
University of Padova

Department of Information Engineering

Master Thesis in ICT For Internet andMultimedia

Integration of Flutter Framework in

Real-Life Applications: Technical and

Development Practices

Supervisor Master Candidate
Prof. Leonardo Badia YEŞİMUZUN
University of Padova

Academic Year
2023-2024

Graduation Date
03/07/2024

ii

Abstract

The Flutter framework has become very popular in recent years due to its cross-platform ca-
pabilities and fast development processes. Flutter, an open-source SDK allows developers to
create reliable applications, for platforms like mobile, web, and desktop using a unified code-
base. This study looks into the aspects and procedures involved in incorporating Flutter into
real-world applications. The analysis discusses the advantages and obstacles of utilizing Flut-
ter compared to development approaches. It also investigates elements like enhancing perfor-
mance reusing code and integrating with specific platforms. Additionally, it provides sugges-
tions, on how to create, build and maintain applications using Flutter, in environments. The
thesis highlights the hot reload, a unique feature of Flutter, that allows developers to build and
iterate quickly. Also, it allows to update code and see changes almost instantly, without losing
state. The findings of this study contribute to our understanding of integrating the Flutter
framework into software development practices.

iii

iv

Acknowledgments

First of all, I would like to dedicate this thesis to my beloved parents. To my father, who I lost
three weeks ago, and to my mother, who I lost eight years ago. Their love, efforts, and teach-
ings shaped the person I am today. Their memories and the values they taught me will always
inspire and guide me. Even though they are no longer with me, their love and support have
been a source of strength and motivation throughout my journey.

I also express my sincere thanks to my supervisor, Leonardo Badia. During these hard times,
your advice, kindness, and help were very helpful. Your encouragement helped me focus and
complete this dissertation. I could not have imagined having a better advisor for my master’s
study.

To my brother Ozcan Uzun, whose unwavering support and guidance mean a lot to me. Your
confidence in my skills and constant encouragement have been crucial to my success. You have
been my rock of strength, and I appreciate everything you do.

I would also like to express my deepest gratitude to my fiancee, Deniz Balsever. A lot of hard
times have been easier for me because you always believed in me and were there for me. Your
assistance has been a huge source of strength for me, and I am deeply grateful for your support
and affection.

Finally, I want to thank everyone who supported me in this way, especially my friends and
coworkers. Thank you to everyone who has supported and helped me get to this stage in my
life.

v

vi

Contents

Abstract iii

Acknowledgments v

List of figures ix

Listing of acronyms xi

1 Introduction 1

2 Literature Review 5
2.1 Overview of Flutter Framework . 5

2.1.1 History and Evolution . 7
2.1.2 Core Principles . 8
2.1.3 Architecture . 9
2.1.4 Key Features . 9
2.1.5 Adoption and Community . 10

2.2 Technical Aspects of Flutter . 11
2.2.1 Framework andWidgets . 11
2.2.2 Flutter’s Popularity and Advantages 12

2.3 Development Practices with Flutter . 14
2.3.1 Learning and Development with Flutter 15
2.3.2 Coding Conventions and Best Practices 16
2.3.3 State Management . 17
2.3.4 Testing and Debugging . 25
2.3.5 Kinds of Testing . 25
2.3.6 Continuous Integration and Continuous Deployment (CI/CD) . . 30
2.3.7 Performance Optimization . 32
2.3.8 Code Reusability andModularization 33
2.3.9 Version Control Systems . 36
2.3.10 Performance Metrics Comparison: Flutter vs. React Native 39

2.4 Case Studies on Flutter Integration . 41
2.4.1 Case Study 1: Alibaba’s Xianyu App 42
2.4.2 Case Study 2: Google Pay . 43

vii

3 Methodology 45
3.1 Performance and Speed . 45
3.2 Performance Optimization withMethod Channels 46
3.3 Chat Screen Performance Metrics . 49
3.4 Integrating Flutter Projects as a Package In iOS Native Applications 50

3.4.1 Modularization and Integration Ease 50
3.4.2 React Native or Flutter . 52

3.5 Overview of Results . 53
3.5.1 Performance Metrics . 53
3.5.2 Resource Efficiency . 53
3.5.3 Discussion on Implications . 53

4 Conclusion 55

References 57

viii

Listing of figures

2.1 Execution time, energy and memory data running the benchmarks [1]. 6
2.2 List of technologies [2] . 7
2.3 Architecture of the Flutter Framework [3]. 10
2.4 Example of Stateless Widget . 12
2.5 Example of Stateful Widget . 13
2.6 Interest Over Time [4] . 14
2.7 Technologies have trended over time [5] 15
2.8 Example of setState [6] . 18
2.9 BloC State Management [7] . 20
2.10 The Redux components [8] . 22
2.11 The final comparison table of approaches [9] 24
2.12 Unit Test Example . 26
2.13 Widget Testing [10] . 26
2.14 Counter app - Part 1 . 27
2.15 Counter app - Part 2 . 28
2.16 Widget Test Example . 29
2.17 CI/CD Pipeline [11] . 30
2.18 Example of Modularization . 33
2.19 Example of Reusability . 35
2.20 Comparison between CVCS and DVCS [12] 36
2.21 Benefits of Version Control [13] . 38
2.22 Performance Metrics [14] . 39
2.23 Performance comparison Between Flutter and React Native [15] 40
2.24 [16] . 40
2.25 Companies That Use Flutter [17] . 42
2.26 Flutter’s benefit of Alibaba [18] . 43
2.27 Google Pay [18] . 44

3.1 Architectural overview: platform channels [19]. 46
3.2 notificationActionService.swift . 47
3.3 notificationActionService.kt . 48
3.4 Chat Screen Performance Metrics . 49
3.5 Dependencies of the Flutter Project . 51
3.6 package.swift . 52
3.7 Swot Analysis . 54

ix

x

Listing of acronyms

SPM Swift Package Manager

CI/CD Continuous Integration and Continuous Deployment

UI User Interface

CPU Central Processing Unit

CLBG Computer Language Benchmark Game

SDK Software Development Kit

API Application Programming Interface

AOT Ahead of Time

OOP Object Oriented Programming

MAUI Multi-platform APP UI

CVCS Centralized Version Control Systems

DVCS Distributed Version Control Systems

CVS Concurrent Versions System

SVN Subversion

GPU Graphics processing unit |item[IoT] Internet of Things

xi

xii

1
Introduction

”Mobile app development frameworks lower the effort to write and deploy apps across differ-
ent execution platforms. At the same time, their usemay limit native optimizations and impose
overhead, increasing resource usage.” [1] As technology changes quickly these days, there is a
huge need for efficient, cross-platformmobile app creation. Developers and companies search
for strategies to reduce development time and expenses, they also want to create apps that fit
various platforms and are simple and effective. This has resulted in the development of several
cross-platform frameworks; Flutter is one of the most prominent contenders.

Flutter enables developers to create natively compiled applications for mobile, web, and desk-
top from a single codebase. It is particularly useful in developing modern mobile systems with
real-time applications due to its fast performance and expressive UI capabilities. One main
application of Flutter is to build robust real-time messaging apps, leveraging WebSockets for
instant message delivery [20]. In the same line, Flutter can be used to integrate live streaming
and video conferencing applications [21], as standalone elements or as parts of Web-based In-
teractive Collaborative Environments, [22], i.e., online platforms that enable multiple users to
work together in real-time, regardless of their physical locations. These environments facilitate
seamless collaboration through tools like shared documents, real-timemessaging, video confer-
encing, and interactive whiteboards.

1

They use web technologies to allow users to edit, comment, and discuss content simultane-
ously, providing live updates, user presence indicators, and version control [23]. A toolkit for
real-time interactive collaborative environments is essential for building applications that sup-
port seamless, distributed, and interactive user experiences for collaborative editing, real-time
communication, anddata synchronization,with conflict resolution and real-timenotifications[12].

All of these developments can possibly leverage edge computing frameworks, i.e., systems that
process data closer to where it is generated, rather than relying on centralized cloud servers,
which is essential for enabling real-time interaction for optimal performance and reliability [24].
With these capabilities, developers can create robust and efficient real-time collaborative appli-
cations.

Flutter can also be used to create mobile apps that interact with IoT (Internet of Things) de-
vices, providing real-time monitoring and control (e.g., smart home systems [25] or vehicular
control [26]). Real-time navigation or ride-sharing apps can be built with Flutter, using its
capabilities to handle real-time location tracking and updates. Similarly, financial apps that re-
quire real-time stock prices, trading data, and financial news need up-to-date information for
a smooth and responsive user experience [27].

A very successful application of Flutter is the development of real-timemultiplayer games with
seamless performance, where multiple players interact with each other simultaneously in a
shared virtual environment without noticeable delays or interruptions. These games rely on
efficient networking protocols, low-latency communication, and robust server infrastructure
to ensure that actions taken by one player are instantly reflected for all other players. Ad-
vanced synchronization techniques, predictive algorithms, and real-time data exchange ensure
a smooth and immersive gaming experience[28]. More in general, Flutter can enable the access
to the Metaverse for real-time applications, either related to multiplayer gaming, but also seri-
ous games, and virtual reality applications for digital twinning [29].

Finally, Flutter is also important for e-health applications [30]. Real time patient monitoring
apps that provide instant health data updates to doctors and caregivers can be developed using
Flutter, especially thanks to features such as live chats or AI-driven chatbots [31].

2

To sumup, Flutter’s ability to deliver high performance, combinedwith its expressive and flexi-
bleUI,makes it an excellent choice for developingmultiple real-time applications across various
domains.

A comparison examination of Flutter and other popular frameworks, such as React Native
and Ionic, was carried out for the purpose of this thesis. I compared the performance metrics,
resource use, and development efficiency of each framework. Analyzingmany case studies and
actual implementations in this work helps one to have an overview of the benefits and difficul-
ties of using Flutter in real-world scenarios.

3

4

2
Literature Review

2.1 Overview of Flutter Framework

Flutter, an open-source UI software development toolkit developed by Google allows develop-
ers to create applications, for mobile, web and desktop using a codebase [32]. Since its launch
inMay 2017 Flutter has become popular, among developers for its structure user interface and
wide range of tools available [33]. Flutter is a robust and flexible framework for developing
cross-platform apps, making it a preferred choice for many development projects. The Flutter
framework revolves around the use of theDart language. Built on top ofDart Flutter is known
for its user interface and efficient performance.

”Our results show that cross-platform and hybrid frameworks can be competitive in CPU-
intensive applications. In five of the ten benchmarks, at least one framework-based version
exhibits lower energy consumption and execution time than its native counterpart. Overall,
Flutter usually imposes the least overhead in execution time and energy, while React Native
imposes the highest in all the benchmarks” [1]. This study shows how efficiently Flutter uses
resources, which makes it a good choice for developers who care about speed and energy use.
With the recent addition ofweb support and its adoption by various industries, Flutter’s future
prospects in the app development landscape are bright.

5

The adoption of Flutter by various industries, including finance, e-commerce, and entertain-
ment, highlights its versatility and potential. Notable companies such as Alibaba, BMW, and
Google itself have successfully used Flutter to develop high-quality applications [34].

