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Abstract

The Random Assignment Problem is a significant challenge in optimization theory that in-
volves allocating a set of n jobs to an equal number of machines to minimize total cost. The
costs are assigned to each machine to complete each job and in this formulation are considered
as random variables with an uniform distribution between 0 and 1. Despite its apparent sim-
plicity, this problemhas captivatedmathematicians and researchers for decades. A key difficulty
lies in estimating the expected value of the cost associated with the optimal solution, denoted as
E[An]. Early attempts to bound this expected value resulted in orders of log n until Walkup’s
result in 1979, where he demonstrated thatE[An] is bounded independently of n, establishing
an unexpected constant bound of 3+o(1). This result, that was grounded in graph theory and
linear programming, laid the foundation for further advancements in understanding the prob-
lem and subsequent research led to the discovery of bounds forE[An] using diverse mathemati-
cal techniques. However, the most significant breakthrough occurred in 1987when Parisi and
Mézard applied concepts from statistical physics to derive a remarkable estimation for E[An].
Their work, based on the replica method and spin glass theory, suggested that as n tends to in-
finity,E[An] converges to π2

6
, providing a surprising result that also came from a different field

of research. The only aspect left to address was to obtain a rigorousmathematical proof instead
of an estimate and the first formal demonstration of this result was presented years later by Al-
dous in his article “The ζ(2)Limit in theRandomAssignment Problem” [1], whichwill be the
main focus of this thesis. After the introductory chapter that aims to synthesize the problem’s
evolution, Chapter 2 will outline the main steps of Aldous’s proof for a comprehensive under-
standing, and Chapter 3 will examine the details necessary to complete the demonstration. To
emphasize the practical relevance of the random assignment problem, Chapter 4 will explore
one of its possible applications. Specifically, it will focus on the article: “Privacy preserving
wireless communication using bipartite matching in social big data” [2] which explain how to
employ a bipartite matchingmethod to address a privacy protection issue showing the practical
impact of theoretical advancements in combinatorial optimization.

v



vi



Contents

Abstract v

List of figures ix

1 Introduction 1
1.1 The Random Assignment Problem . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Graph formulation . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 History of the Matching Problem . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.1 Advancements in Graph Theory Fundamentals for the Assignment
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2.2 First modern formulation of the Matching Problem . . . . . . . . . 5
1.2.3 Developmentof theRandomizedVersionof theAssignmentProblem

and applications . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Early Solutions to the Random Assignment Problem . . . . . . . . . . . . . 8

1.3.1 Rigorous Bounds via Linear Programming . . . . . . . . . . . . . . 8
1.3.2 Parisi andMézard conjecture through the replica method . . . . . . 10

2 Fundamental Steps of Aldous’s Proof 13
2.1 Presentation of the results . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 The PoissonWeighted Infinite Tree . . . . . . . . . . . . . . . . . . . . . . 15
2.3 The Optimal Matching on the PWIT . . . . . . . . . . . . . . . . . . . . . 17

2.3.1 Fundamental idea . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.2 The Logistic Distribution . . . . . . . . . . . . . . . . . . . . . . 18
2.3.3 Construction of the optimal matching . . . . . . . . . . . . . . . . 21

2.4 Analysis of the optimal matching and deduction of the estimation . . . . . . 23

3 Complete proof 27
3.1 Equivalence with the matching on the PWIT . . . . . . . . . . . . . . . . . 27

3.1.1 Spatially invariant matching . . . . . . . . . . . . . . . . . . . . . 27
3.1.2 Deduction of Theorem 11 . . . . . . . . . . . . . . . . . . . . . . 30

3.2 Proof of proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.2.1 Equivalent result to Proposition 2 . . . . . . . . . . . . . . . . . . 33
3.2.2 Proof Lemma 8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4 Privacy preservingwireless communication using BipartiteMatching 43
4.1 Introduction to the problem . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1 Overview of the Channel scheduling Controller model . . . . . . . 44

vii



4.1.2 The privacy-preserving model . . . . . . . . . . . . . . . . . . . . 45
4.1.3 Example of Task Scheduling and its Impact on Privacy Protection Costs 48

4.2 Proposed algorithm for task-scheduling . . . . . . . . . . . . . . . . . . . . 50
4.2.1 Problem definition . . . . . . . . . . . . . . . . . . . . . . . . . . 50
4.2.2 Example of application . . . . . . . . . . . . . . . . . . . . . . . . 53
4.2.3 Experimental results . . . . . . . . . . . . . . . . . . . . . . . . . 55

5 Conclusions 57

References 59

viii



Listing of figures

1.1 An example with N = 3. The random assignment problem asks, given that
ci,j is a random cost between 0 and 1 for each pair of vertices i,j belonging to
two different partitions V1 and V2, to find the subset of edges with minimum
total cost that connects each node of V1 to exactly one of V2. In this picture
V1 and V2 are the nodes on the left and on the right respectively and a possible
matching is highlighted in red. . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Plot of both the line of the theoretical prediction obtained using Parisi and
Mézard equation (1.1) and mean and relative distance, as reported in the ta-
ble 1.1, of the optimal solution of the matching problem computed with the
hungarian algorithm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1 One possible realization of a PoissonWeighted InfiniteTree (PWIT) represent-
ing nodes with associated weights along the edges. . . . . . . . . . . . . . . 16

3.1 A bi-infinite tree with edgeweights assigned according to a Poisson point process. 38

4.1 Example of a Task Data FlowGraph (TDFG), where nodes represent tasks, di-
rected edges indicate task precedence, and edgeweights reflect communication
costs between tasks. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.2 A simple task scheduling plot that provides a visual representation of the task
dependencies and execution flow. . . . . . . . . . . . . . . . . . . . . . . . 46

4.3 Plot of three valid scheduling, based on the DAG in figure 4.1. . . . . . . . . 49
4.4 Visual representation of the procedure described in Algorithm 4.3. . . . . . . 53
4.5 Final task scheduling, obtained utilizing the proposed algorithm. . . . . . . . 54

ix



x



1
Introduction

1.1 The RandomAssignment Problem

The problem of interest of this thesis is the assignment problem that can be explained as follows
[1]. Let’s consider the need to allocate n jobs to nmachines, each numbered from 1 to n. Sup-
pose each job has a specific cost depending on the machine that performs it, denoted by c(i, j),
where i represents the job index and j denotes the machine index. The objective is to assign
exactly one job to each machine with the goal of minimizing the total cost. Consequently, the
basic input can be depicted by an n× nmatrix:c(1, 1) . . . c(1, n)

... . . . ...
c(n, 1) . . . c(n, n)


Furthermore, this cost matrix can help to better visualize the assignment problem. In this for-
mulation, each row represents a job or task, and each column represents a machine or resource.
The objective is to select one machine for each job, ensuring that each column (machine) is
chosen exactly once for each row (job), with the aim of minimizing the total sum of the costs
associated with all job-machine assignments, where each cost is represented by an entry in the
matrix.

Because there are n jobs and n machines both numbered from 1 to n the solution to this
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problem lies in finding a permutation π that minimizes the total cost [3]:

An = min
π

n∑
i=1

c (i, π(i)).

