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Abstract

This research aims to provide a clearer overview of a new technique called Multi-task Mutual
Learning in the field of Natural Language Processing, specifically in sentiment analysis and
topic detection. The objective is to understand whether employing different models within
this technique may impact its performance. With the growing collection of natural language-
based data, private companies, public organizations, and various entities are increasingly seek-
ing to extract information from this vast amount of data, which can be in the form of audio,
text, or video. This underscores the need to study systems that can analyze this data effectively
and do so in the shortest possible time, providing a competitive advantage in the private sec-
tor and a social analysis of the current historical moment in the public domain. The method
employed is Mutual Learning, and within this technique, we analyzed specific models, includ-
ing Variational Autoencoder, Dirichlet Variational Autoencoder, Recurrent Neural Network,
and Bidirectional Encoder Representation from Transformer. These methods were executed
with two datasets: YELP, containing reviews of commercial activities, and IMDB, containing
reviews of films. The main findings highlight the complexity of the model, the computational
power required, and the customization of the model according to specific needs.
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1
Introduction

In today’s digital age, the proliferation of social networking sites and communication devices,
such as smartphones, laptops, andPCs, has facilitatedunprecedented levels of interaction among
individuals, leading to the creation of massive amounts of big data. Notably, platforms like
Twitter boast a vast network of 467 million users, generating a staggering 175 million tweets
daily [2]. The sheer volume of data generated is astounding, where storing one second of high-
definition video requires 2000 times more space than a page of plain text.

The InternationalDataCorporation’s 2011 report revealed that theworld had already gener-
ated approximately 1 zettabyte (ZB) of data, and this exponential growth continued, reaching
7ZB by the end of 2014. Projections indicate that by 2020, the volume of data generated is
expected to skyrocket to 44ZB, with textual data from social media technologies like Facebook,
Twitter, and messaging apps such as WhatsApp and Telegram constituting at least half of this
data.

Amid this data deluge, our focus turns to Natural Language Processing (NLP), a field that
plays a pivotal role in making sense of the textual data inundating digital platforms. This chap-
ter delves into the intricacies of NLP, exploring topics such as Topic Detection, Sentiment
Analysis, Mutual Learning, and related works. As we navigate through these aspects, it be-
comes evident that the unprecedented growth in data, as outlined above, underscores the sig-
nificance of advanced computational techniques in extracting meaningful insights from the
textual sea of information.
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1.1 Natural Language Processing

Natural Language Processing (NLP)[3] is a field of study that encompasses a range of compu-
tational techniques aimed at analyzing and representing texts found in natural language. These
techniques operate at various levels of linguistic analysis and are designed to achieve language
processing capabilities resembling those of humans. Importantly, NLP is not an end goal in
itself but serves as a means to accomplish specific tasks or applications.

The primary objective ofNLP is to achieve human-like language processing, where the term
”processing” is carefully chosen over ”understanding.” While the field was initially called Nat-
ural Language Understanding (NLU), it is now widely accepted that complete NLU has not
yet been achieved. A comprehensive NLU system would be able to paraphrase text, translate
it into different languages, answer questions about its content, and draw inferences from the
text. AlthoughNLPhasmade progress in tasks such as paraphrasing, translation, andquestion-
answering, the ability to draw inferences remains a goal.

NLP has practical applications tailored to specific needs, such as InformationRetrieval (IR)
systems that useNLP for providing precise and comprehensive information in response to user
queries. In these systems, the goal is to represent the user’s query accurately and match it with
the content of documents, regardless of how the query is expressed.

The origins of NLP can be traced to various disciplines, including linguistics, computer sci-
ence, and cognitive psychology. Linguistics contributes formal, structural models of language,
computer science focuses ondeveloping internal representations and efficient processing,while
cognitive psychology examines language usage as a window into human cognitive processes.

The field of NLP is often divided into language processing and language generation. Lan-
guage processing involves analyzing language to produce meaningful representations, while
language generation focuses on producing language from a representation. Additionally, a tra-
ditional distinction is made between language understanding and speech understanding, with
speech understanding incorporating elements of acoustics and phonology.

NLP approaches can be categorized into symbolic, statistical, connectionist, and hybrid
methods. The statistical approach, for instance, employs mathematical techniques and large
text corpora to create generalized models of linguistic phenomena. Hidden Markov Models
(HMM) are frequently used in statistical models, particularly in tasks such as speech recogni-
tion, lexical acquisition, parsing, part-of-speech tagging, and machine translation. To do that
its canbeuseddifferences types ofNeural probabilistic languagemodel [4], that have the goal of
learn the joint probability functions of sequences of words in a language. This kind of models
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haveantintrtinsticaflflyoneprobflem:thedtimenstionafltity,tinourworkweencounterthatprobflem

becausethemodeflthatweusedhavetomanageabtignumberoffdataandaflargestizeofftin-

putsentecesthatproduceanhtighcomputattionaflcosts.Astattistticaflmodefloffflanguagecanbe

representedbythecondtittionaflprobabtifltityoffthenextwordgtivenaflfltheprevtiousones,stince

P̂(wT1)=

T

t=1

P̂(wt|w
t−1
1 )

wherewttisthet-thword,andwrtittingsub-sequencew
j
ti=(wti,wti+1,...,wj−1,wj).Whenbutifld-

tingstattistticaflmodeflsoffnaturaflflanguage,oneconstiderabflyreducesthedtiticufltyoffthtismod-

efltingprobflembytaktingadvantageoffwordorder,andtheffactthattemporaflflycfloserwords

tinthewordsequencearestattistticaflflymoredependent.Thus,n-grammodeflsconstructtabfles

offcondtittionaflprobabtifltittiesfforthenextword,fforeachoneoffaflargenumberoffcontexts,ti.e.

combtinattionsofftheflastn−1words:

P̂(wt|w
t−1
1 ≈P̂(wt|w

t−1
t−n+1)

Weonflyconstiderthosecombtinattionsoffsuccesstivewordsthatactuaflflyoccurtinthetratinting

corpus,orthatoccurffrequentflyenough.Inourworkasspectitiedaboveoneoffthebtiggest

tissuestismanagtingthedtimenstionafltityoffourdatasetsweusetheapproachexpflatinedtinthe

paper[4]ctitatebefforethatcanbesummartizetinthreepotints:

•Assoctiatewtitheachwordtinthevocabuflaryadtistrtibutedwordffeaturevector(areaflvafl-

uedvectortinRn)

•Expressthejotintprobabtifltityffuncttionoffwordsequencestintermsofftheffeaturevectors

offthesewordstinthesequence

•flearnstimufltaneousflythewordffeaturevectorsandtheparametersoffthatprobabtifltity

ffuncttion

Theffeaturevectorrepresentsdtifferentaspectsofftheword:eachwordtisassoctiatedwtith

apotinttinavectorspace.Theprobabtifltityffuncttiontisexpressedasaproductoffcondtittionafl

probabtifltittiesoffthenextwordgtiventheprevtiousones.
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1.2 Topic Detection

Topic detection uses theNLPs algorithms in order to understand the topic behind textual data.
this common task is particularly usefull when you can have access to a large dataset but you
know that a lots of data are useless of you needing, so that you extract the topic behind auto-
matically. The research in this field is really important because in the recent year we can have
access to an infinity amount of text data through for example the social network, that can be
used for a bunch of scope such as Marketing for the private company, if you can analyze as
much as possible text data we can reply rapidly to the customers question not only in the re-
view but principle in the products adapting them to the needs of large consumer groups. For
the public company can be usefull to understand the quality of the services or if needing others
services to help the citizens in their life. The singular states can be understandwhat social issues
there are in their country, nowadays the majority of people don’t go out to protest but write
a post on Twitter or other social network, due to that the government can be adapt their poli-
cies or they could be solve some problem that in normal scenario cannot because they didn’t
reach that information. Another big field in which topic detection is really important is the
human-computer interactions, in recent year the expansions of the AIs needs to search the best
model to understand the human language through computers, to do so the topic detection
represent one good information for the model that need to understand what they talk about
with a speed process. Themodel related to this task can be applied at different levels, first it can
be used at document-level to understand and analyse the topic in a document, this document
is a sum of different sentences; another level is the sentence-level in which we analyse the sen-
tences singularly in a document, or the deepest level is word-level in which the single words are
analysed singularly. The choice of the level is based on you scope. in our works we analyse our
datasets based ondocument level, inwhich every document is a sumof some sentences, because
the word-level information is passed by the classification parts. Probabilistic topic models have
been used widely in NLP. [5]Typically, words are assumed to be generated from latent topics
which can be inferred fromdata based onword co-occurrence patterns. The basic idea is to con-
struct a neural networkwhich aims to approximate the topic-word distribution in probabilistic
topicmodels. Additional constraints, such as incorporating prior distribution[6], enforcing di-
versity among topics [7] or encouraging topic sparsity [8], have been explored for neural topic
model learning and proved effective. However, most of these algorithms take the auto-encoder
as the basis learner to fit the distribution function. Due to the drawback in integrals, the gen-
eralization ability of the auto-encoder is limited. More recently, the Variational Auto-Encoder
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[9] has been proved more effective and efficient to approximating deep, complex and underes-
timated variance in integrals [10], [11]. However, existing supervised neural topicmodels treat
the class labels as weights which are distributed across words during training. It thus ignores
the rich contextual information such as dependencies among words/phrases in a sentence and
the ordering of sentences in a document, which is important for many downstreamNLP tasks
including sentiment analysis and opinion mining.

