
University of Padova

Department ofMathematics “Tullio Levi-Civita”

Master Thesis in Computer Science

Data-aware Soundness Verification and

Repair of Data Petri-Nets

Supervisor Master Candidate
Prof. Davide Bresolin AureloMakaj
University of Padova

Co-supervisor Student ID
Dr. Matteo Zavatteri 2044583
University of Padova

Academic Year
2022-2023

ii

“Concern shoulddrive us into action andnot into adepression. Noman is
free who cannot control himself.”
—Pythagoras

iv

Abstract

Business processes are one of organizations’ core assets, impacting directly on the quality of products and services
and on the revenue of corporations. A failure in such processes can negatively affect the core of the organization
and its production chain. For such reasons, various tools, techniques, andmethods have been gathered fromdiffer-
ent disciplines and collected inwhat is called Business ProcessManagement (BPM). PetriNet, or Place/Transition
(P/T) Net, is one such tool: it is a powerful modeling formalism combining a well-defined mathematical theory
with a graphical representation of the dynamic behavior of systems. Given the endless heterogeneity of cases and
the extensive combinations between the various resources that interact in a process, additional Petri Net exten-
sions were designed through the years, each aiming to provide more expressive power to describe a broader range
of systems. One is Data Petri Net (DPN). This Petri Net-based modeling formalism allows adding a data dimen-
sion to the traditional control flow, which permits both the description of how data evolve through the lifecycle
of the process and the decisions based on such data.

The presence of unreachable activities or steps without the possibility to proceed further falls under the con-
cept of soundness, and its verification has been a central topic for different research activities. The following work
hooks into soundness verification and provides an approach to repair Data Petri Nets concerning data and deci-
sion perspective. It provides an extensive and accurate description of unsoundDPNs that helps the reader under-
stand the base cases and their resolution. Due to the presence of false-positive cases within the existing soundness
verification techniques in the literature, this work studies such issues and proposes a patch aimed at the correct
identification of these unsoundDPNs. The verification and repair techniques rely on theConstraintGraph struc-
ture, a finite symbolic abstraction of the possibly infinite traces of a DPN. The algorithms proposed assume that
the underlying PetriNet is sound, thus focusing solely on the repair of data that determines the behavior of the net,
aiming to restore its soundness. They seek to provide a solution with minimal changes from the original DPN,
which helps the process designer verify its correctness and plan further developments and optimizations.

v

vi

Contents

Abstract v

List of figures ix

List of tables xi

1 Introduction 1

2 Business ProcessManagement 3
2.1 Business Processes . 3
2.2 History of BPM . 5
2.3 Business Process Modeling . 6

2.3.1 Event-driven Process Chain (EPC) . 7
2.3.2 UnifiedModeling Language (UML) . 7
2.3.3 Business Process Model and Notation (BPMN) 8

3 Petri Nets 11
3.1 Petri Net Definition . 11

3.1.1 Mathematical formalism . 12
3.1.2 Graphical representation . 13
3.1.3 Transition firing . 13

3.2 Expressive power and properties . 14
3.2.1 Modeling primitives . 14
3.2.2 Properties . 16

3.3 Data Petri Nets . 18
3.3.1 Definition . 18
3.3.2 Execution Semantics . 19

4 Soundness Verification 21
4.1 System of Difference Constraints . 21
4.2 Constraint Graph . 23
4.3 Data-aware Soundness Verification . 27

4.3.1 Soundness Definition . 27
4.3.2 Verification Procedure . 29

4.4 Satisfiability Modulo Theories (SMT) . 30
4.5 Co-reachability Analysis . 32

4.5.1 False-positive Sound DPN . 32
4.5.2 Co-reachability . 34
4.5.3 Co-reachability procedure . 37

5 Data-aware Process Repair 41
5.1 Repair definition and prerequisites . 41

vii

5.2 Acyclic DPNs . 43
5.2.1 Dead nodes . 43
5.2.2 Missing transitions . 49

5.3 Cyclic DPNs . 50
5.4 Tests and evaluation . 53

6 Concluding Remarks 57

References 59

Acknowledgments 63

viii

Listing of figures

2.1 Business Process example . 4
2.2 Work evolution . 5
2.3 Business Process Model Languages . 6
2.4 EPC example . 7
2.5 UML Example . 8
2.6 BPMN Example . 8

3.1 Petri Net example . 12
3.2 Enabling Rule cases . 14
3.3 Sequential . 14
3.4 Choice . 15
3.5 Parallelism . 15
3.6 Synchronization . 15
3.7 Extended Petri Net example . 16
3.8 Reachability example . 17
3.9 Unbounded Petri Net . 17
3.10 Non-live Petri Net . 18
3.11 Data Petri Net example . 19

4.1 DBM subtraction . 25
4.2 Constraint graph . 27
4.3 Unsound DPN for P1 . 28
4.4 Unsound DPN for P2 . 28
4.5 Constraint graph for P3 . 29
4.6 SMT correlation with Constraint Graph . 33
4.7 False-positive sound DPN . 35
4.8 Difference Constraints Set . 39

5.1 Cyclic DPNwith infinite Constraint Graph . 42
5.2 Cyclic DPNwith finite CG . 43
5.3 ForwardRepair example . 47
5.4 ForwardRepair and BackwardRepair example . 48
5.5 BackForwardRepair example . 49
5.6 Co-reachable cyclic solution . 54

ix

x

Listing of tables

4.1 Co-reachability analysis . 39

5.1 Tests summary . 55

xi

xii

1
Introduction

Business processes define one of the core aspects of organizations. In the current times, where the market is con-
stantly changing, and each day new business arises, it is mandatory to monitor, analyze, and improve the produc-
tion lines to keep up. The ability to model and obtain suitable abstract representations of such processes helps
detect anomalies or other factors that may prevent maximal or cost-efficient solutions from being found. Given
this increasing importance, the scientific community developed a series of techniques and tools grouped under
the name of Business Process Management through the years.

Petri Nets is one of the numerous formalized models for describing different kinds of processes. Thanks to
their flexibility, they proved to be helpful in the context of business processes. Different variants of Petri Nets
are present today. Still, the one utilized in this work is Data Petri Nets (DPN), which extends the traditional
representation by adding a data dimension to the underlying model. Thanks to a solid mathematical background
and a simple yet powerful graphical visualization, (Data) Petri Nets offers different properties for understanding
the workflow and discovering irregularities.

Soundness verification is the field concernedwith analyzing a business processmodel to detect possible anoma-
lies within the process. In fact, “well-formed business processes correspond to sound workflow nets”[1]. Soundness
verification leverages the properties offered by the model representation of a process. It allows discovering prob-
lems in the flow that would have been unnoticed by looking at the concrete case.

The following work hooks into soundness verification and provides an approach to repair Data Petri Nets
concerning data and decision perspective. It offers a detailed explanation of what defines a sound Data Petri Net
and the algorithm required for its verification based on existing techniques in the literature. It draws attention
to a false-positive case, where an unsound DPN is incorrectly detected as sound by current solutions. It explores
such a case, allowing the reader to understand the causes leading to a false-positive identification. Such causes
are resolved by introducing a new soundness verification strategy and the corresponding procedure. The joint
combination of the existing solutions with this new algorithm permits the correct identification of unsoundData
Petri Nets.

1

The last part of this work covers the repair of unsound Data Petri Nets. The repair process assumes that the
underlying dataless Petri Net is sound (that is, on the workflow level), thus focusing solely on the repair of the
data dimension. Two different algorithms are presented, one for repairing acyclic DPNs and one for cyclic DPNs.
Moreover, due to the presence of cycles andpossible infinite executions, cyclic netsmust satisfy specific restrictions
to enable a feasible repair.

The rest of the work is structured as follows. Chapter 2 gives an overview about Business ProcessManagament.
It introduces business process and describes the elements composing them, then proceeds to explore the historical
background and events that lead to the current approach concerning work management. The last section enu-
merates different modeling tools developed by the scientific community through the years and used in Business
Process Mangament. Chapter 3 focuses on Petri Nets, explaining the characteristics that made them so famous
and valuable in the representation of business processes. After an overview of its expressive power and properties,
it introduces Data Petri Net, the Petri Net variation on which this work is based. Chapter 4 starts by introduc-
ing the mathematical foundations and structures used by the soundness verification procedures. It proceeds by
defining a data-aware sound DPN, the conditions that must be satisfied to be so, and the existing procedure in
the literature for its detection. It investigates a false-positive soundDPN, explaining how and why it was detected
as sound, and, after a brief but necessary detour on SatisfiabilityModulo Theories, it concludes by presenting the
new approach for detecting these false-positive cases. Finally, Chapter 5 covers the repair of unsound Data Petri
Nets. It explains what it means to repair a DPN and the prerequisites to be satisfied by the models to apply the
repair. It describes the algorithms for repairing acyclic and cyclic DPNs and concludes with selected case studies.

2

2
Business Process Management

The steady and ever-increasing number of businesses and organizations worldwide has forced managers to pay
more and more attention to internal structure analysis and evaluation to optimize processes and reduce costs.
Business processes are one of the organizations’ core assets, impacting directly on the quality of products and
services and on the revenue of corporations. A failure in them can negatively affect the core of the organization
and its production chain. This critical aspect fueled the exploration of new tools andmethodologies to verify and
correct business processes effectively.

This chapter aims to give an introductory perspective on the Business Process Management (BPM) discipline.
The first section is focused on describing what business processes are, which elements compose them, and why
they are important. The second section goes through BPM’s history, starting from the roots and continuing with
the evolution of the working processes, to allow the reader to understand why BPM was born in the first place.
Finally, the last section describes some modeling languages designed through the years to describe real-life cases.

2.1 Business Processes
Processes are everywhere and wildly different, from the inside of the human body tomore external ones, like com-
puter processes. The definition of process can change from field to field. Still, generally, it can be defined as a “a
series of actions or operations conducing to an end” [2]. Through the years, with the industrialization and evolu-
tion of the production sector, factories and corporations increasingly replaced individual, autonomous workers.
Instead of having a single person, multiple workers are assigned to specific and smaller tasks, all cooperatively
operating to reach a common goal. Later in the years, the concept of business processwas born.

Business processes don’t have a unique definition: in the literature review [3] are listed two, “a collection of ac-
tivities that takes one or more kinds of input and creates an output that is of value to the customer” and “a specific
ordering of activities across time and place, with a beginning and an end with clearly defined inputs and outputs”.

3

Figure 2.1: An example of a business process representing a refund procedure, from the request to its approval or rejec‐
tion.

While structured differently, both definitions refer to activities executed to produce one or more outputs. More-
over, the following elements constitute a business process [4]:

• Events, atomic things that happens without duration.

• Activities, units of works that last in time. When the activities are relatively small, the term tasks can be
used.

• Decision points, points in time that change the execution of the process.

• Actors, which includes both humans and systems working on behalf of them. Moreover, it can also be
divided into internal and external

• Objects, physical and informational, representing the resources used in the process.

• Outcome(s), the result of the process’s execution

The refund procedure is a simple business process example that can help understand them. The practice starts
with a refund request by someone external to the organization, which is immediately handled by an employee
whose job is to revise it. From there, the request can take three different paths depending on the approval result; if
there is a need for more information, a step requires the requester to provide it. Otherwise, an automatic system
notifies theuser of the result. If the request is approved, anoperator supplies the refund, concluding theprocedure.
The example provides different business process elements mentioned above, like events (fund request), activities
(revision or refund tasks), decisions (approval after the revision), internal and external operators, and the objects
(notification system). Figure 2.1 gives a graphical procedure representation.

Business processes are fundamental for the development and growth of a company. As stated in [3], “improving
the efficiency of the organizationdirectly relates to improving the core business processes”. Being able to discover, select,
categorize, and describe all the different parts of a system or production chain already gives an overview, which
can be further analyzed for additional improvements. Consequently, a new discipline called Business Process
Management(BPM) arose. BPM can be defined as “supporting business processes using methods, techniques, and
software to design, enact, control, and analyze operational processes involving humans, organizations, applications,
documents and other sources of information” [5]. Business Process Management, though, didn’t come up out of
the blue, but after many years and the evolution of the economic sector and the related research field.

4

2.2 History of BPM
Business ProcessManagement’s origins are dated around 1990, with different roots in computer andmanagement
sciences, making it difficult to state the starting point. The path to BPMwas not straightforward, as this discipline
revolves around work organization in processes composed of several intermediary tasks and interactions. Even if
this ideamay seem intuitive andnatural at first glance, howcivilizationshave structured their productionworkflow
has changed at different times through the centuries. Figure 2.2 gives a concise but highly informative picture of
the workers’ focus and capabilities through the years. At the beginning of human history, the focus was on the
entire process,meaning that people usually produced the food cultivatedby themand crafted the tools by themself.
Thus, there was a general knowledge of the production of daily life goods. Through the years, people started
grouping from smaller nuclei to villages and from villages to cities, incrementally bigger andmore populated. The
need to produce all the goods themselves wasn’t necessary anymore; thus, people could specialize in a single or few
items, like the locksmith, the butcher, and so on. The advent of the Industrial Revolution and the development
of the assembly linemanufacturing process added a further specialization to individual work. Instead of partaking
in all the production steps, workers were assigned only to a specific phase or a few, creating an environment where
people could reach a higher level of specialization.

Figure 2.2: The evolution of work and the individual level of specialization [4]

Adam Smith, economics and philosopher of the 18th Century, gave the following example to highlight the
importance of division of labor: “One man draws out the wire, another straights it, a third cuts it, a fourth points
it, a fifth grinds it at the top for receiving the head; to make the head requires two or three distinct operations; to put
it on, is a peculiar business, to whiten the pins is another; it is even a trade by itself to put them into the paper; and
the important business of making a pin is, in this manner, divided into about eighteen distinct operations, which,
in some manufactories, are all performed by distinct hands”. The example proceeds by saying that the number of
pins produced by ten workers using this organization could reach up to 48,000 units daily, while a single person
could make no more than 20 units. Even combining ten workers’ results cannot be compared with the amount

5

Figure 2.3: Classification of Business Process Modeling Languages (Fig. 1 [8])

produced by the assembly line. The example shows how focusing the effort of each worker on specific fixed tasks
can drastically boost the overall production process.

With the passing of the years and the ever-increasing number of factories, the assembly line proved the effec-
tiveness of the division of labor, thus pushing the working scenario into a more specialized effort. A name that
helped to drive the world in this direction is Frederick Winslow Taylor (1856 – 1915), an American mechanical
engineer whose focus was on the improvement of industrial efficiency, posing the basis of what is called “scientific
management” (or Taylorism, from his name). The continuous evolution of the economic sector and expansions
of businesses from factories to companies and later corporations required more attention to the production pro-
cess and its organization. New roles and positions arose, like managers, to oversee and coordinate the work of
the individuals partaking in the same process line to create a synergic, harmonious, and continuous flow. The
joint effort and research in these new sciences led to new concepts andmethodologies, like the business process idea
described in the previous section and their management, which have been collected in what is currently known as
Business Process Management.

