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Abstract

This research aims to provide a clearer overview of a new technique called Multi-task Mutual
Learning in the field of Natural Language Processing, specifically in sentiment analysis and
topic detection. The objective is to understand whether employing different models within
this technique may impact its performance. With the growing collection of natural language-
based data, private companies, public organizations, and various entities are increasingly seek-
ing to extract information from this vast amount of data, which can be in the form of audio,
text, or video. This underscores the need to study systems that can analyze this data effectively
and do so in the shortest possible time, providing a competitive advantage in the private sec-
tor and a social analysis of the current historical moment in the public domain. The method
employed is Mutual Learning, and within this technique, we analyzed specific models, includ-
ing Variational Autoencoder, Dirichlet Variational Autoencoder, Recurrent Neural Network,
and Bidirectional Encoder Representation from Transformer. These methods were executed
with two datasets: YELP, containing reviews of commercial activities, and IMDB, containing
reviews of films. The main findings highlight the complexity of the model, the computational
power required, and the customization of the model according to specific needs.



vi



ABSTRACT

LIST OF FIGURES

LIST OF TABLES

LISTING OF ACRONYMS

1 INTRODUCTION
1.1 Natural Language Processing . . . . . . ... ..
1.2 TopicDetection . . . . ... .. .........
1.3 Sentiment Analysis . . ... ...........
1.4 Mutuallearning . . . ... ..o Lo
1.5 Objectivesof thisthesis . . . .. ... ... ...
1.6 Relatedwork . . . ... ... ..........
2 DATASET
3  MODELS
3.1 Variational Autoencoder . . . . ... ... ...
3.2 Recurrent Neural Network . . . ... ... ...
33 BERT .. .. ... ... ... ... .. .....
3.4 DIirVAE . . . ... . L
4 REsULTS
4.1 Complexity . . ... ...............
4.2 Accuracy ... ...
4.3 Loss . . . . ... e
4.3.1  Topic DetectionLoss . . . . . ... ...
4.3.2  ClassificationLoss . . . ... ... ...
4.4 Kullback leibler divergence . . . . ... .. ...
5 CONCLUSION
REFERENCES

vii

Contents

ix

[ N N S I



ACKNOWLEDGMENTS

viii

57



I.I
I.2

1.3

3.1
3.2
3.3
3.4
3-5

3.7
3.8
3.9
3.10
3.11
3.12

3.13
3.14

3.15
3.16
3.17
3.18
3.19
3.20

4.1
4.2
4.3
4.4
4.5

Listing of figures

TopicDetection . . . . . . .. ... . Lo 5
Sentimentanalysisprocess . . . . . . ... ... 7
MTL with Mutual Learning . . . . ... ... ... ... ... ...... 9
Variational Autoencoders . . . . . . .. ... L 20
VAE . . e 20
Autoencoders vs Variational Autoencoders . . . . . . ... ... ... ... 21
VAE configuration . . . . ... ... 23
VAEexecution . . . . . . . . . o i e e e 24
RNNvvsFEN . . .. e 24
RNN . e 25
Bidirectional RNN . . . . . . . ... ... .. ... 26
RNN configuration . . . . . . ... ... ... .. .. .. ... ... ... 27
RNNexecution . . . . . . . . . . i i e e 27
BERT . . . . . e 29
Parameter-free probe for syntactic knowledge: words sharing syntactic sub-

trees have larger impact on each other in the MLM prediction [1] . . . . . . 30
MLT with BERT . . . . . . . .. . . 31

BERT Embeddings: In the context of sequence processing, each sequence
commences with a distinctive classification token ([CLS]), while at the end,
we demarcate individual sequences using a special token ([SEP]). The input
representation for any given token is formed by the summation of the token’s

associated embeddings, including token, segment, and position embeddings. . 31
Bertexecution . . . . . . . . . 32
Bertconfiguration . . . . . ... L L 33
DirVaeandstandard VAE . . . . . . . .. ... 33
Dirichlet distribution . . . . . . . ... ... ... ... .. 34
MLTwithDirVae . . . . . . . . . ... . e 36
DirVaeexecution . . . . . . . . . . e 37
Complexity . . . ... ... .. . 40
ACCUTACY . . . . o 41
Topic DetectionLoss . . . . . .. ... ... .. o 43
Classificationloss . . . . . . . . . . .. ... 45
KLD . . 47

ix






4.1
4.2
4.3
4.4
4.5

4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14
4.15

Listing of tables

Datasets . . . . . . . . e 17
Complexity VAE+RNN . . . .. ... ... ... . . L 39
Complexity YELP BERT-DirVAE . . . . . .. ... ... .. ... ..... 39
Complexity IMDB BERT-DirVAE . . . . . ... ... ... ....... 40
Accuracy VAE+RNN . . .. ... ... o oo 41
Accuracy YELP BERT-DirVAE . . . . .. ... ... . . ... ... .. 42
Accuracy IMDB BERT-DirVAE . . . ... ... ... ... ........ 42
TopicLoss VAE+RNN . .. ... ... ... ... ... ...... 43
Topic Loss YELP BERT-DirVae . . . . . ... ... ... ... ....... 44
Topic Loss IMDB BERT-DirVae . . . ... .. ... ............ 44
Classification Loss VAE+RNN . . . . . . .. ... ... .. .. ..... 44
Classification Loss YELP BERT-DirVae . . . . . . ... ... ... ..... 45
Classification Loss IMDB BERT-DirVae . . . . ... ... ... ...... 45
KLDVAE+RNN . ... ... e 46
KLDYELPBERT-DirVae. . . . . . . . . .. . . i i 46
KLDIMDBBERT-DirVae . . . .. ... ... ... . ... . ....... 46

xi



xii



Listing of acronyms

NN ............ Neural Network

CNN .......... Convolutional Neural Network
RNN .......... Recurrent Neural Network

NLP ........... Natural Language Processing
MTL .......... Multi-task learning

Al ............. Artificial Intelligence

DNN .......... Deep Neural Network

KLD .......... Kullback-Leibler Divergence
VAE ........... Variational Autoencoder

MLP .......... Multilayer Perceptron

BERT ......... Bidirectional Encoder Representations from Transformers
MLM.......... Masked Language Model

ZB ............ Zettabyte

NLU .......... Natural Language Understanding
IR ............. Information retrieval

HMM ......... Hidden Markov Model

LDA ........... Latent Dirichlet Allocation

PCA ........... Principal Component Analysis
PDF ........... Probability Distribution Function
DirVAE ........ Dirichlet Variational Autoencoder

xiil



Xiv



Introduction

In today’s digital age, the proliferation of social networking sites and communication devices,
such as smartphones, laptops, and PCs, has facilitated unprecedented levels of interaction among
individuals, leading to the creation of massive amounts of big data. Notably, platforms like
Twitter boast a vast network of 467 million users, generating a staggering 175 million tweets
daily [2]. The sheer volume of data generated is astounding, where storing one second of high-

definition video requires 2000 times more space than a page of plain text.

The International Data Corporation’s 2011 report revealed that the world had already gener-
ated approximately 1 zettabyte (ZB) of data, and this exponential growth continued, reaching
7ZB by the end of 2014. Projections indicate that by 2020, the volume of data generated is
expected to skyrocket to 44ZB, with textual data from social media technologies like Facebook,
Twitter, and messaging apps such as WhatsApp and Telegram constituting at least half of this
data.

Amid this data deluge, our focus turns to Natural Language Processing (NLP), a field that
plays a pivotal role in making sense of the textual data inundating digital platforms. This chap-
ter delves into the intricacies of NLP, exploring topics such as Topic Detection, Sentiment
Analysis, Mutual Learning, and related works. As we navigate through these aspects, it be-
comes evident that the unprecedented growth in data, as outlined above, underscores the sig-
nificance of advanced computational techniques in extracting meaningful insights from the

textual sea of information.



1.1 NATURAL LANGUAGE PROCESSING

Natural Language Processing (NLP)[3] is a field of study that encompasses a range of compu-
tational techniques aimed at analyzing and representing texts found in natural language. These
techniques operate at various levels of linguistic analysis and are designed to achieve language
processing capabilities resembling those of humans. Importantly, NLP is not an end goal in
itself but serves as a means to accomplish specific tasks or applications.

