⟩ = (2π)32Epδ
3(p− p′) , (3.22)

from the scattering matrix relation to the canonically normalized transition amplitude

Sfi = 1 + i(2π)4δ4(Pf − Pi)MCN
fi (3.23)

the Feynman amplitude M is recovered by multiplying MCN
fi by the normalization of the states. Now,

defining classical quantum mechanical amplitude as

2π

m
f(p,p′) (3.24)

the matching in the non-relativistic limit makes it possible to identify

f(p,p′) =
m

(2π)4
MNR(q) (3.25)

thus, the final expression for the potential, after inverting the transformation of eq. (3.21), is

V (x) = −
∫

d3q

(2π)3
eiq·xMNR(q) . (3.26)

The result obtained above is only the first-order of a series that better interpolates the real solution.
To extract the series, let us define the transition operator such that

V |ψ(±)⟩ ≡ T |ϕ⟩ (3.27)

and substitute it into eq. (3.3)

T |ϕ⟩ = V |ϕ⟩+ V
1

E −H0 ± iϵ
T |ϕ⟩ . (3.28)

Since it holds for any ket, at the operatorial level we have

T = V + V
1

E −H0 ± iϵ
T . (3.29)

This equation can be solved iteratively, resulting in

T = V + V
1

E −H0 ± iϵ
V + V

1

E −H0 ± iϵ
V

1

E −H0 ± iϵ
V + . . . (3.30)

and from that, it is straightforward to deduce that also the scattering amplitude must come into an
expansion

f(p′,p) =

∞∑
n=1

fn(p′,p) . (3.31)

In particular, in the long-distance limit and in the momentum basis

f1(p′,p) = −m

2π
(2π)3⟨p′|V |p⟩

f2(p′,p) = −m

2π
(2π)3⟨p′|V 1

E −H0 ± iϵ
V |p⟩

...

(3.32)

which correspond to higher orders in the Born approximation.

16



3.2. DISPERSION THEORY FOR NON-
RELATIVISTIC POTENTIALS

CHAPTER 3. NON-
RELATIVISTIC POTENTIALS

3.2 Dispersion Theory for Non-relativistic Potentials

A different approach for the calculation of the non-relativistic potentials relies on a Dispersion Theory
[51, 52], in which the analytic properties of the Feynman amplitude are explicitly taken into account
for the manipulation of non-trivial loop integrals. Indeed, the presence of one-particle intermediate
states leads to simple poles in the Fourier transforms of the matrix elements, while multi-particle
intermediate states produce more complicated singularities.
Important properties of an interacting QFT emerge from the so-called spectral representation of the
vacuum expectation values of suitable quantities, e.g. propagators. For the sake of simplicity, let
us consider a complex scalar operator Φ(x) in the Heisenberg picture, which may or may not be an
elementary particle field. Its 2-point function

⟨0|Φ(x)Φ†(y)|0⟩ (3.33)

may be written in a different way via a completeness insertion of any complete sets of states, as∑
α

⟨0|Φ(x)|α⟩⟨α|Φ†(y)|0⟩ (3.34)

where α can be taken as discrete or continuous index. Choosing the eigenstates of pµ, translational
invariance tells us how Φ(x) transforms under the unitary representation U(a) = eip·a of the restriced

Poincarè cover group P↑
+, i.e.

U(a)Φ(x)U(a)† = Φ(x− a) . (3.35)

As consequence∑
α

⟨0|U(x)Φ(0)U(x)†|α⟩⟨α|U(y)Φ(0)U(y)†|0⟩ =
∑
α

e−ipα·(x−y)|⟨0|Φ(0)|α⟩|2 =

=

∫
d4q

(2π)3
σ+(q)e

−iq·(x−y) ,

(3.36)

where the Fourier transform of the 2-point function has been defined as

σ+(q) ≡ (2π)3
∑
α

δ(q − pα)|⟨0|Φ(0)|α⟩|2 . (3.37)

It is straightforward to then derive the following properties of σ+(q):

• it is a real and semi-definite positive function;

• σ+(q) ̸= 0 only inside the future lightcone which contains the spectrum of pµ;

• it is a Lorentz-scalar, i.e. σ+(Λq) = σ+(q) for Λ ∈ P↑
+.

The above properties ensure to σ+(q) all the credentials of a probability density distribution, such that
its most general form is

σ+(q) = ρ(q2)θ(q0) + (2π)3|⟨0|Φ(0)|0⟩|2δ(q) , (3.38)

where σ(q2) = 0 for q2 < 0 and δ(q) takes into account possible non vanishing VEV. In fact, it is easy
to show that, when the canonical commutation relations are satisfied for Φ(x), then∫ +∞

−∞
dq0 q0

(
σ+(q)− σ+(−q)

)
= 1 =⇒

∫ ∞

0
dµ2 ρ(µ2) = 1 , (3.39)

as expected by a probability density.
We can finally rewrite eq. (3.36) as

⟨0|Φ(x)Φ†(y)|0⟩ =
∫ ∞

0
dµ2ρ(µ2)

∫
d4q

(2π)3
δ(q2 − µ2)θ(q0)e−iq·(x−y) + |⟨0|Φ(0)|0⟩|2 =

=

∫ ∞

0
dµ2ρ(µ2)∆+(x− y;µ) + |⟨0|Φ(0)|0⟩|2 ,

(3.40)
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with ∆+(x − y;µ) the positive frequency 2-point function of the free-theory. The last term can be
formally removed just by shifting Φ(x). Eq. (3.40) tells us that in the interacting theory we can write
the 2-points functions as an integral of 2-points functions of the free-fields with varying mass. This fact
is a purely relativistic effect due to Lorentz invariance. A similar treatment can be performed with
time ordered operators inside the matrix element, such that the same relation holds for the effective
propagator

⟨0|T[Φ(x)Φ†(y)]|0⟩ ≡ i∆(x− y) =

∫ ∞

0
dµ2ρ(µ2)i∆F (x− y;µ) , (3.41)

where now the momentum space propagator of the free-field is

∆F (q;µ) =
1

q2 − µ2 + iϵ
. (3.42)

In the most general case beyond the tree-level, the Källén-Lehmann spectral representation reads

∆(q) =

∫ ∞

0
dµ2

ρ(µ2)

q2 − µ2 + iϵ
(3.43)

and it can be easily extended to the other cases of spin-1/2 and -1 with few cautions.
Apart from the coupling constants, inserting the non-relativistic limit of eq. (3.43) into eq. (3.26)
allows to recast the functional form of the potential into

V (x) ∼ 1

4πr

∫ ∞

0
dµ2 ρ(µ2) e−µr . (3.44)

It is clear that at tree-level ρ(µ2) = δ(µ2 −M2), hence the scalar Yukawa interaction gyi ψ̄iψiϕ results
into

V (x) = −g
y
1g
y
2

4πr
e−Mr . (3.45)

In general, finding ρ(q) for a specific interaction is provided by immediately recognising eq. (3.43) as a
dispersion relation [51] with spectral density

ρ(µ2) = − 1

π
Im{∆(q)} . (3.46)

The final tool necessary to calculate the imaginary parts is the optical theorem for forward scattering,
which states that

2Im{∆(q)} =
∑
X

∫
dΠX(2π)

4δ(pA − pX)|M(q → X)|2 , (3.47)

where dΠX is the Lorentz-invariant phase space measure for the intermediate state X. M(q → X),
instead, corresponds to the tree-level cut of the loop diagram, and it is natural to interpret it as the
decay of an external source of momentum q to a final state of two hidden particles.
As we shall see, the dispersion techniques allow to tackle quantum processes from a different angle,
avoiding conventional loop calculations and obtaining the same results in a simple manner.
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TREE-LEVEL POTENTIALS

Long-range potentials acting between SM matter fields can be derived using basic tools of QFT such
as interacting Lagrangians and Feynman diagrams [50]. New light particles, as mediator of a new Fifth
Force, are generally added to the SM through simple extensions. For later convenience, we split the
Lagrangian in

L = Lkin + Lint , (4.1)

where the kinetic part describes the free fields of the model, and the interacting sector is responsible
for the new phenomena that could be observed.
Scattering between two different SM fermions are described at tree-level by t-channel diagrams, as in
fig. (??). The masses of the external states are denoted as m1 and m2, while the interaction occurs
through the exchange of a new light boson of mass M .

Figure 4.1: Representative Feynman diagram responsible for tree-level potentials mediated by a new light boson.

According to the laws of non-relativistic quantum mechanics, in particular the inverse Born approxima-
tion [47], the LO form of the non-relativistic potentials is directly connected to the Fourier transform
of the scattering amplitude M(q) expanded in the non-relativistic limit, as given by eq. (3.26).

19



4.1. NON-RELATIVISTIC POTENTIALS IN
THE ELASTIC LIMIT

CHAPTER 4. TREE-LEVEL POTENTIALS

4.1 Non-relativistic Potentials in the Elastic Limit

The first step of our treatment focuses on the calculation of the LO of non-relativistic potentials to
consolidate and correct some results present in literature, as in [37, 12, 11]. The path we follow goes
from the simplest interactions, mediated by axion-like particles, to the more complicated ones, always
compatible to the exchange of a new boson at tree-level. A natural classification emerges via the
contraction with all possible Lorentz forms of spinor matrices

Γ = {1, γ5, γµ, γµγ5, σµν} . (4.2)

The elastic scattering hypothesis impose the conservation of the energy between the external particles,
in this way the transferred energy vanishes and the only quantity to be integrated is the transferred
momentum q.
The analysis is held within the formalism we have discussed so far, while other technical details can be
found in the Appendices (A,B).

4.1.1 Axion-Like Particles

Interactions mediated by an axion-like particle between SM fermions are described via

Lkin =
1

2
∂µa∂

µa− 1

2
M2a2 +

2∑
i=1

ψ̄i
(
i/∂ −mi

)
ψi , (4.3)

Lint = −
2∑
i=1

ψ̄i(g
S
i + gPi iγ

5)ψi a , (4.4)

where both the scalar and pseudoscalar vertices are present in the Lagrangian, so that three types of
interactions are possible, all of them expressed by the following t-channel diagram.

Figure 4.2: Feynman diagram for a tree-level scalar exchange.

Scalar Scalar Interaction

The Feynman rules in momentum space allow us to write the relativistic amplitude

iM = (−igS1 )(−igS2 )ūr(p2)us(p1)
i

q2 −M2
ūr′(p

′
2)us′(p

′
1) , (4.5)

and taking the non-relativistic limit, see A.1 for details, it becomes

M =
gS1 g

S
2

|q|2 +M2
. (4.6)
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The associated Yukawa potential is proportional to the Fourier transform of M, hence

V (r) = −gS1 gS2
∫

d3q

(2π)3
eiq·x

|q|2 +M2
= −g

S
1 g

S
2

4πr
e−Mr , (4.7)

where the integral is given in B.2.

Scalar Pseudo-scalar Interaction

A diagram with a scalar and a pseudo-scalar vertex produces the amplitude

iM = (−igP1 )(−igS2 )ūr(p2)iγ5us(p1)
i

q2 −M2
ūr′(p

′
2)us′(p

′
1) =

= gP1 g
S
2 ūr(p2)γ

5us(p1)
i2

|q|2 +M2
ūr′(p

′
2)us′(p

′
1)

(4.8)

and since the pseudoscalar bilinear is exact in the elastic limit, see A.1,

M = −i gP1 g
S
2

|q|2 +M2

q · σσσ
2m1

. (4.9)

The resulting spin-dependent potential is

V (r) =
gP1 g

S
2

2m1
(σσσ · ∇∇∇)

(
e−Mr

4πr

)
=

= − gP1 g
S
2

8πm1
σσσ · r̂

(
M

r
+

1

r2

)
e−Mr .

(4.10)

Pseudo-scalar Pseudo-scalar Interaction

In this case the amplitude is

iM = (−igP1 )(−igP2 )ūr(p2)iγ5us(p1)
i

q2 −M2
ūr′(p

′
2)iγ

5us′(p
′
1) =

= gP1 g
P
2 ūr(p2)γ

5us(p1)
i3

|q|2 +M2
ūr′(p

′
2)γ

5us′(p
′
1) ,

(4.11)

taking the exact expression of the bilinears, A.1, and paying attention to the negative sign arising from
the second bilinear, one obtains

M = −gP1 gP2
(−q · σσσ) (q · σσσ′)

4m1m2

1

|q|2 +M2
. (4.12)

Employing Einstein’s convention on repeated indices, the potential reads

V (r) =
gP1 g

P
2

4m1m2
(σσσ · ∇∇∇)(σσσ′ · ∇∇∇)

∫
d3q

(2π)3
eiq·x

|q|2 +M2
=

=
gP1 g

P
2

4m1m2
σiσ′j∂i∂j

(
e−Mr

4πr

)
.