2.3 Business ProcessModeling
Business Process Management obtained extensive attention through the years, aiming to discover new method-
ologies and expand the tools and techniques available for analyzing and improving business organizations. The
ability to represent business processes became vital for redesigning work and distributing responsibilities between
the different resources partaking in it [6]. Moreover, sole modeling is not enough but also using the proper an-
notation for specific goals or aspects of the process that must be analyzed. As stated in [7]: “Process modeling
is widely used within organizations as a method to increase awareness and knowledge of business processes, and to
deconstruct organizational complexity. It is an approach for describing how businesses conduct their operations and
typically includes graphical depictions of at least the activities, events/states, and control flow logic that constitute a
business process”.

The academic world gave birth to multiple models through the years, as different notations have different ca-
pabilities. For example, understanding processes usually requires the use of pragmatic approaches, while for their
analysis, rigorous paradigms are preferred [9]. Figure 2.3 shows how the numerous business process modeling

6

Figure 2.4: An EPC model describing a simple process

languages can be classified. Following is the description of three modeling solutions to give the reader a general
overview and a visual aid for understanding the similarities between them. Not listed below, Petri Nets are treated
more in-depth in Chapter 3.

2.3.1 Event-driven Process Chain (EPC)
Event-driven Process Chain (EPC) is a traditional process modeling language that aims to “describe processes on
the level of their business logic, not necessarily on the formal specification level, and to be easy to understand and use
by business people” [10]. Given the lack of formalism and the goal of being easily understandable, the diagram is
quite simple and composed of a few elements: functions, events, and logical connectors. Functions are the basic
building blocks that describe executable activities or tasks, events represent the situation before or after a function,
and finally, the logical connectors are the glue to combine the previous two and define the control flow. Figure 2.4
depicts a simple processmodeledwith EPC.The diagram is composed of two events and two functions connected
by a pair ofAND (∧) logical connectors. When an order is received, this triggers the parallel execution of two tasks:
purchasing the material and preparing the production plan. The conclusion of both triggers an additional event,
which describes the situation after the tasks have finished. Other logical connectors are the OR (∨) and XOR
connectors, which give an additional degree of flexibility in the model representation.

2.3.2 UnifiedModeling Language (UML)
From the UML Reference Manual [12] it can be read: “The Unified Modeling Language (UML) is a general-
purpose visual modeling language that is used to specify, construct, and document the artifacts of a software system.
It captures decisions and understanding about systems that must be constructed. It is used to understand, design,
browse, configure, maintain, and control information about such systems”. Even thoughUMLwas born to describe
software systems, it also found practical implementation for modeling business processes. It offers different types
of diagrams to represent the numerous entities present in an organization and their production lines; activity
diagrams allow to model processes, while class and object diagrams permit to define the underlying structural
organization [11]. Figure 2.5 shows an example of a UML activity diagram that models the selling process of
computer hardware products. It is composed mainly of two types of nodes: the rounded-edge blocks are actions,
defining the executable tasks of the process, while the smaller, diamond-shaped boxes are control blocks, which
assume different names based on the number of incoming and outgoing arcs: when one arc enters and multiple

7

Figure 2.5: UML example describing the selling of computer hardware using an activity diagram (Fig. 5.1 [11])

Figure 2.6: Example of a BPMN model describing a freight in transit (Fig. 13.1 [13])

leaves, it is called decision node, while on the contrary, when multiple enters and one leaves, it is called merge
node. Moreover, whenmultiple flows are possible, defining a guard to specify the condition for enabling a path is
possible. In the example, this is shown in by the words Computer andMonitor enclosed in square brackets.

2.3.3 Business ProcessModel andNotation (BPMN)
Business ProcessModel andNotation is a youngermodeling language compared to the previous ones. Still, through
the years, it has become the de-facto standard for business process diagrams [14]. It aims to provide a notation
that could be easily understandable by business users of different levels, starting from the business analysts in
charge of the initial designs of the process to the technical developers who are going to implement them, and
finally by the remaining staff in charge of the deploy and monitoring [15]. BPMN offers many tools to describe
business processes and all the details that characterize them. ABMPNprocess comprises BPMNelements, which
can be categorized as objects, sequence flows, and message flows. An object can be an event, activity, or gateway,
while a sequence flow defines a control flow relation by linking together two objects. Message flows, instead,
allow to capture the interaction between processes [16]. Figure 2.6 depicts the process of a freight in transit. The
diamond-shaped boxes are gateways, splitting or joining the flow, while the rounded-edge rectangles are activities.

8

The round icons, the events, have more expressive power than the model languages seen before: they can define a
message being sent (Freight delivered), an amount of time to wait before proceeding (24 hours), and other types.
BPMN provides other types of elements, but it is not in the scope of this work to dig deeper into them.

9

10

3
Petri Nets

When studying and analyzing phenomena and activities, it could be challenging and not practical to do so by
looking at them directly as they are. In many fields of study, using a model for their representation can help to
highlight and understand key features of the underlying object of study. Given the large variety of phenomena,
different modeling systems were designed through the years to allow researchers to create the most correct and
faithful representations of real-life cases.

In this chapter, Petri nets are introduced to give the reader all the necessary foundations to proceed further
in the work. First, the mathematical perspective of this modeling tool is provided, starting from its formal def-
inition and continuing with the properties that characterize it. Then, the graphical representation is handled,
showing which are the basic building blocks available for the modeling of systems. Different examples are illus-
trated throughout the chapter so the reader can become comfortable with this representation and the use cases
involved. Finally, Data Petri-nets, a Petri net extension used in this work, is described and formalized.

3.1 Petri Net Definition
Petri nets are a historical and widely used modeling tool, “combining a well-defined mathematical theory with a
graphical representation of the dynamic behavior of systems” [17]. They are attributed to Dr. Carl Adam Petri,
who in 1962 gave an early and extensive description in his doctorate dissertationKommunikationmit Automaten
[18]. The mathematical foundations allow systematically analyzing the model’s behavior, while the graphical
representation helps visualize and keep track of its dynamic changes. These characteristics have made Petri nets
used across different research fields, like computer science and business management, to describe various event-
driven systems, such as computer networks, hardware design, andworkflows. In particular, their expressive power
makes them a valuable choice to model complex, real-time asynchronous systems where parallel and concurrent
activities are involved.

11

Figure 3.1: An example of a Petri Net. Two tokens are placed initially at place p1. It can be observed how a transition can
generate two (or more) branches, which can have a different number of places themselves. The numbers on the arcs define
the tokens required to proceed (from place to transition) and the tokens generated (from transition to place).

PetriNets fall under the family of bipartite graphs, composed of three elements: places, transitions, anddirected
arcs. In the modeling of a system, places represent the states or intermediary steps, while transitions describe the
events or available actions. Instead, directed arcs work only as a connector, connecting a place to one or more
transitions and a transition to one ormore places. Connecting elements of the same type is not allowed, so finding
a place directly connected to another one is impossible. A feature that characterizes Petri Nets is that places may
contain zero or a positive number of tokens: in the context of event-driven systems and dynamic behaviors, tokens
allow tracking and visualizing the system’s evolution.

3.1.1 Mathematical formalism
Petri Nets benefit from a sound mathematical foundation, described through mathematical terms.

Definition 3.1.1 (Petri Net). A Petri Net (PN) is a 5-tupleN = (P,T, I,O,m0), where:

• P is a finite set of places

• T is a finite set of transitions

• P ∩ T = ∅

• I : (P× T) → N is a function defining arcs from places to transitions

• O : (T× P) → N is a function defining arcs from transitions to places

• m0 : P → N is the initial marking

Amarking is a functionM : P → N that defines how many tokens each place contains [19]. Thus, initial
marking m0 will describe how the system is at the starting point, where tokens can be either all in the same place
or distributed across themodel. A place pi ∈ P is an input place of a transition tj ∈ T if I(pi, tj) ≥ 1, while instead
it is an output place of tj ifO(tj, pi) ≥ 1, where the resulting number specifies the number of tokens of the arc (also
called weight of the arc).

12

Figure 3.1, which shows a graphical representation of a Petri Net, can bemathematically described as a 5-tuple
N = (P,T, I,O,m0), where:

• P = {p1, p2, p3, p4, p5}

• T = {t1, t2, t3}

• The possible values of the input function I are I(p1, t1) = 2, I(p2, t3) = 2, I(p3, t2) = 1, I(p4, t3) = 1.

• The possible values of the output functionO areO(t1, p2) = 2,O(t1, p3) = 1,O(t2, p4) = 1,O(t3, p5) =
1

• Initial marking can be described as a vector, each position being a place containing some tokens. Thus,
(2, 0, 0, 0, 0)

3.1.2 Graphical representation
Graphically, places are represented through circles, while transitions are vertical bars or boxes. Arcs are the join-
ing part, visualized as a directed arrow and smaller circles inside places represent tokens. With such elementary
elements, Petri Nets have enough expressive power to model many systems with multiple concurrent activities.
Taking again into consideration Figure 3.1, place p1 contains two tokens, and the number above the arc between
p1 and transition t1 defines the number of tokens required by the transition to proceed. Typically, the number
is omitted when only a single token is required. The fork of two branches from a transition is observable, and
each can behave independently with different activities. This form of modular composition ties into Petri Nets’
flexibility, allowing focusing and working on smaller parts of the model.

3.1.3 Transition firing
As stated before, token distribution defines the system’s evolution and helps to understand its dynamic behavior.
[20] Petri Net changes its current state by firing transitions, which are dictated by the following two rules:

1. Enabling Rule: a transition t is said to be enabledwhen each input place p contains the number of tokens
defined by the weight of the arc that connects p to t, that is, ∀p ∈ P,M(p) ≥ I(p, t).

2. Firing Rule: once and only when a transition is enabled, the firing of a transition t removes I(pi, t) tokens
from each input place pi, and putsO(t, po) tokens into each output place po.

Figure 3.2 gives a graphical representation of the possible cases within the Enabling Rule. Given these rules,
the firing of a transition t from the current markingM leads to a newmarkingM′ such that:

M′(p) = M(p)− I(p, t) + O(t, p),∀p ∈ P. (3.1)

The notationM[t⟩M′ is used to show thatmarkingM′ is reached frommarkingM by firing t. Further discussion
about markings is present in the next section.

13

(a) Enabled transition (b) Not enabled transition

Figure 3.2: Enabling Rule possible cases. In the first case, transition t1 can fire since two tokens are required, and place p1
contains three. In the second one, transition t1 is not enabled since place p1 doesn’t have enough tokens

3.2 Expressive power and properties

3.2.1 Modeling primitives

The number of systems and process models can vary significantly by form or size. Besides the naive cases where
only sequential activities are involved, it is not so uncommon that some sub-processes of a system need to run
in parallel, or they may be concurrently working with a shared resource. Petri Nets have enough flexibility and
expressive power to describe accurately the flow and evolution of such cases. Petri Net’s primitives are:

Sequential This is the simplest andmost basic primitive. It represents the causal relation between states and
transitions. Here, transitions are executed in the same order they appear, allowing thus to define a precedence
operation between them. Figure 3.3 shows a sequential execution, where t2 will indeed be fired after transition t1
has been fired previously.

Figure 3.3: Sequential

Choice A choice primitive (sometimes called conflict) comprises multiple transitions with a shared input place.
Place’s tokens enable all the transitions involved, but they are sufficient for the firing of only one of them. Here,
the system chooses one transition or another, either non-deterministically or probabilistically. In Figure 3.4, there
is a choice between t1 and t2: both of them are enabled by place p1, which has one token, but only one of themwill
fire, because after the firing the token will be removed, and this operation will disable the other transition. The
choice primitive describes a system or a portion of it where a resource is needed for multiple processes but can be
used once at a time.

14

Figure 3.4: Choice

Parallelism As the name suggests, this primitive allows modeling multiple processes executed in parallel. A
parallel execution starts with a transition having multiple output places; it is essential to keep in mind that the
tokens “consumed” by a transition don’t have to be the same as the tokens generated by the same. Consequently,
when the transition is enabled and fires, it will put in each output place the number of tokens defined by the
weight of the arc connecting the transition to the place. For example, in Figure 3.5, transition t1 consumes one
token and generates two, one put in place p1 and one in place p2, at the same time.

Figure 3.5: Parallelism

Synchronization When a transition requires multiple resources to proceed, it is called synchronization.
This scenario is represented by a transition with multiple input places, as Figure 3.6 illustrates: transition t1 will
not be enabled until place p1 and p2 will have the number of tokens required by each arc. In amore real-life vision,
synchronization is used when events or tasks require more resources coming from different sources. For example,
the output from a cuisine of a plate consisting of chicken and potatoes will happen when both ingredients have
been cooked. Nevertheless, it is not required that the sub-processes terminate at the same time.

Figure 3.6: Synchronization

Other two forms of primitives that are not relevant for thiswork but areworthmentioning aremutual exclusive
and priority. Mutual exclusive defines two processes that cannot be performed simultaneously due to a shared
resource, and priority is an addition to the expressive power of Petri Nets, allowing defining a priority between
transitions. Petri Net portrayed in Figure 3.7 is a more complex example, showing how the primitives seen above
can be put together differently.

15

Figure 3.7: A further example of a Petri Net, more complex than the previous one. Multiple branches are present, with
different primitives put together. For example, there is a parallelism primitive for transition t1 and a synchronization for
transition t6, as well as a choice for place p2

3.2.2 Properties

At this point, Petri Nets have been defined, both from the mathematical perspective and the graphical representa-
tion. Designers can leverage previously described building blocks to model increasingly larger and more complex
real-life cases. Given the mathematical nature of Petri Nets, they offer a certain number of properties. As Tadao
Murata says in [21]: “A major strength of Petri nets is their support for analysis of many properties and problems
associated with concurrent systems”. The properties analyzable from a Petri Net can be divided into two groups, be-
havioral and structural properties: behavioral properties depend on the initial state of the net, while the structural
ones don’t, but rely on the topological composition of places and transitions.

Reachability This property helps to understand how a Petri Net evolves after the firing of each transition.
As seen in the previous section, each firing moves some tokens from one (or more) place to another one, thus
changing the currentmarkingM to a new oneM′, also written asM[t⟩M′. Consequentially, starting from initial
markingm0, the sequencem0[t1⟩M1[t2⟩M2[t3⟩... defines the evolution of themodel, with eachmarking showing
the distribution of tokens after each transitionfiring. AmarkingMn is reachable fromamarkingMi, if there exists
a sequence of markings and transitions such thatMi[ti⟩...[tn⟩Mn. The set of markings reachable from amarking
M for a Petri NetN is written asR(N,M). The reachability property allows understanding the places involved in
the execution of the system. If a place in neither one of the markings does contain a token, it may be a superficial
activity, or something may need to be corrected in the overall workflow. In the sequential example depicted in
Figure 3.8, it is possible to see how the sequence of markings is created through the Petri Net execution. The
initial state ism0 = (1, 0, 0), and after transition t1 fires, the token is moved in p2: a new markingM1 is created,
whereM1 = (0, 1, 0). Finally, after transition t2 fires too, the token is moved again, resulting in the final marking
m3 = (0, 0, 1).

16

(a) Initial state (b) First transition firing

(c) Second transition firing

Figure 3.8: Sequential execution of a Petri Net. Initial state is marking (1, 0, 0), evolving in (0, 1, 0) after transition t1
fires, and concluding in (0, 0, 1) after the last firing.