Figure 1.1: Topic Detection

1.3 Sentiment Analysis

In today’s era of big data, the application of Opinion Mining and Sentiment Analysis has
proven to be a valuablemethod for categorizing opinions and assessing the overall publicmood.
These techniques have evolved over the years and found applications across various datasets and
experimental settings[12].

Research in sentiment analysis has expanded beyond unimodal text-focused approaches to
include multiple modalities such as speech and video. It addresses various Natural Language
Processing (NLP) subtasks, including aspect extraction, subjectivity detection, named entity
recognition, and sarcasm detection.

The primary goal of sentiment analysis is to extract meaningful insights from people’s opin-
ions, providing valuable information to both consumers and manufacturers. Typically, senti-
ment analysis involves a classification process, with threemain levels: document-level, sentence-
level, and aspect-level sentiment analysis[12]. The main sources of data for sentiment analysis
are product reviews, especially fromreview sites. While sentiment analysis is commonly applied
to product reviews, its applications extend to stockmarkets, news articles, and political debates
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[13]. A comprehensive survey on sentiment analysis algorithms and applications provides an
overview of recent advancements in the field. This survey categorizes various algorithms and
their contributions to sentiment analysis techniques, including sentiment classification, fea-
ture selection, emotion detection, and transfer learning [13]. Due to the complexity of senti-
ment analysis, which involves underlying concepts and expressions in text, the process encom-
passes multiple tasks. The primary tasks include sentiment or opinion detection, which clas-
sifies text as objective or subjective based on adjective examination, and polarity classification,
which classifies opinions into opposing sentiment polarities [14]. Sentiment analysis involves
assessing if a document or sentence carries emotional sentiment, usually categorized as positive,
neutral, or negative. This information finds application in diverse contexts, such as evaluating
customer satisfaction, discerning emotions in social media posts, or enhancing internal com-
pany processes. In recent years, sentiment analysis algorithms have evolved to associate various
emotions, including anger, happiness, sadness, urgency, and more. In our work, specifically in
Topic Detection, we employ a document-level approach. In the classification part, we adopt a
word-level approach, leveraging sentimentmethods to capture sentiment information for each
label in our dataset. This information is exchanged with the topic parts and vice versa [5]. Sen-
timent classification can be achieved through supervised statistical learning models[15], [16],
[17], traditional feature-engineering-basedmodels, or deep learning models, including Convo-
lutionNeuralNetwork (CNN)[18] andRecurrentNeuralNetwork (RNN) [19]. Document-
level sentiment classification involvesmodeling the hierarchical semantic composition of a doc-
ument using hierarchical models like the Gated Recurrent Neural Network[20] and the Hi-
erarchical Attention Network[21]. Recent advancements, such as training neural networks
with large-scale pre-trained word embeddings like BERT[22], have significantly improved text
classification[23]. In our specific approach, we utilize RNN and BERT.

1.4 Mutual learning

Mutual Learning [5] is an approachbased onmulti-task learning inwhich twodifferentmodels
are trained simultaneously, this two models share knowledge and their prediction during the
training phase. This leads to have better information in the prediction because the twomodels
receives information that they wouldn’t have been able to find on their own. The Multi task
Learning is an important machine learning mechanism that improves the generalisation per-
formance by learning a task together with other related tasks, it usually has a common layers
which learns a shared representation across tasks, then stack several task-specific upper layers
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Figure 1.2: Sentiment analysis process

to learn task-relevant representations. MTL has been successfully applied in many NLP tasks
including classification [24], [25] and sequence tagging [26], [27], [28], [29]. However, most
MTL research focuses on supervised learning [30]. To the best of our knowledge, there is no
MTL framework for jointly learning an unsupervised model such as a generative topic model
and a supervised model such as a text classifier. The different from theMTL is that in theMu-
tual Learning are used both supervised and unsupervisedmodels, the first one for the classifica-
tion part and the second one for the part of topic detection. We use a novel MTL framework
based on the following observation. The weights of the decoder in a neural topic model indi-
cate the association probabilities between words and topics, while the attention signals in an
attention-based classificationmodel captures the importance of words/sentences contributing
to the overall sentiment classification. Thus, if we could make these two distributions as simi-
lar as possible, we can potentially generate polarity-bearing topics and at the same time achieve
higher sentiment classification results with the topical information incorporated. The key idea
is to use latent topic distribution of each word obtained from the neural topic model to guide
the calculation of word-level attention signals in the text classificationmodel, which essentially
incorporates the topic information into the classifier training. On the other hand, the word-
level attention vector which potentially carries the word-level polarity information could be
used to guide the learning of latent topic distributions in the neural topic model. The latent
topic distribution for each word can be obtained by using the weights connecting the penul-

7



ttimateflayerandthereconstructtionflayertintheneurafltopticmodefl.Theattenttionvectorffor

eachwordtinRNNtisstoredtinu
j
ti.Mutuaflflearntingtisusedtomaketheflatenttopticdtistrtibuttion

offawordtobestimtiflartotheattenttionvectoroffthesamewordffromRNN.Thebenetitsoff

ustingsuchastrategyare:

•flearntingflatenttopticswtithword-fleveflpoflartitytinfformattiondertivedffromcflasstitiertratin-

tingwtithouttheneedoffustinganyexternaflsenttimentflexticons;

•tincorporattingtheflatenttoptictinfformattiontintocflasstitiertratintingtotimprovethecflassti-

ticattionperfformance.

Beflowtheretisthepseudo-codeoffthtismodeflandtheschemeofftheaflgortithmwhtichexpflatins

howthetheMuflttitaskmutuaflflearntingaflgortithmworkstintheoryandtheptictureshowhow

thetwomodeflsexchangethetinfformattion. Theflatenttopticdtistrtibuttionfforthetithwordtis

Aflgortithm1.1Mufltti-TaskMutuaflLearnting

Requtire:Documentswtithflabefls{wd,yd},d={1,2,...,D},pre-tratinedwordembeddtings,
candtidatewordvocabuflaryV={w

′

1,w
′

2,...,w
′

||V||},themaxtimumtratintingtiterattionsT.
Ensure:Tratinedtopticmodeflandcflasstitier
Intittiafltisemodeflparameters
fforj=1toTorunttiflconvergence
fforeachmtintibatchofftratintingtinstances
MtintimtisetheflossffuncttionLfftinafl

endffor
ffort=1to||V||
OpttimtisetheobjectffuncttionOfforeachw

′

t

endffor
endffor
Ftinetunethemodeflbymtintimtistingthetaskspectiticflossffuncttionfforeachtask

representedasw
′

ti={wti1,wti2,...,wtiK}whereKtisthetotaflnumberofftoptics,andtheattenttion

vectoru
′

tifforthetithwordtisobtatinedffromtheschemeoffRNN.Wemeasureandmaxtimtisethe

stimtiflartitybetweentheflatenttopticdtistrtibuttionoffthetithword,w
′

ti,andtitsattenttionvectorU
′

ti,

durtingthetratinting.Weusetheffoflflowtingstimtiflartitymeasurementmetrtic:

O=
ti

|w
′

ti·u
′

ti|

∥w
′

ti∥2·∥u
′

ti∥2
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Ftigure1.3:MTLwtithMutuaflLearnting

thattisbasedoncostinestimtiflartity.Inordertomakew
′

tiandu
′

ticomparabflewesetthedtimenstion

offtheattenttionvectoroffu
′

titobethesameasthenumberoffflatenttoptics.Soasexpflatinedtin

fltine4andtinfltine7weopttimtisetheparameterofftheequattion:

Lfftinafl=
d

α·Lt(wd)+β·Lc(wd)

where

Lc(wd)= p·flog[sofftmax(Wd·wd+bd)]

Lt(wd)≈
1

L

L

fl=1

Nd

n=1

flogp(wd,n|θ̂
(fl)
) KL(q(zd|wd)∥p(zd))

andtheequattionOseparatefly.Ineachtratintingepoch,weopttimtizetheparametertinLfftinafltiter-

attiveflyfforeachmtintibatchofftratintingtinstancestoobtatintopticandsenttimentrepresentattions.

Then,weupdateOattheendoffcurrenttratintingepoch,sotheLfftinafltisupdatemoreffrequentfly

comparedtoO.Thtististhetherybehtindthtismedefl,tohaveacompfletevtistionaboutthtistech-

ntiqueswemodtiffythemethodstinstidethemodefltinordertoseetiffthemethodexchangecor-

rectflythetinfformattionandtifftheretisaposstibtifltitytoachtievebetterperfformanceustingmodefl

moresophtistticateandnewertinthefltiterature.Basticaflflywechangethetopticdetecttionpart

ffromaVartiattionaflAutencoders(VAE)toaDtirtichfletVartiattionaflautoencoders(DtirVae),based

ontheresufltsobtatinedustingtheLDAtinsenttimentandtopticdtistrtibuttion[31],andtinthe

senttimentanaflystispartffromtheRecurrentneauraflnetwork(RNN)toBtidtirecttionaflEncoder

RepresetnattionsffromTranfformers(BERT).tinthesecttion3.aflflthtisffourmodeflareexpflatined
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theoretically and our applications. Now we can explain how our code of MTL are composed:
we have nine file:

• main.py: is one of the most important parts, in this file we set all the parameters for the

model, preprocess the data for the topic part, we get vocabulary, load embedding,split

the data in train and test, set themodel, the loss function, the optimization function and

last thing start training the model;

• train_model.py: this file contains all the stuff that we need in order to train the model

and print the results. inside we have four function:

– train_model: used to train the model inside we have a for loop based on the num-

ber of epochs, and a for loop based on the batch size. Inside this two loopwe set all

the variables that we need and we start to calculate all calling the model function,

loss functions, oncewe calculate all we optimize it. under some specific conditions

we evaluate it on the test set. after all we print the results;

– evaluate: this function basically calculate all the things that are calculated in the

training phase but in the test set. proceed always with a for loop based on the

batch size;

– get_reward_cv: this function create and return the classification vector based on

the vocabulary the topic and the model;

– print_topic: is a function used to print the resulting topic.