To provide a comprehensive comparison of various frameworks, I referenced the performance
and resource usage data presented by Oliveira et al [1]. Figure 2.1 shows how long it takes
to run the Computer Language Benchmark Game(CLBG) benchmarks, how much energy it
uses, and how much memory it uses for Java, Flutter, React Native, and Ionic. Each chart
has its own scale. This study provides us with several of important insights regarding these
frameworks’ effectiveness. ”Regarding energy consumption, Java had lower energy consump-
tion than Flutter in eight out of the twenty benchmark-input pairs, while Flutter had lower
energy consumption than Java in ten pairings. Ionic had lower energy consumption than Java
in only two pairs. When analyzing memory utilization, Java had the lowest consumption in
fifteen instances, while Flutter had the lowest consumption in one instance, and Ionic had the
lowest consumption in four instances. With the exception of two situations, React Native ex-
hibited the highest energy consumption. In terms of execution time, Java was faster in ten of
the twenty sets of benchmark inputs, Flutter was faster in eight, and Ionic was faster in two.
Every single measure that React Native was able to finish was the slowest.” [1]

Figure 2.1: Execution time, energy and memory data running the benchmarks [1].

6

The research by [2] looks into performance overhead in cross-platformmobile development
frameworks in great depth. Whenmakingmobile apps, using cross-platform tools mightmake
them run less quickly than when developed using the native development method.

Figure 2.2: List of technologies [2]

”Figure 2.2 lists six technologieswhichhavebeenused in thedevelopmentof the artifacts. Of
these, one belongs to theNative approach, i.e., it does not support cross-platformdeploy-ment.
It serves as the baseline benchmark. The remaining five technologies allow for the creation of
iOS and Android apps based on a common code base. They vary in terms of programming
language, associated development approach, industry adoption, among other aspects”. [2] On
some criteria, however, some cross-platform frameworks can outperform native, emphasizing
the significance of clearly specified technical requirements and specifications for the thoughtful
selection of a cross-platform framework or overall development approach.

2.1.1 History and Evolution

Flutter was launched with the goal of creating a tool for building high-quality user interfaces
across platforms. The first version of Flutter was known as ”Sky” [35] and ran on the Android
operating system. It was first introduced in 2015 but gained significant attentionwhenGoogle
released its first commercial Flutter app in 2017. Since that time it has seen advancements
in popularity. Has progressed further enhancing its reliability and features.At the Google
Developer Days keynote in Shanghai in September 2018, Flutter Release Preview 2 was an-
nounced by Google. Flutter 1.0 was then released on December 4, 2018, during the Flutter
event. Subsequently, on December 11, 2019, Flutter 1.12 made its debut at the Flutter Inter-
active event [36].On May 6, 2020, the Dart software development kit (SDK) version 2.8 and
Flutter 1.17.0 were launched, introducing Metal API compatibility along, with Material wid-

7

gets and networkmonitoring tools, for developers. OnMarch 3, 2021, Google released Flutter
2 during an online Flutter Engage event. It added a Canvas Kit renderer for web as opposed to
theHTMLversion before it, web specific widgets, early-access desktop application support for
Windows, macOS, and Linux and improved Add-to-AppAPIs [37]. It also shipped with Dart
2.0 which included partial null-safety, which caused many breaking changes and issues with
many external packages; however, the Flutter team included instructions and tools to mitigate
these issues [38]. In the following releasesmore features have been added performance has been
enhanced and support, for platforms has been expanded, turning Flutter into a framework, for
creating contemporary applications.

2.1.2 Core Principles

The core principles guiding Flutter’s design include:

1. Single Codebase: In general, cross-platform development uses a single code base that
can be executed on multiple platforms. Platforms in this sense typically refer to differ-
ent operating systems provided by software or hardware vendors, e.g., Android, or iOS.
In addition, device fragmentationmight cause different versions of the same underlying
operating system to be considered as distinct platforms [2]. Flutter allows developers to
write code once and deploy it across multiple platforms, including iOS, Android, web,
and desktop. This approach significantly decreases the time and effort required for de-
velopment.

2. Expressive and Flexible UI: Flutter’s widget-based architecture enables developers to
create highly customizable and expressiveuser interfaces. Widgets are thebuildingblocks
of a Flutter application, providing a consistent and flexible way to design and layout UI
elements [3].

3. Fast Development Cycles: Flutter’s hot reload feature allows developers to see the re-
sults of their code changes in real-time without restarting the application. This capabil-
ity enhances productivity and facilitates rapid prototyping and iteration (Flutter, n.d.)
When building in debugmode, a Flutter app additionally contains theDart VMneeded
for enhanced developer experience, including functionality such as hot reload [2].

4. Native Performance: Flutter apps are compiled directly to native ARM code using
Dart’s Ahead-of-Time (AOT) compilation, ensuring smooth performance and high re-
sponsiveness. This approach eliminates the performance overhead typically associated
with interpreted languages [3].

8

2.1.3 Architecture

Flutter’s architecture consists of three main layers:

1. Framework: Flutter’s top layer provides many pre-designed widget sets, libraries and
APIs for building user interfaces. The framework is built with theDart language, which
offers a robust and flexible environment for developing Flutter applications.

2. Engine: The engine is responsible for rendering the application, managing input, and
handling platform-specific functionalities. Written in C++, the engine utilizes Skia, a
2D graphics library, to provide fast and efficient rendering.

3. Embedder: The embedder is the platform-specific layer that integrates the Flutter en-
gine with the underlying operating system. It handles tasks such as input/output, event
handling, and platform-specific plugins, enabling Flutter to run seamlessly on different
platforms.

2.1.4 Key Features
1. Widgets: Flutter widgets are constructed using a modern framework inspired by React.

The core idea is to create your UI out of widgets. Flutter’s widget system is the corner-
stone of its architecture, allowing developers to create complex UIs using a composable
approach. Widgets can be stateless or stateful, providing a clear separation between the
UI and application logic.

2. Hot Reload: Flutter framework designed to provide a fast application development ex-
perience. For this purpose, it has two important features, such as Hot Reload and Hot
Restart. This feature allows to developers to make changes to the code and see the re-
sults instantly without losing the current application state. This speeds up the process
of finding bugs in the codeHot reload substantially accelerates the development process
and increases developer efficiency.

3. Dart Language: Flutter uses Dart, a modern, object-oriented programming language
developed by Google. Dart’s features include an extensive standard library, robust typ-
ing andasynchronousprogramming support,making it ideal for developinghigh-performance
applications.

4. Cross-Platform Support: Flutter simplifies cross-platform development. Rather than
creating separate code for eachplatform, developers can take advantage of Flutter’s single
codebase. This reduces the effort needed to produce versions of an application for both
Android and iOS.

9

Figure 2.3: Architecture of the Flutter Framework [3].

5. Extensive Libraries and Plugins: Flutter’s ecosystem has a large number of libraries
and plugins that extend its functionality. This reducing overall coding time. And re-
duced coding time leads to reduced development costs. The Flutter community actively
contributes to this ecosystem, providing solutions for various use cases and integrating
with third-party services.

2.1.5 Adoption and Community

Flutter is open source, it allows developers from around the world to interact and innovate,
enabling continuous improvements to the framework. The framework’s community helps
with its development, provides educational materials, and provides support to other develop-

10

ers. Flutter has beenpopular across industries, withmany important companies anddevelopers
using it for their projects. Many well-known companies have successfully implemented Flutter
into their development processes. For instance, Alibaba, one of the world’s largest e-commerce
companies, uses Flutter to power parts of its mobile app, allowing for a seamless and consis-
tent user experience across Android and iOS platforms. The famous automotivemanufacturer
BMW has also adopted Flutter to create digital experiences in its vehicles. Google itself has
been using Flutter in many of its products. Thus confirming its reliability and functionality.
Products like Google Ads and Stadia use Flutter to deliver smooth, responsive user interfaces.
In addition to technical contributions, the Flutter community helps provide educational re-
sources. Numerous tutorials, documentation, and courses are available online, helping new
developers learn Flutter quickly and efficiently. YouTube, Medium, Udemy and many blogs
provide a wealth of information about Flutter development techniques, information and case
studies.

2.2 Technical Aspects of Flutter

2.2.1 Framework andWidgets

Flutter’s framework is built around the concept of widgets, which are the core building blocks
of a Flutter application. Widget is a blueprint that tells Flutter how to build a particular UI ele-
ment, be it a simple title, a button, or even a complex layout structure. Widgets can be stateless
or stateful, allowing developers to create highly dynamic and interactive user interfaces. The
framework includes a rich set of pre-designedwidgets for bothMaterial Design andCupertino
(iOS-style) applications. This allows developers tomaintain the platform-specific look and feel
while using a single codebase.

• Stateless Widgets: Awidget can be stateless or stateful. Stateless widgets are static wid-
gets that describe a part of the UI which is immutable. Once you construct a stateless
widget, it never changes. Stateless widgets are useful for elements that do not change
over an app’s lifecycle. Examples of stateless widgets include text labels, icons, and static
images. Stateless widgets are defined by extending the StatelessWidget class and imple-
menting the build method, which returns the widget’s layout. In Figure 2.2, The Text
widget is a simple example of a Stateless widget. The text stays the same once its style has
been defined [39].

• StatefulWidgets: Statefulwidgets are dynamic. They aremutable and can change their
properties during the lifetime of the application. These widgets are suitable for parts of

11

Figure 2.4: Example of Stateless Widget

the UI that need to update dynamically based on user interactions or other changes in
the application’s state. Awidget’s state is stored in a State object, separating the widget’s
state from its appearance. The state consists of values that can change, like a slider’s
current value or whether a checkbox is checked. When the widget’s state changes, the
state object calls setState(), telling the framework to redraw the widget. In Figure 2.3
there is an example of a simple stateful widget in Flutter [39].

2.2.2 Flutter’s Popularity and Advantages

Flutter, an open-source framework from Google, enables developers to construct feature-rich,
cross-platform applications with a single code base, saving time and resources. Its primary ben-
efit is the ability to deliver a highly interactive and visually appealing user interface (UI) with
fully customized widgets [23]. Flutter’s 1.0 version was released in December 2018, about 6
years ago. Currently, Flutter officially supports six platforms [40]:

• Mobile: iOS and Android

• Desktop: Windows, MacOS, Linux

• Web

12

Figure 2.5: Example of Stateful Widget

The graph titled ”Interest over time Figure 2.6” shows the relative popularity of various tech-
nologies over a given period. This is obtained from Google Trends. It reflects the search vol-
ume for each technology, indicating the amount of interest among developers and technolo-
gists. Flutter’s Rapid Rise, the blue line representing Flutter shows a significant spike in in-
terest starting around September 2021. This sharp increase shows that Flutter is increasingly
recognized and adopted among the developer community. Flutter’s ability to provide a unified
codebase for multiple platforms, coupled with its rich set of customizable widgets and strong

13

performance, is likely contributing to this rapid rise. The red and yellow lines represent other
competing technologies. While these technologies maintain a relatively stable level of interest,
their growth is not as pronounced as Flutter’s. This stabilitymay indicate established user bases
with consistent usage, but perhaps a slower rate of new adoption compared to Flutter. This
graph is really good in understanding general trends about the adoption of technology. The
trend in a sharp rise in adoption rates of Flutter points to a present upward surge in uptake
of the framework, thereby ranking it at the top for mobile and cross-platform development.
For a developer or an organization, the trend of Flutter’s popularity says that there will be a
continuously increasing pool of Flutter resources, community support, and job opportunities.
As observed from the statistics of interest varying with time, Flutter has already influenced the
developer community to a huge extent. Flutter’s rapid adoption and growing popularity show
us how useful and promising it is for real-world uses.

