
Università degli Studi di Padova

Dipartimento di Ingegneria dell’Informazione

Master Degree in ICT for Internet and Multimedia

Title

Seeing with Sound: Object Detection and Localization by

YOLOv8 and Audio Feedback for Blind Individuals.

Supervisor:

Prof.ssa Federica Battisti

Co-Supervisor:

Prof.ssa Yeongmi Kim

Candidate:

Ali

Tavakoli Yaraki

2040500

Academic Year 2023-2024

II

Abstract

Object detection is a challenging Computer Vision (CV) application, particularly for assist-

ing blind individuals. With the rapid advancement of Deep Learning (DL), algorithms like

Convolutional Neural Network (CNN) have signi�cantly improved video analysis and image

understanding for this purpose. Blind individuals face substantial challenges when navigating

indoor or outdoor environments, underscoring the pressing need for assistive technologies.

In this thesis, a system has been developed to address this need, integrating the You Only Look

Once (YOLO) object detection algorithm with audio guidance to aid blind users. �e solution

utilizes YOLOv8’s State-Of-�e-Art (SOTA) deep convolutional neural network architecture

to detect objects in the user’s environment, providing spatial information and counting pro-

cesses through audio feedback. �e system, equipped with a text-to-speech engine, converts

all the information into verbal instructions, in some cases acting as a virtual assistant shape

program. �is context-aware feedback, available in multiple languages, has been optimized

for webcams as a real-time scenario, images, and videos. �e system has shown promising

results, enhancing the autonomy and quality of life for blind users, a signi�cant step towards

addressing the challenges they face in daily environments.

Keywords: Object detection, blind people, audio feedback, spatial location, YOLO, computer

vision, bounding box.

III

Acknowledgements

I express my deepest gratitude to my supervisors at the University of Padova and the

Management Center Innsbruck (MCI).

I thank Professor. Federica Ba�isti for her kind and helpful support and feedback throughout

this journey. I am equally grateful to Professor Yeongmi Kim for assigning me a title that per-

fectly �ts my interests and guiding me toward this research direction.

I am incredibly thankful to my family, partner, and friends, whose unwavering support and

encouragement have been my endless source of strength.

I also extendmy sincere appreciation to the University of Padova for the comprehensive educa-

tion and knowledge imparted to me and MCI for providing an impactful internship experience

that demanded hard work and dedication.

Lastly, I would like to thank Cybathlon for inspiring me with the idea for this thesis and their

motivating in�uence throughout the process.

V

Contents

Abstract III

Acknowledgements V

1 Introduction 1

1.1 Background and Motivation . 1

1.2 Problem Statement . 2

1.3 Objective of �e Study . 3

1.4 Deep learning for computer vision application 3

1.4.1 Convolutional Layer . 4

1.4.2 Pooling Layer . 4

1.4.3 Network training . 4

1.4.4 Backpropagation . 4

1.4.5 Fully Connected Layers . 5

1.5 Object Detection . 5

1.5.1 Single stage detection . 5

1.5.2 Two stage detection . 6

1.6 Object detection models performance evaluation metrics 6

1.6.1 Precision . 7

1.6.2 Recall . 7

1.6.3 F1-Score . 7

1.6.4 Average Precision . 7

1.7 YOLO (You Only Look Once) . 8

1.7.1 Step-by-Step Insights into YOLO . 9

1.7.2 Residual blocks . 9

1.7.3 Bounding box regression . 9

1.7.4 Intersection over Union . 10

VII

1.7.5 Non-Maximum suppression . 11

2 Related Works 13

2.1 A Comprehensive Review of YOLO Architectures in Computer Vision: From

YOLOv1 to YOLOv8 and YOLO-NAS . 13

2.2 Real-Time Object Detection Using Yolo Algorithm for Blind People 14

2.3 An Real Time Object Detection Method for Visually Impaired Using Machine

Learning . 15

2.4 Object Detection for Blind People Using Yolov3 15

2.5 Understanding of Object Detection Based on CNN Family and YOLO 16

2.6 Real-Time Object Detection with YOLO . 16

2.7 An Assistive Model for Visually Impaired People using YOLO and MTCNN . . 17

2.8 Object Detection System For �e Blind With Voice guidance 17

2.9 Real Time Object Detection with Audio Feedback using Yolo vs. Yolov3 18

2.10 Real Time Object Detection . 18

2.11 Object Detection Using Machine Learning for Visually Impaired People 19

2.12 Object Detection Featuring 3D Audio Localization for Microso� HoloLens: A

Deep Learning Based Sensor Substitution Approach for the Blind 19

2.13 Deep learning based object detection and surrounding environment descrip-

tion for visually impaired people . 20

2.14 Object Detection with Voice Guidance to Assist Visually Impaired Using YOLOv7 20

2.15 Android Based Object Recognition for Visually Impaired 21

2.16 Object Detection and Recognition for a Pick and Place Robot 21

2.17 Assistive Technologies for Obstacle Detection and Identi�cation 22

2.18 Absolute Distance Prediction Based on Deep Learning Object Detection and

Monocular Depth Estimation Models . 22

2.19 Existing Systems . 23

2.19.1 Wearable Devices . 23

2.19.2 Smartphone Applications . 24

2.19.3 Robotics . 24

2.19.4 Websites . 24

3 Proposed Method 25

3.1 Tools and Libraries . 25

VIII

3.2 Dataset and Data Augmentation . 25

3.3 YOLOv8 . 26

3.4 Training . 30

3.5 Phase 1 . 33

3.5.1 Object Detection . 33

3.6 Phase 2 . 35

3.6.1 Object Counting . 35

3.7 Phase 3 . 35

3.7.1 Object Distance . 35

3.7.2 Object Spatial Location . 36

3.8 Phase 4 . 38

3.8.1 Text to Speech . 38

3.8.2 Generating the Audio Feedback . 40

3.8.3 Delivering the Audio Feedback . 40

3.8.4 Language Modifying . 40

3.9 Speech Recognition . 41

4 Results and Discussion 45

4.1 System Implementation . 45

4.2 Experimental Setup . 46

4.2.1 Framework . 46

4.2.2 Dataset limitation . 46

4.3 Performance Metrics and Evaluation Criteria 47

4.3.1 Accuracy . 47

4.3.2 �e Loss . 49

4.3.3 Speed . 50

4.4 Analyzing of Model Performance . 50

4.4.1 Object Detection . 50

4.4.2 Object’s Spatial Location . 54

4.5 Audio feedback analysing . 55

4.6 A Prototype of Virtual Assistant . 56

5 Limitations and Future Work 59

6 Conclusions 61

IX

Acronyms 63

Bibliography 63

X

List of Figures

1.1 Object detection example . 5

1.2 Object detection stages . 6

1.3 YOLO architecture[1] . 8

1.4 Grid cells . 9

1.5 Bounding box regression . 10

1.6 Intersection Over Union (IoU) . 10

1.7 Non Maximum Suppression (NMS) . 11

2.1 A Timeline of YOLO versions[2] . 14

2.2 YOLO versions architecture[2] . 14

2.3 Accuracy comparison[3] . 15

2.4 User interaction �rough system[4] . 19

2.5 Design diagram[5] . 21

2.6 Visual process of whole network[6] . 23

2.7 Estimated distance vs. absolute distance[6] . 23

2.8 Orcam MyEye device . 24

3.1 Sample of data augmentation . 26

3.2 Kernel operation . 28

3.3 YOLOv8 Architecture . 29

3.4 Accuracy and speed of YOLOv8[7] . 30

3.5 Training con�gurations. 31

3.6 Training batch with bounding boxes and labels 32

3.7 System design . 33

3.8 Object detection script . 34

3.9 Code snippets for counting objects . 35

3.10 Image dimensions. 36

XI

3.11 Location category based on coordinates . 37

3.12 initializing text-to-speech engine . 38

3.13 Code Snippets �rough a Loop . 39

3.14 Feedback Generation . 40

3.15 Delivering the Audio Feedback . 40

3.16 Language Modifying Script . 41

3.17 Speech recognition code snippets . 42

4.1 Class labels . 46

4.2 Training log . 47

4.3 Confusion matrix . 48

4.4 F1-Score and PR-Curve . 48

4.5 Training result . 49

4.6 Validation label and Validation Prediction . 50

4.7 Detection result . 51

4.8 Model �rst performance . 52

4.9 Adjusting parameters . 52

4.10 Evaluation detection accuracy . 53

4.11 Real time example . 54

4.12 Practical result . 54

4.13 Printing audio on console . 55

4.14 Italian Language . 56

4.15 Speech recognition practical result . 57

4.16 Speech recognition another practical result . 57

XII

List of Tables

3.1 Categorizing the location. 38

3.2 Visualization of the 3x3 grid . 38

XIII

Chapter 1

Introduction

Living a healthy life can seem simple, but it’s o�en profoundly challenging for those with

disabilities. Genuinely understanding the daily struggles and limitations faced by individuals

who can’t see, hear, or touch as we do requires deep empathy.

1.1 Background and Motivation

My passion for technology led me to explore ways to help blind individuals interact more fully

with their surroundings, see the world, or at least perceive it in a manner.

�is passion came to life during my master’s internship at the MCI in Austria, where I discov-

ered CYBATHLON.�is company organizes competitions for peoplewith disabilities, focusing

on daily living tasks. �ese events pushed participants to use advanced technology to over-

come obstacles, showcasing how innovation can improve lives. My time with CYBATHLON

sparked a strong interest in developing assistive technologies for the visually impaired. I saw

the potential to create tools that empower blind individuals to handle everyday activities in-

dependently, such as shopping, walking, dressing, using public transport, or navigating their

homes. Traditionally, these tasks o�en require help from guide dogs, canes, or other people,

which, while bene�cial, can limit autonomy.

I envisioned a solution that would let blind individuals manage these activities independently

without constant reliance on external aids. �is vision launched my journey to develop a tech-

nological platform that o�ers real-time, practical assistance, enabling blind individuals to ”see”

the world in new ways through innovative technology.

1

1.2 Problem Statement

According to World Health Organization (WHO) survey, almost 286 million people are vi-

sually impaired, which is separated from 39 million being blind and 246 million having low

vision[8][9]. �e ability to navigate and interact with the environment is essential to inde-

pendent living, but it remains one of the most signi�cant challenges these sorts of people face.

Blind individuals severely restrict access to visual cues necessary for safe and e�cient navi-

gation, o�en making even familiar environments challenging to negotiate.

�e development of assistive technologies has played a vital role in improving the quality

of life for blind individuals, enabling be�er mobility, safety, and independence. Computer

Vision, a �eld within Arti�cial Intelligence (AI) , is considerably looking forward to these

challenges by allowing machines to analyze and understand visual information from the real

world, such as images or videos. Employing progress in deep learning and neural networks,

computer vision has signi�cantly improved in recent years, leading to its general application

across various domains. For instance,in healthcare, computer vision aids doctors in diagnosing

diseases early by analyzing magnetic resonance images[10]. In agriculture, it assists farmers

by tracking animals[11], and in transportation, it enables autonomous vehicles to recognize

pedestrians[12], among other applications.