(4.13)

which, according to the results in B.2, yields

V (r) = − gP1 g
P
2

16πm1m2

[
σσσ · σσσ′

(
M

r2
+

1

r3
+

4π

3
δ3 (x)

)
− (σσσ · r̂)(σσσ′ · r̂)

(
M2

r
+

3M

r2
+

3

r3

)]
e−Mr . (4.14)

Note the presence of a Dirac delta function, which arise from the singular part of the second derivatives
of 1/r. Apart from the other terms, a contact interaction represented by δ3(x) belong to the microscopic
world and cannot be probed at classical scales. However, it is a new effect that may cause shifts on the
energies of quantum systems, as explained later in Chapter (5).
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4.1.2 Vector bosons

The next category of interactions concern spin-1 massive mediators, whose interacting vertices with
SM fermions are described by

Lkin = −1

4
XµνXµν +

1

2
M2XµXµ +

2∑
i=1

ψ̄i
(
i/∂ −mi

)
ψi , (4.15)

Lint = −
2∑
i=1

ψ̄iγ
µ(gVi + gAi γ

5)ψiXµ , (4.16)

coupling the vector boson with vector and axial currents, as shown in the figure below.

Figure 4.3: Feynman diagram for a tree-level vector boson exchange.

Vector Vector Interaction

The vector interaction involve a contraction between two vector currents and the propagator of a
massive gauge boson. Since the vector current is conserved, then all the quantities contracted to qµqν

vanishes, and what remains in the Feynman amplitude is the following

iM = (−igV1 )(−igV2 )ūr(p2)γµus(p1)
−i

q2 −M2

(
ηµν −

qµqν
M2

)
ūr′(p

′
2)γ

νus′(p
′
1) (4.17)

and in the non-relativistic limit

M = − gV1 g
V
2

|q|2 +M2

(
1− (q× σσσ) · (q× σσσ′)

4m1m2

)
, (4.18)

where the contraction with qµqν vanished due to the conservation of the vector current. Thus, the
potential is

V (r) = gV1 g
V
2

(
1 +

(σσσ ×∇∇∇) · (σσσ′ ×∇∇∇)

4m1m2

)(
e−Mr

4πr

)
=

= gV1 g
V
2

e−Mr

4πr
+

gV1 g
V
2

16πm1m2

[
(σσσ · σσσ′)

(
M2

r
+
M

r2
+

1

r3
− 8π

3
δ3(x)

)
+

− (σσσ · r̂)(σσσ′ · r̂)
(
M2

r
+ 3

M

r2
+

3

r3

)]
e−Mr .

(4.19)

In particular, in the limit for M → 0 the above expression recovers [53] the Coulomb potential with
fine structure correction

V (r) =
gV1 g

V
2

4πr
− gV1 g

V
2

16πm1m2 r3

[
3(σσσ · r̂)(σσσ′ · r̂)− σσσ · σσσ′

]
− gV1 g

V
2

6m1m2
σσσ · σσσ′δ3(x) , (4.20)
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where the second term represents the interaction between the magnetic dipoles associated to the spins
σσσ and σσσ′, and the last one is the Fermi contact term.
Recalling the classical spin vector

S =
σσσ

2
, (4.21)

and its relation with the dipole magnetic moment

µµµ = g
e

2me
S , (4.22)

where g is the spin-gyromagnetic factor, the classical potential between two magnetic dipoles [54] is

V (r)µµµ,µµµ′ = − 1

4πr3
(
3(µµµ · r̂)(µµµ′ · r̂)−µµµ ·µµµ′

)
− 2

3
µµµ ·µµµ′δ3(x) . (4.23)

A direct comparison with eq. (4.20) allows us to determine the spin-gyromagnetic factors of the two
fermions at the classical level, i.e.

g = 2 . (4.24)

Vector Axial Interaction

The mixed interaction involve a contraction between the axial and the vector current with the propagator
of a gauge field. The Feynman amplitude is then

iM = gA1 g
V
2 ūs(p2)γ

µγ5ur(p1)
i

q2 −M2
ūs′(p

′
2)γµur′(p

′
1) (4.25)

which, in the non-relativistic expansion, becomes

M = − gA1 g
V
2

|q|2 +M2

[(
P

m1
− P′

m2

)
· σσσ +

1

2m2
(σσσ × σσσ′) · iq

]
. (4.26)

The associated potential in the Born approximation reads

V (r) = gA1 g
V
2

[(
P

m1
− P′

m2

)
· σσσ +

1

2m2
(σσσ × σσσ′) · ∇∇∇

](
e−Mr

4πr

)
=

=
gA1 g

V
2

4πr

[
σσσ ·
(

P

m1
− P′

m2

)
− 1

2
(σσσ × σσσ′) · r̂

(
M

m2
+

1

m2r

)]
e−Mr .

(4.27)

Axial Axial Interaction

The case of two axial vertices involves two axial currents which are not conserved, so the contraction
with qµqν cannot be neglected, thus

iM = −gA1 gA2 ūs(p2)γµγ5ur(p1)
−i

q2 −M2

(
ηµν −

qµqν
M2

)
ūs′(p

′
2)γ

νγ5ur′(p
′
1) =

= gA1 g
A
2

−i
|q|2 +M2

[
ūs(p2)γ

µγ5ur(p1)ūs′(p
′
2)γµγ

5ur′(p
′
1)+

− 1

M2
ūs(p2)/qγ

5ur(p1)ūs′(p
′
2)/qγ

5ur′(p
′
1)

]
.

(4.28)

Substituting the non-relativistic expansions at the leading order gives us

M =
gA1 g

A
2

|q|2 +M2

[
σσσ · σσσ′ + 1

M2
(σσσ · q)(σσσ′ · q)

]
, (4.29)

where the NLO term must be kept since it is amplified by the M2 factor at denominator. The
integration leads to

V (r) = −gA1 gA2
[
σσσ · σσσ′ − 1

M2
(σσσ · ∇∇∇)(σσσ′ · ∇∇∇)

](
e−Mr

4πr

)
=

= −gA1 gA2 (σσσ · σσσ′)e
−Mr

4πr
− gA1 g

A
2

4πM2

[
(σσσ · σσσ′)

(
1

r3
+
M2

r
+

4π

3
δ3(x)

)
+

− (σσσ · r̂)(σσσ′ · r̂)
(
M2

r
+ 3

M

r2
+

3

r3

)]
e−Mr .

(4.30)
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4.1.3 Field Strength Interactions

The last type of tree-level interaction involving a the field strength of a massive vector boson is given
by

Lint = −
2∑
i=1

ψ̄iσ
µν(gTi + gT̃i iγ

5)ψiFµν , (4.31)

in which the coupling coefficients have mass dimension [gTi ] = [gT̃i ] = −1 and

σµν =
i

2
[γµ, γν ] , Fµν = ∂µAν − ∂νAµ , (4.32)

with Fµν the field strength of the vector boson. Despite the form of eq. (4.31), exploiting the
antisymmetric property of σµν and integrating by parts, the interaction term can be recast into

LInt = 2

2∑
i=1

∂µ[ψ̄iσ
µν(gTi + gT̃i iγ

5)ψi]Aν . (4.33)

Tensor Tensor Interaction

The derivative interaction of the t-channel scattering gives

M = −4gT1 g
T
2 ūs(p2)qiσ

iνur(p1)
iηνβ

|q|2 +M2
ūs′(p

′
2)q

jσjβur′(p
′
1) , (4.34)

where the qµqν term inside the propagator vanishes from the contraction with σµν . Using the non-
relativistic expansion of the bilinear forms, see A.1, the amplitude becomes

M =
4gT1 g

T
2

|q|2 +M2

[
(σσσ · σσσ′)|q|2 − (σσσ · q)(σσσ′ · q)

]
(4.35)

and the related potential in the Born approximation reads

V (r) = 4gT1 g
T
2

[
(σσσ · σσσ′)∇2 − (σσσ · ∇∇∇)(σσσ′ · ∇∇∇)

](e−Mr

4πr

)
=

=
gT1 g

T
2

π

[
(σσσ · σσσ′)

(
M2

r
+
M

r2
+

1

r3
− 8π

3
δ3(x)

)
− (σσσ · r̂)(σσσ′ · r̂)

(
M2

r
+ 3

M

r2
+

3

r3

)]
e−Mr .

(4.36)

Pseudo-tensor Pseudo-tensor Interaction

The Feynman amplitude for a mix of tensor and pseudo-tensor currents is

iM = (2igT̃1 )(2ig
T̃
2 )(iq)µūs(p2)σ

µνiγ5ur(p1)
−iηνβ
q2 −M2

(−iq)αūs′(p′2)σαβiγ5ur′(p′1) =

= 4igT̃1 g
T̃
2 qiūs(p2)σ

iνγ5ur(p1)
ηνβ

|q|2 +M2
qj ūs′(p

′
2)σ

jβγ5ur′(p
′
1) .

(4.37)

The non-relativistic expansion yields

M ≃ 4gT̃1 g
T̃
2

|q|2 +M2
qiqj

(
(iσi)(iσj)

)
= − 4gT̃1 g

T̃
2

|q|2 +M2
(σσσ · q)(σσσ′ · q) . (4.38)

and produces the potential

V (r) = −4gT̃1 g
T̃
2 (σσσ · ∇∇∇)(σσσ′ · ∇∇∇)

(
e−Mr

4πr

)
=

=
gT̃1 g

T̃
2

π

[
(σσσ · σσσ′)

(
M

r2
+

1

r3
+

4π

3
δ3(x)

)
− (σσσ · r̂)(σσσ′ · r̂)

(
M2

r
+ 3

M

r2
+

3

r3

)]
e−Mr .

(4.39)
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Tensor Pseudo-tensor Interaction

The last Feynman amplitude to examine for the elastic scattering is

iM = (2igT̃1 )(2ig
T
2 )(iq)µūs(p2)σ

µνiγ5ur(p1)
−iηνβ
q2

(−iq)αūs′(p′2)σαβur′(p′1) =

= 4gT̃1 g
T
2

qiqj

|q|2
ūs(p2)σ

iνγ5ur(p1) ηνβ ūs′(p
′
2)σ

jβur′(p
′
1)

. (4.40)

Expanding in the non-relativistic limit leads to

ūs(p2)q
iσi0γ5ur(p1)ūs′(p

′
2)q

jσj0ur′(p
′
1) = −(q · σσσ)

[
|q|2

2m2
+

P′

m2
·
(
σσσ′ × iq

)]
, (4.41)

ūs(p2)q
iσikγ5ur(p1)ūs′(p

′
2)q

jσjkur′(p
′
1) = i

[
|q|2

(
σσσ × σσσ′

)
− (σσσ′ · q) (σσσ × q)

]
· P

m1
, (4.42)

and so

M = 4
gT̃1 g

T
2

|q|2 +M2

[
|q|2

2m2
(σσσ · iq)− (σσσ · q) P

′

m2
· (σσσ′ × q)− |q|2 P

m1
· (σσσ × σσσ′) + (σσσ′ · q) P

m1
· (σσσ × q)

]
.

(4.43)
The derivatives of the Yukawa potential, see B.1, results in

V (r) = −4gT̃1 g
T
2

{
(σσσ · ∇∇∇)

[
− ∇2

2m2
+

P′

m2
·
(
σσσ′ ×∇∇∇

)]
+
[
∇2
(
σσσ × σσσ′

)
− (σσσ′ · ∇∇∇) (σσσ ×∇∇∇)

]
· P

m1

}(
e−Mr

4πr

)
=

4gT̃1 g
T
2

4π

{
− 4π

2m2
σσσ · ∇∇∇δ3(x)−

(
M3

r
+
M2

r2
− 4πMδ3(x)

)
σσσ · r̂
2m2

+

−
(
M

r2
+

1

r3
+

4π

3
δ3(x)

)
(σσσ × σσσ′) ·

(
P

m1
+

P′

m2

)
−
(
M2

r
− 4πδ3(x)

)
P

m1
· (σσσ × σσσ′)+

+

(
M2

r
+

3M

r2
+

3

r3

)[
(σσσ′ · r̂) P

m1
· (σσσ × r̂)− (σσσ · r̂) P

′

m2
· (σσσ′ × r̂)

]}
e−Mr .