Figure 2.6: Interest Over Time [4]

2.3 Development Practices with Flutter

Following best programming practices becomes more crucial as software development gets
more complex and technology advances. Developers can write high quality code that is easy
to read, maintain and robust by adopting the best practices. Besides that, according to best
practices will help you to have better developers collaboration and more efficient workflow be-
cause everyone is following the same coding standards and norms.

14

2.3.1 Learning andDevelopmentwith Flutter

Before youmove to Flutter, make sure you understandDart! Without a doubt, understanding
a programming language should be the first step towards mastering Flutter. It’s Dart in this
instance. Google created the programming language Dart, which was created by Lars Bak and
Kasper Lund [41]. It can be utilized to create desktop, server, and mobile applications in addi-
tion to online applications. Dart uses Object-oriented programming (OOP) concepts with C♯
- style syntax, so to fully understand all the mechanisms of a language, it is crucial to know and
understand these concepts [42]. Dart is a clean, simple class-based, object-oriented language
with more structure than JavaScript, which it is strongly based on. It’s ideal for developers
who want a structured programming language that allows them to easily restructure and build
huge web apps [42]. Without it, we will be unable to develop a Flutter application, such as
when using the REST API [43].

Figure 2.7: Technologies have trended over time [5]

The figure 2.7 shows the percent of questions in Stack Overflow, as of date, that are tagged to
a plethora of mobile development frameworks like Xamarin, Ionic Framework, Cordova, Re-

15

act Native, Flutter, and MAUI. This could be taken as a comparator to fill in the popularity
and community involvement of each of these frameworks. The blue line representing Flut-
ter shows a strong and rapid increase in the percentage of Stack Overflow requests beginning
around 2018. A case in point is in, By 2024 more than 4 percent of all Stack Overflow ques-
tions will be Flutter-related, evidentially shows how readily the platform has remained relevant
to that mobile development landscape.

React Native shows a steady increase in questions with the orange line, peaking around 1.5%
to 2%. The red line representingMAUI (Multi-platformAppUI) starts to grow around 2022.
The recent surge shows that developers start to explore and adoptMAUI; using the same logic,
it still is Flutter and React Native in terms of general popularity. The green and brown lines
for Cordova and Xamarin respectively show a decline over time. This pattern indicates that
interest is decreasing, or that developers have moved to newer frameworks such as Flutter and
React Native. The purple line representing the Ionic Framework remains reasonably low and
stable. While it still has a small user base, it is not growing as quickly as Flutter or React Native.
According to this figure, it shows a trend in developer preferences for newer andmore efficient
frameworks such as Flutter. This trend underscores the industry’s shift to frameworks that
provide faster development cycles and improved performance. Additionally, it reflects a move
towards frameworks that offer a more cohesive development experience.

2.3.2 Coding Conventions and Best Practices

Adopting consistent coding conventions is essential for maintaining code quality and readabil-
ity in Flutter projects. In this sub section I am talking about following the standard practices
such as using Dart style guide, naming conventions, and creating a modular structure for the
project. Following these rules helps to make sure that the codebase is clean, maintainable and
easy to understand for all teammembers.

• Dart Style Guide: Following the Dart style guide is a fundamental practice in Flutter
development. The Dart style guide gives you detailed advice on writing easy to read,
clean andmaintainable code. The important keys of theDart style guide include proper
indentation, consistent use of whitespace, and clear naming conventions for variables,
functions, and classes. Following these steps ensures that your project has a consistent
coding style and different developers who may have different opinions working on the
project can easily read each others code.

16

• Meaningful Naming Conventions: Following the correct naming conventions as you
develop makes your Flutter code easier to read. Taking these proper coding guidelines
and tips into account when codingmay seem time-consuming and laborious at first, but
it will save you a lot of time in the long run. Using meaningful naming conventions in
the flutter codes plays a crucial role in improving code readability. The names of vari-
ables, functions and classes should be descriptive and convey the purpose or function
of the entity they represent. There are some tips for naming conventions in Flutter. For
instance, you can use snake_case (lowercase with underscore) for libraries, directories,
packages and source files. UseUpperCamelCase for classes, extension names, types, and
enums and use lowerCamelCase for constants, variables, parameters, and named param-
eters. For special variable names, start with an underscore. Additionally, to make code
easier to comprehend, always give names a clear and significant meaning. Naming con-
ventions also help avoid confusion and make the code readable in some sense without
comments or additional explanations.

• Project Structure andModularization: Anotherbest practice is toorganize theproject
in a modular way, which helps the maintainability of the codebase. Separate concerns
and related functionality should be grouped together in modules or packages. Organiz-
ing the project in this way makes the codebase more manageable and scalable so that
developers can work on individual modules without affecting other parts of the project.
In Flutter, it is common to organize the project into directories such as lib, src, widgets,
models, services, assets, helpers and utils, each serving a specific purpose.

• Code Documentation: One of the important considerations in coding conventions
should be proper documentation. Code should have comments and be properly docu-
mented. Comments are added to explain complex logic, what a particular piece of code
is trying to accomplish so that there is no doubt for future you or the developer who
may work on your project. A good practice is to use Dart’s documentation comments
to create API documentation. Inline comments can be useful to explain a part of the
code that is not immediately obvious.

2.3.3 StateManagement

Managing state is key when building responsive, easy to maintain Flutter apps. State manage-
ment is a way to handle and maintain state of an application or data that might change. There
are multiple state management options. Choosing the right state management solution can
significantly impact the complexity and performance of an application. In this sub-section, we
will look into different state management solutions available in Flutter. Starting from themost

17

basic setState we will look into advanced solutions like Provider, Riverpod, Bloc and Redux.
We will also learn when to use them and their pros and cons if any.

setState

This is the most basic and simple way to manage state in Flutter. setState method notify the
framework that the internal state of this object has changed. Flutter re-renders the widget with
the updated state. setState is ideal for managing local state within a single widget or a small
subtree of widgets. It is best suited to small applications or cases in which state changes do not
need to be exchanged between several widgets.
There are advantages of using setState such as easy to implement and understand. Also, you do
not need to any additional dependencies required for it. It has advantages as well as disadvan-
tages. It is unsuitable for handling complicated states or states that must be shared by several
application components. setState can lead to tightly coupled code and potential performance
issues if over used [6].

Figure 2.8: Example of setState [6]

Provider

In this section, I will talk about the Provider architecture recommended by the Flutter team
and frequently used by the Flutter developer community. The Provider package was created
by Remi Rousselet. It aims to handle the state as cleanly as possible. It is a state management
solution that is built on top of InheritedWidget.

It allows developers to manage state in a more scalable and decoupled manner by providing
a way to pass state down the widget tree. In Provider, widgets listen to changes in the state
and update as soon as they are notified. Thus, when a state change occurs, only the impacted
widget needs to be rebuilt rather than the entire widget tree, which saves effort and improves

18

the speed and functionality of the application.

Provider is suitable for medium to large applications where state needs to be shared across mul-
tiple widgets. Provider separates state management from the user interface and makes applica-
tion code more modular. It also supports dependency injection and makes it possible to easily
access state from anywhere in the widget tree. This featuremakes Provider well integratedwith
other Flutter libraries and tools. thus making the development process more efficient and flex-
ible.

Provider can result in a lot of boilerplate code. So this can create unnecessary complexity, espe-
cially for small andmedium-sized applications. Additionally, the learning curvemay be steeper
as it requires familiarity with the Provider pattern and concepts. For these reasons, Provider
may not always be the most appropriate solution and other state management solutions may
be more practical depending on the needs of the application.

Riverpod

Riverpod is amodern statemanagement solution. Riverpodbuilds on the concepts of Provider
but offers additional features and improvements. It is designed to be simpler, safer, and more
testable than Provider. Riverpod is a reactive caching framework for Flutter/Dart. It can au-
tomatically fetch, cache, combine, and recompute network requests while also handling er-
rors [44]. Riverpod is well for applications of all sizes. Particularly those requiring a more
robust and scalable state management system. It is suited for tasks where testability andmodu-
larity are critical.

Riverpod eliminates common issues like context scoping in Provider and supports amoremod-
ular approach to state management. Additionaly, it increases testability and makes it easier to
write unit tests, which helps developersmake their codemore reliable andmaintainable. These
features make Riverpod a more flexible and powerful case management solution.

Riverpod is newer and less mature compared to Provider, so it may have fewer resources and
community support. It also requires learning new concepts and patterns. This can lead to a
steeper learning curve. Therefore, some developers might find it more challenging to use ini-
tially.

19

Bloc (Business Logic Component)

The BLoC (Business Logic Component) pattern is a robust state management solution for
Flutter that has grown in popularity among developers because to its ability to split business
logic from the user interface layer, making the codebase more intuitive, maintainable, and
testable. BLoC depends on reactive programming techniques, which use streams and sinks
to manage an application’s state and events.

Figure 2.9: BloC State Management [7]

Let’s talk about Core Components of the BLoC Pattern:

• Events: Events are triggered by user interactions or other actions in the app. They serve
as the input to the BLoC, initiating state changes.

• States: States are the output of a BLoC. They represent the current state of the applica-
tion and are consumed by the UI to reflect changes.

• BLoC:TheBLoC itself acts as an intermediary that processes events andproduces states.
It contains all the business logic required to handle these events and determine the ap-
propriate state.

The program is more modular and testable as a result of the distinct separation of concerns
that guarantees the business logic is kept separate from the UI code. Reactive programming
concepts are necessary to comprehend the BLoC paradigm because it primarily uses streams
for state management [45].

20

TheBLoC(BusinessLogicComponent) pattern follows a set ofwell-defined steps to achieve
a clear separation between business logic andUI components. A user interaction such as a but-
ton press, triggers an event within the application. This event is then sent to BLoC, which acts
as an intermediary by processing the incoming event. BLoC uses business logic to handle the
event and then creates a new state basedon the result. TheUI then listens for these state changes
and emits this new state. When a new state is published, the user interface automatically up-
dates to reflect the current state and ensuring that the interface is always synchronized with the
underlying data and logic. This structured approach improves the application’s testability and
flexibility to maintain it while providing a reactive programming style that is appropriate in
cases of complex case management and real-time changes.

There are advantages of BLoC. For instance, BLoC creates a more modular and manageable
codebase by keeping business logic and user interface apart. Because it leverages streams, BLoC
is a good fit for applications that need real-time data updates. Also, BLoC manages state effi-
ciently in both small and big applications. Furthermore, because of its vibrant community and
variety of information, BLoCmakes it simpler for developers to understand and apply the pat-
tern.

Naturally, there are both pros and cons. First, implementing BLoC can involve a significant
amount of template code which can be burdensome for smaller projects. Also, understanding
and properly implementing streams and reactive programming principles might be difficult
for developers unfamiliar with these paradigms. For simpler applications, the cost of setting
up BLoC may not be justified, and less complex state management techniques may be prefer-
able. To summarize, BLoC provides a powerful and systematic method for state management
in Flutter applications. However, its advantages should be weighed against its complexity and
boilerplate needs to decide if it is the best choice for your project.

Redux

Redux is a predictable state management library. Redux groups application states and actions
in a modular format, making it easier for application developers to manage the state of the ap-
plication. Redux is known for being simple and predictable. Thismakes it simple to debug and
test. WithRedux, you can structure your application so that the state is extracted in a centrally-
located store. The data in this centralized store can be accessed by any widget that requires it,

21

without having to navigate a chain of other widgets in the tree [46].

