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Abstract

The handover of objects consists of a joint action of a giver transferring an object to a receiver.
Providing such capability to collaborative robots is crucial for human-robot collaboration in
manufacturing scenarios, especially when people are involved. The objective of this work is to
provide a general framework for a real-time, object-agnostic human-to-robot handover. After
the generation of a point cloud of the scene by means of a single RGB-D sensor mounted on the
robot’s gripper, the proposed method comprises three phases. The first one involves the segmen-
tation of the scene, which allows to distinguish between the human hand and the object being
held. The second phase consists of generating a set of possible grasps from the elaborated scene.
Finally, the third phase regards the selection of the feasible grasp poses according to three de-
fined criteria. The proposed approach consists of constructing a possible implementation for the
Human-To-Robot handover task, leveraging and modifying models found in the literature. In
particular, a faster version of the EgoHOS [1]] model, Fast-EgoHOS, for the segmentation task
has been proposed and compared to its original implementation, named Complete-EgoHOS.
Moreover, a comparison has been conducted between three state-of-the-art models for grasp
generation, which are GraspNet [2]], 6-DoF GraspNet [3]], and Contact-GraspNet [4]. Based on
the best segmentation-grasp detection model configuration, identified through an offline evalu-
ation in terms of accuracy, execution time, and grasp quality, an online evaluation is performed.
This is conducted by measuring the success rate and the time needed to perform an handover
attempt. The presented approach allows us to achieve a value of loU of Fast-EgoHOS of 78.8%
compared to the 82.84% of Complete-EgoHOS, with a significant advantage in terms of infer-
ence time. In the online evaluation, a grasp success rate of 82.9% is achieved with the Fast-
EgoHOS-Contact-Graspnet configuration and of 80.3% with Fast-EgoHOS-Graspnet. Results

are obtained considering a set of 19 distinct objects presented in various positions.
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Chapter 1
Introduction

In recent years, there has been a growing interest in the collaboration between humans and
robots in industrial and social environments, especially in dynamic and unstructured settings.
This is also evidenced by the increasing number of global sales and integration of collaborative
robots in industry [5]], [6], which are designed to work alongside human workers. One of the
key challenges in developing cobots is the development of appropriate systems to effectively
respond and perceive to external stimuli, especially in workspaces that may include the presence
of people [7]]. These robots are employed in various scenarios, such as warehouse management
[6]], healthcare [8] and agriculture [9]], where flexibility, dexterity, and adaptability are important

factors to be considered.

The interaction between people and collaborative robots can be summarized as cooperation
and collaboration. These terms are typically used interchangeably in Human-Robot Interaction
(HRI) research, although they are not the same concept. The cooperation between agents is
described as a sequence of independently executed actions towards a shared goal. In contrast,
collaboration is described as a sequence of shared actions towards a common goal [6], [[10].
Collaboration between humans and robots can be exemplified as the combined actions needed
to achieve a common task, i.e. assembling an object. In this particular context, a robot may
collaborate with a human operator by passing the appropriate object at the right time, or, in an

industrial environment, helping him to transport part of it.

The ability of robots to interact with diverse and unpredictable environments is an essential
skill for human-robot interaction, with object manipulation being an important part of it [11]—
[15]]. One of the ways robots can interact with objects is by grasping them, which is the action
of constraining an object by applying forces and torques on its surface [16]].

For a robotic arm, manipulating the environment can be challenging in terms of perception,
planning and control. Let us take as an example the pick-and-place problem, which requires the

robot to move an object from one location to another. The perceptual aspect of this problem
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Figure 1.1: Illustration taken from [[19]. This image shows an example of how grasps in the H2R
paradigm can be pre-planned according to the manner in which an object is held by a person.

concerns the robot’s ability to perceive its surrounding environment, identifying the objects in
the scene. In particular, the perception must focus on the object to be picked up and on the contact
points that would lead to a robust grip. Once the target object has been selected, a set of possible
grasps must be computed, selecting only those which are located within the robot’s workspace.
At this point, the planning and control systems need to identify which is the optimal route to
reach the generated grasp, while avoiding other elements present in the scene. The overall task
can be computationally expensive, proportional to the number of robot degrees of freedom to
be managed [|17]. The task can also be challenging depending on the system’s knowledge about
its surrounding, particularly in the case of objects with unknown characteristics, such as size,

weight, or shape.

The pick-and-place task can be further complicated when a human being is involved, for
instance, when an object needs to be picked up from their hand or vice versa. In such cases,
the action performed is termed object handover, which is the act of transferring an object from
a giver to a receiver [15]]. The challenges are mainly the same as the previous example, with a
particular emphasis on the safety aspect. In fact, the robot must take into account the motions

and the unpredictability of the person.

According to the definition of object handover, there are three distinct paradigms between
human and robot agents: human-to-human (H2H), robot-to-human (R2H), and human-to-robot
(H2R). H2H interactions, in the context of handover, refer to the joint actions between two hu-
mans exchanging an object. Although this type of actions may appear natural to us, it involves
different and complex aspects, from the representation of the goals to the processes for accom-
plishing them. These processes may include monitoring the execution of the task and predicting
the action the other agent may perform. People tend to form representations either of their own
goals and tasks and those of their partner. They also monitor the advancement of the tasks and

try to predict the outcome of one’s actions in the immediate future [18]].

On the other hand, R2H and H2R handover paradigms involve the presence of a robot as the
giver or the receiver. In both cases, the main actions to be performed are similar to the ones of

the H2H paradigm. To better clarify this concept, it is possible to define a sequence of actions
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Figure 1.2: Illustration taken from . This image shows where a suitable location for human-
robot interaction can be located. In particular, it can be located at the intersection between both
human and robot workspace. The image illustrates this area for various distances (70cm, 110cm,
150cm) between the two agents.

that are in common to the three paradigms. The first one involves the communication of intents,
which is the ability of communicate and comprehend the intentions of the other agent. In the
case in which the human agent passes an object to the robot, the intent of the person can be in-
terpreted by robots, for instance, analysing human’s kinematic features [21]]. The second action
is the grasp planning, which consists of the giver planning their motions considering the task of
the receiver. For instance, in case the task involves a handover, the giver considers how to grasp
the object so as to offer it to the receiver in the best way possible. An example of this is pro-
vided by Figure where some predefined grasps poses are defined. The third action is about
the perception of the scene, which is the ability of gathering information about the surrounding
environment. For human-robot handovers, it consists of distinguishing the human’s body, the
object to pick and the elements being part of the environment. The fourth one regards the lo-
cation in which the handover should occur, which must be reachable by both agents. In H2H
handovers, it has been observed that the location occurs midway [22]], while for the H2R and
R2H paradigms, it should take place at the intersection between human and robot workspaces, as
depicted in Figure[I.2] In particular, the H2R handover generates a set of feasible grasps starting
from the knowledge provided by the perception system. Some examples based on deep learning
techniques, which will be discussed in Chapter [2] include GraspNet [2]], 6-DoF GraspNet [3],
Contact-GraspNet [4], or AnyGrasp [23]]. Finally, the fifth action is the motion planning and
control, which consists of the actuation of the motion for performing the task. In the H2H inter-
action, movements are generally smooth [24]]. In contrast, for the other paradigms, motions are
represented as a sequence of separate and successive phases. These involve the motion legibility
and predictability, which are the ability of one agent to understand and predict the other agent’s

movements. Furthermore, the phases should also allow for the robot’s motion robustness, reac-
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Figure 1.3: Illustration taken from [[12]. Left: A typical robotic arm configuration with an
eye-in-hand camera. This is the same configuration that will be used in the experimental part.
Right: The three aspects that are involved in object handover, namely, grasp pose detection, to
generate a set of suitable grasps for the object, grasp planning, to generate a trajectory, in order
to successfully grasp the object, and the control subsystem, to actually move the robotic arm.

tivity and context awareness, which consists of the adaptation of the motion to changes in the
environment [25]].

This sequence of actions, in the context of handover, can be divided into two main phases
[15]]: the pre-handover phase, which involves communication between the two agents about their
intentions and the grasp detection, and the physical handover, which begins when the receiver
makes contact with the object and ends when the object is fully in the hold of the receiver.

Although R2H and H2R interaction paradigms involve the presence of a robot as an agent,
they face different issues, especially in terms of safety [14], [15]].

Some of the challenges that R2H handovers may face are: the human comfort, where the
robot performs the task according to human expectations, such as where, how quickly, and in
which direction objects should be handed; the proactivity of the robot, in which it needs to decide
the timing and method of the handover; and the determination of when to release the object.

Instead, H2R handovers have different priorities, such as: the uncertainty of human be-
haviour, since humans may behave differently when passing an objects, e.g., in terms of speed
and grasp location and orientation; a real-time response to the human motion, which requires
efficient sensor data and fast action generation, e.g., to cope with the hand movements and ob-
stacles; and a safe grasping strategy, in which the robot must plan collision-free trajectories and
grasps pick up the object safely, without pinching the human operator or colliding with his body
part.

A complete robotic grasp system usually comprises three main modules [12]]: grasp pose
detection, grasp planning and control subsystem. These are depicted in Figure [I.3] The grasp
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pose detection part is responsible for generating a dense set of grasp poses on the target object’s
surface, eventually with the object’s pose in space. The grasp planning subsystem has the role of
representing the grasps in the robot’s coordinate frame and generating a feasible path to guide
the manipulator to the target pose. Finally, the control subsystem module is responsible for

determining the inverse kinematics solution to physically move the robot.

