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Abstract 

The integration of transcranial magnetic stimulation with electroencephalography (TMS-

EEG) represents a useful non-invasive approach to assess cortical excitability, plasticity and 

intra-cortical connectivity in humans in physiological and pathological conditions.  

However, biological and environmental noise sources can contaminate the TMS-evoked 

potentials (TEPs). Therefore, signal preprocessing represents a fundamental step in the 

analysis of these potentials and is critical to remove artefactual components while preserving 

the physiological brain activity.  

The objective of the present study is to evaluate the effects of different signal processing 

pipelines, (namely Leodori et al., Rogasch et al., Mutanen et al.) applied on TEPs recorded in 

five healthy volunteers after TMS stimulation of the primary motor cortex (M1) of the 

dominant hemisphere. These pipelines were used and compared to remove artifacts and 

improve the quality of the recorded signals, laying the foundation for subsequent analyses. 

Various algorithms, such as Independent Component Analysis (ICA), SOUND, and SSP-SIR, 

were used in each pipeline.  

Furthermore, after signal preprocessing, current localization was performed to map the TMS-

induced neural activation in the cortex. This methodology provided valuable information on 

the spatial distribution of activity and further validated the effectiveness of the signal cleaning 

pipelines. 

Comparing the effects of the different pipelines on the same dataset, we observed 

considerable variability in how the pipelines affect various signal characteristics. We observed 

significant differences in the effects on signal amplitude and in the identification and 

characterisation of peaks of interest, i.e., P30, N45, P60, N100, P180. The identification and 

characteristics of these peaks showed variability, especially with regard to the early peaks, 

which reflect the cortical excitability of the stimulated area and are the more affected by 

biological and stimulation-related artifacts. 

Despite these differences, the topographies and source localisation, which are the most 

informative and useful in reconstructing signal dynamics, were consistent and reliable 

between the different pipelines considered. 

The results suggest that the existing methodologies for analysing TEPs produce different 

effects on the data, but are all capable of reproducing the dynamics of the signal and its 

components. Future studies evaluating different signal preprocessing methods in larger 

populations are needed to determine an appropriate workflow that can be shared through the 

scientific community, in order to make the results obtained in different centres comparable. 
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Sommario 

L'integrazione della stimolazione magnetica transcranica con l'elettroencefalogramma (TMS-

EEG) rappresenta un approccio non invasivo nella valutazione dell'eccitabilità e  della 

plasticità corticale e della connettività intra-corticale nell'uomo in condizioni fisiologiche e 

patologiche. Tuttavia, le fonti di rumore biologico e ambientale possono determinare una 

contaminazione dei potenziali evocati dalla TMS (TEP). Pertanto, la pre-elaborazione del 

segnale rappresenta un passo fondamentale nell'analisi di questi potenziali ed è fondamentale 

per rimuovere le componenti artefattuali preservando l'attività cerebrale fisiologica.  

L'obiettivo del presente studio è valutare gli effetti di diverse pipeline di elaborazione del 

segnale (Leodori et al., Rogasch et al. e Mutanen et al.) applicate ai TEP registrati in cinque 

volontari sani dopo stimolazione TMS della corteccia motoria primaria (M1) dell'emisfero 

dominante. Queste pipeline sono state utilizzate e confrontate per rimuovere gli artefatti e 

migliorare la qualità dei segnali registrati, ponendo le basi per le analisi successive. In ogni 

pipeline sono stati utilizzati diversi algoritmi di processamento del segnale, come l'analisi 

delle componenti indipendenti (ICA), SOUND e SSP-SIR.  Inoltre, dopo la pre-elaborazione 

del segnale, è stata eseguita la localizzazione di corrente per localizzare l'attivazione neurale 

indotta dalla TMS nella corteccia. Questa metodologia ha fornito informazioni sulla 

distribuzione spaziale dell'attività e ha ulteriormente convalidato l'efficacia delle pipeline. 

Confrontando i risultati delle diverse pipeline, abbiamo osservato come le varie caratteristiche 

del segnale vengano influenzate in modo variabile da quest’ultime. Sono state osservate 

differenze significative nell'ampiezza del segnale processato e nell'identificazione e 

caratterizzazione dei picchi di attività di interesse, ossia P30, N45, P60, N100 e P180. 

L'identificazione e le caratteristiche di questi picchi hanno mostrato un certo grado di 

variabilità, in particolare nei picchi precoci, che riflettono l'eccitabilità corticale dell'area 

stimolata e sono i più influenzati da numerosi artefatti associati alla stimolazione e biologici. 

Nonostante queste differenze, le topografie e la localizzazione della sorgente, che sono le più 

informative e utili per ricostruire la dinamica del segnale, sono coerenti e affidabili tra le 

diverse pipeline considerate.  

I risultati suggeriscono che le metodologie esistenti per l'analisi dei TEP producono effetti 

diversi sui dati, ma sono tutte in grado di riprodurre la dinamica del segnale e delle sue 

componenti. Sono necessari studi futuri che valutino diversi metodi di elaborazione del 

segnale in popolazioni più ampie per determinare un metodo di elaborazione appropriato che 

possa essere condiviso dalla comunità scientifica, al fine di rendere confrontabili i risultati 

ottenuti in diversi centri. 
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1 
Introduction 

 

During the past decade, the combined use of transcranial magnetic stimulation (TMS) and 

electroencephalography (EEG) has gained popularity as a valuable method for studying 

cortical excitability and connectivity [1]. TMS-evoked potentials (TEPs), which are cortical 

responses synchronized with the TMS pulse, offer insights into cortical excitability and 

effective connectivity within the stimulated brain area and the activated networks [2]–[4]. 

TEPs provide information on the state of the stimulated cortical region and its functional 

relationships with connected areas, without relying on a priori assumptions as required by 

functional magnetic resonance imaging (fMRI) or EEG alone [1]. Consequently, TEPs are 

employed in clinical research to investigate neurophysiological alterations associated with 

several psychiatric and neurological disorders [5]. For instance, TEPs have been used to 

distinguish between different clinical subtypes of patients with disorders of consciousness [6] 

and as a marker of disease progression in Alzheimer's disease [7]. Therefore, TEPs have been 

proposed as biomarkers for enhancing diagnosis and monitoring treatment-induced 

neurophysiological changes [1]. 

 

It is crucial to demonstrate high reliability to develop a useful biomarker, which is often 

equated with reproducibility [1]. Reliability refers to the extent to which a measurement is 

free from variable errors [1], [8], enabling the reliable detection of meaningful signal changes. 

Assessing reliability involves conducting the same measurement using different instruments 

(internal consistency), different raters (inter-rater reliability), or the same rater over time 

(intra-rater reliability or test-retest reliability) [1], [8], [9]. While some studies have evaluated 

the test-retest reliability of TEPs and found overall high reliability for different TEP 

components, particularly at later latencies [10]–[13], these assessments were performed using 

the same pipeline for data analysis [1]. However, the reproducibility of TEPs analysis may be 

influenced by the heavy contamination of these signals by TMS-related stimulation artifacts, 

which can be significantly larger in magnitude than the EEG signal and time-locked to the 

TMS pulse, consequently reducing the signal-to-noise ratio (SNR)[1]. Furthermore, several 

biological (i.e., cardiac activity, eye and jaw movements) and non-biological (i.e., power line, 

electrodes displacement and noise during the recordings) may contaminate TEPs recordings. 
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To address this issue, various methodologies and algorithms have been developed to remove 

artifacts while preserving physiological brain signals [1], [14]. 

The preprocessing phase enables the extraction of TEPs, but it can also impact their 

reproducibility [1]. Among the most used algorithms we can find the Independent Component 

Analysis (ICA), the Source-Estimate-Utilizing Noise-Discarding (SOUND) algorithm, the 

Signal-Space Projection (SSP) and the Source-Informed Reconstruction (SIR). 

Specifically, the use of different artifact reduction approaches by different users may affect 

the inter-rater reliability of TEPs. Furthermore, the test-retest reliability can vary across 

studies due to the use of different approaches [1]. 

 

The objective of this study is to assess the amount of variability introduced in TEPs by 

employing different preprocessing pipelines. To achieve this, we processed the same TMS-

EEG datasets using three pipelines that we named: Leodori et.al [15], Rogash et. al [16], and 

Mutanen et. al [17], [18], and compared the resulting TEPs. Although these pipelines share 

the common goal of removing artifacts while preserving the neuronal signal in TMS-EEG 

recordings, they employ different strategies. Leodori et.al and Rogasch utilize two stages of 

ICA as a core function for isolating and removing artifacts. Mutanen et. al employs ICA 

solely for removing ocular artifacts, with its core functions being the SOUND [17] and the 

SSP-SIR [18]. These differences in processing methods may influence the amplitude and 

topography of TEP components, ultimately affecting their reproducibility. 

 

 

1 .1 Transcranial Magnetic Stimulation  

TMS is a well-established neuromodulation technique involving the application of a strong 

and brief magnetic field pulses over the scalp, able to produce neuronal activation in 

underlying cortical areas. TMS relies on electromagnetic induction, which is described by 

Faraday's law [19]. It involves passing an intense current through a dedicated  coil to produce 

a time-varying magnetic field that penetrates the scalp and the skull. The changing magnetic 

field induces an electric field in the cortex, which can depolarize neurons in the stimulated 

area. The stimulation involves axons rather than cell bodies of neurons, since the latter have a 

much longer electrical time constant and higher threshold [20]. Axonal depolarization can 

trigger action potentials that travel along the axons orthodromically towards their terminal and 

antidromically to the cell body [19], [21]. As the excited axons impinge on other neurons, it 

causes trans-synaptic activation and the generation of post-synaptic currents in the dendritic 
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arbores of cortical pyramidal neurons at the target site. These currents can be spatially and 

temporally summed, and if the summation is significant enough and involves a large area of 

the cortex, it leads to a measurable EEG signal [19]. Additionally, the activation of pyramidal 

neurons can also result in secondary excitation or inhibition of connected subcortical 

structures and cortical regions. When the stimulation intensity is appropriate, locally evoked 

action potentials can propagate across cortical layers and different brain regions, leading to 

the activation of an entire network. Therefore, TMS might not only stimulate the target area 

but also indirectly activate interconnected regions, which is advantageous for brain 

connectivity studies [19]. The summation of postsynaptic currents in the dendritic arbour of 

connected cortical areas can contribute to a measurable EEG signal, which contributes to the 

transcranial evoked EEG response [19]. 

 

The magnetic pulse in TMS is of the order of 1-3 T with a rise time of approximately 50-100 

ms. Due to its short pulse duration, TMS has sub-millisecond temporal resolution, allowing 

for real-time modulation of brain activity [19]. The extent of cortical area stimulated by TMS 

depends on factors such as coil geometry, stimulus intensity, target area, and the distance 

between the coil and the cortex. Several coil designs can be used for TMS stimulation, such as 

circular, butterfly-shaped and figure-of-eight coils. Because the higher focality of the 

stimulation, figure-of-eight coils are usually preferred to target specific cortical regions. These 

coils consist of two overlapping small round coils with oppositely directed currents, with the 

highest stimulation intensity at the intersection of the coil windings [19], [22]. 

Concerning stimulation intensity, magnetic fields attenuate rapidly with distance, and the 

stimulation is strongest in superficial cortical layers compared to deeper layers. However, the 

induced neuronal activity also depends on other factors such as the position, orientation, and 

membrane characteristics of the neuronal structures. The cascade of events accompanying 

TMS is illustrated in Figure 3 [19]. 

 

When applied alone, TMS allows the study of the excitability and plasticity of the stimulated 

cortex. Most TMS studies have been performed by targeting the primary motor cortex (M1) 

because its stimulation, unlike other cortical areas, can produce a measurable peripheral signal 

known as Motor Evoked Potential (MEP). In fact, by activating the cortico-spinal tract 

originating from the descending axons of M1 pyramidal cells, TMS pulses produce a 

muscular activation that can be recorded by EMG. Therefore, by measuring MEPs 

characteristics (i.e., amplitude and latency) it is possible to evaluate indirectly the 

neurophysiological characteristics of M1.  
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However, the brain activity evoked by TMS can be measured more directly by using various 

techniques such as EEG, fMRI, near-infrared spectroscopy, and positron emission 

tomography. Among these, EEG has been the most successful and commonly used in 

combination with TMS. This is due to its high temporal resolution, wide availability, lower 

cost compared to other techniques, and technical compatibility for online integration with 

TMS [19]. 

 

 

1.2 Electroencephalography 

The electroencephalogram (EEG) is a real-time, non-invasive  neurophysiological technique 

for recording the brain's electrical activity by placing electrodes on the scalp. The first EEG 

recording was conducted by Hans Berger, a German psychiatrist, in 1924 [23]. EEG devices 

measure the potential differences between scalp electrodes, which reflect localized 

depolarizations and hyperpolarisations of post-synaptic neurons, known as excitatory 

postsynaptic potentials (EPSP) and inhibitory postsynaptic potentials (IPSP), respectively[23]. 