Now we will mention about Redux Elements. The main components of Redux include Ac-
tions, Reducers, Store, Middleware, and Components. The interaction of these components
ensures in a smooth state management process. The diagram provided in the Figure 2.8, these
interactions and the flow of data within a Redux application.
Components

Figure 2.10: The Redux components [8]

Components are parts of the user interface in aRedux application. They dispatch actions in re-
sponse to user interactions or other events. The Redux repository then processes these actions.
This is the final step, in which we start our store and consume data to create our outcome.

Action

When a state is stored, widgets and sub-widgets are typically placed across the program tomon-
itor the state and its current values. An action is the object that controls which event is done
on the state. Following the event on this state, the widgets that track data in the state are re-
generated, and the data they generate is updated to reflect the state’s current values. Any event
provided to the store that updates the app’s state is considered an action. When a user interacts
with a component, for example by clicking a button, an action is dispatched to the store.

22

Reducers

Reducers are pure functions that take two arguments, transforming the information received
from the actions and setting the related values in the store. They indicate how the state of the
app changes in response to actions sent to the store. Reducers process various actions and up-
date the state accordingly. Since reducers are pure functions, they do not produce side effects,
which makes state changes predictable.

Store

The store contains the whole state tree of the program. In a Redux application, it is the only re-
liable source of information about the state. The store is generated by passing the root reducer
to the createStore function The store includes methods for dispatching actions, subscribing to
changes, and retrieving the current state.

Middleware

Middleware provides a third-party extension point between the dispatch of an action andwhen
it reaches the reducer. If we want to construct independent levels for data handling, we can
utilize middleware. It can be used for logging, crash reporting, performing asynchronous op-
erations, etc. This allows us to intercept actions and do additional operations before they are
sent to reducers. To summarize the data flow in Redux, the data flow starts with a user interac-
tion, such as a button press, that triggers an action within a component. We send this action,
represented as a flat JavaScript object, to theRedux repository using the dispatchmethod. Mid-
dleware can intercept the action before it reaches the reducer, performing responsibilities such
as logging or dealing with asynchronous processes. Then the action reaches the reducer after
going through the middleware. The reducer processes the action type and payload to deter-
mine how to update the state. After executing the operation, the reducer produces a new state
that updates the store. Finally, the store notifies all subscribed components of the state change,
causing them to rebuild. It also causes them to reflect the new state, ensuring that the user in-
terface is always in sync with the application’s current state.

Redux offers a straightforward and predictable state management strategy. In Redux, the cen-
tralized store makes it simple to manage and debug the application’s state. Additionally, it

23

provides middleware to handle side effects and asynchronous activities. Redux, which also has
disadvantages, contains a lot of boilerplate code. Also, it can be excessive for small andmedium-
sized applications.

Figure 2.11: The final comparison table of approaches [9]

The table in Figure 2.11 compares alternative state management systems in Flutter based
on several critical factors, including complexity, boilerplate code, code generation, time travel,
scalability, and testability. The comparison is crucial for understanding the advantages and dis-
advantages of each strategy and determining which state management approach is best suited
for different sorts of Flutter projects. If we take a look at based on complexity, ’setState()’,
’Provider’, ’GetX’, ’MobX’ marked as easy. So that makes them accessible for beginners and
suitable forbasic applications. On theotherhand ’InheritedWidget’, ’BloC’ and ’Redux’marked
as difficult so that means a higher learning curve and a greater requirement for experience.
When it comes to boilerplate code, ’Provider’, ’GetX’, and ’MobX’ require minimal boiler-
plate, which helps reduce the initial setup time and simplifies maintenance. So developers may
easily get up and going with these user-friendly ways without having to deal with complex con-
figuration. However, ’setState()’, ’BloC’ and ’Redux’ require a large amount of boilerplate
code, whichmight delay development at first. In these approaches only ’MobX’ supports code
generation, which can help to speed up development and eliminate errors caused by human
coding.If the time travel feature is important, we prefer Redux. BLoC, Redux, Provider and
GetX are our options if we need good scalability. For easier testing and debugging, consider
BLoC or Redux based on your preferred programming style (reactive or functional) [9].

24

2.3.4 Testing andDebugging

Cleandevelopment and testing are critical issueswhenourproject is large and several developers
are working on it at the same time. This helps ensure that your software works properly before
you release it [47]. In Flutter, we can use the built-in testing framework called Flutter Test to
write unit, integration, and widget tests [48]. Evaluating the accuracy of your application is a
testing process. It checks that your application’s conduct corresponds to what you anticipate
through different scenarios, encounters, and stimuli [49].

2.3.5 Kinds of Testing

• Unit Testing: Unit testing is the process of ensuring your application logic functions as
expected before releasing it for general usage by creating additional testing code to assess
quality, performance, or reliability [50]. Unit testing aims to test the smallest possible
piece of code, which can include functions and classes among other things. Unit tests
often execute in an isolated environment, where services are simulated using fictitious
data to verify the output of the tested unit [10]. The provided image in Figure ??, illus-
trates the setup for unit testingwith isolated environments, emphasizing the use ofmock
data to test backend services independently. These used to validate specific functions or
methods independently [51]. In the Figure 2.12 unit testing example, the function def-
inition involves the add function, which takes two integers as parameters and returns
their sum. The test definition uses the test function to define a unit test case, with the
description ’Unit Test’ specifying what the test is intended to verify. The expect func-
tion tests whether the result of add(2, 3) equals 5. The equals(5) matcher compares the
actual output to the expected value. This simple example of unit test ensures that the
add method works correctly. If the function’s implementation changes in the future,
running this test will instantly disclose whether the change caused any issues.

25

Figure 2.12: Unit Test Example

Figure 2.13: Widget Testing [10]

26

Figure 2.14: Counter app ‐ Part 1

27

Figure 2.15: Counter app ‐ Part 2

• Widget Testing: Widget testing is used for checking the functionality of user interface
components (widgets) [50]. The purpose of a widget test is to ensure that the widget’s
UI looks and behaves properly [51].

The Figure 2.13, depicts a widget testing scenario for changing a user’s email and pro-
file picture in an isolated environment. Here, the user starts with a screen that displays
their current email and the profile picture. Also, this screen has an input area for the
email and button to save the changes. When clicking the button, the app will updates
the email and picture data in the backend side. This mock update is handled by a test
framework that simulates the backend response, allowing the frontend to be tested sepa-
rately from the actual backend services. After themock update, the apps shows a success
message and a tickwidget to show that the updatewas successful. In order to ensure that
the widget accurately represents the successful update, this visual feedback is important.

28

Figure 2.16: Widget Test Example

Writing good test cases saves you from performing repetitivemanual testing [52]. Below
in the Figure 2.14 and Figure 2.15 , there is an example of a simple widget test for a
counter app with a button that increments a displayed counter in Flutter.Now, let us
create awidget test for the counter app in Figure 2.16 to ensure that the counter increases
when the button is pressed. The testWidgets function is used to create a widget test case
called ’Counter increments smoke test’.The

tester.pumpWidget(MyApp());

command builds the app and sets up an initial frame. Firstly, the test verifies that the
counter starts at 0 using expect

(find.text('0'), findsOneWidget)

and ensures that the value 1 is not present with expect

(find.text('1'), findsNothing)

To simulate user interaction,

29

tester.tap(find.byIcon(Icons.add));

taps the ’+’ icon, followed by tester.pump(), which updates the user interface. Finally,
the test confirms that the counter has been incremented by ensuring that the starting
value 0 is no longer there and that the value 1 is now displayed using expect

(find.text('0'), findsNothing)

and expect

(find.text('1'), findsOneWidget).

This test shows that the counter functionality works as expected and that the UI re-
sponds correctly to user interactions.

• Integration test: Software testingmethods such as integration testing combine separate
software modules and test them collectively. Finding errors in the way integrated units
interact with one another is the main goal of integration testing [53]. Integration tests
help to ensures that your application is performing succesfully [54]. This kind makes
sure that nothing interferes with the smooth operation of the parts or causes faults [51].

2.3.6 Continuous IntegrationandContinuousDeployment (CI/CD)

Figure 2.17: CI/CD Pipeline [11]

30

Continuous integration(CI) is a process which lets you find out the effect of every change you
do in your project on other modules and thus help you in constant improvement in your code
quality. After the development, different parts of your application may be affected or even ren-
dered inoperable. By running all unit tests within theCI process, this issue can be detected and
resolved immediately. You can utilize continuous integration by automating code change, and
also make sure that the changes have been integrated into a common repository [11]. In con-
trast, continuous deployment automates the frequent release of software functionalities [55].

The goal of CI/CD is to increase software quality while also reducing the time it takes to de-
ploy new features and issue fixes. There are several tools and platforms support CI/CD prac-
tices such as Bitrise, CircleCI, GitLab CI/CD, Codemagic. Implementing CI/CD in Flutter
projects fosters a more efficient development workflow, ensuring that new features and bug
fixes are delivered quickly and reliably, ultimately improving the overall application quality and
user experience [11]. As depicted inFigure 2.17, TheContinuous Integration andContinuous
Deployment (CI/CD) pipeline comprises four key stages: Development, Build, Testing, and
Deployment. During the Development stage that new code is written and committed, which
afterwards needs to integrate bienwith the existing codebase. The committed code is compiled
during the Build stage to make sure it is error-free and ready to be turned into an executable
program. The Testing phase is involves running automated tests to verify the functionality,
performance, and reliability of the code. The phase is therefore vital in the process of detecting
bugs and correcting them. In the end, during the Deployment stage, the tested code is moved
to the production environment and made available to end users.

Previous works have also indicated challenges and barriers in CI/CD adoption implying that
setting up a CI/CD pipeline is not an easy task. Furthermore, CI/CD can be done incor-
rectly, which might reduce its effectiveness and pose maintainability issues [56]. Implement-
ing CI/CD (Continuous Integration/Continuous Deployment) for Flutter app development
is crucial for organizations aiming for success in the highly competitive environment. It can fill
in the gaps in the way growth has usually been done. You can speed up the time it takes to get
an app to market and make it better with this combination.

31

2.3.7 Performance Optimization

It is quite important to optimize performance inmobile application development since it guar-
antees smooth usage and optimal utilization of resources. One interesting study that evaluated
and compared several different cross-platform frameworks, including Flutter, React Native,
and Ionic, provides insights useful to apply for performance overhead specific to these frame-
works.

”React Native Performance Evaluation,” Rasmus Eskola’s thesis, says that React Native slows
down significantly when compared to native code.This is particularly noticeable on older de-
viceswhere commonoperations such as application launch and component rendering can have
up to ten times longer latency than the native equivalent. On modern devices, the overhead is
less noticeable but still present, making React Native more suitable for newer hardware [57].

A study by Wellington Oliveira et al. (2023) analyzed the resource usage overhead of mobile
app development frameworks, comparing Flutter, ReactNative, and Ionic to native Java imple-
mentations. Comparing Flutter to React Native and Ionic, the results show that Flutter often
imposes the least overhead in execution time and energy consumption. In particular, Flutter
used less energy and ran faster in a number of benchmarks, which makes it a better choice for
making mobile apps. However, in an app that continuously animates multiple images on the
screen, without interaction, the React Native showed at least CPU and energy usage. These
findings highlight the importance of analyzing expected application behavior before commit-
ting to a specific framework. [1]

As shown in Figure 2.1, the execution time, energy consumption, and memory usage of dif-
ferent frameworks provide a comprehensive view of their performance characteristics. These
tips are useful for developers who want to make their apps run faster and use resources more
efficiently.