The first module requires the implementation of a perception system. To achieve this objec-
tive, one or multiple cameras need to be installed to provide a comprehensive view of the scene.
According to their number and placement, three system configurations can be identified: the
fixed configuration, or eye-to-hand, in which a single camera is mounted on a fixed location;
the mobile configuration, or eye-in-hand, where a single camera is attached to the robot; and the
hybrid configuration, in which multiple cameras are involved [[17]]. The role of the perception
system is to enable the robot to acquire knowledge of its surrounding environment. In the con-
text of object handover tasks, a visual system may comprise an RGB-D camera, that is, a camera
with an incorporated depth sensor, in a fixed or mobile configuration. The use of this type of
sensor is to facilitate the elaboration of the scene, providing depth information that would other-
wise be unavailable to a single RGB camera. Indeed, as it will be discussed in Chapter 2] depth
data can be utilized as input for image processing algorithms or to assist the robot in grasping the
target object [[19], [26]—[28]]. Moreover, given the depth information, it is possible to represent
the scene in the form of point clouds, which are a representation of three-dimensional data. A
point cloud is a collection of data points, defined by their x, y, and z coordinates, in a 3D space.
Figure illustrates a typical robotic arm configuration for the pick-and-place task, equipped
with an eye-in-hand RGB-D camera. This is the same configuration that will be used in this
thesis, which is possible to see in Figure

A possible way of processing an input image or point cloud is through the use of segmen-
tation techniques, which consist of partitioning the input into distinct regions according to their
characteristics. Segmentation techniques are referred to as 2D or 3D segmentation, respectively,
depending on the type of input data, which may be 2D images or 3D point clouds. In an object
handover task, in which the involved parts are a human and a robot, the visual system, together
with the segmentation techniques, can be utilized for distinguishing the objects from the human
body. Techniques for segmenting the human hand from the interacting object, such as Ego-
HOS [1]], have already been developed. However, these are not always suitable for real-time

applications, due to their low inference speed.

Furthermore, segmentation masks can be used to remove certain of the generated grasps that
may result in the robot pinching or hitting the human body. Grasps can be generated directly
on the image plane [29]], [30] or on the point cloud of the object [2]-[4]], [23]], [31]-[33]], based
on the available data. Consequently, they can be visually be represented in the image plane in
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Figure 1.4: The figure illustrates an example of object handover during the experimental phase.
Figure[I.4a]shows the robot analysing the scene to segment the hand from the object and compute
a set of feasible grasp poses. In Figure the robot moves to an approach position. Figure

and Figure display the robot grasping the object and keep it.

the form of rectangles, which reflect the physical characteristics of the gripper, or in the form
transformation matrices, which represent the translation and rotation the end effector frame has
to perform in order to be aligned to the computed grasp pose.

The thesis will be based on the H2R handover task, which can be visualized in Figure[I.4] that
illustrates an handover attempt of the implemented approach using a wooden stick. In particular,
it focuses on the segmentation part, which is responsible for distinguishing the hand from the
object, and the grasp detection component, which is responsible for generating a set of feasible
grasps. The main contributions are the following:

1. A faster method, called Fast-EgoHOS, for the segmentation of hand and object, which is
designed to achieve good accuracy while maintaining the system fast, utilizing a smaller
network with emphasis on a post-processing phase;

6



2. The adaptation of three different state-of-the-art grasp generation models, namely Grasp-
Net [2], Contact-GraspNet [4]], and 6-DoF GraspNet [3]], originally designed for objects
placed on a plane surface, to work in the H2R context;

3. An offline evaluation of either the segmentation and grasp generation modules is con-
ducted in terms of execution time, accuracy, and ability to generate feasible grasps, with

the objective to select the best segmentation-grasp generation pair;

4. An online evaluation, of the selected configuration, is performed in terms of success rate
and execution time on a set of 15 distinct objects, varying in size and shape, for a total
of 456 handover trials. This is followed by an analysis of the encountered problems and

limitations.

This thesis is organized as follows. Chapter 2| offers a review of the state-of-the-art tech-
nologies regarding 2D and 3D segmentation and grasp generation, along with some examples
of complete handover pipelines found in the literature. Chapter [3|presents the proposed solution
for this problem, while Chapter [4| describes the obtained experimental results together with the

encountered difficulties and limitations.






Chapter 2
Literature Review

Asdiscussed in [[12]], [[14]], a generic framework for the grasp detection system comprises three
steps: grasp pose detection, grasp planning and the control subsystem. As previously stated in
the introduction, the grasp pose detection necessitates the presence of a visual perception system,
usually comprising RGB-D cameras to have both RGB data and depth information of the scene,
along with the implementation of segmentation techniques, to distinguish the human body from
the object to pick.

It is therefore possible to rearrange these steps into four in the following way, as illustrated
in Figure The first step concerns the visual perception system, which comprises the sen-
sors that enable the robot to perceive the scene. Then, the second step consists of the scene
understanding algorithms, which includes the visual algorithms that elaborate the scene, such
as through segmentation. The third one is the grasp detection module, which consisting of the
algorithms that allow the generation of a set of possible grasps on the object’s surface. Finally,
a motion planning module is required to physically move the robot to the selected grasp pose.

From the image, it can be observed that this type of framework is a closed loop. This is
because, in the ideal case, a robot should be able to perceive the environment and react to any
changes that occur within it. This could include the avoidance of obstacles or the motion of the
target object to be picked.

This chapter is organized as follows. Sections[2.1]and [2.2]reviews the state-of-the-art tech-

nologies for the image and point cloud segmentation. Sections [2.3| revises the grasp detection

Visual Perception ——® Scene Understanding ——»  Grasp Detection ——»  Motion Planning

t |

Figure 2.1: A human-robot object handover framework as described in [|12]].




taxonomy with the corresponding techniques, and Section [2.4|the used datasets and evaluation
metrics. Finally, Section[2.5]briefly describes some complete pipeline frameworks for the H2R

problem found in the literature.

2.1 Image Segmentation

Image processing refers to the manipulation and analysis of digital images, using computer
algorithms. There are numerous ways in which an image can be elaborated and analyzed. One
example is through feature extraction, which is defined as the process of extracting important
and invariant characteristics of the image. Another is object detection, which is the process of
recognizing which elements are present and where they are located in the image. Finally, image
classification, which is the task of assigning a class of belonging to the image, according to its
characteristics.

The application of machine learning to the field of computer vision is not a recent phe-
nomenon, for example [34]] applies it successfully in 1989. However, it has received more
interest following the introduction of the AlexNet [35] model, which demonstrated the success-
ful application of deep learning to the image classification task. Although this model reaches
state-of-the-art performance with respect to other technologies, it suffers of some limitations,
such as the high computational cost and overfitting. Moreover, deep networks may also suffer
of the problem of vanishing or exploding gradients, especially in the context of Convolutional
Neural Networks (CNNs) [36]], an architecture for the image processing in machine learning.
These two issues manifest during the learning process, resulting in either an insufficient growth
of the neural network weight parameters, or alternatively, in an exponential growth.

More recently, the ResNet [37] architecture has emerged with the objective of overcoming
some of the inherent limitations of deep networks. This approach has improved the efficiency
in image-based tasks through the introduction of residual blocks, which address the issues of the
vanishing and exploding gradients.

In the context of this thesis, the task of semantic segmentation is of particular relevance.
It consists of the process of partitioning an input image into distinct regions and assigning to
each pixel a specific category [38]]. If there is the necessity to distinguish each of the regions
as different instances of the same object, then the task is named instance segmentation. An
example of instance segmentation is Figure[2.5] where left and right hand are distinguished as the
interacting objects. Thanks to its ability of dealing with deep networks, the ResNet architecture
is widely employed as backbone for image segmentation tasks [1], [26], [27], [29], [39].

A model that makes use of it for the instance segmentation task is EgoHOS [1]]. The objective

of this model is to infer a per-pixel segmentation mask of hands and objects from an input image,
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as shown in Figure In particular, the network is designed to segment the left and right hands
with the corresponding interacting objects. The network then proceeds to elaborate the image in
accordance with a three-step procedure. The initial stage consists of inferring the segmentation
mask of left and right hands. The second step consists of inferring the contact area between the
hand and the object, basing on the result of the previous step. Finally, the last phase consists
of finding the mask of the interacting object with the knowledge provided by the previous step

outputs.

2.2 Point Cloud Segmentation

The application of deep learning on 3D point cloud data is more recent than its application on
RGB images. One of the earliest deep learning networks to accept this type of data is VoxNet
[40]], which demonstrated its efficacy in the object recognition task. In this work, 3D data was
represented in the form of volumetric occupancy grid of size 32x32x32, which captures the
probability of occupancy for each voxel. This representation suffers of the following limita-
tions: the computational costs, especially for high-resolution point clouds; a limited scalabil-
ity, since its performance is highly dependent on the data resolution; and the information loss,
which is caused by the voxelization process. Other methods represent voxels data in a more
space-efficient manner, by leveraging on octrees, a data structure used to organize 3D space.
The resolution of octrees adapt recursively to the complexity of the subject, facilitating the rep-
resentation of complex three-dimensional structures. This technique is employed by OctNet
[41]].

A deep learning architecture that significantly improved the performance on 3D data pro-
cessing was PointNet [42]]. The fundamental concept is to directly elaborate raw point clouds
with a network’s response that is invariant from the points permutations. The ability of this
network to extract local and global features from point clouds demonstrates its efficacy for this
type of data. Indeed, this network achieved state-of-the-art results in both classification and 3D
data segmentation. An improvement of this architecture is PointNet++ [43]], which recursively

applies PointNet to the point cloud.

The PointNet and PointNet++ networks are currently employed in the contexts where 3D
data, in the form of point clouds, is involved. As will be detailed in the next section, in the
context of this thesis, 3D grasp detection methods make use of these architectures, for example,
to evaluate the generated grasp poses [3]], [33] or infer the approaching vectors on the point
cloud [2].

12
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Figure 2.6: Exhaustive taxonomy of grasp detection methods taken from [|12].

2.3 Grasp Detection

As discussed in detail in [[11]-[13], [44], grasp detection techniques are responsible for pre-
dicting a set of possible grasps for an object in a given scene. The objective of these techniques
is to facilitate the picking up of target objects and estimate its pose. To get a better overview
of the grasp detection methods that will be explored in this section, the taxonomy depicted in
Figure[2.6]can be used as a reference.