Boundedness Another relevant property of Petri Nets is boundedness. A Petri Net is said to be bounded (or
k-bounded) if the amount of tokens each place contains through the execution of the system doesn’t surpass a
specific number. More formally, for each place p and markingM reachable from the initial statem0,M(p) ≤ k,
where k is a positive integer greater than zero. The various examples of PetriNets seen up until now are all bounded
(Figures 3.1, 3.7, 3.3). Instead, Figure 3.9 illustrates an unbounded Petri Net. From the sequence of markings, it
can be seen that places p1 and p3 will contain an always-increasing number of tokens. In fact, given an initial state
m0 = (1, 0, 0), transition t1 generates markingM1 = (0, 1, 0), while t2 puts one token in p3 and two in p1, thus
M2 = (2, 0, 1). Transition t1 is enabled and can fire, thus starting the procedure again. The next markings will be
M3 = (1, 1, 1) andM4 = (3, 0, 2), fromwhere another iteration can start over and over. PetriNets with a bound
k = 1 are said to be safe. Boundedness property is crucial in those systemswhere places represent a container since
it is certain that no place will contain more than k resources.

Figure 3.9: An unbounded Petri Net. When the execution reaches the firing of transition t2, one token is sent to place p3
and two to p1. In this way, at each successive iteration, place p1 and p3 will contain an always‐increasing number of tokens.

Liveness This property is strongly correlated to the presence of deadlocks. Given a Petri Net N with initial
marking m0, t ∈ T is live at m0 if for all M ∈ R(N,m0), there exists a marking M′ ∈ R(N,m0) such that
M′[t⟩. A Petri Net N is live if for all t ∈ T, t is live at m0 [22]. More descriptively, a Petri Net is live if, no
matter what marking has been reached fromm0, it is possible to fire every net transition, even by passing through
some intermediary transitions. Consequently, a live net assures a deadlock-free system, meaning there are no
intermediary steps where it is blocked. Figure 3.10 shows an example of a non-live Petri Net with a deadlock at
transition t3. In fact, t3 requires a token from both places, but the only token available is either in p2 or p3, but
never in both. Thus, transition t3 will never be enabled. Liveness property, anyway, due to being very strong and
impractical to verify in some systems, has been divided up into multiple levels, each describing a different level of
liveness. For further in-depth analysis, it is possible to refer to Cassandras and Lafortune’s work [23].

17

Figure 3.10: A non‐live Petri Net, where transition t3 will never be able to fire.

3.3 Data Petri Nets

3.3.1 Definition
Traditional Petri Nets have the power to design many concurrent systems, but they may only be able to represent
some of the numerous variations in real life. Different extensions of Petri Nets were formalized through the years
to address this issue [24]. One of these, on which the following work has its foundations, is Data Petri Nets. With
this extension, adding a data layer to the traditional Petri Net is possible, allowing it to specify how values evolve
through its execution. The data perspective is enabled by introducing a new set V containing variables: each
variable v ∈ V is initialized to a fixed value and may change by firing transitions. Moreover, each transition is
enriched by a guard: it is not sufficient to have in the input places the required number of tokens by the weight of
the arc, but the variables must satisfy the guard, too.

A variable v ∈ V can be of two types, read or written, defined respectively as vr and vw. Consequently, two
further sets are considered: the set of read variables Vr = {vr|v ∈ V} and the set of written variables Vw =

{vw|v ∈ V}. Furthermore, Data Petri Nets always have a special variable Z which is not included in V: the
presence of this variable is essential to allow defining guards as difference constraints, whose the next chapter gives
a more in-depth description. Finally, Data Petri Nets can be defined as follows[25]:

Definition 3.3.1 (Data Petri Net). Let V be a set of variables. Let Cv be the universe of difference constraints
overVr ∪ Vw ∪ {Z}. A Data Petri Net (DPN)N = (P,T, I,O,m0,V, αI, guard) is a Petri Net (P,T, I,O,m0)

with additional components describing the new perspectives of the process model:

• V is a finite set of real process variables

• αI : V ∪ {Z} → R is a function that defines the initial assignments such that αI(Z) = 0

• guard : T → Cv returns a difference constraint, that is, the guard associated with a transition

As stated in [25], “Disjunctions are not allowed in the guard for simplicity but without loss of generality”. More-
over, given a transition t ∈ T, the notation read(t) = {v ∈ V|v ∈ read(guard(t))} defines a shorthand for the
set of variables that are read by the guard of t. The same applies to write(t).

The graphical representation of Data Petri Nets is similar to traditional nets, with the guards above each transi-
tion. Figure 3.11 illustrates a basic example of a Data Petri Net, where a single variable a is both read and written.

18

Figure 3.11: A Data Petri Net example, with αI(a) = 0. The variable’s value is set greater than zero and can reach place
p3 only if the value is greater than 100.

The guard of transition t1 means that the variable is changed (aw)with a value greater than zero. Subsequentially,
a choice primitive is present: in this case, though, the choice is not made non-deterministically, but it depends on
the value that was assigned in the previous step. If the value is greater than the value specified, the flow proceeds
to place p3; otherwise, it starts again from p1.

3.3.2 Execution Semantics
The introduction of the guards for each transition slightly changes the firing rules and the execution of the Data
Petri Net. The central concept remains, enabling transition by the required token amount in each input place.
Since there are also variables and constraints over them, the enabling also requires that such conditions are satisfied
given the current state. In a Petri Net, a state is represented by a markingM. In a DPN, instead, it is expressed as
a tuple (M, α), whereM is a marking as previously described, while α is an assignment of variables inV.

Given a state (M, α) and a transition t, the enabling and the firing of the transition t into a new state (M′, α′)
is described as follows:

• transition t is enabled and generates a new markingM′ as previously defined in Section 3.1.3

• for each variable v ∈ V, if v /∈ write(t) then α(v) = α′(v), that is, the value is unchanged

• the guard is satisfied when read variables are assigned according to α and written variables according to α′.

Thenotation (M, α) t−→ (M′, α′)defines a legal firing transition,which canbe extended to (M, α) ∗−→ (M′, α′)
to define a sequence σ of intermediary transitions such that (M, α) σ−→ (M′, α′) or that (M, α) = (M′, α′).
Moreover, given two markings M′ and M′′, the inequality M′′ ≥ M′ holds if and only if ∀p ∈ P is true that
M′′(p) ≥ M′(p) andM′′ > M′ if and only ifM′′ ≥ M′ and ∃p ∈ P such thatM′′(p) > M′(p). Finally, Petri
Nets properties (reachability, boundedness and liveness) explained in Section 3.2.2 apply to Data Petri Nets too.

19

20

4
Soundness Verification

As stated previously, Data Petri Nets provide a good expressive power to describe business processes on two di-
mensions: the first is on the workflow level, showing how the tokens move through the different places of the
underlying Petri Net. In contrast, the second one is the data level. Process modeling isn’t the goal itself but a
starting point of a long and continuous chain of analysis steps aimed at the detection of flaws and activity opti-
mization. One is understandingwhether a net is well-formed: in fact, “Well-formed business processes correspond to
sound workflow nets” [1]. Numerous research activities have discussed soundness verification, proposing different
notations, definitions, and algorithms. This work proposes a solution, too, by applying the concept of soundness
verification to Data Petri Nets.

The goal of this chapter is firstly to provide the mathematical tools and notations used to develop the veri-
fication procedure and, secondly, to describe the solution designed. The first two sections focus on describing
difference constraints, which are the form the guards in a DPN follow, and the constraint graph, a fundamental
tool on which both the soundness verification and repair process are built. Then, it follows with a section express-
ing the definition of a sound DPN and the corresponding algorithm for its verification. After a brief overview
of the Satisfiability Modulo Theories (SMT), the last section explains a false-positive sound DPN and the new
procedure developed for its detection.

4.1 System of Difference Constraints
A system of difference constraints can be defined as follows [25][26]:

Definition 4.1.1 (System of Difference Constraints). A system of difference constraints is a pair (X ,S)where:

• X is a set of n unknown variables x1, x2, ..., xn
• S is a set ofm inequalities with form xi−xj ▷◁ k for 1 ≤ i, j ≤ n, where ▷◁∈ {<,≤} and k ∈ R∪{+∞}

21

A system of difference constraints is a set of inequalities that must be satisfied altogether. When there exists
an assignment of values to the variables such that all constraints are satisfied, the system is said to be consistent.
In a DPN, each transition guard can be defined only as a difference constraint. Inequalities of the form x ▷◁ k
and x = k are converted into the correct format by using a new, fresh variable Z that can only hold the zero
value. Consequently, guards defined as x ▷◁ k are converted into x − Z ▷◁ k, and x = k are rewritten using two
constraints, x− Z ≤ k and Z− x ≤ −k.

Difference constraint sets are often represented through a data structure called difference bounded matrix.
Given a system of difference constraints D = (X, S) with n variables and m constraints, a difference bounded
matrix is a n × nmatrixM whose entries are composed by the set V = {(▷◁ij,mij)|0 ≤ i, j ≤ n, ▷◁ij∈ {<,≤
},mij ∈ R} ∪ {(≤,∞)} [27]. Each entryMij = (▷◁ij,mij) in the matrixM represents a difference constraint
xi − xj ▷◁ij mij, that is, the difference constraint between the variables xi and xj. If a pair of variables has no corre-
sponding inequality, the entry is specified as (≤,∞). Finally, the variable x0 is the equivalent variableZ described
previously.
To give a more practical example of what has been just said, consider the following difference constraints set:

Z− x ≤ −5 ∧ Z− y < −3 ∧ y− Z < 10 ∧ x− y < 0

Such difference constraint set can be represented using the next difference bounded matrixM:

Z x y
Z (≤, 0) (≤,−5) (<,−3)
x (≤,∞) (≤, 0) (<, 0)
y (<, 10) (≤,∞) (≤, 0)

Differenceboundedmatrices are helpful because,with this representation, it is possible tomake a crucial operation
called tightening. The constraint x1 − x2 ≤ 3 is said to be tighter than x1 − x2 ≤ 5, and the same can be said of
x1 − x2 < 4 and x1 − x2 ≤ 4. As observed in [28], the sum of the upper bounds on the difference constraints
xi−xj and xj−xk is an upper bound on the difference constraint xi−xk. Essentially, it holds that xi−xk ▷◁

′

ik m
′

ik,
wherem

′

ik = mij +mjk and

▷◁
′

ik=

≤ if ▷◁ij=≤ and ▷◁jk=≤

< otherwise

The tightening operation consists of checkingwhether (▷◁
′

ik,m
′

ik) is a tighter bound than (▷◁ik,mik), and replacing
the entry in the matrix if it is the case. Referring to the example above, the sum of the bounds of y − Z < 10
and Z − x ≤ −5 produces y − x < 5, and since (<, 5) is tighter than (≤,∞), the entry can be replaced. The
result of applying the tightening operation to all the matrix entries is the canonical representation of the system of
difference constraints.

Z x y
Z (≤, 0) (≤,−5) (<,−5)
x (<, 10) (≤, 0) (<, 0)
y (<, 10) (<, 5) (≤, 0)

22

Each (consistent) difference constraint set has a unique canonical representation, a fundamental property that
brings various benefits. Having more than one bounded matrix representation for the same system is possible.
Still, after the tightening operations, all of them are reduced to the same canonical form. This property makes
the canonical form a crucial key in verifying if two difference constraint sets are equivalent. Two sets of difference
constraints are equivalent if and only if they are both inconsistent or have the same canonical form [25]. In this
work, the canonical representation is computed by applying a generalized version of the Floyd-Warshall algorithm
to the difference constraint set, using the difference bounded matrix and applying to each entry the tightening
operation.

Algorithm 4.1 describes the procedure utilized. It requires a set of difference constraints as input and gives the
canonical form of the system, if consistent, null otherwise. It first initializes the difference bounded matrix (lines
3-8), setting all values in the diagonal as (≤, 0) to represent the constraints of the form x− x ≤ 0, and (≤,∞) to
model the absence of constraint between two variables. Then, it fills the matrix with the constraints of the input
system (lines 9-12) and applies the Floyd-Warshall algorithm for the tightening operation (lines 13-16). Finally, it
checks the system’s consistency by verifying that the diagonal’s values are all set to (≤, 0) and, if so, recreates the
constraints from the difference bounded matrix into a new set representing the canonical form. The procedure
uses two additional functions, Index, which maps a variable to an index of the matrix, and Var, which, given an
index, returns the corresponding variable. The algorithm has a complexity of Θ(n3), where n is the number of
variables in the system of difference constraints.

Subtraction It is fundamental to describe another operation that works on difference constraints sets and
is used by the repair process described in the subsequent chapters. Given two systems of difference constraints, or
Difference BoundedMatrices (DBMs),D and E, the subtraction of E fromD consists in a new set S satisfying the
constraints ofD and¬E [29]. The result S = D ∧ ¬E, denotedD− E, can be written as:

S = D ∧ ¬(
∧

1≤i,j≤n

eij) =
∨

1≤i,j≤n

(D ∧ ¬eij) (DeMorgan Law)

The resulting set S is the union of D constrained by each negated constraint of E. Figure 4.1 visually repre-
sents the subtraction between DBMs. The above formula gives a basic, straightforward algorithm to compute
the subtraction. David et al., though, in [29] propose various solutions to efficiently execute it, either by exact
algorithms or using heuristics. The repair process presented in this work utilizes the straightforward approach,
leaving its optimization as a possible future development.

4.2 Constraint Graph
The soundness verification of a Data Petri Net model requires the analysis of the different traces (paths) that
belong to the underlying business process. Since such a number may be possibly infinite, previous works [30]
have introduced a new structure named constraint graph to conveniently describe the traces for the verification
procedure. A constraint graph is a directed graph that follows the state-transition nature of the DPN, each node
composed of a pair of elements: the first one represents the marking of the net, while the second one describes
an abstraction of the data, using the canonical form of a system of difference constraints. By using the constraint

23

Algorithm 4.1 Procedure for computing the canonical form of a system of difference con-
straints
Input: A set of difference constraints C
Output: The canonical form of C if consistent, null otherwise
1: Let Index be a map between variables and indexes in range [1, n]
2: LetVar be the inverse map of Index
3: Let n be the number of variables in C
4: LetM be a n× n empty matrix
5: for i := 0 to n do ▷Matrix initialization
6: for j := 0 to n do
7: if i = j then
8: M[i][j] := (≤, 0)
9: else
10: M[i][j] := (≤,∞)
11: for x− y ▷◁ k in C do ▷Matrix fill from input constraints
12: (▷◁′, k′) := M[Index(x)][Index(y)]
13: if (▷◁, k) < (▷◁′, k′) then
14: M[Index(x)][Index(y)] := (▷◁, k)
15: for k := 0 to n do
16: for i := 0 to n do
17: for j := 0 to n do
18: M[i][j] := min(M[i][j],M[i][k] +M[k][j])
19: for i := 0 to n do ▷Consistency check
20: if M[i][i] < (≤, 0) then
21: return null
22: Let C′ be an empty set
23: for i := 0 to n do ▷Canonical form construction frommatrix
24: for j := 0 to n do
25: x := Var(i)
26: y := Var(j)
27: (▷◁, k) := M[i][j]
28: C′ := C′ ∪ {x− y ▷◁ k}

return C′

24

Figure 4.1: Example of DBM subtractionD− E. The result consists of the union of all the zones on the right (Fig. 3 [29])

graph, it is possible to obtain a finite-state representation of the possibly infinite traces of the DPN, permitting
the assessment of the soundness of the original process.