On the other hand, Flutter usually has faster speed than native apps because it compiles to na-
tive ARMcode. Skia, Flutter’s drawing engine, makes it easy for it to drawUI elements quickly
and smoothly, which makes animations run more smoothly and loads faster [58].

32

The results of these studies show that Flutter is better in a number of important ways. First
of all, It runs faster and has less latency compared to frameworks like React Native, due to its
native processing and efficient rendering engine. Since Flutter usually uses less memory and
energy, developing mobile apps with it is more environmentally friendly. Last but not least,
Flutter offers a better optimal platform for creating beautiful, responsive mobile applications
because to its strong performance and reduced resource consumption. These advantages shows
how well-suited Flutter is as a top framework for creating cross-platform mobile applications.
It also provides an appealing balance between effectiveness and performance.

2.3.8 Code Reusability andModularization

Code modularization and reusability are important concepts for minimize expenses, time and
effortwhendeveloping aproject. Modularity is thepractice of separating your code into smaller,
self-contained parts that execute certain jobs or operations. These self-contained parts are of-
ten referred modules, components, or classes, depending on the programming language and
paradigm you use. Plan and identify the components of your software that require subdivi-
sion first. A software system should be divided into several distinct modules, with each class or
method having a single purpose.

Figure 2.18: Example of Modularization

33

Figure 2.18 provides an example of a structure. Here I have divided the project into different
files to find and manage my project easily related to their parts. This way, modularization will
help you understand andmanage your code better. Also, this structure enhances development
efficiency. Procedures and functions can be called from anywhere in the program to do specific
jobs. This makes code more reusable.

Let’s talk about reusability too. Reusability refers to ability of your code in a way that can
be used again in different parts of an application or projects without needing major changes.
This can really help improve efficiency and stability. Also, reusable code is easier to maintain.
Let’s assume you find a bug, or you want to improve something in your reusable code or com-
ponent, the changes will apply automatically wherever the code is used.

Figure 2.19 an example of reusable code. I have created a vertical button widget stored inside
’widgets’ file. This button can be used across different pages or in the same page in a list com-
ponent. By using this widget, we can promote code reusability and we know that any changes
to the button such as changing text color, height of button, or text, will be only in this widget
place. So this example structure shows good practices for modularization and reusability in
our projects. So use the separation of concerns concept, which states that everymodule should
have a distinct goal and a single job.

34

Figure 2.19: Example of Reusability

35

2.3.9 Version Control Systems

In this section, we will see the essential tool in modern software development such as version
control systems. Version control system helps to developers to maintain changes, follow the
project history, and collaborate efficiently with team members. In addition, developers can
revert to previous version of the code if they need. That’s way version control systems are im-
portant part of development process. They help keep code safe andmake the process ofmaking
software faster. When youwant to choose a version control system there are key factors to con-
sider such as the maximum number of users can access per account, the capacity of the storage,
and the features of the tool.

Figure 2.20: Comparison between CVCS and DVCS [12]

According to the study by Zolkifli et al., there are two primary approaches to version control
systems: centralized version control systems (CVCS) and distributed version control systems
(DVCS). The figure 2.20 summarizes the key differences between CVCS and DVCS. CVCS,
such as Concurrent Versions System (CVS) and Subversion (SVN), use a single central reposi-
tory that all users must connect to for accessing and committing changes.

36

Another version control system, DVCS, such as Git, Mercurial, Bazaar, and BitKeeper, pro-
vides each user with a complete local copy of the repository, enabling offline work and better
handling of branching andmerging. While theCVCSmodel is suitable for projects where only
a few users contribute and the team is located at a single site, DVCS is suitable for both small
and large projects and allows contributions from developers located across multiple sites or dif-
ferent time zones. Figure 2.21 illustrates the benefits of using a version control system.

Version control systems support collaborative framework that make it easier for more efficient
teamwork between developers. So multiple teammembers can work on the same project with-
out intervention to each other. When a developer make a mistake or want to recover any error,
can revert the previous version of the code. I think the best thing is the branching andmerging
benefit. Because it allows the creation of different branches for storing different features, im-
provements, or bug fixes, which can later be merged into master codebase.

I’ve learned from the bugs I’ve made and the teammates I’ve worked with that small and fre-
quent commits can bemoremanageable and reversible. In addition, writing clear commitmes-
sages is important to explain the goal of the changes to help other team members. Make code
reviews frequently to maintain the code quality of the executed project and facilitate sharing
knowledge and experience among team members. And this is something that should not be
overlooked, merge changes regularly to avoid conflicts and keep themaster codebase up to date.

37

Figure 2.21: Benefits of Version Control [13]

38

2.3.10 PerformanceMetricsComparison: Fluttervs. ReactNa-
tive

Figure 2.22: Performance Metrics [14]

Beyond the advantages of Flutter for developers, it is also a good solution from a business field.
There are benefits for customers and businesses with beautiful UI, more quickly getting-to-
market, and cost-effectiveness.

Performancemetrics of Flutter andReactNative include factors such asmemory usage, launch
time, UI rendering speed, CPU usage and battery consumption, as shown in figure 2.22. Flut-
ter’s architecture gives it an advantage in terms of performance. In contrast to React Native,
whichnecessitates a JavaScript communicationbridge to interactwithnative components, Flut-
ter does not require this bridge. Rather, it employs the robust Skia rendering engine. Perfor-
mance may be lowered by the bridge in React Native [14].

39

The Google Team said this about Flutter’s speed: ”Flutter is fast. It’s powered by the same
hardware-accelerated Skia 2D graphics engine that underpins Chrome andAndroid. We archi-
tected Flutter to be able to support glitch-free, jank-free graphics at the native speed of your
device. Flutter code is powered by the world-class Dart platform, which enables compilation
to native 32-bit and 64-bit ARM code for iOS and Android.”

Figure 2.23: Performance comparison Between Flutter and React Native [15]

Figure 2.24: [16]

40

TheUI fluencymetric evaluates the app’s ability to respond to user input, such as page tran-
sitions, screen scrolls, and button presses. The fact that the interface is instantaneous and fluid
supports the user experience. While React Native provides good performance, it may not be as
performant as Flutter in certain scenarios that involve heavy animations or complex UI interac-
tions [16].

From the blogpost of SPEC INDIA shown in Figure 2.24, there are comparisons the perfor-
mance of Flutter and React Native based on specific performance metrics. So based on this
comparison, I can say that Flutter outperforms React Navite in startup time, UI rendering
speed, and overall responsiveness due to its native code compilation and architectural advan-
tages.

2.4 Case Studies on Flutter Integration

In this section, I will present several case studies that show how the Flutter framework is inte-
grated into practical applications. These case studies show the useful uses, benefits, and diffi-
culties that develop along the integration process. Case studies let the developer see howFlutter
is positioned for real-world use and give an idea of how the framework handles common prob-
lems. Flutter offers awide range of advantages that, based onmy experience,make it an effective
tool for any organization.

Flutter has great customization possibilities and may be adapted to meet specific business re-
quirements. There are many things you can achieve with Flutter. The most important thing is
to be able to use code on multiple platforms, such as iOS, Android, desktop, web, and embed-
ded. ”Flutter’s unique features, value, and increasing adoption make it a solid business choice
today. This is why top executives worldwide are keen on harnessing the power of Flutter for
their digital projects [59]”. Several firms shown in Figure 2.25 and in different sectors such
as e-commerce, finance, healthcare, logistics, and education have taken advantage of Flutter
to optimize their application development procedures and provide their users with excellent
experiences.

41

Figure 2.25: Companies That Use Flutter [17]

2.4.1 Case Study 1: Alibaba’s Xianyu App

Alibaba, one of the world’s largest e-commerce companies, used Flutter to create the Xianyu
app. Xianyu is a popular second-hand marketplace. The goal was to create an area where buy-
ers and sellers of secondhand products without the need for an intermediary. Alibaba’s Xianyu
app (iOS, Android) was another key early adopter of Flutter. This app demonstrated Flutter’s
scalability and performance capabilities with millions of users, [60]. They had limited time to
fulfill their goals. They decided to gowith Flutter. Because of themaintain single codebase they
had enough time to build new features. UI widgets allowed the developers to create a smooth
UI. So the platform helped them achieve this goals [61].

42

Figure 2.26: Flutter’s benefit of Alibaba [18]

Alibaba needed a solution that provided fast development and consistent performance on
both iOS and Android. They used Flutter as an e-commerce software development, resulting
in a highly interactive user interface with high performance and the ability to reuse code across
platforms, vital for retaining and engaging customers in the e-commerce space [59].

This is the most popular Flutter case study because it demonstrates how a brand improved
user experiences through interface development. It was important for the company to extend
intuitive solutions so that the users could move around easily [61]. So, using Flutter allowed
to significantly reduce the development process and enable faster iterations. Fifty million users
use the current app, and Flutter has paved the path for growth [61]. According to Bruce Chen,
Senior Development Engineer at Alibaba, ”Flutter significantly reduced the time we need to
develop for new feature from 1 month down to 2 weeks” (see Figure 2.26).

2.4.2 Case Study 2: Google Pay

Google Pay is created by Google for mobile payment service. It is used to facilitate contactless
in-app, online, and in-person transactions usingAndroid phones, tablets, andwatches. Google
Pay has a user base of 100 million individuals across numerous countries. Flutter’s own site re-
ports, ”But to do that, they relied on 1.7 million lines of code between their Android and iOS
apps—an amount that didn’t feel sustainable asGoogle Pay continued to expand to new coun-
tries, each of which would require its own unique features” [18].

Since iOS users are an ever-expanding user base and the majority of its own users are Android
users, it was important that these two environments work in both iOS and Android environ-
ments with codewritten in one go. ”Above all, migrating to Flutter would enable fast, resource-
efficient scaling of Google Pay around the world. Whereas building out features on both An-

43

droid and iOS required double the effort, Flutter would only require about 1.2 times as much
work. So they decided to take the plunge [18].”

Figure 2.27: Google Pay [18]

“Everyone loved Flutter— you could see the thrill on people’s faces as they talked
about how fast it was to build a user interface.”

—David Ko, Engineering Director, Google Pay

As a result, the Google Pay application was able to be developedmore efficiently, more com-
pactly, and more readily updated by utilizing Flutter. Since Flutter is much easier to manage,
it is a great advantage that there is less code written and developers save time.

44

3
Methodology

In this section, I will explainmy preferences for themethods, codes, and strategies employed in
the Flutter mobile applications I have worked on, highlighting the reasons behind my choices
based on my gained experience. As I mentioned in the previous chapter, Flutter, developed by
Google, allows developers to build natively compiled applications formobile, web and desktop
from a single code base. One of the reasons, Flutter allows my code changes to be reflected in-
stantly thanks to its ”hot reload” feature. This made my development process faster and more
efficient. Additionally, Flutter gives the advantage of being able to use a single codebase for iOS
and Android. Flutter’s performance is remarkable for its cross-platform speed. React Native’s
performance may be slightly lower than Flutter due to its compilation process and bridging
layers.