Grasp detection technologies can be classified into two main categories: analytic, also called
geometric, and data-driven, also called empirical [[12]. In the former category, grasps are found
by analyzing the kinematic and dynamic modeling of the grasp operation and the physical char-
acteristics of the object, such as its geometry and motion state. In contrast, the latter employs
machine learning algorithms to generate gripper poses, thanks to the availability of large amount
of data.

Moreover, data-driven methods can also be categorized as model-based or model-free, de-
pending on the available knowledge regarding the object [12]. Model-free technologies are the
ones suitable for an object-agnostic handover task and can be further classified into perception-
based and learning-based approaches. The former focuses on identifying the geometric struc-
ture of data to generate and rank grasp candidates, whereas the latter aims to leverage machine
learning-based methods to directly generate a set of robotic grasps.

In the case of unknown objects, learning-based approaches can be divided into two cate-

gories: pipeline methods, which distinguish between the grasp generation and path planning
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Figure 2.7: Both images show the 5-DoF rectangles used to represent a grasp in the image plane.
On the left, the one considered by [30]. On the right the one by [47].

phases, and end-to-end methods, which directly map from image data to grasp action [[12].
Pipeline methods, like [2], [3]l, [32], output either a robustness evaluation for the grasps, such
as their probability of success, or a structured output, that directly identifies the grasp pose. In
contrast to the previous approach, end-to-end methods learn visuomotor control policies directly
from the input, in an image-to-action manner. For example, directly assigns a score to each

pixel of the input image and associates it to a grasping primitive action.
The input to these methods is typically RGB-D images, such as in [29]], [30]], [46]], or partial
point clouds, such as in [2]-[4], [23], [31]-[33]], depending on how grasps are represented.

Depending on the implemented technique and the given input data, which is usually provided
by an RGB-D sensor, grasp poses can be represented in different ways. Some techniques infer
them directly from an RGB image, with the additional knowledge provided by the depth sensor,
such as [29], [30], [46]-[48]. Other require the point cloud representation for the 3D data, such
as [2]-[4], [23]).

A common representation, which can be displayed as a rectangle on the image plane, as
shown in Figure[2.7] is in the form of 7-DoF objects [30]. This representation consists of the pose
the manipulator arm must assume to pick up the object. In this case, considering as reference
the image, a grasp pose rectangle can be specified by 5-DoF object, consisting of (14, ¢4, ng, My,
8,), where 7, and ¢, refer to the upper-left corner of the rectangle, n, and m, are the dimension
of the rectangle and 6, the angle between the first edge and the image plane x-axis. The other 2
parameters are related to the distance of the center of the rectangle from the camera, z,, and the
opening width w of a parallel-jaw gripper. These 7 parameters allow for a full representation of
the grasp pose. The translation vector ¢ and the orientation 6 with respect to the camera frame the
robotic arm needs to assume to grasp the object can be retrieved from the computed parameters.
Alternatively, they can be represented as a simplification of the previous representation as 5-

DoF objects [48]. In this case, it is implicitly assumed that a 2D grasp can be projected back
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(b)

Figure 2.8: From left to right, how grasps are represented in a 3D space in [3], [4]], and [2].
Images taken from their corresponding paper.

to 3D and executed by the robot viewing the scene. Therefore, the only necessary information
for representing a grasp would be analogous to an object detection problem with the addition
of the grasp orientation. The needed parameters are (z, y, width, height, 0), where x and y
are the coordinates of the rectangle’s center, width and height its size, representing also the
opening width of a gripper, and @ its orientation with respect to the camera frame [47]. Such
representations constrain the gripper to approach the object from an orthogonal direction with
respect to the image plane, limiting the diversity of potential grasps that can be detected. In fact,
early works in grasp detection were inspired by object detection techniques, focusing on finding
top-down grasps [[13]].

To overcome this issue, grasp poses can be directly predicted on the partial point cloud and
represented in SE(3), as in [32] or [3]. The first method, GPD, generates 6-DoF grasps in a
sampling-evaluation manner, treating grasp detection as an object detection task, with a set of
grasp candidates being sampled on the observed scene, according to some predefined conditions,
and evaluated using an end-to-end approach. Similarly, PointNetGPD [33]] employs PointNet
[42] to evaluate a set of heuristically generated grasps. The second, 6-DoF GraspNet, whose
grasp representation is shown in Figure [2.8a] uses a two-step pipeline comprising a generative
approach for sampling a set of potential grasps, followed by an evaluation phase for rejecting
implausible ones and, simultaneously, a refinement step for improving the detection. 6-DoF
GraspNet employs the variational auto-encoder architecture [49], with both the encoder and
decoder based on PointNet++ [43]] and the grasp evaluation based on PointNet [42]].

An efficient grasp detection model is GraspNet [2]], which is trained on the GraspNet-1Bil-
lion dataset [2], comprising more than 1-billion grasp poses generated on a set of 88 objects.
Grasp poses are represented as shown in Figure and are defined with respect to the cam-
era frame. Their analytical representation consists of the following matrix: G = [R t w],
where R € R3*3 denotes the rotation matrix associated to the gripper orientation, t € R3*! the
translation vector associated with the grasp center position, and w € R the end-effector width

necessary for picking up the target object. Since generating rotation matrices is a challenging
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Figure 2.9: Overview of the GraspNet [2] model. The model comprises three sub-networks,
ApproachNet, OperationNet, and ToleranceNet. ApproachNet is used to infer vectors of the
grasps. OperationNet to infer the orientation that the gripper must have to pick up the object.
ToleranceNet to make the grasps robust against noise. Image taken from [2].

task for neural networks due to their geometric properties, GraspNet first generates the position
of the grasps and then infers the rotation associated with a viewpoint. The pipeline to generate
grasps comprises three main phases, as shown in Figure 2.9 the Approach Network, which is
based on PointNet++ [43]], to infer approaching vectors and feasible grasp positions; the Op-
erational Network, which is responsible for predicting in-plane rotation, approaching distance,
gripper width, and grasp confidence; and the Tolerance Network, that predicts the tolerance to
perturbation for each grasp pose. GraspNet analytically computes a score to each potential grasp
according to the force-closure metric, as in [33]. In particular, given a grasp pose, the object
point cloud and a friction coefficient, it assigns a binary label indicating whether the grasp is

antipodal or not [50]. Then, the resulting score is computed according to

s=1.1-—p,

where 1 is the friction coefficient which is gradually decreased from 1 to 0.1. The grasp

with lower friction coefficient is the one with higher probability of success.

Another model is Contact-GraspNet[4]], which proposes a 4-DoF grasp and represent it as
in Figure 2.8b] This method is based on the assumption that, given a point cloud, at least one
of the two contact points of a parallel-yaw gripper is visible. Therefore, the only parameters to
estimate are those related to the rotation and to the gripper width, with the additional advantage of
facilitating the learning process. Each of the produced grasps is scored with a two-step process:
(1) potential contact points for a successful grasps are found and scored, then (2) a network

predicts the ideal placement and configuration of the end-effector for achieving a stable grasp.
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The output of all the networks, however, can be easily represented in SFE(3), thus as a
transformation matrix with respect to the camera frame. They used a different representation
for the grasps to facilitate the learning process, thus reducing the number of parameters.

It is noteworthy that all the methods seen so far have one important thing in common: they
generate grasps starting from static objects placed on a table. It is possible to utilize them even
with this limitation, adapting them to the situation.

One promising state-of-the-art method for overcoming this issue is AnyGrasp [23]], which
incorporates center-of-mass knowledge of the object and the spatial-temporal domain for ensur-
ing both temporal continuity and grasp quality. This method can generate dense and temporally
consistent 7-DoF grasp poses for moving objects, using as input partial point clouds. The al-
gorithm comprises two modules: a geometry processing module, which samples grasps given a
partial point cloud, and a temporal association module, which enables grasp pose tracking across
consecutive frames, allowing to deal with moving objects.

A different approach for the grasp generation on generic objects is the one proposed by [31]],
which consists of applying a point cloud shape simplification. In this case, point clouds are
simplified into a collection of simpler shapes, such as cylinders, spheres, ellipsoid, or paral-
lelepipeds, and grasps are sampled on this new representation.

Due to the prevalence of models which are trained on static objects placed on a flat surface,
these networks need to be adapted to a more dynamic environment for tasks such as the H2R han-
dover. In the context of this thesis, GraspNet [2]], 6-DoF GraspNet [3]], and Contact-GraspNet

[4] are implemented and adapted for a human-robot handovering, as explained in Chapter

2.4 Dataset and Evaluation Metrics

The objective of grasp detection technologies is to infer a diverse set of grasp poses from the
RGB-D data representing the object. As previously described, grasps can be represented in two
forms: as rectangles on the image plane or as poses in the 3D space.

In order to ensure that a model generalizes well on unseen data, the datasets should be suffi-
ciently large and include a variety of different objects. In particular, grasps should be generated
to cover the entire surface of a generic point cloud [2]]. For the H2R handover task, the number
of grasps should be large enough to allow the best one to be selected at a location that is not
close to the body.

In the grasp detection techniques seen in the previous section, some methods construct their
own dataset, such as [2[], [3], [33]], starting from a set of 3D models provided by ShapeNet [51]],
YCB [52] or DexNet [53]]. While other, such as [4]], [29], train their own network on already
existing datasets, for example Graspnet-1Billion [2] or ACRONYM [54].
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The generation of datasets typically requires the execution of multiple steps. One example is
the generation process in [3]], which, after sampling a set of grasps based on the object geometry,
employs a physics simulation tool to validate them as successful or not. The simulation consists
of testing the grasp robustness through the application of a shaking motion, keeping the surface
friction and the object density properties constant. Another example is the generation of the
GraspNet-1Billion [2]] dataset, in which a set of grasps is sampled on the entire object surface
and evaluated using a force-closure metric with different coefficients of friction. Only those
grasps that are able to maintain the object with a low friction coefficient value are retained. After
this step, a collision check is performed to prevent the generation of invalid poses. Moreover, a
validation check is conducted to select only those grasps that allow a parallel-jaw end effector
to pick the object.