 

The voltage variances can be assessed in two ways: either by comparing the readings between 

pairs of scalp electrodes (referred to as bipolar) or by contrasting the measurements between 

individual electrodes and a common reference point (known as unipolar). In the latter 

arrangement, the reference point is typically an inactive site on the scalp [23]. The amplitude 

of EEG signals for healthy individuals is around 100 μV, and the bandwidth ranges from 

under 1 Hz to approximately 80 Hz. Different frequency bands, such as alpha (α), beta (β), 

delta (δ), theta (θ), and gamma (γ) waves, can be distinguished from the EEG signal based on 

their frequency spectrum. Brain signals with higher frequencies (80-500 Hz) have also been 

described, however their physiological and pathological significance is still under 

investigation. 

 

EEG recordings offer high temporal resolution due to their sampling rate, which usually 

ranges between 250 and 5000 Hz. The location of electrodes on the scalp follows the 

international 10-20 system, which uses measurements from four standard positions on the 

head (nasion, inion, right and left preauricular points) to determine the positions of 21 

electrodes [23]. However, the spatial resolution with the standard electrode configurations 

used in clinical setting (low-density EEG) is limited. To overcome this issue, a higher number 

or electrodes can be placed to increase the topographical accuracy of the technique. High-
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density electrode configurations can involve up to 320 electrodes and employ the 10-10 or 10-

5 placement systems [23]. Even with high-density recording  the precise locations and extent 

of brain activation can only be identified using sophisticated spatial filtering and interpolation 

methods must be applied. 

 

EEG signals can be affected by various types of biological, instrumental, or environmental 

noise and artifacts. Bioelectric artifacts can arise from movements (particularly eye and jaw 

movements, which can interfere with EEG recordings due to their proximity to the scalp), 

heartbeat, sweating, and breathing [23]. Artifacts are typically identified by their temporal 

relationship to other bioelectrical signals, such as electrocardiogram (ECG), electrooculogram 

(EOG), or electromyogram (EMG), their typical morphology, or difficulties in interpreting 

their electrical field in a biologically plausible manner [23]. 

Furthermore, scalp EEG electrodes predominantly capture activity correlated over large areas 

of the superficial layers of the cerebral cortex as illustrate in figure, with smaller contributions 

from deeper structures [23]. 

 

Figure 1: EEG principle: electrical fields generated by aligned pyramidal cell [24]. 

Alternative approaches to acquire brain activity, based on the same principles of  EEG  are 

represented by Electrocorticography (ECoG) and  intracranial electroencephalography 

(iEEG). These methods enable the measurement of bioelectric events generated by individual 

neurons using invasive microelectrodes targeting specific cells of interest [23]. The magnitude 

of signals captured directly from the brain's surface using invasive microelectrodes typically 

falls within the range of 1 to 2 millivolts (mV) [23]. 
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 Frequency band Characteristic stage Location 

Delta 0.5-4 Hz Deep sleep Deep structures 

Theta 4-8 Hz Relaxation, drowsiness, sleep Frontal regions 

Alpha 8-14 Hz Relaxation, thinking, closed-eyes Occipital regions 

Beta 14-30 Hz Active thinking, focus, high alert Parietal and frontal lobes 

Gamma >30 Hz Combination of sensory processing Somatosensory cortex 

 

Table 1: EEG characteristic waves: In the EEG signals, it is possible to differentiate five different waves 

according to different frequency band [23]. 

 

 

 

Figure 2: 10-10 system for electrodes placement. The colours of the electrodes and the labels (F, C, P, O, and T) 

are in accordance with the corresponding brain lobes [25]. 

 

In clinical settings, EEG recordings are utilized to examine the brain's spontaneous electrical 

activity over a period of time, investigate event-related potentials, analyse spectral content, 

and diagnose conditions such as epilepsy, sleep disorders, anaesthesia depth, strokes, coma, 

encephalopathies, and brain death [23]. 

 

 

1.3 TMS-EEG  

The integration of TMS with EEG has been valuable in approaching fundamental questions in 

neuroscience from novel perspectives [19]. These two techniques complement each other 

effectively. TMS provides causal information, overcoming the correlational nature of EEG 

data, while EEG allows for the recording of brain activity across the entire scalp, providing a 

comprehensive view of the electrical field (E-field) generated by TMS [19]. The combination 
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of TMS and EEG offers the advantage of using outcome measures derived from EEG 

responses to TMS, such as evoked potentials or brain oscillations, as neurophysiological 

markers of excitability or connectivity in any brain area [19]. This includes regions where 

TMS alone does not produce observable indicators of cortical or corticospinal excitability, 

such as MEPs or phosphenes. While TMS-EEG data can be analysed in both the time and 

frequency domains, most studies have primarily focused on the former, examining the TMS-

evoked potentials (TEPs) [19]. 

 

 

 

Figure 3: Chain of events triggered by the TMS pulse [19]. 

 

 

1.4 Transcranial Evoked Potentials 

TEPs (TMS-evoked potentials) are brain potentials that occur in response to the TMS pulse, 

time-locked with the magnetic stimulus [19]. To study TEPs, the signal is averaged across 

multiple trials. The initial response to TMS is believed to be generated by the activation of 

neurons in the targeted area, followed by the activation of interconnected areas through 

axonal pathways. TEPs consist of positive (P) and negative (N) deflections that represent a 

combination of excitatory and inhibitory postsynaptic potentials, like event-related potentials 

(ERPs) [19]. While the neurophysiological mechanisms underlying TEPs are not fully 

understood, they are considered a reliable measure of cortical reactivity. TMS applied to the 

M1 elicits several peaks in the TEP waveform, occurring at approximately 15 (N15), 30 
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(P30), 45 (N45), 60 (P60), 100 (N100), and 180 (P180) milliseconds [19]. However, recent 

findings suggest that later peaks beyond 80 ms, such as N100 and P180, may be influenced by 

sensory-evoked responses (i.e., auditory and tactile stimulation), while very early peaks like 

N15 can be affected by muscle responses in the cranial region [19]. TEPs can be observed 

within a time window of 400-500 ms around the stimulation site and in interconnected brain 

areas. The amplitude of certain TEP components is maximal in electrodes near the stimulation 

site, while others may be more prominent in distant electrodes, such as those on the 

contralateral hemisphere. TEP characteristics and time courses depend on factors such as the 

stimulated area, coil orientation, and functional state of the underlying cortex, which can be 

influenced by behaviour, level of consciousness, and neuropsychiatric conditions [19]. 

Additionally, TEP amplitudes are affected by the stimulation intensity of the TMS pulse. TMS 

effects on brain activity can also be explored in the frequency domain. When a cortical area is 

perturbed by TMS, the neuronal response measured by EEG tends to oscillate at a specific 

natural frequency. This response may be attributed to the synchronization of ongoing local 

brain oscillations by the TMS pulse's impact on the targeted cortex. TMS-EEG allows for the 

manipulation and investigation of brain rhythms by assessing the impact of TMS on EEG 

signals and associated behavioural effects [19]. The same methods used for studying EEG 

oscillations can be applied to TMS-triggered oscillations. However, it is important to 

distinguish between TMS-evoked responses (phase-locked signals that survive averaging) and 

TMS-induced responses (non-phase-locked signals that cancel out during averaging). The 

latter requires the calculation of time-frequency representations at the single-trial level, 

followed by averaging to preserve the oscillatory activity that is related to but not phase-

locked to the TMS pulse [19]. This measure, sometimes referred to as TMS-related spectral 

perturbation (TRSP) or time-frequency representations (TFR), reveals a mixture of phase-

locked and non-phase-locked responses that are challenging to disentangle [19]. Throughout 

this thesis, the term TEPs is predominantly used to describe EEG responses to TMS, but the 

same considerations apply to TMS-evoked and TMS-induced oscillatory activity, unless 

otherwise specified. 
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1.5 The artifact problem  

The application of TMS can produce various types of artifacts, categorized as non-

physiological or physiological in nature. These artifacts may occur in relation to the timing of 

the TMS pulse or independently of it [19]. Numerous studies [2], [16], [26]–[28] have 

documented and discussed these artifacts [19]. In this section, we will examine the main EEG 

artifacts associated with TMS. 

 

1.5.1 Non-physiological artifacts 

1.5.1.1 Pulse artifact 

The most significant artifact generated by the TMS pulse is the largest in size (Fig. 4). This 

artifact is electromagnetic in nature and is generated by the electromotive force induced in the 

loops created by the EEG electrode leads. Its amplitude can reach several Volts and saturates 

the EEG amplifiers obscuring brain signals. As a result, it limits the recording of EEG signals 

during the delivery of the TMS pulse [19]. 

 

 

Figure 4: TMS pulse artifact recorded using a sampling rate of 5 kHz and an anti-aliasing low-pass filter of 1 

kHz; signal saturation can be seen for the first large negative deflection at about 1 ms [19]. 

 

1.5.1.2 Decay artifact 

Different terms such as decay artifact, discharge artifact, or electrode polarization artifact 

have been used by various authors to describe this phenomenon [2], [16], [19], [28], [29]. The 

artifact occurs when electric currents between the electrolyte gel and the recording EEG 

electrode polarize the electrode-skin interface. When an electrode becomes polarized, it takes 

a significant amount of time, often hundreds of milliseconds after the TMS pulse, for the 

charges to return to equilibrium [19]. During this process, an exponentially decaying charge is 

observed, with the decay rate being proportional to the remaining polarization voltage [19], 

[30]. It is important to note that this artifact can consist of multiple decaying components, 

each with its own characteristic time constants [19]. 
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1.5.1.3 Electrode motion artifacts 

This artifact, which is commonly observed [31], originates from mechanical factors. It occurs 

due to the movement of the electrode against the electrolyte gel and the gel against the skin. 

[19] There are several possible causes for this artifact: a) it can result from the vibration of the 

TMS coil, which is transmitted to the electrodes through direct contact, as well as the 

repelling magnetic force caused by the electric current induced in the electrode and wires by 

the magnetic pulse [19], [32], [33]; b) muscle twitches or head movements induced by the 

TMS pulse; c) contact between the coil or operator and the electrodes; d) skin stretching 

caused by movement, leading to shifts in skin potential [34], [19]. 

 

Motion artifacts, whether directly (a) or indirectly (b) induced by the pulse delivery, typically 

occur within the first ~10 ms after the TMS pulse [19]. However, they are often masked by 

the pulse artifact, the cranial muscle response, and the decay artifact. In some cases, artifacts 

resulting from skin stretching due to cranial muscle contractions can persist for longer periods 

[19], [34]. Additionally, as relatively recently reported [35], artifacts can occur simply due to 

the contact between the TMS coil and EEG electrodes, affecting both pre- and post-pulse 

EEG activity [19]. 

 

1.5.1.4 Power line artifact 

The power line artifact, also known as the power line interference, is a common artifact 

observed in EEG analysis. It is caused by the electrical power system's frequency and its 

harmonics, which can contaminate the EEG signal. 

 

The standard power supply frequency varies across countries, with 50 Hz in most parts of 

Europe and 60 Hz in North America. In EEG recordings, the power line artifact appears as a 

regular sinusoidal waveform at the powerline frequency (e.g., 50 Hz or 60 Hz). This artifact 

can interfere with the analysis and interpretation of EEG signals, making it essential to 

identify and minimize its effects [16]. 
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Figure 5: Artifacts in electroencephalographic (EEG) signals consequential from single transcranial magnetic 

stimulation (TMS) pulses [16]. 

 

1.5.2 Physiological artifacts 

1.5.2.1 Eye blinks and eye movements artifacts  

Eye blink artifacts are frequently observed in conventional EEG recordings and occur 

spontaneously [19]. These artifacts are a result of a strong dipole, with positive and negative 

poles located at the front and back of the eye, respectively. This dipole generates a stable and 

prominent electrical field potential that extends to the surrounding areas of the head, gradually 

diminishing towards the back of the head [19], [36], [37]. Eye movements cause slight 

variations in the dipole, leading to significant deflections in the EEG signal. In the context of 

TMS, ocular artifacts can be induced as part of a startle reflex triggered by the sound of the 

TMS coil click [19]. 

 

1.5.2.2 Cranial muscle artifact 

These artifacts are produced by the TMS pulse when the muscles innervating the head/face 

are stimulated, resulting in significant contamination of the EEG signal [19]. It is important to 

note that these artifacts are time-locked responses and should not be confused with the muscle 

artifacts typically observed in EEG-only recordings, which stem from tonic muscle activity or 

spontaneous movements [19]. The muscle artifacts evoked by TMS are often biphasic 

deflections and can be up to three orders of magnitude stronger (measured in millivolts) than 

the neuronal responses (measured in microvolts). Their duration varies depending on the 

activated muscle, typically lasting around 10 to 30 milliseconds, followed by a slow return to 

baseline. These muscle artifacts peak within milliseconds after the TMS pulse delivery, 

significantly impacting the early responses to TMS [19], [38], [39]. 
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The origin of these artifacts can be attributed to the depolarization of intramuscular motor 

nerve endings or the activation of cranial motor nerves, like the facial trigeminal nerves [19], 

[40]. As a result, they represent multiple muscle action potentials, like those observed when 

TMS is applied to the median nerve and evokes muscle responses in the hand.  The muscles 

most likely to be activated depend on the placement of the TMS coil and commonly include 

the neck, facial muscles [41], frontal muscles, temporal muscles, or masseter muscle [19]. The 

proximity of the TMS target to lateral aspects of the head, language areas such as Broca's and 

Wernicke's areas, and the dorsolateral prefrontal cortex can elicit large muscle artifacts due to 

the activation of specific muscle groups [19], [38], [39], [42], [43]. 