(4.44)

4.2 Comparison with Results in the Literature

We here highlight a list of discrepancies with respect to the previous literature about the calculation of
the non-relativistic potentials. The calculations were also checked with little programs in Mathematica,
to avoid possible errors given the length of the formulae.

• Scalar Pseudo-scalar Potential (eq. (4.10))

We find an overall minus sign with respect to the result of Refs. [37, 12] arising from an
inconsistency of the conventions. As reported in A.2, the Feynman diagram used in the thesis
are compatible the positive exponent of the Fourier transforms. Eq. (4.10) is derived from a
t-channel diagram in which the momentum q is transferred from the scalar to the pseudo-scalar
current. We note that this disagreement was also previously realized in Ref. [55].

• Pseudo-scalar Pseudo-scalar Potential (eq. (4.14))

We find an overall minus sign with respect to the result of Refs. [37, 12]. This probably originates
from a missing sign in the derivation of the non-relativistic limit of the pseudo-scalar bilinears.
Recalling the expression q = p2 − p1 = p′1 − p′2, the explicit expressions of the fermion bilinears
differ by

ūr(p2)γ
5us(p1) = −q · σσσ

2m1
, (4.45)

ūr′(p
′
2)γ

5us′(p
′
1) =

q · σσσ′

2m2
. (4.46)
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The difference may not have been taken into account in the reference, resulting in a disagreement
between the calculations.

• Tensor Pseudo-tensor Potential (eq. (4.48))

Working in the M → 0 limit, Ref. [11] finds

V (r) =
4gT̃1 g

T
2

4π

[
− 4π

2m2
σσσ · ∇∇∇δ3(x) +

(
1

r3
+

4π

3
δ3(x)

)
(σσσ × σσσ′) ·

(
P

m1
− P′

m2

)
+

+
3

r3
(σσσ · r̂)

(
P

m1
− P′

m2

)
· (σσσ′ × r̂)

]
,

(4.47)

while we obtained instead

V (r) =
4gT̃1 g

T
2

4π

{
− 4π

2m2
σσσ · ∇∇∇δ3(x)−

(
1

r3
+

4π

3
δ3(x)

)
(σσσ × σσσ′) ·

(
P

m1
+

P′

m2

)
+

+ 4πδ3(x)(σσσ × σσσ′) · P

m1
+

3

r3

[
(σσσ′ · r̂) P

m1
· (σσσ × r̂)− (σσσ · r̂) P

′

m2
· (σσσ′ × r̂)

]}
.

, (4.48)

that has been also confirmed by performing the non-relativistic expansion by means of a Mathe-
matica code.
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CHAPTER 5

TREE-LEVEL POTENTIALS BEYOND
LEADING ORDER

Until now we have been concerned with reproducing the calculation of the tree-level potentials discussed
in the literature, limiting ourselves to LO contributions in the non-relativistic expansion and elastic
scattering. In this Chapter we consider instead higher-order corrections in the non-relativistic expansion
and relax as well the hypothesis of elastic scattering. This latter point is actually required in order to
provide a consistent non-relativistic expansion, since the elasticity condition is automatically enforced
by taking the leading order in the non-relativistic expansion. As discussed below, this analysis will
reveal the presence of new sizeable contact interactions in the non-relativistic potentials that have been
previously compute at the LO and which might play an important phenomenological role.

5.1 Exact Bilinears and Anelastic Corrections

In the the previous calculation of the non-relativistic potentials, we encountered some cases where
certain bilinear forms seem not to have non-relativistic correction. An investigation of the simpler case
of the pseudo-scalar bilinear is useful, before venturing into more complicated expansions.
First of all, the form of the Dirac spinor, see A.1,

ur(p) =
/p+m√

2m(Ep +m)
ur(0) , ur(0) ≡ φr , (5.1)

is a covariant expression valid in every inertial frame. The reference frame we have considered so far
is the center of mass frame, where the dynamics is completely determined by the two independent
momenta  q = p2 − p1

P =
p1 + p2

2

=⇒

p1 = P − q

2

p2 = P +
q

2

. (5.2)

The last important assumption that we have made is the elastic limit of the scattering, meaning that
in the CoM frame

q0 = 0 −→ Ep2
= Ep1

, |p1| = |p2| (5.3)

27



5.1. EXACT BILINEARS AND ANELASTIC
CORRECTIONS

CHAPTER 5. TREE-LEVEL POTEN-
TIALS BEYOND LEADING ORDER

All these assumptions provide a strong constraint on the non-relativistic expansion. Taking, for example,
the pseudo-scalar bilinear given by

ūs(p2)γ
5ur(p1) =

1

2m1

(√
Ep2

+m1 φ
T
s , φTs

p2·σσσ√
Ep2+m1

)
γ0γ5

(√
Ep1

+m1 φr
p1·σσσ√
Ep1+m1

φr

)
=

=
1

2m1
φTs (p1 · σσσ − p2 · σσσ)φr = −q · σσσ

2m1
.

(5.4)

In this case, the two main quantities to expanded in the non-relativistic limit are√
Ep2

+m1√
Ep1

+m1
= 1 ,

√
Ep2

+m1

√
Ep1

+m1 ≃ 2m1

(
1 +

|p1|2

4m2
1

+O
(
|p1|2

m2
1

))
, (5.5)

where only the second one gives an infinite series in terms of |p1|2/m2
1. The first ratio, instead, will

always be exact as long as the elastic assumption persists.
Therefore the elastic hypothesis plays a crucial role in the non-relativistic expansion of the tree-level
potentials. When relaxing the latter, we need to keep track of the terms q0 ̸= 0 in the amplitude. So,
for instance, a common factor among Feynman propagators is

i

q2 −M2
(5.6)

with q the transferred 4-momentum. In the elastic limit, the energy conservation in the CoM reference
frame implies that initial and final momenta of the external particles have the same magnitudes, i.e.

q0 = 0 −→ |p1| = |p3| , (5.7)

and as a consequence the following relation holds

P · q =
1

2

(
|p3|2 − |p1|2

)
= 0 (5.8)

leading to cancellations in the expansions, while the propagator reduces to

−i
|q|2 +M2

. (5.9)

It is worth to relax our hypothesis in order to study scattering processes where the transferred energy
slightly differs from zero and a mass gap exists, in such a way that the anelastic behaviour emerges
without the creation of different particles. Taking

q0 ̸= 0 −→ |p1| ≠ |p3| , P · q ̸= 0 (5.10)

the propagator now reads
i

(q0)2 − |q|2 −M2
(5.11)

where the time-like component can be expanded as

(q0)2 ≃ (P · q)2

2m2
+ . . . (5.12)

leading to the expression
i

(P·q)2
2m2 − |q|2 −M2 + . . .

. (5.13)

Knowing the non-relativistic nature of the external momenta and the heaviness of the scattered particles,
the last equation can be expanded as

−i
|q|2 +M2

(
1− (P · q)2

2m2

1

|q|2 +M2
+ . . .

)−1

≃ −i
|q|2 +M2

(
1 +

(P · q)2

2m2

1

|q|2 +M2
+ . . .

)
(5.14)

entering as a correction into all the scattering amplitudes, including those naively looking exact in the
non-relativistic expansion, as the pseudo-scalar pseudo-scalar one in eq. (4.9).
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5.2 Non-relativistic Potentials at Next to Leading Order

We now proceed with the calculation of the non-relativistic corrections to the tree-level potentials,
taking into account for consistency both the non-relativistic expansion of the Dirac spinors and the
anelastic corrections to the propagators, which imply new terms proportional to |pi|/m2

i (see eq. (5.14)).
In fact, depending on the mass ratios generated from the non-relativistic expansion, there may be
present suppression or enhancement factors stemming from the hierarchies |pi| ≪ mi and M ≪ mi.
For this reason it is useful to introduce two adimensional parameters{

ϵi ≡M/mi

υυυi ≡ Pi/mi
, (5.15)

where i is the index of the external fermion. In general, we have ϵi ≪ |υυυi| ≪ 1.

Scalar Scalar Corrections

Considering the NLO terms in the elastic amplitude

Mel(q) =
gS1 g

S
2

|q|2 +M2

(
1 +

|q|2

8m2
1

+
i

4m2
1

(
P× q

)
· σσσ + . . .

)(
[1 +

|q|2

8m2
2

− i

4m2
2

(
P′ × q

)
· σσσ′ + . . .

)
=

≡ gS1 g
S
2

|q|2 +M2

(
1 +

|q|2

8µ2
+

1

4
K · iq+ . . .

)
,

(5.16)
where we have employed the definitions

1

µ2
≡ m2

1 +m2
2

m2
1m

2
2

, K ≡ σσσ ×P

m2
1

− σσσ′ ×P′

m2
2

. (5.17)

The potential can now be written as

Vel(x) = −gS1 gS2
(
1− ∇2

8µ2
+

K

4
· ∇
)∫

d3q

(2π)3
eiq·x

|q|2 +M2
, (5.18)

resulting in

Vel(r) = −g
S
1 g

S
2

4πr

[
1− m2

1 +m2
2

8m2
1m

2
2

(
M2 − 4πrδ3(x)

)
+

1

4

(
M +

1

r

)(
P× σσσ

m2
1

− P′ × σσσ′

m2
2

)
· r̂
]
e−Mr

(5.19)
or, by means of the adimensional parameters of eq. (5.15),

Vel(r) = −g
S
1 g

S
2

4πr

{
1− 1

8

[(
1 +

m2
1

m2
2

)
ϵ21 −

4πrδ3(x)

µ2

]
+

+
1

4

(
ϵ1 +

1

m1r

)
υυυ1 × σσσ · r̂− 1

4

(
ϵ2 +

1

m2r

)
υυυ2 × σσσ′ · r̂

}
e−Mr .

(5.20)

Contributions of the same order arise also from anelastic corrections of the propagator that involve a
different integral, analyzed in appendix B.2. In this case, the amplitude can be written as

M =
gS1 g

S
2

|q|2 +M2

(
1 +

(P · q)2

2m2
1

1

|q|2 +M2

)[
1 +

|q|2

8µ2
+

1

4
K · iq+ . . .

]
= Mel +

(P · q)2

2m2
1

gS1 g
S
2

(|q|2 +M2)2
+ . . . ,

(5.21)

and the total correction to the Yukawa potential at NLO reads

V (r) = Vel +
gS1 g

S
2

2m2
1

(P · ∇∇∇)2
∫

d3q

(2π)3
eiq·x

(|q|2 +M2)2

= Vel +
gS1 g

S
2

16πr

[
(1 +Mr) (υυυ1 · r̂)2 − |υυυ1|2

]
e−Mr ,

(5.22)

where Vel is given by eq. (5.20).
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Scalar Pseudo-scalar Corrections

The elastic amplitude expanded up to NLO is given by

Mel = i
gP1 g

S
2

|q|2 +M2

(
−q · σσσ
2m1

)(
1 +

|q|2

8m2
2

− i

4m2
2

(
P′ × q

)
· σσσ′ + . . .

)
, (5.23)

thus the potential reads

Vel(r) =
gP1 g

S
2

2m1

(
σσσ · ∇∇∇− 1

8m2
2

(σσσ · ∇∇∇)∇2 − (σσσ · ∇∇∇)

4m2
2

(P′ ×∇∇∇) · σσσ′
)(

e−Mr

4πr

)
=

= − gP1 g
S
2

8πm1

{
σσσ · r̂

(
M

r
+

1

r2

)
− 1

8m2
2

(σσσ · r̂)
(
M3

r
+
M2

r2
− 4πMδ3(x)

)
− π

2m2
2

σσσ · ∇∇∇δ3(x)+

− 1

4m2
2

[(
M

r2
+

1

r3
+

4π

3
δ3(x)

)
σσσ · (σσσ′ ×P′)−

(
M2

r
+ 3

M

r2
+

3

r3

)
(σσσ · r̂)(σσσ′ ×P′) · r̂

]}
e−Mr

(5.24)
and in terms of adimensional variables

Vel(r) = − gP1 g
S
2

8πm1

[
σσσ · r̂

(
M

r
+

1

r2
− Mϵ22

r
− ϵ22
r2

+
4πϵ2δ

3(x)

m2

)
− π

2m2
2

σσσ · ∇∇∇δ3(x)+

− 1

4

(
ϵ2
r2

+
1

m2r3
+

4π

3m2
δ3(x)

)
σσσ · (σσσ′ × υυυ2) +

1

4

(
M

r
ϵ2 + 3

ϵ2
r2

+
3

m2r3

)
(σσσ · r̂)(σσσ′ × υυυ2) · r̂

]
e−Mr .