• model.py: is the most important part in this file are contained all the parts of the model,

the first part start by setting all the parameters, the second one set the structure of the

differences models. and the last one the part called forward part that are responsible to

execute the code. all the functions are inside a class named JointModel;

• model_data.py: the main part in this file is the class DataIter, in which we modify the

object in order to have iterable and modifiable the objects containes in the dataset and

in all the others file;

10



• clf_data.py: here we have five functions:

– get_vocabulary: used to create the vocabulary;

– load_embedding: create the embedding matrix used in the model;

– convert_words2ids: create the id list in order to complete the embedding;

– load_clf: load the classification obtained by the sentiment analysis parts;

– sort_key: organize the keys nad returns the document list, label list and the index

list.

• topic_data.py: in this filed are contained two functions, the first one load and process

the data in order to split ihe dataset in train and test, organize the label and all the stuff

that are needed to preprocess the data, the second function is the preprocess of the data

in order to obtain the correct structure and all the stuffs to train the model;

• embedding_code.py: cointains the embedding model

• loss.py: contains the loss function for the topic parts and the loss function shared by the

two parts of the model which is used to optimize all the model;

• file_handing.py: is a library create by our own in which there are all the basic function

to read, write, save the files.

This is how our files are organized, the singularly models are explained in section 3.

1.5 Objectives of this thesis

The aims of our work is basically two: the first one is see if the Mutual learning works better
compared to the normal model of Topic detection, the second one is try to see if, changing the
model we can achieve better performance, this for all the three vocabulary sizes (2000, 3000,
5000) To do so we compare all the model with some metrics:
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•Compflextity:Compflextitytinaflgortithmsrefferstotheamountoffresources(suchasttime

ormemory)requtiredtosoflveaprobflemorperfformatask.Themostcommonmea-

sureoffcompflextitytisttimecompflextity,whtichrefferstotheamountoffttimeanaflgortithm

takestoproducearesufltasaffuncttionoffthestizeoffthetinput.Inourworkweanaflyze

thettimecompflextityperepochstinthetratintingphase. Wedothattoseethetrade-off

betweentheperfformancemeasuresandthettimebecausetiffweachtieveabetteraccuracy

butthetimprovementtisveryfltittfleandthettimetorunthenewmodefltisexponenttiaflfly

comparedtothetirstonetinthereaflscenartiotisnotagoodchoticesbecausewemusttake

tinconstiderattionthettimeneedtotratintheaflgortithm;

•Accuracy:theaccuracymeasurethenumberoffthepredtictedvafluesthatarepredticted

correctflydtivtidedbythetotaflpredtictednumbers.Accuracyhastwodetintittions:

–Isadescrtipttionoffonflysystematticerrors,ameasureoffstattistticaflbtiasoffagtiven

measureoffcentrafltendency;flowaccuracycausesadtifferencebetweenaresufltand

atruevaflue;ISOcaflflsthtistrueness.

–ISOdetinesaccuracyasdescrtibtingacombtinattionoffbothtypesoffobservattionafl

error(randomandsystemattic),sohtighaccuracyrequtiresbothhtighprectistionand

htightrueness.

Accuracytinourworktisdetinedasffoflflow

( correct_predticttion)/totafl_sampfle

•KLD:[32]Kuflflback–LetibflerdtivergenceKL(p,q)tisthestandardmeasureofferrorwhen

wehaveatrueprobabtifltitydtistrtibuttionpwhtichtisapproxtimatewtithprobabtifltitydtistrti-

buttionq.Itsetictientcomputattiontisessenttiafltinmanytasks,astinapproxtimatecompu-

tattionorasameasureofferrorwhenflearntingaprobabtifltity.tinourworkweusethemto

anaflyzetheerrortinthegenerateddtistrtibuttionwtithrespecttoanormafldtistrtibuttion.We
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detineourKLDasffoflflow

0.5·

N

ti=1

1+flog(flogvarti) (mean
2
ti) exp(flogvarti)

Thtisrepresenttheflossfforthetopticdetecttionpartandtisusetitfforcaflcuflatethefloss

•Loss:[33]Aflossffuncttionhastwocructiaflroflestintratintingaconventtionafldtiscrtimtinant

deepneuraflnetwork:

–titmeasuresthegoodnessoffcflasstiticattion

–generatesthegradtientsthatdrtivethetratintingoffthenetwork.

ConventtionafltratintingoffaDNNassumesaflossffuncttionthatmeasuresthe‘‘goodness’’

offthecflasstiticattionbycompartingthepredticttiontothegroundtruth.Spectiticaflfly,errors

betweenthepredtictedandtrueflabeflsarecaflcuflatedoverthetratintingset.Theerrorsare

thencombtinedtintoascaflarwhtichtiscaflfledfloss.Thtisphaseoffcaflcuflattingtheflossvaflue

ffromrepresentattionpotintstiscaflfledfforwardpropagattionofftheflossffuncttion.Thetratin-

tingoffthenetworkactuaflflyoccurstinthebackpropagattionphase,tinwhtichtheparame-

tersoffthenetworkareupdatedproporttionaflflytothegradtientofftheflosswtithrespectto

theparameters.Asaflflthenegattivegradtientsarecaflcuflatedbythechatinruflethatstarts

wtiththeparttiafldertivattivesofftheflosswtithrespecttotherepresentattions,thedertivattives

offtheflossffuncttionarethestartting‘‘fforces’’thatdrtivethetratintingoffthenetwork.We

measuretheflossbythecrossentropyffuncttion[34]fforthecflasstiticattionpartandthe

KLDfforthetopticpart.Thtistwoflossesaremuflttipfltiedbythetirwetigths(twoparame-

tersthatcanbetunedtiffwewanttogtivemoretimportancetoapartrespecttotheother)

andthenaresummeduptocomputetheoveraflflfloss.Cross-entropycotinctideswtiththe

(muflttinomtiafl)flogtistticflossappfltiedtotheoutputsoffaneuraflnetwork,whenthesofftmax

tisused.IttisknownthattheflogtistticflosstisBayesconstistent[35]Thus,asymptotticaflfly,a

nearflyopttimaflmtintimtizerofftheflogtistticflossovertheffamtiflyoffaflflmeasurabfleffuncttions

tisaflsoanearflyopttimaflopttimtizeroffthezero-onecflasstiticattionfloss.TheCross-entropy
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arecaflcuflatedasffoflflow:

fl(x,y)=L={fl1,...,flN}
T

fln=
C

c=1

wcflog
exp(xn,c)
C
ti=1exp(xn,ti)

yn,c

1.6 Reflatedwork

Westarttoworkontheparttiaflcodethattheresearcherssharedtinthepaper,thetirstpartwe

trytorecreatethemtisstingpart,anddebugtheothers.Thetirstmtisstingpartthatwebutifld-

uptisafltibraryoffbasticffuncttionthatread,wrtiteandsaveaflflthetiflesthatweuse,wecaflfltit

tifle_handflting.Oneoffthemosttimportantmtisstingpartwasthepartsofftheembeddting,weuse

apre-butifltmethodscaflfled”words2Vec”timportedfformgenstimfltibrary:Word2Vectisawtidefly

usedaflgortithmbasedonneuraflnetworks,commonflyrefferredtoas“deepflearnting”(though

word2vectitseflfftisrathershaflflow).Ustingflargeamountsoffannotatedpflatintext,word2vecflearns

reflattionshtipsbetweenwordsautomatticaflfly.Theoutputarevectors,onevectorperword,wtith

remarkabflefltinearreflattionshtips,thattifletisusedtintheffuncttion”fload_embeddting”toobtatinthe

embeddtingmatrtix.Understandtingthecodewenotticethattinsomeparttheretisatheoretticaflfly

probflemsowetixthat,fforexampfletheflossffuncttion,theresearchergtivesomeposstibtifltittiesand

studtiedaflflthetheoretticafltimpflticattionfforaflfltheffuncttionstoseewhatworksbetter,wemake

somecorrecttiontoadapttoourmodtiticattions. Wedtiscoversomeprobflemstinthestructure

offthecodeandtintheflowsofftheaflgortithm,thtisworkwasprettyflongbecausewecannot

modtitiedaflotoffthtingstinparaflfleflsoweuseaparttiafldatasettoseeeverymodtiticattionhow

timpacttintherestoffthecode.aflthoughweusedamuchsmaflflerdataseteachexecuttiontooka

flotoffttime,wearetaflktingabout50mtinutesorevenanhour.thechangesthatweremadewere

many,oncewereachedthepotintwherethecodewasrunntingcorrectflywehadtore-codeaflflthe

datastructuressothattheywoufldworkwtithbothdatasetswhtichhaveverydtifferentstructures

andstizes.Ftirstoffaflflwestarttoanafltizethettimeconsumtingandwenotticethatthecflasstiticattion

parttisthemostcompflexandtisthepartwerequtiredthemajortityoffthettime,Anotherttime

consumtingparttistheopttimtizattiontinthetratintingphase:theopttimtisattiontisactthroughthe

gradtientdescenttineverybatch,thtiscoufldbereaflflyexpenstivewhenthebatchstizegrows,we

dothatbyPyTorchpackagethathavepre-butifldffuncttionstoopttimtizethemodefl,tinourcase
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weusecfltip_gradtient_normthatcaflcuflatethegradtientofftheflossandthencaflcuflatethenorm

onaflflthegradtientstogetherandmodtitiedthegradtientstin-pflace.Ateverytiterattionthemodefl

areopttimtizebytheflossdetinedtintheparagraph[1.5],andonettimeperbatchweopttimtizethe

methodwtithaKLDflossffuncttionbutcaflcuflatedwtiththeword_attenttion_dticttionaryvtiathtis

fformufla:

kfld_aflfl+=
|⟨TMattenttion,HANattenttion⟩|

∥HANattenttion∥2·∥TMattenttion∥2

thtiscaflcuflatedfforaflflthetinstancestintheword_attenttion_dticttionary.whereHANattenttiontisthe

vaflueoffattenttionandTMattenttiontisthereflatedwetighttinthemodefl.Whenweunderstandthat

wearetinffrontsoffareaflflycompflexmethodandtitrequtiredhourstotratintit,wetrytomanage

thedtifferentparameterstinordertotindthebestcombtinattionthatcoufldmakeffeastibflethe

tratintingtinagoodttime.Theparametersthatcanbemodtitiedare:

•Batch_stize

•Vocabuflary_stize

•dt:canseeasthenumberofftopticswewoufldpredtict

•tm_wetight:

•cflff_wetight

•max_epochs

•mtin_epochs

ForourtirstscopeweconcentratetwothreeparametersBatch_stize,max_epochsandmtin_epochs.