 

It is important to note that cranial muscle contractions can cause electrode movements and 

stretch the skin above them. This can result in disturbances in the electrode-electrolyte-skin 

interfaces and electrode motion artifacts. As a consequence, the topography of decay artifacts 

(previously mentioned) and muscle artifacts often exhibit a correlation, particularly with 

larger and longer decay artifacts observed for electrodes positioned over cranial muscles [19]. 

 

 

 

Figure 6: Other typical electroencephalographic (EEG) artifacts detected in concurrent transcranial magnetic 

stimulation (TMS) recordings [16]. 

 

1.5.3 Online and offline approaches for reducing artifacts in TMS-EEG data  

Artifacts in TMS-EEG signals have prompted the development of various approaches to 

minimize their impact [14].  These methods can be broadly categorized into online and offline 

approaches. Online approaches aim to avoid artifacts during data collection, employing 
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techniques such as using robust equipment, careful electrode-skin preparation, delaying TMS 

device capacitor recharge, stimulating specific cortical regions, and using noise-masking 

techniques. The advantage of online methods lies in excellent signal-to-noise ratios and 

simplified offline cleaning. However, their suitability is limited to certain experimental 

designs and setups [14]. 

 

In contrast, the offline approach focuses on removing or suppressing artifacts after data 

collection using specialized EEG analysis methods. Blind source separation (BSS) algorithms 

like independent component analysis (ICA) and principal component analysis (PCA) have 

been modified to target TMS-evoked muscle artifacts. Source-based spatial filtering methods, 

such as signal-space projection (SSP) and SSP with source-informed reconstruction (SSP-

SIR), have also been used [14].  Several techniques address decay artifacts, such as iterative 

Wiener estimation and model-based subtraction. ICA is commonly employed to suppress 

other common artifacts like eye blinks/movement and muscle activity. Additionally, offline 

methods have been tested to separate TMS-evoked sensory activity from cortical circuit 

activity resulting from transcranial stimulation [14]. 

 

The main benefit of the offline approach is the flexibility to target various stimulation 

locations. However, it comes with challenges. Many novel analysis methods for cleaning 

TMS-EEG data are developed in-house, limiting reproducibility for most users. The wide 

array of analysis approaches results in numerous cleaning pipeline combinations. Validating 

these methods is difficult, as the true signal of interest (TMS-evoked neural response) is 

unknown. Combining multiple preprocessing steps may lead to undesired interactions on the 

cleaned signal, making it challenging to control the outcomes [14]. 

 

 

1.6 Algorithms 

Several existing algorithms provide means to facilitate the preprocessing of EEG spontaneous 

and evoked activity, including TEPs. In the next paragraphs, some of these methods will be 

presented more in detail: Independent Component Analysis (ICA), SOUND and SSP-SIR. 

 

1.6.1 Independent Component Analysis (ICA) 

The challenge within blind source separation (BSS) involves the identification of a matrix W 

that enables a linear transformation, facilitating the retrieval of source signals from a given set 
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of combined signals [44]–[46]. The term 'blind' implies the absence of any prior knowledge 

regarding the source signals [45]. 

Among the prominent techniques for BSS, ICA stands out [44]. 

 

ICA is an algorithm for transforming a set of various signals into distinct and unrelated 

components. When ICA is applied to EEG data it is expected that certain components will 

closely resemble the original sources of signals, while others will likely represent undesired 

artifacts [44]. During the subsequent phase of feature selection, which is a critical step in 

signal processing before classification, the removal of features originating from "artifact 

components" becomes essential, while retaining those originating from components crucial 

for achieving accurate classification [44]. 

Therefore, the principles underlying the elimination of features associated with “artifact 

components” from the pool of features represents a critical issue. Artifacts can be broadly 

classified into two main types of activities. Some artifacts, such as those resulting from eye 

movements, display rhythmic patterns throughout each experimental trial. Conversely, certain 

artifacts, like unexpected body movements, appear at irregular intervals over the entire 

duration of the EEG recordings [44]. Given that both categories of artifacts are unrelated to 

the specific classes encoded within the recorded signals, they do not contribute to  an increase 

in classification accuracy [44]. Therefore, in situations where precision in classification is a 

pivotal metric during the feature selection process, it is necessary to exclude features 

computed from components that mirror artifacts from the collection of features [44]. 

 

The problem tackled by ICA can be described as follows. Imagine a scenario where there are 

n linear combinations of n distinct components. The observed signals, represented by vector x, 

can be expressed as [44]: 

𝑥 =  𝐴𝑠, 

1. 1 

where  𝐴 represents a mixing matrix with dimensions 𝑛 𝑥 𝑛, and 𝑠 is a vector containing 

independent components. The objective of ICA is to identify a matrix 𝑊, which essentially 

serves as the inverse of matrix 𝐴. This matrix 𝑊 is used to undo or reverse the mixing effect. 

Once we have computed matrix 𝑊, we can then obtain the independent components through 

the following process [44]: 

𝑦 = 𝑤𝑋 ≅ 𝑠, 

1. 2 
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The majority of ICA algorithms impose certain conditions on the combined signals. The 

initial requirement pertains to the statistical separation of source signals s, the second involves 

a non-Gaussian distribution of these source signals, and the third condition is the equality 

between the number of source signals and mixture signals [44]. While the first two constraints 

serve as fundamental assumptions in numerous algorithms, the third condition is primarily 

introduced to simplify the algorithmic process [44]. 

Additionally, it is assumed that each source signal possesses unit variance, denoted as 

𝐸{𝑠𝑖
2} = 1. To maintain this assumption, the source signal matrix undergoes whitening before 

the ICA computation [44]. Another assumption, introduced solely for the purpose of 

simplifying the algorithm, is that all mixed signals are centered. 

As previously mentioned, ICA functions without the necessity for prior knowledge of the 

source of signals. Instead, ICA algorithms rely on the concept of statistical independence 

among the mixed signals [44]. According to the formal definition, two variables, a and b, are 

considered independent if knowing the value of a imparts no information about the value of b, 

and vice versa [44] [46], [48]. Formally, independence can be defined in terms of the 

probability density function (pdf) [44] [47]: 

 

𝑓(𝑥1, 𝑥2, … , 𝑥𝑚) =  𝑓1(𝑥1)𝑓2(𝑥2) … 𝑓𝑚(𝑥𝑚), 

1. 3 

where 𝒙𝟏, 𝒙𝟐, … , 𝒙𝒎 are random variables. 

Two strategies exist for evaluating independence: maximizing non-Gaussianity and reducing 

mutual information. The majority of existing ICA algorithms adopt one of these approaches 

[44]. When employing the first strategy, the algorithm's objective is to transform the 

components in a manner that results in highly non-Gaussian distributed source signals (based 

on the assumption that stronger non-Gaussianity corresponds to stronger independence [44], 

[47]). In simpler terms, the distributions of the combined signals must exhibit greater 

Gaussian characteristics compared to the source signals. This approach involves the 

utilization of various metrics to quantify non-Gaussianity, such as kurtosis, negentropy, 

approximations of negentropy, and similar measures [44] [48]. 

In our study we used the FastICA, which is an ICA approach that utilize the non-Gaussianity 

maximization. 

 

In the second strategy, mutual information is utilized. Mutual information measures the extent 

to which information about variable a can be inferred from information about variable b. As a 

smaller mutual information value implies that more information regarding a specific system is 



16 

 

contained within the variables [44], [47], ICA algorithms following this approach work 

toward minimizing the mutual information among the outputs of the system [44], [48]. 

 

1.6.2 SOUND 

The SOUND algorithm is method that leverages the multi-dimensional characteristics of the 

data. It assess the dependability of each sensor by considering readings from all other sensors, 

and subsequently enhance the accuracy of the recorded data [17]. 

EEG and MEG record brain activity by assessing electromagnetic fields generated by post-

synaptic currents, that represent the fundamental signal source currents. The signals collected 

from a set of s electrodes at different time points (T instances or samples) can be expressed as 

follows [17]: 

𝑌 = �̅� + 𝑁 = 𝐿𝐽 + 𝑁, 

1. 4 

where 𝑌 and �̅� are 𝑆 𝑥 𝑇 matrices holding the noisy and the noise-free data, respectively, 

while 𝑁 is a 𝑆 𝑥 𝑇 noise matrix. �̅� can be written as a product of the 𝑆 𝑥 𝐽 lead field matrix 𝐿 

and the 𝐽 𝑥 𝑇 source-current matrix 𝐽, 𝐽 is the number of all the sources [17]. The sensitivity of 

sensors 𝑠 to source 𝑗 is described by the element 𝑙𝑠,𝑗 in 𝐿; while 𝑗𝑗 the jth row of 𝐽, covers the 

waveform of source 𝑗 [17]. 

The aim is to estimate �̅� from 𝑌. To reach the goal, a minimally noisy source estimates, 𝐽, is 

constructed and is then used  to recreate  the cleaned versions of the sensor signals, �̂�. 𝐽 could 

contain some uninteresting brain activity, that creates so-called neural-noise signals. 

Nevertheless, the aim here is not to separate the neural-noise component from the data, but 

rather to reduce as much as possible the amount of noise and artifacts (of extracranial origin), 

𝑁, leaking into the source estimate 𝐽 [17]. 

If we possessed knowledge about how noise spreads across the sensor field, i.e., the noise 

covariance 𝛴, we should highlight the most reliable data directions in the estimation of source 

currents 𝐽. We accomplish this by multiplying the equation 1.4 from left with 𝛴−1/2, which 

relate to whitening the data with respect to the noise [17]. 

 

(𝛴−1/2)𝑌 =   (𝛴−1/2)𝐿𝑌 + (𝛴−1/2)𝑁 = �̃� = �̃�𝐽 + �̃� , 
1. 5 

where �̃�, �̃� and �̃� are the cleaned versions of the signal, lead-field, and noise matrix, 

respectively.  

From the equation 1.5, 𝐽 can be calculated as the Tikhonov-regularized minimum-norm 

estimate (MNE) [17]: 
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𝐽 =  �̃�𝑇(�̃��̃�𝑇 +  𝜆𝐼)−1�̃�, 
1. 6 

where λ is regularization parameter. 

To use the equation 1.6, we must know 𝛴. If we make the assumption that the noise is not 

correlated among the sensors, the noise covariance matrix transforms into a diagonal 

structure, 𝛴 = 𝑑𝑖𝑎𝑔(𝜎1
2 … , 𝜎𝑆

2) and allows to estimate the noise level sigma, in each electrode 

𝑠. The diagonality assumption simplifies the interpretation of the equations 1.4-1.6; when 

estimating 𝐽, we give more importance to those channels that have better SNR. 

If we knew �̅�𝑠,𝑡. the noiseless dimension in electrode 𝑠 at time 𝑡, then the noise level in 𝑠 

could be calculated easily as [17]: 

𝜎𝑠 =  √
∑ (𝑦𝑠,𝑡

𝑇
𝑡=1 − �̅�𝑠,𝑡)2

𝑇
 

1. 7 

If it can be demonstrated that we can accurately determine the source currents, we can then 

proceed to estimate the noise-free sensor signal �̅�𝑠,𝑡 by [17]: 

 

�̂�𝑠,𝑡 = 𝑙𝑠𝑗.̂,𝑡 

1. 8 

Replacing �̂�𝑠,𝑡 results in the noise estimate 𝜎�̂�. 

Equations 1.5-1.8 can serve to validate the signals obtained from various sensors through 

cross-validation. The noise level of sensor 𝑠’ is evaluated using equation 1.8. We search for 

the most likely value for �̂�𝑠′,𝑡, given the measurements of all the other channels 𝑦≠𝑠,𝑡. We first 

find 𝑗.̂,𝑡 by replacing �̃� = �̃�≠𝑠′ and �̃� = �̃�≠𝑠′[17]. The noiseless signal in 𝑠’ can be estimated by 

using equation 1.7 and then the noise level in the same electrode can be determined. 

Then, we can continue assessing the noise level in any other channel 𝑠’’ with the same 

approach. We now have enumerated the noise level in sensor 𝑠’, we can take this into account 

by updating �̂� and cleaning the original data again to improve 𝑗.̂,𝑡. From the improved version 

of 𝑗.̂,𝑡, we now estimate the noise in sensor 𝑠’’[17]. 

However, if we want to estimate the noise in sensor 𝑠’, we must know the noise levels in all 

the other electrodes. The problem can be solved by evaluating each sensor many times in an 

iterative way, always updating �̂� based on the newnoise estimates.[17] After each step, the 

noise covariance and the channel-signal estimates become more precise.  
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To ensure an effective functioning of the proposed cross-validation approach the EEG data 

must be anchored to a high-quality channel reference before starting the iteration process. 

Failure to do so would result in the reference channel's noise contaminating all other channels, 

thereby contravening the assumption of uncorrelated noise. In the next section, we introduce 

an automated method for the selection of an appropriate reference channel [17]. 

In summary, the noise levels can be established by using this iterative procedure. Figure 7 

provides a graphical representation of the iteration process [17]: 

1. Change the reference of the data to a carefully chosen sensor with high quality 

recordings. Provide an initial estimation for �̂� in the selected reference framework. 