(5.25)
The next step is to consider anelastic corrections, leading to

M = i
gP1 g

S
2

|q|2 +M2

(
1 +

(P · q)2

2m2
1

1

|q|2 +M2

)(
−q · σσσ
2m1

)[
1 +

|q|2

8m2
2

− i

4m2
2

(
P′ × q

)
· σσσ′
]

= Mel − i
gP1 g

S
2

(|q|2 +M2)2
(P · q)2q · σσσ

4m3
1

(5.26)

and the associated potential is corrected by

V (r) = Vel −
gP1 g

S
2

4m3
1

(P · ∇∇∇)2σσσ · ∇∇∇
∫

d3q

(2π)3
eiq·x

(|q|2 +M2)2
=

= Vel −
gP1 g

S
2

32πm1

[(
M

r
+

1

r2

)(
|υυυ1|2σσσ · r̂+ 2(υυυ1 · σσσ)(υυυ1 · r̂)

)
+

−
(
3M

r
+M2 +

3

r2

)
(υυυ1 · r̂)2(σσσ · r̂)

]
e−Mr ,

(5.27)

where Vel is given by eq. (5.25).

Pseudo-scalar Pseudo-scalar Corrections

Dealing with only pseudo-scalar vertices, the only type of non-relativistic correction arises from the
propagator in the anelastic case. The NLO amplitude reads then

M =
gP1 g

P
2

|q|2 +M2

(
1 +

(P · q)2

2m2
1

1

|q|2 +M2
+ . . .

)
(q · σσσ) (q · σσσ′)

4m1m2

= Mel +
gP1 g

P
2

(|q|2 +M2)2
(q · σσσ) (q · σσσ′) (P · q)2

8m3
1m2

,

(5.28)
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so the potential is extended in

V (r) = Vel −
gP1 g

P
2

8m3
1m2

(∇∇∇ · σσσ)
(
∇∇∇ · σσσ′

)
(P · ∇∇∇)2

(
e−Mr

8πM

)
= Vel −

gp1g
P
2

64πm1m2

[(
M3 +

6M2

r
+

15M

r2
+

15

r3

)
(υυυ1 · r̂)2(σσσ · r̂)(σσσ′ · r̂)+

−
(
M2

r
+

3M

r2
+

3

r3

)
(σσσ · σσσ′)(υυυ1 · r̂)2 −

(
2M2

r
+

6M

r2
+

6

r3

)(
(σσσ · υυυ1)(σσσ′ · r̂)(υυυ1 · r̂)+

+ (σσσ′ · υυυ1)(σσσ · r̂)(υυυ1 · r̂)
)
−
(
M2

r
+

3M

r2
+

3

r3

)
|υυυ1|2(σσσ · r̂)(σσσ′ · r̂)+

+

(
M

r2
+

1

r3

)(
(σσσ · σσσ′)|υυυ1|2 + 2(υυυ1 · σσσ)(υυυ1 · σσσ′)

) ]
e−Mr ,

(5.29)

where Vel is given by eq. (4.10).

Vector Vector Corrections

The NLO amplitude in the elastic limit is

Mel = − gV1 g
V
2

|q|2 +M2

(
1− (q× σσσ) · (q× σσσ′)

4m1m2

)
− gV1 g

V
2

|q|2 +M2

[
|P|2

2m2
1

− P ·P′

m1m2
+

|P|2

2m2
1

+

+ iq ·
(
σσσ′ ×P′

4m2
2

− σσσ ×P

4m2
1

− σσσ′ ×P

2m1m2
+
σσσ ×P′

2m1m2

)]
.

(5.30)

After the integration and in terms of adimensional parameters, the NLO potential results in

Vel(r) =
gV1 g

V
2

4πr

[(
1 +

1

2
|υυυ1 − υυυ2|2

)
+

(
1

m1r
+ ϵ1

)
σσσ

8
× (υυυ1 − 2υυυ2) · r̂+

−
(

1

m2r
+ ϵ2

)
σσσ′

8
× (υυυ2 − 2υυυ1) · r̂+

(σσσ · σσσ′)
4

(
ϵ1ϵ2 +

ϵ1
m2r

+
1

m1m2r2
− 8πr

3m1m2
δ3(x)

)
+

− (σσσ · r̂)(σσσ′ · r̂)
4

(
ϵ1ϵ2 +

3ϵ1
m2r

+
3

m1m2r2

)]
e−Mr .

(5.31)
Including the anelastic correction from the propagator, we obtain

M = − gV1 g
V
2

|q|2 +M2

(
1 +

(P · q)2

2m2
1

1

|q|2 +M2
+ . . .

)(
1− (q× σσσ) · (q× σσσ′)

4m1m2
+ . . .

)
=

= Mel −
(P · q)2

2m2
1

gV1 g
V
2

(|q|2 +M2)2
,

(5.32)

and the associate potential at NLO is

V (r) = Vel −
gV1 g

V
2

16πm2
1M

(P · ∇∇∇)2e−Mr =

= Vel −
gV1 g

V
2

16πr

[
(1 +Mr)(υυυ1 · r̂)2 − |υυυ1|2

]
e−Mr ,

(5.33)

where Vel is given by eq. (5.31).

Axial Vector Corrections

At NLO the elastic amplitude is found to be the amplitude can be rewritten in a convenient way as

Mel = MLO − gA1 g
V
2

|q|2 +M2

[
A+B · iq+ qiqjCij +D|q|2 +E · iq|q|2

]
, (5.34)
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where we have introduced the coefficients

A ≡
(
|υυυ2|2 − υυυ1 · υυυ2

)
2

υυυ1 · σσσ ,

B ≡ 1

4

(
υυυ1 × υυυ2
m1

− (υυυ1 · σσσ)
(υυυ2 − υυυ1)

m2
× σσσ′

)
,

Cij ≡ 1

8m1

(
υi1σ

′j

m2
+
υi2σ

j

m1

)
,

D ≡ − 1

8m1

(
υυυ1 · σσσ′

m2
+
υυυ2 · σσσ
m1

)
,

E ≡ σσσ × σσσ′

16m2
1m2

.

(5.35)

Hence, the potential at the NLO is

Vel(r) = VLO(x) + gA1 g
V
2

[
A+B · ∇∇∇− Cij∂i∂j −D∇2 − (E · ∇∇∇)∇2

](
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4πr

)
=
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+
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− 1
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·
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3
δ3(x)

)]
e−Mr ,

(5.36)
where VLO is given by eq. (4.27). Including the anelastic corrections we obtain

M = Mel −
(P · q)2

2m2
1

[(
P

m1
− P′

m2

)
· σσσ +

1

2m2
(σσσ × σσσ′) · iq

]
gA1 g

V
2

(|q|2 +M2)2
(5.37)

that modifies the potential into

V (r) = Vel −
gA1 g

V
2

16πm2
1M

(P · ∇∇∇)2
[
σσσ ·
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P

m1
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]
e−Mr ,

(5.38)

where Vel is given by eq. (5.36).

Axial Axial Corrections

The elastic amplitude with two axial vertices is described at NLO by

Mel =
gA1 g

A
2

|q|2 +M2

[
σσσ · σσσ′ +

(
1
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− 1

8m2
1
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8m2
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1

− P′ × σσσ
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+
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)] (5.39)
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and the associated potential results in

V (r)el =
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(5.40)
Relaxing the elastic hypothesis implies the correction

M = Mel +
gA1 g

A
2

(|q|2 +M2)2
(P · q)2

2m2
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[
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]
(5.41)

and the associated NLO potential is found to be

V (r) = Vel +
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(5.42)

where Vel is given by eq. (5.40).

Correction to the Tensor Structures

The NLO correction to the remaining tensor and pseudo-tensor interactions turn out to be more
cumbersome. In general, the amplitudes expanded upo to NLO have the following structure

MTT =
4gT1 g

T
2

|q|2 +M2

[
(σσσ · σσσ′)|q|2 − (σσσ · q)(σσσ′ · q) + i|q|2q ·A+ qiqjBij + |q|2C + |q|4D + Eijqiqj |q|2

]
,

(5.43)

MT̃ T̃ =
4gT̃1 g

T̃
2

|q|2 +M2

(
qiqjAij +B|q|2 + Cijqiqj |q|2

)
, (5.44)

MT̃ T = 4
gT̃1 g

T
2

|q|2 +M2

[
Aijqiqj |q|2 +B|q|2 + Cijqiqj +D · iq|q|2 + E|q|4 + F · iq|q|4

]
(5.45)

where the functions A,B,C, . . . are defined for each cases in appendix C.1, together with the expressions
of the associated potentials.
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5.3 Physical Interpretation of the Next to Leading Order Corrections

The formulae obtained in the previous section require a numerical examination in order to understand
the relative importance of their individual terms. Dealing with long-range forces, we expect suppression
or enhancement factors based on the scaling with M,mi and |pi|.
A boson with a sufficiently small mass, e.g. of the order of M ∼ 10−4 eV, has a macroscopic Compton
wavelength of r ∼ 1 cm, and hence mediate a force on the laboratory scales. On the other hand, for
the external fermions we have in mind nucleons with mass mi ∼ GeV. A similar discussion would
apply when dealing with electrons ad external states, in that case mi ∼ MeV. Another scale stems
from the non-relativistic nature of the external momenta, requiring |υυυi| ≪ 1, that is satisfied e.g. for
|pi| ≲ MeV.
These orders of magnitude suggests the following size for the dimensionless parameters defined in eq.
(5.15) {

ϵi ∼ 10−13

|υυυi| ∼ 10−3
−→ ϵi ≪ |υυυi| ≪ 1 , (5.46)

which can be used to understand the relative importance of the individual pieces in the NLO potentials
computed in the previous Section, for which we are going to employ the following numerical benchmark:

M ∼ 10−4eV , mi ∼ µ ∼ GeV , |p| ∼ MeV ,

r ∼ 1010MeV−1 ,
r

µ2
∼ 104MeV−3 ,

r2

mi
∼ 10−1eV−3 ,

1

mir
∼ 10−13 , Mr ∼ 1 , |υυυi| ∼ 10−3 ,

m1

m2
∼ 1 .

(5.47)

In the NLO potentials we also notice the appearance of contact terms proportional to delta functions.
An analogy with atomic physics is helpful in order to understand its physical consequences. To give a
concrete example, relativistic effects play an important role in the hyperfine structure of the hydrogen
atom. Among them, the Darwin term affects the s-state of the wave function from its proportionality
with δ3(x). In the quantum formalism, operators like this must be evaluated inside the matrix elements
between the normalized states |n, l,m⟩ of the hydrogen atom [53], in order to extract the expectation
values. Apart from constant terms, it turns out that

HD ∼ δ3(x) =⇒ ⟨1, 0, 0|HD|1, 0, 0⟩ ∼
1

a30
, (5.48)

where a0 is the Bohr radius. Knowing its expression

a0 =
1

mee2
≃ 20 MeV−1 , (5.49)

we can associate, at least formally, a scaling to the Dirac delta like

δ3(x) ∼ 10−4MeV3 . (5.50)

For later purposes, it is worth to calculate also the matrix element of ∇∇∇δ3(x) via the coordinate
representation of the hydrogen wave functions

φn,l,m(x) = Rn,l(r)Y
l
m(θ, ϕ) , (5.51)

leading to

⟨1, 0, 0|∇∇∇δ3(x)|1, 0, 0⟩ =
∫
d3xφ∗

1,0,0(x)∇∇∇δ3(x)φ1,0,0(x) =

= −
∫

d3x
d

dr

(
e−2r/a0

πa30

)
r̂δ(r) =

2r̂

πa40
.