In particular, this work will concentrate on solving the Random Assignment Problem where
the costs associated with assigning jobs to machines are random variables. In this scenario, the
simplest stochastic model assumes that the costs c(i, j) are independent and identically dis-
tributed according to a uniform distribution between 0 and 1. Therefore, we have c(i, j) ∼
Unif ([0, 1]) , ∀i, j = 1, ..., n.

1.1.1 Graph formulation

Another formulation of the problem is based on graph theory, specifically utilizing the concepts
of bipartite graphs and matchings [4]:

Definition 1. A graph is bipartite if its set of vertices can be partitioned into two sets A and B
such that every edge of the graph has one endpoint inA and the other inB.

Definition 2. A set of edges in a graph is called amatching if no two edges share a common vertex.
With respect to a given matching, a vertex is said to be matched or covered if there is an edge in
the matching incident to it. Conversely, if a vertex is not covered, it is said to be unmatched or
uncovered.

These concepts are relevant to the random assignment problem. By considering a complete
bipartite, weighted graph with 2N vertices, where N belong to one partition and N to the
other (representing jobs and machines, respectively), the random assignment problem can be
reformulated as finding amatching in the graph that covers all vertices withminimum total cost.

1.2 History of theMatching Problem

1.2.1 Advancements in Graph Theory Fundamentals for the As-
signment Problem

Oneof the earliest instances of the assignment problem [5] can be traced back to 1784 inMonge
work [6]. Monge introduced a problem similar to what is now known as the assignment prob-
lem, but within a distinct context and that initially appears continuous in nature: the trans-
portation problem. Motivated by the challenge of transporting earth, which he analogized
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Figure 1.1: An example withN = 3. The random assignment problem asks, given that ci,j is a random cost between 0 and
1 for each pair of vertices i,j belonging to two different partitions V1 and V2, to find the subset of edges with minimum total
cost that connects each node of V1 to exactly one of V2. In this picture V1 and V2 are the nodes on the left and on the right
respectively and a possible matching is highlighted in red.

to the combinatorial task of moving molecules, Monge’s scenario involved two equal-acreage
regions: one filled with earth and the other empty. The primary objective was to efficiently
relocate the earth from the first area to the second while minimizing the total transportation
distance, computed as the cumulative distance eachmolecule needed to traverse. This variation
of the assignment problem later became formally recognized as the transportation problem, a
fundamental concept in optimization and logistics where the objective is to determine themost
efficient way to transport goods or resources from suppliers to consumers.
This early formulationwas important not just by itself but because it presented a specific case,

setting the stage for later developments in graph theory. Notably, significant progress in this
field emerged between 1912 and 1931 through the works of Frobenius and König. The former,
focusing on matrix theory, and the latter, emphasizing graph theory, provided foundational
contributions to matching theory from distinct perspectives.
The pivotal advancements in graph theory began with Frobenius’s work in 1912, where he

introduced a theorem concerning the determinant of a matrix [7]. This theorem laid essential
groundwork for subsequent developments in matching theory and marked a significant mile-
stone in the evolution of mathematical concepts related to matrices and determinants.

Theorem 1. Let the elements of a determinant of degree n be n2 independent variables. One
sets some of them equal to zero, but such that the determinant does not vanish identically. Then it
remains an irreducible function, except when for some valuem < n all elements vanish that have
m rows in common with n×m columns.

In 1915, König [8] recognized that Frobenius’s findings could be reformulated in terms of
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bipartite graphs by introducing the concept of representing a graph with its adjacency matrix.
König proceeded to provide a proof of Frobenius’s result, demonstrating a significant connec-
tion between matrix theory and graph theory.
During the Congrés de Philosophie mathématique in Paris in 1914, König presented the follow-
ing:

Theorem 2. Each regular bipartite graph has a perfect matching.

Where a perfect matching is defined [4] as:

Definition 3. Amatching is perfect if it covers all the vertex of the graph.

König also derived the following consequence:

Corollary 1. The edge set of any regular bipartite graph can be decomposed into perfectmatchings.

In order to give an elementary proof of his previous result described above, Frobenius in1917
proved the following which now is a fundamental theorem in graph theory:

Theorem 3. If in a determinant of the nth degree all elements vanish that p(≤ n) rows have in
common with n− p+ 1 columns, then all members of the expanded determinant vanish.
If all members of a determinant of degree n vanish, then all elements vanish that p rows have in
common with n− p+ 1 columns for p = 1 or 2, . . . or n.

That is saying that ifA = (ai,j) is ann×nmatrix, and for each permutation π of {1, ..., n}
one has

∏n
i=1 ai,j = 0 then for some p there exist p rows and n−p+1 columns ofA such that

their intersection is all-zero.
Frobenius’s theorem identifies which bipartite graphs possess a perfect matching but a char-

acterization of the maximum size of a matching in bipartite graph was given by König’s more
general theorem in 1931 [9].

Theorem4. Inan even circuit graph, theminimalnumber of vertices that exhaust the edges agrees
with the maximal number of edges that pairwise do not contain any common end point.

This theorem was stating that the maximum size of a matching in a bipartite graph is equal
to the minimum number of vertices needed to cover all edges.
In 1931, Egerváry, a Hungarian mathematician, made a significant advancement building

upon König’s work by characterizing the maximum weight of a matching in a bipartite graph.
This concept, applicable to the assignment problem, led to the formulation of the following
theorem.
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Theorem 5. If the elements of the matrix (ci,j) of order n are given nonnegative integers , then
under the assumption

λi + µj ≥ ci,j for i, j = 1, . . . n, (λi, µj non negative integers),

we have:
k=n∑
k=1

(λk + µk) = max (a1,π1 + a2,π2 . . . an,πn) .

where π1 . . . πn run over all possible permutation of the numbers 1, . . . , n.

1.2.2 First modern formulation of theMatching Problem

Egerváry’s theorem and proof method laid a crucial foundation for Kuhn to develop the first
comprehensive formulation and solution of the assignment problem in his work “The Hungar-
ianMethod for the Assignment Problem” in 1955 [10].
This work is widely acknowledged as the starting point for the practical development of so-

lution methods and variations for the classic assignment problem. Kuhn’s Hungarian method,
named in honor of Egerváry’s contribution, stands out as a combinatorial optimization algo-
rithm that remains of note today for its efficiency in solving the assignment problem within
polynomial time.
Kuhn’s analysis of König’s work on graph theory led to the realization that the matching

problem for a bipartite graph on 2 sets of n vertices was exactly the same as a n by n assignment
problem with all aij = 0 or 1. Notably König had given a combinatorial algorithm based on
augmenting paths that produces optimal solutions to the matching problem. While this algo-
rithm seemedpromising it had the problemof how to reduce the general assignment problem to
the 0−1 special case. ReadingKönig’s works Kuhn discovered that the solution to his problem
might be found in Egerváry’s paper and after studying his results was able to identify a method
that allow the reduction of a general assignment problem to a finite number of 0−1 assignment
problems.
Kuhn developed a method that enhanced Egerváry’s approach for solving the problem by

finding augmenting paths to achieve a perfect matching or the required sets. His technique
focused onmaximizing the improvement of λ and µ in Egerváry’s formulation not just by one,
but by the largest value possible.
The method was summarized by Flood [11] as the following sequence of steps.