A crucial operation for constructing the constraint graph is the addition of a difference constraint to an existing
set of them. Given a system of difference constraints C, Algorithm 4.2 computes the operation C ⊕ c, returning
the canonical form of the resulting set, if consistent, or null, if not. It behaves differently based on the number of
variables written in c. If the variables in c are only read, the data do not change; thus, the procedure adds c to the
system as is, which imposes a new constraint on the previous set and returns the canonical form of the resulting
one. The CanonicalForm auxiliary function works as described by Algorithm 4.1, returning the canonical form
of the input system if consistent, null otherwise. If one or both variables are written, instead, the constraint c is
added but with xw and/or yw considered as fresh variables, representing the new values. After the computation of
the resulting set’s canonical form, all the occurrences of x and y are removed, and xw and yw are renamed into x and
y, tomodel the fact that the newvalues take place as the current ones. These last twooperations are safe concerning
the canonical form previously computed since projection and renaming of variables do not affectminimality [25].

The constraint graph is enriched by a new set of silent transitions defined by τT = {τt|t ∈ T}, to specify that
guard(t) does not hold in the current state. A constraint graph is defined as [25]:

Definition 4.2.1 (Constraint Graph of DPN). LetN = (P,T, I,O,m0,V, αI, guard) be a DPN andM be the
set of markings inN . Let CV be the universe of canonical forms of system constraints over variables in V ∪ {Z}
and τT =

∪
t∈T τt. The constraint graph CGN ofN is a tuple (N, n0,A), where:

• N ⊆ M × CV is the set of states of the graph, named nodes to distinguish them from the states of the
DPN

• n0 = (m0,C0) is the initial node, withC0 being the canonical formof the system of difference constraints∪
v∈V{v = αI(v)}

25

Algorithm 4.2 Procedure for computing C⊕ c
Input: A set of difference constraints C
Output: The canonical form equivalent to C⊕ c if consistent, null otherwise
1: if c = yr − xr ▷◁ k then ▷Only read variables
2: C′ := C ∪ {y− x ▷◁ k}
3: return CanonicalForm(C′)
4: else ▷At least one variable written
5: if write(c) = {x} then
6: C′ := C ∪ {y− xw ▷◁ k}
7: else if write(c) = {y} then
8: C′ := C ∪ {yw − x ▷◁ k}
9: else ▷ write(c) = {x, y}
10: C′ := C ∪ {yw − xw ▷◁ k}
11: C′ = CanonicalForm(C′)
12: C′ := C′\{x′ − y′ ▷◁′ k′|x′ ∈ write(c) or y′ ∈ write(c)}
13: Rename all occurrences of xw to x and all occurrences of yw to y in C′

14: return C′

• A ⊂ N× (T ∪ τT)×N is the set of arcs such that:

– a transition ((M,C), t, (M′,C′)) is in A iff M[t⟩M′ and C′ = C ⊕ guard(t) is consistent (i.e.,
satisfiable);

– a transition ((M,C), τt, (M,C′′)) is in A iff write(t) = ∅, ∃M′ s.t. M[t⟩M′, and C′′ = C ⊕
¬guard(t) is consistent

Figure 4.2 shows the constraint graph relative to the Data Petri Net model represented in Figure 3.11. Each
node of the graph is composed of a marking, represented by the name of the place where the token is positioned
and the system of difference constraints, all connected by the transitions. The first upper-left node represents the
initial marking: the place is p1 with two difference constraints indicating the initialization α(a) = 0. In themodel,
transition t1 can fire, and since its guard writes variable a, the computation of C ⊕ c results in a single inequality,
reaching a new node, p2. It is essential to notice now how multiple arcs and nodes unfold: from place p2 can
fire two transitions, t2 and t3, based on the new value of the recently written variable a. If a > 100, place p3 is
reached with the corresponding system and connected by transition t2. Moreover, the condition write(t2) = ∅
allows taking into consideration the silent transition τt2 : the graph reaches a new node with the same marking,
but it computes the new set of difference constraint using the negation of the guard of t2. Note that multiple
nodes with the same marking are present: in fact, what makes a node unique is the combination of marking and
difference constraints set. For example, in the bottom-right of the figure, there is a node with a self-pointing arc
(τt3), meaning that the outgoing transition reaches the same node. This representation avoids the creation of an
infinite amount of elements, obtaining a finite graph of the model.

26

Figure 4.2: Constraint graph of the DPN model at Figure 3.11. The final marking is p3, denoted with a double frame.

4.3 Data-aware Soundness Verification
Verifying the soundness property of a Petri Net-based model is crucial to understanding whether the net is well-
formed, directly affecting the underlying business process. Previous works have already dedicated research to
analyzing such property applied to general workflow nets [31], creating the base for further adaptations to Data
Petri Nets.

4.3.1 Soundness Definition
De Leoni et al. provide in [32] the lifting of the standard notation of soundness to Data Petri Nets, transitioning
from decision-aware soundness to data-aware soundness, to take into consideration the assignment of variables.

Definition 4.3.1 (Data-aware soundness). Let N be a DPN with initial marking m0, final marking MF, and
ReachN denoting the set of reachable states of N , that is, the set {(M, α)|(m0, α0)

∗−→ (M, α)}. DPN N is
data-aware sound if and only if all the following properties hold:

P1. For all reachable states (M, α) ∈ ReachN ,∃α′.(M, α) ∗−→ (MF, α′)

P2. For all reachable states (M, α) ∈ ReachN ,M ≥ MF =⇒ (M = MF)

P3. For all transitions t ∈ T, there exists two reachable states (M1, α1) and (M2, α2) such that (M1, α1)
t−→

(M2, α2)

27

Figure 4.3: A DPN not satisfying P1

Figure 4.4: A DPN not satisfying P2

The above definition says that the soundness property is not composed of a single condition, butmultiple ones
must simultaneously be satisfiedby theDPN.Thefirst conditionP1 ensures that nomatter the current state, there
is at least a sequence of one or more firing transitions allowing it to reach the final marking. It means that a given
model must not contain deadlocks or loops that may prevent the final marking from being reached. The need
for this condition is straightforward since a process that, from some states, cannot finish appropriately cannot be
considered well-formed. Figure 4.3 shows a simple DPN that is not able to reach the final marking p3; since the
guard of transition t1 sets a new value greater or equal than 10 to variable a, transition t2 is not enabled since it
requires that a is lower or at least equal to 5.

The second condition C2 ensures that when a process ends, it does so without leaving tokens in places other
than the ones specified in the final marking. This condition is needed because, in the model representation of a
business process, a token in a place means that the execution has reached that step. Thus, if the execution reaches
the final marking, but some tokens are left behind, the process has concluded, but some activities are still being
performed elsewhere. Ideally, reaching the final marking should be only done if the previous tasks have all been
terminated.

Figure 4.4 depicts a DPN with initial marking m0 = p1 and final marking MF = p5 that does not satisfy
condition P2, that is, there exists a markingM such thatM ≥ MF ∧M ̸= MF. The execution starts from place
p1 with transition t1 writing variable a and putting a token in p2 and p4. Then, the only possible step is the firing
of transition t2, whichmoves the token from p2 to p3. Now, at the workflow level, transitions t3 and t4 are enabled
because the number of tokens required by both are satisfied, thus leaving the choice only at the data level. Notice
that when ar ≥ 10, t3 fires reaching the final marking p5. Nevertheless, a token was left behind at place p4, and it
will never reach the finalmarking since t4 canno longer become enabled. The currentmarkingM′ = (0, 0, 0, 1, 1)
does not satisfy condition P2 becauseM′ ≥ MF butM′ ̸= MF.

Finally, the third conditionP3 ensures that no dead transitions are present. A transition is dead if it is not possi-
ble to enable it during the execution of the process. A well-formed business process needs to satisfy this condition
because if a transition cannot fire, there is a problem in the workflow since it doesn’t meet the prerequisites for its
enabling. Figure 4.5 shows the constraint graph of the DPNmodeled in Figure 4.3. Since the guard of transition
t2 cannot be satisfied, it will never fire, thus missing from the constraint graph. Note that here, the condition

28

Figure 4.5: Constraint graph of the DPN depicted in Figure 4.3, showing the missing transition t2

applies only to the transitions that are not silent.
Definition 4.3.1 is based on the reachability graph of a DPN. Felli et al. in [30] propose a variation applied to

the constraint graph of a Data Petri Net, as expressed by the following Definition 4.3.2.

Definition 4.3.2 (Data-aware soundness). Let N be a DPN with initial marking m0, final marking MF, and
CGN = (N, n0,A) its constraint graph. The constraint graph CGN is data-aware sound if and only if the follow-
ing properties hold.

P1. For every reachable node (M,C) ∈ N,∃C′.(M,C) ∗−→ (MF,C′)

P2. For every reachable node (M,C) ∈ N,M ≥ MF =⇒ (M = MF)

P3. For every transition t ∈ T, there exist two reachable nodes (M1,C1) and (M2,C2) such that (M1,C1)
t−→

(M2,C2)

The similarity between the twodefinitions is straightforward, as the conditions to be respected are the samebut
applied to a different structure. Nevertheless, it is crucial to remember that the reachability graph of a DPNmay
be infinite for cyclic DPNs, and the soundness verification would be unfeasible. By using the constraint graph, it
is possible to obtain a finite state representation of the DPN instead, on top of which a suitable algorithm may
verify that the DPN is data-aware sound. Such an algorithm is presented in the next section.

4.3.2 Verification Procedure
The soundness verification algorithm comprises the constraint graph construction and the soundness conditions’
assurance, described by Algorithm 4.3. It uses three structures to store the various elements encountered during
the execution: two sets hold the nodes and the arcs (N and A) that compose the constraint graph, while a queue
Q collects the nodes that need to be expanded. First of all, it initializes the previous structures by adding the
initial node n0 to the set of nodes and the queue, imposing the starting point of the search (lines 1-6); the first
node is composed of the DPN’s initial marking, and the corresponding difference constraint set formed by the
initialization of each variable.

At line 7, a while loop starts until no more expandable nodes exist. At each iteration, a node is extracted
from the queue, and all the enabled transitions starting from it are considered in a for loop (lines 8-9). Each
enabled transition produces a new marking and a new system of difference constraints, computed by adding the
transition’s guard to the previous one and verifying that it is still consistent (lines 10-11). If so, the algorithm
performs a further check. If the new node’s markingM′ is greater than the markingM∗ of a node with the same

29

difference constraint set found previously, then “it means that at least one of the places of the DPN is unbounded,
therefore that the DPN is certainly unsound” [30]. In this case, false is returned immediately, as proceeding would
not make sense (lines 12-13). On the other hand, if the condition is not met, the new node can be expanded in
successive iterations (lines 14-16). After the algorithm treats the “normal” transition, it proceeds to handle the
silent one. First, it verifies that the guard doesn’t write any variable, and then it computes the new constraints set,
obtained by adding the negated guard to the current transition (lines 17-18). The new node is considered only if
the resulting set is consistent.

From line 23, the verification of the soundness conditions starts. It starts by checking the presence of any
dead node that breaks the condition P1. In a constraint graph, the only nodes with no outgoing arcs are the ones
with the final marking. Thus, if there is a node without a final marking and any outgoing arcs, it means that for
some transition, the system will reach a situation from which it will not progress further. If such node exists, it
returns false; otherwise, it proceeds to check the conditionP3 byfinding a transitionnot used by any arc previously
computed. Instead, condition P2 is checked during the construction of the constraint graph (lines 12- 13).

Theorem 2 in [30] states that “RGN is data-aware sound iff CGN is data-aware sound”. Consequently, it is
sufficient to assert that the constraint graph satisfies the conditions of Definition 4.3.2 to affirm that the Data
Petri Net is sound. Nevertheless, a false-positive case exists, showing a Data Petri Net with a constraint graph that
satisfies all three conditions but is unsound. The following sections cover this peculiar case and the newprocedure
for its detection.

4.4 SatisfiabilityModulo Theories (SMT)
The procedure proposed in this work as an addendum to the soundness verification, discussed in the next section,
leverages the Satisfiability Modulo Theories (SMT). This section gives the reader a brief overview of SMT.

Satisfiability is an old and well-known problem in the theoretical computer science field, which aims to deter-
mine whether a formula expressing a constraint has a solution. Boolean satisfiability, also known as SAT, is one of
the most familiar satisfiability problems, where the goal is to understand whether a formula using logical connec-
tors over a set of Boolean variables can become true by assigning a true/false value to all the variables involved. The
scientific community has dedicated extensive work to the SAT problem, its optimization, and its application to
different areas [33][34]. To cite some of these, Combinational Equivalence Checking, whose focus is to check the
equivalence of two circuits, Automatic Test-Pattern Generation, for detecting defects in fabricated integrated cir-
cuits, Job Scheduling, for deciding whether there exists a schedule such that the end-time of every task is less than
or equal to a given maximum time, and finally Haplotyping Inference in Bioinformatics, consisting in deriving
haplotype data from genotype data.

However, it is common that applications in some fields require defining the satisfiability problem using for-
mulas composed of more expressive logic, such as first-order logic. Nevertheless, despite the advancement in
developing general-purpose first-order theorem solvers, some formulas remain directly unsolvable. Barret et al.
in [35] give the following justification:“many applications require not general first-order satisfiability, but rather
satisfiability with respect to some background theory, which fixes the interpretations of certain predicate and function
symbols”. This situation led to the introduction of a new research field named Satisfiability Modulo Theories, or
SMT, for short, interested in the satisfiability of formulas concerning a background theory.

30

Algorithm 4.3 Procedure for verifying the soundness of a DPN
Input: ADPNN = (P,T, I,O,m0,V, αI, guard)with final markingMF

Output: True ifN is sound, false otherwise
1: LetN and A be empty sets
2: LetQ be an empty queue
3: C0 :=CanonicalForm(

∪
v∈V{v = αI(v)})

4: n0 := (m0,C0) ▷ Initial node
5: Push(N, n0)
6: Enqueue(Q, n0)
7: while Q ̸= ∅ do
8: (M,C) := Dequeue(Q)
9: for t ∈ T s.t. M t−→ M′ do
10: C′ := C⊕ guard(t)
11: if C′ ̸= null then
12: if ∃(M∗,C∗) ∈ N s.t. M′ > M∗ ∧ C′ = C∗ then
13: return false ▷The net is unbounded
14: if (M′,C′) /∈ N then ▷Add node if not present
15: Push(N, (M′,C′))
16: Enqueue(Q, (M′,C′))
17: Push(A, ((M,C), t, (M′,C′)))
18: if write(t) = ∅ then
19: C′′ := C⊕ ¬guard(t) ▷ Silent transition case
20: if C′′ ̸= null then
21: if (M,C′′) /∈ N then
22: Push(N, (M,C′′))
23: Enqueue(Q, (M,C′′))
24: Push(A, ((M,C), τt, (M,C′′)))
25: if ∃(M,C) ∈ N s.t. (M,C) ̸ t−→∧M ̸= MF, ∀t ∈ T then
26: return false ▷A dead node exists

27: if ∃t ∈ T s.t. (M,C) ̸ t−→, ∀(M,C) ∈ N then
28: return false ▷Missing transitions

29: return true

31

It is widely known that the SAT problem is NP-complete and that first-order logic is undecidable. This high
computational complexity makes constructing a procedure that can solve arbitrary SMT solvers unfeasible. Nev-
ertheless, in recent years, the innovation of core algorithms and data structures, with the exploration of new
heuristics and focus on implementation details, has brought tremendous progress in the scale of solvable prob-
lems. Modern SAT and SMT solvers can check formulas with hundreds of thousands of variables and millions
of clauses.[36]. Many SMT solvers have been developed through the years like Z3 [37], Yices [38], MathSAT 5
[39], and SMTInterpol [40]. Moreover, an international initiative named SMT-LIB [41] was born around 2003
to facilitate the research and development of SatisfiabilityModulo Theories by providing rigorous descriptions of
background theories used in SMT systems and promoting standard input and output languages across the various
SMT solvers.