With regard to the evaluation of human-robot interactions, there is a lack of standardised
measurement tools and metrics for a fair comparison between different techniques [15]], since
their evaluation highly depends on the task to be performed. Moreover, the evaluation results
may depend on the utilized number or type of objects, which can differ. To overcome this issue,
some datasets, like YCB [52], suggest a collection of object that are readily available. Some
commonly used metrics for measuring the overall performance are the success rate and the task
completion time. While the former does not explain the causes of the issues, the latter depends

on other factors, such as the chosen motion speed, particularly in the context of safety.

2.5 Human-To-Robot Handover Pipelines

In this section, some complete frameworks for the H2R handover task are analyzed.

The most common used vision system configurations are the eye-fo-hand and eye-in-hand,
with a single RGB-D camera. For what concern the type of gripper, a parallel-jaw one is usually
considered, as shown in Figure H2R handover tasks can be implemented following either
an open-loop approach or a closed-loop one. In this context, the open-loop addresses the task of
reaching the best grasp without dealing with potential hand motions. In contrast, the closed-loop
one attempts to cope with them by updating the goal in case of motions.

The first revised approach, Rosenberger et al. [26]], performed the handovering of 13 distinct
objects of different sizes and shapes, with an eye-in-hand perception system. The presented
approach comprises several steps, some of which are performed simultaneously. The initial step
involves processing the RGB image and its depth in order to segment the body of the person,
with particular attention paid to its hand, and to detect the held object. The segmentation masks
and the bounding box of the object are then used to generate a set of grasps with the GG-CNN

[46] model. Since the model has been trained on static objects positioned on a plane surface, a
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virtual plane is placed behind the target object in order to simulate the same situation. As last
step, the best generated grasp by the grasp detection model is executed. In this proposed pipeline,
as highlighted in [26], the limitations are mainly attributed to the object detector module, which

results in the object being not detected.

Another pipeline is the one proposed by Yang et al. [[19]], whose main objective was to in-
vestigate the preconditions and policies for a handover operation. In this case, the handover
is performed with a single object, utilizing a restricted set of predefined grasps, which directly
depend on how the object is held. The grasp detection model performs a simple pose classi-
fication, given as input an RGB-D image from an external camera. As described in [[19], the
limitations are mainly due to the presence of unseen grasp poses and to the lack of legible and

friendly robot motions.

In their study, Liu et al. [28] presented a closed-loop approach for this task with an eye-
in-hand RGB-D camera. The captured scene is used to perform a hand and object detection,
followed by a segmentation of the hand. Then, the GraspNet [2] model is employed to infer
a set of grasps on the object point cloud, retaining only those with a specific orientations with
respect to the human body position. The pipeline was tested on 8 distinct objects. The observed
limitations of this method [28]] were the generation of unfeasible grasps, which were probably
due to the lack of good-quality point cloud data, and the low number of points due to an excessive

occlusion of the hand.

Finally, Yang et al. [27] presented a pipeline whose objective is to grasp generic objects.
In particular, the implementation was tested on 26 different objects, with a perception system
setup comprising an external RGB-D camera. Given the produced inputs, a hand segmentation
module is used to obtain the corresponding mask from the RGB image, while the depth is used
to extract the point cloud of the hand holding an object. Then, grasps are detected only on the
object point cloud using the GraspNet [2]] model. Since GraspNet is trained on static objects, it
has been adapted to a dynamic context. To ensure temporal consistency over consecutive frames,
a perturbation is applied to the generated grasps at each time stamp, retaining only those grasps
that lead to an improvement in the score. Otherwise, if the score is lower, perturbed grasps are
accepted with a probability that depends on the new and old scores. They demonstrated that, in
this way, grasps are more stable and consistent over time, maintaining a relatively constant pose
with respect to the objects. Moreover, in their experiments, they assumed that the human will
adapt to the robot’s motion. The observed limitations, as described in [27], were due to: the high
computational costs required to continuously update the target grasp to maintain a closed-loop
approach; the lack of some depth information due to the object properties, i.e. dark surface;
some segmentation problems, where the hand was considered to be part of the object; the noise

of the point cloud due to nearby objects.
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Human-2-Robot handover is a task that involves various fields of study, especially com-
ing from computer vision and robotics. For this reason, the necessity for the development of
reliable and efficient segmentation and grasp generation technologies plays an important role.
The implementation of a complete pipeline for the H2R handover evidences a series of different
problems from both the aforementioned fields of study. These include the difficulty of detect-
ing feasible grasps due to a noisy point cloud, the difficulty of segmenting the object correctly
due to its physical characteristics, the high computation cost for a closed-loop approach, and
the lack of legible and friendly robot motions for a reliable handover. The handover task has
been implemented by Rosenberger et al. [26], Yang et al. [[19] and Liu et al. [28] following an
open-loop approach, while Yang et al. [27]] has considered a closed-loop approach.

Furthermore, the absence of a uniform evaluation metric for this kind of task makes it chal-
lenging to compare different implementations, either in terms of robustness of grasping generic

objects and safety.
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Chapter 3
Proposed Pipeline for H2R handover

In this chapter, a proposed solution to the H2R handover problem is presented, which can be
seen as a three-step procedure, as in Figure The initial step exploits a segmentation module
to distinguish between the hand and the object from other elements captured by the camera. Two
approaches, namely, Fast-EgoHOS and Complete-EgoHOS are described. This is followed by
a grasp generation module to detect a set of gripper poses on the given object point cloud. In
this phase, three different models described, namely, GraspNet [2]], Contact-GraspNet [4], and
6-DoF GraspNet [3]]. Finally, a selection module is employed to choose and move the robot arm
towards the optimal grasp. In this phase, three discarding criteria are defined.

The considered robot configuration for the implementation consists of an RGB-D camera

mounted on the robot’s end effector.

3.1 Segmentation Module

The segmentation module is responsible for distinguishing between the human hand and the
object being held. In the context of the H2R handover task, the segmentation mask is useful for
enabling the system to localize the specific region of the image that contains the hand and which
is associated with the object. This allows for the removal of grasps that may result in the robot
colliding or pinching the hand.

One of the goal of this thesis is to achieve a good trade-off between accuracy and processing
speed for the entire handover pipeline. For this purpose, since the grasp generation module is
the most onerous one in terms of execution time, reducing the processing time where possible
is necessary. To achieve this result, the EgoHOS [|1] model is selected, mainly for two reasons.
Firstly, it is specifically suited for our scenario where the camera has an egocentric view with
respect to the human body, and thus to the hand and the object. In this case, the egocentric view

is from the point of view of the robot, which is similar to the one adopted by [1] to train the
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Figure 3.1: This scheme shows the main parts of the proposed pipeline for the H2R handover
task.
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segmentation model. Secondly, this model is designed for a per-pixel segmentation of hands
and generic objects with which the person is interacting. Segmenting a generic object is crucial
in our scenario, since the main purpose is to enable a robotic arm to pick up any object from a

human’s hand.

As shown in Section the EgoHOS pipeline consists of three subsequent steps, each
exploiting a different model and receiving as input the initial RGB image concatenated with the
previous step outputs. The first step consists of segmenting the left and/or the right hands that
could be present in the image, without taking into consideration any object. Then, since directly
segmenting a generic object can capture background clutter, a second step is needed to focus
on inferring the contact region, called dense contact boundary [1]], between the hands and the
objects. This phase helps improve the segmentation accuracy providing a cue to discriminate
between the many background objects in the input image and the important objects. Finally, the
last step consists of predicting the object mask with the knowledge given by the previous steps.

A result of this pipeline is shown in Figure (3.2

As mentioned at the beginning of this section, one of the key aspects to keep into consider-
ation is the trade-off between accuracy and speed. To this end, two solutions are proposed: one

that is more accurate but slower, which will be called Complete-EgoHOS, and the other that is
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Figure 3.2: The image shows the EgoHOS result for an input image. It consists of a segmentation
mask of the hand, the contact boundary and the interacting object.
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Figure 3.3: This scheme shows how the segmentation is done for the Complete-EgoHOS
methodology.

less accurate but faster, called Fast-EgoHOS.

The first proposed solution is based on directly inferring the hand and the object with the
complete implementation of the EgoHOS model, as shown in Figure Since the model is
trained for segmenting hands along with their interacting objects and contact boundary, two
main advantages have been observed.

Instead, the main idea behind the second one consists of using only the initial part of the
EgoHOS pipeline, specifically the hand segmentation part, while relegating the object segmen-
tation to a post-processing stage. The reason for this choice is to accelerate the segmentation
process, with a compromise in terms of accuracy in exchange for a real-time approach.

The input data is provided by the only sensor available in our setup. The RGB image feeds
the segmentation model to infer the hand mask, while the depth is used as input for the post-
processing part. The proposed method leverages the assumption of a single hand-object inter-
action. While this assumption simplifies the problem, it may not be suitable for all scenarios
where there are multiple hands and clutter.

As illustrated in Figure the proposed post-processing method is as follows. Given the
hand mask, the mean distance between the camera and the hand is computed, allowing the es-

timation of how far the hand and the object are. To retrieve the object mask, only the depth
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Figure 3.4: This scheme shows how the segmentation is done for the Fast-EgoHOS methodol-
ogy.

values which are not associated with the hand and fall within two distance-based thresholds are
kept. This range, whose values directly depend on the previously computed mean distance, can
be visualized as two virtual planes, one behind the object and one in front of it. In this way, the
only values that are kept are the ones related to any object whose depth is within the specified
thresholds.

Then, since there may be outliers, it is necessary to remove the remaining depth values that
are not associated to the correct object. For this to be achieved, the intersection area between a
bounding box around the hand’s convex hull and a bounding box around each potential object’s
blob is computed. Then, leveraging the aforementioned assumption, the blob with the largest
intersection area is selected, which is likely the one associated with the manipulated object.
After this procedure, the object mask is associated to the blob with the largest intersection area,
discarding all the other.