1. Subtract the smallest element of the adjacency matrixA from each element ofA obtain-
ing a matrixA1 with nonnegative elements and at least one zero.
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2. Find aminimal setS1 of lines, n1 in number, which contain all the zero ofA1. Ifn1 = n
there is a set of n independent zeros (where in this context independent means that they
are not on the same horizontal or vertical line) and the elements ofA in this n positions
constitutes the required solution.

3. If n1 < n, let h1 denote the smallest element ofA1 which is not in any line of S1. Then
h1 > 0. For each line in S1 add h1 to every element of that line; then subtract h1 for
every element ofA1. Call the newmatrixA2.

4. Repeat steps 2 and 3, usingA2 in place ofA1.

Kuhnnoted that the sumof the elements of thematrix is decreasedbyn(n−nk)hk in each ap-
plication of step 3, so the process must terminate after a finite number of steps. LaterMunkres
[12] observed that the method runs in strongly polinomial time (O(n4)).

1.2.3 DevelopmentoftheRandomizedVersionoftheAssignment
Problem and applications

Kuhn’s work gave origin to the research of different methods to solve the AP and other (both
linear and non-linear) application and variation of the problem in different contexts. From the
numerousmodifications there is also the focal point of this thesis: the randomassignment prob-
lem which can be explained as a variation of the general problem where the costs are random
with an uniform distribution between 0 and 1.
The origins of studying this problem [3] can be traced back to 1962 when Kurtzberg [13]

initiated investigations by analyzing the execution time of heuristic methods for the assignment
problem. Kurtzberg’s innovative approach of introducing random costs uniformly distributed
between 0 and 1 introduced a method for understanding the average time required by algo-
rithms to solve this problem. Employing techniques like greedy matching, he derived upper
bounds on EAn for uniformly distributed costs inspiring further investigations into bounds
for the expected value ofAn by subsequent researchers.
This work has also highlighted the significance of the random assignment problem, empha-

sizing its critical role in analyzing random instances of optimization problems. This analytical
approach is essential for understanding the characteristics of solutions, feasible regions, and
optimal values, particularly in large-scale scenarios. Operating within a probabilistic frame-
work, where problem data conforms to a probability distribution, provides a foundation for
maintaining consistency across problem instances of varying sizes. This methodology enables
the evaluation of optimal values and solutions as functions of problem size, thereby advancing
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our comprehension of the random assignment problem, which is crucial for every application
within the matching problem domain.
Furthermore, deriving upper bounds on expected optimal values for specific problems has

yielded significant advancements in understanding the computational complexities involved.
Today, the analysis of random instances of the assignment problem remains highly relevant,

especially given the increasing number of potential applications across various disciplines in
science and engineering. These applications span fields such as chemistry, biology, physics, ar-
chaeology, electrical engineering, sports, and beyond.
To illustrate the diverse range of applications of this problem, here are some instances that

can be formulated as bipartite graph matching:

• Privacy-preserving wireless communications: In the article [2], the authors discuss
how enhanced wireless data transmissions have significantly improved service deploy-
ment, especially in social networks and big data applications. They highlight multi chan-
nel wireless communication as a key approach for disseminating information in dynamic
and heterogeneous wireless networking environments. Channel Scheduling Controllers
(CSCs) play a crucial role in data transmissions by facilitating real-time task scheduling.
However, fixed communication scheduling struggles tomeet the demands of higher-level
privacy protections due to conflicts between performance and security requirements. To
address this challenge, the authors propose an optimal task scheduling technique that al-
locates tasks on heterogeneousNodes to enhance system resilience. They address anNP-
complete problem representing the privacy protection issue of CSC systems and solve it
using a bipartite matching method.

• DNA sequencing: In this work [14], was analized the computational complexity of a
combinatorial problem arising in DNA sequencing by hybridization. This problem in-
volves an input comprising an integer l and a set S of words of length k formed from the
symbols A, C, G, T. The core challenge is to determine the existence of a word of length l
that includes eachword in S at least once as a subwordwhile excluding any other subword
of length k. The computational complexity of this problem has long been a subject of
inquiry and remains unresolved. The authors establish that this problem is polynomial
time equivalent to the exact perfect matching problem in bipartite graphs.

• Image feature matching: In [15] the authors address the challenging task of determin-
ing 2D image feature correspondences across a set of images. They introduce two affinity
measures for image points and lines from different images, which are utilized to create
unweighted andweighted bipartite graphs. Therefore the research demonstrates that the
problem of image feature matching can be reformulated as a general maximum-weight
bipartite matching problem.

To show how the bipartite matching can be applied to a practical problem, Chapter 4 will
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focus completely on explaining the first example provided: the application toprivacy-preserving
wireless communication as detailed in [2].

1.3 EarlySolutionstotheRandomAssignmentProb-
lem

This seemingly simple model has been extensively studied for decades without a definitive so-
lution being found, employing various approaches. The first results are briefly reported in the
following paragraph [1].

1.3.1 Rigorous Bounds via Linear Programming

The first bounds obtained by Kurtzberg for EAn were of order log n and these were not im-
proved until 1979 when Walkup [16] showed that EAn is bounded independently of n, a sur-
prising result at the time. Specifically, he established that:

E[An] ≤ 3 + o(1).

The approach he utilized to derive this inequality is intriguing, and here is a summary of the key
steps. Initially, he considered the natural strategy of focusing on assigning edgeswith small costs.
The idea involved constructing a bipartite graphwhere an edge (i, j) belongs to the edge setE if
and only if cij ≤ α/n. The hopewas that if such a graph had a perfectmatching, the cost of the
assignment problemwould be bounded byα. However, thismethod alone fell short of yielding
the desired constant bound. One notable challenge was the presence of isolated vertices, with
the expected number scaling as 2ne−α.
In addition to that, investigation revealed that achieving a perfectmatchingwith all edges less

thanα/n required settingα = O(log n), resulting in a bound for the expected value no better
than that obtained through greedy methods.
The key idea to solve this problem involved the introduction of k-out multigraphs, which

are graphs that allow connections with the same end nodes, and where each vertex has exactly k
outgoing edges. Walkup developed a method for generating a random two-out bipartite multi-
graph by partitioning the vertex set Vi, Vj into two subsets with |Vi| = |Vj| = n. For each
vertex v in Vi, two random elementsw andw′ from Vj were selected, forming the edges (v, w)
and (v, w′). Similarly, for each vertex v in Vj , two random elements ofw andw′ from Vi were
chosen, resulting in the corresponding edges.
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Although this process could lead to some edges being added twice, resulting in a multigraph
rather than a graph, the distinction proved inconsequential. Crucially, this approach ensured
that with high probability, a perfect matching existed, addressing the challenges posed by iso-
lated vertices. This critical insight was formalized inWalkup’s theorem:

Theorem 6. Let G be a random two-out bipartite multigraph with bipartition V1, V2, where
|V1| = |V2| = n. The probability that G fails to contain a perfect matching is bounded by 5/n.

To establish the connection between the assignment problem and the theory of random two-
out bipartite multigraphs, Walkup introduced edge weights c(1)i,j and c

(2)
i,j for each edge cost cij .