React Native, on the other hand, allows web developers to use familiar JavaScript. This can
increase code reusability. However, there may be issues with cross-platform compatibility and
some components may differ.

3.1 Performance and Speed

Performancemetrics are important to analyze and ensure an application’s smooth running and
positive user experience, in mobile development. In order to evaluate this experience in an
objective way, developers utilize measurable performance indicators.

45

3.2 Performance Optimization with Method Chan-
nels

Figure 3.1: Architectural overview: platform channels [19].

In view of the development of the project I amworking on, I needed to ask the question ”How
can we speed up and simplify the way Flutter talks to its main platform?” When I review Flut-
ter community pages and documentation, the connection between Flutter and the platform is
usuallymade via the platform’s channels. You can check the section ”Writing customplatform-
specific code” from the Flutter documentation website. From this page, we can experience
how to write custom platform-specific code. Flutter uses a flexible system that allows you to

46

call platform-specific APIs in a language that works directly with those APIs:Kotlin or Java
on Android, Swift or Objective-C on iOS, C++ on Windows, Objective-C on macOS, C on
Linux [19].

Figure 3.1 shows the architecture of method channels in Flutter, highlighting how the Flut-
ter app communicates with platform-specific APIs on both iOS and Android. According to
this architecture, the Flutter app uses MethodChannel to send and receive messages. On iOS
the ’AppDelegate’ via ’FlutterViewController’ and onAndroid ’Activity’ via ’FlutterView’ can
manage the messages. So this helps us to use native functionalities from iOS and Android plat-
forms.

Figure 3.2: notificationActionService.swift

47

Figure 3.3: notificationActionService.kt

The following Figures 3.2 and 3.3 are example of implementingMethod Channels for No-
tifications in iOS and Android. The following swift and kotlin codes set up a method chan-
nel in an Android and iOS app to trigger and handle notification actions from the Flutter
app. In this examples, the NotificationActionService class set up a method channel named
com.example.myFlutterApp/notificationaction. I initialized the channel with ’Flutter Engine’
to enable communication between Flutter andAndroid and for iOS ’FlutterBinaryMessenger’.
When the triggerAction function is called, it calls a method on the Flutter side with the ac-
tion that was given. The handleNotificationActionCall function is responsible for receiving
method calls from the Flutter app. The getLaunchAction method is handled by getting the
stored launchAction and returning the MethodChannel. So this showcase shows how to han-
dle notifications efficiently.

Why do I prefer to use Flutter? When we compare React Native and Flutter to create method
channels, both frameworks offer robust solutions, but there are key differences. React Na-
tive developers has to be knowledgeable in JavaScript for the React Native side and Java or

48

Objective-C/Swift for the native side but Flutter usesDart for both the Flutter app andmethod
channel implementation. That helps to simplify thedevelopmentprocess. Using the JavaScript
bridge in React Native introduces additional latency and performance overhead as it needs to
be transferred asynchronously. In contrast, Flutter uses direct platform channels, resulting in
more efficient communication with less overhead. Another difference is that Flutter can be
preferred over React Native as it provides a more unified and consistent approach with its own
plugin system and use of platform channels. When we consider these comparisons, we can
effectively see Flutter’s strengths in addressing method channels. For projects that prioritize
performance and a streamlined development process, Flutter’s method channels may be more
advantageous.

3.3 Chat Screen PerformanceMetrics

In this section, I analyzed the performance metrics of the chat screen in my flutter application.
The key metrics evaluated include Elapsed Time, Build Time, and Raster Time over a series of
frames.

Figure 3.4: Chat Screen Performance Metrics

If we interpret the analysis of this measurement according to the graph shown in Figure
3.4, the constantly reduced raster time indicates that the GPU rendering process is efficient

49

and stable, resulting in smooth and responsive visual rendering. Most build times are rather
short, with sporadic spikes showing otherwise effective management of UI modifications in
most cases. When we analyze the build time metric, we can say that it is a manageable build
time. On the othermetricwhich is the elapsed time, it provides a low average elapsed time. The
average elapsed time is low despite the high spikes, which improves user experience by reducing
latency and guaranteeing seamless interactions. The chat screen shows strong performance in
terms of raster time and generally stable build times. This study shows the useful parts of how
well the chat screen works.

3.4 Integrating FlutterProjects as a Package In iOS
Native Applications

Flutter projects or components can be inserted into any iOS application as embedded frame-
works. As described in Flutter’s docs, there are three methods to do that. Although the Flutter
documentation recommends using CocoaPods, due to the advantages of using SPM (Swift
Package Manager), I prefer to follow the SPM (Swift Package Manager) package method be-
cause CocoaPods may take longer to resolve dependencies, especially when there are a lot of
dependencies or the project is big. Another disadvantage of Cocoapods, Installing and main-
taining an extra tool is necessary for it, which might increase complexity and cause potential
conflicts. So using SPM (Swift Package Manager) for integrating the Flutter module into an
iOS native app offers a faster and native experience compared to CocoaPods.

3.4.1 Modularization and Integration Ease

SPM (Swift Package Manager) supports modularization and versioning, which simplifies de-
pendency management and updates. You can use the same code in more than one project if
you turn your Flutter project into an SPM package. Using modules makes it easy to maintain
and update the code since changes to one package are made to all the places that use that pack-
age. In addition, makes it clear that the Flutter module is separate from the rest of the iOS app,
which can make it easier to handle the codebase. SPM (Swift Package Manager) is built into
Xcode and provides a seamless way to add, update and manage dependencies. This helps to
avoids the requirement for manual configuration and guarantees the consistent management
of all dependencies. Also with SPM (Swift Package Manager), you can avoid the complexity
of manually configuring your project to include Flutter modules. SPM performs the installa-

50

tion automatically, reducing potential errors and setup time. There are several platforms for
distributing a Swift PackageManager(SPM) package such as Azure or GitHubActions. These
offer benefits such as automated CI/CD (Continuous Integration and Continuous Deploy-
ment), version control, collaboration. These platforms provide robust tools to improve the
development process and collaboration.

Swift Package Manager (SPM) supports versioned packages, making it easy to manage and up-
date new versions of your Flutter module. It helps ensure compatibility and stability by spec-
ifying full releases or release ranges. SPM can increase build performance by rebuilding only
the elements of the project that have changed. This leads to quicker building periods, particu-
larly in large projects. Foremost, SwiftPM is a native Apple tool integrated into Swift. Other
advantages include a quick and simple configuration, easier control over packages and their
sub-dependencies, and a GUI built into Xcode for managing package configurations [62].

Figure 3.5: Dependencies of the Flutter Project

Teams are able to collaboratemore effectivelywhen theyutilize SwiftPackageManager (SPM).
Team members have the ability to autonomously work on various components of the project
and seamlessly integrate their modifications. On the other hand, it makes it easier to integrate
open-source packages into your project. With SPM, all dependencies are declared in a single
Package.swift file, making it easier tomanage and understand the dependencies of your project.
With Swift PackageManager (SPM), all dependencies are declared in a single Package.swift file,
making it easier to manage and understand the dependencies of your project. As shown in
Figure 3.5, let’s assume your project have these dependencies so you can add all these depen-

51

dencies into package.swift as shown in Figure 3.6. Only you need to configure it based on your
dependencies. After that, if the build is successful that means the .xcframework files are ready
for use.

Figure 3.6: package.swift

3.4.2 ReactNative or Flutter

Deciding between converting Flutter or React Native for integration into a native iOS app
depends on several factors such as performance, codebase, SPM integration. Flutter might be
the better choice if performance is very important, and you need graphics that run quickly and
smoothly. Also, if you prefer using a single language (Dart) for both UI and logic you can use
Flutter. React native integration has benefits but as I said before it depends onwhat you expect
in your project. When we consider the disadvantages of React native, due to performance and
integration complexity, Flutter might be better choice.

52

3.5 Overview of Results

The findings of this study, many aspects of the Flutter framework in mobile application devel-
opment have been highlighted. Comparative analysis with frameworks such as React Native
also with Ionic provided important insights.

3.5.1 PerformanceMetrics

According to the performance evaluation, Flutter performs smoother andwith reduced latency
than React Native, especially on older devices. As shown by several benchmarks, Flutter’s na-
tive compilation and effective rendering engine, Skia, help to explain its outstanding perfor-
mance. For instance, Flutter consistently demonstrated faster execution times and lower energy
consumption in CPU-intensive applications, compared to React Native and Ionic.

3.5.2 Resource Efficiency

The resource efficiency of Flutter was also emphasized by the analysis. Inmultiple benchmarks,
Flutter consumed less energy and memory than its counterparts. This is especially important
for uses where battery life and making good use of resources are important. The reduced over-
head in execution time and energy consumption positions Flutter as amore sustainable option
for mobile app development.

3.5.3 Discussion on Implications

The companies thinking about cross-platform systems as well as developers, these results have
significant relevance. Flutter is a desirable option for projects needing a quick time to mar-
ket and excellent user experiences because to its capacity to produce high performance and
resource-efficient applications.The unified codebase approach not only streamlines develop-
ment but also reduces maintenance efforts

Ṁoreover, the utilization of method channels in Flutter, as explored in the case studies, shows
the framework’s capacity to effectivelymanage platform-specific capabilities. Compared toRe-
act Native, which introduces additional latency through its JavaScript bridge, Flutter’s direct
platform channels ensure more efficient communication and integration with native APIs.

53

Generally, the study confirms that Flutter provides a robust, efficient and flexible platform for
developing cross-platform mobile applications. Major organizations like Alibaba and Google
Pay have adopted it, which shows that it can fit different development objectives while still
being very effective and satisfying for users.

Figure 3.7: Swot Analysis

The swot analysis provided in Figure 3.7 provides a comprehensive overview of the Flutter
framework based on the research findings. This analysis visually encapsulates the strengths,
weaknesses, opportunities, and threats associatedwith the Flutter framework, providing a clear
summary of the research findings.

54

4
Conclusion

This study aims to review the integration of the Flutter framework in real-life applications from
a technical and development practice point of view. Such a detailed comparison with certain
other leading cross-platform frameworks like React Native and Ionic explained several major
key ideas and advantages of Flutter.

Flutter’s architecture makes it easy to build high-performance applications thanks to the Dart
programming language and Skia graphics engine. The benchmarks conducted in this study
continuously showed that Flutter frequently displays lower latency, faster execution speeds,
and reduced energy consumption in comparison to React Native and Ionic. The performance
advantage is important for applications that prioritize efficiency and responsiveness.

Compared to React Native’s JavaScript bridge, Flutter’s method channels make it easier for
Dart andnative code to communicatewith each other and this capability shows Flutter’s ability
to handle platform-specific functionalities with low overhead, improving its appeal to mobile
developers.

This paper describes the advantages and practical benefits of using the Flutter interface, the im-
portance of its cross-platform use and its overall positive contribution to mobile development.
By showcasing Flutter’s advanced functionality, economical use of resources and simplified de-
velopment procedure, this thesis promotes its use in various application contexts.

55

This study shows how Flutter is important for the mobile development community and for
developers and companies looking for good and effective solutions in their mobile applica-
tions. Flutter provides high-performance applications across multiple platforms, which makes
it preferable in modern application development.

In conclusion, there aremany benefits of using Flutter in real-world applications, such as better
speed, better resource utilization, and a faster development process. Themobile app landscape
continues to evolve day by day, however Flutter’s toolkit and strong community support ensure
that it will remain an important framework for developers want to build the next generation
of cross-platform applications.