The primary objective of NLP is to achieve human-like language processing, where the term
“processing” is carefully chosen over “understanding.” While the field was initially called Nat-
ural Language Understanding (NLU), it is now widely accepted that complete NLU has not
yet been achieved. A comprehensive NLU system would be able to paraphrase text, translate
it into different languages, answer questions about its content, and draw inferences from the
text. Although NLP has made progress in tasks such as paraphrasing, translation, and question-
answering, the ability to draw inferences remains a goal.

NLP has practical applications tailored to specific needs, such as Information Retrieval (IR)
systems that use NLP for providing precise and comprehensive information in response to user
queries. In these systems, the goal is to represent the user’s query accurately and match it with
the content of documents, regardless of how the query is expressed.

The origins of NLP can be traced to various disciplines, including linguistics, computer sci-
ence, and cognitive psychology. Linguistics contributes formal, structural models of language,
computer science focuses on developing internal representations and efficient processing, while
cognitive psychology examines language usage as a window into human cognitive processes.

The field of NLP is often divided into language processing and language generation. Lan-
guage processing involves analyzing language to produce meaningful representations, while
language generation focuses on producing language from a representation. Additionally, a tra-
ditional distinction is made between language understanding and speech understanding, with
speech understanding incorporating elements of acoustics and phonology.

NLP approaches can be categorized into symbolic, statistical, connectionist, and hybrid
methods. The statistical approach, for instance, employs mathematical techniques and large
text corpora to create generalized models of linguistic phenomena. Hidden Markov Models
(HMM) are frequently used in statistical models, particularly in tasks such as speech recogni-
tion, lexical acquisition, parsing, part-of-speech tagging, and machine translation. To do that
its can be used differences types of Neural probabilistic language model [4], that have the goal of

learn the joint probability functions of sequences of words in a language. This kind of models



have an intrinsically one problem: the dimensionality, in our work we encounter that problem
y P > P
because the model that we used have to manage a big number of data and a large size of in-
ag g 24
put senteces that produce an high computational costs. A statistical model of language can be

represented by the conditional probability of the next word given all the previous ones, since

T
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where w;, is the #-th word, and writing sub-sequence wﬁ = (w;, Wiy, ..., w1, w;). When build-
ing statistical models of natural language, one considerably reduces the difficulty of this mod-
eling problem by taking advantage of word order, and the fact that temporally closer words
in the word sequence are statistically more dependent. Thus, n-gram models construct tables
of conditional probabilities for the next word, for each one of a large number of contexts, i.e.

combinations of the last n—1 words:

f’(erM_l <—f°(w,|kv§:i+1)

We only consider those combinations of successive words that actually occur in the training
corpus, or that occur frequently enough. In our work as specified above one of the biggest
issues is managing the dimensionality of our datasets we use the approach explained in the

paper [4] citate before that can be summarize in three points:

* Associate with each word in the vocabulary a distributed word feature vector (a realval-

ued vector in R”)

* Express the joint probability function of word sequences in terms of the feature vectors

of these words in the sequence

* learn simultaneously the word feature vectors and the parameters of that probability

function

The feature vector represents different aspects of the word: each word is associated with
a point in a vector space. The probability function is expressed as a product of conditional

probabilities of the next word given the previous ones.



1.2 Toric DETECTION

Topic detection uses the NLPs algorithms in order to understand the topic behind textual data.
this common task is particularly usefull when you can have access to a large dataset but you
know that a lots of data are useless of you needing, so that you extract the topic behind auto-
matically. The research in this field is really important because in the recent year we can have
access to an infinity amount of text data through for example the social network, that can be
used for a bunch of scope such as Marketing for the private company, if you can analyze as
much as possible text data we can reply rapidly to the customers question not only in the re-
view but principle in the products adapting them to the needs of large consumer groups. For
the public company can be usefull to understand the quality of the services or if needing others
services to help the citizens in their life. The singular states can be understand what social issues
there are in their country, nowadays the majority of people don’t go out to protest but write
a post on Twitter or other social network, due to that the government can be adapt their poli-
cies or they could be solve some problem that in normal scenario cannot because they didn’t
reach that information. Another big field in which topic detection is really important is the
human-computer interactions, in recent year the expansions of the Als needs to search the best
model to understand the human language through computers, to do so the topic detection
represent one good information for the model that need to understand what they talk about
with a speed process. The model related to this task can be applied at different levels, first it can
be used at document-level to understand and analyse the topic in a document, this document
is a sum of different sentences; another level is the sentence-level in which we analyse the sen-
tences singularly in a document, or the deepest level is word-level in which the single words are
analysed singularly. The choice of the level is based on you scope. in our works we analyse our
datasets based on document level, in which every documentis a sum of some sentences, because
the word-level information is passed by the classification parts. Probabilistic topic models have
been used widely in NLP. [s] Typically, words are assumed to be generated from latent topics
which can be inferred from data based on word co-occurrence patterns. The basic idea is to con-
struct a neural network which aims to approximate the topic-word distribution in probabilistic
topic models. Additional constraints, such as incorporating prior distribution[6], enforcing di-
versity among topics [7] or encouraging topic sparsity [8], have been explored for neural topic
model learning and proved effective. However, most of these algorithms take the auto-encoder
as the basis learner to fit the distribution function. Due to the drawback in integrals, the gen-

eralization ability of the auto-encoder is limited. More recently, the Variational Auto-Encoder



[9] has been proved more effective and efficient to approximating deep, complex and underes-
timated variance in integrals [10], [11]. However, existing supervised neural topic models treat
the class labels as weights which are distributed across words during training. It thus ignores
the rich contextual information such as dependencies among words/phrases in a sentence and
the ordering of sentences in a document, which is important for many downstream NLP tasks

including sentiment analysis and opinion mining.
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Figure 1.1: Topic Detection

1.3 SENTIMENT ANALYSIS

In today’s era of big data, the application of Opinion Mining and Sentiment Analysis has
proven to be a valuable method for categorizing opinions and assessing the overall public mood.
These techniques have evolved over the years and found applications across various datasets and
experimental settings[12].

Research in sentiment analysis has expanded beyond unimodal text-focused approaches to
include multiple modalities such as speech and video. It addresses various Natural Language
Processing (NLP) subtasks, including aspect extraction, subjectivity detection, named entity
recognition, and sarcasm detection.

The primary goal of sentiment analysis is to extract meaningful insights from people’s opin-
ions, providing valuable information to both consumers and manufacturers. Typically, senti-
ment analysis involves a classification process, with three main levels: document-level, sentence-
level, and aspect-level sentiment analysis[12]. The main sources of data for sentiment analysis
are product reviews, especially from review sites. While sentimentanalysis is commonly applied

to product reviews, its applications extend to stock markets, news articles, and political debates



[13]. A comprehensive survey on sentiment analysis algorithms and applications provides an
overview of recent advancements in the field. This survey categorizes various algorithms and
their contributions to sentiment analysis techniques, including sentiment classification, fea-
ture selection, emotion detection, and transfer learning [13]. Due to the complexity of senti-
ment analysis, which involves underlying concepts and expressions in text, the process encom-
passes multiple tasks. The primary tasks include sentiment or opinion detection, which clas-
sifies text as objective or subjective based on adjective examination, and polarity classification,
which classifies opinions into opposing sentiment polarities [14]. Sentiment analysis involves
assessing if a document or sentence carries emotional sentiment, usually categorized as positive,
neutral, or negative. This information finds application in diverse contexts, such as evaluating
customer satisfaction, discerning emotions in social media posts, or enhancing internal com-
pany processes. In recent years, sentiment analysis algorithms have evolved to associate various
emotions, including anger, happiness, sadness, urgency, and more. In our work, specifically in
Topic Detection, we employ a document-level approach. In the classification part, we adopt a
word-level approach, leveraging sentiment methods to capture sentiment information for each
label in our dataset. This information is exchanged with the topic parts and vice versa [5]. Sen-
timent classification can be achieved through supervised statistical learning models[15], [16],
[17], traditional feature-engineering-based models, or deep learning models, including Convo-
lution Neural Network (CNN)[18] and Recurrent Neural Network (RNN) [19]. Document-
level sentiment classification involves modeling the hierarchical semantic composition of a doc-
ument using hierarchical models like the Gated Recurrent Neural Network[20] and the Hi-
erarchical Attention Network[21]. Recent advancements, such as training neural networks
with large-scale pre-trained word embeddings like BERT [22], have significantly improved text
classification[23]. In our specific approach, we utilize RNN and BERT.