These edge weights, representing outgoing and ingoing edges, were independently and identi-
cally distributed in [0, 1], resulting in a total of 4n independent random variables. Walkup then
selected the two smallest outgoing costs for each vertex in Vi and the two smallest ingoing costs
for each vertex in Vj . He demonstrated that the smallest value had an expectation of

E[c(1)i (1)] = E[c(2)j (1)] =
2

n
,

and similarly, the second smallest value had

E[c(1)i (2)] = E[c(2)j (2)] =
4

n
.

Furthermore, considering sets of out-edges for vertices, that for each i was denoted with Oi,
Walkup showed that the expectations of the edge weights conditioned on the presence of these
edges followed specific patterns, explaining the constant 3 in the final inequality. The values
obtained where

E
(
c
(1)
ij |(i, j) ∈ Oi

)
=

1

2
E
(
c
(1)
ij |c

(1)
ij = c

(1)
i (1)

)
+

1

2
E
(
c
(1)
ij |c

(1)
ij = c

(2)
i (1)

)
=

3

n
,

and just in the same way:

E
(
c
(2)
ij |(i, j) ∈ Oi

)
=

3

n
.

In the concluding steps, Walkup utilized these observation to define a partition of the bipar-
tite multigraphG that combined with the results from the theorem and derived inequalities to
obtain the desired estimation for the assignment problem. For further details on the proof one
can look at [17].

Eight years later, Karp [18] introduced a new approach to the estimation of EAn that was
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based on linear programming, obtaining the upper bound:

E[An] ≤ 2.

SpecificallyKurp’s proofmade use of results obtained for the transportation problem, knowing
that the assignment problem could be represented as it’s particular instance, which assured that
both the primal and dual problems of the transportation problem can be expressed in terms
of spanning trees. His key observation was that, conditional on certain events related to the
spanning tree of a complete bipartite graph, the distribution of edge costs followed a uniform
distribution. Building upon this observation, Karp conducted a thorough computation to de-
rive the inequality.
Later on, in 1993, Lazarus [19] was also able to provide a lower bound:

EAn ≥ 1 +
1

e
.

Inspired in part by Karp’s result, Dyer, Frieze, and McDiarmid [20] developed an innovative
approach to deriving general bounds for the objective function of linear programming prob-
lems with random costs. Their method exploits the optimality criterion of the simplex method
and the lack-of-memory property of certain random distributions. The technique involves
conditioning on random costs based on particular events, such as surpassing a predetermined
threshold. By utilizing these conditional probabilities and the properties of the random distri-
butions, they derived bounds on the moment-generating function of the optimal solution to
the linear programming problem. So they were able to obtain the same bound proved by Karp,
(EAn ≤ 2) but without the need for specialized bases.
Subsequent research has been dedicated to enhancing these bounds, resulting in refinements

such as:
E[An] ≤ 1.94,

E[An] ≥ 1.51.

Obtained respectively by Olin in 1992 [21] and Coppersmith - Sorkin in 1999 [22].

1.3.2 ParisiandMézardconjecturethroughthereplicamethod

The most significant advancement in estimating the actual solution was provided by Parisi and
Mézard, who employed a completely different method based on the apparently unrelated con-
cept of spin glasses. In their seminal work [23], they applied results from the statistical physics
of spin glasses to demonstrate that, under the assumption of replica symmetry, the expected
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value ofAn converges to π2

6
= ζ(2) as n approaches infinity.

The formula they derived from the graph representation of the problem revealed that the
true value of the optimal solution is π2

6
, with an additional term of the order of 1

n
. Specifically,

they stated:

E[An] =
π2

6
− 1

n

(
π2

12
+ 2ζ(3)

)
+O

(
1

n

)
, (1.1)

where ζ(3) refers to the Riemann zeta function at argument 3.
In order to validate their estimation, was conducted an experiment in [24] where the authors

analyzed several samples and plotted both the results obtained from a series of simulations and
the prediction (1.1) as a function of 1

2N
. They were able to study a range of points between

100 and 800 and considered different sample sizes for varying values of 2N . Specifically, they
analyzed approximately 20000 samples for 2N = 100, 10000 samples for 2N = 200, 5000 for
2N = 400 and 1600 for 2N = 800.

In this work was replicated their experiment in order to better visualize the accuracy of the
prediction (1.1). In particular were created different number of possible graphs for each value
of 2N , namely 100, 150, 200, 400, 800. Then for each graph, costs were randomly assigned
from an uniform distribution between 0 and 1, and the optimal solution was computed using
theHungarian algorithm. Subsequently, for each value ofN , were calculated themean and the
relative distance from the prediction as:

∆L =
|Lsimulated − Ltheorical|

Ltheorical

. (1.2)

whereLsimulated is the average value of the length of the optimal matching, founded in the sim-
ulations, while Ltheorical is the one computed using (1.1) the optimal solutions across the dif-
ferent samples, providing the results reported in the table 1.1 These values are plotted together

2N Mean ∆L Samples
100 1.5784923226880974 0.0012086335130640858 20000
150 1.5995813068263864 0.001455561053957953 10000
200 1.6116590883243114 0.0006257766414101237 10000
400 1.6271405713344287 0.0010195175158027854 5000
800 1.6341784006457363 0.0016429026262728137 1600

Table 1.1: Table of means and relative distances obtained from the simulation. For each value of N were created a number of
graphs reported in the sample column with 2N nodes and computed the optimal solution of the matching problem where
the table report the average among the different graph and the relative distances, computed as in (1.2).

with the line of prediction (1.1) in the plot 1.2 and here can be observed that the results ob-
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tained from the various simulations closely resemble those conjectured using the replica theory,
showing the practical validity of the estimation.

Figure 1.2: Plot of both the line of the theoretical prediction obtained using Parisi and Mézard equation (1.1) and mean and
relative distance, as reported in the table 1.1, of the optimal solution of the matching problem computed with the hungarian
algorithm.

The ζ(2) bound on the expected value ofAn, as obtained by Parisi and Mézard, gave signif-
icant insight into the solution of the random assignment problem. However, the only aspect
left to address was providing a rigorous mathematical proof instead of an estimate. The first
proper demonstration of this result emerged later in the work of Aldous [1]. In his article, the
problem was revisited using linear programming techniques, successfully proving Parisi’s con-
jecture. Furthermore, he extended the understanding of the problem by deriving additional
results that elucidate the obtained expectation value. His contributions culminate in a series
of key theorems that will be provided in the next chapter, along with an outline of the proof,
while the remaining details will be covered in Chapter 3.
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2
Fundamental Steps of Aldous’s Proof

2.1 Presentation of the results

As mentioned in the previous chapter, the focus of this part is to explain the main steps of
Aldous’s proof of Parisi and Mézard estimation. Here, will be provided an overview of its key
components, rather than explaining all its exhaustive details, which will be presented later in
Chapter 3.
A key starting point of Aldous’s proof derives from his prior research [25], where he demon-

strated that the distribution of c(i, j) influences the limit of E[An] only through its density
function at 0. Consequently, for the sake of simplicity and without loss of generality, will be
adopted the Exponential(1) distribution for c(i, j) instead of the uniform distribution. This
adjustment eliminates the need for successive normalizations.
Then, it becomes necessary to reframe the problem in a more convenient manner, for which

the following formulation was considered:

An = min
π

1

n

n∑
i=1

c (i, π(i)) .

where the (c(i, j)) are independent with exponential distribution with mean n.
The main results obtained by Aldous confirm Parisi andMézard’s estimation while also pro-

viding additional insights. These results are summarized in the following theorems, which will
be the central focus of this and the subsequent chapter. In all the following results, the permu-
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tation obtaining the minimumwill be indicated as πn.