SMT is a tool well suited to support constraint graphs, specifically for the difference constraints sets. One
of the many theories available in SMT that relates more to this work is the Difference arithmetic theory. It is
a fragment of the Linear arithmetic theory, where predicates are restricted to the form x − y ≤ c, for some
variables x, y, and a constant c. A system of difference constraints can be considered as a formula where each
inequality is a predicate, and all link together with conjunctions. In a DPN, though, the constraints admit also
strict (<) inequalities. Figure 4.6 shows how the system of difference constraints corresponds to a logical formula
composed as a conjunction of predicates. Furthermore, the formula (and the constraints set as a consequence)
admits a graphical representation (4.6c), showing the correlation between variables, values, and level of strictness
(< or ≤). Even if not used in this work, de Moura and Bjørner states in [36] that “Conjunctions of difference
arithmetic inequalities can be checked very efficiently for satisfiability by searching for negative cycles in weighted
directed graphs.”

4.5 Co-reachability Analysis

4.5.1 False-positive SoundDPN
The soundness verification procedure described byAlgorithm 4.3 should return true if and only if the inputDPN
is data-aware sound, as proved byTheorem 1 in [30]. Nevertheless, there exists a case identified by the procedure as
a sound DPN but which is actually unsound. Figure 4.7 illustrates the DPN, with the corresponding constraint
graph, of such a case. It comprises three places and three transitions, with p1 as the initial marking and p3 as the
final marking. The first transition assigns a new value to variable x, followed by a choice primitive. Transition t2 is
enabled and can fire, staying in the same place butwriting a new value in y, greater than or equal to x. Transition t3,
instead, can be only enabled if the value of y is strictly lower than 10. The peculiarity of this Data Petri Net is the
presence of a cycle in p2, where transition t2 can indefinitely keep writing new values for y. The case that makes
this DPN unsound is when variable y is initialized with a value greater than or equal to 10 or the first transition
writes in x such value. For this last case, if transition t3 fires, the execution reaches the final marking, but if t2 fires,
the cycle starts updating variable y indefinitely, creating a never-ending loop. Since y is given a value greater than
or equal to x, transition t3 cannot be enabled.

The constraint graph presented in Figure 4.7b, computed using the soundness verification procedure, respects
all the conditions defined by Definition 4.3.2. Every non-final node has at least one outgoing arc using a non-

32

(a) Constraint graph
node

(b) Logical formula of the difference constraints set of the node

(c) Graph representing the system of difference
constraints

Figure 4.6: Correlation between a node of a constraint graph and Satisfiability Modulo Theories. The node depicted in
Figure (a) has the corresponding formula composed as a conjunction of inequalities (b), which is further represented as
graph (c).

33

silent transition, indicating the absence of dead nodes (condition P1). Condition P2 is satisfied because when the
execution reaches the final marking, it does so without leaving tokens in other places of the net. Finally, for each
transition t of the model, there exists an arc using t for connecting two nodes, thus satisfying P3. The constraint
graph respects all the conditions that define a sound DPN. Still, as just described, the model shows a situation
with a loop preventing the reach of the final marking (deadlock), creating, as a consequence, a false-positive case.

4.5.2 Co-reachability
The main problem with the previous model is that the execution, when firing transition t2, is unaware of the
condition on t3, which imposes an upper bound on variable y. Transition t2 breaks such bound because its guard
writes a value in y that depends on variable x with no upper limit. An additional procedure is introduced to
overcome this issue and correctly identify the DPN as an unsound model, described by Algorithm 4.4.

The core idea behind this new verification technique is to determine the valid variables’ values that allow the
execution to reach the final marking(s). To obtain such a goal, the concept of co-reachability played a central
role in the development of the algorithm. It is usually used in the context of Finite State Machines (FSM) and
automata, but it can be easily extended to constraint graphs, given the similarity with the directed graph used for
automata representation. A node n is said to be reachable when there exists a path that connects the initial node
n0 to n; instead, it is said co-reachable when there exists a path that connects node n to a final node [42]. With
these definitions inmind, instead of working in a forward direction from the starting node to the finals, there was
a change of approach in favor of a backward analysis, starting from the final nodes down to the initial one. The
values that respect the constraints of the final nodes are those defined by themselves. Consequently, the algorithm
starts by considering only the difference constraints sets of the final nodes and iteratively builds the ones of the
other nodes. During the computation, a node may contain multiple difference constraints sets.

The iterative procedure starts by marking as co-reachable only the nodes with a final marking:

CoReach0(M,C) =

{C} ifM = MF

∅ otherwise
(4.1)

Then, two cases are identified based on the type of transitions. The first one manages the nodes reached by a
transition whose guard doesn’t write any value or is silent.

CoReachri+1(M,C) =
∪

(M,C)
t−→(M′,C′)

CoReachi(M′,C′), where write(t) = ∅ or t silent (4.2)

Since the transition doesn’t change any value and it is in place a backward analysis, the constraints found to be
valid for the successive nodes, which allow reaching the final nodes, are also valid for the current one. Hence, a
node (M,C)’s set at iteration i + 1 is the union between the node’s set and all the sets of the successive nodes
(M′,C′) computed at the previous iteration i. The second case considers the transitions whose guard contains at
least a written variable.

CoReachwi+1(M,C) =
∪

(M,C)
t−→(M′,C′)

(∃write(t).CoReachi(M′,C′) ∩ C), where write(t) ̸= ∅ (4.3)

34

(a) Data Petri Net characterized by a cycle in p2, with initial marking p1 and final
marking p3

(b) Constraing graph of 4.7a

Figure 4.7: False‐positive sound DPN verified using Algorithm 4.3

35

Since now the transition’s guard writes at least a variable and modifies the values, it cannot be stated that the
constraints of the subsequent nodes are also valid for this one. For this reason, the written variables are removed
through quantifier elimination and re-introduced by intersecting the result with the original node’s constraint set.
In this case, the intersection may produce an inconsistent system, considered only if consistent.

The iterative computation produces for each node a set of systems of difference constraints defining the values
that reach the final nodes, defined as follows:

CoReachi+1(M,C) = CoReachi(M,C) ∪ CoReachri+1(M,C) ∪ CoReachwi+1(M,C) (4.4)

CoReach(M,C) =
∪
i≥0

CoReachi(M,C) (4.5)

The following Lemma holds:

Lemma 1. LetN be a DPN with final marking MF, CGN the constraint graph ofN andRGN the reachability
graph ofN . Given a node (M,C) of CGN , it holds that:

∀α ∈ CoReach(M,C),∃α′.(M, α) ∗−→ (MF, α′)

Proof. LetCoReach(M,C) = {C1, ...,Cn}, α ∈ Ci an assignment of values satisfyingC and k the iteration when
Ci is inserted in CoReach(M,C) for the first time. Proof by induction on the iteration k.

Case k = 0: consider a difference constraints set Ci. By construction, Ci is inserted in CoReach(M,C) at
iteration 0 only ifM = MF. SinceM = MF, all the values α satisfying Cmake the property true. Thus, it holds
that ∀α ∈ CoReach(MF,C),∃α′.(MF, α)

∗−→ (MF, α′)with α = α′.
Case k + 1: suppose that the property holds for all the difference constraints sets inserted at iteration k, that

is, it holds that ∀α ∈ CoReachk(M,C),∃α′.(M, α) ∗−→ (MF, α′). The goal is to prove that the property holds
for all the sets inserted at iteration k+ 1, that is, ∀α ∈ CoReachk+1(M,C),∃α′.(M, α) ∗−→ (MF, α′). Consider a
difference constraints set Ci. The set Ci is inserted at iteration k + 1 by applying either Rule 4.2 or Rule 4.3 on
some C′

i ∈ CoReachk(M′,C′) such that (M,C) t−→ (M′,C′) for some t. By inductive hypothesis, it holds that
∀α′ ∈ CoReachk(M′,C′),∃α′′.(M′, α′) ∗−→ (MF, α′′). There are two cases:

• write(t) = ∅: transition t is either a normal transition with read-only variables or silent (τt). Rule 4.2
applies. Since transition t does not change the value of variables, it holds that (M, α) t−→ (M′, α) with
α ∈ CoReachk(M′,C′). By inductive hypothesis, the property holds for CoReachk(M′,C′). Hence,
there exists α′ such that (M, α) t−→ (M′, α) ∗−→ (MF, α′), proving that the property also holds for
CoReachk+1(M,C).

• write(t) ̸= ∅: Rule 4.3 applies. By construction, the constraint set C′
i obtained from

∃write(t).CoReachk(M′,C′) ∩ C is considered only when consistent. Hence, there exists α′ ∈
CoReachk(M′,C′) such that (M, α) t−→ (M′, α′). By inductive hypothesis, the property holds for
CoReachk(M′,C′). Hence there exists α′′ such that (M, α) t−→ (M′, α′) ∗−→ (MF, α′′), proving that
the property also holds for CoReachk+1(M,C).

36

Once the procedure terminates, each node (M,C) has its CoReach computed. The last step is to verify that
the sets in CoReach(M,C) are equivalent to the original difference constraints set C. If they are not equivalent,
it means that there exists an assignment of values satisfying C but for which it is not possible to reach the final
marking, that is, ∃α ∈ C,∄α′.(M, α) ∗−→ (MF, α′). It is the case of the example described in Section 4.5.1.

With the procedure explained above, the following theorem holds:

Theorem 2. ADPNN is data-aware sound if and only if its constraint graph GCN is data-aware sound and for
every node (M,C), CoReach(M,C) ≡ C.

Proof. (=⇒)Assume that a DPNN is data-aware sound. Then, its constraint graph GCN is data-aware sound
and for every node (M,C), CoReach(M,C) = C. This direction is proved by Felli et al. in [30]. Consequently,
since the DPN N and its constraint graph are data-aware sound, it means that it does not exist an assignment
of values such that from a node it is not possible to reach a final marking, thus proving also that for every node
(M,C), CoReach(M,C) ≡ C.

(⇐=) Assume that the constraint graphGCN of aDPNN is data-aware sound and that for every node (M,C)
it holds CoReach(M,C) ≡ C. Then DPN N is data-aware sound. Consider property P1 of the data-aware
soundness property. Since the constraint graph isdata-aware sound, itmeans that for every reachablenode (M,C),
∃C′.(M,C) ∗−→ (MF,C′). Moreover, given that CoReach(M,C) ≡ C, by Lemma 1, it holds that ∀α ∈ C,∃α′

such that (M, α) ∗−→ (MF, α′). Consequently, it holds that for every reachable state (M, α), ∃α′.(M, α) ∗−→
(MF, α′), proving that the property P1 of Definition 4.3.1 also holds. With the same approach followed for P1, it
is possible to prove also that the propertiesP2 andP3 holds, proving that the DPN is thus data-aware sound.

4.5.3 Co-reachability procedure
The procedure for the co-reachability analysis described by Algorithm 4.4 works as follows. It takes in input a
DPN and the corresponding constraint graph and returns true if, for all the nodes of the constraint graph, the
sets of difference constraints computed are equivalent to the original one, false otherwise. From line 2 to line 8, it
initializes the key-valuemap that will keep track of the sets of each node computed through the execution. It starts
by considering only the difference constraints set of the final nodes, putting all the others empty. It continues
in a while-loop until it reaches a fixed point when the sets found at the last iteration do not change from the
previous one (line 10). At every iteration, it replaces the sets of eachnodewith the output of theComputeCoReach
function (lines 13-14), which computes the constraints that allow reaching the final nodes, as described by the
above Equations 4.2 and 4.3. Finally, it verifies that the set of systems of difference constraints obtained through
backward analysis is equivalent to the original one for each node (lines 16-17). The equivalent operation between
systems of difference constraints is performed using the Satisfiability Modulo Theories introduced in Section 4.4.
Each set is converted into a logical formula, and thanks to an SMT solver, it tries to find an assignment of values
satisfying one set and unsatisfying the other. If such an assignment does not exist, then the systems are equivalent,
and if all the nodes respect this condition, the procedure terminates, returning true.

With this new procedure, it is possible to identify the DPN of Figure 4.7 as unsound. Table 4.1 gives a visual
representation of the co-reachability analysis by showing for each node the constraint sets found through the
different iterations of the while-loop. The rows are the iterations, and the columns are the nodes of the DPN’s
constraint graph (illustrated by Figure 4.7b). The original difference constraints are set as a reference near the

37

Algorithm 4.4 Procedure for computing CoReach(M,C) and equivalence verification
Input: ADPNN = (P,T, I,O,m0,V, αI, guard)with final markingMF and its Constraint

Graph CGN = (N, n0,A)
Output: true if CoReach(M,C) ≡ C for all the nodes, false otherwise
1: procedureVerifyCoReach(N , CGN)
2: Let S be an empty key-value map
3: Let Finals be the set of nodes (M,C) ∈ N such thatM = MF
4: for node := (M,C) ∈ N do ▷Map initialization
5: if node ∈ Finals then
6: S[node] := {C}
7: else
8: S[node] := ∅
9: Let Sprev be an empty key-value map
10: while S ̸= Sprev do ▷Continue until fixed point is reached
11: Sprev := S
12: S := ∅
13: for node := (M,C) ∈ N do
14: S[node] := ComputeCoReach(Sprev, node)
15: for node := (M,C) ∈ N do
16: if S[node] ≢ C then ▷ Equivalence checked via SMT solver
17: return false ▷The net is unsound
18: return true
19: procedureComputeCoReach(S, node = (M,C))
20: Res := S[node]
21: RT := {(M′,C′)|∃((M,C), t, (M′,C′)) ∈ A s.t. write(t) = ∅ or t silent}
22: for node′ ∈ RT do
23: Res :=Res ∪ S[node′]
24: WT := {(M′,C′)|∃((M,C), t, (M′,C′)) ∈ A s.t. write(t) ̸= ∅}
25: for node′ ∈ WT do
26: canonical := CanonicalForm(Exists(write(t), S[node′])∩ C)
27: if canonical ̸= null then
28: Res :=Res∪ {canonical}
29: returnRes

38

Figure 4.8: The systems of difference constraints found during the co‐reachability analysis of the DPN model at Figure 4.7

n1(C1) n2(C2) n3(C2) n4(C3) n5(C5) n6(C4)
I0 ∅ ∅ {C2} ∅ ∅ {C4}
I1 ∅ {C2} {C2} {C4} ∅ {C4}
I2 {C1} {C2,C7} {C2} {C4,C8} {C6} {C4}
I3 {C1} {C2,C7} {C2} {C4,C8,C6} {C6} {C4}
I4 {C1} {C2,C7} {C2} {C4,C8,C6} {C6} {C4}

Table 4.1: Matrix representation of the co‐reachability analysis of the model at Figure 4.7. The rows are the iterations
performed by the while‐loop, and the columns are the nodes of the constraint graph. Near the node, there is the original
difference constraint set. Each cell shows the difference constraint sets computed through the execution.

node’s name. Moreover, Figure 4.8 shows all the sets foundduring the execution so the reader can see and compare
them. The initialized first nodes are n3 and n6 because they are final nodes. The next iteration is the turn of n2
since it is connected to n3 by transition t3, and n4, linked to n6 by the same. The execution keeps cycling until the
fixed point is reached at iteration I4. In the last step, for the nodes n4 and n5, it is detected that the sets computed
by the procedure are not equivalent to the original ones. It can be easily seen by looking at the node n5 since
constraintsC5 andC6 are almost the same, except that inC6, there is the additional constraint x−Z ≤ 10. Going
backward from the final nodes allowed capturing an additional constraint missing from the constraint graph,
adding an upper bound to variable x. Using Algorithm 4.3 and Algorithm 4.4, it is possible to identify such cases
as unsound Data Petri Nets.