Wetrytotunesthtisvafluestinthesmaflflsubsetoffthedatadotingthatfforunderstandthebe-

havtiourandthenwetrytinthewhofledatasets. Wetrytochangethebatchstizeparameter(1,

5,10,20,100,500,1000)andseehowmuchttimerequtiredoneepochsthattisthesumoffaflfl

titerattionstinthedtifferentbatchesandtheoveraflflttime.Wesetamaxnumberoffepochsequafl

to3andamtinequaflto1.Somevafluesarenotposstibflesfforexampflewtithbatchstizeequaflto

1000thecomputedhaven’tenoughmemorytoanaflyzeabatchwtiththtisdtimenstions.Thtis

takeaflotoffttimesbecauseeveryrunrequtiredhourstodtidtitandtheposstibtifltitytotuntingthtis

parameterareverymuch.Oncewehadffoundthebestparameterfforbatch_stizethatwoufld
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allow us to execute the entire dataset in the shortest possible time, we focused on seeing how
performance measures are affected with respect to vocabulary size. Once we had analysed all
the results, which are reported in Chapter 4, we were able to understand what the behaviour
of the model was like. Once we had completed the analysis of the basic model, which we will
obviously take as standard, we started working on the first variation. We started to study theo-
retically how BERT’s model worked for the sentiment analysis part, to see howwe could adapt
it to our standardmodel,making sure that themodelwouldworkwith our data first, we created
ad hoc functions to create the correct data structures to pass on to themodel during execution,
and then we tried to analyse what information was being exchanged between the two meth-
ods so that we could modify it to achieve our purpose. Having arrived at the point where the
model with the BERT method worked, we selected the parameters from our standard model
so that we could compare them, again the results obtained can be found in Chapter 4. Having
performed the analysis of the MTL model with BERT, we moved on to the introduction of
the second variant, the one using a Dirichlet Variational autoencoder for the topic detection
part. The procedure was very similar to that used for the implementation of the BERTmodel:
to study and understand the model thoroughly, to find a way to apply it correctly according to
our data, to check the correct functioning in the exchange of information with the sentiment
analysis part and finally to analyse the behaviour of the model with predefined parameters so
that we could compare it with our basic model and finally to get an overview of the Multi task
mutual learning method.
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2
Dataset

We use two datasets the first one is a subset of the YELP dataset, which contains businesses
reviews, contains the text of the reviews and the class associated. The class goes from 1 to 5,
have 39 000 instances in the training set and around 16000 in the test set. The second dataset
is the IMDB that contains movie’s reviews, this dataset have ten classes from 1 to 10, contains
15000 instances in the training set and 9112 in the test set.

#Class #docs Vocab.Size
YELP 5 39,923 53,823
IMDB 10 15,000 55,819

Table 2.1: Datasets
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3
Models

3.1 Variational Autoencoder

Autoencoders are neural network architectures used for dimensionality reduction. They con-
sist of two main components: an encoder and a decoder. The encoder takes the original fea-
tures or data and produces a compressed representation, often referred to as ”new features.”
The decoder then tries to reconstruct the original data from this compressed representation.
This process is optimized iteratively through backpropagation, where the error between the
encoded-decoded output and the initial data is used to update the network’s weights.

The idea behind autoencoders is to create a bottleneck for data, allowing only the essential
structured information to pass through for reconstruction. The architecture of the encoder
and decoder networks defines the families of encoders (E) and decoders (D), respectively. The
goal is to find encoder and decoder parameters thatminimize the reconstruction error, typically
achieved through gradient descent.

In the context of linear autoencoders with a single layer and no non-linearity, there’s a clear
connection to Principal Component Analysis (PCA). Both methods seek the best linear sub-
space for projecting data with minimal information loss. However, linear autoencoders can
have multiple solutions, unlike PCA. Furthermore, they don’t require the new features to be
independent.

When both the encoder and decoder are deep and non-linear, a higher dimensionality re-
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duction is possible while maintaining a low reconstruction loss. The more complex the archi-
tecture, the greater the compression potential. In theory, an encoder with infinite capacity
could reduce any initial dimensionality to one, but this can lead to a lack of interpretable and
exploitable structures in the latent space. The dimension of the latent space and the depth
of autoencoders should be carefully controlled based on the specific dimensionality reduction
objectives.

Variational autoencoders (VAEs) are a type of autoencoder that introduces regularization
during training to ensure a regular and interpretable latent space. VAEs encode inputs as distri-
butions over the latent space rather than single points. The training process involves encoding
an input as a distribution, sampling a point from this distribution, decoding the point, and
backpropagating the reconstruction error. The encoded distributions are typically set to be
normal, with the encoder returning both the mean and covariance matrix.

Figure 3.1: Variational Autoencoders

Figure 3.2: VAE

The regularity in the latent space, which is essential for generative purposes, is achieved
through continuity and completeness. Continuity ensures that nearby points in the latent
space result in similar decoded content, while completeness means that sampled points from
the latent space yield meaningful content. VAEs address this regularity by enforcing the dis-
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Ftigure3.3:AutoencodersvsVartiationaflAutoencoders

trtibuttionstobecflosetoastandardnormafldtistrtibuttion,preventtingpunctuafldtistrtibuttionsor

wtideflyseparatedmeans.

ThereguflartisattiontermtintheVAE’sflossffuncttion,representedbytheKuflback-Letibflerdti-

vergence,encouragestheencodeddtistrtibuttionstomeetthesereguflartitycondtittions.Thtiscomes

atthecostoffahtigherreconstructtionerroronthetratintingdata,andthetrade-offbetweenre-

constructtionerrorandtheKLdtivergencecanbeadjustedbasedonspectiticrequtirements.

Werevtiewthetopticdetecttionmodefloff[5].Forthegenerattivemodeflsothegenerattionnet-

workweconstideracorpusoffDdocumentsustingavocabuflaryoffWwords.Eachdocumenttis

representedbya(vartiabfleflength)vectordti,ti=1,...,Dcoflflecttingthewordsoccurrencestinthe

document,sothatdti,n∈1,...,W.WefletthecorpusbeorgantisedtinTtoptics,anddenotewtith

tti(vectoroffflengthT)theflatenttopticrepresentattionoffdocumentdti.Ourrefferencegenerattive

modeflstartsffromanhtiddenprtiorvartiabflez∈RTnormaflflydtistrtibuted,ti.e.,wtithprobabtifltity

dtistrtibuttionffuncttion(PDF)p(z)=pN(z;0,I)where

pN(x;m, )=
1

det(2π )
e−

1
2
(x−m)T

∑−1(x−m)

tisthemuflttivartiatenormaflPDF.Theflatenttopticrepresentattiont∈RTtisapproxtimatedbya

muflttiflayerperceptron(MLP),tobutifldadtifferenttiabflemapoffthefform

t=ϑ(z)=W2tanh(W1z+b1)+b2

.Theword-occurrence-patternvectortisthengeneratedvtiasofftmaxconstructtionffromthe
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flatenttopticrepresentattion,thattis

flog(pd|t(d|t)=
n

flog(sdn),s=sofftmax(W3t+b3)

wheresdndenotesthednthentryoffs.Hence,wehave

pθ(d|z)=pd|t(d|ϑ(z))

wtithparametersθ={b1,b2,b3,W1,W2,W3}.Fortheapproxtimattionoffpostertiorproba-

btifltity,sothetinfferencenetwork,weproceedasffoflflows:thepostertiorprobabtifltityqϕ(z|d)tis

approxtimatedbythemuflttivartiatenormafldtistrtibuttion

qϕ(z|d)=pN(z;µϕ(d),dtiag(σ
2
ϕ(d)))

whereµϕandσ
2
ϕaredtifferenttiaflmapsgeneratedthroughtwoMLPs.Spectiticaflfly,wehave

µϕ(d)=W5h+b5,h=tanh(W4d+b4),flog(σ
2
ϕ(d))=W6h+b6

.Forthetargetffuncttion,accordtingtotheVAEapproachoff[9]wedetineavartiattionaflflower

boundffθ,ϕ(d)≤flogpθ(d)as

ffθ,ϕ(d)=flogpθ(d) DKL(qϕ(z|d)|pθ(z|d))

= dzqϕ(z|d)flog
pϕ(z|d)

qϕ(z|d)