Theorem 7. limn EAn = π2

6
.

Theorem 8. c(1, πn(1)) converges in distribution; the limit distribution has density:

h(x) =
e−x(e−x − 1 + x)

(1− e−x)2
, 0 ≤ x <∞. (2.1)

Theorem 9. For each k ≥ 1 define:

qn(k) = P (c(1, πn(1)) is the k’th smallest of {c(1, 1), c(1, 2), . . . , c(1, n)}) .

Then limn qn(k) = 2−k.

Theorem 10. For each 0 < δ < 1 there exists ϵ(δ) > 0 such that, if µn are permutations
(depending on (c(i, j))) such thatEn−1#{i : µn(i) ̸= πn(i)} ≥ δ, then

lim inf
n

E

(
1

n

n∑
i=1

c (i, µn(i))

)
≥ π2

6
+ ϵ(δ).

The first theorem is the most important for this thesis because it proves the conjecture ob-
tained through replica theory, so it’s the only one that will be completely proved, while the
other three are able to add information about the distribution of the optimal solution and a
characterization of the costs.
The key steps of the proof of Theorem 7 can be summarized as follows:

1. Constructionof thePoissonWeighted InfiniteTree (PWIT) andproof of the equivalence
of the random assignment problem with the optimal matching problem on the PWIT.

2. Finding the optimal matchingMopt on the PWIT and analysis of its main properties.

3. Deduction of the results presented in Aldous’s article from the properties ofMopt, by a
sequence of calculations.

In this chapter, the essential steps will be outlined, demonstrating how it is possible to prove
the desired result, without explicitly presenting all the proofs in this section. These proofs will
be carried out in the next chapter, while the aim of this one is to summarize them.

14



2.2 The PoissonWeighted Infinite Tree

The first part of Aldous’s proof of the Parisi-Mézard conjecture involves establishing the equiva-
lence of the random assignment problemwith the matching problem on the PoissonWeighted
Infinite Tree (PWIT). So in order to provide crucial results for the matching problem, this sec-
tionwill first explain the structure of the PWIT and it’s connectionwith the problemof interest
of this thesis.

The PoissonWeighted Infinite Tree can be described by considering a setV comprising finite
words, denoted as v = v1v2 . . . vd, where each vi is a natural number, subject to the constraint
0 ≤ d < ∞. This set includes the empty word, denoted as ϕ. Within this framework, there
exists a natural tree, denoted as T , with a vertex-set V and an edge-setE. An edge, e ∈ E, takes
the form e = (v, vj), where j is greater than or equal to 1. Here, for a given v = v1v2 . . . vd,
vj is defined as v1v2 . . . vdj, representing the j’th child of v, with v serving as the parent of vj.

To introduce randomness into this structure the edge-weights are assigned such that for each
v ∈ V , the weights (W (v, vj), j ≥ 1) on the edges ((v, vj), j ≥ 1) are determined by the
points of a Poisson point process with a rate of 1, independently as v varies.

A Poisson point process [26] is a fundamental concept in probability theory and stochastic
processes. It represents a scenario where points are distributed randomly in a mathematical
space. What distinguishes a Poisson point process is the independence between these points,
in fact they occur randomly and without influence from each other and that when counting
the number of points within any specified region of the space, the distribution of these counts
follows what’s known as a Poisson distribution, so ifN is denoted as the number of points in
the process the probability thatN is equal to a certain number n is given by:

Pr{N = n} = λn

n!
e−λ.

where λ is the expected value of the distribution, 1 in this case.

This whole structure is referred to as the PoissonWeighted Infinite Tree (PWIT). In addition
is possible to denote the probability distribution of the entire configuration (W (e)) of edge-
weights as λ. Consequently, λ represents a probability measure on the spaceW = (0,∞)E ,
containing all possible configurationsw = (w(e), e ∈ E) of edge-weights.
A matching on the Poisson Weighted Infinite Tree (PWIT) can be defined similarly to how

it was presented for other graphs in the introductory chapter. So a matching on the PWIT
is a set of edges from T , such that each vertex is incident to exactly one edge in the set. The
set that contains all the possible matching for the PWIT is denoted with M ⊆ {0, 1}E and
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Figure 2.1: One possible realization of a Poisson Weighted Infinite Tree (PWIT) representing nodes with associated weights
along the edges.

m is considered a matching, so m = m(e) ∈ M, if and only if
∑

e:v∈em(e) = 1 ∀ v ∈
V . In addition, given that the weights of the edges for the PWIT are random, it is important
to acknowledge that each random matching will depend on the edge weights. Therefore, it
is necessary to consider a joint distribution between edge weights and indicators of edges in
the matching, denoted by µ onW × M, whereW represents the set of edge weights and M
represents the set of matchings. The marginal distribution of this joint distribution onW is
denoted by λ.
The relationship between the random matchingM in the Poisson Weighted Infinite Tree

(PWIT) and the matching πn in the n × n random assignment problem is established by the
following theorem, which provides a link between the two different questions, implying that
can be studied only the optimal solution of the matching on the PWIT in order to prove the
result on the random assignment problem.

Theorem 11.
lim
n

E [An] = inf E
[
W (ϕ,

−→
M(ϕ))

]
,

where the infimum is taken over all spatially invariant randommatchingsM on the PWIT.

In this section, the precise meaning of the notation
−→
M for spatially invariant matching will

not be explicitly defined but it will be clarified in the subsequent chapter. At this stage, it is
important to understand that not all possible matchings can be considered in the theorem. In-
deed, including all possible matchings would render the bound to be proved incorrect due to
the existence of a greedymatching, denoted asMgreedy. This greedymatching canbe constructed
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by considering all edges as (ϕ, 1), (2, 21), (3, 31), . . . , (11, 111), (12, 121), . . . , and so forth.
The average cost of this matching is 1, as each selected edge’s average cost is 1

λ
, and in our case,

the rate λ is equal to 1, resulting in a much smaller cost than the desired limit of E[An], which
is π2

6
.

However, imposing the constraint of spatially invariant matching complicates the result, as
the decision regarding whether an edge e belongs to the matching must be spatially invariant,
meaning it should not depend on which vertex is selected as the root of T . This addition will
exclude from the statement of Theorem 11 somematching, including the greedymatching that
was presented, guaranteeing that is not possible to find better bounds than π2

6
. To define this

notion, it is essential to introduce the concepts of local convergence and the unfolding map,
which will be addressed in subsequent chapters. For the purposes of this chapter’s summary,
these theories will be postponed.

For now, it’s important to understand the key message of Theorem 11, which is that the
expected value of the optimal solution of the random assignment problem, E[An], converges
to the average cost per edge in a minimum cost matching on the PWIT as n tends to infinity.