56

References

[1] W. Oliveira, B. Moraes, F. Castor, and J. a. P. Fernandes, “Analyzing the resource
usage overhead of mobile app development frameworks,” in Proceedings of the 27th
International Conference on Evaluation and Assessment in Software Engineering, ser.
EASE ’23. New York, NY, USA: Association for Computing Machinery, 2023, p.
152–161. [Online]. Available: https://doi.org/10.1145/3593434.3593487

[2] A. Biørn-Hansen, C. Rieger, T.-M. Grønli, T. A. Majchrzak, and G. Ghinea, “An
empirical investigation of performance overhead in cross-platformmobile development
frameworks,” Empirical Software Engineering, vol. 25, no. 4, pp. 2997–3040, 2020.
[Online]. Available: https://doi.org/10.1007/s10664-020-09827-6

[3] Flutter architectural overview. [Online]. Available: https://docs.flutter.dev/resources/
architectural-overview

[4] Google Trends. Interest over time. [Online]. Available: https://trends.google.
com/trends/explore?cat=31&date=2016-03-17%202024-03-17&q=Flutter,React%
20Native,Xamarin,MAUI,Ionic

[5] Stack overflow trends. [Online]. Available: https://insights.stackoverflow.com/trends?
tags=flutter%2Creact-native%2Cxamarin%2Cmaui%2Cionic-framework%2Ccordova

[6] setstate method. [Online]. Available: https://api.flutter.dev/flutter/widgets/State/
setState.html

[7] Kiran S. (Oct 30, 2023) Mastering flutter app architecture with bloc. [Online].
Available: https://gurzu.com/blog/mastering-flutter-app-architecture-with-bloc/

[8] Rajeswari S. (Aug 23, 2021) Flutter redux-state management with re-
dux in flutter. [Online]. Available: https://medium.com/@rajeswari3699/
flutter-redux-state-management-with-redux-in-flutter-7a6a13515f69

[9] Dmitrii Slepnev, “State management approaches in flutter,” 2020. [Online]. Available:
https://www.theseus.fi/bitstream/handle/10024/355086/Dmitrii_Slepnev.pdf

57

https://doi.org/10.1145/3593434.3593487
https://doi.org/10.1007/s10664-020-09827-6
https://docs.flutter.dev/resources/architectural-overview
https://docs.flutter.dev/resources/architectural-overview
https://trends.google.com/trends/explore?cat=31&date=2016-03-17%202024-03-17&q=Flutter,React%20Native,Xamarin,MAUI,Ionic
https://trends.google.com/trends/explore?cat=31&date=2016-03-17%202024-03-17&q=Flutter,React%20Native,Xamarin,MAUI,Ionic
https://trends.google.com/trends/explore?cat=31&date=2016-03-17%202024-03-17&q=Flutter,React%20Native,Xamarin,MAUI,Ionic
https://insights.stackoverflow.com/trends?tags=flutter%2Creact-native%2Cxamarin%2Cmaui%2Cionic-framework%2Ccordova
https://insights.stackoverflow.com/trends?tags=flutter%2Creact-native%2Cxamarin%2Cmaui%2Cionic-framework%2Ccordova
https://api.flutter.dev/flutter/widgets/State/setState.html
https://api.flutter.dev/flutter/widgets/State/setState.html
https://gurzu.com/blog/mastering-flutter-app-architecture-with-bloc/
https://medium.com/@rajeswari3699/flutter-redux-state-management-with-redux-in-flutter-7a6a13515f69
https://medium.com/@rajeswari3699/flutter-redux-state-management-with-redux-in-flutter-7a6a13515f69
https://www.theseus.fi/bitstream/handle/10024/355086/Dmitrii_Slepnev.pdf

[10] Monikinderjit Singh. (Feb 16 2022) Integration testing in flut-
ter: Getting started. [Online]. Available: https : / /www.kodeco . com/
29321816-integration-testing-in-flutter-getting-started

[11] Jignen Pandya. (June 13, 2024) Top 5 ways ci/cd stream-
lines your flutter app development (for faster delivery lower
costs). [Online]. Available: https : / / www . expertappdevs . com / blog /
ways-ci-cd-streamlines-your-flutter-app-development#what-is-the-ci/cd-pipeline?

[12] NazatulNurlisa Zolkifli andAmirNgah andAzizDeraman, “Version control system: A
review,” Procedia Computer Science, vol. 135, pp. 408–415, 2018, the 3rd International
Conference on Computer Science and Computational Intelligence (ICCSCI 2018) :
Empowering Smart Technology in Digital Era for a Better Life. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S1877050918314819

[13] Chiradeep BasuMallick. What is version control? meaning, tools, and ad-
vantages. [Online]. Available: https://www.spiceworks.com/tech/devops/articles/
what-is-version-control/

[14] Deepak Sinha. What is the performance of flutter vs. native vs. react-
native? [Online]. Available: https : / /www. techaheadcorp . com/blog /
what-is-the-performance-of-flutter-vs-native-vs-react-native/

[15] Oleg Goncharenko. Flutter vs. react native - detailed framework comparison. [Online].
Available: https://brocoders.com/blog/flutter-vs-react-native/

[16] SPEC INDIA. Flutter vs react native: Choosing the right framework
for your project. [Online]. Available: https ://www.linkedin .com/pulse/
flutter-vs-react-native-choosing-right-framework-your-project-sp3vc/

[17] Quintagroup. Companies that use flutter.jpg. [Online]. Available: https:
//quintagroup.com/services/service-images/companies-that-use-flutter.jpg/view

[18] Flutter Development. Flutter apps in production. [Online]. Available: https://flutter.
dev/showcase

[19] Flutter Documentation. Writing custom platform-specific code. [Online]. Available:
https://docs.flutter.dev/platform-integration/platform-channels

58

https://www.kodeco.com/29321816-integration-testing-in-flutter-getting-started
https://www.kodeco.com/29321816-integration-testing-in-flutter-getting-started
https://www.expertappdevs.com/blog/ways-ci-cd-streamlines-your-flutter-app-development#what-is-the-ci/cd-pipeline?
https://www.expertappdevs.com/blog/ways-ci-cd-streamlines-your-flutter-app-development#what-is-the-ci/cd-pipeline?
https://www.sciencedirect.com/science/article/pii/S1877050918314819
https://www.spiceworks.com/tech/devops/articles/what-is-version-control/
https://www.spiceworks.com/tech/devops/articles/what-is-version-control/
https://www.techaheadcorp.com/blog/what-is-the-performance-of-flutter-vs-native-vs-react-native/
https://www.techaheadcorp.com/blog/what-is-the-performance-of-flutter-vs-native-vs-react-native/
https://brocoders.com/blog/flutter-vs-react-native/
https://www.linkedin.com/pulse/flutter-vs-react-native-choosing-right-framework-your-project-sp3vc/
https://www.linkedin.com/pulse/flutter-vs-react-native-choosing-right-framework-your-project-sp3vc/
https://quintagroup.com/services/service-images/companies-that-use-flutter.jpg/view
https://quintagroup.com/services/service-images/companies-that-use-flutter.jpg/view
https://flutter.dev/showcase
https://flutter.dev/showcase
https://docs.flutter.dev/platform-integration/platform-channels

[20] A. Vats and S. Azim and A. S. Chauhan, “Chat messenger app using flutter,” in Proc.
Int. Conf. Adv. Computing, Communication Control andNetworking (ICAC3N), 2023,
pp. 1531–1535.

[21] H. Chang and M. Varvello and F. Hao and S. Mukherjee, “A tale of three videoconfer-
encing applications: Zoom,webex, andmeet,” IEEE/ACMTransactions onNetworking,
vol. 30, no. 5, pp. 2343–2358, 2022.

[22] O. Schmid and A. Lisowska Masson and B. Hirsbrunner, “Real-time collaboration
through web applications: an introduction to the toolkit for web-based interactive
collaborative environments (twice),” Personal and Ubiquitous Computing, vol. 18, pp.
1201–1211, 2014.

[23] Y. W. Syaifudin, D. D. Yapenrui, Noprianto, N. Funabiki, I. Siradjuddin, and H. N.
Chasanah, “Implementation of self-learning topic for developing interactive mobile
application in flutter programming learning assistance system,” in 2024 ASU Interna-
tional Conference in Emerging Technologies for Sustainability and Intelligent Systems
(ICETSIS), 2024, pp. 1103–1107.

[24] F. Shirin Abkenar and L. Badia andM. Levorato, “Selective data offloading in edge com-
puting for two-tier classification with local domain partitions,” in Proc. IEEE PerCom
Workshops, 2023, pp. 56–61.

[25] M. Hasan and P. Biswas andM. T. I. Bilash andM. A. Z. Dipto, “Smart home systems:
Overview and comparative analysis,” in Proc. IEEE ICRCICN, 2018, pp. 264–268.

[26] U.Michieli andL.Badia, “Game theoretic analysis of roaduser safety scenarios involving
autonomous vehicles,” in Proc. IEEE PIMRC, 2018, pp. 1377–1381.

[27] L. Badia, “Analysis of age of information under sr arq,” IEEE Communications Letters,
vol. 27, no. 9, pp. 2308–2312, 2023.

[28] S. S. Sefati and S. Halunga, “Ultra‐reliability and low‐latency communications on the
internet of things based on 5G network: Literature review, classification, and future re-
search view,”Trans. Emerging Telecommunications Technologies, vol. 34, no. 6, p. e4770,
2023.

59

[29] M. Favero, C. Schiavo, L. Verzotto, A. Buratto, T. Marchioro, and L. Badia, “Strategic
Cooperation in theMetaverse: AGame Theory Analysis with Age Of Information,” in
Proc. IEEE IWCMC, 2024.

[30] A. Zancanaro, G.Cisotto, and L. Badia, “Modeling value of information in remote sens-
ing from correlated sources,” Computer Communications, vol. 203, pp. 289–297, 2023.

[31] K. Akarsu andO. Er, “Artificial intelligence based chatbot in e-health system,”Artificial
Intelligence Theory and Applications, vol. 3, no. 2, pp. 113–122, 2023.