2. Continuously update the approximations for the values of 𝜎�̂�,. In each iteration, 

compute a new 𝜎�̂� value based on the following procedure: 

𝜎�̂� =  √∑ (𝑦𝑠,𝑡
𝑇
𝑡=1 −𝑙𝑠�̂�.,𝑡)2

𝑇
,  where 

𝑗.̂,𝑡 =  �̃�𝑇
≠𝑠(�̃�≠𝑠�̃�𝑇

≠𝑠 +  𝜆𝐼)−1�̃�≠𝑠,𝑡 

Update 𝛴 ̂ = 𝑑𝑖𝑎𝑔(𝜎1̂
2 … , 𝜎�̂�

2) after each iteration, and then reapply whitening to the original 

data 

3. Reiterate step 2 until the sum has converged. 

4.  

To monitor the convergence of  𝛴 ̂, we can calculate the relative variations in sensor-specific 

noise levels between consecutive full iteration rounds. Once the relative change in all 

channels falls below a predefined threshold, such as 1%, we can conclude the iteration 

process [17]. 

The last estimated noise covariance matrix can then be applied to whiten the original data. In 

the final step, we utilize the noise-reduced source estimates to create improved versions of the 

sensor-level signals. Consequently, the final refined dataset can be expressed as follows [17]: 

 

�̂� = 𝐿 (�̂�−
1

2𝐿)
𝑇

(�̂�−
1

2𝐿𝐿�̂�−
1

2 +  𝜆𝐼)−1�̂�−
1

2𝑌, 

1. 9 

𝜆 =  𝜆0𝑡𝑟𝑎𝑐𝑒(�̂�−
1

2𝐿𝐿�̂�−
1

2)/𝑆. 
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Figure 7: Representation of one iteration step in SOUND [17]. 

 

1.6.3 SSP-SIR 

One way to effectively remove artifacts and noise from neurophysiological data is by 

excluding the signals recorded from corrupted channels from further analysis. This represents 

a robust and intuitive approach, especially when these disruptions are limited to a small 

number of problematic channels. However, eliminating a channel reduces  data 

dimensionality by one. For instance, if we reject two channels from a 60-channel EEG 

dataset, we can hypothetically estimate a maximum of 58 degrees of freedom for cortical 

activity (or 57 when using average reference) [49]. However, this strategy becomes 

impractical when artifacts are simultaneously present in multiple channels. Nevertheless, even 

when artifactual activity is distributed across several channels, it can often be characterized by 

a few spatial patterns that fluctuate in amplitude over time but maintain their spatial 

configuration. In such cases, it is still possible to moderately reduce the data's dimensionality 

to eliminate undesired signals [49]. 

Assuming that the whole EEG recordings are described by a linear model with matrix 

notation as [49]: 

𝑌(𝑡) = 𝐿𝐽(𝑡) + 𝑀𝐴𝑆𝐴(𝑡) + 𝑀𝑁𝑆𝑁(𝑡) , 

1. 10 

where the element 𝐿𝑖𝑗 defines the sensitivity of sensor 𝑖 to the cortical equivalent source 𝑗. L is 

the neuronal lead-field matrix: the rows describe the sensitivity profiles of different EEG 
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sensors to all the possible cortical sources while the columns of L delineate the scalp voltage 

patterns or spatial distributions created by distinct localized cortical current sources [49]. 

𝑀𝐴 and 𝑀𝑁 are the artifact- and noise-mixing matrices, and 𝑆𝐴 and 𝑆𝑁 are the artifact- and 

noise-signal matrices. The columns of mixing matrices represent the spatial patterns of 

various interfering signal components, while the rows of signal matrices contain the temporal 

profiles or time courses of these corresponding components. When examining the linear 

model for our recordings, it becomes evident that the spatial patterns of various signal 

components, such as the columns of the lead-field and mixing matrices, remain constant over 

time [49]. 

 

Nonetheless, some signal elements could exhibit greater prominence during specific moments 

or at particular frequencies, as evidenced by the temporal profiles 𝑱(𝒕), 𝑺𝑨(𝒕), and 𝑺𝑵(𝒕). The 

concept behind signal-space projection (SSP) is to leverage these temporal fluctuations to 

recognize the artifact patterns that can subsequently be removed [49]. 

For instance, if we observe that a specific time segment or frequency band predominantly is 

contaminated by artifacts, we can utilize this specific dataset portion to estimate the artifact 

patterns that should be eliminated [49]. 

 

When considering TEPs, our focus lies on eliminating muscle artifacts induced by the 

magnetic stimulation, which occur concurrently with the initial cortical responses to TMS. 

Nonetheless, brain-related activity typically presents itself in EEG data at frequencies below 

100 Hz, whereas muscle activity exhibits a broader frequency range. Therefore, by applying a 

high-pass filter to the TMS-EEG data, we can emphasize the presence of muscle activity [49]. 

 

𝐻(𝑌(𝑡)) = 𝐿𝐻(𝐽(𝑡)) + 𝑀𝐴𝐻(𝑆𝐴(𝑡)) + 𝑀𝑁𝐻(𝑆𝑁(𝑡))        

 

𝐻(𝑌(𝑡)) ≈ 𝑀𝐴𝐻(𝑆𝐴(𝑡)) + 𝑀𝑁𝐻(𝑆𝑁(𝑡)) 

 

𝐻(𝑌(𝑡)) = 𝑈𝑆𝑉𝑇 
1. 11 

where 𝐻(⋅) represents a high-pass filter while 𝑈𝑆𝑉𝑇 is the singular value decomposition of 

the high-pass filtered data. If we can make the assumption that the noise is largely 

uncorrelated, the topographies (represented by column vectors of 𝐔) associated with the 𝑘 

most prominent singular values should account for the majority of the muscle artifacts. [49] 

Note that none of the individual vectors 𝑈𝑘, where 𝑘 = 1, 2, …,n, needs to precisely match an 

underlying muscle artifact component. It is sufficient that a linear combination of these 
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singular vectors can account for the actual artifact patterns. In other words, we can say that 

these singular vectors collectively define the muscle artifact subspace. [49] If the 𝑘 most 

significant singular vectors 𝑈𝑘 encompass the artifact-related signal space, we can express the 

spatial filter 𝑊𝑆𝑆𝑃 for muscle artifact removal as [49]: 

 

𝑈𝑘𝑆𝑘𝑉𝑘
𝑇 ≈ 𝑀𝐴𝐻(𝑆𝐴(𝑡)) 

𝑊𝑆𝑆𝑃 = 𝐼 −  𝑈𝑘𝑈𝑘
𝑇, 

1. 12 

resulting in 𝑊𝑆𝑆𝑃𝑀𝐴 ≈ 0. Therefore, we can express the EEG signal after muscle artifact 

reduction as [49]: 

𝑊𝑆𝑆𝑃𝑌(𝑡) ≈ 𝑊𝑆𝑆𝑃𝐿𝐽(𝑡) + 𝑊𝑆𝑆𝑃𝑀𝑁𝑆𝑁(𝑡)  

1. 13 

The drawback of SSP lies in its potential to alter neuronal patterns [50]. Similarly, to the 

process of rejecting problematic channels, when we eliminate specific signal directions to 

mitigate artifact signals, the data representation undergoes a transformation. However, this 

transformation is relatively straightforward to grasp in the case of channel removal, and we 

can easily fill in the gaps for data visualization. Conversely, when we exclude muscle artifact 

patterns from EEG data, the alterations in the EEG representation of brain activity become 

more abstract [49]. Moreover, EEG is often visualized using topographical plots, which have 

a direct connection to the physical world; the colours at electrode locations correspond to 

measured voltages. After applying SSP, this intuitive connection is lost because the rows of 

EEG data no longer represent distinct EEG channels. Instead, each row in the data matrix 

represents a linear combination of the original channel signals. Therefore, to regain a physical 

understanding of EEG after SSP, we must interpolate the abstract signal directions that were 

removed [49]. 

 

Source-informed reconstruction (SIR) is a method that leverages the head's forward model to 

interpolate the signal directions removed by SSP [49] [18]. While the dimensions of the 

projected signals may appear abstract, they are precisely defined within the 𝑊𝑆𝑆𝑃 operator. 

This information can be considered when estimating the cortical brain activity 𝐽(𝑡) that 

generated the artifact-suppressed versions of EEG [49]: 

 

𝐽(t) =  (𝑊𝑆𝑆𝑃𝐿)+𝑊𝑆𝑆𝑃 𝑌(𝑡), 

1. 14 
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In the equation provided, where (⋅)+ represents the pseudoinverse operation, a widely 

employed technique in EEG analysis for constructing the pseudoinverse involves using 

minimum-norm estimation [49] [51]. Using the forward model, we can recreate the sensor 

signals within the original EEG channels using the current estimates that have been freed 

from artifacts. This can be accomplished by multiplying the cortical current with the lead-

field matrix, resulting in [49]: 

�̂�(𝑡) = 𝐿𝐽(t). 

1. 15 

Consequently, we can encapsulate the SSP-SIR procedure in a single equation [49]: 

�̂�(𝑡) = 𝐿(𝑊𝑆𝑆𝑃𝐿)+𝑊𝑆𝑆𝑃 𝑌(𝑡) =  𝑊𝑆𝑆𝑃−𝑆𝐼𝑅𝑌(𝑡). 

1. 16 

The concept behind the integrated SSP-SIR approach is showed in Figure 8. Since its 

introduction, SSP-SIR has been widely employed in various TMS-EEG investigations to 

effectively reduce muscle artifacts induced by TMS [49] [7], [52]–[54].  

 

 

Figure 8: The principle of SSP–SIR [18]. 

 

The application of SSP–SIR extends beyond addressing TMS-induced muscle artifacts, and  it 

has been used to tackle various other issues [49]. As an example, Biabani et al. [55] and 

Fernandez et al. [56] employed the SSP–SIR method to reduce sensory artifacts associated 

with TMS. Additionally, the SIR method has been also used to interpolate the excluded noisy 
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channels, as demonstrated by Nieminen et al. [57]. This SIR-based channel interpolation is an 

integral component of the SOUND algorithm [49]. 

 

 

1.7 Source Localization 

The primary objective of functional neuroimaging techniques is to localise specific brain 

regions involved in particular activities. Functional magnetic resonance imaging (fMRI) is 

proficient in this task but has several limitations. Its temporal resolution is relatively low, and 

brain activity is assessed indirectly, hindering precise evaluation when brain regions activate 

in response to a given stimulus [58]. 

On the other hand, both the EEG and MEG signals directly capture brain activity with 

remarkable temporal precision. However, the use of  EEG as a neuroimaging tool is complex 

because neural signals are recorded from the scalp's surface, and it is challenging to localize 

the source of the electrical signal, i.e., to precisely determine the population of cortical 

neurons generating the signals recorded by the electrodes [58]. This complexity arises from 

the fact that various configurations of neural circuits could potentially generate the electrical 

potentials recorded at the scalp.  

Therefore, to employ EEG for source localisation and visualisation a necessary step is to 

reconstruct the sources of the signals detected by the scalp electrodes. Achieving this requires 

addressing two key challenges: the forward problem and the inverse problem [44] [61]. 

 

Figure 9: Graphical representation of the two processes involved in current localisation: the forward and 

inverse problems[59]. 

The two problems are intrinsically connected, but the forward problem must be solved before 

the inverse problem. Finding the electric potentials at the scalp electrode given a 

configuration of dipole sources in the brain means solving the forward problem[58]. 

On the other hand, finding the source that generated the electric potential recorded by the  

electrode means solving the inverse problem [58]. 

In the following sections we provide the mathematical solution of both problems. 
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1.7.1 The forward problem 

As previously mentioned, the primary source of EEG signals recorded by the electrodes 

placed on the surface of the scalp is represented by the pyramidal neurons within the cerebral 

cortex. These neurons generate the EEG signal through post-synaptic currents  flowing across 

their apical dendrites, which  are mainly oriented perpendicular to the brain surface [58], [60]. 

 

During an excitatory impulse, neurotransmitters initiate a flow of positive ions into the post-

synaptic membrane. This, in turn, leads to changes in electrical charges within and around the 

neuron, encompassing the cell body, apical dendrite, and the surrounding extracellular space.  

The currents and fields in this system behave as if they were stationary at every instant, i.e., 

they display a quasi-stationary behaviour [61].  Furthermore, a group of neurons operating in 

synchronization can be represented as an electrical dipole.  

 

The aim is to find the electric potential 𝑉 measured by an electrode with position on the scalp 

𝑟 generated by an electric dipole 𝑑 at position 𝑟𝑑𝑖𝑝 in a reasonable time. 

This implies finding 𝑁 potentials 𝑉(𝑟), corresponding to the number of electrodes on the 

scalp, generated by different configurations of p dipoles d and position 𝑟𝑑𝑖𝑝. 