= dzqϕ(z|d)flog(pθ(d|z))

ff1

dzqϕ(z|d)flog
p(z)

qϕ(z|d)

ff2

wtithtargetffuncttionffθ,ϕ(d)tobemaxtimtizedwtithrespecttotheparametersθandϕ.Byex-

pflotittingtheabovefformuflafforqϕ(z|d),thetargetffuncttioncanberewrtittentinthefform
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ff1(d)= dµpN(µ;0,I)flog(pθ(d|µϕ(d)+σϕ(d)⊙µ))

=
1

L

L

fl=1

flog(pθ(d|µϕ(d)+σϕ(d)⊙µfl))

ff2(d)=
1

2
1T(1+µ2ϕ(d)+σ

2
ϕ(d)+flog(σ

2
ϕ(d)))

where⊙standsfforeflement-wtiseproduct,andwhereµfl∈N(0,I)aretindependentnormafl

sampfles.BeflowwereportthePythontimpflementattionoffthemodefl

Ftigure3.4:VAEcontiguration
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Figure 3.5: VAE execution

3.2 RecurrentNeural Network

RNNs represent a fascinating class of neural network architectures designed primarily for iden-
tifying patterns within sequential data[36]. This type of data can encompass a wide range of
applications, such as analyzing handwriting, decoding genomes, processing textual informa-
tion, or handling numerical time series, often encountered in industrial contexts, like stock
market data or sensor readings. Moreover, RNNs can even be applied to image data by decom-
posing images into patches and treating them as a sequence of information. On a broader scale,
RNNs find extensive utility in tasks like LanguageModeling, Text Generation, Speech Recog-
nition, Image Description Generation, and Video Tagging. What truly sets Recurrent Neural
Networks apart from their counterparts, such as Feedforward Neural Networks, also known
as MLPs, is the way they manage the flow of information through the network. While Feed-
forwardNetworks convey data in a unidirectional manner without any feedback loops, RNNs
embrace the concept of cyclic dependencies, allowing them to incorporate not only the present
input Xt but also the historical input sequence X0:t−1. This process of conveying information

Figure 3.6: RNN vs FFN

from the previous time step to the current hidden layer can be described using mathematical
notations introduced in the literature. In these notations, we denote the hidden state at time
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Ftigure3.7:RNN

steptasHt∈R
nxhandthetinputasXt∈R

nxd,wherenrepresentsthenumberoffdatasampfles,

dstigntitiesthedtimenstionoffthetinputfforeachsampfle,andhdenotesthenumberoffhtidden

untits.Wetintroduceessenttiaflwetightmatrtices:Wxh∈R
dxh,representtingthetinput-to-htidden-

statetransfformattion,WhhtinR
hxh,accounttingfforthehtidden-state-to-htidden-statetranstittions,

andabtiasparameterbh∈R
1xh.Aflflthtistinfformattiontissubsequentflyprocessedthroughan

acttivattionffuncttion,offtenaflogtistticstigmotidortanhffuncttion.Thtisstepservesthepurposeoff

prepartingthegradtientsfforetictientusetinthebackpropagattionaflgortithm.

Ht=ϕh(XtWxh+Ht−1Whh+bh)

Ot=ϕo(HtWho+bo)

Cructiaflfly,duetotherecurstivenatureoffRNNs,thehtiddenstateHtatanygtiventtimestepnot

onflyencodestinfformattionffromthecurrenttinputbutaflsoretatinstracesoffaflflprecedtinghtidden

statesuptoHt−1,whtichcoflflecttiveflytimbuesRNNswtithamemory-fltikecapabtifltitytomodefl

sequenceseffecttivefly.InourworkweuseahtierarchticaflRNN,asproposedtin[5]tomodefla

document.AssumtingthatadocumentwdcontatinsMdsentences,wd={s1,s2,...sMd,andthe

wordembeddtingoffjthwordtintithsentencetisw
j
ti.Then,therepresentattionoffsentencestican

beobtatinedbytheffoflflowtingsteps:

x
j
ti=W·w

j
ti

→
h
j
ti=

→
GRU(x

j
ti),

←
h
j
ti=
←
GRU(x

j
ti),
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h
j
ti=
→
h
j
ti⊕
←
h
j
ti,

u
j
ti=tanh(Ww·h

j
ti+bw),

α
j
ti=

exp(uT·u
j
ti)

texp(u
T·utti)

,

sti=
n

j=1

α
j
ti·h

j
ti

where
→

GRUand
←
GRUarebti-dtirecttionaflgatedrecurrentneurafluntitsfforRNN,W,Ww,bw

areflearnedparameterstinthecflasstiticattionmodefl,andu
j
titistheattenttionvectoroffjthwordtin

tithsentence,α
j
titistheattenttionstignaflcapturedbyu

j
ti,stitistheflearnedrepresentattionfforthe

tithsentencetindocumentwd.Then,wecanflearntherepresentattionoffdocumentwdwtith

thestimtiflararchtitecturetaktingthetinputasasequenceoffsentencerepresentattions.Ftinaflfly,a

sofftmaxflayertisstackedatthetoptopredtictthecflassflabeflsoffdocumentsbycrossentropyfloss

betweenthepredtictedflabeflsandthetrueflabefls.

Lc(wd)= p·flog[sofftmax(Wd·wd+bd)],

wheretheoutputoffsofftmax(Wd·wd+bd)tisthedtistrtibuttionoffpredtictedflabeflsandptisthe

dtistrtibuttionofftrueflabefls.BeflowwereportthePythontimpflementattionoffthemodefl

Ftigure3.8:BtidtirectionaflRNN
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Figure 3.9: RNN configuration

Figure 3.10: RNN execution

3.3 BERT

The field of natural language processing has witnessed significant advancements through the
implementation of language model pre-training techniques. These techniques have proven ef-
fective in enhancing a multitude of natural language processing tasks, ranging from tasks that
operate at the sentence level, such as natural language inference and paraphrasing, to those that

27



demand fine-grained token-level analysis, like named entity recognition and question answer-
ing.

When it comes to employing pre-trained language representations for downstream tasks,
two prominent strategies have emerged: feature-based and fine-tuning. In the feature-based
approach, as exemplified by ELMo, task-specific architectures are constructed, incorporating
pre-trained representations as supplementary features.

In contrast, thefine-tuning approach, as seen inmodels like theGenerativePre-trainedTrans-
former (GPT), introduces minimal task-specific parameters. It trains on downstream tasks by
fine-tuning all pre-trained parameters, effectively adapting the model to specific tasks. An in-
herent limitation of standard language models is their unidirectionality, which restricts the
choice of architectures during pre-training. Here is where BERT, or ”Bidirectional Encoder
Representations from Transformers,”[22] emerges as a pivotal development. BERT alleviates
the unidirectionality constraint by utilizing a ”masked language model” (MLM) pre-training
objective. This MLM objective randomly masks certain tokens in the input, challenging the
model to predict the original vocabulary ID of the masked word solely based on its context.
This approach empowers the representation to encapsulate both left and right context, paving
the way for deep bidirectional Transformer pre-training. Fundamentally, BERT is a stack of
Transformer encoder layers which consist of multiple self-attention ”heads”[37]. For every in-
put token in a sequence, each head computes key, value and query vectors, used to create a
weighted representation. The outputs of all heads in the same layer are combined and run
through a fully-connected layer. Each layer is wrapped with a skip connection and followed by
layer normalization. The conventional workflow for BERT consists of two stages: pre-training
and fine-tuning. Pretraining uses two self-supervised tasks: masked languagemodeling (MLM,
prediction of randomly masked input tokens) and next sentence prediction (NSP, predicting
if two input sentences are adjacent to each other). In fine-tuning for downstream applications,
one or more fully-connected layers are typically added on top of the final encoder layer. One
of the standout features of BERT is its unified architecture, applicable across a diverse array
of tasks. BERT’s model architecture is built upon a multi-layer bidirectional Transformer en-
coder, originally described in and released in the tensor2tensor library. This consistent architec-
ture, adaptable for various tasks, has played a pivotal role in the success and widespread adop-
tion of BERT in the field of natural language processing. after a careful study of the model,
also based on what it says [38] we can summarise through a list, everything about the model’s
knowledge of language, such as semantics, syntax and knowledge about words
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Figure 3.11: BERT

• Syntactic Knowledge:

– BERT representations are hierarchical, suggesting a syntactic tree structure in ad-

dition to word order.

– BERT embeddings encode information about parts of speech, syntactic chunks,

and roles.

– Syntactic information is captured in token embeddings and can be used to recover

syntactic trees.

• Syntax Representation:

– Syntactic structure is not directly encoded in self-attention weights.

– BERTtoken representations canbeused to recover syntactic dependencies in some

cases.

• Semantic Knowledge:

– BERT displays knowledge of semantic roles.

– BERT has some preference for correct fillers related to the semantics.
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Figure 3.12: Parameter‐free probe for syntactic knowledge: words sharing syntactic subtrees have larger impact on each
other in the MLM prediction [1]

• World Knowledge:

– BERT shows evidence of commonsense knowledge.

– BERT can recall factual knowledge without fine-tuning.

– BERT’s world knowledge has limitations in reasoning and certain aspects of se-

mantics.

Theoretically the figure 3.12 explain how the implementation of the BERT model for the
classification part exchange information with the topic part. We use the same property of the
RNN so we exchange the attention information’s before the output layers. In our work we
implement pre-trainedBert, as inputwe reconstruct thewordof theVAEparts using a function
that take the outputs of the detection part, that are tensors containing sequence of vectors for
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Figure 3.13: MLT with BERT

each sentence and each vector contains all the numbers associated to the words, once we have
done it wemerge the all the sentences in one list andwe pass it to the pre-built BERT tokenizer.