The common post-processing operation between the two solutions is the dilation and repre-
sentation as a convex hull of the hand mask. The convex hull is necessary for merging different
parts of the hand in case of occlusions, while the dilation is applied to avoid any values near the
hand from being misclassified as object. Finally, starting from the object mask, an estimate of
the length of the object is computed. This value will be used on Section |3.3|to discard some of
the grasps.

The main distinction in terms of outcomes between the two approaches follows the trade-off
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Figure 3.5: These images show the point cloud that is expected from the models. In particular
they expect to receive a plane surface with objects laying on it. From left to right, images are

taken from , and .

between accuracy and processing speed, as demonstrated in Section§.2.1]
Moreover, in the first segmentation method there is no need for the post-processing part to

understand which blob is the object, since only an RGB image is required as input.

3.2 Grasp Generation Module

The grasp generation module has the objective to generate a set of potential grasps for the
object. It is important to highlight that this thesis focuses only on the data-driven case, in which
the object model is unknown and a learning method is exploited. Therefore, the following three
models to generate grasps starting from a point cloud have been considered: GraspNet [2],
6DoF-GraspNet [3]], and Contact-GraspNet [4]. Moreover, the choice of these grasp planners
was driven by the fact that they are model-free and efficient.

The hand-object mask, produced in the previous step, is received by this module, where a
common pre-processing procedure is applied to the data. In particular, the knowledge of the
hand-object mask is exploited to remove from the depth map the information related to the hand
and the background, thus distinguishing the elements not directly related to the object.

Input and output of the three chosen models are the same: a point cloud of the scene or of
the object only and a set of grasps represented in SF/(3), respectively. In particular, each grasp
is represented as a transformation matrix g = [R t| with respect to the camera frame, where
R € R3®3 denotes the rotation matrix associated to the gripper orientation and t € R3*! the
translation vector associated with its center position. For further details, see Section [2.3]

It is important to notice that these models were developed for generating a set of grasps on a
collection of objects positioned on a plane surface, i.e. a table. In this case, however, there is a

significant distinction: objects are not laying on a surface. As illustrated in Figure models
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Figure 3.6: Examples of the two approaches used to process the input point clouds. On the left
image the approach involving the imitation of a plane; on the right image the approach which
directly isolates the object point cloud.

have been trained on point clouds consisting of a set of objects on a table. Consequently, it was
necessary to adapt the provided input to the requirements of the networks.

Two distinct approaches have been investigated and evaluated for adapting it, both exploiting
the knowledge given by the hand-object mask. The first method, shown in Figure [3.6a], consists
of creating a virtual plane situated below the object, flattening all the depth data not related to
it, thereby imitating a flat surface. Instead, the second, shown in Figure directly removes
all the surrounding elements, isolating the object point cloud.

The creation of a virtual plane has been demonstrated, in Chapter [}, to be an effective ap-
proach when applied to the input data of GraspNet. While, the isolation of the object point
cloud was evaluated for either the Contact-GraspNet, GraspNet and the 6-DoF GraspNet mod-
els. Both adaptation approaches allow the models to produce a dense set of suitable grasp poses

positioned on the entire object’s surface.

3.3 Grasp Selection Module

The grasp selection module is responsible for selecting which of the generated grasps are suit-
able for execution by the robot. In particular, a filtering mechanism must be applied to remove
the grasps that may be infeasible for the robot to reach or may result in the robot colliding with
the person. Therefore, the filter is applied with the objective to discard those grasp candidates
that could potentially hit the person or wrongly pick the object.

Given the results of the previous modules, namely the set of grasps, the hand-object mask,
the mean distance, and the estimated object length, it is necessary to select which of the received
grasps are suitable for the handover. For this reason, the applied safety policy is based on the

implementation of three criteria:

1. Hand-grasp distance, in which grasps are discarded according to their distance from the
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Figure 3.7: Problem that could arise if grasps not satisfying the first criterion were allowed.

hand. The hand-object segmentation mask is used to achieve this;

2. Object-grasp distance, in which grasps that are not close to the object are discarded, as
the one in Figure

3. Grasp orientation, in which grasps with an orientation that may cause the end effector to

collide with the object or the person are removed, as shown in Figure|3.8

In the first criterion, grasps are discarded according to their distance from the hand. In
particular, only those grasps whose distance is larger than the average distance between each
grasp and the projected hand mask are selected. The projection was computed based on the
mean distance, calculated in Section (3.1} rather than the corresponding depth value according
to the mask. In fact, values not associated with the hand could be included if the dilated hand
mask was considered, resulting in an inaccurate projection.

For the second criterion, all the outlier grasps that are not close to the object are discarded.
For this purpose, they are removed if their position is not within a threshold which is based on
the mean distance computed during the segmentation process. This criterion is useful in case
a virtual plane is placed behind the object, in fact, some grasps may be generated on the plane
border, as can be observed in Figure The main issue arises when that grasp is the only one
available or is the one with higher score.

Finally, in the third criterion, all grasps whose orientation, with respect to the camera frame,

causes the end effector to collide with the object or the person are deleted. To accomplish this,
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(b) Pitch range.

(c) Yaw range.

Figure 3.8: These three images show the allowed ranges for the roll, pitch, and yaw angles.
Figure is displayed with a top view of the robot. The green areas are allowed ones.

three ranges are computed for the roll, pitch, and yaw angles, respectively. Since the robot is
assumed to have a constant initial configuration, the roll and pitch ranges are fixed, while the yaw
range depends on the object orientation. In particular, the yaw range is calculated according to
the orientation of the longest side of the object with respect to the camera, allowing only grasps
nearly perpendicular to the object to be selected. The configuration of these ranges allows to
discard grasps whose orientations result in the robot assuming poses that are in proximity to the
person or that interpenetrate the object, as shown in Figure

In the current implementation, the grasp detection and selection modules are executed mul-
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Figure 3.9: Problem that could arise due to the point cloud quality. This type of grasp is not
satisfying the third criterion.
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tiple times to collect a sequence of potential grasp candidates on successive frames. This is done
to obtain a greater number of grasps from which to select if the proposed criteria result in the
elimination of a significant number of candidates.

To prevent grasps from being located far from where the handover should occur, i.e. the final
position of the hand, grasps from consecutive frames are compared and discarded according to
their distance in the space. For example, let us consider the case where a set of grasps is detected
when the hand and the object have just entered the camera’s field of view, and another set is
detected when the hand is in its final position. If the distance between the best grasps is larger
than a certain threshold, defined based on the estimated object length computed in Section
then all the grasps should be recomputed for the successive new frames.

The last step of this module consists of selecting which of the remaining grasps of the se-
quence should be executed. Since the grasp generation models provide a score, the grasp with

the higher one is chosen for execution.
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Chapter 4
Experimental Evaluation

The objective of this chapter is to perform an experimental evaluation of the entire imple-
mented procedure. To test the modules, two different evaluations are performed: an offline
evaluation and an online one. A first evaluation is conducted with the aim of selecting which
pair of models for the segmentation and grasp detection perform better according to the time-
accuracy trade-off. The segmentation models are evaluated in terms of Intersection-Over-Union
(IoU) and Average Execution Time (AET) on a previously recorded set of data comprising im-
ages of an hand holding an object. While, the grasp detection models are evaluated according
to the number of generated grasps and how many of them are discarded, based on the criteria
described in Chapter 3} The selected segmentation-grasp detection pair should exhibit good
performance both in terms of time, performance and grasp generation.

A second evaluation is conducted on the physical robot to validate the efficacy of the previ-
ously selected pair of models a set of generic objects.

The evaluation is organized as follows. Section describes the experimental setup, the
hardware involved and the protocol used in the experiments. Section analyzes the per-
formance of the implemented methodology through an offline evaluation, while Section
presents the results obtained by testing with the robot. Finally, Section[4.4]analyzes the encoun-

tered difficulties and limitations of the current implementation.

4.1 System and Experiments Setups

The experiments were conducted with the 7-DoF Franka-Emika Panda robot, shown in Figure
mounted on a table with a two-finger parallel-jaw gripper as end-effector and Movelt! [|55]]
as motion planner. To increase the friction, thus the grasp robustness, two pieces of foam rubber
were attached to it. The perception system is constituted by an Intel RealSense D455 RGB-D

camera mounted on the robot’s end-effector, which allows for an egocentric point of view of
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Figure 4.1: 7-DoF Franka-Emika Panda robot used for the experiments.

the scene. This is captured with a resolution of 1280x720 at 30 FPS. For the experiments, the
robot starts from a predefined pose in order to ensure that the object and the hand are within the
camera’s field of view. The segmentation and grasp generation models run simultaneously on
an NVIDIA GeForce RTX 2080 GPU.

The objective of the experiment is the successful transfer of an object from the human hand

to the robot. The handover operation consists of the following phases:

1. the segmentation module is employed to distinguish between hand and object in the image;

2. the grasp generation module is implemented to generate a set of valid grasp poses, given

as input the segmentation mask;
3. the selection of a subset of grasps according to the criteria described in Section 3.3}

4. the control of the robot manipulator is employed to plan a trajectory to an approaching
pose, which is defined such that the desired grasp pose can be reached by performing a

straight motion;

5. the grasping operation is performed by closing the end-effector fingers, after the grasp
pose has been reached;

6. the robot arm moves backward while grabbing the object.

To test the system, a collection of 15 different objects, shown in Figure[.2] is selected. The

objects have been selected to have different characteristics in terms of size, shape and materials
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Figure 4.2: List of 15 objects used for testing. The set comprises a variety of different objects
which mostly differ on their size and shape.
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Figure 4.3: Example of the type of images in the dataset.
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in order to validate both the segmentation and grasp detection modules. Some of the objects
have a similar geometric shape, but different sizes. The objects were selected considering the
maximum opening width of the gripper. For instance, the remote, the white rectangle, the Rasp-
berry box, and the hard disk box share the main shape, which is rectangular, but with different
thickness. The same shape is also shared between the spray can, the marker, the wood stick,
and the red screwdriver, which is cylindrical. Objects such as the hammer and the spray have
a reflective surface, which may cause segmentation problems. While, objects like the tape and

the controller have a shape which may be challenging for grasp detection.