We must then find the solution to the system of equations given by: 

 

𝑉 =  [
𝑉(𝑟1)

⋮
𝑉(𝑟𝑁)

] = [

𝑔(𝑟1, 𝑟𝑑𝑖𝑝1
, 𝑒𝑑1

) ⋯ 𝑔(𝑟1, 𝑟𝑑𝑖𝑝𝑝
, 𝑒𝑑𝑝

)

⋮ ⋱ ⋮
𝑔(𝑟𝑁, 𝑟𝑑𝑖𝑝1

, 𝑒𝑑1
) ⋯ 𝑔(𝑟𝑁, 𝑟𝑑𝑖𝑝𝑝

, 𝑒𝑑𝑝
)
] = 𝐺 ((𝑟𝑗 , 𝑟𝑑𝑖𝑝1

, 𝑒𝑑𝑖
)) [

𝑑1

⋮
𝑑𝑝

] 

1. 17 

Rewritten in matrix form and adding a noise matrix n, the forward problem can be 

summarised as: 

𝑉 = 𝐺𝐷 + 𝑛 

1. 18 

where G is the gain matrix and D the electric dipole matrix. 

For a more detailed discussion please refer to the article by Hallez et al. [62]. 

Several analytical methods have been applied to solve the forward problem.  
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Figure 10: Spherical head model with three concentric circles [62]. 

A first analytical model to the solution of 2.35 used a spherical head model, divided into three 

concentric circles (Figure 10). The innermost circle represents the brain, the middle the skull 

and the outermost represents the scalp. Each circle has a different radius and conductivity. 

Given a dipole on the z axis and a point P on the scalp in the xz plane, it is possible to derive 

the electrical potential V at point P [58]. 

 Starting from this simplistic model, increasingly realistic head models were introduced and 

provided a more accurate description of the conductive properties of the head, thereby 

increasing the accuracy of the estimation. 

The Boundary Element Method (BEM) consists of calculating the electrical potential V at the 

interface between different compartments with different conductivities, where the final 

interface lying between a conducting and a non-conducting volume, i.e., air. Therefore, this 

technique consists in dividing the brain into finite elements with different conductive 

properties, where the electrical potential at the electrode V can be derived. Figure 11 shows 

the division of different head regions into finite elements, each describing the conductive 

properties of a tissue, and the head model used. In this model, three types of interfaces can be 

distinguished: brain-skull, skull-scalp and scalp-air [62]. 
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Figure 11: Mesh of a human head used in BEM. The surfaces indicate a brain-skull, skull-scalp, scalp-air 

interface [62]. 

The limitation of this resolution method stems from the assumption that the regions used to 

represent different types of tissue are homogeneous and isotropic. This simplification does not 

accurately represent the complexity of the human head, where various tissues and regions 

exhibit anisotropic conductivity characteristics. However, it offers a computational advantage 

compared to other approaches [58], [62]. 

Conversely, the Finite Element method (FEM) aims to address the forward problem by 

applying boundary conditions and dividing the head model into small volumetric elements.  

 

Once the forward problem is solved, the subsequent step involves tackling the inverse 

problem [58]. 

 

1.7.2 The inverse problem 

While the forward problem involves the measurement of electrical potential V generated by 

multiple dipoles, the inverse problem is focused on identifying the sources responsible for the 

potentials recorded by the electrodes [63]. 

Given a discrete time series T, N electrodes and M electrical potential measurements at the 

electrodes, one must find the p dipoles that satisfy the equation derived from the forward 

problem[58], [63]: 

 

𝑀 = [
𝑚(𝑟1, 1) ⋯ 𝑚(𝑟1, 𝑇)

⋮ ⋱ ⋮
𝑚(𝑟𝑁 , 1) ⋯ 𝑚(𝑟𝑁, 𝑇)

] =  [

𝑔(𝑟1, 𝑟𝑑𝑖𝑝1
) ⋯ 𝑔(𝑟1, 𝑟𝑑𝑖𝑝𝑝

)

⋮ ⋱ ⋮
𝑔(𝑟𝑁, 𝑟𝑑𝑖𝑝1

) ⋯ 𝑔(𝑟𝑁 , 𝑟𝑑𝑖𝑝𝑝
)
] [

𝑑1,1𝑒1 ⋯ 𝑑1,𝑇𝑒1

⋮ ⋱ ⋮
𝑑𝑝,1𝑒𝑝 ⋯ 𝑑𝑝,𝑇𝑒𝑝

] 

1. 19 

is summarised in its matrix form: 

𝑀 = 𝐺𝐷 + 𝑛, 

1. 20 
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where M is the matrix of measured data at T instants, G is the gain matrix, n is the noise 

matrix and D is the matrix of electric dipoles at T instants. 

Therefore, the solution of the inverse problem consists in finding the estimate of the dipole 

matrix, knowing the matrix M from the measurements, and G, from solving the forward 

problem [63]. 

However, the inverse problem has intrinsic limitations, since the number of dipoles within the 

human brain is much greater than the number of electrodes applicable on the scalp, i.e., 

p>>N. Therefore, no single solution can be achieved, meaning that a different combination of 

active sources can reproduce the same signal measured by the EEG system [63]. 

 

1.7.2.1 Parametric and non-parametric approach for the inverse problem resolution 

Inverse problem-solving methods can be divided into two categories: parametric and non-

parametric. The former estimates the position of electric dipoles from a defined number of 

dipoles assumed a priori. The latter estimate the orientation and magnitude of electric dipoles 

distributed at fixed points in the brain.  Therefore, the first distinction between the two 

approaches turns out to be what is estimated: in the former the position, the force and 

direction, in the latter only the force and direction [58]. 

In non-parametric methods, the values to be estimated are the force and direction of the 

electric dipole. Therefore, solving the inverse problem reduces to a linear problem and in 

equation 1.19 the parameters 𝑟𝑑𝑖𝑝𝑖
 and 𝑒𝑖 are known a priori. 

On the other hand, parametric methods propose to estimate the position of the dipoles directly. 

This leads to having to solve a non-linear equation system, since the parameters 𝑟𝑑𝑖𝑝𝑖
 and 𝑒𝑖  

appear in the equation non-linearly. To make it possible to solve by this method, it is 

necessary to make an a priori assumption about the number of dipoles present, the larger this 

number the greater the computational cost of these techniques [58]. 

Different methods have been used in the literature to solve the inverse problem. The most 

frequently used are: Minimum Norm Estimation (MNE), Low Resolution Brain 

Electromagnetic Tomography (LORETA) and dynamic Statistical Parametric Mapping 

(dSPM) [64]. 

In particular, by choosing 𝑉𝑎𝑟[𝐷] proportional to (𝑊. 𝑊𝑇)−1 where W is a covariance matrix 

p x p, we obtain a family of smooth estimators which contain LORETA and MNE methods as 

particular cases. For this case the minimization problem of Eq. 1.19 becomes [64]: 
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�̂� = 𝑎𝑟𝑔𝑚𝑖𝑛𝐽[‖𝑀 − 𝐺. 𝐷‖2 +  𝛼‖𝑊. 𝐷‖2] 

1. 21 

Where �̂� is the estimation of D. For this problem, the solution is known to have the closed 

form: 

�̂� =    (𝐺𝑇 . 𝐺 +  𝛼𝑊𝑇 . 𝑊)−1. 𝐺𝑇 . 𝑀 

1. 22 

Minimum Norm Estimate 

The MNE (Minimum Norm Estimate) solution is achieved when W is configured as the 

identity matrix 𝐼𝑝 in equation 1.21. This approach assumes that the solution to the inverse 

problem should aim to minimize energy  [64]. 

 

LORETA 

By modifying the covariance matrix W in the closed solution 1.21 to incorporate the 

Laplacian operator, we can derive LORETA. This adjustment effectively links adjacent 

vertices in the brain mesh, leading to a reduction in discrepancies between coefficients 

associated with neighbouring sources. As a result, it generates more uniform current-source 

estimates, promoting smoothness in the estimations [64]. 
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2 
Materials and Methods 

2.1 Subjects 

The dataset used in this study was acquired as a part of a larger TMS–EEG study to 

investigate differences in cortical excitability and connectivity in a group of patients 

diagnosed with mild cognitive impairment (MCI) with respect to a control group of age- and 

gender-matched healthy subjects. 

A total of five healthy subjects were recruited. All the participants were right-handed and did 

not have major neurological or psychiatric disorders and underwent neuropsychological 

testing to exclude cognitive impairment. No participant was taking drugs known to influence 

M1 excitability or had contraindications to the use of TMS according to the latest 

international guidelines on the safety of the technique [20]. All subjects underwent a brain 

MRI for 3D brain reconstruction and neuro-navigation required for the TMS-EEG 

application. 

The study protocol was approved by the local Research Ethical Committee, and it was carried 

out in accordance with the latest version of the Helsinki Declaration.  

Demographic, clinical, and neurophysiological characteristics of the included participants are 

shown in Table 2. 

Table 2: Demographic, clinical, and neurophysiological characteristics of participants. MMSE: Mini Mental 

State Examination (score corrected for age and education), RMT: resting motor threshold, MSO: maximum 

stimulator output. 

 

 Subject 01 Subject 02 Subject 03 Subject 04 Subject 05 

Age  

(years) 
80 79 70 72 67 

Gender  M M M M M 

MMSE 

score 
27 26 30 26 26 

Education 

(years) 
10 13 20 18 8 

RMT 

(%MSO) 
50 40 43 38 56 
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2.2 Instrumentation 

2.2.1 Transcranial magnetic stimulation 

Single-pulse TMS was delivered using a Nexstim system (Nexstim, Helsinki, Finland) 

connected to a figure-of-eight coil, provided with reflective markers for neuro-navigation.  

The coil was placed tangentially to the scalp and turned backwards at 45° to the midline, in 

order to induce currents in the posterior-anterior direction.  

TMS was delivered over the M1 “hotspot”, defined as the scalp position where TMS elicited 

the largest MEPs in the contralateral first dorsal interosseous (FDI) muscle. This location was 

sampled in the space separately for each hemisphere by mapping the M1. During the 

stimulation the coil was maintained in the correct position throughout the stimulation by using 

a 3D infrared tracking position sensor unit (Polaris, Northern Digital Inc., Waterloo, Canada) 

integrating a T1-weighted MRIs recorded from all patients [65].  

Resting motor threshold (RMT) was defined as the lowest stimulation intensity required to 

elicit MEPs of ≥50 μV peak-to-peak amplitude in at least 5 out of 10 consecutive trials,  in the 

relaxed FDI muscle. RMT was measured separately for each M1. The stimulation intensity 

was set at 120% RMT. The EMG activity of the FDI was recorded through a pair of Ag/AgCl 

10 mm cup electrodes placed over the muscle contralateral to the stimulated M1, arranged in a 

belly-tendon montage. Raw EMG signal was sampled at 3kHz, amplified, and bandpass 

filtered between 10 and 500 Hz and then digitized at 5kHz.  

 

2.2.2 Electroencephalographic recording 

EEG was recorded using a TMS-compatible amplifier NeurOne Tesla (Bittium Biosignals 

Ltd., Kuopio, Finland) from 62 passive electrodes mounted on an elastic cap (EASYCAP, 

Easycap GmbH, Am Anger 5, DE-82237 Woerthsee, Germany), according to the international 

10-10 system, including: Fp1 Fp2 F3 F4 C3 C4 P3 P4 O1 O2 F7 F8 T7 T8 P7 P8 Fz Cz Pz Iz 

FC1 FC2 CP1 CP2 FC5 FC6 CP5 CP6 TP9 TP10 F1 F2 C1 C2 P1 P2 AF3 AF4 FC3 FC4 CP3 

CP4 PO3 PO4 F5 F6 C5 C6 P5 P6 AFz FCz FT7 FT8 TP7 TP8 PO7 PO8 Fpz Cpz POz Oz. 

The reference electrode was placed outside the EEG cap, on the forehead, 2 cm above the 

nasion. In the offline analysis, an average reference was used. All electrodes were grounded at 

AF7. Impedances for each channel was kept below 5 kΩ. EEG signal was bandpass filtered 

(DC-2.5 kHz) and sampled at 5kHz. An anti-aliasing hardware filter was also applied, with a 

cut-off frequency of 1250Hz. In order to mask TMS clicks and avoid possible AEPs (Auditory 

Evoked Potentials), participants wore earphones continuously playing a customized masking 

noise. Additionally, a pair of electrodes were placed close to the left eye (EOG) to monitor 

ocular artifacts (blinks and eye movements).  



31 

 

 

 

Figure 12: TMS-EEG experimental setting. 

 

2.3 Experimental Protocol 

All the experimental sessions were carried out at the Neurology Clinic of the University 

Hospital in Padua.   

The individual MRIs required for the 3D reconstruction and navigation were scanned with 1.5 

T (T1-weighted; 1 mm thickness; sagittal orientation) for each subject were obtained prior to 

the TMS-EEG assessment. 

 

At the beginning of each session, after the EEG montage and impedance check, a resting EEG 

was recorded for five minutes, asking the subjects to relax and to keep their eyes closed. The 

EEG signal was continuously monitored during the recordings to minimize motion artifacts 

and check for electrode integrity.  

During the TMS stimulation, subjects were comfortably sitting on an electronically adjustable 

chair designed for TMS (Nextstim, Helsinki, Finland) with their forearms resting on armrests. 