It’s important to note that computer vision has also paved the way for improving real-time

object detection systems. Among the various algorithms designed for object detection, YOLO

has stood out as a strong algorithm because of its speed and accuracy, which are crucial for

applications needing instant feedback. YOLO’s ability to detect objects in real time provides

a solid basis for creating tools that could assist visually impaired individuals by giving them

immediate auditory feedback about their surroundings.

2

1.3 Objective of �e Study

�is thesis proceeds into integrating the latest version of YOLO, YOLOv8, with audio guid-

ance systems to develop an assistive device speci�cally designed for blind individuals. �e

system aims to identify objects in the surroundings and deliver real-time audio descriptions,

e�ectively converting visual information into auditory feedback. By using YOLO’s enhanced

precision and processing speed, this project aims to improve real-time applications in various

and rapidly varying circumstances.

�e implementation involves se�ing up a framework where a webcam captures scenes, which

is then processed by the YOLO algorithm to detect and identify objects. �e implementation

of the same procedure on images and videos was also examined. �e detected objects are sub-

sequently relayed to a text-to-speech system that converts the information into audio signals,

guiding the user about the location and counting of nearby objects. �is setup not only en-

hances spatial awareness for blind users but also promotes their independence by reducing

reliance on human assistance.

1.4 Deep learning for computer vision application

Computational models inspired by the composition and operations of the human brain are

known as neural networks. �ey are made up of layer-organized, networked nodes known as

neurons. Every neuron generates an output signal a�er applying an activation function (such

as Relu, Tanh) to receive input signals. By varying the weights of the connections between

neurons, neural networks can learn from data.

DL allows computational models composed of multiple processing layers to learn data repre-

sentations with numerous levels of abstraction. �ese methods have dramatically improved

the SOTA in speech recognition, visual object recognition, object detection, and many other

domains, such as drug discovery and genomics. Deep learning discovers complex structures

in large data sets using the backpropagation algorithm to indicate how a machine should

change its internal parameters used to compute each layer’s representation from the previ-

ous layer’s. Deep convolutional nets have brought about breakthroughs in processing images,

video, speech, and audio, whereas recurrent convolutional networks nets have shone light on

sequential data such as text and speech[13]

In exploring DL architectures, particularly CNN , several critical components and pro-

cesses de�ne the e�ectiveness and e�ciency of model training and operation. Among the

3

foundational elements of CNNs are the convolutional layer, pooling layer, fully connected

layer, network training, and the backpropagation algorithm. Each of these aspects are essen-

tial for building robust and e�cient neural network models.

1.4.1 Convolutional Layer

�is is the �rst signi�cant layer in CNNs. It involves �lters that move across the input image

and capture important features like edges, colors, pa�erns and textures. �ese �lters help the

network focus on speci�c parts of the image.

1.4.2 Pooling Layer

�ere’s o�en a pooling layer a�er the convolutional layer. Pooling helps reduce the size of

the data the network needs to process. It does this by summarizing the features captured in

small areas of the image. For example, it might take the most signi�cant number (max pooling)

or the average (average pooling) from a small square in the picture. �is makes the network

faster and more e�cient.

1.4.3 Network training

involves multiple steps: Initialization: Set initial weights and biases. �ese could be random or

follow a speci�c distribution. Forward Propagation: Input data passes through the network,

layer by layer, until the output layer is reached. Loss Calculation: Use a loss function to

compute the di�erence between the network output and the actual values. �is measures

the network’s performance.

1.4.4 Backpropagation

To optimize the neural network, it is essential to calculate the gradient of the loss function

concerning each weight. �is involves tracing the impact of the loss function through each

layer of the network and then adjusting the weights to minimize the loss. �is process, known

as backpropagation, allows for the iterative re�nement of the weights, ultimately leading to

improved network performance.

4

1.4.5 Fully Connected Layers

O�en follow convolutional and pooling layers in CNN architectures and play a crucial role in

decision-making processes. �ese layers integrate learned features into �nal outcomes such as

class scores, Where every neuron in one layer is connected to every neuron in the subsequent

layer. �ey are critical in synthesizing the features extracted by convolutional and pooling

layers into outputs that pertain to the task at hand.

1.5 Object Detection

Object detection is a CV task that involves identifying and locating objects in images or videos.

It is essential in many applications, such as surveillance, self-driving cars, or robotics. �e

process will combine elements of an image by classi�cation, which will represent what object

categories are present in an image, and localization, which brings out the location of the objects

in an image by drawing some bounding boxes around them. �ese features will typically be

done by using either two-stage detectors, which �rst propose regions and then classify them,

or one-stage detectors like, which simplify this process by doing both tasks in one shot

Figure 1.1: Object detection example

1.5.1 Single stage detection

Single-shot object detection uses a single pass of the input image to make predictions about

the presence and location of objects in the image. It processes an entire image in a single pass,

making them computationally e�ective. However, single-shot object detection is generally less

5

accurate than other methods, and it’s less e�ective in detecting small objects. Such algorithms

can be used to detect objects in real time in resource-constrained environments.YOLO is a

single-shot detector that uses a fully CNN to process an image.

1.5.2 Two stage detection

Two-shot object detection uses two passes of the input image to make predictions about the

presence and location of objects. �e �rst pass is used to generate a set of proposals or po-

tential object locations, and the second pass is used to re�ne these proposals and make �nal

predictions. �is approach is more accurate than single-shot object detection but is also more

computationally expensive. In this thesis, single-shot object detection was deployed to be�er

suit real-time applications.

Figure 1.2: Object detection stages

1.6 Object detectionmodels performance evaluationmet-

rics

To determine and compare the predictive performance of di�erent object detection models,

we need standard quantitative metrics. Below the three most common evaluation metrics are

represented.

6

1.6.1 Precision

It is a necessary metric in model evaluation as it serves to quantify the accuracy of the pos-

itive predictions made by the model. It represented how well the model distinguishes true

objects from false positives. Precision provides insight into the model’s ability to make pos-

itive predictions that are indeed accurate. A high precision score indicates that the model is

skilled at avoiding false positives and provides reliable positive predictions.

Precision =
TP

TP + FP

1.6.2 Recall

Recall, also known as perceptiveness or true positive rate, is another essential metric to eval-

uate model performance. It measures the model’s capability to capture all appropriate objects

in the image and evaluates the model’s completeness in identifying objects of interest. A high

recall score suggests that the model e�ectively identi�es most of the relevant objects in the

data.

Recall =
TP

TP + FN

1.6.3 F1-Score

Another metric related to the trade-o� mean of precision and recall, the F1-score, provides a

measure of the model’s performance, considering both false positives and false negatives. �is

metric is particularly useful when there is an imbalance between positive and negative classes

in the dataset.

F1 = 2 ·
Precision · Recall

Precision+ Recall

1.6.4 Average Precision

Average Precision (AP) is calculated as the area under a precision vs. recall curve for a set

of predictions. Recall and precision o�er a trade-o� that is graphically represented into a

curve by varying the classi�cation threshold. �e area under this precision vs. recall curve

gives us the Average Precision per class for the model. �e average of this value, taken over

all classes, is called Mean Average Precision (mAP). In object detection, precision and recall

are not used for class predictions. Instead, they serve as predictions of boundary boxes for

7

measuring the decision performance. An IoUvalue > 0.5. is taken as a positive prediction,

while an IoUvalue < 0.5 is a negative prediction.

1.7 YOLO (You Only Look Once)

YOLO is a popular object detection algorithm that has transformed �eld of CV. It is fast and

structured, making it a great choice for almost all object detection tasks. Moreover, It has

achieved state-of-the-art performance on diverse standards and has been widely adopted in

various real-world applications. YOLO is widely known as uni�ed network and very fast com-

pared to Faster Region-based Convolutional Neural Network (RCNN) and runs using single

convolutional neural network.[14] Despite limitations such as struggling with small objects

and the inability to perform �ne-grained object classi�cation, YOLO gains more than twice

the mAP of other real-time systems. It has been con�rmed to be a bene�cial tool for object

detection and has opened up many new possibilities for researchers and practitioners.

YOLO, or You Only Look Once, introduced a novel approach that uni�ed object detection

and classi�cation into a single neural network model, enabling real-time performance without

compromising accuracy. Unlike traditional methods that relied on sliding window approaches

or region proposal networks, YOLO divided the input image into a grid and predicted bounding

boxes and class probabilities directly from this grid. By considering the entire image at once,

YOLO achieved impressive detection speed while maintaining competitive accuracy levels.

�is approach streamlined the object detection pipeline, making it suitable for a wide range

of applications requiring fast and e�cient object detection capabilities.

Our detection network has 24 convolutional layers followed by 2 fully connected layers.

Alternating 1*1 convolutional layers reduce the features space from preceding layers. We

pretrain the convolutional layers on the ImageNet classi�cation task at half the resolution

(224 * 224 input image) and then double the resolution for detection.[1]

Figure 1.3: YOLO architecture[1]

8

1.7.1 Step-by-Step Insights into YOLO

1.7.2 Residual blocks

By dividing the original image into N*N grid cells of equal shape YOLO will start the process-

ing. Each cell in the grid is responsible for localizing and predicting the class of the object that

it covers, Onwards with the probability/con�dence value.

Figure 1.4: Grid cells

1.7.3 Bounding box regression

A�er dividing image, the algorithm will determine the bounding boxes which correspond to

rectangles highlighting all the objects in the image. �ere is no limitations regarding the

bounding boxes it can be as many object as in the image. YOLO controls the a�ributes of

these bounding boxes using a single regression module in the following format, where Y is

the �nal vector representation for each bounding box. Y = [pc, bx, by, bh, bw, c1, c2] �is is

especially important during the training phase of the model. pc corresponds to the probability

score of the grid containing an object. For instance, all the grids in red will have a probability

score higher than zero. �e image on the right is the simpli�ed version since the probability

of each yellow cell is zero (insigni�cant). bx, by are the x and y coordinates of the center of

the bounding box with respect to the enveloping grid cell. bh, bw correspond to the height

and the width of the bounding box. c1 and c2 correspond to the two classes.

9

Figure 1.5: Bounding box regression

1.7.4 Intersection over Union

IoU is a metric to measure localization accuracy and calculate localization errors regarding

object detection models. To calculate the IoU between the predicted and the ground truth

bounding boxes, �rst, the intersecting area between the two corresponding bounding boxes

for the same object is examined, then the calculation of the total area covered by the two

bounding boxes— also known as the “Union” and the area of overlap between them called

the “Intersection.” �e metric mentioned above gives the ratio of the overlap to the total area,

providing a good estimate of how close the prediction bounding box is to the original bounding

box.