(5.52)

This implies that, formally,

∂
(n)
x δ3(x) ∼ 1

a3+n0

, (5.53)
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giving us a scaling also for derivatives of contact interactions.
In the light of this example, we can extend the discussion to approach the Dirac deltas emerging in the
non-relativistic potentials between nucleons. To this end, we introduce a length scale along the lines of
the Bohr radius, but that is associated to the mass of the nucleon as

aN ∼ 1

mN
≃ GeV−1 , (5.54)

such that in the case of nucleons the formal scaling of the contact terms becomes

δ3(x) ∼ 1

a3N
≃ GeV3 , ∇∇∇δ3(x) ∼ 1

a4N
≃ GeV4 . (5.55)

These numerical benchmarks allow us to gauge the relative importance of the NLO corrections, and
rewrite the first six potentials keeping only the dominant terms (a similar discussion applies to the
tensor structures, given in appendix C.1)

V (x)SStot = −g
S
1 g

S
2

4π

[
1

r
+
π

2

δ3(x)

µ2

]
e−Mr ; (5.56)

V (x)PStot = − gP1 g
S
2

8πm1r2

[
σσσ · r̂ (Mr + 1) +

πr2ϵ2
2m2
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2
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− πr2
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δ3(x)σσσ · (σσσ′ × υυυ2)

]
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(5.57)

V (x)PPtot = − gP1 g
P
2

16πm1m2r3

[
σσσ · σσσ′

(
Mr + 1 +

4πr3

3
δ3 (x)

)
+

− (σσσ · r̂)(σσσ′ · r̂)
(
M2r2 + 3Mr + 3

) ]
e−Mr ;

(5.58)

V (x)V Vtot =
gV1 g

V
2

4πr

[
1− 2πr(σσσ · σσσ′)

3m1m2
δ3(x)

]
e−Mr ; (5.59)

V (x)AVtot =
gA1 g

V
2

4πr

[
σσσ · (υυυ1 − υυυ2)−

(1 +Mr)

2m2r
(σσσ × σσσ′) · r̂− πϵ2r

4m2
1

δ3(x)(σσσ × σσσ′) · r̂+

+
πr

4m2
1m2

(σσσ × σσσ′) · ∇∇∇δ3(x)− πr

3m1

(
υυυ1 · σσσ′

m2
+
υυυ2 · σσσ
m1

)
δ3(x)

]
e−Mr ;

(5.60)

V (x)AAtot = −g
A
1 g

A
2

4πr

[
σσσ · σσσ′ +

(
σσσ · σσσ′

M2r2

)(
1 +Mr +

4πr3

3
δ3(x)

)
+

− (σσσ · r̂)(σσσ′ · r̂)
(
M2r2 + 3Mr + 3

)
M2r2

+
πr

2

(
1

m2
2

− 1

m2
1

)
(σσσ · σσσ′)δ3(x)

]
e−Mr .

(5.61)

It should be noted that the contact terms proportional to the Dirac deltas arising from the NLO
correction can be much more relevant than their LO counterparts. E.g. in the case of the scalar-scalar
potential, one has that for r ∼ 1/M , the two terms in the square bracket of eq. (5.56) are respectively
of order: M ≪ µ ∼ GeV (with µ the reduced mass defined in eq. (5.17)), and δ3(x)/µ2 ∼ GeV. Hence,
as long as the mass of the new boson mediator is M ≲ mi ∼ 1 GeV, the contact term dominates with
respect to the LO term. A similar discussion applies as well to the other type of potentials. On the
other hand, it remains to be understood whether such contact terms can have a phenomenological
impact. While we expect that they play no role in experimental tests of gravity, they may be relevant
in nuclear or atomic physics, in analogy to the Darwin term which affects the ground state energy of
the hydrogen atom.
The long-range forces derived so far also contain short-range parts, and both contribute to the
interactions depending on the scale of the experiment. In fact, the exponential suppression e−Mr is not
active beneath the Compton wavelength of the new mediators. This means that both macroscopic and
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microscopic experiments are useful for research, but a clear distinction must be made. In macroscopic-
scale experiments the momentum and radial vectors may be treated as classical vectors. In atomic-scale
experiments instead, they need to be treated as quantum operators, and explicit symmetrizations, such
as {p, f(r)}, must be introduced inside our expressions. In relation to spin-dependent potentials there
is also the manifestation of parity or time reversal violation, e.g. dealing with σσσ · r̂. Classically r̂ is
the radial vector connecting two macroscopic objects, so σσσ · r̂ causes the precession of the spin vector,
reminiscent of a magnetic moment inside an external magnetic field. In the atomic regime, r̂ is the
operator pointing between the atomic electrons and nucleons, therefore σσσ · r̂ mixes atomic states of
opposite parity and give rise to atomic electric dipole moments. Both macroscopic and microscopic
measurements involve spin precession about two different set of vectors: B and r̂ for macroscopic scales,
B and E for atomic scales.

Convergence of the Non-relativistic Expansion

It is important to check whether the potentially large contributions arising from the contact terms
in the NLO calculation might signal a convergence problem. What we are looking for is a possible
trend that persists at higher orders. The simplest case for performing this check is provided by the
scalar-scalar potential, in which NNLO has to be evaluated. Recalling eq. (5.16), the next term of the
expansion returns the amplitude

M =
gS1 g

S
2

|q|2 +M2

[
1 +

|q|2

8µ2
+

1

4
K · iq+ |q|2 iq ·A+B|q|4 + qiqjCij + iq ·D+ E|q|2

]
, (5.62)

where A, B,Cij ,D, E,K are specific tensors, functions of Pi,σσσi,mi,M . Keeping only the leading
terms in the non-relativistic expansion, following the rules established in the previous Section, we
obtain

V (x) = −gS1 gS2
{

1

4πr
+

(
1

8m2
1

+
1

8m2
2

− |P|2

32m4
1

− |P′|2

32m4
2

)
δ3(x)+

+

[
P× σσσ

32m2
1

(
1

2m2
1

− 1

m2
2

)
− P′ × σσσ′

32m2
2

(
1

2m2
2

− 1

m2
1

)]
· ∇∇∇δ3(x)+

−
(

1

64m2
1m

2
2

− 1

128m4
1

− 1

128m4
2

)
∇2δ3(x)+

+

(
(P× σσσ) · (P′ × σσσ′)

16m2
1m

2
2

− 3|P|2

32m4
1

− 3|P′|2

32m4
2

)(
δ3(x)

3

)}
e−Mr ,

(5.63)

while the NNLO terms in the anelastic propagator are highly suppressed by |υυυ1|4 ∼ 10−12, thus safely
negligible.
The final potential shows an overall convergence, since |P|/mi ≪ 1 can be safely neglected, so one
remains with the dominant contributions from NLO and NNLO given by

V (x) = −g
S
1 g

S
2

4πr

(
1|LO +

πr

2

δ3(x)

µ2

∣∣∣∣
NLO

+ α
r∇2δ3(x)

m2
im

2
j

∣∣∣∣
NNLO

)
, (5.64)

where α denotes a constant term that is zero for m1 = m2. In particular, the ratio between the NNLO
and NLO term is of order α∇2δ3/δ3m2

N ∼ αa2Nm
2
N ≲ α, that converges for α≪ 1, corresponding to

the case m1 ≃ m2.
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CHAPTER 6

NON-RELATIVISTIC POTENTIALS
BEYOND TREE LEVEL

Until now, we have considered non-relativistic potentials generated by the tree-level exchange of any
type of spin-0 or 1 particle. However, there are other possible structures for long-range potentials
which may arise beyond tree level. A well-known possibility is given by the exchange of a loop of light
neutrinos, stemming from effective 4-fermion neutral current interactions arising in the SM [56, 57,
58]. The first part of this Chapter is devoted to reviewing the formalism constructed by Feinberg and
Sucher [13] in order to calculate the potential induced by the exchange of a pair of particles. Having
examined the technicalities behind the specific case of neutrinos, we will then focus our attention on
more general structures which can arise at one loop, in analogy to the approach discussed previously
for tree-level potentials.

6.1 One-loop Neutrino Exchange

At the EFT level the interaction between a neutrinos ν and a generic SM particle χ is provided by the
effective operator

Lνν = Gννχ̄χν̄ν , [Gνν ] = −2 , (6.1)

from which the scattering is described by the loop diagram reported in fig. (6.1).

One might guess, based on dimensional analysis, that the potential for this interaction could scale like

Uνν ∼ G2
νν

m2
χ

r3
. (6.2)

If this were the case the effects of such a force may be observable in laboratory tests. Unfortunately,
the guessed form is incorrect and the right behaviour turns out to be

Uνν ∼ G2
νν

r5
, (6.3)

that yields a much smaller effect.
Let us now derive this result. The loop amplitude can be easily solved using the standard methods of
loop calculations, starting from

iM = −(iGνν)
2ūr(p2)us(p1)

∫
d4k

(2π)4
Tr

(
i

/k

i

/k − /q

)
ūr′(p

′
2)us′(p

′
1) (6.4)
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Figure 6.1: Scattering between SM particles via neutrino pair exchange.

that is quadratically divergent in the UV. The standard approach relies on dimensional regularization in
which the regulator is taken as a complex small deviation from the ordinary 4-dimensional space-time,
i.e.

d = 4− ϵ , ϵ ∈ C ⇒ Gνν ≡ µϵg . (6.5)

Thus, substituting the bilinears with their non-relativistic expansion, we obtain

iM = −µ2ϵg2
∫

ddk

(2π)d
Tr(/k(/k − /q))

k2(k − q)2
. (6.6)

Solving the trace and identifying the master integrals, in the limit ϵ→ 0 the amplitude becomes

MNR = −G
2
νν

8π2
|q|2

(
2 + ∆ϵ + log

(
µ2

|q|2

))
(6.7)

where ∆ϵ is the divergent part, while µ is the renormalization scale.
The potential is obtained via its Fourier transform, but the logarithm in the integrand has to be treated
with care, due to its analytic properties in the complex plane. It can be shown [56] that, for contact
interactions, only the logarithm contributes, which has a branch cut on the imaginary axis. The UV
part is responsible for the running of the coupling constant and does not play any role in the potential,
hence the final result is

V (r) = − 3G2
νν

8π3r5
. (6.8)

However, the complex integration lacks a physical insight, so it is useful to re-derive the result above
from the point of view of dispersion theory.

Dispersion Theory Approach

The dispersion theory approach, discussed in Chapter (3.2) , deals with the integration by rewriting
the amplitude with the effective propagator ∆(q) as

iM = −G2
νν ūr(p2)us(p1)i∆(q)ūr′(p

′
2)us′(p

′
1) ≃ −iG2

νν∆(q) (6.9)

inside which lies the 1-loop structure and such that

V (r) = −G
2
νν

4πr

∫ ∞

0
dµ2 ρ(µ2)e−µr . (6.10)

To extract the spectral function, recalling that

ρ(µ2) = − 1

π
Im{∆(q)} , (6.11)
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it is sufficient to calculate the tree-level cutted amplitude M(q → νν) of the decay of an external
source of momentum q into a final state of intermediate neutrinos, i.e.

M(q → νν) = iūν̄uν , (6.12)

where the coupling constants has already been taken into eq. (6.9). The modulus squared of the
amplitude has to be summed over all possible spin and polarization states of the final state, so that
the unpolarized amplitude is (taking the approximation of massless neutrinos)

|M̄(q → νν)|2 = Tr[/k /k′] = 4(k · k′) . (6.13)

The relativistic kinematics of the cut diagram is encoded into

t = q2 = µ2 = (k − k′)2 ⇒ (k · k′) = −µ
2

2
(6.14)

leading to
|M̄(q → νν)|2 = −2µ2 , (6.15)

which does not depend on the integrated momenta k, k′ of the phase space factor dΠνν . Hence, from
the optical theorem

Im{∆(q)} = −µ2
∫
dΠνν(2π)

4δ(q − k − k′) = −µ
2

8π
(6.16)

yielding

ρ(µ2) =
µ2

8π2
Θ(µ2) , (6.17)

that must be explicitly accompanied by the Heaviside Θ-function.
Eventually, the integration dictated by eq. (6.10) returns

V (r) = − G2
νν

32π3r

∫ ∞

0
dµ2µ2e−µr = − 3G2

νν

8π3r5
(6.18)

in agreement with eq. (6.8). Having discussed this methodology, we can move on to the study of other
loop potentials generated by new light particles coupled to SM fermions.

6.2 Loop Potentials Between Unpolarized Fermions

In the limit of unpolarized non-relativistic nucleons, only scalar and vector currents are relevant,
inducing four-nucleon scattering when closing the DM loop. Their interactions with dark particles of
spin-0, 1/2, 1 in principle depend on the UV completion of the theory. Indeed, the underlying nature
of the new candidate, as completely new particle or pNGB of a spontaneously broken symmetry, is
directly reflected into the type of Lagrangian taken into consideration. The main features of the
final potentials, useful to check the rightness of the calculations, can be understood from dimensional
analysis and the optical theorem [59]. The former shows the radial scaling in the long-range limit while
the latter dictates the sign of the discontinuity over the branch cut and thus the sign of the potentials.
The results presented in the first Section are in agreement with Ref. [60, 15], while the end of the
Chapter extends some results present in Ref. [61].

6.2.1 Scalar Currents

The first type of interactions to be studied are between scalar currents of SM fermions. The dispersion
theory treatment involves the analysis of the imaginary part of M across its branch cut. It turns
out [59] that is already possible to establish some properties even before the computations. Indeed,
dimensional analysis and the optical theorem impose an overall negative sign of the potentials (apart
from those of the couplings), for the interaction between scalar currents mediated by any type of
operators. Let us now verify it in the analysis.
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Figure 6.2: Loop diagram for a double scalar exchange.