1.4 MUTUAL LEARNING

Mutual Learning [5] is an approach based on multi-task learning in which two different models
are trained simultaneously, this two models share knowledge and their prediction during the
training phase. This leads to have better information in the prediction because the two models
receives information that they wouldn’t have been able to find on their own. The Multi task
Learning is an important machine learning mechanism that improves the generalisation per-
formance by learning a task together with other related tasks, it usually has a common layers

which learns a shared representation across tasks, then stack several task-specific upper layers
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Figure 1.2: Sentiment analysis process

to learn task-relevant representations. MTL has been successfully applied in many NLP tasks
including classification [24], [25] and sequence tagging [26], [27], [28], [29]. However, most
MTL research focuses on supervised learning [30]. To the best of our knowledge, there is no
MTL framework for jointly learning an unsupervised model such as a generative topic model
and a supervised model such as a text classifier. The different from the MTL is that in the Mu-
tual Learning are used both supervised and unsupervised models, the first one for the classifica-
tion part and the second one for the part of topic detection. We use a novel MTL framework
based on the following observation. The weights of the decoder in a neural topic model indi-
cate the association probabilities between words and topics, while the attention signals in an
attention-based classification model captures the importance of words/sentences contributing
to the overall sentiment classification. Thus, if we could make these two distributions as simi-
lar as possible, we can potentially generate polarity-bearing topics and at the same time achieve
higher sentiment classification results with the topical information incorporated. The key idea
is to use latent topic distribution of each word obtained from the neural topic model to guide
the calculation of word-level attention signals in the text classification model, which essentially
incorporates the topic information into the classifier training. On the other hand, the word-
level attention vector which potentially carries the word-level polarity information could be
used to guide the learning of latent topic distributions in the neural topic model. The latent

topic distribution for each word can be obtained by using the weights connecting the penul-



timate layer and the reconstruction layer in the neural topic model. The attention vector for
each word in RNN is stored in #;. Mutual learning is used to make the latent topic distribution
of a word to be similar to the attention vector of the same word from RNN. The benefits of

LISil’lg SU.Ch a strategy are:

* learning latent topics with word-level polarity information derived from classifier train-

ing without the need of using any external sentiment lexicons;

* incorporating the latent topic information into classifier training to improve the classi-

fication performance.

Below there is the pseudo-code of this model and the scheme of the algorithm which explains
how the the Multi task mutual learning algorithm works in theory and the picture show how

the two models exchange the information. The latent topic distribution for the 7th word is

Algorithm 1.1 Multi-Task Mutual Learning

Require: Documents with labels }wd; )’d( d= }l 2, ..., D(, pre-trained word embeddings,
candidate word vocabulary V' = }w;, w,, .. W) (5 (, the maximum training iterations 7.
Ensure: Trained topic model and classifier
Initialise model parameters
for j = 1 to T or until convergence
for each mini batch of training instances
Minimise the loss function L.

end for
for £ = 1o [|]]|
Optimise the object function { for each w,
end for
end for

Fine tune the model by minimising the task specific loss function for each task

! . . -
represented as w; = }wy, Wy, ..., wx( where K is the total number of topics, and the attention
! . - - - -
vector #; for the 7ith word is obtained from the scheme of RNN. We measure and maximise the
- - - - - - - . ! - -
similarity between the latent topic distribution of the 7th word, w,, and its attention vector Ui N

during the training. We use the following similarity measurement metric:

0— H P”@H

x' 265“: 2
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Figure 1.3: MTL with Mutual Learning

- - - - - r L - -
that is based on cosine similarity. In order to make w, and #, comparable we set the dimension
of the attention vector of u.:, to be the same as the number of latent topics. So as explained in

line 4 and in line 7 we optimise the parameter of the equation:

Lpinar = H a @& (wa) + B &L (wa)

d

where
L(wy) = H p Boglsoftmax(W, @w, + by))

L Ny

L) 7 ] T] logpwanB”)  KL(q(ealen) ple)

=1 =l
and the equation O separately. In each training epoch, we optimize the parameter in L, iter-
atively for each minibatch of training instances to obtain topic and sentiment representations.
Then, we update O at the end of current training epoch, so the Lg,,; is update more frequently
compared to O. This is the thery behind this medel, to have a complete vision about this tech-
niques we modify the methods inside the model in order to see if the method exchange cor-
rectly the information and if there is a possibility to achieve better performance using model
more sophisticate and newer in the literature. Basically we change the topic detection part
from a Variational Autencoders(VAE) to a Dirichlet Variational autoencoders (DirVae), based
on the results obtained using the LDA in sentiment and topic distribution [31], and in the
sentiment analysis part from the Recurrent neaural network (RNN) to Bidirectional Encoder

Represetnations from Tranformers (BERT). in the section 3. all this four model are explained



theoretically and our applications. Now we can explain how our code of MTL are composed:

we have nine file:

* main.py: is one of the most important parts, in this file we set all the parameters for the
model, preprocess the data for the topic part, we get vocabulary, load embedding,split
the data in train and test, set the model, the loss function, the optimization function and

last thing start training the model;

* train_model.py: this file contains all the stuff that we need in order to train the model

and print the results. inside we have four function:

— train_model: used to train the model inside we have a for loop based on the num-
ber of epochs, and a for loop based on the batch size. Inside this two loop we set all
the variables that we need and we start to calculate all calling the model function,
loss functions, once we calculate all we optimize it. under some specific conditions

we evaluate it on the test set. after all we print the results;

— evaluate: this function basically calculate all the things that are calculated in the
training phase but in the test set. proceed always with a for loop based on the

batch size;

— get_reward_cv: this function create and return the classification vector based on

the vocabulary the topic and the model;

— print_topic: is a function used to print the resulting topic.

* model.py: is the most important part in this file are contained all the parts of the model,
the first part start by setting all the parameters, the second one set the structure of the
differences models. and the last one the part called forward part that are responsible to

execute the code. all the functions are inside a class named JointModel;

* model_data.py: the main part in this file is the class Datalter, in which we modify the
object in order to have iterable and modifiable the objects containes in the dataset and

in all the others file;

I0



* clf_data.py: here we have five functions:

get_vocabulary: used to create the vocabulary;

load_embedding: create the embedding matrix used in the model;

convert_wordszids: create the id list in order to complete the embedding;

load_clf: load the classification obtained by the sentiment analysis parts;

sort_key: organize the keys nad returns the document list, label list and the index

list.

* topic_data.py: in this filed are contained two functions, the first one load and process
the data in order to split ihe dataset in train and test, organize the label and all the stuft
that are needed to preprocess the data, the second function is the preprocess of the data

in order to obtain the correct structure and all the stuffs to train the model;
* embedding_code.py: cointains the embedding model

* loss.py: contains the loss function for the topic parts and the loss function shared by the

two parts of the model which is used to optimize all the model;

file_handing.py: is a library create by our own in which there are all the basic function

to read, write, save the files.

This is how our files are organized, the singularly models are explained in section 3.

1.5 OBJECTIVES OF THIS THESIS

The aims of our work is basically two: the first one is see if the Mutual learning works better
compared to the normal model of Topic detection, the second one is try to see if, changing the
model we can achieve better performance, this for all the three vocabulary sizes (2000, 3000,

5000) To do so we compare all the model with some metrics:

II



* Complexity: Complexity in algorithms refers to the amount of resources (such as time
or memory) required to solve a problem or perform a task. The most common mea-
sure of complexity is time complexity, which refers to the amount of time an algorithm
takes to produce a result as a function of the size of the input. In our work we analyze
the time complexity per epochs in the training phase. We do that to see the trade-off
between the performance measures and the time because if we achieve a better accuracy
but the improvement is very little and the time to run the new model is exponentially
compared to the first one in the real scenario is not a good choices because we must take

in consideration the time need to train the algorithm;

* Accuracy: the accuracy measure the number of the predicted values that are predicted

correctly divided by the total predicted numbers. Accuracy has two definitions:

— Is a description of only systematic errors, a measure of statistical bias of a given
measure of central tendency; low accuracy causes a difference between a result and

a true value; ISO calls this trueness.