Figure 1.6: IoU

10

1.7.5 Non-Maximum suppression

NMS As a post-processing technique used in YOLO as the last. It is used to remove redundant

detections and retain only the most con�dent ones. It compares the predicted bounding boxes

of the detected objects and discards the ones that have a high overlap or intersection.

NMS involves two main steps,�resholding and Suppression. �e thresholding step �lters

out detectionswith low con�dence scores. �e suppression step removes redundant detections

that have a high overlapwith each other, retaining only themost con�dent ones.By performing

NMS, YOLO can reduce the number of positives and improve the accuracy of object detection.

Figure 1.7: NMS

11

Chapter 2

Related Works

�e Related Works chapter will extensively analyze cu�ing-edge research papers on object

detection, centering on di�erent versions of YOLO models. �e examination will provide de-

tailed insights into the precision and e�ciency of each model, o�ering thorough explorations

of how audio feedback is integrated into object detection, object distance to the user and lo-

cation, and the hardware and tools used in each paper’s approach.

2.1 A Comprehensive Review of YOLO Architectures in

Computer Vision: From YOLOv1 to YOLOv8 and

YOLO-NAS

�is comprehensive review outlines the evolution of YOLO (You Only Look Once) from its

initial version (YOLOv1) to the latest iterations, including YOLOv8 and variations integrating

Neural Architecture Search (YOLO-NAS) and transformers. It highlights key advancements

in network architecture, training methodologies, and post-processing techniques across ver-

sions. YOLO has become a central real-time object detection system for robotics, driverless

cars, and video monitoring applications. It describes the standard metrics and post-processing

and discusses the signi�cant changes in network architecture and training methods for each

model. �e YOLO (You Only Look Once) family of object detection models has signi�cantly

impacted computer vision, o�ering real-time object detection by directly predicting classes

and bounding boxes. YOLOv1 introduced the concept of single-stage object detection but

needed help with small and overlapping objects due to its grid system. YOLOv2 improved

upon these limitations with batch normalization, anchor boxes, and high-resolution classi�ca-

13

tion. YOLOv3 further enhanced accuracy through multi-scale predictions and the Darknet-53

backbone. Subsequent iterations, like YOLOv4 and YOLOv5, optimized training and feature

extraction with methods such as spatial pyramid pooling, mosaic augmentation, and improved

feature pyramid networks. Recent versions, YOLOv8 and YOLO-NAS, have leveraged neural

architecture search and quantization techniques for be�er performance. Due to their speed

and accuracy, these models have been widely adopted in various �elds, including autonomous

vehicles, precision agriculture, and medical imaging[2].

Figure 2.1: A Timeline of YOLO versions[2]

Figure 2.2: YOLO versions architecture[2]

2.2 Real-Time Object Detection Using Yolo Algorithm for

Blind People

Real-time object detection systems are essential for enhancing independence and mobility in

the developing area of assistive technologies for visually impaired individuals. Di�erent object

detection algorithms, including the CNN family, YOLO, and SSD, have been studied for their

e�ectiveness in this domain. Comparative analyses of speed and accuracy show that YOLO

14

stands out as one of the best algorithms due to its excellent performance metrics. Kasture[15]

leveraged the YOLO V3 algorithm within a web application to provide auditory feedback on

detected objects, thereby assisting blind users in real-time navigation. �eir system identi�es

a scope of objects and communicates this information through an innovative audio feedback

mechanism, making it highly accessible for visually impaired users. However, challenges such

as dependency on internet connectivity and environmental variability remain.

2.3 An Real Time Object Detection Method for Visually

Impaired Using Machine Learning

Recent work has concentrated on real-time object detection systems combined with auditory

feedback to enhance spatial awareness and independence. �e paper developed a system inte-

grating YOLO V3 and R-CNN with audio feedback to identify objects and communicate their

locations verbally, enhancing the ability of the visually impaired to navigate both familiar and

unfamiliar environments safely and enabling greater independence, o�ering a more e�ective

and accurate solution compared to other algorithms even though it faces challenges regarding

computational demands on mobile devices and varying environmental conditions[3].

Figure 2.3: Accuracy comparison[3]

2.4 Object Detection for Blind People Using Yolov3

In this project, the authors have designed a website that assists blind persons in recogniz-

ing diverse things in their surroundings using the YOLO Version 3 algorithm. �is combines

many technologies to develop a prosperous website that helps individuals with vision impair-

ments recognize di�erent objects in their surroundings in real-time and directs them through

an auditory output. �e COCO (Common Objects in Context) Dataset, which contains 81

distinct objects, was used, since datasets and Neural Networks are necessary for this sort of

15

web application to recognize objects. Regarding detection, �e Haar cascade algorithm was

presented in combination with YOLO as a pre-processing technique to detect some speci�c ob-

jects.However, the authors mentioned limitations, such as the lack of scene perception, YOLO

concentrates on item detection but may not o�er a comprehensive understanding of the scene

since e�cient navigation for blind people requires comprehending the context and the scene.

It can also detect a mixture of items but may have trouble correctly identifying particular ob-

jects, especially in complicated or blocked se�ings. Di�culty in identifying small or complex

items has been reported as well.[16].

2.5 Understanding of Object Detection Based on CNN

Family and YOLO

Juan Dual’s paper provides a comprehensive overview of the YOLO (You Only Look Once)

algorithm within the context of various CNN-based object detection models. It details the

growth of YOLO from YOLOv1 to YOLOv2 and describes its architecture and characteristics.

�e paper contrasts YOLO with Faster R-CNN by comparing factors such as speed, cost, ac-

curacy, and complexity, highlighting the advantages and disadvantages of each. Lastly, it con-

cludes the summary of the YOLO performance and Faster R-CNN, positioning YOLO as a

more e�cient alternative for real-time object detection. �e result underscores YOLO’s ad-

vancements in balancing detection speed and accuracy, making it a key algorithm in object

detection[17].

2.6 Real-Time Object Detection with YOLO

In real-time object detection, YOLO algorithm represents a signi�cant improvement, com-

bining high speed with robust accuracy in detecting multiple objects simultaneously. �e

study by Geethapriya[18] emphasizes YOLO’s capability to perform at 45 frames per second

while maintaining lower false positives than traditional methods like R-CNN.�e result makes

YOLO particularly suitable for applications requiring rapid and reliable detection, such as au-

tonomous driving and real-time surveillance. However, despite its strengths, the algorithm

faces challenges such as localization errors and sensitivity to object scales, pointing to areas

for further research and development. Enhancing YOLO’s grid strategies and bounding box

predictions could address these issues, making it even more e�ective for wide-ranging real-

16

time applications.

2.7 An Assistive Model for Visually Impaired People us-

ing YOLO and MTCNN

In recent outcomeswithin assistive technologies for the visually impaired, integrating arti�cial

intelligence for real-time object and facial recognition presents a promising advancement.In

this area, Rahman introduced an untouched application of YOLO and MTCNN (Multi-Task

Cascaded Convolutional Networks) algorithms within a Raspberry Pi-based system designed

to enhance environmental perception for visually impaired users via audio feedback. �is sys-

tem supports real-time interaction and achieves high accuracy, with object detection accuracy

ranging from 63 to 80 and facial recognition accuracy from 80 to 100. Such systems under-

score the potential of integrating cost-e�ective computing platforms like Raspberry Pi with

advanced neural network models to deliver practical and accessible solutions for the visually

impaired. However, the variability in accuracy and the challenges posed by environmental

factors suggest further re�nement and testing under diverse conditions[19].

2.8 Object Detection System For �e Blind With Voice

guidance

In their 2021 publication, Karmarkar and Honmane introduced an innovative system on An-

droid that merges the You Only Look Once (YOLO) algorithm with text-to-speech technology

to provide real-time guidance to blind users. �is system detects objects and verbally commu-

nicates their details, improving spatial awareness and independence for visually impaired in-

dividuals. While the system shows promising results in object detection that enables practical

use, its reliance on speci�c environmental conditions indicates the need for further accuracy

and compatibility improvement on each device. �ese enhancements are essential in o�ering

more robust solutions that can signi�cantly enhance the quality of life for visually impaired

individuals[20].

17

2.9 Real Time Object Detection with Audio Feedback us-

ing Yolo vs. Yolov3

�e comparative study of object detection algorithms YOLO and YOLOv3 by Mahendru and

Dubey highlights YOLOv3’s enhanced abilities in detecting small and distant objects with

great accuracy, leveraging a multi-scale detection architecture. �e system’s integration of

audio feedback is particularly notable, as it translates the detection results into auditory sig-

nals, thereby aiding visually impaired users in real-time navigation. While the study shows

YOLOv3’s superior performance, it also points to the need for further algorithm responsive-

ness and adaptability to varied environmental conditions, suggesting a promising direction

for future research in making these technologies more accessible and practical for real-life

applications[21].

2.10 Real Time Object Detection

Kaur, Yadav, and Joshi, indicate YOLO’s powers in processing images at high speeds while pre-

serving accuracy, making it an ideal solution for applications requiring quick response, such

as autonomous driving and advanced applications for aiding blind people. �e algorithm’s

distinctive approach of treating object detection as a regression problem simpli�es the com-

putational process, allowing faster processing times than traditional methods like R-CNN and

SSD. However, despite its advantages, the YOLO algorithm struggles with detecting small or

fast-moving objects, highlighting an area for potential improvement. �is limitation suggests

a direction for future research, possibly integrating YOLO with other sensor technologies to

create a more robust object detection system capable of operating e�ectively in diverse and

dynamic environments. Additionally, it emphasizes the ability of the algorithm to process im-

ages at high speeds (45 frames per second) and with considerable accuracy. �e authors tested

the algorithm’s performance in various se�ings, demonstrating its robustness and reliability

across di�erent scenarios[22].

18

2.11 Object Detection Using Machine Learning for Visu-

ally Impaired People

Integrating advanced machine learning techniques has shown promising potential to enhance

object detection abilities. �is paper signi�cantly contribute to the mentioned area by imple-

menting a system that utilizes RetinaNet and neural network technologies to facilitate accurate

navigation aids for indoor and outdoor se�ings. �e system looked at di�erent environments,

crowded and empty, and obtained great accuracy during the challenging area by looking at dif-

ferent algorithms and exploring them deeply theoretically, It identi�es objects with high accu-

racy and communicates this information through audio outputs, thus aiding visually impaired

individuals in understanding their surroundings e�ectively. While the system shows poten-

tial, its performance across diverse environmental conditions and its dependence on speci�c

hardware con�gurations highlight areas for future improvement. �ese �ndings underscore

the need for ongoing research to re�ne and adapt machine learning applications in assistive

technologies, ensuring they are robust, versatile, and widely accessible[23].