Double Scalar Exchange

Consider the exchange of a scalar particle of mass M given by the operator

Lint = −
2∑
i=1

Gϕi
2
ψ̄iψiϕ

2 , [Gϕi ] = −1 (6.19)

described by the t-channel diagram in fig. (6.2).
The Feynman amplitude is

iM = −G
ϕ
1G

ϕ
2

4
ūr(p2)us(p1)i∆(q)ūr′(p

′
2)us′(p

′
1) ≃ −G

ϕ
1G

ϕ
2

4
i∆(q) , (6.20)

from which

V (r) = −G
ϕ
1G

ϕ
2

16πr

∫ ∞

0
dµ2ρ(µ2) e−µr . (6.21)

Considering the cutted amplitude M(q → ϕϕ) and taking into account the indistinguishability of the
scalar mediators in the phase factor dΠϕϕ

|M̄(q → ϕϕ)|2 = 4 =⇒ ρ(µ2) =
1

8π2

√
1− 4M2

µ2
Θ(µ2 − 4M2) . (6.22)

Thus, the potential is

V (r) = − Gϕ1G
ϕ
2

128π3r

∫ ∞

4M2

dµ2

√
1− 4M2

µ2
e−µr =

= − Gϕ1G
ϕ
2

64π3r3
xK1(x)

(6.23)

where Kn are the modified Bessel functions of the second kind and index n, while x ≡ 2Mr is an
adimensional variable.

Double Spinor Exchange

The next step is to generalize the results from the neutrino exchange using massive spinor mediators
with m ̸= 0. From the interacting Lagrangian

Lint = −
2∑
i=1

Gχi ψ̄iψiχ̄χ , [Gχi ] = −2 , (6.24)
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the t-channel amplitude is

iM = Gχ1G
χ
2 ūr(p2)us(p1)i∆(q)ūr′(p

′
2)us′(p

′
1) ≃ Gχ1G

χ
2 i∆(q) , (6.25)

leading to

V (r) =
Gχ1G

χ
2

4πr

∫ ∞

0
dµ2 ρ(µ2) e−µr . (6.26)

The cutted amplitude of eq. (6.13) now generalizes to

|M̄(q → νν)|2 = 4[(k · k′) +M2] = 2
(
4M2 − µ2

)
(6.27)

where k · k′ =M2 − µ2/2. Hence the spectral function becomes

ρ(µ2) =
M2

2π2

√
1− 4M2

µ2

(
1− µ2

4M2

)
Θ(µ2 − 4M2) . (6.28)

The generalized potential for an exchange of two fermions is then

V (r) =
Gχ1G

χ
2M

2

8π3r

∫ ∞

4M2

dµ2
(
1− µ2

4M2

)√
1− 4M2

µ2
e−µr =

= −3Gχ1G
χ
2

16π3r5
x2K2(x) .

(6.29)

Note that for M → 0 the expression above coincides with eq. (6.8), since x2K2(x)
x→0−−−→ 2.

Double Gauge Boson Exchange

The double gauge boson exchange is described by the effective operator

Lint = −
2∑
i=1

GXi
2
ψ̄iψiXµX

µ , [GXi ] = −1 . (6.30)

The associated amplitude is given by

iM ≃ −iGX1 GX2 ∆(q) (6.31)

taking the general case of the gauge boson spectral representation. Denoting as εµ, ε
∗
ν the polarization

vectors, the cutted amplitude is

M(q → XX) = iηµαεµ(k)ε
∗
α(k

′) , (6.32)

and thus

|M̄(q → XX)|2 = ηµαηνβ
(
ηµν −

kµkν
M2

)(
ηαβ −

k′αk
′
β

M2

)
= 2 +

(
1− µ2

2M2

)2

. (6.33)

With the same strategy of the previous cases, the spectral function

ρ(µ2) =
1

32π2

√
1− 4M2

µ2

[
2 +

(
1− µ2

2M2

)2
]
Θ(µ2 − 4M2) (6.34)

produces the following potential

V (r) = −G
X
1 G

X
2

32π3r

∫ ∞

4M2

dµ2

[
2 +

(
1− µ2

2M2

)2
]√

1− 4M2

µ2
e−µr =

= −3GX1 G
X
2

4π3r3

(
5

x
+
x

4

)
K3(x) .

(6.35)
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Scaling of the Potentials

Consider the general n+ 4-dimensional operators

Lint ⊃
1

Λn
O2DSψ̄Γψ (6.36)

where ψ is the field associated to the SM external fermions and O2DS are the operators describing the
dark fields inside the loop.
Being interested in very light particles, e.g. mDS ≃ 10−5eV, the associated non-relativistic potential
can be expanded for r ≪ 1/mDS . From the presence of two vertices in the scattering process, an
estimate of the specific dependencies of the potential is derived from naive dimensional analysis as

V (r) ≃ 1

Λ2n

1

r2n+1
(6.37)

since [U ] = 1 and Λ is the UV cutoff. This behaviour is evident in the results obtained so far

Vϕϕ(r) = −G
ϕ
1G

ϕ
2

64π3
x

r3
K1(x) ,

Vχχ(r) = −3Gχ1G
χ
2

16π3r5
x2K2(x) ,

VXX(r) = −3GX1 G
X
2

4π3r3

(
5

x
+
x2

4

)
K2(x) ,

(6.38)

with
x = 2mDSr , [Gϕi ] = [GXi ] = −1 , [Gχi ] = −2 , (6.39)

and hence
x ∼ O(1) , Gϕi ∼ GXi ∼ 1/Λ , Gχi ∼ 1/Λ2 . (6.40)

The potentials obtained so far scale as

• Vϕϕ(r), VXX(r) ∼ 1/r3 since the operators have dimension 4 + 1;

• Vχχ(r) ∼ 1/r5 since the operator has dimension 4 + 2.

Double pNGB Exchange

Scalar fields can occur in the form of Goldstone bosons, interacting through derivative interaction as
given by the operator

Lint = −
2∑
i=1

GDi
2
ψ̄iψi∂

µϕ∂µϕ , [GDi ] = −3 (6.41)

giving the amplitude

iM ≃ −G
D
1 G

D
2

4
i∆(q) . (6.42)

The dispersion theory approach produces the following cut

M(q → ϕϕ) = 2(k · k′) =⇒ |M̄(q → ϕϕ)|2 = 4M4

(
1− µ2

2M2

)2

(6.43)

so, the spectral function results in

ρ(µ2) =
M4

4π2

(
1− µ2

2M2

)2
√
1− 4M2

µ2
Θ
(
µ2 − 4M2

)
. (6.44)

The potential yields to

V (r) = −G
D
1 G

D
2 M

4

64π3r

∫ ∞

4M2

dµ2
(
1− µ2

2M2

)2
√
1− 4M2

µ2
e−µr =

= −G
D
1 G

D
2 x

2

16π3r7

[
1

8
x

(
15 +

1

4
x2
)
K1(x) +

1

2

(
15 +

3

4
x2
)
K2(x)

] (6.45)
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Mixed Vector-pNGB Exchange

Another type of loop exchange comes from the union of two vertices in which the fermionic current
interacts with a pNGB and a gauge field, as given by the following operator

Lint = −
2∑
i=1

GMi ψ̄iψiX
µ∂µπ , [GMi ] = −2 (6.46)

giving back the amplitude
iM ≃ −iGM1 GM2 ∆(q) . (6.47)

Solving within the optical theorem leads to

M(q → Xπ) = −ηµνεµ(k)k′ν =⇒ |M̄(q → Xπ)|2 =M2

(
µ4

4M4
− µ2

M2

)
(6.48)

and to the spectral function

ρ(µ2) =
M2

16π2

√
1− 4M2

µ2

(
µ4

4M4
− µ2

M2

)
Θ
(
µ2 − 4M2

)
. (6.49)

The general case when mπ ̸= M yields to a difficult integral to deal with. However, under the
assumption mπ =M , the potential can be obtained as

V (r) = −G
M
1 G

M
2 M

2

64π3r

∫ ∞

4M2

dµ2
(

µ4

4M2
− µ2

M2

)√
1− 4M2

µ2
e−µr =

= −G
M
1 G

M
2

32π3r5

[
15

2
xK1(x) + 2

(
15 +

3

4
x2
)
3K2(x)

]
.

(6.50)

6.2.2 Vector Currents

A second type of scattering involve two vector currents composed of SM fermions. The application of
the optical theorem and dimensional analysis now imposes an overall positive sign.

4-Fermion Vector Interaction

In the case of vector-type interaction, let us consider the operator

Lint = −
2∑
i=1

GVi ψ̄iγ
µψiχ̄γµχ , [GVi ] = −2 , (6.51)

which yields

iM = GV1 G
V
2 ūr(p2)γµus(p1)i∆

µν(q)ūr′(p
′
2)γνus′(p

′
1) ≃ iGV1 G

V
2 ∆00(q) . (6.52)

The cut of Mµν(q → χ̄χ) produces the unpolarized squared amplitude

|M̄µν(q → χ̄χ)|2 = Tr[( /k′ −M)γµ(/k +M)γν ] (6.53)

whose temporal component reads

|M̄00(q → χ̄χ)|2 = 8(k0k′0 −M2 +
µ2

4
) , (6.54)

so it is required an integration of k0k′0 into the 2-body phase space. The phase space integration yields∫
d3kd3k′

(2π)62k02k′0
(2π)4δ4(q − k − k′)k0k′0 =

µ2

32π

√
1− 4M2

µ2
, (6.55)
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leading to the spectral function

ρ(µ2) = −M
2

2π2

√
1− 4M2

µ2

(
1− 2µ2

4M2

)
Θ(µ2 − 4M2) . (6.56)

This results into the following potential

V (r) = −G
V
1 G

V
2 M

2

8π3r

∫ ∞

4M2

dµ2
(
1− 2µ2

4M2

)√
1− 4M2

µ2
e−µr =

=
GV1 G

V
2

8π3r5

(
x3

2
K1(x) + 3x2K2(x)

)
.

(6.57)

4-Fermion Vector-Axial Interaction

SM vector currents could also interact via dark axial currents in loop diagram originating from the
operator

Lint = −
2∑
i=1

GAi ψ̄iγ
µψiχ̄γµγ

5χ (6.58)

giving the amplitude

iM = iGA1 G
A
2 ūr(p2)γµus(p1)∆

µν(q)ūr′(p
′
2)γνus′(p

′
1) ≃ iGA1 G

A
2 ∆

00(q) , (6.59)

where now there are two insertion of γ5 into Mµν(q → χ̄χ) which swaps the sign of the mass term
inside the trace, so

|Mµν(q → χ̄χ)|2 = Tr[ /k′γµ/kγν ] +M2Tr[γµγν ] =⇒ |M̄00(q → χ̄χ)|2 = 8

(
k0k′0 +

µ2

4

)
. (6.60)

Following the same steps as in the previous Section, the spectral function is slightly modified into

ρ(µ2) =
µ2

4π2

√
1− 4M2

µ2
Θ(µ2 − 4M2) . (6.61)

which yields

V (r) =
GA1 G

A
2

16π3r

∫ ∞

4M2

dµ2µ2

√
1− 4M2

µ2
e−µr =

=
GA1 G

A
2

8π3r5
(
x3K1(x) + 3x2K2(x)

)
.