Participants were asked to keep their eyes open and to fixate a specific marker placed at a 

distance of about 70 cm. All subjects underwent TMS stimulation of the M1 of both 

hemispheres. After the identification of the hotspot and the definition of the RMT, 120 TMS 
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stimuli at an intensity of 120%RMT were delivered separately for each hemisphere in a 

randomized order. Single TMS pulses were applied with an inter-pulse interval randomly 

jittering between 1,5 and 1,8 s, which does not affect longitudinally recorded TEPs [10].  

 

 

 

2.4 Data processing 

Offline EEG pre-processing was performed with EEGLAB v2023.0  with the addition of 

some functions included in the TMS-EEG signal analyser (TESA) toolbox [16] and in 

Brainstorm, an open-source MATLAB toolbox [59]; all running in MATLAB environment 

(MathWorks Inc., Natick, USA). 

 

2.4.1 Pipelines 

In the present work, TEPs were analysed using three different pre-processing pipelines 

applied using the TESA toolbox: Leodori et.al, Rogasch et.al and Mutanen et. al. The first two 

use the FastICA as a core function, while the third uses SOUND algorithm combined with the 

SSP-SIR method.  

The pipelines are outlined in Table 3. Of note, the first three steps are shared among all the 

pipelines: after having loaded the datasets, we set the channels location using a MNI 

coordinate file for BEM model. 

We then remove unused electrodes that in our case are EOG and EMG. In the following 

sections we will provide a detailed description of the applied pipelines.  
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Table 3: The three pipelines involved in the study. 

Leodori et.al Rogasch et. al Mutanen et. al 

Load dataset Load dataset Load dataset 

Look-up channels location Look-up channels location Look-up channels location 

Remove unused electrodes Remove unused electrodes Remove unused electrodes 

Extract epochs [-1.3 1.3] s and 

demean [-100 -10] ms 
Channels rejection High pass filter 1-500 Hz 

Remove stimulation artefact   

[-5 13] ms 

Extract epochs [-1 1] s and 

demean [-100 -10] ms 
Extract epochs [-1 1] s 

Interpolate removed data 
Remove stimulation artefact   

[-5 13] ms 

Remove stimulation artefact   

[-5 13] ms 

Band-pass filtering 1-500 Hz Interpolate removed data Interpolate removed data 

Downsampling 1000 Hz Downsampling 1000 Hz 
Baseline correction  

[-100 -10] ms 

Stimulation artifact [-5 13] ms 

removal 
Bad trials rejection SOUND algorithm 

Bad trials rejection 
Stimulation artifact  

[-5 13] ms removal 
Bad trials rejection 

FastICA 1st round 

(large artifacts removal) 

FastICA 1st round 

(large artifacts removal) 

ICA (removal of ocular 

artifacts) 

Interpolate removed data Interpolate removed data 
Stimulation artefact [-5 13] ms 

removal 

Band-pass 1-100 Hz and  

band-stop 48-52 Hz filtering 

Band-pass 1-100 Hz and band-

stop 48-52 Hz filtering 
SSP-SIR  

Epochs extraction [-1 1] s and 

demeaning [-100 -10] ms 

Stimulation artifact [-5 13]ms 

removal 
Interpolate removed data 

Stimulation artifact [-5 13] ms 

removal 

FastICA  2nd round 

(all artifacts) 

Band-pass 1-100 Hz and band-

stop 48-52 Hz filtering 

FastICA  2nd round 

(all artifacts) 
Interpolate removed data Re-referencing to the average 

Interpolate removed data Bad channel interpolation Downsampling 1000 Hz 

Re-referencing to the average Re-referencing to the average 
Baseline correction 

[-100 -10] ms 

Plot for quality check 
Baseline correction  

[-100 -10] ms 
Plot for quality check 

 Plot for quality check  
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2.4.1.1 Leodori et. al 

This pipeline is inspired by the Rogasch et. al pipeline [16], explained in the next section. 

This pipeline it’s one of the most validated in the literature, in particular it’s been used by 

Leodori’s research group[15]. 

We firstly extracted epochs extending from -1.3 to 1.3 milliseconds, slightly longer than the 

epochs that will be extracted later, preventing potential edge artifacts. Simultaneously, we 

applied data demeaning by subtracting the average of the entire epoch. This helps eliminate 

DC offsets. 

Then, we removed data around the TMS pulse within the time range of -5 to 13 milliseconds. 

To ensure smooth data transitions, we employed cubic interpolation within this interval, 

reducing the risk of creating disruptive ringing artifacts during subsequent filtering. We 

implemented a primary frequency filter from 1 to 500 Hz, with the aim of eliminating low 

frequencies below 1 Hz. Of note, it is a fourth-order Butterworth filter, like all the others 

frequency filters used in the three pipelines. 

To streamline computational demands, we downsampled the data to 1000 Hz. This step 

proves particularly advantageous when dealing with high-rate data, such as our case with a 5 

kHz sampling rate. 

Before applying the FastICA, we temporarily replaced the interpolated TMS-pulse data with 

zero values. In fact, replacing interpolated data around TMS pulse with constant amplitude 

data is necessary prior to ICA to improve performance [16]. We reinstated the interpolation 

right after ICA to ensure that this redundant information doesn't interfere with the algorithm. 

 

We manually scrutinize EEG recordings to identify and remove problematic trials, a crucial 

step that significantly enhances the quality of ICA decomposition, especially when dealing 

with substantial, non-recurring artifacts like intense jaw clenching or head scratching. 

We finally run FastICA, this function ranks and sorts the components by percentage variance 

explained by each time course. We then manually classified the components as artifacts or not 

obtaining a new dataset.   

The first ICA stage, dedicated to the removal of large amplitude artifacts (such as TMS-

related muscle, decay and movement) sets the stage for subsequent band-pass and band-stop 

filtering, further enhancing the second ICA decomposition process [66]that aims to eliminate 

the remaining artifacts. 

Between the two ICA runs, we also extracted shorter epochs within the time frame of -1 to 1 

millisecond to avoid cutting-edge artifacts. 

Finally, we applied an average reference to complete the process. 
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2.4.1.2 Rogasch et. al 

This pipeline, first developed by Rogasch [16] shares several similarities with the previous 

pipeline but also displays some differences. The primary distinction lies in our 

implementation of an automatic channel rejection early in the process, followed by 

interpolation after the completion of the two rounds of ICA. Consequently, all the 

preprocessing steps analyse fewer electrodes than the actual total count. 

Epoch extraction occurs just once, within a time interval spanning from 1 to -1 s. Unlike the 

previous pipeline, we skip the application of a band-pass filter in the range of 1 to 500 Hz, 

leaving the slow decay artifacts removal to the ICA. 

Additionally, a baseline correction is applied in the end, spanning from -100 to -10 ms. 

 

2.4.1.3 Mutanen et. al 

Like Leodori et. al, the Mutanen et. al pipeline initiates with a 1 Hz high-pass filter to avoid 

slow decay artifacts. Then, epochs from -1 to 1 second are extracted. However, the baseline 

correction is performed as a later step, before the SOUND algorithm application. The removal 

of TMS-induced artifacts is performed between -5 and 13 ms around the TMS stimuls artifact, 

and involves cubic interpolation. This step is essential to prevent a significant influence of the 

TMS-pulse artifacts on SOUND's noise estimation process, possibly compromising the 

efficacy in signal cleaning [1], [17]. 
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After baseline correction, the SOUND algorithm was applied. To facilitate MNE integration 

in the cleaning process, SOUND necessitates a forward head model [67].  Importantly, two 

input parameters have a significant  impact on  cleaning outcomes of the SOUND algorithm. 

Firstly, the number of iterations, determining noise evaluation in each channel,  which was set 

at 5 iterations to ensure convergence in the 62-channel EEG system [67]. Secondly, the 

lambda (λ) value was set at 0.1. This parameter regulates the extent of the cleaning process: a 

higher λ value results in greater noise removal but also raises the potential for excessive 

correction (over-cleaning) [67]. 

 

 

Figure 13: An illustration of TMS-EEG data, both before and after applying the SOUND correction, is depicted 

here. The underlying red curves represent the initial data, while the black curves represent the data post-SOUND 

correction [67]. 

Then we rejected bad trials via visual inspection. Subsequently, we apply the only ICA ste, 

aiming to remove ocular artifacts considering their relative independence from TMS-evoked 

brain signals [1]. TMS pulse interpolation, is replaced with zero values, and later re-

interpolated after the SSP-SIR procedure. 

 

The SSP-SIR algorithm is then applied, with the aim to suppress TMS-induced muscle 

artifacts. The artefact dimensions were chosen manually from the tesa_sspsir function 

visualisation (see Figure 15). It corresponds to the number of Principal Components with 

greater high-frequency activity in the data that we want to delete. This process hinges on 

estimating the muscle artifact subspace from high-frequency components (>100 Hz) in the 

data. Accordingly, it is crucial not to impose aggressive low-pass filtering before SSP-SIR. 

[67] Furthermore, it is advisable to maintain a higher cutoff frequency, higher than 200 Hz, 

before applying SSP-SIR [67]. Hence, a band-pass filter from 1 to 100 Hz and a band-stop 
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Before SSP-SIR 

After SSP-SIR 

filter from 48 to 52 Hz are applied at this stage after the execution of the SSP-SIR algorithm 

[1]. 

 

 

 

Figure 14: Illustration of TMS–EEG data both prior to and following the application of SSP–SIR to reduce 

muscle artifacts[67]. Note the different amplitude scale. 

Then, data were re-referenced to the average, down-sampled to 1000 Hz, and baseline 

correction within the time interval of -100 to -10 ms was performed [1]. 

 

Figure 15: Selecting the artifact measurements manually from the tesa_sspsir visualization [67]. 

Figure 15 displays the Principal Components (PCs) identified by the SSP-SIR algorithm. In 

the upper left panel the average time courses of various PCs are shown, while the upper right 
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panel displays the time-frequency representations of these PCs. The bottom panel illustrates 

the magnitude of high-frequency activity accounted for by different PCs. 

In this specific instance, these three visualizations indicate the necessity to eliminate four PCs, 

which correspond to artifact-related dimensions. The first four PCs show pronounced and 

sharp responses immediately following the TMS pulse, which is characteristic of muscle 

artifacts. Furthermore, these components present broad frequency responses, encompassing 

frequencies that exceed the typical range for physiological brain-related EEG activity. 

The last figure highlights that these two components predominantly account for the high-

frequency signal, implying that by removing them we could effectively eliminate a significant 

portion of the artifactual muscular activity from the data [67]. 

 

 

2.6 Toolboxes 
 

2.6.1 TESA 

To address the challenges of reproducibility in offline TMS-EEG analysis, various open-

source TMS-EEG analysis toolboxes have been developed, including TESA (TMS-EEG 

Signal Analyzer)[14], which was utilized in this study. TESA offers a standardized library of 

offline analysis methods commonly used in TMS-EEG research and was created as a plugin 

(extension) to EEGLAB, A widely used EEG analysis toolkit that operates on the MATLAB 

platform and is freely available for public use [14]. Integrating TESA within EEGLAB 

provides several advantages [14]. Firstly, EEGLAB already contains a wide range of 

functions for EEG analysis that can be utilized in conjunction with TESA functions. Secondly, 

EEGLAB's modular framework allows for flexible design and implementation of analysis 

pipelines [14].  

 

2.6.2 Brainstorm 

Brainstorm is an open-source MATLAB tool designed for collaborative use, specifically 

tailored for the examination of brain recordings encompass various neuroimaging methods 

such as MEG, EEG, fNIRS, ECoG, and multiunit electrophysiology [59]. For the purpose of 

this study,  Brainstorm was used for the source localization, since it offers many options and 

intuitive visualizations. 

Brainstorm offers three extensively documented categories of approaches for source 

localization: minimum-norm imaging, beamforming, and dipole modelling [59]. 
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One notable common advantage shared among these methods is their computational 

efficiency, even when dealing with large datasets. These techniques derive estimates of brain 

source activity by applying a linear combination of sensor recordings. Brainstorm 

accomplishes this by calculating a kernel, essentially a large matrix, which can be stored in 

the database. This matrix can then be multiplied with sensor data arrays to generate source 

time series, either at specific brain locations or across the entire brain [59]. 

 

 

Figure 16: Brainstorm interface; with an example of TEPs, topography and source visualizations at latency 33 

ms of one of our datasets. 

 

For this thesis a default BEM model was used. The anatomical representation provided by the 

Brainstorm interface is shown in figure 17. 

 

  
Figure 17: Default anatomy model. 
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2.7 Data analysis 

2.7.1 Group analysis 

2.7.1.1 GMFP across the entire time range of interest 

TEPs can serve as a tool for assessing the overall neural activity across different cortical 

regions. This assessment can be accomplished by employing a metric known as the global 

mean field power (GMFP). 

𝐺𝑀𝐹𝑃(𝑡) = √∑ (𝑉𝑖(𝑡)− 𝑉𝑚𝑒𝑎𝑛(𝑡))2𝑘
𝑖

𝐾
, 

Where K is the number of channels, V is the voltage at channel i and t is time. 

At each time point, computating GMFP  involves determining the standard deviation across 

all electrodes. Time instances that align with the TEP peaks result in high GMFP peaks, 

whereas smaller TEP components yield lower GMFP peaks. 

In order to have an initial measure reflecting the effects on signal amplitude induced by the 

application of the different preprocessing methods, we assessed the average of the GMFP over 

the entire range of interest from 0 to 250 ms. 