2.3 The OptimalMatching on the PWIT

2.3.1 Fundamental idea

There is a fundamental idea behind the theoretical construction of the optimal matching on
the PWIT, which will be rigorously developed in the next sections. This idea is the following:
consider a realization of the PWIT and define

Xϕ = cost of optimal matching on T − cost of optimal matching on T − {ϕ}. (2.2)

The equation represents how the cost of the matching increases with the addition of the root.
However, due to the involvement of total cost, which essentially deals with infinityminus infin-
ity, the equation does not hold up as a precise definition. Nevertheless, statistical physics com-
monly employs such renormalization arguments. Let’s assume, for the sake of the argument,
that it works as intended because as at this point, only the idea behind all the demonstrations
that will be done in the next chapter is being considered.

If each vertex v in the set V is considered,Xv which represents the cost difference caused by
the addition of v, can be defined in a similar manner by focusing on the subtree Tv rooted at v
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that consists of v and all its descendant vertices.

Xv = cost of optimal matching on T v − cost of optimal matching on T v − {ϕ}.

And so is possible to obtain the recursion:

Xv = min
1≤j<∞

(
W (v, vj)−Xvj

)
. (2.3)

The recursion arises from the fact that in this case, the left side represents the cost difference be-
tween using or not using the vertex v in amatching onT v and to use an edge (v, vj) is necessary
to pay the cost of the edge and the difference between the cost of not using or using vj , which is
the right side. Next, it will be demonstrated that the argument could be made rigorous by first
constructing random variables satisfying the recursion (2.3), and then defining a matching us-
ing these random variables. However, since (2.2) is not rigorously defined, it cannot be claimed
with certainty that the matching obtained in this way is optimal. Nevertheless, it will be shown
(in Proposition 2) that weak optimality is easy to prove.

2.3.2 The Logistic Distribution

The solution introduced earlier will be developed in the next subsection. But first, to better
understand the statement and provide a proof, it is necessary to recall the definition of a logistic
distribution and establish some results about it. This probability distributionwill play a crucial
role in proving the Parisi andMézard conjecture, so additional attention will be dedicated to it
here. The logistic distribution is the symmetric probability density:

fX(x) =
(
ex/2 + e−x/2

)−2 ,∞ < x <∞.

It was proved in [27] that the corresponding distribution function and variance are:

FX(x) :=

∫ x

−∞
fX(y)dy =

(
1 + e−x

)−1 , −∞ < x <∞,

varX :=

∫ ∞

−∞
x2fX(x)dx =

π2

3
. (2.4)

and that this particular distribution has the following property that characterize it:

f(x) = F (x)(1− F (x)) , −∞ < x <∞. (2.5)
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Now the first result that will be necessary for the construction of the optimal solution is the fol-
lowing, whose demonstration rely rather than on “brute force calculus” more on the symmetry
and the structure of the logistic distribution.

Lemma 1. Let 0 < ξ1 < ξ2 < . . . be the points of a rate 1 Poisson process. Then let (X;Xi, i ≥
1) be independent random variables with common distribution µ. Then:

min
1≤i<∞

(ξi −Xi)
d
= X, (2.6)

if and only if µ is the logistic distribution.

Proof. Consider a set of points (ξi, Xi) forming a Poisson point processP on (0,∞)× (−∞,
∞)with mean intensity ρ(z, x)dzdx = dzµ(x). The distribution function F of µ satisfies:

1− F (y) = P

(
min

1≤i<∞
(ξi −Xi) ≥ y

)
,

by property (2.6). Then, since stating that the minimum is≥ y is equivalent to stating that all
of them are≥ y, which happens if and only if none of them is≤ y, is possible to write:

P

(
min

1≤i<∞
(ξi −Xi) ≥ y

)
= P (no points ofP in (z, x) : z − x ≤ y) .

Now, P is a Poisson process, so the number of points will follow a Poisson distribution with
probability of being equal ton: λn

n!
e−λ, which needs to be computed over the considered region.

In this case, the mean intensity is λ =
∫ ∫

z−x≤y
ρ(z, x)dzdx, and n = 0. Thus, the last term

in the series of equations can be rewritten as:

exp

(
−
∫ ∞

0

F̄ (z − y)dz
)
,

where F̄ (y) = 1− F (y) = exp
(
−
∫∞
−y
F̄ (u)du

)
, as obtained through a change of variables.

Differentiating 1− F (y) = exp
(
−
∫∞
−y
F̄ (u)du

)
yields

F ′(y) = F̄ (−y)F̄ (y). (2.7)

This implies that the densityF ′(·) is symmetric and so (2.7) is equivalent to the condition (2.5)
characterizing the logistic distribution.

Anotherproperty of this distribution thatwill be essential for the constructionof theoptimal
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matching is the following:

Lemma 2. LetX1 andX2 be independent random variables with the logistic distribution. Then:

h(x) := P (X1 +X2 > x) , 0 ≤ x ≤ ∞,

is the density of a probability distribution on [0,∞) with mean π2

6
.

Proof. To demonstrate that it is a probability density, it is necessary to verify that the integral
across its domain equals 1. In this case this integral is:∫ ∞

0

h(x)dx =

∫ ∞

0

P (X1 +X2 ≥ x) dx

=

∫ ∞

0

P
(
(X1 +X2)

+ ≥ x
)
dx (because x is non-negative)

= E(X1 +X2)
+.

This is due to the fact that for non-negative random variables holds the integral identity:

E(X) =

∫ ∞

0

P (x > t)dt.

Then is also possible to see that:

E(X1 +X2)
+ = E(X1 −X2)

+ (by symmetry of the logistic distribution)

=

∫ ∞

∞
P (X1 ≥ y ≥ X2).

Where the last equality is justified by the following general identity (for arbitrary random vari-
ables V,W )

E(V −W )+ =

∫ ∞

−∞
P (V > x > W )dx.

Then: ∫ ∞

−∞
P (V > x > W )dx =

∫ ∞

−∞
(1− F (y))F (y)dy

=

∫ ∞

−∞
f(y)dy because of the property (2.5)

= 1.
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And the mean is: ∫ ∞

0

xh(x)dx =

∫ ∞

0

xP (X1 +X2 ≥ x) dx

=
1

2
E
(
(X1 +X2)

+
)2

=
1

4
E(X1 +X2)

2 by symmetry

=
1

2
EX2

1

=
π2

6
using (2.4).

2.3.3 Construction of the optimal matching

In the process of constructing the previously outlined solution heuristically, each edge ewithin
the setE ofT corresponds to two directed edges−→e and←−e , collectively referred to as

−→
E . These

directed edges represent familial relations, where each edge −→e = (v′, v) generates infinitely
many children in the form (v, y), where y ̸= v′. For instance, the directed edge (273, 27)
gives rise to children such as (27, 2), (27, 271), (27, 272), (27, 274), and so forth. The Poisson
Weighted Infinite Tree (PWIT) assigns weightsW (e) to undirected edges, and the weight of
the corresponding directed edges−→e and←−e is denoted asW (−→e ) = W (←−e ) = W (e).
With this established, is now possible to proceed to articulate the first lemma for the con-

struction of the optimal matching.