2.12 Object Detection Featuring 3D Audio Localization

for Microso�HoloLens: A Deep Learning Based Sen-

sor Substitution Approach for the Blind

�e integration of augmented reality (AR) and arti�cial intelligence (AI) o�ers novel tracks to

enhance navigation and interaction within the environment. An innovative application of this

integration in their development of a system that combines YOLOv2-based object detection

with 3D audio localization via Microso� HoloLens was studied.

Figure 2.4: User interaction �rough system[4]

�is system detects objects in real-time and also provides spatial audio feedback,a speech

recognition program was setup to interact with the user. In order to test how well voice com-

19

mands are recog- nized and processed, the debug output for each rec- ognized voice command

has been used. �e voice commands that should be recognized were limited to “Scan”, “Start”,

“Stop” and “Chair”. Such technological advancements underscore the potential of AR and AI to

transform everyday experiences for individuals with visual impairments, providing themwith

greater independence and mobility. �e reliance on continuous network connectivity and the

processing demands on external servers highlight areas for further development, particularly

in enhancing the system’s autonomy and operational e�ciency[4].

2.13 Deep learning based object detection and surround-

ing environment description for visually impaired

people

Deep learning for both object detection and environmental interaction represents a forward

leap in functionality and user experience.regarding this paper , It introduces a comprehen-

sive system that detects objects using a TensorFlow-based SSDLite MobileNetV2 model and

then describes the surrounding environment through an innovative ’ambiance mode.’ Trained

on a diverse dataset, including weather conditions, this system o�ers auditory feedback that

enhances spatial and situational awareness for visually impaired users. the systemwill demon-

strate robust performance metrics on standard benchmarks relying on Raspberry Pi hardware

that presents scalability and environmental adaptability challenges.[24].

2.14 Object Detection with Voice Guidance to Assist Visu-

ally Impaired Using YOLOv7

Innovative applications of deep learning models in assistive technologies for the visually im-

paired have shown marked progress, particularly with integrating YOLOv7 in object detec-

tion systems. Authors exemplify this advancement by combining YOLOv7’s precise detection

capabilities with voice guidance technology, o�ering a practical solution for enhancing the

independence of visually impaired individuals. �is system identi�es objects with high accu-

racy and communicates this information through voice, thus making spatial navigation more

accessible.

20

Figure 2.5: Design diagram[5]

Future developments could focus on reducing the system’s computational demands and

extending its applicability to more complex environments[5].

2.15 Android Based Object Recognition for Visually Im-

paired

�e research by Saeed presents a feasible solution for real-time, o�ine object recognition on

Android devices. �is solution signi�cantly bene�ts visually impaired users by enhancing

their environmental awareness. �e systemwas evaluated using a dataset of 600 images across

various conditions. It achieved the highest accuracy, at 95.36%. �e primary challenge was en-

suring accurate object recognition under varying conditions without excessive computational

load. Optimization of classi�er parameters and feature selection were critical to balancing per-

formance and resource usage. Future improvements include expanding the object database,

incorporating more complex recognition tasks, and further optimizing the system for be�er

performance and lower energy consumption. �e proposed Android-based object recognition

system will be used to implement a money reader for the Egyptian currency. No such money

reader is known among the blind and visually impaired[25].

2.16 Object Detection and Recognition for a Pick and

Place Robot

Recent studies have demonstrated that YOLOhas an impressive processing speed of 155 frames

per second while achieving double the mean Average Precision (mAP) compared to other real-

time detectors. Despite this notable e�ciency, the methodology has its limitations. For exam-

21

ple, while contemporary detection techniques have e�ectively reduced the occurrence of false

positives, YOLO is inclined to exhibit more localization errors. Anyhow, YOLO demonstrates

exceptional generalization capabilities across diverse domains. For instance, it outperforms

approaches such as the Deformable Parts Model (DPM) and R-CNN in transferring knowledge

from natural images to other domains, including art, exhibiting adaptability across various

applications.[26].

2.17 Assistive Technologies for Obstacle Detection and

Identi�cation

Applications centered on sensing obstacles near the user and alerting them through alarms or

beeping sounds implemented on sensory devices such as ultrasonic, smart sticks with obstacle

detectors, mobile phones, and navigators. �ese devices are expensive and could sometimes

be a barrier to the user. In some situations, tactile signs and Braille texts are labeled at the

top of the items for identi�cation. Moreover, High-tech systems such as Radio Frequency

Identi�cation Devices (RFID), barcodes, or talking labels can be used to �nd objects in near

distance[27][28].

2.18 Absolute Distance Prediction Based on Deep Learn-

ing Object Detection and Monocular Depth Estima-

tion Models

�e You Only Look Once (YOLOv5) model, which is renowned for its ability to detect objects

in real time with high accuracy, speci�cally enhances speed and performance over its prede-

cessors, making it an e�ective tool for detecting and localizing objects within an image. �e

challenge of depth estimation using a single (monocular) camera is established since monoc-

ular cameras capture 2D images, making it challenging to intimate depth directly. To address

this, the authors use a deep autoencoder network, trained in a self-supervised form, to esti-

mate depth from the image, providing relative distances within the scene. By integrating these

two techniques, the framework e�ectively predicts the absolute distance to objects, achieving

an accuracy of 96% with a Root Mean Square Error (RMSE) both the method and result out of

this study is presented in Figure [6].

22

Figure 2.6: Visual process of whole network[6]

Figure 2.7: Estimated distance vs. absolute distance[6]

2.19 Existing Systems

2.19.1 Wearable Devices

Wearable devices are widely used in object detection and recognition for visually impaired

individuals. �ese devices typically incorporate sensors and cameras to detect objects in the

user’s surroundings, providing audio or tactile feedback. An example is the Orcam MyEye,

which utilizes a camera and Optical character recognition (OCR) technology to read text and

recognize faces, products, and more.

23

Figure 2.8: Orcam MyEye device

2.19.2 Smartphone Applications

Numerous smartphone applications assist visually impaired individuals in object recognition

by leveraging the smartphone’s camera and computer vision algorithms for real-time detection

and classi�cation. Examples include the Be My Eyes app, which connects blind users with

sighted volunteers for object identi�cation, and Seeing AI by Microso�, which can recognize

faces, read text, and identify objects.

2.19.3 Robotics

Robotics represents another approach to object detection and recognition for visually impaired

users. Researchers have developed robotic systems that can detect and recognize objects and

navigate environments to provide assistance. An example is the Blind Explorer, a robotic

platform capable of detecting obstacles and o�ering audio feedback to help users navigate

through complicated environments.

2.19.4 Websites

Considerable websites have been developed to assist visually impaired individuals with object

detection and other tasks by employing web-based technologies and computer vision algo-

rithms for real-time object detection and classi�cation. �ese websites typically utilize user-

uploaded images and live streams to analyze objects, text, and scenes on the website or to

provide remote individual assistance. One example is a web captioner, which o�ers real-

time captioning and text recognition.

24

Chapter 3

Proposed Method

�is chapter provides a comprehensive overview of the methodology employed in each part

of the project, outlining the precise procedures and approaches utilized to ensure successful

execution.

3.1 Tools and Libraries

Various libraries, such as CV Numpy and the others, Torch as the framework, are installed

and used to succeed in di�erent tasks. �e YOLO model imported from ultralytics libraries

who has produced the intended YOLO version[7]. �e Pygame Python module is used to

play the audio. Py�sx3 and Google Text-To-Speech (gTTS) are libraries that provide a text-to-

speech conversion engine in Python o�ine and online, respectively. �e second one, gTTS,

was presented only to support a wide range of languages in the algorithm to tackle concerning

distinct languages. �e main algorithm will work on the Py�sx3 to provide more accessible

feedback without worrying about an internet connection. It is also faster than gTTS providing

both male and female voices.

3.2 Dataset and Data Augmentation

�e dataset included 2282 images and 3523 annotations around the speci�c objects, which

were completely manually and carefully selected to achieve the best result. Only square shape

box was determined for the labeling object that can be used related to bounding boxes. While

there were two other options, such as smart polygon and smart labeling, that had a misunder-

standing between segmentation and detection tasks for the algorithm.

�e detection, labeling, and annotating data was used on RoboFlow[29], a web-based platform.

25

�e dataset covers both indoor and outdoor navigation objects, with 17 classes related to su-

permarkets, shopping, walking tours, and home sur�ng. A�er labeling and annotating objects,

data augmentation was considered for almost all variations, such as �ipping horizontal and

vertical, to create a robust model for the training process and tackle the algorithm’s limitation

of not detecting objects in diverse environments through bad lightening areas, noisy data,

and disparities in color. Hence, data transformations such as Rotation about 90°, Clockwise,

Counter-Clockwise, Upside Down, Grayscaling was considered for 17% of images, Hue and

saturation Between -19° and +19°, Between -29% and +29% respectively, Brightness Between

-17% and +17%, Exposure Between -13% and +13% , Blur Up to 2.5 pixels and Noise Up to 1.29%

of pixels were adjusted and added to the training data. Furthermore, �e Mosaic augmenta-

tion was automatically applied during training by YOLOv8, but it is disabled before the last 10

epochs. Data augmentation has been accomplished using the RoboFlow platform as well[29].

Figure 3.1: Sample of data augmentation

3.3 YOLOv8

YOLOv8 architecture is divided into three essential parts: Backbone, Neck, and Head.

�e backbone acts as a feature extractor, capturing pa�erns in the �rst layers, such as edges

26

and textures. �e neck part will perform as a bridge between the head and the backbone. It

gathers feature maps from di�erent stages of the backbone and provides information related

to the accuracy and speed of the model. Another functionality of this part is Performing

concatenation or fusion of features of di�erent scales to ensure the network can detect objects

of di�erent sizes. �e head is the �nal part of the network and is responsible for generating

the network’s outcomes, such as bounding boxes and con�dence scores for object detection.

�e YOLO architecture utilizes a local feature analysis approach instead of processing the

entire image at once, aiming to reduce computational e�orts and facilitate real-time detection.

�e algorithm employs convolutions multiple times to extract feature maps. Convolution, a

mathematical operation that combines two functions to produce a third one, is commonly

used to apply �lters to images or signals in computer vision and signal processing, thereby

emphasizing speci�c pa�erns. Additionally, it extracts features from inputs such as images in

CNN. Convolutions are characterized by Kernels, Strides, and Paddings.

�e kernel, also known as the �lter, is a small array of numbers that moves slowly across

the input (image or signal) during the convolution operation. �e goal of Kernels is to apply

local operations to the input to detect speci�c characteristics. Each element in the kernel

represents a weight multiplied by the corresponding value in the input during convolution.

27

Figure 3.2: Kernel operation

Another factor related to Convolution is stride, which is the amount of displacement the

kernel considers as it moves across the input. A stride of 1means the kernelmoves one position

at a time. Stride directly in�uences the spatial dimensions of the convolution output. Larger of

them can decrease the dimensionality of the output and reduce computational e�ort, thereby

increasing the speed of the operation, which can directly impact quality. while smaller strides

retain more spatial information.