Figure 3.14: BERT Embeddings: In the context of sequence processing, each sequence commences with a distinctive
classification token ([CLS]), while at the end, we demarcate individual sequences using a special token ([SEP]). The input
representation for any given token is formed by the summation of the token’s associated embeddings, including token,
segment, and position embeddings.
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Now we have the correct inputs for our model, we divide it into chunks for computations
reasons and we set a specific token that specify to the model when a chunck start and when
a chunk finished. When we have all the chunks ready we pass it to the BERT model already
pre-trained with ”bert-base-uncase” to obtain the final output. The bert-base-uncase model
has 12 layers, 768 hidden, 12 heads and 110M parameters, it used asMLM, as explained above,
andNext Sentence Prediction (NSP): themodels concatenates twomasked sentences as inputs
during pretraining. Sometimes they correspond to sentences thatwere next to each other in the
original text, sometimes not. Themodel then has to predict if the two sentenceswere following
each other or not. the model not take in consideration the difference between a word that start
with an uppercase letter and the same word written undercase. This way, the model learns an
inner representation of the English language that can then be used to extract features useful
for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a
standard classifier using the features produced by the BERTmodel as inputs. Below we report
the Python implementation of the model

Figure 3.15: Bert execution
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Figure 3.16: Bert configuration

3.4 DirVAE

ThedirVaemodel basically have the same schemeof anormalVariational autoencoder, there are
a generative network and an Inference network. Is able to model the multi-modal distribution
that was not possible with the Gaussian-Softmax and the GEM approaches. These character-
istics allow DirVAE to be the prior of the discrete latent distribution, as the original Dirichlet
distribution is[39]. Based on [40] we summarize the fundamental concept behind the Dirich-
let Variational Autoencoder (DirVAE) is closely tied to the Dirichlet distribution, which is a
multivariate generalization of the Beta distribution. The Dirichlet distribution represents a

Figure 3.17: DirVae and standard VAE

multivariate continuous distribution of significant importance in the fields of probability and
statistics. To better understand the DirVAE, we must first examine the Dirichlet distribution.
This distribution is defined by a vector Yk with k components, each of which is non-negative
(Yi ≥ 0), and the sum of all components is equal to 1. It is also defined by a vector αk with k
components, each of which is strictly positive. The probability density function of the Dirich-
let distribution is given by:
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ff(yk)=
Γ(α0)
k
ti=1Γ(αti)

k

ti=1

yαti−1ti

Whereα0=
k
ti=1αti,yti>0,y1+...+yk−1<1,andyk=1 y1 ... yk−1.Thtis

dtistrtibuttiontisdenotedasDtir(α1,α2,...,αk).

IttistimportanttonotethattheDtirtichfletdtistrtibuttiontisadtistrtibuttionwtithkpostittiveparam-

etersαktinak-dtimenstionaflspace.Whenk=2,theprobabtifltitydenstityffuncttiontisanaflogousto

thatofftheBetadtistrtibuttionwtithparametersα1andα2.Tobettercomprehendthtisdtistrtibuttion,

wecanvtisuafltize1000potintsgeneratedffromtheDtirtichfletdtistrtibuttiontinathree-dtimenstionafl

spacewtithdtifferentvafluesoffparameterα3. Whenα1,α2,andα3areaflflbetween0and1,the

denstitycflustersaroundtheedgesoffthestimpflex.Thtistisobservedwhenα3=(0.1,0.1,0.1),

wherethedenstitycongregatesattheedgesoffthetrtiangfle,representtingthesampflespaceoffY1,

Y2,andY3tinthree-dtimenstionaflspace.

Ftigure3.18:Dtirtichfletdtistrtibution

However,asthevaflueoffα3tincreasesto(1,1,1),thedenstitybecomesuntifformflydtistrtibuted

acrosstheenttiretrtiangfle.Whenα1,α2,andα3areaflflgreaterthan1,thedenstitybecomesmore

concentratedatthecenteroffthestimpflex,asseentin(c)whenα3=(20,20,20).In(d),we

observethatthedenstitypflottisnotsymmetrtic,asthevafluesoffα1,α2,andα3arenottidentticafl.

TheDtirtichfletVartiattionaflAutoencoder(DtirVAE)wastintroducedtinresponsetotwospectitic

stituattions:
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• WhenGaussian-Softmax or Softmax Laplace-based approaches fail tomimic theDirich-

let distribution.

• When non-parametric approaches may be influenced by biases that the Dirichlet distri-

bution does not suffer from.

In these situations, DirVAE proves to be a valid solution, as it can model multi-modal distri-
butions that cannot be accurately represented by other distributions or approaches.

In summary, the Dirichlet Variational Autoencoder (DirVAE) is an important innovation
based on the fundamentalDirichlet distribution. Thismodel is usefulwhenmodeling complex
data distributions that cannot be accurately represented by other distributions or approaches.
We choose to implement this model for two main reasons: Firstly, there are situations where
conventional methods, such as Gaussian-Softmax approaches or Softmax Laplace approxima-
tions, fail to accurately mimic the Dirichlet distribution. This is where DirVAE steps in, of-
fering a solution to capture more complex, multi-modal data distributions. Secondly, non-
parametric approaches, while powerful, may introduce certain biases that the Dirichlet dis-
tribution inherently avoids. In scenarios where you need unbiased representations of data,
DirVAE proves its mettle. Now we highlights the Pros and the Cons of the dirVAEmethod

• Pros:

– EffectiveMulti-ModalModeling: DirVAE excels in modeling multi-modal proba-

bility distributions, especially in high-dimensional spaces.

– Fair Weight Distribution: It ensures fair weight distribution among components,

which is crucial for various applications.

– FlexibleHyper-Parameters: Dirichlet distribution’s prior hyper-parameters can be

adjusted to control and capture multi-modal characteristics.

• Cons:

– Complexity: DirVAE can be more complex than traditional models, requiring a

deeper understanding of Dirichlet distribution and its hyper-parameters.
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–LearntingCurve:UsersmayneedtoffamtifltiartizethemseflveswtithDtirtichflet-based

modefltingtechntiques,whtichmtighttinvoflveasteeperflearntingcurve.

–ComputattionaflDemands:ThecomputattionafldemandsoffDtirVAEmaybehtigher

duetotitsabtifltitytocapturemufltti-modafldatadtistrtibuttion.

IntheorywehavethesameschemeoffanormaflVAEweemphastizethedtifferencetinthetwo

networks:Inthegenerattivenetworkthekeydtifferencetistheprtiordtistrtibuttionassumpttionon

theflatentvartiabflez.InsteadoffustingthestandardGausstiandtistrtibuttion,weusetheDtirtichflet

dtistrtibuttionwhtichtisaconjugateprtiordtistrtibuttionoffmuflttinomtintiafldtistrtibuttion.

z∼p(z)=Dtirtichflet(α),x∼pθ(x|z)

Forthetinfferencenetworkprobabtifltistticencoderwtithanapproxtimattingpostertiordtistrtibuttion

qϕ(z|x)tisdestignedtobeDtirtichflet(α).Theapproxtimatedpostertiorparameterαtisdertivedby

theMLPffromtheobservattionxtindatasetDwtithpostittiveoutputffuncttionsuchassofftpflus

ffuncttion,sotheoutputscanbepostittivevafluesconstratinedbytheDtirtichfletdtistrtibuttion.In

ourworkwetimpflementtheDtirVAEtinouraflgortithm,repflactingthenormaflVAEtowatchthe

perfformancetinareaflappflticattion.Thetigure3.19tisthesameoffthestandardMTLmodeflthe

onflydtifferencetisthattinthtismodeflwechangethedtistrtibuttiontintheDtirtichfletdtistrtibuttion.

Inthepythonappflticattionweaddtinthefforwardffunctionasofftmaxflayertinordertoobtatina

Ftigure3.19:MLTwtithDtirVae

Dtirtichfletdtistrtibuttionoffourdata[39].wereportbeflowthepythontimpflementattions
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Figure 3.20: DirVae execution
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4
Results

4.1 Complexity

We evaluate the complexity in term of time taken to do a run of the algorithmbased in 3 epochs
of training. below the results for the the different algorithms

VAE + RNN
IMDB YELP

batch size 10 25 50 100 500 25 50 100
time(h) 6h 5h 4h 5h 30 min. 9h 15 min. 7h 5h 50 min 6h

Table 4.1: Complexity VAE + RNN

YELP
model VAE + BERT DirVAE + RNN
batch size 50 50
time(h) 5h 15 min 5h 15 min

Table 4.2: Complexity YELP BERT‐DirVAE

Wecan see that at a certain point the value of the overall time restart growing this is due to the
fact that there is a trade-off between the complexity of one iteration and the complexity of the
overall computations. The time decrease increasing the batch size because the complexity of
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Figure 4.1: Complexity

IMDB
model VAE + BERT DirVAE + RNN
batch size 50 50
time(h) 4h 4h 10 min

Table 4.3: Complexity IMDB BERT‐DirVAE

the computation reduce significatively dividing the entire dataset in batches. When we achieve
the best parameter the time start to grows because the number of the operations are extremely
large and this affect the benefits due to the easiest calculus. The two variations of the algorithm,
one with Bert in the sentiment analysis and one with the DirVae in the topic detection, have
similar overall timewith respect to the original algorithmbutwe can notice that demand a little
bit less of time in the YELP dataset, five hours and fifteen minutes instead of fifths minutes, in
the IMDB datset the time is the same with the Bert model and ten minutes more with DirVae
model. With this results we choose 50 as a value of batch size for the to others twomodel and to
find the other parameters. We try also to see if the vocabulary size influence the complexity of
the methods because in the preprocess of the data the model create a vocabulary, this part have
no influece in the overall time because the process take only some minuts to creates differents
vocabulary in order to respect the parameter that we want, is this the reason why we did not
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put the relatively results.