39

40

5
Data-aware Process Repair

Applying soundness verification techniques to Data Petri Nets helps to understand whether the underlying busi-
ness process is well-formed. An additional tool for supporting designers in analyzing and optimizing workflows
is the ability to automatically repair the conditions that prevent an unsound DPN from behaving correctly.

This chapter introduces a general algorithm for the automatic repair of data-aware processes. The first part
defines what data-aware process repair means and the prerequisites a DPNmust satisfy to apply such a procedure
correctly. Then, two sections describe the cases of acyclic and cycle DPNs, respectively, and why two different
procedures are needed to handle such cases. Finally, the last section covers the implementation details, the tests,
and their evaluation.

5.1 Repair definition and prerequisites
Before the reparation procedure, it is crucial to define what data-aware process repair means and on what factors
the algorithm works to achieve a sound Data Petri Net.

Definition 5.1.1 (Data-aware process repair [25]). LetN = {P,T, I,O,m0,V, αI, guard} be a Data Petri Net.
A data-aware process repair ofN is a DPNN ′ = {P′,T′, I′,O′,m′

0,V′, α′I, guard′}meeting the following con-
ditions:

1. {P,T, I,O,m0,V, αI} = {P′,T′, I′,O′,m′
0,V′, α′I};

2. for each transition t ∈ T such that guard(t) = y− x ▷◁ k for some ▷◁, k, either guard′(t) = y− x ▷◁′ k′,
or guard′(t) = y−Z ▷◁′ k′ or guard′(t) = Z−x ▷◁′ k′. Moreover, ifN contains cycles and guard′(t) =
y− x ▷◁′ k′, then k′ = 0;

3. N ′ is data-aware sound.

41

(a) Data Petri NetN with cycle

(b) Infinite constraint graph ofN . The upper bound of x and y keeps indefinitely growing

Figure 5.1: Example of a cyclic DPN whose constraint graph is infinite, wherem0 = {p1},MF = {p2}, αI(x) =
0, αI(y) = 0,

The cost of the repair ofN ′ is the number of guards inN ′ that differs fromN

From the above definition, it is understood that the repair process works only on the data level by changing
the guards of the transitions. The first condition, in fact, says that all the components of the DPN but the guard
remain unchanged. This condition strictly correlates with one of the prerequisites the DPN must satisfy to use
the repair procedure. The algorithm assumes that the DPN’s unsoundness is caused only at the data level, with
the underlying Petri Net’s structure being sound. By taking the DPN without the guards, the Petri Net should
be able to reach the final markings cleanly. The workflow should be fixed using existing state-of-the-art solutions
if it is unsound.

The second condition defines the form the guards of the repaired net have, which can either be as difference
constraints (for example, x < y + k) or unary constraints (for example, x < k). An additional constraint is set
when the DPN has cycles. For such cases, general difference constraints y− x ▷◁ k are allowed only if k = 0. If a
DPN has cycles, the constraint graphmay be infinite. By imposing such a condition on the constraint’s constant,
the constraint graph of the DPN is finite [25]. Figure 5.1 illustrates a Data Petri Net with a cycle and a guard
of the form y − x ≤ k where k ̸= 0 (Fig. 5.1a) and the corresponding constraint graph (Fig. 5.1b). For such
DPN, the constraint graph is infinite. Both variables are written and depend on each other’s values. Nevertheless,
what causes the constraint graph to expand indefinitely is transition t2 because the writing in y of the value of x
incremented by one keeps creating new constraint sets that generate new expandable nodes, making the algorithm
unable to finish. Figure 5.2, instead, shows the constraint graph of the DPN in Figure 5.1a with transition t2’s
guard modified to yw − xr ≥ 0. The constraint graph is finite and does not expand indefinitely, with a loop
between places p1 and p2.

42

Figure 5.2: Constraint graph of the DPN in Figure 5.1a, with transition t2’s guard change to yw ≥ xr

Finally, the third condition imposes that the repaired DPN has to be data-aware sound.

5.2 Acyclic DPNs
This section covers the repair of acyclic Data Petri Nets split into two parts in the Algorithms 5.1 and 5.2. Starting
from the original DPN, the core idea is to try to modify the transition guards and verify whether the resulting
DPN is sound. Themain procedure is DPNRepair, taking in input aDPNN and returning a new one respecting
the definition of soundness described in 4.3.1. It uses a priority queueQ to store the DPNs obtained through the
execution. The number of guards different from the original one defines the priority of a DPN. The algorithm
aims to make the lowest number of changes to obtain a sound DPN.

It initializes the priority queue with the original DPN, which has no change and thus has a priority equal to
zero and starts the iteration process (lines 2-5). It extracts theDPNwith the lowest priority at each step and verifies
the soundness. If the DPN is sound, it exits the loop and returns the DPN (lines 8-9); otherwise, it executes the
repair procedures FixDead and FixMissing (lines 10-11). The first one, FixDead, aims to repair the cases where
the violation of the condition P1 of Definition 4.3.1 causes the unsoundness, that is, the presence of one or more
dead nodes. The second one, FixMissing, instead, tries to repair DPNs that do not satisfy P3, namely the ones
with one or more transitions missing from the constraint graph. Both procedures identify a set of transitions to
work on, and for each, they take the guard and modify it according to the type of condition to solve. For each
modified guard, the procedures push a new version of the DPN in the priority queue, increasing the pool of
potential solutions.

5.2.1 Dead nodes
The presence of a dead node in the constraint graphmeans that after a sequence of transitions, the system reaches
a situation from which it is unable to proceed forward. FixDead handles such cases. There are two possible
approaches to repair such cases: enable a transition that is not firing from the dead node or prevent the execution
from reaching it. The procedure ForwardRepair, described in the Algorithm 5.1, relates to the first approach.
In contrast, the function BackwardRepair, exposed in the second part of the algorithm (Alg. 5.2), handles the
second approach.

43

Algorithm 5.1 Algorithm for the repair of an acyclic DPN (part 1)
Input: ADPNN = (P,T, I,O,m0,V, αI, guard)
Output: A sound DPNN ′ = (P,T, I,O,m0,V, αI, guard′) according to Definition 5.1.1
1: procedureDPNRepair(N)
2: LetQ be a priority queue
3: Enqueue(Q,N , 0) ▷AddN with priority 0
4: LetN ′ be an empty DPN
5: while true do
6: N ′ := Dequeue(Q) ▷Remove DPNwith minimum priority
7: Let CGN ′ be the constraint graph ofN ′

8: if CGN ′ is data-aware sound then
9: break
10: FixDead(N ′, CGN ′)
11: FixMissing(N ′, CGN ′)
12: returnN ′ ▷ Sound DPN
13: procedureUpdateQ(N ′)
14: if N ′ has not been visited yet then
15: Let p be the number of guards ofN ′ that differ from their original ones inN
16: Enqueue(Q,N ′, p)
17: procedure FixDead(N ′, CGN ′)
18: Let (m0,C0) be the initial node of CGN ′

19: for dead node (M,C) in CGN ′ do
20: Let FW be the set of all non-silent transitions that can fire fromM in the PetriNet
21: for t ∈ FW do
22: ForwardRepair(N ′, t, C)
23: Let BW be the set of transitions in all paths (m0,C0)

∗−→ (M,C)
24: for t ∈ BW do
25: BackwardRepair(N ′, t, C)
26: procedure ForwardRepair(N ′, t, C) ▷ “Replace with the same constraint in C”
27: LetN ′′ := (P,T, I,O,m0,V, αI, guard′′) be a copy ofN ′

28: Let y− x ▷◁ k be the guard of t
29: Let y− x ▷◁′ k′ be the corresponding constraint in C
30: guard′′(t) = y− x ▷◁′ k′
31: UpdateQ(N ′′)

44

Algorithm 5.2 Algorithm for the repair of an acyclic DPN (part 2)
32: procedure BackwardRepair(N ′, t, C) ▷ “Replace with the opposite constraint in C”
33: LetN ′′ := (P,T, I,O,m0,V, αI, guard′′) be a copy ofN ′

34: Let y− x ▷◁ k be the guard of t
35: if x− y ▷◁′ k′ ∈ C ∧ k′ ̸= ∞ then
36: if ▷◁′ is ≤ then
37: guard′′(t) = y− x < −k′
38: else
39: guard′′(t) = y− x ≤ −k′
40: UpdateQ(N ′′)
41: procedure FixMissing(N ′, CGN ′)
42: Let (m0,C0) be the initial node of CGN ′

43: LetMissing be the set of missing transitions in CGN ′

44: for t ∈ Missing do
45: LetNodes be the set of nodes (M,C) of CGN ′ s.t. t can fire fromM in the PN
46: for (M,C) ∈ Nodes do
47: ForwardRepair(N ′, t, C)
48: Let BW be the set of non-silent transitions in all paths (m0,C0)

∗−→ (M,C)
49: for t ∈ BW do
50: BackForwardRepair(N ′, t, C)
51: procedure BackForwardRepair(N ′, t, C) ▷ “Make the guard true”
52: LetN ′′ := (P,T, I,O,m0,V, αI, guard′′) be a copy ofN ′

53: Let y− x ▷◁ k be the guard of t
54: guard′′(t) = y− x ≤ ∞
55: UpdateQ(N ′′)

45

ForwardRepair procedure takes as input a DPNN , a transition t and a difference constraint set C. It first
duplicates the DPN and then considers the guard of the given transition (lines 27-28). It is crucial to recall the
assumption that the underlying Petri Net is sound, and the unsoundness is present at the data level. Thus, if
a transition cannot fire, it means that the firing of a transition creates a new inconsistent difference constraint
set. The inconsistency happens because the guard of the transition is in contrast with a similar one already in the
difference constraint set. Thus, a way to enable the transition is to take the constraint from the set C and put it
as the guard of the transition (lines 29-30). This way, when the transition fires, it just adds the same constraint to
the system, keeping it consistent and reaching a new node. Finally, the procedure UpdateQ takes the new DPN
N ′ and adds it to the priority queue if it has not been visited previously (lines 14-16).

Figure 5.3 illustrates the repair process using only the ForwardRepair procedure. The DPNN ′ depicted in
Figure 5.3a is unsound due to two dead nodes, as identified with a cross in the corresponding constraint graph on
the right. The first iteration of ForwardRepair works on the rightmost dead node with the marking p3, where
transition t4 cannot fire because it creates an inconsistent system. Transition t4’s guard is y− x < 0, replaced with
the corresponding one in the constraint set, that is, y− x < 5. With this operation, transition t4 can fire without
producing inconsistencies, allowing the reaching of the final node, as shown in the constraint graph of Figure
5.3d. Nevertheless, the constraint graph is still unsound because of another dead node. Using the same approach,
ForwardRepair replaces transition t3’s guard with the one in the constraint set, obtaining a sound DPN with a
cost of 2.

BackwardRepair procedure takes the same arguments as ForwardRepair, duplicating the DPN and consid-
ering the transition’s guard. The procedure aims to prevent the execution from reaching the dead node; thus, it
takes all the transitions from the initial node to the dead one and replaces the guards with the opposite ones in
the constraints sets. The constraint graph of the resulting DPN cannot reach the previous dead node because, by
adding the opposite constraint, the node has an inconsistent set and is not considered. ForwardRepair alone is
enough to repair a data-aware unsound DPNs, but the joint application of ForwardRepair and BackwardRepair
in some cases allows finding solutions with smaller costs [25].

Figure 5.4 gives an exampleof such a case. Thefirstmodification is doneby the executionof ForwardRepair(N ,
t2,C), which changes the transition’s guard to xr ≥ 5 to remove the dead node. The resulting DPNN ′ is still un-
sound and thus requires further changes (note the dead node in the constraint graph of Figure 5.4d). On one side,
if the algorithmuses only ForwardRepair procedure, it also changes transitions t3 and t4 since the guards need to
allow the execution to proceed forward, reaching a cost of 3. Conversely, the execution of BackwardRepair al-
lows changing lesser transitions. Take the constraint graphCGN ′ ofDPNN ′ in Figure 5.4d and observe that dead
node in place p3. BackwardRepair works on all the transitions that reach the node currently considered; hence,
the algorithm executes the call BackwardRepair(N ′, t2, C). The procedure takes t2 guard’s opposite constraint
in the set, namely x− Z < 10, and sets the new guard as Z− x ≤ −10. In the resulting DPN’s constraint graph,
CGN ′′ in Figure 5.4f, the previous dead node is no longer present, as t2’s new guard made the set of constraints
inconsistent. It is crucial to note that the transition being modified is still t2, so the cost of the partial solution is
only 1. Finally, the algorithm identifies the last dead node. It removes it by calling ForwardRepair(N ′′, t5, C),
obtaining a data-aware sound DPNN ′′′ with a cost of 2 (Figure 5.4g).

46

(a) Unsound DPNN withm0 = {p1},MF = {p4},
αI(x) = 0, and αI(y) = 10,

(b) Constraint graph CGN showing the unsoundness of DPN
N . There are two dead nodes, identified by the X symbol

(c) ForwardRepair generates a new DPNN ′ fromN
with the guard of transition t4 modified as yr < xr+ 5

(d) Constraint graph CGN ′ of DPNN ′. The rightmost dead
node is repaired, allowing the final marking p4 to be reached.
The DPNN ′ is still unsound due to the presence of another
dead node

(e) ForwardRepair generates a new DPNN ′′ fromN ′

with the guard of transition t3 modified as xr ≤ 10

(f) Constraint graph CGN ′′ of DPNN ′′. All dead nodes are
repaired, obtaining a sound DPN with two modifications

Figure 5.3: Example of ForwardRepair procedure application to an unsound DPN. A sound DPN is obtained by modifying
two guards, thus with a cost of 2.