Padding refers to adding extra pixels around the edges of the input image, also known as

zero padding. It occurs before applying convolution operations. �is ensures that information

at the image’s edges is treated the same way as information in the center during convolution

28

operations. When a �lter (kernel) is applied to an image, it typically goes through the image

pixel by pixel.

Figure 3.3: YOLOv8 Architecture

YOLOv8[7]deep CNN architecture is renowned for its high-speed and accurate detection

capabilities. YOLOv8 utilizes a similar backbone as YOLOv5, making changes to a speci�c

layer that combines advanced features with relative information to improve detection accu-

racy.incorporates advanced backbone and neck architectures to enhance feature extraction

and object detection performance. In addition, YOLOv8 utilizes an anchor-free split Ultra-

lytics head, resulting in improved accuracy and a more e�cient detection process compared

to anchor-based approaches. YOLOv8 is designed to manage diverse modes such as training,

predicting, and validating, as well as di�erent tasks including detection, segmentation, pose

estimation, and classi�cation. In the output layer, YOLOv8 uses the sigmoid function as the

activation function for the objectness score, indicating the probability that the bounding box

contains an object. It utilizes the so�max function for the class probabilities, representing the

probabilities of objects belonging to each possible class. It is utilized for its SOTA performance

in distinct tasks such as Detection, Pose, Classi�cation, Oriented Detection and Instance Seg-

mentation.. YOLOv8 can be executed from the command line interface (CLI) or installed as a

PIP package. Moreover, it comes with multiple integrations for labeling, training, and deploy-

ment. �is version of YOLO focuses on achieving an optimal balance between accuracy and

speed, making it suitable for real-time object detection tasks in various application areas.It

is utilized for its SOTA performance in distinct tasks such as Detection, Pose, Classi�cation,

Oriented Detection and Instance Segmentation. YOLOv8 is also presented in various sizes,

parameters, speed, and accuracy. �e medium size was deployed to have a trade-o� for accu-

racy, speed, and suitable parameters. �erefore, the intended model has been derived by using

29

YOLOv8 transfer learning (pre-trained model) techniques and �ne-tuning hyperparameters

during training to enhance detection rates. Moreover, in Figure 3.4, a comparison took place

related to previous versions of the YOLO and YOLOv8 that shows great mark in both speed

and accuracy of this version.

Figure 3.4: Accuracy and speed of YOLOv8[7]

3.4 Training

High-quality and diverse images with accurate bounding boxes and labels are essential. �e

input images contain objects in almost every category, such as automobiles, animals, fruits,

dairy product, furniture, obstacles, and groceries, at di�erent positions, angles, and lighting

conditions, Regarding the necessary pre-processing. Yet Another Markup Language (YAML)

is a human-readable data serialization language. It is commonly used for con�guration �les

and in applications storing the number of the classes , annotations and labeling train test, and

valid sets mostly in YOLO object detection. By reading the speci�c YAML �le related to the

dataset and considered con�gurations, �e model will step forward for each corresponding

task to improve the training process.

30

1 results = model.train(
2 data=”/content/data.yaml”,
3 epochs=20,
4 imgsz=640,
5 lr0=0.001,
6 lrf=0.01,
7 cos lr=True,
8 save period=10,
9 batch=16,
10 workers = 8,
11 momentum=0.937,
12 optimizer = 'AdamW',
13 weight decay=0.0005,
14 dropout=0.5,
15 verbose=True,
16 name='exp',
17 val=True,
18 save=True
19)

Figure 3.5: Training con�gurations.

Feature Extraction: �e �rst step is to use convolutional layers to extract image features.

�ese features capture details such as edges, textures, shapes, and more complex pa�erns as

they pass through successive layers.

Forward Propagation: �e input image is passed through the network, and the model pro-

duces predictions, including bounding boxes, class probabilities, and con�dence scores.

Loss Calculation: �e loss is calculated by comparing the model’s predictions to the ground

truth (actual bounding boxes and class labels).

Backpropagation: �e loss is propagated backward through the network to adjust the

weights. �is process involves calculating gradients and updating the weights using an opti-

mization algorithm like Stochastic Gradient Descent (SGD) or Adam, Which in our case the

AdamW was added since it would work be�er with larger dataset.

Iteration: �e forward and backward processes repeat for many iterations (epochs), with the

model gradually improving its predictions by minimizing the loss.

Role of Bounding Boxes: Bounding boxes are critical for training object detection models

since they provide spatial information about objects locations within the images. �ey will

show the impact of learning through:

Localization Information: Bounding boxes provide the coordinates for the top-le� and

bo�om-right corners of objects in the images. �is information helps the model learn to local-

ize objects accurately.

Regression Targets: �e model learns to predict bounding boxes by regressing to the coordi-

nates provided in the training data. �e quality of these predictions is crucial for the model’s

31

performance. YOLO predicts several bounding boxes for each grid cell, including their center

coordinates, width, height, and con�dence score. At the end, each cell predicts class probabil-

ities for objects detected within its bounding boxes.

Figure 3.6: Training batch with bounding boxes and labels

�emodel named feedback, was produced a�er many a�empts with various hyperparame-

ters and YOLOv8’s sizes. �e model work�ow is represented in a diagram with 4 main phases.

32

Figure 3.7: System design

3.5 Phase 1

3.5.1 Object Detection

Regarding testing the model on images, �ey will converted to RGB format and scaled appro-

priately. �e corresponding YOLO model processes this image to detect objects, returning the

results which include bounding boxes, con�dence scores, and class labels. Bounding boxes

are drawn on the image to visualize detected objects. For each detected object, a rectangle is

plo�ed around it, and a label with the class name and con�dence score is added. �e result is

displayed as the detected objects and saved in the output path.

33

1 # Initialize custom YOLO model
2 model = YOLO('feedback.pt')
3

4 def load image(image path):
5 # Load image
6 img = cv2.imread(image path)
7 return img
8

9 def detect objects(img):
10 # Convert image to RGB
11 img rgb = cv2.cvtColor(img, cv2.COLOR BGR2RGB)
12 # Perform detection
13 results = model(img rgb)
14 return results
15

16 def draw bounding boxes(img, results):
17 # Extracting bounding boxes, labels, and confidence scores
18 img height, img width = img.shape[0], img.shape[1]
19 labels = results[0].boxes.cls
20 coords = results[0].boxes.xyxy
21 confs = results[0].boxes.conf
22

23 for i in range(len(labels)):
24 x1, y1, x2, y2 = int(coords[i][0]), int(coords[i][1]), int(coords[i

][2]), int(coords[i][3])
25 label = model.names[int(labels[i])]
26 conf = confs[i]
27

28 # Draw bounding box
29 cv2.rectangle(img, (x1, y1), (x2, y2), (255, 0, 0), 2)
30 # Add label and confidence score
31 text = f”–label –conf:.2f ”
32 cv2.putText(img, text, (x1, y1 - 10), cv2.FONT HERSHEY SIMPLEX,

0.9, (255, 0, 0), 2)
33

34 return img
35

36 # Example usage
37 img path = 'Car.jpg'
38 img = load image(img path)
39

40 results = detect objects(img)
41 img with boxes = draw bounding boxes(img, results)
42

43 # Display the image with bounding boxes
44 cv2.imshow('Detected Objects', img with boxes)
45 cv2.waitKey(0)
46 cv2.destroyAllWindows()

Figure 3.8: Object detection script

�e ”for loop” iterates over the number of detected objects corresponding to the label of

them. Finally, Image with bounding box , class , and con�dence threshold will display by the

algorithm.

34

3.6 Phase 2

3.6.1 Object Counting

�e number of the detected objects is followed based on their labels and spatial locations.

A defaultdict named detected objects is initialized to store the counts and locations of each

object type. Each object’s count is incremented in detected objects [label][’count’]. �e feed-

back is created by repeating through the detected objects and generating illustrative sentences

based on their numbers and locations.

1 # Initialize defaultdict to store counts and locations
2 detected objects = defaultdict(lambda: –'count': 0, 'locations':

defaultdict(int))
3

4 for i in range(len(labels)):
5 label = model.names[int(labels[i])]
6 x1, y1, x2, y2 = int(coords[i][0]), int(coords[i][1]), int(coords[i

][2]), int(coords[i][3])
7

8 # Access count for a specific label
9 detected objects[label]['count']
10

11 # Adding count
12 detected objects[label]['count'] += 1

Figure 3.9: Code snippets for counting objects

3.7 Phase 3

3.7.1 Object Distance

�ree distinct methods were studied to detect the object spatial location. �e simplest one was

measuring the distance of an object from the camera by knowing its actual width/height and

the focal length of the camera, in addition to the sensor size either determining an estimated

width/height for each class and measuring the distance with the help of a third-party app to

join the mobile phone’s camera to the laptop. �is strategy was not as accurate as needed

since It is not easy to assign only one size for the images in a class, for example, one size for

all images related to class CAR, since the size of the classes is di�erent image by image.

Distance =
Actual W/H of the Object× Focal Length

W/H of the Object in Image

Another experienced method was looking at the size of the bounding boxes and se�ing

35

a threshold for them to determine three stages such as Close, Far, Very Far. However, the

algorithm had some errors regarding this technique; for example, it looked at the bounding

boxes of the objects and estimated the ones with low Con�dence thresholds with the small

size of the bounding boxes around them as a ”far” distance since it was not always true.

3.7.2 Object Spatial Location

�ementionedmethods were not available to completely accomplish through user experience,

�erefore, best approach was instead of information related to distance of the object , dividing

the images into a 3x3 grid to categorize the location of each detected objects. It will use the

center point of the object’s bounding box to determine its position.

x1: Le� boundary of the bounding box.

y1: Top boundary of the bounding box.

x2: Right boundary of the bounding box.

y2: Bo�om boundary of the bounding box.

img width, img height represented the image dimensions, �ese provide the width and height

of the image, necessary for converting normalized coordinates into pixel values and for loca-

tion categorization.

1 img width = img.shape[1]
2 img height = img.shape[0]

Figure 3.10: Image dimensions.

�e center of the bounding box is calculated by averaging the x-coordinates and y-

coordinates of the bounding box:

center x = (x1 + x2) / 2

center y = (y1 + y2) / 2

�is center point is used to determine the location category. �e image is conceptually divided

into a grid with nine regions.

�e divisions are:

Horizontal: Divided into three equal columns: le�, center, right.

Vertical: Divided into three equal rows: top, middle, bottom.

�e boundaries of these divisions are:

36

Horizontally:
img width

3
: First column boundary.

2 · img width

3
: Second column boundary.

Vertically:
img height

3
: First row boundary.

2 · img height

3
: Second row boundary.