4.2 Accuracy

We measure the performance based on the accuracy, as specified in the section 1, that metric
evaluate the number of the correct predictions with respect to the number of the total predic-
tions. below the table that report our results

VAE + RNN
IMDB YELP

vocab size 2000 3000 5000 2000 3000 5000
batch size 50 50 50 50 50 50
accuracy 0,17 0,192 0,127 0,229 0.227 0,227

Table 4.4: Accuracy VAE + RNN
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Figure 4.2: Accuracy
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YELP
model VAE + BERT DirVAE + RNN
batch size 50 50
vocab size 3000 3000
accuracy 0,209 0,274

Table 4.5: Accuracy YELP BERT‐DirVAE

IMDB
model VAE + BERT DirVAE + RNN
batch size 50 50
vocab size 3000 3000
accuracy 0,051 0,160

Table 4.6: Accuracy IMDB BERT‐DirVAE

The first table show that in the IMBD dataset, the number of the vocabulary size impact
more the performance of the model which respect to the YELP dataset. For the IMDB dataset
the best value in terms of accuracy is with 3k of vocabulary size, instead the YELP with 2k.
in the first dataset the variation is larger, round 2 5%, in the second the variation is very
small, like 0.002%. So that we fix to 3k the vocabulary size for run the others two algorithms.
For the IMDB dataset we have two different behaviours in terms of accuracy, the model with
Bert part achieve very low performance with respect to the standard algorithm; this is due to
the complexity of the model and the computational power that we have, the Bert model is
a pretrained model that require a lot of data to work correctly. with the IMDB dataset we
cannot give it a sufficiently amount of data, in fact if we compare to the same model in the
YELP dataset that is twice bigger the model achieve an accuracy round the standard model.
TheDirVaemodel in the IMDB dataset achieve a bit less accuracy than the standard and in the
YELP dataset achieve better performance with respect to the standard model.

4.3 Loss

We evaluate the Loss in order to see anothermeasure of the performances. In ourmodel due to
the scheme and the purpose, we have two different loss, the first one is for the topic detection
and the second one is for classification and sentiment analysis, as in the previous section we
evaluate the standardmodelwith three differences vocabulary size in order to see the behaviours
and choose it to run the others two models
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4.3.1 Topic Detection Loss

The first measure that we analyze is the topic detection loss, related to the topic detection part.

VAE + RNN
IMDB YELP

vocab size 2000 3000 5000 2000 3000 5000
batch size 50 50 50 50 50 50
topic loss 97,2639 34,4885 83,8601 12,3715 3,344 12,6933

Table 4.7: Topic Loss VAE + RNN
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Figure 4.3: Topic Detection Loss

For the model composed by the RNN and VAEwe have the same behaviour with respect to
the vocabulary size, the best loss was achieved by 3 thousand vocabulary size, as in the accuracy
measure the IMDB dataset have large variation between the differences measures of vocabu-
lary instead of the YELP dataset that have this variation very low between 2 and 5 thousands
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YELP
model VAE + BERT DirVAE + RNN
batch size 50 50
vocab size 3000 3000
topic loss 64,6515 20,3235

Table 4.8: Topic Loss YELP BERT‐DirVae

IMDB
model VAE + BERT DirVAE + RNN
batch size 50 50
vocab size 3000 3000
topic loss 34,6483 119,4563

Table 4.9: Topic Loss IMDB BERT‐DirVae

vocabulary size. Once we have found the best vocabulary size parameters we run the others
two algorithms, we can notice that in this case the loss value in both datasets increase a lots in
both algorithms. This is pretty strange because for example in the Bert model the topic part
remain the same of the standard model but this prove how the two parts influence each others
respectively.

4.3.2 Classification Loss

Anothermeasure was the classification error, related to the sentiment analysis, belowwe report
our results In the standard model we can see that the classification error are quite low in both

VAE + RNN
IMDB YELP

vocab size 2000 3000 5000 2000 3000 5000
batch size 50 50 50 50 50 50
classification loss 2,2078 2,1559 2,1086 1,6148 1,6305 1,6096

Table 4.10: Classification Loss VAE + RNN

datasets, in this case we highlights data the variation between the differences size of vocabulary
not influence as in the topic loss, for this reason we choose as in the topic detection the 3k
vocabulary to run the other variants of the algorithm. as in the standard model the variations
not have a big difference, so that in this particularly metric the models works very similarly.
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Figure 4.4: Classification loss

YELP
model VAE + BERT DirVAE + RNN
batch size 50 50
vocab size 3000 3000
classification loss 1,7592 1,6074

Table 4.11: Classification Loss YELP BERT‐DirVae

IMDB
model VAE + BERT DirVAE + RNN
batch size 50 50
vocab size 3000 3000
classification loss 2,3015 2,1459

Table 4.12: Classification Loss IMDB BERT‐DirVae
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The quantity of the classification error are better in the Yelp dataset this is due as in the other
permance evaluators because the dataset is bigger so the model have more information to take
it decisions

4.4 Kullback leibler divergence

We calculate the KLD between the original distribution in the datasets and the distribution of
the output in order to evaluate the dissimilarity between the two.

VAE + RNN
IMDB YELP

vocab size 2000 3000 5000 2000 3000 5000
batch size 50 50 50 50 50 50
kld 0,0031 0,0011 0,0009 0,0006 0,0002 0,0002

Table 4.13: KLD VAE + RNN

YELP
model VAE + BERT DirVAE + RNN
batch size 50 50
vocab size 3000 3000
kld 0,0060 0,0001

Table 4.14: KLD YELP BERT‐DirVae

IMDB
model VAE + BERT DirVAE + RNN
batch size 50 50
vocab size 3000 3000
kld 0,0004 0,0013

Table 4.15: KLD IMDB BERT‐DirVae

For the KLDwe have slightly differences between the two datasets, the first one achieved the
best value with 5k vacabulary, and the second one with 3k and 5k. The difference between the
distribution of themodel and the original distribution is very low. As in the classification errors
we choose 3k dictionary because the difference with the best result is very low and if we choose
the same size of the dictionary as the other metrices we can have a complete overview between
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Figure 4.5: KLD

the standard model and the two variations. In the other two we have slightly differences in the
results, in the IMDB dataset work better the dirchlet method with recurrent neural network,
instead of the YELP dataset in which works better the model with BERT. this two methods
work better with respect to the standard one because they reach better performance.
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5
Conclusion

Summarizing the results, we have observed how the studied algorithms exhibit a significant
need for computational power, and when unavailable, the execution time becomes notably
extensive. Additionally, we noted that vocabulary size has a more pronounced impact on per-
formance in smaller datasets compared to larger ones.

From an accuracy standpoint, our baseline model performs better with the larger dataset
but fails to reach high levels due to the lack of computational power for more effective training.
The DirVae model achieves accuracy levels similar to the baseline, and in the YELP dataset, it
surpasses it. However, the BERT model shows a slightly lower performance with the YELP
dataset and significantly drops with the IMDB dataset, attributed to the model’s complexity
and its demand for substantial data quantities.

Regarding loss in the topic analysis section, the baseline model, like other metrics, performs
better with the larger dataset. However, the two modified models do not perform well, result-
ing in a substantial increase in the loss value.

In the sentiment analysis section, both the baseline model and its variations perform well,
achieving low values. The results in the distribution analysis are excellent, and in certain cases,
the modified models even outperform the standard model.

Concluding the results analysis, we can assert that they are heavily influenced by the com-
putational power at our disposal. With few exceptions, the variations are minimal, making it
challenging to declare one model significantly superior to another. This leads us to conclude
that, depending on applications and needs, the MLTmodel with mutual learning is customiz-
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able and adaptable to specific requirements.
Future work could involve rerunning the experiments with more powerful equipment, ex-

panding the range of models for comparison to obtain a more comprehensive overview of mu-
tual learning techniques.

In alignment with the objectives of our thesis, we can conclude that we have successfully
completed the section related to general understanding, affirming that the system functions
correctly. However, we cannot claim a substantial improvement in performance by usingmore
recent models for individual tasks.

50



References

[1] Z. Wu, Y. Chen, B. Kao, and Q. Liu, “Perturbed masking: Parameter-free probing
for analyzing and interpreting BERT,” in Proceedings of the 58th Annual Meeting of
the Association for Computational Linguistics, D. Jurafsky, J. Chai, N. Schluter, and
J. Tetreault, Eds. Online: Association for Computational Linguistics, Jul. 2020, pp.
4166–4176. [Online]. Available: https://aclanthology.org/2020.acl-main.383

[2] A. Yasin, Y. Ben-asher, and A. Mendelson, “Deep-dive analysis of the data analytics
workload in cloudsuite,” 12 2014, pp. 202–211.

[3] E. D. Liddy, “Natural language processing,” 2001.

[4] Y. Bengio, R. Ducharme, and P. Vincent, “A neural probabilistic language model,” in
Advances inNeural Information Processing Systems, T. Leen, T.Dietterich, andV.Tresp,
Eds., vol. 13. MIT Press, 2000. [Online]. Available: https://proceedings.neurips.cc/
paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf

[5] L. Gui, J. Leng, J. Zhou, R. Xu, and Y. He, “Multi task mutual learning for joint sen-
timent classification and topic detection,” IEEE Transactions on Knowledge and Data
Engineering, vol. 34, no. 4, pp. 1915–1927, 2022.