— ISO defines accuracy as describing a combination of both types of observational
error (random and systematic), so high accuracy requires both high precision and

high trueness.

Accuracy in our work is defined as follow

( H correct_prediction) [total_sample

* KLD:[32] Kullback-Leibler divergence KL (p, g) is the standard measure of error when
we have a true probability distribution p which is approximate with probability distri-
bution g. Its efficient computation is essential in many tasks, as in approximate compu-
tation or as a measure of error when learning a probability. in our work we use them to

analyze the error in the generated distribution with respect to a normal distribution. We

I2



define our KLLD as follow

i=1

N
0.5 G]i_[ 1+ log(logvar) (mean?) exp(logvar,) (

This represent the loss for the topic detection part and is use it for calculate the loss

Loss: [33]A loss function has two crucial roles in training a conventional discriminant

deep neural network:

— it measures the goodness of classification

— generates the gradients that drive the training of the network.

Conventional training of a DNN assumes a loss function that measures the “goodness”
of the classification by comparing the prediction to the ground truth. Specifically, errors
between the predicted and true labels are calculated over the training set. The errors are
then combined into a scalar which is called loss. This phase of calculating the loss value
from representation points is called forward propagation of the loss function. The train-
ing of the network actually occurs in the back propagation phase, in which the parame-
ters of the network are updated proportionally to the gradient of the loss with respect to
the parameters. As all the negative gradients are calculated by the chain rule that starts
with the partial derivatives of the loss with respect to the representations, the derivatives
of the loss function are the starting “forces” that drive the training of the network. We
measure the loss by the cross entropy function [34] for the classification part and the
KLD for the topic part. This two losses are multiplied by their weigths (two parame-
ters that can be tuned if we want to give more importance to a part respect to the other)
and then are summed up to compute the overall loss. Cross-entropy coincides with the
(multinomial) logistic loss applied to the outputs of a neural network, when the softmax
is used. It is known that the logistic loss is Bayes consistent [35] Thus, asymptotically, a
nearly optimal minimizer of the logistic loss over the family of all measurable functions

is also a nearly optimal optimizer of the zero-one classification loss. The Cross-entropy
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are calculated as follow:

l(x?y) =L=1}4,.., ZN(T

< >
L, = H w,log w Yne
=1 H i=1XP (xﬂ,f)

1.6 RELATED WORK

We start to work on the partial code that the researchers shared in the paper, the first part we
try to recreate the missing part, and debug the others. The first missing part that we build-
up is a library of basic function that read, write and save all the files that we use, we call it
file_handling. One of the most important missing part was the parts of the embedding, we use
a pre-built methods called "words2Vec” imported form gensim library: Word2Vec is a widely
used algorithm based on neural networks, commonly referred to as “deep learning” (though
wordavec itself is rather shallow). Using large amounts of annotated plain text, wordavec learns
relationships between words automatically. The output are vectors, one vector per word, with
remarkable linear relationships, thatfileis used in the function ”load_embedding” to obtain the
embedding matrix. Understanding the code we notice that in some part there is a theoretically
problem so we fix that, for example the loss function, the researcher give some possibilities and
studied all the theoretical implication for all the functions to see what works better, we make
some correction to adapt to our modifications. We discover some problems in the structure
of the code and in the flows of the algorithm, this work was pretty long because we cannot
modified a lot of things in parallel so we use a partial dataset to see every modification how
impact in the rest of the code. although we used a much smaller dataset each execution took a
lot of time, we are talking about 5o minutes or even an hour. the changes that were made were
many, once we reached the point where the code was running correctly we had to re-code all the
data structures so that they would work with both datasets which have very different structures
and sizes. First of all we start to analize the time consuming and we notice that the classification
part is the most complex and is the part we required the majority of the time, Another time
consuming part is the optimization in the training phase: the optimisation is act through the
gradient descent in every batch, this could be really expensive when the batch size grows, we

do that by PyTorch package that have pre-build functions to optimize the model, in our case
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we use clip_gradient_norm that calculate the gradient of the loss and then calculate the norm
on all the gradients together and modified the gradients in-place. At every iteration the model
are optimize by the loss defined in the paragraph [1.5], and one time per batch we optimize the
method with a KLD loss function but calculated with the word_attention_dictionary via this

formula:

|D TMattentiom HAMttention | ||
HAN attention 2 @ TM attention 2

kld_all+ =

this calculated for all the instances in the word_attention_dictionary. where HA Nyiention is the
value of attention and 7M ention is the related weight in the model. When we understand that
we are in fronts of a really complex method and it required hours to train it, we try to manage
the different parameters in order to find the best combination that could make feasible the

training in a good time. The parameters that can be modified are:

* Batch_size

* Vocabulary_size

* dt: can see as the number of topics we would predict
* tm_weight:

* clf weight

* max_epochs

* min_epochs

For our first scope we concentrate two three parameters Batch_size, max_epochsand min_epochs.
We try to tunes this values in the small subset of the data doing that for understand the be-
haviour and then we try in the whole datasets. We try to change the batch size parameter (1,

5, 10, 20, 100, 500, 1000) and see how much time required one epochs that is the sum of all
iterations in the different batches and the overall time. We set 2 max number of epochs equal
to 3 and a min equal to 1. Some values are not possibles for example with batch size equal to
1000 the computed haven’t enough memory to analyze a batch with this dimensions. This
take a lot of times because every run required hours to did it and the possibility to tuning this

parameter are very much. Once we had found the best parameter for batch_size that would
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allow us to execute the entire dataset in the shortest possible time, we focused on seeing how
performance measures are affected with respect to vocabulary size. Once we had analysed all
the results, which are reported in Chapter 4, we were able to understand what the behaviour
of the model was like. Once we had completed the analysis of the basic model, which we will
obviously take as standard, we started working on the first variation. We started to study theo-
retically how BERT’s model worked for the sentiment analysis part, to see how we could adapt
it to our standard model, making sure that the model would work with our data first, we created
ad hoc functions to create the correct data structures to pass on to the model during execution,
and then we tried to analyse what information was being exchanged between the two meth-
ods so that we could modity it to achieve our purpose. Having arrived at the point where the
model with the BERT method worked, we selected the parameters from our standard model
so that we could compare them, again the results obtained can be found in Chapter 4. Having
performed the analysis of the MTL model with BERT, we moved on to the introduction of
the second variant, the one using a Dirichlet Variational autoencoder for the topic detection
part. The procedure was very similar to that used for the implementation of the BERT model:
to study and understand the model thoroughly, to find a way to apply it correctly according to
our data, to check the correct functioning in the exchange of information with the sentiment
analysis part and finally to analyse the behaviour of the model with predefined parameters so
that we could compare it with our basic model and finally to get an overview of the Multi task

mutual learning method.
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Dataset

We use two datasets the first one is a subset of the YELP dataset, which contains businesses
reviews, contains the text of the reviews and the class associated. The class goes from 1 to s,
have 39 ooo instances in the training set and around 16000 in the test set. The second dataset
is the IMDB that contains movie’s reviews, this dataset have ten classes from 1 to 10, contains

15000 instances in the training set and 9112 in the test set.

#Class | #docs | Vocab.Size
YELP S 39,923 | 53,823
IMDB 10 15,000 55,819

Table 2.1: Datasets
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Models

3.1 VARIATIONAL AUTOENCODER

Autoencoders are neural network architectures used for dimensionality reduction. They con-
sist of two main components: an encoder and a decoder. The encoder takes the original fea-
tures or data and produces a compressed representation, often referred to as “new features.”
The decoder then tries to reconstruct the original data from this compressed representation.
This process is optimized iteratively through backpropagation, where the error between the
encoded-decoded output and the initial data is used to update the network’s weights.

The idea behind autoencoders is to create a bottleneck for data, allowing only the essential
structured information to pass through for reconstruction. The architecture of the encoder
and decoder networks defines the families of encoders (E) and decoders (D), respectively. The
goal is to find encoder and decoder parameters that minimize the reconstruction error, typically

achieved through gradient descent.