1 def get location category(x1, y1, x2, y2, img width, img height):
2 center x = (x1 + x2) / 2
3 center y = (y1 + y2) / 2
4 if center x < img width / 3:
5 if center y < img height / 3:
6 return ”top-left”
7 elif center y < 2 * img height / 3:
8 return ”left”
9 else:
10 return ”bottom-left”
11 elif center x < 2 * img width / 3:
12 if center y < img height / 3:
13 return ”up”
14 elif center y $<$ 2 * img height / 3:
15 return ”center”
16 else:
17 return ”down”
18 else:
19 if center y < img height / 3:
20 return ”top-right”
21 elif center y < 2 * img height / 3:
22 return ”right”
23 else:
24 return ”bottom-right”

Figure 3.11: Location category based on coordinates

�e function get location category takes the bounding box coordinates and the image di-

mensions as inputs. It uses the following logic to categorize the location in nine equal sections.

37

Column Formula Spatial location

Le� Column centerx <
img width

3

Top centery <
img height

3
top-le�

Middle img height

3
≤ centery <

2·img height

3

le�

Bo�om centery ≥
2·img height

3
bottom-le�

Middle Column img width

3
≤ centerx <

2·img width

3

Top centery <
img height

3
up

Middle img height

3
≤ centery <

2·img height

3

center

Bo�om centery ≥
2·img height

3
down

Right Column centerx ≥
2·img width

3

Top centery <
img height

3
top-right

Middle img height

3
≤ centery <

2·img height

3

right

Bo�om centery ≥
2·img height

3
bottom-right

Table 3.1: Categorizing the location.

top-le� up top-right

le� center right

bottom-le� down bottom-right

Table 3.2: Visualization of the 3x3 grid

3.8 Phase 4

3.8.1 Text to Speech

�e process of providing audio feedback for detected objects involves aggregating informa-

tion such as their names, numbers and locations, converting this data into spoken feedback

using a text-to-speech engine. �is step enhances user interaction by allowing them to receive

immediate, audible updates about the objects detected in a scene.

1 # Initializing the text-to-speech engine
2 engine = pyttsx3.init()

Figure 3.12: initializing text-to-speech engine

�e results contains the detection results from the YOLOmodel, labels contain the detected

class indices and coords contains the normalized coordinates (x1, y1, x2, y2) and con�dence

38

scores for the bounding boxes. Defaultdict is a specialized dictionary from the collections

module. It initializes entries with a default structure with keys count and locations. count

keeps track of the total number of each type of detected object. locations uses another de-

faultdict to count occurrences of each object in speci�c spatial categories. �e function pro-

vide audio feedback encapsulates the entire process in order to generating and delivering audio

feedback.

1 def provide audio feedback(results, img width, img height):
2 labels = results[0].boxes.cls
3 coords = results[0].boxes.xyxy
4 detected objects = defaultdict(lambda: –'count': 0, 'locations':

defaultdict(int))
5

6 for i in range(len(labels)):
7 label = model.names[int(labels[i])]
8 x1, y1, x2, y2 = int(coords[i][0]), int(coords[i][1]), int(coords[i

][2]), int(coords[i][3])
9 location category = get location category(x1, y1, x2, y2, img width

, img height)
10 detected objects[label]['count'] += 1
11 detected objects[label]['locations'][location category] += 1

Figure 3.13: Code Snippets �rough a Loop

Regarding the function ”def provide audio feedback (results)” a looping procedure imple-

mented for each detected object updating it’s counts and spatial location by extract its label

and bounding box coordinates and converts the normalized coordinates to pixel values by

multiplying by the image dimensions. It also employs the label index to get the actual class

name from the YOLO model names array.

get location category calls the function to determine the spatial category of the object. In-

crement the count for the object’s label and the count for its location in the detected objects

dictionary.

39

3.8.2 Generating the Audio Feedback

1 if detected objects:
2 feedback parts = []
3 for label, info in detected objects.items():
4 count = info['count']
5 if count == 1:
6 location = next(iter(info['locations']))
7 feedback parts.append(f”one –label at the –location ”)
8 else:
9 locations = [f”–loc count at the –loc ” for loc, loc count in

info['locations'].items()]
10 feedback parts.append(f”–count –label s: ” + ”, ”.join(

locations))
11 feedback = ”I see: ” + ”, ”.join(feedback parts)
12 else:
13 feedback = ”No objects detected.”

Figure 3.14: Feedback Generation

By inspecting the detected objects dictionary, algorithm checks if any objects were detected,

Creating a list to store parts of the feedback message.

�nally it Joins all parts into a single feedback message for example : ”I see one object at the

location”.

If no objects are detected, the feedback message set to ”No objects detected”.

3.8.3 Delivering the Audio Feedback

1 engine.say(feedback)
2 engine.runAndWait()

Figure 3.15: Delivering the Audio Feedback

Audio feedback will be provided to the user immediately a�er processing. �e output will

be represented on the console as well. �e engine will activate audio feedback to announce the

result, ”�rst specifying the total number of classes, the ones with more detection, separated

each with a matching location, and then the objects with less detection”. �e feedback will be

stored in MP3 or any other supported format.

3.8.4 Language Modifying

gTTS will allow the Algorithm to perform on additional languages to have compatibility with

various users. �is process impacted future work focusing on the virtual assistant shape pro-

40

gram.

1 # Translating audio to Italian
2 translated feedback = translator.translate(feedback, src='en', dest='it').

text
3

4 # Print translated feedback
5 print(translated feedback)
6

7 # modify language to supported ones in google translate : de,fr etc
8 tts = gTTS(translated feedback, lang='it')
9 tts.save('audio feedback.mp3')
10 audio = AudioSegment.from mp3('audio feedback.mp3')
11 play(audio)
12 os.remove('audio feedback.mp3')

Figure 3.16: Language Modifying Script

By Modifying the dest string to accessible languages from Google Translate, the feedback

will also provide the represented language. Figure 3.16 demonstrated feedback in console in

Italian language.

3.9 Speech Recognition

A semi-virtual assistant program has been incorporated into the system to improve user expe-

rience and engagement. �is speech recognition algorithmwill speci�cally address the stream-

ing functionality, particularly the webcam feature. Upon activation, the algorithm will initiate

by asking, ”How can I help you?” and then remain in a listening mood for the user’s command.

Once the user issues the command, ”What do you see?” the webcamwill be activated, allowing

it to provide feedback on any detected objects.

41

1

2 # Recognizing voice commands
3 def recognize command():
4 recognizer = sr.Recognizer()
5 with sr.Microphone() as source:
6 print(”Listening...”)
7 audio = recognizer.listen(source)
8

9 try:
10 command = recognizer.recognize google(audio)
11 print(f”User said: –command ”)
12 return command.lower()
13 except sr.UnknownValueError:
14 engine.say(”Sorry, I did not understand that.”)
15 engine.runAndWait()
16 return None
17

18 # manage the interaction
19 def main():
20 cap = cv2.VideoCapture(0) # Open the webcam
21 if not cap.isOpened():
22 print(”Error: Could not open video stream.”)
23 return
24

25 while True:
26 ret, frame = cap.read()
27 if not ret:
28 break
29

30 # Recognize voice commands
31 command = recognize command()
32 if command:
33 if ”what do you see” in command:
34 detect and announce(frame)
35 elif ”exit” in command or ”quit” in command:
36 engine.say(”Exiting the program.”)
37 engine.runAndWait()
38 break
39 else:
40 engine.say(”Command not recognized. Please try again.”)
41 engine.runAndWait()
42

43 cap.release()
44

45 if name == ” main ”:
46 main()

Figure 3.17: Speech recognition code snippets

On the other hand, the user can input the command ”capture image”, and the algorithm

will utilize the webcam to capture an image, process it, and generate audio feedback. �is

functionality is currently limited to these features. However, plans are in place to expand its

capabilities by integrating two bu�ons into the hardware. �e �rst bu�on would work when

the user holds it and request the algorithm to describe the environment in real-time. �e other

bu�on would act as a second choice, allowing user to press it, capture the environment, and

42

then process it by the algorithm to provide feedback. �is approach, which involves integrat-

ing hardware and camera sensors, aims to o�er extensive assistance for blind individuals.

43

Chapter 4

Results and Discussion

Current chapter comprehensively overviews the �ndings obtained through the employed

methodologies. Subsequent sections outline the fundamental aspects of system development

and performance evaluation regarding all the phases undertaken during the project.

4.1 System Implementation

Processing was carried out on a Dell Inspiron 14 laptop with an Iris Xe onboard graphic, a Core

i7 CPU, and 16 GB RAM. For the training, Google Colab Pro was used with various epochs

and an image size of 640 pixels, which is needed for YOLOv8. It took around 4 hours, and the

runtime L4 GPU with 22.5 GB was used. Di�erent hyperparameters and YOLOv8 sizes (nano,

small, medium, large, and extra large) were tested to achieve the best balance between speed

and accuracy. Ultimately, the YOLOv8 (Medium) model was chosen to balance accuracy and

speed. �is version had a normal number of parameters, and the Floating Point Operations

Per Second (FLOPS) to be supported by the system.�e system was tested on webcam as a

stream scenario, images and videos through di�erent formats and various states. To test the

algorithm, the webcam of the laptop was employed. Google Colab does not easily support the

webcam due to privacy concerns. �erefore , the model was analyzed on JupyterLab regarding

all the steps.

45

4.2 Experimental Setup

4.2.1 Framework

A�er training, the model was exported to PyTorch framework to test the weight on unseen

data. PyTorch framework has been Utilized to load and interact with the YOLO. It is worth

mentioning that a�er YOLOv5, the framework has changed from Darknet to PyTorch. Py-

Torch, developed by Ultralytics[30], a popular DL framework. �is version was not an o�-

cial continuation by the original YOLO authors but became widely adopted due to its ease of

use, extensive documentation, and active community support. �e PyTorch implementation

facilitated integration, training, and deployment in various Machine Learning (ML) and DL

environments.

4.2.2 Dataset limitation

�e total number of datasets a�er augmentation was almost 13000, split to train 80%, test 10%,

and validation sets 10%.

Figure 4.1: Class labels

Regarding the resource datasets and their limitations to the speci�c type, was due to having

46

both results on indoor and outdoor navigation such as stepping around at home and going out

for shopping and taking care of the obstacles. �e system’s performance in diverse scenarios

demonstrates its potential to enhance autonomy and quality of life for blind users signi�cantly.

�is practical algorithm o�ers safer and more e�cient navigation capabilities.

4.3 Performance Metrics and Evaluation Criteria

During the training process, YOLOv8 allows themodel to be validated bymonitoring the result

to see over��ing and under��ing signs. �e Training process was developedwith outstanding

metrics. Regarding mAP 89% Precision and recall 84%, 86% respectively.

Figure 4.2: Training log

�e system’s performance was evaluated using particular metrics.

4.3.1 Accuracy

Detection Accuracy: To evaluate detection accuracy, two main plots were used: the Confu-

sionMatrix and the F1-score. �e confusion matrix helps assess object prediction performance

by comparing true (actual) and predicted classes. �e X-axis represents the true object classes,

while the Y-axis represents the predicted object classes by the model.