To investigate statistical significance, we used a non-parametric ANOVA (Friedman's test). 

We also used post-hoc tests for pairwise comparisons: Durbin-Conover test and Wilcoxon's 

test. This tests, like all  the statistical analysis in this thesis, were implemented using the 

jamovi software [68]. 

 

2.7.1.2 GMFP across time windows 

As in previous studies, the dynamics of EEG signal after the application of a TMS pulse to the 

M1 cortex were assessed in three specific time epochs after the TMS pulse.  

These physiological epochs are framed in three time windows: 

• the early window, from 20 to 80 ms; 

• the middle window, from 80 to 150 ms; 

• the late window, from 150 to 250 ms. 

As we already done with the entire range we are going to evaluate the GMFP in each time 

window of interest. 

The same statistical tests are applied for each time window, in the same way we did for the 

entire time interval. 

 

 

2.7.1.3 Peaks analysis 

After assessing the magnitude of the GMFP over the time windows of interest, I went into 

more detail trying to identify the peaks of activity. In particular, I tried to define their number, 
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amplitudes and latencies. For the early window the research it’s been focused on the P30, N45 

and P60 peaks. While for the middle window we looked for the N100 peak, and for the late 

window for the P180 peak. 

 

2.7.1.4 Latencies and amplitudes 

Since it was not always possible to identify all the peaks of interest in the early window in the 

GMFP,  we proceeded to the assessment of the peaks around the stimulated area, in particular 

on the FC3 C5 C3 C1 CP3 electrodes, by evaluating the Local Mean Field Power (LMFP). In 

contrast with GMFP, LMFP reflects local cortical reactivity.  

Since some peaks were still not identified by all the pipelines,  we applied another approach.  

First, considered a latency interval for each peak of interest within which we were able to find 

values beforehand: 27-37 ms for N30 , 42-52 ms for N45 56-68 ms for P60. Then, we did an 

averaging-time on Brainstorm of these intervals in the subjects (and in the pipeline) where we 

did not find one or more peaks. We plotted the corresponding topography and picked up the 

channel with the highest amplitude, along with the four neighbouring channels. We then 

calculated the LMFP of the identified ROI and averaged over the latency interval, obtaining a 

value to use as the amplitude of that specific peak that we could not find. 

To evaluate possible differences in latencies, we considered the channels of the ROI and 

plotted the average of the five selected electrodes to look for deflections that could be 

associated with a peak. In this case, it was not possible to find latency values that could be 

informative. 

We then applied a non-parametric ANOVA (Friedman’s test) and a Wilcoxon test to assess 

possible differences in amplitudes; we did the same with the middle and the late latencies, 

while for the early latencies we only performed a Wilcoxon test. 

 

2.7.1.5 Butterfly plots, topographies and source localizations 

Finally, using Brainstorm, we averaged across subjects and obtained three butterfly plots 

summarising the effects of the three preprocessing pipelines in our population 

We also performed the average-time for all time intervals where the peaks of interest were 

found, in the same way as we looked for reasonable LMFP values for the missing peaks. 

In particular: 

• for peak P30 we selected the interval 27-37 ms, 

• for peak N45 we selected the interval 42-52 ms, 

• for peak P60 we selected the interval 56-68 ms, 

• for peak N100 we selected the interval 94-133 ms, 
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• for peak P180 we selected the interval 175-229 ms. 

We then plotted the topographies corresponding to these intervals to obtain a 2D 

representation of the voltage map on the scalp. We also calculated the corresponding source 

localisations to evaluate if the dynamics of the different TEP peaks in the different time 

windows were consistent with the topographies and, more importantly, with the physiological 

cortical activation. To do this, we used a default BEM model on Brainstorm and the MNE 

approach to obtain a current density map. 

For both topographies and localisations, the potential and current values were normalised with 

respect to the local maximum. 

 

2.7.2 Individual analysis 

We will also see how the different pipelines affected the datasets of each individual subject. 

We will see how many degrees of freedom are suppressed with the application of each 

pipeline. We will also create butterfly plots to get a qualitative insight into how the different 

approaches affect the raw data. We also plot the GMFP and the LMFP, with the related peaks 

analysis. 

For each peak identified, we also plotted the corresponding topography. 
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3 
Results 

3.1 Group analysis 

3.1.1 GMFP across the entire time range of interest 

 

 

Figure 18: GMFP amplitude averaged across the entire time interval 20-250 ms. The Standard Error (SE) bar is 

also plotted (SE = SD/sqrt(n), where n is the number of subjects). 

 

 

 
Table 4: GMFP global average values in µV across the entire interval with the standard deviation (SD). 

Leodori et. al Rogasch et. al Mutanen et. al 

2.45±0.822 2.99±0.78 2.55±0.61 

 

 

                                    Table 5: Statistical outcome of the GMFP for the interval 20-250 ms. 

 

  

 

 

 

 

Pairwise Comparisons 

(Durbin-Conover) 
p 

Leodori et.al – Rogasch et.al 0.096 

Leodori et.al – Mutanen 

et.al 
0.096 

Rogasch et.al – Mutanen 

et.al 
0.005 

Pairwise Comparisons 

(Wilcoxon) 
p 

Leodori et.al – Rogasch et.al 0.125 

Leodori et.al – Mutanen 

et.al 
0.625 

Rogasch et.al – Mutanen 

et.al 
0.063 

Friedman 

p = 0.041 
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3.1.2 GMFP across three defined time windows 

 

 

Figure 19: GMFP amplitude average for each time window of interest, with the SE bar. 

 

 

 
Table 6: GMFP global average values in µV across each time window, the standard deviation is also indicated. 

 Early Middle Late 

Leodori et. al 2.63±0.51 3.05±1.28 2.12±0.72 

Rogasch et. al 2.92±0.70 3.81±1.06 2.47±0.77 

Mutanen et. al 2.64±0.65 3.39±0.95 1.92±0.57 

 

 

 
Table 7: Friedman test output for each time window of interest. 

Friedman Early Middle Late 

 p = 0.247 p = 0.074 p = 0.091 
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Table 8: Pairwise comparison output for each time window of interest. 

Early 

Pairwise 

Comparisons 

(Durbin-Conover) 

p 

 Pairwise 

Comparisons 

(Wilcoxon) 

p 

 Leodori et.al – 

Rogasch et.al 
0.219 

 Leodori et.al – 

Rogasch et.al 
0.125 

 Leodori et.al – 

Mutanen et.al 
0.747 

 Leodori et.al – 

Mutanen et.al 
1 

 Rogasch et.al – 

Mutanen et.al 
0.134 

 Rogasch et.al – 

Mutanen et.al 
0.188 

 

 

 

Middle 

Pairwise 

Comparisons 

(Durbin-Conover) 

p 

 Pairwise 

Comparisons 

(Wilcoxon) 

p 

 Leodori et.al – 

Rogasch et.al 
0.438 

 Leodori et.al – 

Rogasch et.al 
0.625 

 Leodori et.al – 

Mutanen et.al 
0.076 

 Leodori et.al – 

Mutanen et.al 
0.625 

 Rogasch et.al – 

Mutanen et.al 
0.021 

 Rogasch et.al – 

Mutanen et.al 
0.063 

 

 

 

Late 

Pairwise 

Comparisons 

(Durbin-Conover) 

p 

 Pairwise 

Comparisons 

(Wilcoxon) 

p 

 Leodori et.al – 

Rogasch et.al 
0.046 

 Leodori et.al – 

Rogasch et.al 
0.125 

 Leodori et.al – 

Mutanen et.al 
1 

 Leodori et.al – 

Mutanen et.al 
0.813 

 Rogasch et.al – 

Mutanen et.al 
0.046 

 Rogasch et.al – 

Mutanen et.al 
0.063 
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3.1.3 Peaks analysis 

 

Figure 20: Average of the GMFP and LMFP values across subjects. The shaded area is the SE. 

  

3.1.3.1 Number of peaks 

 

Table 9: Numerosity of peaks analysis. 

 Percentage of peaks found 

  Early Middle Late 

 

Average 

number of 

peaks found 

P30 N45 P60 N100 P180 

Leodori et. al 4 60% 60% 100% 100% 100% 

Rogash et. al 4 100% 40% 80% 100% 100% 

Mutanen et. al 4 80% 60% 60% 100% 100% 
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3.1.3.2 Latencies and amplitudes 

Table 10: Latency and amplitude analysis. 

 LMFP analysis GMFP analysis 

LATENCY, ms 
 Early  Middle Late 

P30 N45 P60 N100 P180 

Leodori et.al 31.67±5.03 44±1 59.75±5.56 113.60 ± 14.57 203.60 ± 21.63 

Rogasch et.al 31.0±3.87 48.33±3.2 62.25±4.92 112.20 ± 9.28 203.20 ± 11.41 

Mutanen et.al 30.75±3.10 44.33±2.82 61.40±5.55 112.80 ± 9.63 197 ± 8.86 

AMPLITUDES, 

µV 

     

     

Leodori et.al 2.34±0.80 2.86±1.20 2.53±1.10 4.52 ± 2 2.68 ± 1.28 

Rogasch et.al 2.80±0.83 3.65±1.48 2.29±1.10 5.64 ± 1.68 3.54 ± 1.40 

Mutanen et.al 2.39±0.79 2.68±1.54 2.43±1.24 4.85 ± 1.50 2.70 ± 0.97 

 

Figure 21: Latencies and amplitudes bar plots with the SE. 
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Table 11: Latencies statistical analysis output. 

 

 

 

 

 

 

 

 

Table 12: Amplitudes statistical analysis output. 

 

 

 

 

 

 

 
 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Latencies    

Pairwise 

Comparisons 

(Wilcoxon) 

(p-values) 

Early Middle Late 

 P30 N45 P60 N100 P180 

Leodori et.al – 

Rogasch et.al 
1 0.346 1 0.855 0.786 

Leodori et.al – 

Mutanen et.al 
0.414 0.346 0.371 1 0.313 

Rogasch et.al – 

Mutanen et.al 
0.371 0.346 0.773 0.855 0.063 

Latencies   

Friedman 

(p-values) 
Middle Late 

 N100 P180 

 0.678 0.074 

Amplitudes    

Friedman Early Middle Late 

 P30 N45 P60 N100 P180 

 1 0.549 0.819 0.041 0.074 

Amplitudes    

Pairwise 

Comparisons 

(Wilcoxon) 

(p-values) 

Early Middle Late 

 P30 N45 P60 N100 P180 

Leodori et.al – 

Rogasch et.al 
1 0.813 0.313 0.188 0.125 

Leodori et.al – 

Mutanen et.al 
0.625 0.813 0.625 0.625 1 

Rogasch et.al – 

Mutanen et.al 
0.813 0.188 0.813 0.063 0.063 
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3.1.4 Butterfly plots, topographies and source localizations 

 

 Early Middle Late 

 P30 N45 P60 N100 P180 
Time 

interval  
27-37 ms 42-52 ms 56-68 ms 94-133 ms 175-229 ms 

Leodori 

et. al 

 

 

 

 

 

 

 

 

 

 

Rogasch 

et. al 

 

 

 

 

 

 

 

 

 

 

Mutanen 

et. al 

 

 

 

 

 

 

 

 

 

 

Figure 22: Butterfly plots, topographies and source localizations for each average-time interval of interest. 
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3.2 Individual analysis 

3.2.1 Subject 01 

 

Table 13: Degrees of freedom removed by the pipelines from Subject 01 raw data. 

 
1st ICA components, 

variance 

2nd ICA components, 

variance 

Bad 

channels 

PCs 

SSP-SIR 

Bad 

trials 

Leodori 

et.al 
1/62 (4.3%) 34/61 (92.34%) - - 0 

Rogasch 

et. al 
18/48 (5.29%) 11/30 (94.5%) 14 - 0 

Mutanen 

et. al 
5/61 (62.2%) - - 1 0 

 

 

 

 

Figure 23: Butterfly plots, GMFP and LMFP. 
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Table 14: Peaks analysis. 

 LMFP analysis GMFP analysis 

LATENCY, ms 

ms 

 Early  Middle Late 

P30 N45 P60 N100 P180 

Leodori et. al 27 45 56 117 198 

Rogasch et. al 28 - 56 118 204 

Mutanen et. al 28 - 60 120 197 

AMPLITUDE, 

µV 

     

     

Leodori et. al 2.43 1.73 1.53 4.37 2.40 

Rogasch et. al 3.74 - 2.12 4.44 2.12 

Mutanen et. al 2.73 - 1.08 3.54 1.59 

 

 

Table 15: Topographies. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Early Middle Late 

 P30 N45 P60 N100 P180 

Peak’s analysis 

latencies (ms) 
27 45 56 117 198 

Leodori et.al 

     

Peak’s analysis 

latencies (ms) 28  56 118 204 

Rogasch et. 

al 

 

 

   

Peak’s analysis 

latencies (ms) 28  60 120 197 

Mutanen et. 

al 
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3.2.2 Subject 02 

 

Table 16: Degrees of freedom removed by the pipelines from Subject 02 raw data. 