47

(a) Unsound DPNN withm0 = {p1},MF = {p5},
and αI(x) = 0

(b) Constraint graph CGN showing the unsoundness of DPN
N . There is a dead node, identified by the X symbol

(c) ForwardRepair generates a new DPNN ′ from
N with the guard of transition t2 modified as xr ≥ 5

(d) Constraint graph CGN ′ of DPNN ′. The DPN is still
unsound due to the presence of another dead node

(e) BackwardRepair generates a new DPNN ′′ by
working again on transition t2

(f) Constraint graph CGN ′′ of DPNN ′′. The DPN is still
unsound due to the presence of another dead node

(g) ForwardRepair generates the last DPNN ′′′

fromN ′′ with the guard of transition t5 modified as
xr < 10 (h) Constraint graph CGN ′′ of DPNN ′′. All dead nodes are

repaired, obtaining a sound DPN with three modifications
but a cost of 2

Figure 5.4: Example showing how the joint application of ForwardRepair and BackwardRepair can find a solution with a
smaller cost than applying only ForwardRepair. If ForwardRepair is the only one applied, transitions t3 and t4 would be
modified, obtaining a solution with cost 3. The joint application, instead, gives a solution by changing only two guards.

48

(a) Unsound DPNN withm0 = {p1},MF = {p4},
and αI(x) = 0

(b) Constraint graph CGN showing the unsoundness of DPN
N . Transitions t2 and t3 are missing

(c) BackForwardRepair generates a new, sound
DPNN ′ with transition t1 modified

(d) Constraint graph CGN ′ showing previously missing
transitions t2 and t3.

Figure 5.5: Example showing the repair process using the BackForwardRepair procedure

5.2.2 Missing transitions
The missing transition of a DPN from the corresponding constraint graph violates condition P3 of data-aware
soundness definition. The repair utilizes the FixMissing procedure, described in the Algorithm 5.2. It first de-
tects all the transitions that do not appear in the constraint graph and then, for each one, considers all the nodes
from which the transition may fire in the underlying Petri Net (the net without data). The first repair approach
is to enable transitions by ForwardRepair application. The second approach, instead, mixes the ones imple-
mented by ForwardRepair and BackwardRepair in a new procedure named BackForwardRepair, which
sets the guards as y− x ≤ ∞. With this operation, the guards always evaluate to true, enabling the transitions.

Figure 5.5 illustrates an example where the repair of an unsound DPN returns a solution with a single change
by applying BackForwardRepair procedure. The constraint graph of the net in Figure 5.5bmisses transition t2,
and consequently, t3. Thenode distinguishedbyplace p2 is one fromwhich transition t2mayfire in the underlying
PetriNet. With the same fashion of BackwardRepair, all non-silent transitions reaching the node are considered,
with t1 being one of them. The replacement of the guard with xW ≥ −∞ enables transition t2 and t3, as a
consequence. The repair process terminates with a data-aware sound DPN N ′ with a cost of 1, as shown in
Figures 5.5c and 5.5d.

In the above example, BackForwardRepair repairs the net bymaking the guard constantly evaluate to true. It
is fundamental to keep in mind, though, that even if BackForwardRepair implements a naive solution, further
applications of ForwardRepair and BackwardRepair on the resulting DPN may still process the guard of the
transitions, thus possibly tighten the constraints in subsequent operations.

Theorem 3. LetN be an acyclic DPNwhere the underlying dataless Petri Net is sound. Algorithm 5.1 terminates
onN by returning a data-aware sound DPN.

Proof. LetN be an acyclic DPN with the underlying Petri Net sound. Without self-loop silent transitions, the
constraint graph of a DPN is a Directed Acyclic Graph. Since the set of transitions T is finite, and the underlying

49

Petri Net is bounded, the branching factor of each node in the constraint graph is bounded by 2 · |T|, composed
of all the transitions plus the corresponding silent ones. Moreover, the length of a path starting from the initial
node and terminating in a final one cannot exceed |T|. Consequently, the number of nodes in a constraint graph
is at most (2 · |T|)|T|. Among the possible sequences of modifications executed by Algorithm 5.1, there is always
one that uses ForwardRepair only. Such sequences can always be explored because all the constraint graphs built
are finite, the possible modifications applied to a constraint graph are limited, and a breadth-first search strategy
explores such changes. Consider a sequence that calls only ForwardRepair. Every time a newDPN is generated,
the guard of a transition t is replaced with some constraint in the system of difference constraints of some node.
Such a node can be either a dead node if the procedure is called inside FixDead or a node fromwhich is missing a
transition if the function is called inside FixMissing. In the first case, some paths starting from the initial node
and ending with the silent transition τt are removed. Moreover, such paths are not introduced again by successive
modifications because if t is processed again, the current guard y−x ▷◁ k is replacedwith aweaker one y−x ▷◁′ k′.
In the second case, some paths are extended with transition t instead. By the same monotonicity argument on
subsequent modifications of t, such extended paths are not removed by later applications of ForwardRepair.
Since the number of paths in a constraint graph is finite, a sequence of ForwardRepair reaches a soundDPN in
a finite number of steps.

5.3 Cyclic DPNs
As already stated in Section 5.1, the constraint graph of a cyclic DPN may be infinite; thus, the repair process
requires that the guards are either in the form y− x ▷◁ 0 or at least one variable beingZ (for example,Z− x ≤ 7).
The repair process seen previously is modified to consider this last condition. Algorithms 5.3 and 5.4 expose only
the procedures modified for handling cyclic cases. The introduction of the CoReach verification and repair is
particularly relevant. Due to cases like the one explained in Section 4.5.1, for cyclic DPNs, it is not enough to
check only the conditions of Definition 4.3.2.

As seen from line 8 in Algorithm 5.3, VerifyCoReach procedure checks the additional property, as defined
by Algorithm 4.4, after verifying the absence of dead nodes and missing transitions. ForwarwdRepair and
BackwardRepair extend the previous approaches and consider the guards based on the form required for cyclic
DPNs. For example, the if condition at line 18 of Algorithm 5.3 checks the form of the constraint. If the guard
does not respect the form, for example, y − x < 6, the procedure does not consider it. Instead, it pushes
in the priority queue two separate DPNs, using the corresponding unary constraints in the set (lines 22-28).
BackwardRepair implements the same technique.

When VerifyCoReach fails, it means that some nodes have values for which the net cannot reach the final
nodes. The repair process uses an additional procedure namedFixNotCoReach (Algorithm5.4) to fix suchnodes.
FixNotCoReach works by using an approach similar to FixDead, but with some adaptations. Instead of dead
nodes, it considers all the nodes for which VerifyCoReach fails, that is, the nodes that have the difference con-
straints sets computed via co-reachability analysis not equivalent to the original one (line 48). Then, for each
node, the procedure computes the transitions necessary for ForwardRepair and BackwardRepair executions
(lines 51-52). The peculiarity relies on the constraints used for computing the repair operations. Instead of the set
of constraints of the node, the procedure computes the subtraction between the original one and the ones calcu-

50

lated via co-reachability analysis (lines 54-55), using the operation described in Section 4.1. The reason to apply
the subtraction is to try to tighten the original constraints using the ones allowing the reaching of the final nodes.
Then, for each resulting constraints set, it executes ForwardRepair and BackwardRepair on the corresponding
transitions FW and BW (lines 56-60). The process continues until it finds a sound solution.

Algorithm 5.3 Algorithm for the repair of a cyclic DPN (part 1)
Input: ADPNN = (P,T, I,O,m0,V, αI, guard)
Output: A sound DPNN ′ = (P,T, I,O,m0,V, αI, guard′) according to Definition 5.1.1
1: procedureDPNRepair(N)
2: LetQ be a priority queue
3: Enqueue(Q,N , 0) ▷AddN with priority 0
4: LetN ′ be an empty DPN
5: while true do
6: N ′ := Dequeue(Q) ▷Remove DPNwith minimum priority
7: Let CGN ′ be the constraint graph ofN ′

8: if CGN ′ is data-aware soundAND VerifyCoReach(N ′, CGN ′)= true then
9: break
10: FixDead(N ′, CGN ′)
11: FixMissing(N ′, CGN ′)
12: FixNotCoReach(N ′, CGN ′)
13: returnN ′ ▷ Sound DPN
14: procedure ForwardRepair(N ′, t, C) ▷ “Replace with the same constraint in C”
15: LetN ′′ := (P,T, I,O,m0,V, αI, guard′′) be a copy ofN ′

16: Let y− x ▷◁ k be the guard of t
17: if y− x ≤ k′ ∈ C s.t k′ = 0 or y is Z or x is Z then
18: guard′′(t) = y− x ≤ k′
19: UpdateQ(N ′′)
20: else ▷ k′ ̸= 0 and y is not Z and x is not Z
21: Let y− Z ▷◁′ k′ be the constraint in C
22: guard′′(t) = y− Z ▷◁′ k′
23: UpdateQ(N ′′)
24: LetN ′′ be a new copy ofN ′

25: Let Z− x ▷◁′ k′ be the constraint in C
26: guard′′(t) = Z− x ▷◁′ k′
27: UpdateQ(N ′′)

The algorithm proposed repairs the unsound example described in Figure 4.7, finding a sound DPN with a
cost of 1. The solution has the guard of transition t2 changed to xr ≤ ∞. By avoiding the writing of variable y,
the DPN reaches correctly the final node p3. It is interesting to notice how the solutions may change depending
on the variables’ initial values. Take the same example, but with αI(x) = 0 and αI(y) = 10, as shown in Figure

51

Algorithm 5.4 Algorithm for the repair of a cyclic DPN (part 2)
28: procedure BackwardRepair(N ′, t, C) ▷ “Replace with the opposite constraint in C”
29: LetN ′′ := (P,T, I,O,m0,V, αI, guard′′) be a copy ofN ′

30: Let y− x ▷◁ k be the guard of t
31: if x− y ▷◁′ k′ ∈ C s.t k′ = 0 or y is Z or x is Z then
32: if ▷◁′ is ≤ then guard′′(t) = y− x < 0
33: else guard′′(t) = y− x ≤ 0
34: UpdateQ(N ′′)
35: else ▷ k′ ̸= 0 and y is not Z and x is not Z
36: if x− Z ▷◁′ k′ ∈ C s.t k′ ̸= ∞ then
37: if ▷◁′ is ≤ then guard′′(t) = Z− x < k′
38: else guard′′(t) = Z− x ≤ k′
39: UpdateQ(N ′′)
40: LetN ′′ be a new copy ofN ′

41: if Z− y ▷◁′ k′ ∈ C s.t k′ ̸= ∞ then
42: if ▷◁′ is ≤ then guard′′(t) = y− Z < k′
43: else guard′′(t) = y− Z ≤ k′
44: UpdateQ(N ′′)
45: procedure FixNotCoReach(N ′, CGN ′)
46: Let (m0,C0) be the initial node of CGN ′

47: LetNodes be the set of nodes failing the co-reachability analysis
48: for n := (M,C) ∈ Nodes do
49: Let Sn be the the set of systems of difference constraints of n computed via co-

reachability analysis
50: Let FW be the set of all non-silent transitions that can fire fromM in the PetriNet
51: Let BW be the set of non-silent transitions in all paths (m0,C0)

∗−→ (M,C)
52: Let Diff be an empty set
53: for C′ ∈ Sn do ▷Difference BoundedMatrix Subtraction
54: Let SubC′ be the set of consistent systems resulting from C− C′

55: Diff :=Diff∪ SubC′

56: for C′ ∈Diff do
57: for t ∈ FW do
58: ForwardRepair(N ′, t, C′)
59: for t ∈ BW do
60: BackwardRepair(N ′, t, C′)
61:

52

5.6. In this case, the previous solution is still unsound, due to the initial value of y not enabling transition t3. The
repair process detects the unsoundness of the last DPN and proceeds with other modifications. The algorithm
terminates with a solution consisting of the guard of transition t2 updated as yw ≥ 0.

Theorem 4. LetN be a DPNwith the underlying dataless Petri Net sound. Algorithm 5.1 with the modifications
of Algorithm 5.3 terminates onN by returning a data-aware sound DPN.

Proof. The proof follows the style of Theorem 3. Consider the path that applies ForwardRepair calls only. At
every step of the path, the guard of a transition is replaced with some constraint in the difference constraints set of
some node, either a dead node if the procedure is called inside FixDead, a node fromwhich is missing a transition
if it is called from FixMissing, or a node whose constraints systems computed via co-reachability analysis are
different from the original one if it is called inside FixNotCoReach. Since every node in the constraint graph
is the canonical representation of a set of constraints taken from a finite universe, it implies that the number of
possiblemodifications is finite, too. Moreover, if a transition is processed again, the guard is replacedwith aweaker
one. In the worst case, all the guards are made true (for example, y− x ≤ ∞) and soundness of the DPN follows
from the assumption that the underlying dataless Petri Net is sound. In every case, the algorithm terminates in a
finite number of steps.

5.4 Tests and evaluation
This work comprise a concrete implementation of the algorithms proposed previously to verify their behavior
from a practical point of view. The following section covers the details of such implementation, followed by the
tests on some selected case studies taken from the literature. All the material is publicly accessible on Github at
[43].

The implementation is written in Java. The choice of this language is to make the code available as a potential
plug-in for “ProM”, an extensible framework that supports a wide variety of process mining techniques[44]. It
is divided mainly into two parts, the parsing part and the repair part. The parsing part covers all the classes and
structures utilized for correctly representing a Data Petri Net. A Data Petri Net is modeled using the Petri Net
Markup Language (PNML), an XML-based format thanks to which it is possible to define the different elements
forming a Petri Net with Data (places, transitions, guards, arcs, etc...). The repair part, instead, covers the struc-
tures andmethods utilized for the implementation of the algorithms seen through this work, that is, the difference
constraints set, the constraint graph, the acyclic and cyclic repair, and so on. All the code is written from scratch,
except for the SMT solver, for which an external package was used [45].

The tests consist of taking in input a Data Petri Net, verifying its unsoundness, and repairing it if unsound.
The tests’ goal is to show the correct repair of an unsound DPN, plus some statistical information about the
repair process. Table 5.1 shows a summary of the execution details for each test case. For each DPN, besides the
number of places, transitions, and nodes of the constraint graph, there is the amount of time required for the
repair, the distance from the original DPN, that is, the number of guards changed, and finally, the number of
DPNs analyzed through the process. The lettering A/C indicates whether the DPN is acyclic (A) or cyclic (C)

53

(a) Unsound DPNN withm0 = {p1},MF = {p3},
αI(x) = 0, and αI(y) = 10

(b) Constraint graph CGN . It is data‐aware sound but
VerifyCoReach returns false

(c) DPNN ′ generated fromN , with transition t2
updated

(d) Constraint graph CGN ′ . Now the net is data‐aware sound
and VerifyCoReach returns true

Figure 5.6: Example showing the repair of the DPN of Figure 4.7, but with different initial values

54

DPN (A/C) # Places # Trans. # CGNodes Exec.Time (s) Distance Iterations
1-Figure 5.3 (A) 4 4 16 0.07s 2 21
2-Figure 5.4 (A) 7 7 18 0.07s 2 24
3-Figure 5.5 (A) 4 4 3 0.04s 1 3
4-Figure 4.7 (C) 4 4 3 0.35s 1 3
5-Exp. Growth 2 (A) 9 11 16 0.11s 4 42
6-Exp. Growth 3 (A) 17 23 32 35s 8 69282
7-Exp. Growth 4 (A)* 33 47 64 28s 16 13258
8-Credit Loan (C)* 12 12 62 8s 4 2180
9-Package Handling-Half (A)* 25 32 295 - - -
10-Package Handling (A)* 25 38 11229 - - -

Table 5.1: Evaluation summary of the repair process on DPNs of different sizes

since the repair process slightly changes between the two cases. Finally, the asterisk symbol (*) near the DPN’s
name specifies an additional constraint on the size of the priority queue.