To validate its robustness in response to different types of handover, each object is presented
to the robot from four different orientations, which are represented, in the results, with the fol-
lowing symbols: |, —, \, and /, as can be seen in Figure The objects are held at one end,
so that the robot can grasp them from the other end. Moreover, four of them have been handled
in two different ways, according to their shape or size. For instance, rectangular objects, such
as boxes, can be presented to the camera in either a horizontal or vertical orientation, and the
tape can be handled in a manner that either shows the hole or does not. This difference, in the
experimental results, is highlighted with an underscore in the object name, followed by / or
v, which correspond to horizontal or vertical, respectively. In total, the are 76 distinct object

configurations.

The implementation of the three modules, described in Chapter 3] requires some parameters
to be chosen in advance, mostly on the basis of empirical evidence. The parameters that need
to be chosen in the Segmentation Module, see Section are the following: (1) the depth
threshold distance beyond which depth data are ignored, that in our case has been set to 80 cm,
and (2) the distance at which to place the two virtual planes with respect to the object, which

has been set to 7 cm.

For what concern the Grasp Generation Module, see Section [3.2] the parameter to be chosen
is the distance at which to place the virtual surface to simulate a table. This value can be fixed,
that is selected in advance, or variable, thus depending on the mean distance of the hand, as in
Figures and respectively. In the former case, the table can be positioned far from the
object at a predefined distance, whereas in the latter, the distance between the surface and the

object can be adjusted either closer or farther, depending on the applied displacement.

Finally, the Grasp Selection Module, Section requires the following parameters to be
selected: (1) the window size, that is the number of set of grasps to consider before choosing
the final one; (2) the distance, relative to the camera frame, above which erroneously generated
grasp poses are discarded, i.e. if they are on the table or on outlier points of the point cloud,
as can be seen in Section (3) the threshold distance under which to discard grasps, that

has been set to be the average between each grasp and the hand; (4) the allowed range of values
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of roll, pitch and yaw angles with respect to the camera frame, which have been empirically
set. As can be observed in Chapter [3| at Figure roll and pitch have been chosen to ensure
that the robot does not assume poses under the object or with the arm on the same side of the
person, whereas the yaw value has been chosen such that to force the end-effector to assume
poses perpendicularly to the object orientation. The ranges have been defined as follows: the
roll interval has been set to [—m/4,7/3]; the pitch range to [—7 /4, 7/4]; the yaw ranges to
[0 +7/6,0+57/6]and [0 — 57 /6,60 — /6], given 6 the orientation of the the object with respect

to the camera frame. The yaw interval covers a 120° area on either sides of the object.

4.2 Offline Evaluation

The offline evaluation consists of testing the performance of both the segmentation and grasp
detection modules with a collection of recorded data. This set comprises a sequence of approx-
imately 50 to 60 images for each pose of the objects, for a total of 4013 frames. As shown in

Figure the images depict a hand holding an object directly in front of the camera.

4.2.1 Segmentation Module Evaluation

In order to evaluate the two proposed solutions for the hand-object segmentation, namely
Fast-EgoHOS and Complete-EgoHOS, two metrics have been selected: the mean Intersection-
Over-Union (IoU) and the Average Execution Time (AET). The IoU consists of measuring the
overlap between a ground truth mask and a predicted one. This metric has been selected to
quantitatively measure the object segmentation, comparing the ground truth masks, found using
the Segment Anything tool [56], with the inferred object masks. Since the segmentation focuses
on the object mask, the ground truths have been obtained by segmenting only the object being
held. Instead, the AET measures the time required by each solution to infer the hand-object
mask.

The objective of computing these two metrics is to have a comparison of the two methods,
selecting which offers a good balance between accuracy and execution time.

In order to compute the IoU, a subset of the images was chosen, with one frame chosen every
five, resulting in a total of 760 images, with 10 images per pose. While, the AET was computed
averaging over the inference time for each image of the dataset.

From Tables@d.IJand[4.2] it is possible to observe the obtained results for the two metrics. The
second method, which does not include the post processing phase, has shown better performance
in terms of IoU, while the first one, has shown better AET. It is important to mention that, in
case of the first method, the inference time is the average time needed for only inferring the

hand mask, while for the second, it also includes the inferencing of the contact boundary and
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Object H IoU Fast-EgoHOS \ IoU Complete-EgoHOS H Mean Difference ‘

hard disk box h || 0.8961 0.9142 0.0181
hard disk box v || 0.7728 0.8987 0.1259
ball 0.8233 0.8355 0.122
controller 0.8858 0.9123 0.0265
blue cube 0.83 0.8868 0.0568
hammer 0.7172 0.8189 0.1017
hand cream 0.8531 0.8686 0.0155
marker 0.7 0.7735 0.0735
pink object 0.773 0.8237 0.0507
raspberry _box h 0.8977 0.8907 -0.007
raspberry box v 0.882 0.9075 0.0255
remote 0.7838 0.8379 0.0541
screwdriver 0.6829 0.7021 0.0192
spray 0.8490 0.8775 0.0285
tape h 0.3301 0.4968 0.1667
tape v 0.7995 0.8608 0.0613
white rectangle h || 0.8531 0.7556 0.0975
white rectangle v || 0.8554 0.8592 - 0.0038
wood 0.7901 0.8210 0.0309
| Total: | 0.788 | 0.8284 | 0.0404 |

Table 4.1: Comparison in terms of [oU between Fast-EgoHOS and Complete-EgoHOS. Values
are expressed as mean loU and are computed over a subset of the dataset, consisting of 40 images
per object, 10 per pose. The last column shows the difference between Complete-EgoHOS
results and the Fast-EgoHOS ones.

the object mask. Moreover, the processing time is the mean time needed to process the masks, as
explained in Section|3.1] while the total time is the time needed to infer, process and publish the
result. Moreover, the last column of4.1|{shows the difference in the mean values. It is possible
to notice that Fast-EgoHOS reaches performance comparable with Complete-EgoHOS.

As already described, in the context of an handover, accuracy and execution time are two
crucial aspects to consider. According to the obtained results, which compare two proposed
solutions, both aspects have been considered. Complete-EgoHOS reached a mean IoU value of
0.8284, which is better than the one obtained by Fast-EgoHOS, that is 0.788. In the case of AET,
the situation is inverted, with Fast-EgoHOS performing with an average time of 0.076 seconds
per image, while Complete-EgoHOS took an order of magnitude more, with 0.22 seconds.

Based on the obtained results, the selected method for hand-object segmentation in the online
evaluation is Fast-EgoHOS, as it offers a good balance between loU and AET results.

Figure 4.4] shows the difference between the object masks provided by the two methods. In

particular, it is evident that the segmentation inferred by Fast-EgoHOS is more fragmented and
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Inference [s] | Processing [s] | Total [s]
Fast-EgoHOS 0.056 0.02 0.076
Complete-EgoHOS || 0.219 0.01 0.22

Table 4.2: Comparison in terms of AET between Fast-EgoHOS and Complete-EgoHOS.

(@) (b)

Figure 4.4: On the left the object mask found by Fast-EgoHOS); on the right the object mask
inferred by Complete-EgoHOS.

less accurate with respect to the one provided by Complete-EgoHOS, as confirmed by Table
This difference is mainly due to the manner in which masks are extracted. In the first case,
the mask is inferred starting from the knowledge of the hand mask and the depth, while in the
second case, the mask is inferred by the neural network from the RGB image only. In practice,
this difference is not a significant issue, especially for the grasp detection module. In this case,
rather that utilizing the RGB image as input, grasp poses are generated from point clouds, which
may be inaccurate; it is sufficient to have the contour of the correct object. It is important to
notice that, as shown in Figure[4.5] some outlier points can be considered for the grasp detection
in case of over-segmentation, specifically when the depth associated with a specific pixel is not
excluded by the constraints. This issue has been observed only with the Complete-EgoHOS

method, since it is image-based only.

4.2.2 Grasp Detection and Selection Evaluation

To evaluate these two modules, which are closely related, a set of grasps is firstly generated
by the Grasp Detection Module and then processed by the Grasp Selectoﬂ according to the
procedure described in Sections[3.2]and

The evaluation of these modules is carried out in accordance with the following metrics: the
number of frames that allows to generate at least one grasp, the quantity of generated grasps, the

quantity of discarded grasps, according to the discarding criteria described in Section and

"From now on, we refer to the set of grasps processed according to the criteria described in Section|3.3|as pruned
grasps.
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Figure 4.5: Problem that arises when an over-segmented mask is used to generate the object
point cloud. From the image, it is possible to observe that grasps are generated on the object,
located on the left, but also on some outlier points, on the right. The image shows only a subset
of the total of the generated grasps.

the time required to convert the RGB-D data into a point cloud for the network, along with its

inference time.

In addition, in order to analyze the distribution of generated and pruned grasps on the objects,
the following values are considered: the mean distance between the best grasp, in terms of score,
to the hand, Dy, 1, and the mean distance between the best grasp and all the other grasps of the

same set, Dy .

These two distance-based metrics are utilized to evaluate the ability of the grasp generation
modules to generate a diverse set of grasps, specifically in this context. In particular, the aim is
to verify whether the set of pruned grasps still contains grasps that are not in proximity to the
hand or with a wrong orientation. To this end, Dy, ;, is used to compare the distance to the hand
between the best grasp of the pruned set and the original set, whereas D, , is employed to verify

how grasps are distributed with respect to the best ones.

In order to evaluate each metric, the hand-object masks generated by both Fast-EgoHOS and
Complete-EgoHOS are utilized as input, along with the corresponding depth. Instead, grasps are
evaluated using the following grasp detection models: GraspNet [2]], Contact-GraspNet [4]], and
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6-DoF Graspnet [3[]. They accept the object point cloud as input, however only GraspNet accepts
a point cloud with a virtual surface behind the object. In this case, the distance at which to place
the plane has been set at 1 mm along the camera z-axis. Although this value lacks a physical
meaning, it enables the model to generate more consistent grasps than those generated with the
object point cloud only, as can be observed in Figure The figure illustrates the distinction
between some grasp poses generated by GraspNet with and without the virtual plane. This
behavior is probably due to the overall impact these points have on the computation.