[6] R. Das, M. Zaheer, and C. Dyer, “Gaussian LDA for topic models with word embed-
dings,” in Proceedings of the 53rd AnnualMeeting of the Association for Computational
Linguistics and the 7th International Joint Conference on Natural Language Processing
(Volume 1: Long Papers). Beijing, China: Association for Computational Linguistics,
Jul. 2015, pp. 795–804. [Online]. Available: https://aclanthology.org/P15-1077

[7] P. Xie, J. Zhu, and E. P. Xing, “Diversity-promoting bayesian learning of latent variable
models,” 2017.

[8] M. Peng, Q. Xie, Y. Zhang, H. Wang, X. Zhang, J. Huang, and G. Tian, “Neural
sparse topical coding,” in Proceedings of the 56th Annual Meeting of the Association for

51

https://aclanthology.org/2020.acl-main.383
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2000/file/728f206c2a01bf572b5940d7d9a8fa4c-Paper.pdf
https://aclanthology.org/P15-1077


Computational Linguistics (Volume 1: Long Papers). Melbourne, Australia: Associa-
tion for Computational Linguistics, Jul. 2018, pp. 2332–2340. [Online]. Available:
https://aclanthology.org/P18-1217

[9] D. P. Kingma andM.Welling, “Auto-encoding variational bayes,” 2022.

[10] Y.Miao, L. Yu, andP. Blunsom, “Neural variational inference for text processing,” 2016.

[11] D. Card, C. Tan, and N. A. Smith, “Neural models for documents with metadata,” in
Proceedings of the 56th AnnualMeeting of the Association for Computational Linguistics
(Volume 1: Long Papers). Association for Computational Linguistics, 2018. [Online].
Available: https://doi.org/10.18653%2Fv1%2Fp18-1189

[12] S. Shayaa, N. I. Jaafar, S. Bahri, A. Sulaiman, P. S. Wai, Y. W. Chung, A. Z. Piprani,
andM. A. Al-Garadi, “Sentiment analysis of big data: methods, applications, and open
challenges,” Ieee Access, vol. 6, pp. 37 807–37 827, 2018.

[13] W. Medhat, A. Hassan, and H. Korashy, “Sentiment analysis algorithms and
applications: A survey,” Ain Shams Engineering Journal, vol. 5, no. 4, pp. 1093–
1113, 2014. [Online]. Available: https://www.sciencedirect.com/science/article/pii/
S2090447914000550

[14] Y.Mejova, “Sentiment analysis: An overview,”University of Iowa, Computer Science De-
partment, 2009.

[15] B. Pang, L. Lee, and S. Vaithyanathan, “Thumbs up? sentiment classification using ma-
chine learning techniques,” in Proceedings of the 2002 Conference on EmpiricalMethods
inNatural Language Processing (EMNLP2002). Association forComputational Lin-
guistics, Jul. 2002, pp. 79–86. [Online]. Available: https://aclanthology.org/W02-1011

[16] S. Wang and C. Manning, “Baselines and bigrams: Simple, good sentiment and
topic classification,” in Proceedings of the 50th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Jeju Island, Korea: Association
for Computational Linguistics, Jul. 2012, pp. 90–94. [Online]. Available: https:
//aclanthology.org/P12-2018

[17] E. Cambria, S. Poria, A. Gelbukh, and M. Thelwall, “Sentiment analysis is a big suit-
case,” IEEE Intelligent Systems, vol. 32, no. 6, pp. 74–80, 2017.

52

https://aclanthology.org/P18-1217
https://doi.org/10.18653%2Fv1%2Fp18-1189
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://www.sciencedirect.com/science/article/pii/S2090447914000550
https://aclanthology.org/W02-1011
https://aclanthology.org/P12-2018
https://aclanthology.org/P12-2018


[18] Y. Kim, “Convolutional neural networks for sentence classification,” 2014.

[19] A. Graves, “Generating sequences with recurrent neural networks,” 2014.

[20] D. Tang, B. Qin, and T. Liu, “Document modeling with gated recurrent neu-
ral network for sentiment classification,” in Proceedings of the 2015 Conference on
Empirical Methods in Natural Language Processing. Lisbon, Portugal: Association
for Computational Linguistics, Sep. 2015, pp. 1422–1432. [Online]. Available:
https://aclanthology.org/D15-1167

[21] Z. Yang, D. Yang, C. Dyer, X. He, A. Smola, and E. Hovy, “Hierarchical attention
networks for document classification,” inProceedings of the 2016Conference of theNorth
American Chapter of the Association for Computational Linguistics: Human Language
Technologies. San Diego, California: Association for Computational Linguistics, Jun.
2016, pp. 1480–1489. [Online]. Available: https://aclanthology.org/N16-1174

[22] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “Bert: Pre-training of deep bidirec-
tional transformers for language understanding,” 2019.

[23] M. E. Peters,M.Neumann,M. Iyyer,M.Gardner, C.Clark, K. Lee, andL. Zettlemoyer,
“Deep contextualized word representations,” 2018.

[24] P. Liu, X. Qiu, and X. Huang, “Adversarial multi-task learning for text classification,”
2017.

[25] M. Isonuma, T. Fujino, J. Mori, Y. Matsuo, and I. Sakata, “Extractive summa-
rization using multi-task learning with document classification,” in Proceedings of the
2017Conference on EmpiricalMethods inNatural Language Processing. Copenhagen,
Denmark: Association for Computational Linguistics, Sep. 2017, pp. 2101–2110.
[Online]. Available: https://aclanthology.org/D17-1223

[26] R.Collobert, J.Weston, L. Bottou,M.Karlen, K.Kavukcuoglu, andP.Kuksa, “Natural
language processing (almost) from scratch,” 2011.

[27] A. Søgaard and Y. Goldberg, “Deep multi-task learning with low level tasks
supervised at lower layers,” in Proceedings of the 54th AnnualMeeting of the Association
for Computational Linguistics (Volume 2: Short Papers). Berlin, Germany: Association
for Computational Linguistics, Aug. 2016, pp. 231–235. [Online]. Available: https:
//aclanthology.org/P16-2038

53

https://aclanthology.org/D15-1167
https://aclanthology.org/N16-1174
https://aclanthology.org/D17-1223
https://aclanthology.org/P16-2038
https://aclanthology.org/P16-2038


[28] H. M. Alonso and B. Plank, “When is multitask learning effective? semantic sequence
prediction under varying data conditions,” 2017.

[29] K. Singla, D. Can, and S. Narayanan, “A multi-task approach to learning multilin-
gual representations,” in Proceedings of the 56th Annual Meeting of the Association for
Computational Linguistics (Volume 2: Short Papers). Melbourne, Australia: Associ-
ation for Computational Linguistics, Jul. 2018, pp. 214–220. [Online]. Available:
https://aclanthology.org/P18-2035

[30] Y. Zhang and Q. Yang, “A survey on multi-task learning,” 2021.

[31] C. Lin and Y. He, “Joint sentiment/topic model for sentiment analysis,” in Proceedings
of the 18th ACMConference on Information and KnowledgeManagement, ser. CIKM
’09. New York, NY, USA: Association for Computing Machinery, 2009, p. 375–384.
[Online]. Available: https://doi.org/10.1145/1645953.1646003

[32] S. Moral, A. Cano, and M. Gómez-Olmedo, “Computation of kullback–leibler
divergence in bayesian networks,” Entropy, vol. 23, no. 9, 2021. [Online]. Available:
https://www.mdpi.com/1099-4300/23/9/1122

[33] L. Li,M.Doroslovački, andM.H. Loew, “Approximating the gradient of cross-entropy
loss function,” IEEE Access, vol. 8, pp. 111 626–111 635, 2020.

[34] A. Mao, M. Mohri, and Y. Zhong, “Cross-entropy loss functions: Theoretical analysis
and applications,” 2023.

[35] T. Zhang, “Statistical behavior and consistency of classification methods based on
convex risk minimization,” The Annals of Statistics, vol. 32, no. 1, pp. 56 – 85, 2004.
[Online]. Available: https://doi.org/10.1214/aos/1079120130

[36] R. M. Schmidt, “Recurrent neural networks (rnns): A gentle introduction and
overview,” 2019.

[37] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, L. Kaiser, and
I. Polosukhin, “Attention is all you need,” 2023.

[38] A. Rogers, O. Kovaleva, and A. Rumshisky, “A primer in bertology: What we know
about how bert works,” 2020.

54

https://aclanthology.org/P18-2035
https://doi.org/10.1145/1645953.1646003
https://www.mdpi.com/1099-4300/23/9/1122
https://doi.org/10.1214/aos/1079120130


[39] W. Joo, W. Lee, S. Park, and I.-C. Moon, “Dirichlet variational autoencoder,” 2019.

[40] J. Lin, “On the dirichlet distribution,” Department of Mathematics and Statistics,
Queens University, pp. 10–11, 2016.

55



56



Acknowledgments

We use this python libraries:

• numpy

• optsparse

• pytorch

• re

• time

• json

• scipy

• joblib

• transformers

• os

• gc

• copy

• progressbar

• codecs

• collections

• spacy

57



• gensim

• sys

• other libraries create by our own

58


	Abstract
	List of figures
	List of tables
	Listing of acronyms
	Introduction
	Natural Language Processing
	Topic Detection
	Sentiment Analysis
	Mutual learning
	Objectives of this thesis
	Related work

	Dataset
	Models
	Variational Autoencoder
	Recurrent Neural Network
	BERT
	DirVAE

	Results
	Complexity
	Accuracy
	Loss
	Topic Detection Loss
	Classification Loss

	Kullback leibler divergence

	Conclusion
	References
	Acknowledgments