Upon reviewing the plot, it is evident that the most con�dent detections are for the classes

Tree, So� drink, and Bus, the value is 1.00 (very high). �is suggests the model correctly clas-

si�ed an object labeled with high con�dence while the least con�dent detection is related to

the class Person with value 0.50. �is di�erence is in�uenced by the diversity in the dataset

related to class person, varying from small to large sizes and close to far distance. During de-

tection, most instances relate to the class cutlery, which had numerous labels and annotations

during the preprocessing step.

47

Overall, all objects demonstrate satisfactorily performance, with only a few background detec-

tions for each. �is false detection can be a�ributed to not annotating all objects in an image

and not speci�cally training the model on background characteristics.

Figure 4.3: Confusion matrix

�e F1-Curve which is the mean of precision and recall de�ning by two axes: �e x-axis

represents the con�dence threshold from 0 to 1. �e y-axis represents the F1 score, in a same

range. �e mentioned curve obtained the result at 0.85 regarding con�dence in accuracy that

all objects meet. Moreover, a combination of precision and recall is presented in detail to

analyze them separately.

Figure 4.4: F1-Score and PR-Curve

Localization Accuracy: Refers to the precision of spatial position descriptions, which

was quantitatively measured to assess the correctness of the described spatial positions. Lo-

48

calization accuracy is a vital measure of an object detection model performance. It speci�es

how accurately the detected bounding box corresponds to the ground truth box. IoU is the

main metric that will delve into this accuracy by measuring the overlap between the predicted

bounding box and the actual bounding box.

4.3.2 �e Loss

�e loss function for object detection typically considers:

Localization Loss: refers to a metric that quanti�es the disparity between the predicted

bounding boxes and the actual ones in object detection and localization tasks. By comparing

the predicted and actual bounding boxes, the localization loss provides crucial feedback for

the model to improve its ability to precisely locate objects.

Classi�cation Loss: It calculates the di�erence between the predicted probabilities of each

class and the true class labels. It quanti�es how well the predicted probabilities align with the

actual class labels, measuring the model’s performance in classifying the input data.

Con�dence Loss: Measures how con�dent the model is about the presence of an object

within the predicted bounding boxes over the epochs, All these three Losses were decreased

with growing the epochs on the other hand validation Losses related to the ones mentioned

for training , were decreased as well to stable the model and not showing any Over��ing

sign.

Overall detection performance was quanti�ed using mAP.

Figure 4.5: Training result

the model named ”feedback” obtained A�er training and has been validated on unseen data

in order to ensure that it is not only learning especial pa�ern and generalize it on real world

data.

49

Figure 4.6: Validation label and Validation Prediction

4.3.3 Speed

Regarding themodel’s speed, we decided to go with the YOLOv8medium size, which boasts an

impressive speed of 2.26ms. It is essential to note that prioritizing speed over accuracy isn’t

always the best approach, especially when opting for larger models, as this could increase

parameters. Despite this, the model delivers a strong performance with a reasonable average

total processing time per image. �e speed considerations include both the inference and

post-processing techniques as well, techniques such as NMS

4.4 Analyzing of Model Performance

4.4.1 Object Detection

�e �rst step regarding testing the model was implementing it on unseen images to analyze

how it works.

50

Figure 4.7: Detection result

the model evaluates its predicted bounding boxes by comparing them with the true boxes

using IoU to measure how accurately the model has located the objects. Higher IoU scores

indicate more accurate localization. A�er IoU determined, YOLO will use NMS as a post pro-

cessing technique to eliminate duplicate bounding boxes for the same object, keeping only

the most con�dent predictions. �e workload of IoU, NMS and Con�dence threshold could

be signi�cant, especially in blind assistance scenarios where providing feedback could become

challenging due to the presence of many objects. For this reason, an IoU of 0.7 was determined

to safely detect ordinary amount of objects.

51

Figure 4.8: Model �rst performance

In Figure 4.8, there are two buses with a con�dence threshold above 0.90 and two cars with

di�erent con�dence thresholds, one 0.89 and another 0.39.

First, by adjusting this parameter to 0.90, the results in Figure 4.9 will demonstrate that

one object in class Car and another in class Bus are wholly removed from the detection. �e

other parameter was set to 0.33�is will keep the ones above this ratio, removing the car with

a con�dence threshold of about 0.32.

Figure 4.9: Adjusting parameters

Moreover by indicating IoU very high it will detect some extra detections out of each object

which NMS will discard the ones with lowest con�dence.

However, the model also makes some errors regarding detection. For example, the �g-

ure 4.10 illustrates that the model incorrectly predicted a cup as a so� drink because of the

52

similarity between the bounding boxes.

Figure 4.10: Evaluation detection accuracy

Ignoring these few false detections about the model showed signi�cant results in both

speed and accuracy throughout the whole procedure, such as streaming, image processing,

and video analysis. Regarding the video and real-time application, the challenging part is

detecting frame by frame to implement it with the best impact on blind people in terms of

accuracy and speed. Furthermore, it was investigated in di�erent lighting environments.

53

Figure 4.11: Real time example

4.4.2 Object’s Spatial Location

Due to the lack of availability of the actual sizes and sensors, such as the camera, �e best

approachwas, instead of the distance, having feedback about the spatial location of the objects.

�e image is divided into nine equal sections in all directions regarding spatial location. �e

algorithm accuracy was displaying signi�cant results out of detection in any direction.

Figure 4.12: Practical result

Figure 4.12 represents a practical result of all the procedures, especially spatial location,

54

which is printed on the console beside the audio playback. It printed the spatial location of

each detected object related to the class Car, describing them at the down, bo�om le�, and

tra�c light at the up, that are entirely correct.

4.5 Audio feedback analysing

In the case of an image, the practical result is providing feedback a�er capturing and processing

the data. For video sources, the video is analyzed frame by frame, available for adjusting

to detect objects in each frame, storing the result separately, and providing feedback during

analysis. In a real-time application, the webcam processes the environment as a live stream

and sends feedback frame by frame.

Figure 4.13: Printing audio on console

In order to have the application in di�erent languages, implementing on gTTS was con-

sidered integrating with a Google translate library to translate simply to the other languages,

enhancing user experience. Figure 4.14, corresponds to the practical result out of language

modi�cation in Italian. It is reasonable to point out that in all the processes, the response time

of the audio was almost immediate except for the video part, which was slightly challenging.

55

Figure 4.14: Italian Language

4.6 A Prototype of Virtual Assistant

as a prototype for virtual assistant, a speech recognition algorithm separately was studied to

detect objects. �is feature will allow users to interact with a semi-virtual assistant through

a few talking procedures. �is algorithm is focused on working only on a webcam, which

can be the primary procedure and satisfactory in all tasks. However, future work would focus

on an entire virtual assistance program. represents a practical result of the it. the algorithm

started by saying to the user, ”How can I help you?” �en, it remains in listening mode to

acquire the user’s command. In this example, a�er the user provides the command ”Hello,”

the algorithm will deliver feedback as ”Command not recognized. Please try again.” Finally,

the correct command was implemented, as well as the result.

56

Figure 4.15: Speech recognition practical result

In the Figure 4.16, Another interaction occurred between the user and the algorithm. In

this case, instead of capturing, the algorithm would describe all the objects that can be seen

and provide feedback. �is form of analysis will improve real-time applications.

Figure 4.16: Speech recognition another practical result

57

Chapter 5

Limitations and Future Work

Due to the lack of accessibility to hardware such as Arduino or Raspberry Pi, the current

program remained theoretical-based. On the other hand, future developments will focus on

improving the detection algorithm with be�er metrics regarding the accuracy and speed in-

volved in implementing it on hardware. Besides the improvements of the current algorithm,

text recognition using the OCR and a color sensor can be used for a wide range of tasks. �e

concept for future hardware involves eyeglasses with a�ached hardware, including a color

sensor and a microphone, to provide feedback. �e proposed wearable system would have

two bu�ons: one dedicated to capturing and sending processed information and another for

real-time recording and feedback. �e hardware would be compact and user-friendly, and the

power supply would be a rechargeable ba�ery. Furthermore, the audio feedback will be en-

hanced to provide a form of virtual assistance, o�ering users a more interactive, supportive

experience. During the composition of this thesis, newer versions of the YOLO algorithm,

YOLOv9[31] and YOLOv10[32], were announced. Regre�ably, YOLOv9 was not easily acces-

sible and did not readily accommodate audio guidance. Shortly a�er the completion of the

thesis, YOLOv10 was released. It is anticipated that these impressive versions with outstand-

ing transformations in YOLO object detection era, will be used in upcoming a�empts.

59

Chapter 6

Conclusions

�is research successfully implemented a real-time object detection and localization system

using the YOLOv8 model, speci�cally tailored to assist blind individuals. �e system was �ne-

tuned on a custom dataset using a pre-trained YOLOv8 (Medium) size, Achieving a supreme

mAP of 89%. �e system was tested using a standard webcam along with images and videos to

facilitate practical applications, simulating real-world conditions where dedicated hardware

was unavailable. �e object detection component identi�ed objects and determined their spa-

tial positions and the number of objects, providing descriptive feedback. �is positional infor-

mation was converted into auditory feedback, o�ering users immediate and intuitive spatial

awareness. Future work would focus on testing with dedicated hardware for enhanced per-

formance and exploring additional sensory modalities to provide more comprehensive envi-

ronmental awareness.

61

Acronym

CNN Convolutional Neural Network

WHO World Health Organization

CV Computer Vision

AI Arti�cial Intelligence

ML Machine Learning

DL Deep Learning

YOLO You Only Look Once

mAP Mean Average Precision

AP Average Precision

OCR Optical character recognition

gTTS Google Text-To-Speech

IoU Intersection Over Union

SOTA State-Of-�e-Art

FLOPS Floating Point Operations Per Second

NMS Non Maximum Suppression

RCNN Region-based Convolutional Neural Network

MCI Management Center Innsbruck

RFID Radio Frequency Identi�cation Devices

YAML Yet Another Markup Language

SGD Stochastic Gradient Descent

FLOPS Floating Point Operations Per Second

CLI command line interface

63

Bibliography

[1] . Redmon, S. Divvala, R. Girshick, and A. Farhadi. You only look once: Uni�ed, real-time

object detection. In Proceedings of the IEEE Conference on Computer Vision and Pa�ern

Recognition, pages 779–788, 2016.

[2] Juan Terven, Diana-Margarita Córdova-Esparza, and Julio-Alejandro Romero-González.

A comprehensive review of yolo architectures in computer vision: From yolov1 to yolov8

and yolo-nas. Machine Learning and Knowledge Extraction, 5(4):1680–1716, November

2023.