[32] RonAmadeo. ((2018-02-27)) Google starts a push for cross-platform app development
with flutter sdk. [Online]. Available: https://arstechnica.com/gadgets/2018/02/
google-starts-a-push-for-cross-platform-app-development-with-flutter-sdk/

[33] Godwin Alexander Ekainu. ((2024-01-18)) Google starts a push for cross-platform app
development with flutter sdk. [Online]. Available: https://www.intelivita.com/en-tr/
blog/top-flutter-app-development-tools/

[34] Flutter Development. Companies using flutter. [Online]. Available: https://flutter.
dev/

[35] Kulinski, Swav. ((2018-12-07)) Flutter — the sky’s the limit. [Online]. Available:
https://medium.com/kinandcartacreated/flutter-the-skys-the-limit-84887c8f650d

[36] Flutter blog. ((2019-12-11)) Flutter: the first ui platform designed for am-
bient computing. [Online]. Available: https://developers.googleblog.com/en/
flutter-the-first-ui-platform-designed-for-ambient-computing/

[37] Cubettech. ((2022)) Everything you need to know about flut-
ter 2.0. [Online]. Available: https : / / cubettech . com/ resources / blog /
everything-you-need-to-know-about-flutter-2/

[38] Migrating to null safety. Everything you need to know about flutter 2.0. [Online].
Available: https://dart.dev/null-safety/migration-guide

[39] Add interactivity to your flutter app. [Online]. Available: https://docs.flutter.dev/ui/
interactivity

60

https://arstechnica.com/gadgets/2018/02/google-starts-a-push-for-cross-platform-app-development-with-flutter-sdk/
https://arstechnica.com/gadgets/2018/02/google-starts-a-push-for-cross-platform-app-development-with-flutter-sdk/
https://www.intelivita.com/en-tr/blog/top-flutter-app-development-tools/
https://www.intelivita.com/en-tr/blog/top-flutter-app-development-tools/
https://flutter.dev/
https://flutter.dev/
https://medium.com/kinandcartacreated/flutter-the-skys-the-limit-84887c8f650d
https://developers.googleblog.com/en/flutter-the-first-ui-platform-designed-for-ambient-computing/
https://developers.googleblog.com/en/flutter-the-first-ui-platform-designed-for-ambient-computing/
https://cubettech.com/resources/blog/everything-you-need-to-know-about-flutter-2/
https://cubettech.com/resources/blog/everything-you-need-to-know-about-flutter-2/
https://dart.dev/null-safety/migration-guide
https://docs.flutter.dev/ui/interactivity
https://docs.flutter.dev/ui/interactivity

[40] Pavel Sulimau. Flutter vs competitors: Popularity. [Online]. Available: https:
//pasul.medium.com/flutter-vs-competitors-popularity-f79536688ec3

[41] Educative: Interactive Courses for Software Developers. A bit about dart - learn
dart: First step to flutter. [Online]. Available: https://www.educative.io/courses/
learn-dart-first-step-to-flutter/a-bit-about-dart

[42] Introduction to dart. [Online]. Available: https : / /dart . dev / language#
important-concepts

[43] M. Kochmański. 7 things you need to learn as a beginner flutter developer. [Online].
Available: https://www.monterail.com/blog/flutter-guide-for-beginners

[44] V. V. Paridhi Wadhwani. (June 3, 2024) Flutter riverpod tutorial with us-
age advantages. [Online]. Available: https://www.bacancytechnology.com/blog/
flutter-riverpod-tutorial#:~:text=What%20is%20Riverpod%20Flutter%3F,requests%
20while%20also%20handling%20errors.

[45] B. Kapadiya. (Feb 1, 2024) Complete flutter bloc tutorial: Understanding state
management in flutter. [Online]. Available: https://www.dhiwise.com/post/
flutter-bloc-tutorial-understanding-state-management

[46] D. Jolayemi. (Oct 25, 2021) Flutter redux: Complete tuto-
rial with examples. [Online]. Available: https : / / blog . logrocket . com/
flutter-redux-complete-tutorial-with-examples/

[47] Dart testing. [Online]. Available: https://dart.dev/guides/testing

[48] Muhammadumarch. (March,2023) Dart testing. [Online]. Available: https://medium.
com/@muhammadumarch321/testing-and-debugging-in-flutter-49d6ee7b4440

[49] PAUL. (Aug 29, 2023) Beginner guide to debugging testing in flutter
— flutterconf23 talk. [Online]. Available: https://edemekong.medium.com/
beginner-guide-to-debugging-testing-in-flutter-flutterconf23-talk-5772a3a998df

[50] L. Tan. (Jan 29 2020) Unit testing with flutter: Getting started. [Online]. Available:
https://www.kodeco.com/6926998-unit-testing-with-flutter-getting-started

61

https://pasul.medium.com/flutter-vs-competitors-popularity-f79536688ec3
https://pasul.medium.com/flutter-vs-competitors-popularity-f79536688ec3
https://www.educative.io/courses/learn-dart-first-step-to-flutter/a-bit-about-dart
https://www.educative.io/courses/learn-dart-first-step-to-flutter/a-bit-about-dart
https://dart.dev/language#important-concepts
https://dart.dev/language#important-concepts
https://www.monterail.com/blog/flutter-guide-for-beginners
https://www.bacancytechnology.com/blog/flutter-riverpod-tutorial#:~:text=What%20is%20Riverpod%20Flutter%3F,requests%20while%20also%20handling%20errors.
https://www.bacancytechnology.com/blog/flutter-riverpod-tutorial#:~:text=What%20is%20Riverpod%20Flutter%3F,requests%20while%20also%20handling%20errors.
https://www.bacancytechnology.com/blog/flutter-riverpod-tutorial#:~:text=What%20is%20Riverpod%20Flutter%3F,requests%20while%20also%20handling%20errors.
https://www.dhiwise.com/post/flutter-bloc-tutorial-understanding-state-management
https://www.dhiwise.com/post/flutter-bloc-tutorial-understanding-state-management
https://blog.logrocket.com/flutter-redux-complete-tutorial-with-examples/
https://blog.logrocket.com/flutter-redux-complete-tutorial-with-examples/
https://dart.dev/guides/testing
https://medium.com/@muhammadumarch321/testing-and-debugging-in-flutter-49d6ee7b4440
https://medium.com/@muhammadumarch321/testing-and-debugging-in-flutter-49d6ee7b4440
https://edemekong.medium.com/beginner-guide-to-debugging-testing-in-flutter-flutterconf23-talk-5772a3a998df
https://edemekong.medium.com/beginner-guide-to-debugging-testing-in-flutter-flutterconf23-talk-5772a3a998df
https://www.kodeco.com/6926998-unit-testing-with-flutter-getting-started

[51] D. Sinha. (Published: Jul 26, 2023) Testing and debugging flutter apps: A
comprehensive approach. [Online]. Available: https://www.techaheadcorp.com/
blog/testing-debugging-flutter-apps-a-comprehensive-guide/

[52] J. Wogu. Flutter widget testing. [Online]. Available: https://medium.com/@Ikay_
codes/flutter-widget-testing-68b32ccc93c8

[53] Edward Chopskie. Unit testing vs. integration testing: 4 key differ-
ences and how to choose. [Online]. Available: https://brightsec.com/blog/
unit-testing-vs-integration-testing-4-key-differences-and-how-to-choose/

[54] Testing flutter apps. [Online]. Available: https://docs.flutter.dev/testing/overview#
unit-tests

[55] Aboubacar Abdou Abarchi. (Apr 14, 2023) Flutter continuous
integration (ci) and continuous deployment (cd) pipeline with
github actions. [Online]. Available: https : / /medium . com/@ab3masta /
flutter-continuous-integration-ci-and-continuous-deployment-cd-pipeline-with-github-actions-4fdcdb57a600

[56] F. Zampetti, S. Geremia, G. Bavota, and M. Di Penta, “Ci/cd pipelines evolution and
restructuring: A qualitative and quantitative study,” in 2021 IEEE International Con-
ference on SoftwareMaintenance and Evolution (ICSME), 2021, pp. 471–482.

[57] Eskola, Rasmus, “React native performance evaluation,” Master’s thesis,
Aalto University, 2018. [Online]. Available: https://aaltodoc.aalto.fi/items/
5ad555c0-057b-4c11-a776-4aa4ff809ebb

[58] Priyansh Shah. (FEB 1, 2024) How does skia contribute as one of the key
graphics engines in flutter apps. [Online]. Available: https://www.dhiwise.com/post/
how-does-skia-contribute-as-graphics-engines-in-flutter-apps

[59] OLEG SVET. Top industries and cases for using flutter. [Online]. Available: https:
//computools.com/top-industries-and-cases-for-using-flutter/

[60] Inez Bartosińska. Apps made with flutter. [Online]. Available: https://www.
thedroidsonroids.com/blog/apps-made-with-flutter

62

https://www.techaheadcorp.com/blog/testing-debugging-flutter-apps-a-comprehensive-guide/
https://www.techaheadcorp.com/blog/testing-debugging-flutter-apps-a-comprehensive-guide/
https://medium.com/@Ikay_codes/flutter-widget-testing-68b32ccc93c8
https://medium.com/@Ikay_codes/flutter-widget-testing-68b32ccc93c8
https://brightsec.com/blog/unit-testing-vs-integration-testing-4-key-differences-and-how-to-choose/
https://brightsec.com/blog/unit-testing-vs-integration-testing-4-key-differences-and-how-to-choose/
https://docs.flutter.dev/testing/overview#unit-tests
https://docs.flutter.dev/testing/overview#unit-tests
https://medium.com/@ab3masta/flutter-continuous-integration-ci-and-continuous-deployment-cd-pipeline-with-github-actions-4fdcdb57a600
https://medium.com/@ab3masta/flutter-continuous-integration-ci-and-continuous-deployment-cd-pipeline-with-github-actions-4fdcdb57a600
https://aaltodoc.aalto.fi/items/5ad555c0-057b-4c11-a776-4aa4ff809ebb
https://aaltodoc.aalto.fi/items/5ad555c0-057b-4c11-a776-4aa4ff809ebb
https://www.dhiwise.com/post/how-does-skia-contribute-as-graphics-engines-in-flutter-apps
https://www.dhiwise.com/post/how-does-skia-contribute-as-graphics-engines-in-flutter-apps
https://computools.com/top-industries-and-cases-for-using-flutter/
https://computools.com/top-industries-and-cases-for-using-flutter/
https://www.thedroidsonroids.com/blog/apps-made-with-flutter
https://www.thedroidsonroids.com/blog/apps-made-with-flutter

[61] J. Pandya. Top real-world flutter marketplace apps you should
know. [Online]. Available: https : / / www . expertappdevs . com / blog /
top-3-real-world-flutter-marketplace-apps

[62] InRhythm™. A comprehensive introduction to swift package man-
ager. [Online]. Available: https : / / medium . com / @GetInRhythm /
a-comprehensive-introduction-to-swift-package-manager-20d248ec0066

63

https://www.expertappdevs.com/blog/top-3-real-world-flutter-marketplace-apps
https://www.expertappdevs.com/blog/top-3-real-world-flutter-marketplace-apps
https://medium.com/@GetInRhythm/a-comprehensive-introduction-to-swift-package-manager-20d248ec0066
https://medium.com/@GetInRhythm/a-comprehensive-introduction-to-swift-package-manager-20d248ec0066

	Abstract
	Acknowledgments
	List of figures
	Listing of acronyms
	Introduction
	Literature Review
	Overview of Flutter Framework
	History and Evolution
	Core Principles
	Architecture
	Key Features
	Adoption and Community

	Technical Aspects of Flutter
	Framework and Widgets
	Flutter's Popularity and Advantages

	Development Practices with Flutter
	 Learning and Development with Flutter
	Coding Conventions and Best Practices
	State Management
	Testing and Debugging
	Kinds of Testing
	Continuous Integration and Continuous Deployment (CI/CD)
	Performance Optimization
	Code Reusability and Modularization
	Version Control Systems
	 Performance Metrics Comparison: Flutter vs. React Native

	Case Studies on Flutter Integration
	Case Study 1: Alibaba's Xianyu App
	Case Study 2: Google Pay

	Methodology
	Performance and Speed
	Performance Optimization with Method Channels
	Chat Screen Performance Metrics
	Integrating Flutter Projects as a Package In iOS Native Applications
	Modularization and Integration Ease
	React Native or Flutter

	Overview of Results
	Performance Metrics
	Resource Efficiency
	Discussion on Implications

	Conclusion
	References