In the context of linear autoencoders with a single layer and no non-linearity, there’s a clear
connection to Principal Component Analysis (PCA). Both methods seek the best linear sub-
space for projecting data with minimal information loss. However, linear autoencoders can
have multiple solutions, unlike PCA. Furthermore, they don’t require the new features to be

independent.

When both the encoder and decoder are deep and non-linear, a higher dimensionality re-
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duction is possible while maintaining a low reconstruction loss. The more complex the archi-
tecture, the greater the compression potential. In theory, an encoder with infinite capacity
could reduce any initial dimensionality to one, but this can lead to a lack of interpretable and
exploitable structures in the latent space. The dimension of the latent space and the depth
of autoencoders should be carefully controlled based on the specific dimensionality reduction
objectives.

Variational autoencoders (VAEs) are a type of autoencoder that introduces regularization
during training to ensure a regular and interpretable latent space. VAEs encode inputs as distri-
butions over the latent space rather than single points. The training process involves encoding
an input as a distribution, sampling a point from this distribution, decoding the point, and
backpropagating the reconstruction error. The encoded distributions are typically set to be

normal, with the encoder returning both the mean and covariance matrix.

A}

, i | vl i | i
Input Encoder Space Decoder Output

Figure 3.1: Variational Autoencoders
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Figure 3.2: VAE

The regularity in the latent space, which is essential for generative purposes, is achieved
through continuity and completeness. Continuity ensures that nearby points in the latent
space result in similar decoded content, while completeness means that sampled points from

the latent space yield meaningful content. VAEs address this regularity by enforcing the dis-
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Figure 3.3: Autoencoders vs Variational Autoencoders

tributions to be close to a standard normal distribution, preventing punctual distributions or

widely separated means.

The regularisation term in the VAE’s loss function, represented by the Kulback-Leibler di-
vergence, encourages the encoded distributions to meet these regularity conditions. This comes
at the cost of a higher reconstruction error on the training data, and the trade-off between re-

construction error and the KL divergence can be adjusted based on specific requirements.

We review the topic detection model of [5]. For the generative model so the generation net-
work we consider a corpus of D documents using a vocabulary of W words. Each document is
represented by a (variable length) vector d;, 7 = 1, ..., D collecting the words occurrences in the
document, so thatd; , O1, ..., W. Welet the corpus be organised in 7 topics, and denote with
t; (vector of length T) the latent topic representation of document ;. Our reference generative
model starts from an hidden prior variable z O R” normally distributed, i.e., with probability
distribution function (PDF) p(z) = pn(z; 0, ) where

1 1 T —1
. _ —3(x=—m)" 327 (x—m)
x; m, I I = —¢
PN( ) - det(Z?r'H)

is the multivariate normal PDF. The latent topic representation # O RTis approximated by a

multilayer perceptron (MLP), to build a differentiable map of the form
= B(Z) == W2 tanh(le + b]) + bz
. The word-occurrence-pattern vector is then generated via softmax construction from the
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latent topic representation, that is
log(pa(dlF) = H log(s4,),s = softmax(Wst + bs)

where 54, denotes the d, th entry of 5. Hence, we have

ro(dle) = pa(d|P(2))

with parameters © = }&y, b,, by, Wy, W5, W3(. For the approximation of posterior proba-
bility, so the inference network, we proceed as follows: the posterior probability g4 (z|H) is

approximated by the multivariate normal distribution
1o(eH) = pa(e: 1old), diag(0%(d)))
where |14 and 07, are differential maps generated through two MLPs. Specifically, we have
Ko (d) = H/Sb + bs? h = tanh(W4d + &i)?fog(ﬁi(d)) = ng + bg

. For the target function, according to the VAE approach of [9] we define a variational lower

bound fy ¢ (d) > logpe(d) as

foold) = lgpnd)  DalagolcliDlpa(elt)
=V gy e og) 22D (

90(2|H)
—V e (el logpo (@) V. d%(zlki)log) (2) (

94 (zlH)

r

-

‘-—\
A S

with target function fp 4 (&) to be maximized with respect to the parameters 0 and ¢. By ex-

ploiting the above formula for g4 (z|l) , the target function can be rewritten in the form
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Sild) = ‘/duPN(u; 0, D)log(po(dlbre(d) + 06(d) < n))

= LT tog(roldiiio(@) + 04(d) < )
I

=1

fld) = 10+ 1 (d) + 03(d) + log(}(@)))

where < stands for element-wise product, and where ; O N(0, ]) are independent normal

samples. Below we report the Python implementation of the model

Figure 3.4: VAE configuration
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Figure 3.5: VAE execution

3.2 RECURRENT NEURAL NETWORK

RNN s represent a fascinating class of neural network architectures designed primarily for iden-
tifying patterns within sequential data[36]. This type of data can encompass a wide range of
applications, such as analyzing handwriting, decoding genomes, processing textual informa-
tion, or handling numerical time series, often encountered in industrial contexts, like stock
market data or sensor readings. Moreover, RNNs can even be applied to image data by decom-
posing images into patches and treating them as a sequence of information. On a broader scale,
RNNG find extensive utility in tasks like Language Modeling, Text Generation, Speech Recog-
nition, Image Description Generation, and Video Tagging. What truly sets Recurrent Neural
Networks apart from their counterparts, such as Feedforward Neural Networks, also known
as MLPs, is the way they manage the flow of information through the network. While Feed-
forward Networks convey data in a unidirectional manner without any feedback loops, RNNs
embrace the concept of cyclic dependencies, allowing them to incorporate not only the present

input X, but also the historical input sequence Xo.,—;. This process of conveying information

Output O Output O,
T Wi Wi T I
Hidden Layer H Hidden Layer H,
Wi
T th th T T
Input X Input X,
Feedforward Neural Network Recurrent Neural Network

Figure 3.6: RNN vs FFN

from the previous time step to the current hidden layer can be described using mathematical

notations introduced in the literature. In these notations, we denote the hidden state at time
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Figure 3.7: RNN

steptas H; O R™ and the inputas X; O R™ where n represents the number of data samples,
d signifies the dimension of the input for each sample, and » denotes the number of hidden
units. We introduce essential weight matrices: W, O R representing the input-to-hidden-
state transformation, W), inR"®, accounting for the hidden-state-to-hidden-state transitions,
and a bias parameter &, O RY™_ All this information is subsequently processed through an
activation function, often a logistic sigmoid or tanh function. This step serves the purpose of

preparing the gradients for efficient use in the backpropagation algorithm.
H; = Op(X: Wy + Hi_y Wiy, + by,)

Or — (DD(H:‘ Wbo + ba)

Crucially, due to the recursive nature of RNNSs, the hidden state Ht at any given time step not
only encodes information from the currentinput but also retains traces of all preceding hidden
states up to Ht—1, which collectively imbues RNNs with a memory-like capability to model
sequences effectively. In our work we use a hierarchical RNN, as proposed in [5] to model a
document. Assuming thata document w, contains M, sentences, wy = }s1,5,, ...5a1, , and the
word embedding of jth word in 7th sentence is w’, Then, the representation of sentence s; can

be obtained by the following steps:
= W,

m
s
S 8
S 5



. c. —
V=W, oW,
i, = tanh( W, &, + bu),
exp(uTﬂatfv)
[1,exp(u” B) ’

=Tl
=1

where GR%and 3}3 U are bi-directional gated recurrent neural units for RNN, W, W, b,

are learned parameters in the classification model, and z/ is the attention vector of jth word in

ith sentence, a.}‘ is the attention signal captured by z/ 5; is the learned representation for the
ith sentence in document w,. Then, we can learn the representation of document w, with
the similar architecture taking the input as a sequence of sentence representations. Finally, a
softmax layer is stacked at the top to predict the class labels of documents by cross entropy loss
between the predicted labels and the true labels.