Lemma 3. Jointly with the edge-weights (W (e), e ∈ E) of the PWIT is possible to construct
{X(−→e ),−→e ∈

−→
E } such that:

1. EachX(−→e ) has the logistic distribution.

2. For each−→e with children−→e1 ,−→e2 , . . . say,

X(−→e ) = min
1≤j<∞

(W (−→ej −X(−→ej )) . (2.8)

Proof. For a vertex v = i1i2 . . . ih write |v| = h. For h ≥ 1write:

−→
Eh = {−→e = (v, vj) : |v| = h, j ≥ 1},

−→
E ≤h = {−→e = (v, y) : |v| ≤ h, |y| ≤ h}.
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Consider a set of independent logistic random variables {X(−→e ) : −→e ∈
−→
E h}, which are in-

dependent of the family (W (e)). Then recursively define X(−→e ) for each −→e ∈
−→
E ≤h using

equation(2.8). By Lemma 1 because the X(−→ej ) follow a logistic distribution andW (−→ej ) be-
longs to a Poisson point process then alsoX(−→e ) has a logistic distribution. This construction
yields a joint distribution for {W (e), e ∈ E; X(−→e ),−→e ∈

−→
E h ∪

−→
E ≤h}. The proof is then

completed using the Kolmogorov consistency theorem. In fact the theorem states that:

Theorem 12. Given an arbitrary family of marginal probability distribution Pn on a compact
metric space X , there exists at least one probability distribution on X , such that for each n, the
marginal distribution of this distribution on every compact subset ofX coincides with Pn.

Thus, Kolmogorov’s theorem guarantees the existence of the joint distribution {W (e), e ∈
E;X(−→e ),−→e ∈

−→
E h ∪

−→
E ≤h} and ensures that the membersW (e) and theX(−→e )of the joint

distribution still have the marginal distributions defined initially, where all the weights of the
edgesW (e) constitute a Poisson point process andX(−→e ) has the logistic distribution.

For v, v′ ∈ V from now will be written v ∼ v′ if (v, v′) is an undirected edge. Once is fixed
a realization of the weights (W (e), e ∈ E;X(−→e ),−→e ∈

−→
E ). Then for each v ∈ V define

v∗ as the vertex that cost less (for the specific actualization of costsW ) to add to the matching.
Formally is defined as:

v∗ = argmin
v′∼v

(W (v, v′)−X(v, v′)). (2.9)

Then the following lemma states that by adding step by step vertices like v∗, that represent the
ones that can be added with less cost, is guarantee to obtain a matching on the PWIT.

Lemma 4. The set of undirected edges {(v, v∗) : v ∈ V } is a matching on the PWIT.

Proof. To prove this result, it suffices to demonstrate that if v∗ represents the vertex of mini-
mumcost to be added to thematching given vertex v, then the converse is also true, i.e., (v∗)∗ =
v. This implies that for all vertices v, selecting the unordered edge (v, v∗) results in a valid
matching. Therefore, the set of undirected edges (v, v∗) : v ∈ V forms a matching on the
PWIT.
Now fix v, by definition of v∗ follows that:

W (v, v∗)−X(v, v∗) < min
y∼v,y ̸=v∗

(W (v, y)−X(v, y)) ,

and:
(W (v, y)−X(v, y)) = X(v∗, v) by (2.8).
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In other words:
X(v, v∗) +X(v∗, v) > W (v∗, v). (2.10)

Now suppose, for contradiction, that (v∗)∗ = z ̸= v; then:

W (v∗, z)−X(v∗, z) < W (v∗, v)−X(v∗, v).

In this case (2.8) would imply that:

X(v, v∗) ≤ W (v∗, z)−X(v∗, z).

Combining these last two inequalities yields the result thatX(v, v∗) ≤ W (v∗, v)−X(v∗, v)
which contradicts the equation (2.10) and proves the lemma.

FormulateMopt for the stochastic matching as outlined in Lemma 4. It’s noteworthy that
the reasoning leading to equation (2.10) can be reversed, offering a more symmetrical criterion
for determining whether an edge belongs toMopt:
An edge, e, is part ofMopt if and only if:

W (e) < X(−→e ) +X(←−e ),

where−→e and←−e denote the directed edges corresponding to e. It appears intuitive thatMopt

should be invariant across space; This will be proved in the next sections.

2.4 Analysis of theoptimalmatchinganddeduction
of the estimation

This subsection aims to present the fundamental result that implies the Parisi andMézard con-
jecture, alongwith the other theorems stated at the beginning of the chapter. While the primary
focus is on the former, all mentioned theorems can be proved using the results that will be pro-
vided. The central object of study in this subsection is the random costW (ϕ,

−→
Mopt(ϕ)) of the

edge (ϕ,
−→
Mopt(ϕ)) ofMoptwhich contains the root. Themost crucial property of this random

cost is as follows:

Proposition 1. The random variable W (ϕ, P
−→
Mopt(ϕ)) has the probability density function

h(·) described in lemma 2, and so EW (ϕ,Mopt(ϕ)) =
π2

6
.
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Proof. The weights associated with edges (W (ϕ, i), i ≥ 1) and the X-values (X(ϕ, i), i ≥
1) follow a Poisson process (ξi) and are independently and identically distributed as logistic
random variables (Xi) as stated in Lemma 1. Utilizing the notation introduced earlier and the
definition 2.9 ofMopt is possible to write:

W (ϕ,
−→
Mopt(ϕ)) = ξI , where I = argmin

i≥1
(ξi −Xi).

To derive this distribution in a refined manner first fix 0 < y <∞ and condition on the event
Ay := {∃J : ξJ = y}. Conditionally, the remaining points (ξi, i ̸= J) and corresponding
X-values (Xi, i ̸= j) adhere to a Poisson process (ξ′j, j ≥ 1) and are i.i.d. logistic variables
(X ′

j, j ≥ 1), respectively. Notably, these are independent ofXJ , with its conditional distribu-
tion retaining a logistic form. Thus,

P (I = J |Ay) = P (y −XJ < X ′)whereX ′ = min
j≥1

(ξ′j −X ′
j).

But according to Lemma 1 ,X follows a logistic distribution. Given its independence fromXJ ,
is possible to deduce from the definition of h(·) that P (I = J |Ay) = h(y). Consequently, it
establish:

P (ξI ∈ [y, y + dy]) = P (I = J |Ay)P ( some ξi in [y, y + dy]) = h(y)dy,

thus confirming the statement.

The last result that is needed to prove thatAn converges to π2

6
= ζ(2) is the following propo-

sition.

Proposition 2. LetM be a spatially invariant matching of the PWIT such that P (
−→
M(ϕ) ̸=

−→
Mopt(ϕ)) > 0. Then EW (ϕ,

−→
M(ϕ)) > EW (

−→
Mopt(ϕ)).

Before diving into the proof of this proposition in the upcoming chapter, it’s crucial to elu-
cidate how it connects to the original statement. Propositions 1 and 2 lay the groundwork for
deriving all four theorems (7-10). The central theorem of focus, Theorem 7, can be inferred
through the following reasoning: Propositions 1 and 2 collectively imply that:

inf
{
EW (ϕ,

−→
M(ϕ)) :

−→
M is spatially invariant matching on the PWIT

}
=
π2

6
.