 
1st ICA components, 

variance 

2nd ICA components, 

variance 

Bad 

channels 

PCs 

SSP-SIR 

Bad 

trials 

Leodori 

et.al 
30/62 (42.88%) 13/32 (43.09%) - - 12 

Rogasch 

et. al 
24/56 (18.63%) 20/32 (66.53%) 6 - 11 

Mutanen 

et. al 
4/61 (8.98%) - - 1 7 

 

 

 

Figure 24: Butterfly plots, GMFP and LMFP. 
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Table 17: Peaks analysis. 

 LMFP analysis GMFP analysis 

LATENCY, ms 

ms 

 Early  Middle Late 

P30 N45 P60 N100 P180 

Leodori et. al 31 43 - 118 221 

Rogasch et. al 30 46 63 118 219 

Mutanen et. al 29 45 64 115 208 

AMPLITUDE, 

µV 

     

     

Leodori et. al 2.89 2.73 - 5.50 3.48 

Rogasch et. al 2.33 2.24 1.47 5.69 4.11 

Mutanen et. al 2.88 2.49 1.93 4.92 3.35 

 

 

 

Table 18: Topographies. 

 

 

 

 Early Middle Late 

 P30 N45 P60 N100 P180 
Peak’s analysis 

latencies (ms) 
31 43  118 221 

Leodori et. al 

  

 

  

Peak’s analysis 

latencies (ms) 30 46 63 118 219 

Rogasch e. al 

     

Peak’s analysis 

latencies (ms) 29 45 64 115 208 

 

Mutanen et. 

al 
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3.2.3 Subject 03 

 

Table 19: Degrees of freedom removed by the pipelines from Subject 03  raw data. 

 
1st ICA components, 

variance 

2nd ICA components, 

variance 

Bad 

channels 

PCs 

SSP-SIR 

Bad 

trials 

Leodori 

et.al 
20/62 (18.18%) 15/42 (79.22%) - - 1 

Rogasch 

et. al 
15/57 (6.73%) 14/42 (65.16% ) 5 - 2 

Mutanen 

et. al 
3/61 (7.83%) - - 1 0 

 

 

 

 

Figure 25: Butterfly plots, GMFP and LMFP. 
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Table 20: Peaks analysis. 

 LMFP analysis GMFP analysis 

LATENCY, ms 

ms 

 Early  Middle Late 

P30 N45 P60 N100 P180 

Leodori et. al 37 - 58 106 229 

Rogasch et. al 37 - 62 116 205 

Mutanen et. al 35 42 62 115 203 

AMPLITUDE, 

µV 

     

     

Leodori et. al 3.26 - 1.73 3.34 1.18 

Rogasch et. al 1.92 - 1.70 3.36 1.96 

Mutanen et. al 1.22 1.24 2.16 3.17 1.71 

 

 

 
Table 21: Topographies 

 

 

 

 

 Early Middle Late 

 P30 N45 P60 N100 P180 
Peak’s analysis 

latencies (ms) 
37  58 106 229 

Leodori et. 

al 

 

 

   

Peak’s analysis 

latencies (ms) 35  62 116 205 

Rogasch et. 

al 

 

 

   
Peak’s analysis 

latencies (ms) 35  62 115 203 

Mutanen et. 

al 
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3.2.4 Subject 04 
 

 

Table 22: Degrees of freedom removed by the pipelines from Subject 04 raw data. 

 
1st ICA components, 

variance 

2nd ICA components, 

variance 

Bad 

channels 

PCs 

SSP-SIR 

Bad 

trials 

Leodori 

et.al 
31/62 (9.17% ) 15/31 (97%) - - 7 

Rogasch 

et. al 
20/41 (0.71%) 10/21 (91.94% ) 21 - 4 

Mutanen 

et. al 
2/61 (0.02%) - - 1 2 

 

 

 

 

Figure 26: Butterfly plots, GMFP and LMFP. 
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Table 23: Peaks analysis. 

 LMFP analysis GMFP analysis 

LATENCY, ms 

ms 

 Early  Middle Late 

P30 N45 P60 N100 P180 

Leodori et. al - 44 57 133 175 

Rogasch et. al - 47 - 113 187 

Mutanen et. al 31 46 53 118 186 

AMPLITUDE, 

µV 

     

     

Leodori et. al - 4.12 3.85 2.13 1.93 

Rogasch et. al - 5.19 - 7.12 4.64 

Mutanen et. al 2.73 4.30 4.42 6.15 3.34 

 

 

 

Table 24: Topographies. 

 

 

 

 Early Middle Late 

 P30 N45 P60 N100 P180 
Peak’s analysis 

latencies (ms) 
 44 57 133 175 

Leodori et. 

al 
 

    

Peak’s analysis 

latencies (ms)  47  113 187 

Rogasch 

et.al 
 

 

 

  

Peak’s analysis 

latencies (ms) 31 46 53 118 186 

Mutanen et. 

al 
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3.2.5 Subject 05 
 

 

Table 25: Degrees of freedom removed by the pipelines from Subject 05 raw data. 

 
1st ICA components, 

variance 

2nd ICA components, 

variance 

Bad 

channels 

PCs 

SSP-SIR 

Bad 

trials 

Leodori 

et.al 
29/62 (47.61%) 12/33 (76.41%) - - 2 

Rogasch 

et. al 
16/44 (16.76%) 8/28 (70.87%) 18 - 2 

Mutanen 

et. al 
4/60 (11.46%) - - 2 0 

 

 

 

 

Figure 27: Butterfly plots, GMFP and LMFP. 
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Table 26: Peaks analysis. 

 LMFP analysis GMFP analysis 

LATENCY, ms 

ms 

 Early  Middle Late 

P30 N45 P60 N100 P180 

Leodori et. al - - 68 94 195 

Rogasch et. al 31 52 68 96 201 

Mutanen et. al - - 68 96 191 

AMPLITUDE, 

µV 

     

     

Leodori et. al - - 3.00 7.25 4.42 

Rogasch et. al 3.22 3.53 3.87 7.21 4.86 

Mutanen et. al - - 2.56 6.48 3.51 

 

 

 

Table 27: Topographies. 

 

 

 

 Early Middle Late 

 P30 N45 P60 N100 P180 

Peak’s analysis 

latencies (ms) 
  68 94 195 

Leodori et. al   

   

Peak’s analysis 

latencies (ms) 31 52 68 96 201 

Rogasch et. al 

     

Peak’s analysis 

latencies (ms)   68 96 191 

Mutanen et. al   
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4 
Discussion 

We compared the effects of different preprocessing pipelines (Leodori et al., Rogasch et al. 

and Mutanen et al.) on TEPs recorded after the stimulation of M1 in five healthy subjects and 

we observed considerable variability in the effects produced on different signal 

characteristics. 

 

To analyse these effects, we assessed the amplitude of the GMFP averaged over the entire 

time interval of interest, and we observed that the pipeline of Rogasch et al. showed, on 

average, higher values than Leodori et al. and Mutanen et al. which, conversely, produced 

signals with very similar mean amplitudes. Furthermore, the pipeline of Mutanen et al. was 

characterised by less variability, suggesting a greater stability in its approach across subjects. 

The statistical results also showed significant differences between Rogasch et al. and Mutanen 

et al., as expected, as these two pipelines are the most dissimilar. 

 

Then, the average amplitude of GMFP was assessed in three different time windows. When 

TEPs were analysed with the pipeline by Rogasch et al. we observed the highest GMFP 

amplitude values in all three windows, while Leodori et. al and Mutanen et. al showed lower 

and more similar values. Interestingly, despite slight differences in the steps, the pipelines by 

Rogasch et al. and Leodori et al.  produced results with different amplitudes. 

In the early time window, the three approaches were similar on average, but showed 

significant variations. Notably, Leodori et al. stands out with less variability with respect to 

the other two, while Rogasch et al. is characterised by a higher standard error (SE). 

Among the three time windows considered, the middle window showed the greatest 

variability, both between subjects and between methods. The results of the statistical analysis 

suggest a trend towards significance in the differences between the middle and late windows, 

due to the disparities between the approaches of Rogasch et al. and Mutanen et al. Since both 

Leodori et al. and Rogasch et al. differ significantly from Mutanen et al., these data confirm 

that Leodori et al. and Rogasch et al. adopt a very similar approach and apply similar 

corrections to the signal. 
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When considering separately the different time windows, we did not observe statistically 

significant differences in the average number of peaks identified. Interestingly, the peaks 

N100 and P180 in the middle and late windows were always identified, regardless of the 

subject or pipeline used. These peaks are the most reliable and stable in TEPs, as also 

confirmed in the literature [1]. Our results are in line with these findings, as the later latencies 

appear to be the most robust. 

It is important, however, to remember that the later components could be a combination of the 

direct effect of TMS stimulation and auditory and other sensory-evoked responses. 

 

With regard to peaks in the early window, we observed greater variability in the identification 

of peaks. Our results suggest that Rogasch et al. pipeline is more accurate in detecting the P30 

peak than the other two. However, peak N45 was less accurately detected in Rogasch et al. 

pipeline than in the other two, but similarly between Leodori et. al  and Rogasch et. al. 

Finally, it appears that the Leodori et al. pipeline is the most effective in detecting the P60 

peak. 

 

The latencies of the detected peaks show different patterns of variability, with the peaks after 

the first 100 ms showing more variation than the earlier peaks, which remain closer to the 

average. Variability between pipelines is generally negligible on average for latencies, 

statistical tests however show us significant differences in latency for peak P180 that are 

explained by differences between Rogasch et al. and Mutanen et al. 

 

Peaks amplitudes show greater variability between subjects than latencies, resulting in a trend 

of statistical significance for peaks N100 and P180, mainly due to differences between 

Rogasch et al. and Mutanen et al. 

 

All this further underlines the importance of the choice of preprocessing pipeline on TEPs, 

especially at early latencies, with an impact on their reproducibility. Unfortunately, early TEP 

components are often contaminated with large artefacts, such as TMS pulse artefact, muscle 

and decay artefacts, which compromise the SNR and make this part of the signal particularly 

difficult to evaluate. Consequently, the selection of the right preprocessing pipeline is crucial 

for improving signal quality. 
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It can be seen that although two of the three pipelines (Leodori et al. and Rogasch et al.) are 

very similar and have only a few variations in the processing steps, they have non-negligible 

differences in the analysis outcome.  

 

The three approaches also differ in the number of bad trials removed. In fact, the Mutanen et 

al. pipeline, which uses specific and automated methods (SOUND and SSP-SIR) to remove 

artifacts the signal before trial rejection, systematically removed fewer trials than the other 

two pipelines. 

Another difference that must be outlined is the level of automatism between the different 

approaches. The rejection of the independent artefactual components in the ICA rounds is 

indeed supervised by the user and may differ across users. However, in the pipeline Leodori 

et. al the rejection of bad electrodes is performed automatically by the TESA plugin. The level 

of automatism in Mutanen et al.'s pipeline is the highest, in fact the SOUND and SSP-SIR 

work essentially autonomously. Of note, higher level of automatism would be preferable to 

reduced operator-based biases and to increase the efficiency of the preprocessing. 

 

Although ICA has long been used as a method for feature selection and is recognised as a 

valid method in EEG analysis, it may not be the most suitable tool for separating brain signal 

from artefacts in TEPs; indeed, this method assumes non-dependence between the 

components. In TMS-EEG, however, this is not always true as many artefacts are time-locked 

to the TMS pulse [1]. 

 

Furthermore, the application of a specific pipeline should be also guided by the nature of the 

available data. In some cases, it may be tempting to use the same framework, but artefacts 

may vary considerably from one recording to another. For example, in some recordings there 

may be numerous corrupted channels due to the low quality of recordings, and removing these 

channels could significantly reduce degrees of freedom. In other situations, there may be more 

artefacts due to movement, especially in particularly agitated subjects. 

 

Despite the differences between the methods, we observed that the comparison of 

topographies and localisation sources are consistent and reliable for all latencies of interest. It 

is important to note, that for all visualisations the current and potential values were 

normalised to the local maximum, as it is assumed that signal amplitude does not determine 

the quality of a pipeline. What is really relevant is to be able to accurately describe the TEPs 

dynamics, which provide the most valuable information on the underlying neural processes. 
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This could be misleading when exchanging data between research groups using different 

scales, in which case the data may not be reproducible. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



65 

 

 

5 
Conclusions 

 

The main issue in identifying an optimal pipeline is the lack of knowledge of the actual signal 

we intend to reconstruct. It is also crucial to emphasise that we only examined three different 

pipelines in our study, however, several other  preprocessing pipelines have been proposed, 

each with distinct characteristics. Disparities between these pipelines are a critical issue in the 

analysis of TEPs and could be mitigated when results are based on a comparison of two 

conditions processed using the same approach. 

Another crucial aspect is the improvement of EEG recording by minimizing the artifactual 

components, in order to optimise the signal-to-noise ratio. This effort may lead to more robust 

results that are less influenced by pipeline selection. 

 

Furthermore, a possible strategy that could assist and contribute to the characterisation of TEP 

components is the use of different methods on the same dataset, known as “multiverse 

analysis” [1], [69]. This approach could be useful to control the variability inherent to 

different methods. 

 

The main limitation of the present study is the small sample size of the enrolled subjects, 

which may have affected the reliability of statistical analyses. Nevertheless, this research 

provides several interesting clues even in this small population, that will be further explored 

in future studies considering a larger population of healthy subjects. 
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