The decision regarding the distance at which to place the virtual plane was based on em-
pirical evidence, in line with the number and quality of grasps observed during preliminary
experiments.

The evaluation is done considering all the segmentation and grasp detection configurations,
resulting in 8 tables, which are shown in Appendix [A] These tables show the metric results for
each object and for each segmentation-grasp detection pair.

For the sake of clarity, only the results presented in Table are analyzed. In particular,
these are the results averaged over the objects for each models pair. It is evident that, in all
configurations, a significant number of grasps are discarded, up to 90% of them, especially due
to the exceedance of the roll and yaw ranges. Furthermore, the number of frames utilized for
grasp generation remains consistent, with the exception of the combination Complete-EgoHOS-
6-DoF Graspnet. This issue is probably caused by the presence of outliers in the point cloud,
which makes the generation more challenging for that particular network.

Table shows the distribution of grasps with respect to the hand and with respect to the
best grasp. From the results, it is possible to notice that the D 4 is generally higher for the set
of pruned grasps than for the grasps generated by the model. This suggests that the grasp poses
of the pruned set are concentrated on the opposite side of the object with respect to the hand
position. This is confirmed by Dy, ,, which tends to be smaller for the pruned set. Overall, the
distances of the pruned grasps are approximately at 17 to 27 cm from the hand, while spanning
from 15 to 23 cm for the not pruned set. Moreover, the distances between all grasps and the best
one highlight that they tend to be closer on the pruned set.

For what concern the timing aspect, Table shows the average time required by the net-
works to process the input and infer the grasps, along with the total time, which includes the
time needed to process, infer and publish the result. The faster networks were GraspNet and
Contact-GraspNet, which take 0.32 and 0.485 seconds per frame, respectively.

In light of the obtained results, especially those related to the timing aspect, the selected

models for the online evaluation were GraspNet and Contact-GraspNet.
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(a) Not pruned grasps. (b) Pruned grasps.

(c) Not pruned grasps. (d) Pruned grasps.

Figure 4.6: Difference between the generated grasps of GraspNet with the isolated object point
cloud, Figures [4.6a) and [4.6b] and the generated grasps with a virtual plane placed at distance 1

mm along the z-axis of the camera frame, Figures and[4.6d These images show the first
50 grasps sorted according to their score.
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‘ Models H Inference [s] ‘ PC processing [s] ‘ Total [s] ‘

Graspnet 0.24 0.03 0.319
6-DoF GraspNet 4.54 0.04 5.55
Contact-GraspNet || 0.41 0.06 0.485

Table 4.5: Average time needed for each of the grasp detection models.

4.3 Online Evaluation

The online evaluation consists of testing the transfer of all the 76 object-pose combinations,
each for 3 times, resulting in a total of 228 handovers. Therefore, each object is tested 12 times.
As stated in [[15], there is no a standard method for qualitatively evaluating the human-robot
interaction, as the choice of the metrics highly depends on the task to be performed. One of the
most frequently used metrics for H2R handovers is the success rate, which can be defined as the
number of successful handovers divided by the total number of trials. During the experiments,
an handover has been considered successful if it allows the robot to grasp the object and hold
it firmly for a few seconds, without touching either the human hand or the object during the
robot’s motion and without pinching the hand.

Referring to this general validation approach, the handover operations have been evaluated
considering two distinct metrics: the success rate, which is computed as the number of successful
handovers over the total attempts, and the task completion time, which is the time needed to
execute an handover in all its phases. In fact, referring to the handover stages in Section
it is possible to identify three main phases, not directly related to the segmentation or grasp
detection modules. These are the selection of the best grasp, the trajectory planning and the
actuation of it.

In light of the obtained results, hand-object segmentation method is Fast-EgoHOS, since a
precise object mask is not needed for generating grasps and is suitable for a real-time approach.
Instead, the chosen grasp generation models are GraspNet, with the virtual plane placed at dis-
tance 1 mm, and Contact-GraspNet. 6-DoF GraspNet was not tested in a real environment
because, in its current implementation, it is not optimized for a real-time approach.

Due to the presence of some unpredictable errors attributable to the motion planner, such
as the robotic arm touching the object during its motion or the exceeding of the joint limits.
The success rate has been evaluated according to two different protocols. One through a simple
point-based assignment system, in which points are assigned according to the following criteria:
1 point, if the robot is able to grasp the object; 0.5 points, if the robot touches the object during its
motion or if the motion planner abort provided that the robot could have successfully picked

2This is a problem caused by the exceeding of the joint limits, especially during the approaching phase, where
the robot follows a straight trajectory before closing its end effector. This problem was mainly caused by the motion
planner and was not managed by us.
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up the object; 0 points, if it is unable to grasp the object, i.e. the grasp is not correct, or if no

plans are found after three attempts or if the hand is touched.

The other is a binary assignment system which assigns 1 point for success and 0 for failure,
without taking into account the issues related to the motion planner. Therefore, the handover

was considered successful also if the motion planner’s issues occurred.

Instead, for evaluating the efficiency of a handover, the task completion time metric was
computed.

Tables and show the handover results with the GraspNet model for both point sys-
tems. Table[4.7|shows the results for the point-based system. The object with the highest mean
success rate is the blue cube, with 0.916, while the one with the lowest value is the controller,
with 0.416. Instead, with the binary point system, shown in Table the objects with highest
score are the blue cube, the hand cream and the wood stick, where every attempt was successful,

and the one with lowest value is the controller, with half of the attempts wrong.

Tables 4.9 and present the handover results with the Contact-GraspNet model. The
object with the higher mean success rate obtained with the point-based system, see Table is
the wood stick, with 0.958, while the one with the lowest value is the hard disk box in vertical
position, i.e. showing its shorter side to the camera, with 0.583. With the other assignment
system, shown in Table the objects with highest score are the marker, the spray can and the
wood stick, where every attempt was considered successful, and the one with lowest value is

the tape in the vertical position, i.e. not showing the hole to the camera, with 0.583.

The obtained results are highly dependent on the utilized point assignment system. If the
issues of the motion planner were considered, then the overall score would be generally low,
vice versa for the binary system. Between the two methods, the one with Contact-Graspnet
performed better, achieving a higher total mean success rate with both point systems. Consider-
ing the binary point system, the combination Fast-EgoHOS-Contact-Graspnet reached a mean
success rate of 0.829, while Fast-EgoHOS-Graspnet of 0.803.

Finally, Table shows the results for the time metric, along with their mean success rate.
These are comparable: each attempt takes approximately 20 seconds to be executed, 3 of which
for selecting and planning the motion to the best grasp. The two main reasons for the prolonged
execution time are, in part, intentional. Firstly, the robot speed is limited for safety reasons.
Secondly, the robot does not immediately move towards the optimal grasp pose; instead, it
moves to an approach position, from which it only needs to perform a straight motion along its

approaching axis. This motion is the cause of the frequent abortions given by the planner.

Based on the experiments, it was observed that cylindrical objects and rectangular ones,
with dimensions compatible with the end effector’s maximum opening size, lead to a higher

success rate. In particular, this was observed with the wood stick, the blue cube, and the remote.
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’ Model H Selection [s] \ Planning [s] \ Attempts [s] H Mean Success Rate

GraspNet 0.553 2.555 19.133 0.803
Contact-GraspNet || 0.342 3.01 21.655 0.829

Table 4.6: Results of the models in terms of average time needed to prune grasps and select
which is the best one in terms of score, average time for the motion planner to find a plan, and
average time for the attempt.

Conversely, objects with a particular shape, such as the controller, the tape and the hammer, or
that require the end effector to be opened at maximum width, i.e. the white rectangle and the
hard disk box, result in a lower success rate.

It has been observed that the generation of feasible grasps is challenging for objects whose
point cloud is not precise enough. In particular, this can be observed with the tape, which has a

point cloud that tends to be incomplete due to its reflective surface and thin size of the border.
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Pose

Objects | | — |\ |/ || Mean Success Rate (0/1)
ball 313 |32 0.917
blue cube 313 |3/3 1
controller 112 |12 0.5
hammer 201 |22 0.583
hand cream 313 |33 1
hard disk box h 311 (212 0.667
hard disk box v 312 [3(3 0917
marker 313 |22 0.833
pink object 313 (23 0.917
raspberry _box h 211 |22 0.583
raspberry _box v 313 (32 0.917
remote 313 (2|3 0.917
screwdriver 313 |22 0.833
spray 312 |33 0.917
tape h 212 |21 0.583
tape v 201 |22 0.583
white rectangle h |33 [2]0 0.667
white rectangle v |32 |3 |3 0.917
wood 313 |3/3 1
Total 0.803

Table 4.8: Results obtained with GraspNet. Among the 228 handovers, the grasping procedure
failed (f) 45 times and it has successfully (s) grasped the object 183 times. The Mean Success
Rate (0/1) considers as points to be assigned 0 and 1.
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Objects Pose | | — |\ |/ || Mean success rate (0/1)
ball 312 (31310917
blue cube 313 (23] 00917
controller 213 [ 2(1] 0.667
hammer 112 |3]2]0.667
hand cream 313 230917
hard disk box h || 3|1 |3 ]2/ 0.75
hard disk box v |2 |1 |3 |3] 0.75
marker 313 13131
pink object 212 |2(2] 0.667
raspberry box h 313 |22 0.833
raspberry _box v 313 (213100917
remote 313 3131
screwdriver 213 | 3121 0.833
spray 313 [3(3]1
tape_h 313 |3|1] 0.833
tape v 212 [ 1]2]0.583
white rectangle h (|3 |2 |3 | 1] 0.75
white rectangle v || 32 |3 |1 0.75
wood 313 [3(3]1
Total 0.829

Table 4.10: Results obtained with Contact-GraspNet. Among the 228 handovers, the grasping
procedure failed (f) 38 times and it has successfully (s) grasped the object 189 times. The Mean
Success Rate (0/1) considers as points to be assigned 0 and 1.
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(a) Spray can with GraspNet. (b) Spray can with Contact-GraspNet.