(6.62)

6.3 Loop Potentials Between Polarized Fermions

An additional class of potentials can be derived in a straightforward way from the previous analysis. To
study the interactions with polarized currents, e.g. pseudo-scalar bilinears, the loop structure remains
unaltered while what changes are the external currents. Indeed, all the amplitude involving scalar
vertices are written as

M ∝ ūr(p2)us(p1)∆(q)ūr′(p
′
2)us′(p

′
1) (6.63)

in which the loop behaviour is enconded inside the effective propagator ∆(q). To extend the treatment,
it is sufficient to introduce the linear combination of currents

Jai ≡ ψ̄i(G
a,S
i + iGa,PSi γ5)ψi , (6.64)

where i = 1, 2 points to the external fermion and a = ϕ, χ,X represents the type of light mediator.
The amplitudes stemming from eq. (6.63) yields a non-relativistic potential proportional to

V (r) ∝ 1

4πr

∫ ∞

0
dµ2 ρ(µ2) e−µr , (6.65)
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since the LO non-relativistic expansion of the external scalar bilinear results in a Kronecker delta
for the spin polarizations. If instead one wants to extract the potential with a mixture of scalar and
pseudo-scalar currents, it is sufficient to replace a bilinear form and perform the calculation directly
from the scalar results. With a pseudo-scalar current for the first fermion, the functional form of the
potentials computed in the previous Section reads

V (r) ∝ σσσ · ∇∇∇
8πm1r

∫ ∞

0
dµ2 ρ(µ2) e−µr , (6.66)

apart for an overall factor. Following this observation, it is hence straightforward to derive the potentials
below:

• Double scalar exchange

V (r) = −Gϕ,PS1 Gϕ,S2

256π3m1r4
[
4xK1(x) + x2(K0(x) +K2(x))

]
(σσσ · r̂) ; (6.67)

• Double spinor exchange

V (r) = −3Gχ,PS1 Gχ,S2

32π3m1r6

[
3x2K2(x) +

1

2
x3(K1(x) +K3(x))

]
(σσσ · r̂) ; (6.68)

• Double vector boson exchange

V (r) = −3GX,PS1 GX,S2

8π3m1r4

[(
5 +

1

4
x3
)
K1(x) +

6

x

(
5 +

1

8
x3
)
K2(x)

]
(σσσ · r̂) ; (6.69)

• Double Goldstone boson exchange

V (r) = −G
D,PS
1 GD,S2

32π3m1r8

[
x2

4

(
105 +

15

2
x2 +

x4

16

)
K0(x) +

15

2
x

(
14 +

11

4
x2 +

x4

16

)
K1(x)

]
(σσσ · r̂) ;

(6.70)

• Mixed Goldstone boson - vector boson exchange (with degenerate mass)

V (r) = − GM1 G
M
2

32π3m1r6

[
15

(
7 +

1

2
x2
)
K0(x)−

3

x

(
70 +

55

4
x2 +

1

4
x4
)
K2(x)

]
(σσσ · r̂) . (6.71)
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CHAPTER 7

TOWARDS A MODEL-INDEPENDENT
APPROACH

In the previous Chapters we always assumed a simplified model, with the exchange of a new light
particle, in order to compute the non-relativistic potentials. A more model-independent approach
exploits instead rotational invariance, that is the relevant symmetry in the non-relativistic case, in
which the scattering amplitudes can be expressed in terms of scalar invariants formed out of the
external spins σσσ,σσσ′ and momenta pi. Dealing with elastic scattering q0 = 0, in the center of mass
reference frame the only two independent momenta areq = p2 − p1

P =
p1 + p2

2

, (7.1)

which correspond respectively to the transferred momentum and the average momentum of the scattered
fermion. Two spins and two momenta lead to 16 independent scalar combinations [12] that include all
possible spin configurations:

O1 = 1 ;

O2 = σσσ · σσσ′ ;

O3 =
1

m2
f

(σσσ · q)(σσσ′ · q) ;

O4,5 =
i

2mf
(σσσ ± σσσ′) · (P× q) ;

O6,7 =
i

2m2
f

[
(σσσ ·P)(σσσ′ · q)± (σσσ′ ·P)(σσσ · q)

]
;

O8 =
1

m2
f

(σσσ ·P)(σσσ′ ·P) ;

O9,10 =
i

2mf
(σσσ ± σσσ′) · q ;

O11 =
i

mf
(σσσ × σσσ′) · q ;

(7.2)
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O12,13 =
1

2mf
(σσσ ± σσσ′) ·P ;

O14 =
1

mf
(σσσ × σσσ′) ·P ;

O15 =
1

2m3
f

{
(σσσ · q)

[
σσσ′ · (P× q)

]
+ (σσσ′ · q)

[
σσσ · (P× q)

]}
;

O16 =
1

2m3
f

{
(σσσ ·P)

[
σσσ′ · (P× q)

]
+ (σσσ′ ·P)

[
σσσ · (P× q)

]}
.

(7.3)

The above operators are divided into parity-even and parity-odd based on the powers of momenta,
while the mass normalization guarantees the adimensionality. All possible operators that are generated
by the non-relativistic expansion of a given scattering amplitude must therefore be a linear combination
of Oi(q,P), up to coefficients that may depend on the momenta only through |q|2 or |P|2.
Focusing on the form of amplitude, an important role is played by the type of exchanged boson. For
instance, the long-range nature of the Coulomb law is a consequence of the specific structure of the
photon propagator. More in general, within a Lorentz invariant QFT the common denominator among
all propagators is denoted as

D(|q2|) ≡ − 1

q2 +M2
, (7.4)

and is responsible for the Yukawa-like behaviour of the potentials in Chapters (4,5), while powers of q
at the numerator allows the extraction of its derivatives. It is then possible to write a complete general
scattering amplitude in the momentum space as

M(q,Pi) = D(q2)

16∑
i=1

Oi(q,P)fi

(
|q|2

m2
f

,
|P|2

m2
f

)
, (7.5)

with fi adimensional scalar polynomials of |q|2, |P|2 that contain also the various couplings. This is a
general result based only on the assumption of rotational invariance.
The physical interpretation for Oi in the position space is given by the Fourier transform of the non-
relativistic amplitude, as dictated in the Born approximation, in which the final potentials ultimately
depend on both r = |x| and υυυ = P/mf . Powers of |q|2/m2

f in the polynomial lead to powers of M/mf

and 1/(mfr) in the final results, denoted collectively for now as ε. At macroscopic scales r ∼ cm and
ε ∼ 10−12, therefore it is customary to include only the |q|2 = 0 pieces of fi at the LO. However, to
keep the discussion as general as possible we include also these extremely small quantities which often
multiply singular contact terms, as δ(r) and its derivatives. Regarding the operators Oi, it is worth
to notice that O1,2, Oi with i = 9, 10, 11 have effects of order ε, i = 12, 13, 14 of order |υυυ| while the
remaining ones have effects suppressed by higher powers of ε and |υυυ|.
The potentials between two fermions induced by a Lorentz-invariant boson exchange is then written as

V (r,υυυ) =

16∑
i=1

fi(ε, |υυυ|2)Vi(x,υυυ) (7.6)

where the basis on which the expansion is made is given by

Vi(x,υυυ) = −
∫

d3q

(2π)3
D(|q|2)Oi(q,P) eiq·x . (7.7)

Defining the exponential suppression as the function

E(r) =
e−Mr

4π
, (7.8)
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the resulting spin-dependent components Vi(r,υυυ) are the following:

V1 =
E(r)

r
;

V2 = (σσσ · σσσ′)E(r)

r
;

V3 =
1

m2
fr

3

[
(σσσ · σσσ′)

(
1− r

d

dr
+

4πr3

3
δ3(x)

)
− 3(σσσ · r̂)(σσσ′ · r̂)

(
1− r

d

dr
+
r2

3

d2

dr2

)]
E(r) ;

V4,5 = − 1

2mfr2
(σσσ ± σσσ′) · (υυυ × r̂)

(
1− r

d

dr

)
E(r) ;

V6,7 = − 1

2mfr2
[
(σσσ · υυυ)(σσσ′ · r̂)± (σσσ′ · υυυ)(σσσ · r̂)

](
1− r

d

dr

)
E(r) ;

V8 = (σσσ · υυυ)(σσσ′ · υυυ)E(r)

r
;

V9,10 = − 1

2mfr2
(σσσ ± σσσ′) · r̂

(
1− r

d

dr

)
E(r) ;

V11 = − 1

mfr2
(σσσ × σσσ′) · υυυ E(r) ;

V12,13 = (σσσ ± σσσ′) · υυυ E(r)

2r
;

V14 = (σσσ × σσσ′) · υυυ E(r)

r
;

V15 =
1

2mfr3

{[
σσσ · (σσσ′ × υυυ) + σσσ′ · (σσσ × υυυ)

](
1− r

d

dr
+

4πr3

3
δ3(x)

)
+

− 3
[
(σσσ · r̂)(σσσ′ × υυυ) · r̂+ (σσσ′ · r̂)(σσσ × υυυ) · r̂

](
1− r

d

dr
+
r2

3

d2

dr2

)}
E(r) ;

V16 = − 1

2mfr2

{[
σσσ · (υυυ × r̂)

]
(σσσ′ · υυυ) +

[
σσσ′ · (υυυ × r̂)

]
(σσσ · υυυ)

}(
1− r

d

dr

)
E(r) .

(7.9)

The basis found here is in agreement with Ref. [12], except for V15 which has a different functional
form. In general, each of these potentials has an arbitrary coefficient, which can be constrained by the
experimental search of new macroscopic forces.

7.1 Comparison with Simplified Models

In Chapter (4), the main potentials present in literature have been derived and corrected. From the
rotational invariance, all the operator structures of eq. (7.2) appear inside the non-relativistic LO
amplitudes.
Axion-like interactions give rise to:

• V1 for the scattering between scalar currents in eq. (4.7);

• V9,10 considering the mix of scalar and pseudo-scalar sources in eq. (4.10);

• V3 that describes entirely the dipole-dipole potential of eq. (4.14).

The vector boson exchange is responsible for the appearance of:

• V1,2,3 in the derivation of the Coulomb potential of eq. (4.19);

• V11,12,13 when a mixture of vector and axial sources interact via eq. (4.27);

• V2,3 in the potential between axial currents of eq. (4.30).
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The derivative couplings of the field strength lead to:

• V2,3 for the potential between tensor currents in eq. (4.36);

• V9,10,14,15 considering a mixture of tensor and pseudo-tensor currents in eq. (4.39);

• V3 in eq. (4.48) for the potential acting between pseudo-tensor bilinears.

Note that not all possible model-independent structures emerged, in particular Vi with i = 4, 5, 6, 7, 8, 16.
However, it is sufficient to go beyond the LO order in the non-relativistic expansion in order to find all
of them. The following matching focuses only on the next order of the expansion of Chapter (5) within
the elastic limit:

• V4,5, V15 and V3 arise for the scalar-mediated potentials respectively in eq. (5.19,5.25,4.14) (the
last one remains unaltered due to the elastic exactness);

• V1,4,5, V1,11,12,13,16 and V2,3,4,5,8 are obtained respectively in the interactions of eq. (5.31,5.40,5.36);

• V1,...,8, V9,10,14,15,16 and V2,3,4,5,8 correspondingly to eq. (C.3,C.9,C.7).

Coming instead to the loop potentials of Chapter (6), operators with dimension greater than 4 can be
added to describe scattering processes mediated by a pair of new particles. The simplest interactions
are constructed through a vertex of four particles, two of them from the new sectors while the others
are the scattered fermions. Among the external currents analyzed, we focused on

• unpolarized scalar sources that modify the Yukawa structure and proportional to V1;

• interactions with one polarized pseudo-scalar source written via V9,10;

• two polarized objects which, although not expicitly calculated, return V3.
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CONCLUSIONS

In this thesis we provided a critical re-examination of the calculation of non-relativistic potentials
mediated by new light particles coupled to SM fermions. Within a general class of simplified models,
we have reproduced and integrated some results present in the literature, also going beyond the
conventional leading order Born approximation.

Key findings and contributions include:

1. In Chapter 4 we highlighted discrepancies in the current literature concerning the calculation of
tree-level potentials, presenting a comparison with previous works in Section 4.2.

2. A significant outcome was the calculation in Chapter 5 of tree-level potentials that go beyond
the leading order in the non-relativistic expansion. Notably, the presence of new contact terms,
proportional to the Dirac’s delta function, provides potential contributions that might be more
dominant than previously considered long-range leading-order terms.

3. In Chapter 6 we computed loop-mediated potentials, extending some previous results, while
Chapter 7 provided a comparison of our results, obtained within a general class of simplified models,
with a more model-independent approach for the classification of non-relativistic potentials.

Undoubtedly, Point 2 represents the most relevant outcome of this thesis. Delving into the phenomeno-
logical implications of the new contact terms, that emerge in the next-to-leading order potentials, offers
an interesting direction for future work.
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APPENDIX A

CONVENTIONS AND EXPANSIONS

A.1 Spinors and Bilinear Forms

The Dirac equations in momentum space [62] for the spinors with positive and negative energy,
polarization r, mass m and 4-momentum p are

(/p−m)ur(p) = 0

(/p+m)vr(p) = 0
(A.1)

from which we can obtain the explicit expression of the spinors in terms of the unit vectors φr

ur(p) =
/p+m√

2m(Ep +m)

(
φr
0

)
=

1√
2m(Ep +m)

(
(Ep +m)φr

p · σσσ φr

)
vr(p) =

−/p+m√
2m(Ep +m)

(
0
φr

)
=

1√
2m(Ep +m)

(
p · σσσ φr

(Ep +m)φr

) , (A.2)

where

φr =

(
1
0

)
if r = 1 , φr =

(
0
1

)
if r = 2 (A.3)

and σσσ = (σ1, σ2, σ3) is the vector composed by the Pauli matrices. This normalization is chosen in
such a way to include the factor 1/2m within the explicit expression of the Dirac spinor, otherwise in
every expression of Chapter (3) involving the Feynman amplitude a factor 1/4m1m2 has to be inserted.
In the limit |p|2 ≪ m2 then

√
Ep +m =

√
2m

[
1 +

|p|2

8m2
− 5

128

|p|4

m4
+O

(
|p|6

m6

)]
. (A.4)

It is then useful to identify the following vector

φTr σσσφs ≡ σσσ (A.5)

as a classical unit vector representing the spin of a given fermion.
The explicit representation of the Dirac matrices is given in the Dirac basis, i.e.