Li(wa) = | ] p Soglsoftmax(W, @va + ba)),

where the output of softmax( W, @, + ba) is the distribution of predicted labels and p is the
distribution of true labels. Below we report the Python implementation of the model

Outputs Yr-1 Ys Yf41
Backward Layer @ @ @
Forward Layer ‘ ‘ ‘

Inputs Tf Ty Tl

Figure 3.8: Bidirectional RNN



init_rnn_hidden(self, batch_size, level):
param_data = parameters()).data
level =
bidirectional multlpler* = word_rnn_bidirectional
layer_si ~.word_rnn_num_layer * bidirectional multipier
word_rnn_init | hldden = param_data.new(layer_size, batch_size, self.word_rnn_size).
rn word_rnn_init_hidden
level
bidirectional multlpler =2 .context_rnn_bidirectional =
layer_si context_rnn_num_layer bidirectional multipier
conte t_r‘nn_init_hldden param_data.new(layer si batch_si f.context_rnn_size).zero_()
context_rnn_init_hidden

ption(”

num_utterance = len(input_list)
_, batch_size = input list[@].size()

rd-1
word_rnn_hidden S .init_rnn_hidden(batch_size, level
word_rnn_output_list = []
utterance_index r (num_utterance):
word_rnn_input = f.embedding(input_list[utterance index])
word_rnn_output, word_rnn_hidden word_rnn(word_rnn_input, word_rnn_hidden)
word_attention_weight = f.word_conv_attention_linear(word_rnn_output)

batch_data = mput 11,t[utteranx e_index]
For word_i
clause_i ir \(bat:h data[wcrd l] :
word_index (b _data[word_i, clause_i])
word_ind 4 d_wv:
if . word_attention dict:
word_attention_dict[word_index] = (word_attention_dict[word_index] + word attention_weight[word_i, clause_i,:]) / 2

word_attention dict[word_index] = word_attention weight[word i, clause i, :]

word_attention_weight = self.word_conv_attention_linear2(word_attention_weight)
word_attention_weight = nn.functional.relu(word_attention_weight)

word_attention weight nn.functional.softmax(word_attention weigl
word_rnn_last_output = torch.mul(word rnn_output, word_attention weight).sum(dim=08)
word_rnn_output_list.append(word_rnn_last_output)

word_rnn_hidden = word_rnn_hidden.detach()

context_rnn_hidden elf.init_rnn_hidden(batch_size, lev

context_rnn_input = torch.stack(word_rnn_output_list, di

context_rnn_output, context_rnn_hidden = ontext_rnn(context_rnn_input
context_attention_weight 5 xt_ ¢_attention_linear(cont

context_attention_weight = nn.functional.relu(context attention weight)
context_attention_weight = nn.functional.softmax(context attention weight, dim=0)
context_rnn_last_output = torch.mul(context_rnn_output, context_ attention_weight).sum(dim=8)
classifier_input = context_rnn_last_output

logit = .classifier(classifier input)

Figure 3.10: RNN execution

3.3 BERT

The field of natural language processing has witnessed significant advancements through the
implementation of language model pre-training techniques. These techniques have proven ef-
fective in enhancing a multitude of natural language processing tasks, ranging from tasks that

operate at the sentence level, such as natural language inference and paraphrasing, to those that
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demand fine-grained token-level analysis, like named entity recognition and question answer-
ing.

When it comes to employing pre-trained language representations for downstream tasks,
two prominent strategies have emerged: feature-based and fine-tuning. In the feature-based
approach, as exemplified by ELMo, task-specific architectures are constructed, incorporating

pre-trained representations as supplementary features.

In contrast, the fine-tuning approach, as seen in models like the Generative Pre-trained Trans-
former (GPT), introduces minimal task-specific parameters. It trains on downstream tasks by
fine-tuning all pre-trained parameters, effectively adapting the model to specific tasks. An in-
herent limitation of standard language models is their unidirectionality, which restricts the
choice of architectures during pre-training. Here is where BERT, or ”Bidirectional Encoder
Representations from Transformers,”[22] emerges as a pivotal development. BERT alleviates
the unidirectionality constraint by utilizing a ”masked language model” (MLM) pre-training
objective. This MLM objective randomly masks certain tokens in the input, challenging the
model to predict the original vocabulary ID of the masked word solely based on its context.
This approach empowers the representation to encapsulate both left and right context, paving
the way for deep bidirectional Transformer pre-training. Fundamentally, BERT is a stack of
Transformer encoder layers which consist of multiple self-attention "heads”[37]. For every in-
put token in a sequence, each head computes key, value and query vectors, used to create a
weighted representation. The outputs of all heads in the same layer are combined and run
through a fully-connected layer. Each layer is wrapped with a skip connection and followed by
layer normalization. The conventional workflow for BERT consists of two stages: pre-training
and fine-tuning. Pretraining uses two self-supervised tasks: masked language modeling (MLM,
prediction of randomly masked input tokens) and next sentence prediction (NSP, predicting
if two input sentences are adjacent to each other). In fine-tuning for downstream applications,
one or more fully-connected layers are typically added on top of the final encoder layer. One
of the standout features of BERT is its unified architecture, applicable across a diverse array
of tasks. BERT’s model architecture is built upon a multi-layer bidirectional Transformer en-
coder, originally described in and released in the tensorztensor library. This consistent architec-
ture, adaptable for various tasks, has played a pivotal role in the success and widespread adop-
tion of BERT in the field of natural language processing. after a careful study of the model,
also based on what it says [38] we can summarise through a list, everything about the model’s

knowledge of language, such as semantics, syntax and knowledge about words
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Figure 3.11: BERT

* Syntactic Knowledge:

— BERT representations are hierarchical, suggesting a syntactic tree structure in ad-

dition to word order.

— BERT embeddings encode information about parts of speech, syntactic chunks,

and roles.

— Syntactic information is captured in token embeddings and can be used to recover

syntactic trees.

* Syntax Representation:

— Syntactic structure is not directly encoded in self-attention weights.

— BERT token representations can be used to recover syntactic dependencies in some

cases.

* Semantic Knowledge:

— BERT displays knowledge of semantic roles.

— BERT has some preference for correct fillers related to the semantics.
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Figure 3.12: Parameter-free probe for syntactic knowledge: words sharing syntactic subtrees have larger impact on each
other in the MLM prediction [1]

* World Knowledge:

— BERT shows evidence of commonsense knowledge.
— BERT can recall factual knowledge without fine-tuning.

— BERT’s world knowledge has limitations in reasoning and certain aspects of se-

mantics.

Theoretically the figure 3.12 explain how the implementation of the BERT model for the
classification part exchange information with the topic part. We use the same property of the
RNN so we exchange the attention information’s before the output layers. In our work we
implement pre-trained Bert, as input we reconstruct the word of the VAE parts using a function

that take the outputs of the detection part, that are tensors containing sequence of vectors for
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Figure 3.13: MLT with BERT

each sentence and each vector contains all the numbers associated to the words, once we have

done it we merge the all the sentences in one list and we pass it to the pre-built BERT tokenizer.

Input icts) | | my || dog is cute || [SEP] he (Iikes M play”##ing”[ssﬂ}

Token

Embeddings ‘E[CLS] Erny |Edag I Eq JI Ecute‘ E[SEP] | Ee ‘Ehkes ‘Eplale Emng E[SEP]
+ + + + + + + + + + +

Segment

emoesanss | Ea | | B | (B | B0 (&0 T8 ][] 6] (6] 8] (&
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Position
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Figure 3.14: BERT Embeddings: In the context of sequence processing, each sequence commences with a distinctive
classification token ([CLS]), while at the end, we demarcate individual sequences using a special token ([SEP]). The input
representation for any given token is formed by the summation of the token’s associated embeddings, including token,

segment, and position embeddings.
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Now we have the correct inputs for our model, we divide it into chunks for computations
reasons and we set a specific token that specify to the model when a chunck start and when
a chunk finished. When we have all the chunks ready we pass it to the BERT model already
pre-trained with "bert-base-uncase” to obtain the final output. The bert-base-uncase model
has 12 layers, 768 hidden, 12 heads and 110M parameters, it used as MLM, as explained above,
and Next Sentence Prediction (NSP): the models concatenates two masked sentences as inputs
during pretraining. Sometimes they correspond to sentences that were next to each other in the
original text, sometimes not. The model then has to predict if the two sentences were following
each other or not. the model not take in consideration the difference between a word that start
with an uppercase letter and the same word written undercase. This way, the model learns an
inner representation of the English language that can then be used to extract features useful
for downstream tasks: if you have a dataset of labeled sentences, for instance, you can train a
standard classifier using the features produced by the BERT model as inputs. Below we report

the Python implementation of the model

pt’, max_length=max_chunk_length)

max_chunk_length

. 1)1, dim=1) for chunk in input_id_chunks]