DPNs from 1 to 3 are taken from [25], the ones from 5 to 7 and 9-10 are taken from [46], a list of Data Petri
Nets used as a supporting material in [47] for a similar goal of this work, while the number 8 is taken from [30].
Beside the first four examples, the other ones were not directly usable from the code, mainly because the current
implementation does not support guards composed of conjunction or disjunction of multiple conditions. Thus,
there were applied some changes on the guards. The tests are executed on a PC with Intel(R) Core(TM) i7, 6
cores at 2.60GHz and 16 GB of RAM.

The results show that the first five examples, characterized by fewer places and transitions, are solved almost
immediately with a few changes. Starting from the number 6 and above, the repair process requires much more
time, and the number of iterations increases drastically. The cases marked with the asterisk have a limitation on
the priority queue, that is, after reaching a fixed limit (1000, for these experiments) no more DPNs were added,
thus forcing the process to consume a DPN before exploring further ones. In fact, without this limit, the repair
ofDPNs fromnumber 7 to 10was not able to finish within 5minutes, due to unsoundDPNs being explored and
filling the queue. On the other side, preventing the priority queue from indefinitely growing allowed repairing
DPNs 7 and 8 within 30 seconds. Nevertheless, the repair of the last two DPNs did not terminate within the
time interval. The two refer to the same DPN, but the ”half” one is modified to reduce the number of constraint
graph nodes (295 compared to the 11229). It is important to highlight that, for the last case, the construction of
the constraint graph requires much time (> 20 seconds), which consequently affects the overall repair process.

The results show that the proposed solutions work correctly in repairing unsoundDPNs, but the exponential
complexity heavily affects the performancewhen theDPN’s size increases. Moreover, as previously stated through-
out this work, some algorithms are implemented using a naive approach, since this work goal was focusedmore on
the correctness of the repair process rather than the performance, consequently leaving room for improvements.

55

56

6
Concluding Remarks

In the first part, this work provided an overview of existing solutions in the literature concerning Data-aware
soundness verification of Data Petri Nets, for which false-positive cases exist. Thanks to a detailed investigation
of the causes, it was possible to elaborate a patch of the previous approaches to identify these unsoundData Petri
Nets correctly. Applying a co-reachability analysis allowed the detection of the nodes of the constraint graph
for which the constraint set was consistent but it was impossible to reach the final nodes for some assignment of
values. In the secondpart, thework focused on repairing unsoundDPNs, where a sound solutionwas obtained by
keeping the states and the transitions of the underlying Petri Net intact andmodifying only the constraints of the
guards. Two different algorithms were shown to handle acyclic and cyclic DPNs. For both algorithms, though,
the basic assumption is that the underlying data-less Petri Netmust be sound (that is, on the workflow level). Due
to the presence of cycles and possibly an infinite constraint graph, special conditions were imposed on the guards
of cyclic DPNs to restrict them only to variable-to-constant and variable-to-variable constraints. In this way, the
resulting constraint graph is finite. Multiple examples were described to show how the combination of a forward
and backward analysis could optimize the repair process and provide a solution with fewer changes.

The followingwork providesmultiple points for future developments. On the soundness verification part, the
procedure responsible for the co-reachability computation can be optimized by computing at each step a single
systemofdifference constraints insteadof a set of them, thus reducing thepool of sets usedby the repair algorithms.
On the repair process part, instead, there are currently two separate algorithms to handle cyclic and acyclic DPNs.
An improvement is developing a generalized version of the algorithms to tackle both cases so that the restrictions
on cyclic DPN constraints are applied only to the guards involved in cycles. The subtraction between sets of
difference constraints in this work follows a naive implementation, where different sets may overlap each other;
thus, it can be optimized by introducing a disjoint subtraction algorithm, aiming to obtain a union of disjoint sets,
without redundant points between them. Furthermore, since the algorithms assume that the underlying Petri
Net is sound, the repair process can also be extended to cover those DPNs with the unsoundness present at the
workflow level. Finally, the repair algorithms can be tested on more complex cases involving a higher number of

57

nodes in the constraint graph to verify how the execution time and performance behave.

58

References

[1] J. Clempner, “Verifying soundness of business processes: A decision process petri nets approach,” Expert
Systems with Applications, vol. 41, no. 11, pp. 5030–5040, 2014.

[2] Merriam-Webster, “Process,” 10 2023. [Online]. Available: https://www.merriam-webster.com/

[3] A. Abijith, S. FossoWamba, and D. Gnanzou, “A literature review on business process management, busi-
ness process reengineering, and business process innovation,” vol. 153, 06 2013.

[4] M. Dumas, M. La Rosa, J. Mendling, H. A. Reijers et al., Fundamentals of business process management.
Springer, 2018, vol. 2.

[5] A. ter Hofstede, W. M. van der Aalst, A. H. ter Hofstede, and M. Weske, “Business process management:
A survey,” in Business ProcessManagement: International Conference, BPM 2003 Eindhoven, The Nether-
lands, June 26–27, 2003 Proceedings 1. Springer, 2003, pp. 1–12.

[6] B. Curtis, M. I. Kellner, and J. Over, “Process modeling,” Commun. ACM, vol. 35, no. 9, p. 75–90, sep
1992. [Online]. Available: https://doi.org/10.1145/130994.130998

[7] J. Recker, M. Rosemann, M. Indulska, and P. Green, “Business process modeling-a comparative analysis,”
Journal of the association for information systems, vol. 10, no. 4, p. 1, 2009.

[8] M.Mohammadi, “Combination of modeling techniques for supporting business process architecture lay-
ers,” International Journal on Advanced Science, Engineering and Information Technology, vol. 7, p. 1038,
06 2017.

[9] K. T. Phalp, “The cap framework for business process modelling,” Information and Software Technology,
vol. 40, no. 13, pp. 731–744, 1998.

[10] W. M. Van der Aalst, “Formalization and verification of event-driven process chains,” Information and
Software technology, vol. 41, no. 10, pp. 639–650, 1999.

[11] G. Engels, A. Förster, R. Heckel, and S. Thöne, “Process modeling using uml,” in Process-Aware
Information Systems, 2005. [Online]. Available: https://api.semanticscholar.org/CorpusID:5465981

[12] G. Booch, I. Jacobson, J. Rumbaugh et al., “The unifiedmodeling language,”UnixReview, vol. 14, no. 13,
p. 5, 1996.

[13] G. Decker, R. Dijkman, M. Dumas, and L. García-Bañuelos, “The business process modeling notation,”
inModern Business Process Automation: YAWL and its Support Environment. Springer, 2009, pp. 347–
368.

[14] “Business process model and notation,” https://www.omg.org/spec/BPMN/2.0/, publication date: De-
cember 2010.

59

https://www.merriam-webster.com/
https://doi.org/10.1145/130994.130998
https://api.semanticscholar.org/CorpusID:5465981
https://www.omg.org/spec/BPMN/2.0/

[15] M. Chinosi and A. Trombetta, “Bpmn: An introduction to the standard,” Computer Standards and
Interfaces, vol. 34, no. 1, pp. 124–134, 2012. [Online]. Available: https://www.sciencedirect.com/
science/article/pii/S0920548911000766

[16] R.M.Dijkman,M.Dumas, andC.Ouyang, “Semantics and analysis of business processmodels in bpmn,”
Information and Software technology, vol. 50, no. 12, pp. 1281–1294, 2008.

[17] J. Wang, “Petri nets for dynamic event-driven systemmodeling,”Handbook of Dynamic SystemModeling,
01 2007.

[18] C. A. Petri, “Kommunikation mit automaten,” 1962.

[19] E. Best and J. Desel, “Partial order behaviour and structure of petri nets,” Form. Asp. Comput., vol. 2,
no. 1, p. 123–138, mar 1990. [Online]. Available: https://doi.org/10.1007/BF01888220

[20] J. L. Peterson, Petri Net Theory And TheModeling Of Systems. Prentice-Hall, 1981.

[21] T. Murata, “Petri nets: Properties, analysis and applications,” Proceedings of the IEEE, vol. 77, no. 4, pp.
541–580, 1989.

[22] C. Zhong, W. He, Z. Li, N. Wu, and T. Qu, “Deadlock analysis and control using petri net
decomposition techniques,” Information Sciences, vol. 482, pp. 440–456, 2019. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0020025519300416

[23] C. G. Cassandras and S. Lafortune, Introduction to discrete event systems. Springer, 2008.

[24] B. Choi, “Petri net approaches for modeling, controlling, and validating flexible manufacturing systems,”
1994.

[25] M. Zavatteri, D. Bresolin, and M. de Leoni, “Repair of unsound data-aware process models,” Proceedings
of First International Workshop on Formal Methods for Business Process Management (FM-BPM 2023),
2023.

[26] J. P. Fishburn, “Solving a system of difference constraints with variables restricted to a finite
set,” Information Processing Letters, vol. 82, no. 3, pp. 143–144, 2002. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S0020019001002678

[27] K. Quaas, M. Shirmohammadi, and J.Worrell, “Revisiting reachability in timed automata,” in 2017 32nd
Annual ACM/IEEE Symposium on Logic in Computer Science (LICS). IEEE, 2017, pp. 1–12.

[28] E. M. Clarke Jr, O. Grumberg, D. Kroening, D. Peled, and H. Veith, “Model checking. cyber physical
systems series,” 2018.

[29] A. David, J. Håkansson, K. G. Larsen, and P. Pettersson, “Model checking timed automata with priorities
usingdbmsubtraction,” inFormalModeling andAnalysis ofTimedSystems: 4th InternationalConference,
FORMATS 2006, Paris, France, September 25-27, 2006. Proceedings 4. Springer, 2006, pp. 128–142.

[30] P. Felli, M. de Leoni, and M. Montali, “Soundness verification of decision-aware process models with
variable-to-variable conditions,” in 2019 19th International Conference on Application of Concurrency to
System Design (ACSD). IEEE, 2019, pp. 82–91.

60

https://www.sciencedirect.com/science/article/pii/S0920548911000766
https://www.sciencedirect.com/science/article/pii/S0920548911000766
https://doi.org/10.1007/BF01888220
https://www.sciencedirect.com/science/article/pii/S0020025519300416
https://www.sciencedirect.com/science/article/pii/S0020019001002678
https://www.sciencedirect.com/science/article/pii/S0020019001002678

[31] W.M. Van der Aalst, “The application of petri nets to workflowmanagement,” Journal of circuits, systems,
and computers, vol. 8, no. 01, pp. 21–66, 1998.

[32] M. De Leoni, P. Felli, and M. Montali, “A holistic approach for soundness verification of decision-aware
process models,” in ConceptualModeling: 37th International Conference, ER 2018, Xi’an, China, October
22–25, 2018, Proceedings 37. Springer, 2018, pp. 219–235.

[33] J. Marques-Silva, “Practical applications of boolean satisfiability,” in 2008 9th InternationalWorkshop on
Discrete Event Systems, 2008, pp. 74–80.

[34] L. De Moura and N. Bjørner, “Satisfiability modulo theories: Introduction and applications,” Commun.
ACM, vol. 54, no. 9, p. 69–77, sep 2011. [Online]. Available: https://doi.org/10.1145/1995376.1995394

[35] C. Barrett, R. Sebastiani, S. Seshia, and C. Tinelli, “Satisfiability modulo theories,” in Handbook of
Satisfiability: Second Edition, 2021. [Online]. Available: https://escholarship.org/uc/item/11n7z852

[36] L. De Moura and N. Bjørner, “Satisfiability modulo theories: An appetizer,” in Brazilian Symposium on
FormalMethods. Springer, 2009, pp. 23–36.

[37] ——, “Z3: Anefficient smt solver,” in International conference onTools andAlgorithms for theConstruction
and Analysis of Systems. Springer, 2008, pp. 337–340.

[38] B. Dutertre and L. DeMoura, “The yices smt solver,” Tool paper at http://yices. csl. sri. com/tool-paper. pdf,
vol. 2, no. 2, pp. 1–2, 2006.

[39] A. Cimatti, A. Griggio, B. J. Schaafsma, and R. Sebastiani, “The mathsat5 smt solver,” in International
Conference on Tools and Algorithms for the Construction and Analysis of Systems. Springer, 2013, pp.
93–107.

[40] J. Christ, J. Hoenicke, and A. Nutz, “Smtinterpol: An interpolating smt solver,” in International SPIN
Workshop onModel Checking of Software. Springer, 2012, pp. 248–254.

[41] C. Barrett, P. Fontaine, and C. Tinelli, “The Satisfiability Modulo Theories Library (SMT-LIB),”
www.SMT-LIB.org, 2016.

[42] M. Goorden, J. van deMortel-Fronczak, M. Reniers, M. Fabian,W. Fokkink, and J. Rooda, “Model prop-
erties for efficient synthesis of nonblocking modular supervisors,” Control Engineering Practice, vol. 112,
p. 104830, 2021.

[43] “dpn-repair,” https://github.com/aureliomakaj/dpn-repair.

[44] “Prom,” https://promtools.org/.

[45] “java-smt,” https://github.com/sosy-lab/java-smt.

[46] “Data petri nets,” https://soundness.adatool.dev/repair.html.

[47] P. Felli, M. Montali, and S. Winkler, “Repairing soundness properties in data-aware processes,” in 2023
5th International Conference on Process Mining (ICPM). IEEE, 2023, pp. 41–48.

61

https://doi.org/10.1145/1995376.1995394
https://escholarship.org/uc/item/11n7z852
https://github.com/aureliomakaj/dpn-repair
https://promtools.org/
https://github.com/sosy-lab/java-smt
https://soundness.adatool.dev/repair.html

62

Acknowledgments

I would like to say thank you firstly to my supervisor Prof. Davide Bresolin and co-supervisor Dr. Matteo
Zavatteri for guiding and supportingme in thewriting of this thesis. Iwant to thank them for all the time they have
dedicated to revising the work, the suggestions, and the improvements both on the technical and non-technical
side. Special and heartfelt thanks are dedicated to my girlfriend Arianna for always believing in my capacities and
for staying by my side during all the weekends dedicated to studying in the last two years. Without her support, I
do not think I would have been able to conclude this path in a reasonable time. Finally, I would like to also thank
my family, friends, co-workers, and every person who helped me reach this important goal, marking the end of a
journey and the beginning of an adventure.

63

	Abstract
	List of figures
	List of tables
	Introduction
	Business Process Management
	Business Processes
	History of BPM
	Business Process Modeling
	Event-driven Process Chain (EPC)
	Unified Modeling Language (UML)
	Business Process Model and Notation (BPMN)

	Petri Nets
	Petri Net Definition
	Mathematical formalism
	Graphical representation
	Transition firing

	Expressive power and properties
	Modeling primitives
	Properties

	Data Petri Nets
	Definition
	Execution Semantics

	Soundness Verification
	System of Difference Constraints
	Constraint Graph
	Data-aware Soundness Verification
	Soundness Definition
	Verification Procedure

	Satisfiability Modulo Theories (SMT)
	Co-reachability Analysis
	False-positive Sound DPN
	Co-reachability
	Co-reachability procedure

	Data-aware Process Repair
	Repair definition and prerequisites
	Acyclic DPNs
	Dead nodes
	Missing transitions

	Cyclic DPNs
	Tests and evaluation

	Concluding Remarks
	References
	Acknowledgments