γ0 =

(
1 0
0 −1

)
, γi =

(
0 σi

−σi 0

)
, γ5 =

(
0 1
1 0

)
, (A.6)

while the bilinear forms are calculated from the vertex in fig. (A.1).
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Figure A.1: Vertex of interaction.

Now we can proceed to calulate the non-relativistic expansion for various operators.
First, let us define the set of independent momenta that will be useful for the integrations

q = p′ − p

P =
p+ p′

2

,

 p = P − q

2

p′ = P +
q

2

. (A.7)

The simplest type of bilinear form is given by the scalar current

ūr′(p
′)ur(p) =

1

2m

[√
Ep′ +m

√
Ep +m δr,r′ − φTr′

(p′ · σσσ)(p · σσσ)√
Ep +m

√
Ep′ +m

φr

]
=

≃
(
1 +

|p|2

4m2
− 1

4m2
(p · p′)

)
δr,r′ +

i

4m2
(p× p′) · σσσ +O

(
|p|2

m2

)
≃
(
1 +

|q|2

8m2

)
δr,r′ +

i

4m2
(P× q) · σσσ +O

(
|p|2

m2

)
.

(A.8)

The pseudoscalar one is exact at any order due to elastic scattering constraints

ūr′(p
′)γ5ur(p) =

1

2m

(√
Ep′ +m φTr′ φTr′

p′·σσσ√
Ep′+m

)
γ0γ5

(√
Ep +m φr

p·σσσ√
Ep+m

φr

)
=

=
1

2m
φTr′
(
p′ · σσσ − p · σσσ

)
φr ≡ −q · σσσ

2m
.

(A.9)

Now for the vector bilinear we make separate calculations for the time and spatial components, also
the latter is exact at any order

ūr′(p
′)γ0ur(p) = u†r′(p

′)ur(p) ≃
(
1 +

|p|2

4m2
+

1

4m2
(p · p′)

)
δr,r′ −

i

4m2
(p× p′) · σσσ +O

(
|p|2

m2

)
≃
(
1 +

|P|2

2m2

)
δr,r′

i

4m2
(P× q) · σσσ +O

(
|p|2

m2

)
,

(A.10)

ūr′(p
′)γiur(p) =

1

2m

(√
Ep′ +m φTr′ −φTr′

p′·σσσ√
Ep′+m

)( σi p·σσσ√
Ep+m

φr

−
√
Ep +m σiφr

)
=

=
1

2m
φTr′
(
pi + i(p× σσσ) + p′i − i(p′ × σσσ)

)
φr =

=
1

2m
(2P− i(q× σσσ))i .

(A.11)

It follows then the axial-vector bilinear, whose time component is now exact

ūr′(p
′)γ0γ5ur(p) =

1

2m
φTr′
(
p′ · σσσ + p · σσσ

)
φr =

P

m
· σσσ , (A.12)
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ūr′(p
′)γiγ5ur(p) ≃ φTr′

[(
1 +

|p|2

4m2

)
σi +

1

4m2
(p′ · σσσ)σi(p · σσσ) +O

(
|p|2

m2

)]
φr =

≃ φTr′

[(
1 +

|P|2

4m2
+

|q|2

16m2

)
σi +

1

4m2

((
P+

q

2

)
· σσσ
)
σi
((

P− q

2

)
· σσσ
)
+

+O
(
|p|2

m2

)]
φr .

(A.13)

The tensor current is constructed via the commutator between two Dirac matrices

σµν =
i

2
[γµ, γν ] , (A.14)

in particular it is useful to calculate the following quantities

σi0 = iγiγ0 = −i
(
0 σi

σi 0

)
, σij = ϵijk

(
σk 0
0 σk

)
(A.15)

σi0γ5 = iγiγ0γ5 = −i
(
σi 0
0 σi

)
, σijγ5 = ϵijk

(
0 σk

σk 0

)
(A.16)

since in most cases the tensor current is contracted with qµqν , so the double temporal contraction
vanishes by symmetry. The non-relativistic expansions of the tensor bilinear read

ūr′(p
′)σi0ur(p) = − i

2m

(
σi(p · σσσ)− (p′ · σσσ)σi

)
= − i

2m

(
−qi + i(2P× σσσ)i

)
, (A.17)

ūr′(p
′)σijur(p) ≃ ϵijkφTr′

[(
1 +

|P|2

4m2
+

|q|2

16m2

)
σk − 1

4m2

((
P+

q

2

)
· σσσ
)
σk
((

P− q

2

)
· σσσ
)
+

+O
(
|p|2

m2

)]
φr .

(A.18)

Finally, the expansion of the bilinear components of the pseudo-tensor leads to

ūr′(p
′)σi0γ5ur(p) ≃ −i φTr′

[(
1 +

|P|2

4m2
+

|q|2

16m2

)
σi − 1

4m2

((
P+

q

2

)
· σσσ
)
σi
((

P− q

2

)
· σσσ
)
+

+O
(
|p|2

m2

)]
φr ,

(A.19)

ūr′(p
′)σijγ5ur(p) =

ϵijk

2m

(
σk(p · σσσ)− (p′ · σσσ)σk

)
=
ϵijk

2m

(
−qk + i(2P× σσσ)k

)
. (A.20)

A.2 Convention on the Fourier Transform

The convention on the exponential factor of the Fourier transforms is directly connected to the direction
of the transferred momentum inside a Feynman diagram. Considering all the incoming momenta in a
vertex as positive the negative sign in the exponential for incoming momenta leads to the diagram in
fig. (A.2), for which the Feynman propagator of the scalar field results in

i∆F (x1 − x2) =

∫
d4q

(2π)4
i

q2 −m2 + iϵ
e−iq·(x1−x2) ; (A.21)

The consistency of the chosen convention cannot be forgotten because it can lead to a mismatch of
signs in the literature. Physical observables are not sensitive to convention as long as they are used
consistently. All the analyses in the thesis adhere to the Fourier transform of the type

F (x) =

∫
d4q

(2π)4
F̃ (q)e−iq·x (A.22)

for which the direction of the transferred momentum in a tree-level diagram is taken upwards. F (x)
denotes a general function in coordinate space damping to zero sufficiently fast, and F̃ (q) its Fourier
counterpart in momentum space.
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Figure A.2: Transferred momentum from 2 to 1.

A different convention can also be used considering a negative sign in the exponent of eq. (A.22), by
appropriately reversing the sign of the moment transferred of the diagram in fig. (A.2).
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APPENDIX B

USEFUL CALCULATIONS

B.1 Derivatives of the Yukawa potential

It is useful to calculate the various derivatives of

e−Mr

r
, (B.1)

emerging from the Fourier transform of all non-relativistic potentials. First, let us take

∂i∂j

(
e−Mr

r

)
. (B.2)

The second derivative must be considered in the two cases where:

• r ̸= 0:

∂j

(
e−Mr

r

)
= −xj

(
M

r2
+

1

r3

)
e−Mr , (B.3)
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(
e−Mr

r

)
= −

[
δij
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M
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1

r3

)
−M

xixj

r

(
M

r2
+

1

r3

)
− xixj

r

(
2M

r3
+

3

r4

)]
e−Mr ; (B.4)

• r = 0:

∇2

(
1

r

)
= −4πδ3(x) → ∂i∂j

(
1

r

)
= −4π

3
δijδ3 (x) (B.5)

due to the distributional nature of the Coulomb law, we must add this quantity within the term
multiplying δij .

At the end:

∇∇∇
(
e−Mr

r

)
= −

(
M

r
+

1

r2

)
r̂e−Mr , (B.6)

∂i∂j

(
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)
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[
δij
(
M

r2
+

1

r3
+

4π

3
δ3 (x)

)
− r̂ir̂j

(
M2

r
+

3M

r2
+

3

r3

)]
e−Mr , (B.7)

∇2

(
e−Mr

r

)
=

(
M2

r
− 4πδ3(x)

)
e−Mr . (B.8)

Moving forward with the differetiation

∇∇∇∇2

(
e−Mr

r

)
= −

(
M2

r2
r̂+

M3

r
r̂+ 4π∇∇∇δ3(x)− 4πMδ3(x)r̂

)
e−Mr , (B.9)
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(
e−Mr
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(
M4

r
− 8πM2δ3(x)− 4π∇2δ3(x) + 8πM∇∇∇δ3(x) · r̂
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e−Mr , (B.10)
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)
−
(
M3

r
− 4πMδ3(x) +
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)
δij
}
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(B.11)

B.2 Integrals

The main Fourier transforms appearing in the tree-level work are the following∫
d3q

(2π)3
eiq·x

|q|2 +M2
=

1

4π2ir

∫ +∞

−∞
dq

qeiqr
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4πr
, (B.12)

∫
d3q

(2π)3
eiq·x

(|q|2 +M2)2
=

1

4π2ir
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−∞
dq

qeiqr
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=
e−Mr

8πM
, (B.13)∫
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(2π)3
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4π2ir
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−∞
dq

qeiqr

(q2 +M2)3
=

1 +Mr

32πM3
e−Mr , (B.14)

where r ≡ |x|.
In Chapter (6), the Bessel functions are typical solutions of the following integrals∫ ∞

1
dx

√
1− 1

x
e−α

√
x =

2

α
K1(α) , (B.15)

∫ ∞

1
dxx

√
1− 1

x
e−α

√
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2

α
K1(α) +

6

α2
K2(α) , (B.16)

∫ ∞

1
dxx2

√
1− 1

x
e−α

√
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4

α2
K2(α) +

2

α2
(15 + α2)K3(α) , (B.17)

∫ ∞

1
dxx3

√
1− 1

x
e−α

√
x =

2

α3
(15 + α2)K3(α) +

10

α4
(21 + α2)K4(α) . (B.18)

It is also useful to know the relationship between the Bessel functions of a generic index n, i.e.

Kn+1(α) = Kn−1(α) +
2n

α
Kn(α) , (B.19)

whereas their derivatives can be written as

dKn(α)

dα
= −1

2
(Kn−1(α) +Kn+1(α)) . (B.20)
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APPENDIX C

FURTHER ANALYTICAL RESULTS

C.1 Tensor Corrections

Tensor Tensor

The NLO of the Feynman amplitude for a pair of tensor currents is

MTT =
4gT1 g

T
2

|q|2 +M2

[
(σσσ · σσσ′)|q|2 − (σσσ · q)(σσσ′ · q) + i|q|2q ·A+ qiqjBij + |q|2C + |q|4D + Eijqiqj |q|2

]
,

(C.1)
producing the potential

V (x) = VLO + 4gT1 g
T
2

[
−A · ∇∇∇∇2 −Bij∂i∂j − C∇2 +D∇4 + Eij∂i∂j∇2

](e−Mr
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(C.2)

and carring out the multiple derivatives becomes
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(C.3)
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where

A ≡ υυυ1 × σσσ′

4m1
− υυυ2 × σσσ

4m2
+
υυυ1 × σσσ

2m2
− υυυ2 × σσσ′

2m1
,

Bij ≡ (υυυ1 · σσσ)
4

υυυi1σ
′j +

(υυυ2 · σσσ′)
4
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4
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(υυυ2 × σσσ)i(υυυ2 × σσσ′)j

4
,
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4
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σσ · σσσ′

16m2
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− 1
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,

Eij ≡ σiσ′j

16m2
1

.

(C.4)

Pseudotensor-Pseudotensor

Expanding at the NLO of the non-relativistic limit gives the following amplitude
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It follows the potential
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Pseudo-tensor Tensor

The mixed currents, with the NLO corrections, give the amplitude

M = 4
gT̃1 g

T
2

|q|2 +M2

[
Aijqiqj |q|2 +B|q|2 + Cijqiqj +D · iq|q|2 + E|q|4 + F · iq|q|4

]
(C.8)
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and the resulting potential is
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(C.9)
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