[3] Saravanan Alagarsamy, T. Dhiliphan Rajkumar, K. P. L. Syamala, Ch. Sandya Niharika,

D. Usha Rani, and K. Balaji. A real-time object detection method for visually impaired

using machine learning. In Proceedings of the 2023 International Conference on Computer

Communication and Informatics (ICCCI), pages 1–6, 2023.

[4] Martin Eckert, Ma�hias Blex, and Christoph Friedrich. Object detection featuring 3d

audio localization for microso� hololens: A deep learning based sensor substitution ap-

proach for the blind. In Proceedings of the 13th International Joint Conference on Computer

Vision, Imaging and Computer Graphics �eory and Applications (VISIGRAPP), pages 555–

561, January 2018.

[5] Dr. Boobalan, Bhuvanikha S, Sivapriya M, and Sivakumar R. Object detection with voice

guidance to assist visually impaired using yolov7. International Journal for Research in

Applied Science and Engineering Technology, 11(4):764–768, April 2023.

[6] Armin Masoumian, David G.F. Marei, Saddam Abdulwahab, Julián Cristiano, Domenec

Puig, and Hatem A. Rashwan. Absolute Distance Prediction Based on Deep Learning Object

Detection and Monocular Depth Estimation Models. IOS Press, October 2021.

[7] Glenn Jocher, Ayush Chaurasia, and Jing Qiu. Ultralytics yolov8, 2023.

65

[8] GBD 2019 Blindness, Vision Impairment Collaborators, and Vision Loss Expert Group

of the Global Burden of Disease Study. Causes of blindness and vision impairment in

2020 and trends over 30 years, and prevalence of avoidable blindness in relation to vision

2020: the right to sight: an analysis for the global burden of disease study. Lancet Global

Health, 9(2):e144–e160, Feb 2021.

[9] T. R. Fricke, N. Tahhan, S. Resniko�, E. Papas, A. Burne�, M. H. Suit, T. Naduvilath, and

K. Naidoo. Global prevalence of presbyopia and vision impairment from uncorrected

presbyopia: Systematic review, meta-analysis, and modelling. Ophthalmology, May 2018.

[10] J. Bernal, K. Kushibar, D. S. Asfaw, S. Valverde, A. Oliver, R. Martı́, and X. Lladó. Deep

convolutional neural networks for brain image analysis on magnetic resonance imaging:

A review. Arti�cial Intelligence in Medicine, 95:64–81, 2019.

[11] M. Kashiha, C. Bahr, S. O�, C. P. Moons, T. A. Niewold, F. Ödberg, and D. Berckmans.

Automatic identi�cation of marked pigs in a pen using image pa�ern recognition. Com-

puters and Electronics in Agriculture, 93:111–120, 2013.

[12] . Heimberger, J. Horgan, C. Hughes, J. McDonald, and S. Yogamani. Computer vision in

automated parking systems: Design, implementation and challenges. Image and Vision

Computing, 68:88–101, 2017. Automotive Vision: Challenges, Trends, Technologies and

Systems for Vision-Based Intelligent Vehicles.

[13] Yann LeCun, Yoshua Bengio, and Geo�rey Hinton. Deep learning. nature, 521(7553):436,

2015.

[14] S. Surendarkumar, M. Ranjithkumar, B. Deepanraj, M. Sivashankar, and M. Umapathy.

Blind people assistance for object detection using ai. Journal of Computer Science and

Engineering, 2020. Computer Science and Engineering, �e Kavery Engineering College,

Mecheri, Tamilnadu, India.

[15] Pradnya Kasture, Akshay Tangade, Aditya Pole, Aishwarya Kumkar, and Yash Jagtap.

Real-time object detection using yolo algorithm for blind people. International Journal of

Advanced Research in Science, Communication and Technology, 2021.

[16] Pranjali Deshmukh, Ajinkya Khedkar, Shubham Kulkarni, and Shriram Morkhandikar.

Object detection for blind people using yolov3. International Journal for Research in Ap-

plied Science & Engineering Technology (IJRASET), 11(5):498–504, May 2023.

66

[17] Juan Du. Understanding of object detection based on cnn family and yolo. Journal of

Physics: Conference Series, 1004(1):012029, apr 2018.

[18] Geethapriya. S, N. Duraimurugan, and S. P. Chokkalingam. Real-time object detec-

tion with yolo. International Journal of Engineering and Advanced Technology (IJEAT),

8(3S):2249–8958, February 2019. ISSN: 2249-8958.

[19] Ferdousi Rahman, Israt Jahan Ritun, Na�sa Farhin, and Jia Uddin. An assistive model for

visually impaired people using yolo and mtcnn. In Proceedings of the 3rd International

Conference on Cryptography, Security and Privacy, ICCSP ’19, pages 225–230, New York,

NY, USA, 2019. Association for Computing Machinery.

[20] Rajeshvaree Karmarkar and Vikas Honmane. Object detection system for the blind with

voice guidance. International Journal of Engineering Applied Sciences and Technology, 6(2),

June 2021.

[21] Mansi Mahendru and Sanjay Kumar Dubey. Real time object detection with audio feed-

back using yolo vs. yolo v3. In Proceedings of the 2021 11th International Conference on

Cloud Computing, Data Science & Engineering (Con�uence), pages 734–740, 2021.

[22] Simranjeet Kaur, Anup Lal Yadav, and Abhishek Joshi. Real time object detection. In

Proceedings of the 2022 International Conference on Cyber Resilience (ICCR), pages 1–5,

2022.

[23] Venkata Mandhala, Debnath Bha�acharyya, Vamsi Bandi, and N.�irupathi Rao. Object

detection using machine learning for visually impaired people. International Journal of

Current Research and Review, 12(2):157–167, January 2020.

[24] Raihan Bin Islam, Samiha Akhter, Faria Iqbal, Md. Saif Ur Rahman, and Riasat Khan. Deep

learning based object detection and surrounding environment description for visually

impaired people. Heliyon, 9(6):e16924, 2023.

[25] Nada N. Saeed, Mohammed A.-M. Salem, and Alaa Khamis. Android-based object recog-

nition for the visually impaired. In 2013 IEEE 20th International Conference on Electronics,

Circuits, and Systems (ICECS), pages 645–648, 2013.

[26] Rahul Kumar, Sanjesh Kumar, Sunil Lal, and Praneel Chand. Object detection and recog-

nition for a pick and place robot. In Proceedings of the 2014 International Conference on

Computer Vision and Robotics, November 2014.

67

[27] Samkit Shah. Cnn based auto-assistance system as a boon for directing visually impaired

person. In 3rd International Conference on Trends in Electronics and Informatics (ICOEI),

pages 1–5. IEEE, 2019.

[28] Jack M. Loomis. Digital map and navigation system for the visually impaired. Technical

report, Department of Psychology, University of California, Santa Barbara, 1985.

[29] B. Dwyer, J. Nelson, T. Hansen, et al. Robo�ow (version 1.0) [so�ware], 2024. Computer

vision so�ware.

[30] Glenn Jocher. Ultralytics yolov5, 2020.

[31] Chien-Yao Wang, I-Hau Yeh, and Hong-Yuan Mark Liao. Yolov9: Learning what you

want to learn using programmable gradient information, 2024.

[32] Ao Wang, Hui Chen, Lihao Liu, Kai Chen, Zijia Lin, Jungong Han, and Guiguang Ding.

Yolov10: Real-time end-to-end object detection, 2024.

[33] F. Liu, Z. Lu, and X. Lin. Vision-based environmental perception for autonomous driv-

ing. Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile

Engineering, 0(0), 2023.

[34] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human detec-

tion. 2005 IEEE Computer Society Conference on Computer Vision and Pa�ern Recognition

(CVPR’05), 1:886–893 vol. 1, 2005.

[35] Ma�hew Blaschko and Christoph Lampert. Learning to localize objects with structured

output regression. In Proceedings of the European Conference on Computer Vision (ECCV)

2008, volume 5302 of Lecture Notes in Computer Science, pages 2–15, Berlin, Heidelberg,

October 2008. Springer.

[36] Marek Vajgl, Petr Hurtik, and Tomáš Nejezchleba. Dist-yolo: Fast object detection with

distance estimation. Applied Sciences, 12(3), 2022.

68

70

	Abstract
	Acknowledgements
	Introduction
	Background and Motivation
	Problem Statement
	Objective of The Study
	Deep learning for computer vision application
	Convolutional Layer
	Pooling Layer
	Network training
	Backpropagation
	Fully Connected Layers

	Object Detection
	Single stage detection
	Two stage detection

	Object detection models performance evaluation metrics
	Precision
	Recall
	F1-Score
	Average Precision

	YOLO (You Only Look Once)
	Step-by-Step Insights into YOLO
	Residual blocks
	Bounding box regression
	Intersection over Union
	Non-Maximum suppression

	Related Works
	A Comprehensive Review of YOLO Architectures in Computer Vision: From YOLOv1 to YOLOv8 and YOLO-NAS
	Real-Time Object Detection Using Yolo Algorithm for Blind People
	An Real Time Object Detection Method for Visually Impaired Using Machine Learning
	Object Detection for Blind People Using Yolov3
	Understanding of Object Detection Based on CNN Family and YOLO
	Real-Time Object Detection with YOLO
	An Assistive Model for Visually Impaired People using YOLO and MTCNN
	Object Detection System For The Blind With Voice guidance
	Real Time Object Detection with Audio Feedback using Yolo vs. Yolov3
	Real Time Object Detection
	Object Detection Using Machine Learning for Visually Impaired People
	Object Detection Featuring 3D Audio Localization for Microsoft HoloLens: A Deep Learning Based Sensor Substitution Approach for the Blind
	Deep learning based object detection and surrounding environment description for visually impaired people
	Object Detection with Voice Guidance to Assist Visually Impaired Using YOLOv7
	Android Based Object Recognition for Visually Impaired
	Object Detection and Recognition for a Pick and Place Robot
	Assistive Technologies for Obstacle Detection and Identification
	Absolute Distance Prediction Based on Deep Learning Object Detection and Monocular Depth Estimation Models
	Existing Systems
	Wearable Devices
	Smartphone Applications
	Robotics
	Websites

	Proposed Method
	Tools and Libraries
	Dataset and Data Augmentation
	YOLOv8
	Training
	Phase 1
	Object Detection

	Phase 2
	Object Counting

	Phase 3
	Object Distance
	Object Spatial Location

	Phase 4
	Text to Speech
	Generating the Audio Feedback
	Delivering the Audio Feedback
	Language Modifying

	Speech Recognition

	Results and Discussion
	System Implementation
	Experimental Setup
	Framework
	Dataset limitation

	Performance Metrics and Evaluation Criteria
	Accuracy
	The Loss
	Speed

	Analyzing of Model Performance
	Object Detection
	Object's Spatial Location

	Audio feedback analysing
	A Prototype of Virtual Assistant

	Limitations and Future Work
	Conclusions
	Acronyms
	Bibliography