Figure 3.15: Bert execution
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)

output_hidden_state=True)

nn.Linear(mlp_size, num label), nn.Tanh())

Figure 3.16: Bert configuration

3.4 DIRVAE

The dirVae model basically have the same scheme of a normal Variational autoencoder, there are
a generative network and an Inference network. Is able to model the multi-modal distribution
that was not possible with the Gaussian-Softmax and the GEM approaches. These character-
istics allow DirVAE to be the prior of the discrete latent distribution, as the original Dirichlet
distribution is[39]. Based on [40] we summarize the fundamental concept behind the Dirich-
let Variational Autoencoder (DirVAE) is closely tied to the Dirichlet distribution, which is a

multivariate generalization of the Beta distribution. The Dirichlet distribution represents a

| Gauss(u, £) . Dirichlet(a)
o B z ot ¢ z u
[ u M}:;: g
N - N
(a) standard VAE (h) DirVAE

Figure 3.17: DirVae and standard VAE

multivariate continuous distribution of significant importance in the fields of probability and
statistics. To better understand the DirVAE, we must first examine the Dirichlet distribution.
This distribution is defined by a vector Y}, with £ components, each of which is non-negative
(¥; ~ 0), and the sum of all components is equal to 1. It is also defined by a vector «; with £
components, each of which is strictly positive. The probability density function of the Dirich-

let distribution is given by:
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Where 2y = Hle ¥ >0, +...+py <landy, =1 9y ... 9y This
distribution is denoted as Dir(a;, 2,, . . . ,a;).

Itis important to note that the Dirichlet distribution is a distribution with £ positive param-
eters &, in a k-dimensional space. When & = 2, the probability density function is analogous to
that of the Beta distribution with parameters ; and ;. To better comprehend this distribution,
we can visualize 1000 points generated from the Dirichlet distribution in a three-dimensional
space with different values of parameter ;. When a4, @, and @; are all between o and 1, the
density clusters around the edges of the simplex. This is observed when #; = (0.1,0.1,0.1),
where the density congregates at the edges of the triangle, representing the sample space of 13,

Y,, and Y; in three-dimensional space.

Pl
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Figure 3.18: Dirichlet distribution

However, as the value of #; increases to (1, 1, 1), the density becomes uniformly distributed
across the entire triangle. When 2, 2, and ; are all greater than 1, the density becomes more
concentrated at the center of the simplex, as seen in (c) when 2; = (20, 20, 20). In (d), we
observe that the density plot is not symmetric, as the values of 2, 2,, and #; are not identical.

The Dirichlet Variational Autoencoder (DirVAE) was introduced in response to two specific

situations:
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* When Gaussian-Softmax or Softmax Laplace-based approaches fail to mimic the Dirich-

let distribution.

* When non-parametric approaches may be influenced by biases that the Dirichlet distri-

bution does not suffer from.

In these situations, DirVAE proves to be a valid solution, as it can model multi-modal distri-
butions that cannot be accurately represented by other distributions or approaches.

In summary, the Dirichlet Variational Autoencoder (DirVAE) is an important innovation
based on the fundamental Dirichlet distribution. This model is useful when modeling complex
data distributions that cannot be accurately represented by other distributions or approaches.
We choose to implement this model for two main reasons: Firstly, there are situations where
conventional methods, such as Gaussian-Softmax approaches or Softmax Laplace approxima-
tions, fail to accurately mimic the Dirichlet distribution. This is where DirVAE steps in, of-
fering a solution to capture more complex, multi-modal data distributions. Secondly, non-
parametric approaches, while powerful, may introduce certain biases that the Dirichlet dis-
tribution inherently avoids. In scenarios where you need unbiased representations of data,
DirVAE proves its mettle. Now we highlights the Pros and the Cons of the dirVAE method

* Pros:

— Effective Multi-Modal Modeling: DirVAE excels in modeling multi-modal proba-

bility distributions, especially in high-dimensional spaces.

— Fair Weight Distribution: It ensures fair weight distribution among components,

which is crucial for various applications.

— Flexible Hyper-Parameters: Dirichlet distribution’s prior hyper-parameters can be

adjusted to control and capture multi-modal characteristics.

* Cons:

— Complexity: DirVAE can be more complex than traditional models, requiring a

deeper understanding of Dirichlet distribution and its hyper-parameters.
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— Learning Curve: Users may need to familiarize themselves with Dirichlet-based

modeling techniques, which might involve a steeper learning curve.

— Computational Demands: The computational demands of DirVAE may be higher

due to its ability to capture multi-modal data distribution.

In theory we have the same scheme of a normal VAE we emphasize the difference in the two
networks: In the generative network the key difference is the prior distribution assumption on
the latent variable z. Instead of using the standard Gaussian distribution, we use the Dirichlet

distribution which is a conjugate prior distribution of multinominial distribution.
z & p(z) = Dirichlet(a), x =~ po(x|k)

For the inference network probabilistic encoder with an approximating posterior distribution
9¢(z|k) is designed to be Dirichlet(«). The approximated posterior parameter « is derived by
the MLP from the observation x in dataset D with positive output function such as softplus
function, so the outputs can be positive values constrained by the Dirichlet distribution.In
our work we implement the DirVAE in our algorithm, replacing the normal VAE to watch the
performance in a real application. The figure 3.19 is the same of the standard MTL model the
only difference is that in this model we change the distribution in the Dirichlet distribution.

In the python application we add in the forward funcion a softmax layer in order to obtain a

Topic model Classification model

Reconstructed Document

Figure 3.1%9: MLT with DirvVae
Dirichlet distribution of our data[39]. we report below the python implementations
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Figure 3.20: DirVae execution
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Results

4.1 COMPLEXITY

We evaluate the complexity in term of time taken to do a run of the algorithm based in 3 epochs

of training. below the results for the the different algorithms

VAE + RNN
IMDB YELP
batchsize | 10 | 25 | 50 | 100 500 25 | 5o 100
time(h) 6h | sh | 4h | sh3omin. | oh 15 min. | 7h | sh somin | 6h

Table 4.1: Complexity VAE + RNN

YELP
model VAE + BERT | DirVAE + RNN
batch size | 50 50
time(h) sh 15 min sh 15 min

Table 4.2: Complexity YELP BERT-DirVAE

We can see that at a certain point the value of the overall time restart growing this is due to the
fact that there is a trade-off between the complexity of one iteration and the complexity of the

overall computations. The time decrease increasing the batch size because the complexity of
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time(h)
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Figure 4.1: Complexity

IMDB
model VAE + BERT | DirVAE + RNN
batch size | 50 50
time(h) 4h 4h 10 min

Table 4.3: Complexity IMDB BERT-DirVAE

the computation reduce significatively dividing the entire dataset in batches. When we achieve
the best parameter the time start to grows because the number of the operations are extremely
large and this affect the benefits due to the easiest calculus. The two variations of the algorithm,
one with Bert in the sentiment analysis and one with the DirVae in the topic detection, have
similar overall time with respect to the original algorithm but we can notice that demand a lictle
bit less of time in the YELP dataset, five hours and fifteen minutes instead of fifths minutes, in
the IMDB datset the time is the same with the Bert model and ten minutes more with DirVae
model. With this results we choose 50 as a value of batch size for the to others two model and to
find the other parameters. We try also to see if the vocabulary size influence the complexity of
the methods because in the preprocess of the data the model create a vocabulary, this part have
no influece in the overall time because the process take only some minuts to creates differents

vocabulary in order to respect the parameter that we want, is this the reason why we did not
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put the relatively results.