(c) Wood stick with GraspNet. (d) Wood stick with Contact-GraspNet.

(e) Remote with GraspNet. (f) Remote with Contact-GraspNet.

Figure 4.7: Example of the generated best grasp on the objects belonging to the dataset. Other
examples are shown in Appendix

4.4 Problems and Limitations

During the experimental phase, some issues were observed. In particular, there were diffi-
culties when segmenting certain objects, namely the hammer, the tape and the marker, mainly

due to their reflective surface. Moreover, the segmentation process can also be problematic for
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the Fast-EgoHOS method, especially when dealing with transparent objects. Another issue was
the inability to find the motion plan. This problem occurred especially when the robot had to
perform the straight motion from the approach position. Finally, some problems were observed
when generating grasps. These were more evident for thick objects, which only allow grasps at
maximum grasp width, such as the hand cream, the hammer, the white rectangle and the con-
troller, and thin objects, such as the screwdriver, due to their limited number of points in the
point cloud.

The selection of the hand-grasp distance threshold and the roll, pitch and yaw intervals were
determinant for choosing which of the generated grasps to retain, with the objective of having
them placed on the same side of the robot and above the object. In some cases, these ranges
were too strict, as can be observed in Figures and [4.8b], where all the generated grasps were
discarded due to the applied criteria. In this specific case, roll, pitch and the distance criteria
discarded one grasp each, while the yaw discarded two of them. The case in which all grasps
are discarded may happen for object whose point cloud has low resolution or for thick objects.

These aforementioned problems led the model to generate a limited number of suitable
grasps or, alternatively, discard them all. During the online evaluation, this was not a criti-
cal issue, since the cases in which the models were unable to generate at least one grasp were
not so frequent enough to slow down the overall process.

The most frequently observed issues, which were not directly related to the implementation
of the modules or to the type of objects, were attributed to the motion planner. The main ones
were related to the planner’s inability to find a trajectory for reaching the grasp pose, the abortion
during its motion, and the robot’s contact with the object. The latter issue was largely due to
the object not being treated as a collision box in the scene, which resulted in the planner lacking
knowledge about its presence.

Finally, the decision to employ an open-loop approach, that is without dealing with potential
hand motion during the robot’s movements, rather than a closed-loop one, was primarily influ-
enced by the limitations of the depth sensor. In fact, the depth camera has a minimum depth
distance of approximately 30 cm, which results in some measuring errors when the end effector

is in close proximity to the object.
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(b)

Figure 4.8: Issue that occurred when the roll, pitch and yaw ranges are narrow, see Section
Figure shows the generated grasps from the Contact-GraspNet model, while displays
the remaining ones after the pruning operation. In this case no grasps are left.
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Chapter 5
Conclusions and Future Works

This thesis presented an approach to the H2R handover task for generic objects based on a
pipeline consisting of three phases. These stages are: a segmentation module to obtain a hand-
object mask of the scene, which is observed from an egocentric point of view with respect to
the robot; a grasp generation module to generate a set of grasps, starting from the hand-object
mask and the point cloud of the object; and finally, a grasp selection module to select which of

them are suitable for execution.

In particular, since the H2R task requires the system to be accurate and fast at the same time,
different state-of-the-art approaches for each module have been evaluated. For the segmentation
module, whose objective is to distinguish between the hand and the object being held, the com-
pared methodologies were Fast-EgoHOS and Complete-EgoHOS, both based on the EgoHOS
[1]] model. Between these two choices, Fast-EgoHOS was selected as it offered a good balance
in terms of accuracy-time trade-off. With regard to the grasp generation module, an evaluation
has been conducted on the following state-of-the-art models: GraspNet [2[], 6-DoF GraspNet
[3], and Contact-GraspNet [4]]. The evaluation objectives were: firstly, the models’ capacity to
generate a dense set of feasible grasps on the given object point cloud in a short amount of time;
and secondly, to verify the possibility of adapting these models trained on static objects for the
H2R handover task. In order to select which of the grasp poses were feasible for execution, three
discarding criteria have been chosen based on the grasp distance to the hand, its distance to the
object, and its orientation. Among the three model proposals, GraspNet and Contact-GraspNet
were selected because they offer a good balance between grasp generation and total execution
time.

Each module has been subjected to both offline and online evaluation. The offline evalu-
ation was mainly used to identify which combination of segmentation-grasp detection models
performed better on a recorded dataset. With regard to the segmentation, the evaluation was

performed in terms of Intersection Over Union and Average Execution Time. Instead, for the
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grasp detection, the evaluation was conducted in terms of remaining grasps, after the applica-
tion of the chosen pruning criteria, and of distance-based metrics, with the objective of verify-
ing how grasps are distributed with respect to the hand. Based on the obtained offline results,
the segmentation-grasp generation pairs selected for the online evaluation were Fast-EgoHOS-
GraspNet and Fast-EgoHOS-Contact-GraspNet.

The online evaluation was performed on a set of 15 distinct objects, for a total of 228 han-
dovers. Each object was presented in four different orientations to test the robustness of the
system to the way objects can be handled. In this case, for evaluating the selected pair of mod-
els, two metrics were considered: the success rate, which is up 82.9% with the Fast-EgoHOS-
Contact-GraspNet pair, and the time required for each grasping attempt, which takes approxi-
mately 20 seconds, 3 of which for selecting and planning the motion to the best grasp.

From the results, it has been observed that adapting a grasp detection module from a static
to a dynamic scene is feasible, but with a trade-off in terms of accuracy, total number of grasps
and the execution time. Grasps are distributed on the entire object point cloud and the best one
is averagely positioned far from the hand. These models are capable of generating a dense set of
grasps on the object point cloud, however only a subset of them are suitable for execution, since
the correct execution highly depends on the robot’s physical limits and on the applied safety
policies.

In light of the limitations described in Section some future work may focus on imple-
menting improvements to the system to enhance its reliability and speed, as well as defining
common evaluation criteria to ensure a fair comparison with other implementations. To im-
prove the system’s reliability, collision boxes can be applied on every obstacle in the scene,
including the hand, the person, and the object itself. This would enable the motion planner to
compute a trajectory that avoids these obstacles during the motion. Moreover, the overall exe-
cution time can be reduced if the robot’s followed optimal paths. This issue could be reduced
implementing a custom trajectory planner.

Finally, the implementation of a multi-camera system allows the approach to be closed-loop,
thereby overcoming the limitations caused by the depth sensor when objects are under a certain
distance. The presence of an eye-to-hand camera, which is not mounted on the end effector,
can enhance the robot’s perception capabilities, enabling it to perceive the scene from multiple
point of views, helping in case of occlusions.

In conclusion, even after applying the criteria to force the robot to pick up the object in a
certain way, the implemented system is not free from error and cannot be used without supervi-
sion. Further development is necessary to improve the performance and to make it more stable,

reliable and fast.
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Appendix A

Offline Evaluation

The following tables show the complete results obtained with all the configurations of the
segmentation models, namely Fast-EgoHOS (FE) and Complete-EgoHOS (CE), with the grasp
detection ones, namely GraspNet, 6-DoF GraspNet and Contact-GraspNet.

The results are in Tables: and for what concern the ones obtained with GraspNet
without the virtual plane; and for GraspNet with the virtual plane placed at 1 mm;|A.5
and[A.6| for 6-DoF GraspNet model;[A.7]and [A 8] for the results with Contact-GraspNet.
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Appendix B

Grasp Generation Results

The following images display the best grasps generated for every object of the dataset. Results
are obtained choosing the best grasp in terms of score after applying the pruning criteria defined
n The models used to retrieve these results are GraspNet [2]] and Contact-GraspNet [4]].

From the results, it is possible to notice some of the issues described in Chapter [}, for ex-

ample, Figures |B.2e| and [B.3g/ show a grasp interpenetrating the object point cloud, probably

due to its size that is comparable with the gripper’s maximum opening width, Figures and
B.3e|[show the difficulties of finding a good grasp for the tape, whose segmentation mask is not

precise.
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A 4

(a) Ball with GraspNet. (b) Ball with Contact-GraspNet.

(d) Green cube with Contact-

(c) Green_cube with GraspNet.  GraspNet.

%

(e) Hammer with GraspNet. (f) Hammer with Contact-GraspNet.

= §

VA==

(h) Hand cream with Contact-
(g) Hand cream with GraspNet.  GraspNet.

Figure B.1: Example of the generated best grasp on the objects belonging to the dataset. Other
examples are shown in Appendix@
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(a) Marker with GraspNet. (b) Marker with Contact-GraspNet.

(c) Pink with GraspNet. (d) Pink with Contact-GraspNet.

(f) Raspberry h with Contact-
GraspNet.

(h) Raspberry v with Contact-
(g) Raspberry v with GraspNet.  GraspNet.

Figure B.2: Example of the generated best grasp on the objects belonging to the dataset.
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(b) Screwdriver with Contact-
(a) Screwdriver with GraspNet.  GraspNet.

b
=

(c) tape_h with GraspNet. (d) tape_h with Contact-GraspNet.

(e) tape v with GraspNet. (f) tape_v with Contact-GraspNet.

(h) hard disk box_h with Contact-
(g) hard_disk box h with GraspNet. GraspNet.

Figure B.3: Example of the generated best grasp on the objects belonging to the dataset.
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(b) hard disk box v with Contact-
(a) hard_disk box v with GraspNet. ~ GraspNet.

b,

(d) white box h with Contact-
(c) white_box_h with GraspNet. GraspNet.

(f) white box v with Contact-
(e) white box_ v with GraspNet. GraspNet.

Figure B.4: Example of the generated best grasp on the objects belonging to the dataset.
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