4.2 Accuracy

We measure the performance based on the accuracy, as specified in the section 1, that metric
evaluate the number of the correct predictions with respect to the number of the total predic-

tions. below the table that report our results

VAE + RNN
IMDB YELP
vocab size | 2000 | 3000 | 5000 | 2000 | 3000 | 5000

batch size | so 50 50 50 50 50

accuracy | 0,17 | 0,192 | 0,127 | 0,229 | 0.227 | 0,227

Table 4.4: Accuracy VAE + RNN

accuracy
0.25-
-o- |IMDB
s =
-2 YELP
> 0.20-
0
o
>
o
o
© 0.15

0. 10— rrrrrrrrrrrrrTTTT T

vocab_size

Figure 4.2: Accuracy
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YELP

model VAE + BERT | DirVAE + RNN
batch size | 50 50

vocab size | 3000 3000

accuracy | 0,209 0,274

Table 4.5: Accuracy YELP BERT-DirVAE

IMDB
model VAE + BERT | DirVAE + RNN
batch size | so 50
vocab size | 3000 3000
accuracy | 0,051 0,160

Table 4.6: Accuracy IMDB BERT-DirVAE

The first table show that in the IMBD dataset, the number of the vocabulary size impact
more the performance of the model which respect to the YELP dataset. For the IMDB dataset
the best value in terms of accuracy is with 3k of vocabulary size, instead the YELP with 2k.
in the first dataset the variation is larger, round 2 5%, in the second the variation is very
small, like 0.002%. So that we fix to 3k the vocabulary size for run the others two algorithms.
For the IMDB dataset we have two different behaviours in terms of accuracy, the model with
Bert part achieve very low performance with respect to the standard algorithm; this is due to
the complexity of the model and the computational power that we have, the Bert model is
a pretrained model that require a lot of data to work correctly. with the IMDB dataset we
cannot give it a sufficiently amount of data, in fact if we compare to the same model in the
YELP dataset that is twice bigger the model achieve an accuracy round the standard model.
The DirVae model in the IMDB dataset achieve a bit less accuracy than the standard and in the

YELP dataset achieve better performance with respect to the standard model.

4.3 Loss

We evaluate the Loss in order to see another measure of the performances. In our model due to
the scheme and the purpose, we have two different loss, the first one is for the topic detection
and the second one is for classification and sentiment analysis, as in the previous section we
evaluate the standard model with three differences vocabulary size in order to see the behaviours

and choose it to run the others two models
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4.3.1  Toric DETECTION LOSS

The first measure that we analyze is the topic detection loss, related to the topic detection part.

VAE + RNN
IMDB YELP
vocab size | 2000 3000 5000 2000 3000 | 5000
batch size | 5o 50 50 50 50 50
topicloss | 97,2639 | 34,4885 | 83,8601 | 12,3715 | 3,344 | 12,6933

Table 4.7: Topic Loss VAE + RNN

Loss
150
-o- |IMDB
-# YELP
100
(7))
(7))
o]
50
0 -

1
0 2000 4000 6000
vocab_size

Figure 4.3: Topic Detection Loss

For the model composed by the RNN and VAE we have the same behaviour with respect to
the vocabulary size, the best loss was achieved by 3 thousand vocabulary size, as in the accuracy
measure the IMDB dataset have large variation between the differences measures of vocabu-

lary instead of the YELP dataset that have this variation very low between 2 and 5 thousands
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YELP

model VAE + BERT | DirVAE + RNN
batch size | 50 50

vocab size | 3000 3000

topicloss | 64,6515 20,3235

Table 4.8: Topic Loss YELP BERT-DirVae

IMDB
model VAE + BERT | DirVAE + RNN
batch size | 5o 50
vocab size | 3000 3000
topic loss | 34,6483 119,4563

Table 4.9: Topic Loss IMDB BERT-DirVae

vocabulary size. Once we have found the best vocabulary size parameters we run the others
two algorithms, we can notice that in this case the loss value in both datasets increase a lots in
both algorithms. This is pretty strange because for example in the Bert model the topic part
remain the same of the standard model but this prove how the two parts influence each others

respectively.

4.3.2  CLASSIFICATION Loss

Another measure was the classification error, related to the sentiment analysis, below we report

our results In the standard model we can see that the classification error are quite low in both

VAE + RNN
IMDB YELP
vocab size 2000 | 3000 | 5000 | 2000 | 3000 5000
batch size 50 50 50 50 50 50
classification loss | 2,2078 | 2,1559 | 2,1086 | 1,6148 | 1,6305 | 1,6096

Table 4.10: Classification Loss VAE + RNN

datasets, in this case we highlights data the variation between the differences size of vocabulary
not influence as in the topic loss, for this reason we choose as in the topic detection the 3k
vocabulary to run the other variants of the algorithm. as in the standard model the variations

not have a big difference, so that in this particularly metric the models works very similarly.
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classification loss

Table 4.12: Classification Loss IMDB BERT-DirVae
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Figure 4.4: Classification loss
YELP

model VAE + BERT | DirVAE + RNN

batch size 50 50

vocab size 3000 3000

classification loss | 1,7592 1,6074

Table 4.11: Classification Loss YELP BERT-DirVae
IMDB

model VAE + BERT | DirVAE + RNN

batch size 50 50

vocab size 3000 3000

classification loss | 2,3015 2,1459



The quantity of the classification error are better in the Yelp dataset this is due as in the other

permance evaluators because the dataset is bigger so the model have more information to take

it decisions

4.4 KULLBACK LEIBLER DIVERGENCE

We calculate the KLD between the original distribution in the datasets and the distribution of

the output in order to evaluate the dissimilarity between the two.

VAE + RNN
IMDB YELP
vocab size | 2000 3000 5000 2000 3000 5000
batch size | 50 50 50 50 50 50
kid 0,0031 | 0,001 | 0,0009 | 0,0006 | 0,0002 | 0,0002
Table 4.13: KLD VAE + RNN
YELP
model VAE + BERT | DirVAE + RNN
batch size | 5o 50
vocab size | 3000 3000
kld 0,0060 0,0001
Table 4.14: KLD YELP BERT-DirVae
IMDB
model VAE + BERT | DirVAE + RNN
batch size | so 50
vocab size | 3000 3000
kid 0,0004 0,0013

Table 4.15: KLD IMDB BERT-DirVae

For the KD we have slightly differences between the two datasets, the first one achieved the
best value with sk vacabulary, and the second one with 3k and sk. The difference between the
distribution of the model and the original distribution is very low. As in the classification errors
we choose 3k dictionary because the difference with the best result is very low and if we choose

the same size of the dictionary as the other metrices we can have a complete overview between
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KLD
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Figure 4.5: KLD
the standard model and the two variations. In the other two we have slightly differences in the
results, in the IMDB dataset work better the dirchlet method with recurrent neural network,

instead of the YELP dataset in which works better the model with BERT. this two methods

work better with respect to the standard one because they reach better performance.

47



48



Conclusion

Summarizing the results, we have observed how the studied algorithms exhibit a significant
need for computational power, and when unavailable, the execution time becomes notably
extensive. Additionally, we noted that vocabulary size has a more pronounced impact on per-
formance in smaller datasets compared to larger ones.

From an accuracy standpoint, our baseline model performs better with the larger dataset
but fails to reach high levels due to the lack of computational power for more effective training.
The DirVae model achieves accuracy levels similar to the baseline, and in the YELP dataset, it
surpasses it. However, the BERT model shows a slightly lower performance with the YELP
dataset and significantly drops with the IMDB dataset, attributed to the model’s complexity
and its demand for substantial data quantities.

Regarding loss in the topic analysis section, the baseline model, like other metrics, performs
better with the larger dataset. However, the two modified models do not perform well, result-
ing in a substantial increase in the loss value.

In the sentiment analysis section, both the baseline model and its variations perform well,
achieving low values. The results in the distribution analysis are excellent, and in certain cases,
the modified models even outperform the standard model.

Concluding the results analysis, we can assert that they are heavily influenced by the com-
putational power at our disposal. With few exceptions, the variations are minimal, making it
challenging to declare one model significantly superior to another. This leads us to conclude

that, depending on applications and needs, the MLT model with mutual learning is customiz-
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able and adaptable to specific requirements.

Future work could involve rerunning the experiments with more powerful equipment, ex-
panding the range of models for comparison to obtain a more comprehensive overview of mu-
tual learning techniques.

In alignment with the objectives of our thesis, we can conclude that we have successfully
completed the section related to general understanding, affirming that the system functions
correctly. However, we cannot claim a substantial improvement in performance by using more

recent models for individual tasks.
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We use this python libraries:

numpy
optsparse
pytorch

re

time

json

scipy

joblib
transformers
0s

gc

copy
progressbar
codecs

collections

spacy
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