This arises from the fact that Proposition 2 implies that every spatially invariant matching on
the PWIT has an expected value of weights greater than that ofMopt, while Proposition 1
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indicates that the expected value ofMopt is indeed π2

6
. When combined with Theorem 11, it

follows that:

lim
n

E[An] = inf
{
EW (ϕ,

−→
M(ϕ)) :

−→
M is spatially invariant matching on the PWIT

}
=
π2

6

thus affirming Theorem 7 and giving the desired result.
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3
Complete proof

In this chapter will be completed the proof explained in Chapter 2 providing all the missing
parts.

3.1 Equivalence with the matching on the PWIT

3.1.1 Spatially invariant matching

In the previous chapter, Theorem 11 stated the equivalence of the limit of the expected value
of An for the random assignment problem with the infimum over the expected values of the
weights for spatially invariant matching on the PWIT. However, the precise definition of spa-
tially invariantmatchingwas not provided. This sectionwill cover this part by constructing and
defining spatially invariant matching.
First of all, for eachw ∈ W and each i ≥ 1, define a bijection θwi from V , the set of vertices,

to itself, which induces a bijection on the edge set. These bijections are denoted by θwi (·) and
can be defined as follows:

w(i, i(k − 1)) < w(ϕ, i) < w(i, ik).

Setting the left hand side of the equation as 0 for k = 1. Then define the bijection in a way that
set the vertex i as the root and relabel all the vertex to preserve order structure, so by defining:

• θwi (i) = ϕ,
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• θwi (ϕ) = k,

• θwi takes vertices (i1, i2, . . . , i(k−1); ik, i(k+1), . . . ) to vertices (1, 2, . . . , k−1; k+
1, k + 2, . . . ),

• for v = ij2 . . . jl and l ≥ 3 let θwi (v) = (θwi (ij2)) j3 . . . jl,

• for v = j1j2 . . . jl where j1 ̸= i let θwi (v) = kj1j2 . . . jl.

Before, the spaceW×M was described as the set of possible combinations (w,m) ofweights
w and matchingsm. Now, by considering the choice of the root vertex, the space expands to
Z = W ×M × {1, 2, . . . }, where each element is denoted as (w,m, k), with k representing
the distinguished vertex. The maps θwi induce a mapping from this spaceZ to itself. This map-
ping can be interpreted as relabeling the distinguished vertex as the root, preserving the order
structure of the other vertices, and transforming the previous root into the distinguished vertex.
In particular, θ(w,m, i) = (ŵ, m̂, k)where:

• w(e) = ŵ(θwi (e)),

• m(e) = m̂(θwi (e)),

• k = θwi (ϕ).

So in this enlarged spaceZ = W ×M×{1, 2, . . . } eachmeasureµ onW ×M extends to a
σ-finitemeasureµ∗ := µ×countonZ , wherecount is the countingmeasure on{1, 2, 3, . . . }
that is defined as follows:

count(A) =

|A| ifA is finite

∞ if |A| =∞
(3.1)

In this wayµ∗ is able to describe a randommatching on the PWITwith a specific distinguished
vertex.
This extension is essential for the definition of spatial invariance for a randommatchingM

on the PWIT. In fact spatial invariance can be defined as follows, utilizing the probability dis-
tribution µ of ((M(e),W (e)), e ∈ E) and the σ-finite measure µ∗ := µ× count onZ .

Definition 4. A randommatchingM on the PWIT, with distributionµ onW ×M , is spatially
invariant if µ∗ is invariant under θ, that is if µ ∗ (·) = µ(θ−1(·)) as σ-finite measures onZ .
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Informally, what the definition is saying is that a spatially invariant matching is a random
matching whose distribution in the extended space Z is not affected by a relabeling of a vertex.
If an arbitrary rule is used to distinguish some vertex k (where the rule depends on the realiza-
tion ofM andW (e)), then the µ∗-distribution of the configuration without the vertex being
distinguished shouldn’t change.

It is important to recall that Theorem 11 considers only spatially invariant matchings on the
PWIT, which are the only ones to have the same cost as the limit of the expected value of the
solution of the random assignment problem. In this way,manymatchings on the PWIT are not
considered by the theorem. This notion explains why the greedy matchingMgreedy introduced
in the previous chapter couldn’t prove the existence of a smaller bound than the desired one of
π2

6
because it is, in fact, not spatially invariant.

To prove this, it is necessary to consider: B .
= {W (1, 11) < W (ϕ, 1) < W (1, 12)}. Then:

P (W (1, 11) < W (ϕ, 1)) =
1

2
= P (W (1, 11) > W (ϕ, 1)),

and similarly,

P (W (ϕ, 1) < W (1, 2)) =
1

2
= P (W (ϕ, 1) > W (1, 2)).

Because the events are independent, the probability of B is equal to 1
4
. So the event B∗ .

=

B ∩ {1 is distinguished } has µ∗-measure 1
4
, because the counting measure defined as 3.1 gives

equal weight of 1 to each single vertex. The inverse image B̃ = θ−1(B∗) is:

B̃ = {W (ϕ, 2) < W (2, 21), 2 is distinguished }.

This has µ∗-measure 1
4
becauseP (W (ϕ, 2) < W (2, 21)) = 1

4
. This equality of µ∗-measure is

a consequence of the fact that the distribution of edge-weights is spatially invariant. Now for a
randommatchingM to be spatially invariant, the event:

B ∗ ∩{
−→
M(ϕ) = 1}

must have an identical µ∗-measure to its inverse image under θ, which is represented by the
event:

B̃ ∩ {
−→
M(ϕ) = 2}.

However, the greedymatching always has
−→
M(ϕ) = 1, so the first event hasµ∗-measure 1

4
while

the second event has µ∗-measure 0, leading to a contradiction.
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On the contrary,Mopt is spatially invariant, as proved in the following result:

Lemma 5. Mopt is spatially invariant.

Proof. Mopt is determined by theW (e) and theX(−→e ) that satisfy the recursion 2.8 which is
not changed by the relabeling of vertices. MoreoverX(−→e ) has a joint distribution that is deter-
mined by the fact (Lemma 3) that the random variables (X(−→e ),−→e ∈

−→
E h) are independent

logistic. So in order to prove that the matching is spatially invariant is sufficient to show that
the random variables (X(−→e ),−→e ∈

−→
E h) are independent logistic, even after the application

of a relabeling θ.
Fix k and write:

B =
{
X(−→e ,−→e in

−→
E h) ∈ C, k is distinguished

}
,

for arbitraryC in the appropriate range space. Write:

Al = {W (l, k − 1) < W (ϕ, l) < W (l, k)} .

Then:

θ−1(B) = ∪l
[
Al ∩ {l is distinguished } ∩ {(X(−→e ),−→e ∈

−→
E h,l) ∈ C}

]
,

where
−→
E h,l comprises edges (v, vj) with j ≥ 1 and with v = j1j2 . . . jh−1 for j1 ̸= l, or with

v = lj1j2 . . . jh. Given that
∑

l P (Al) = 1 and theX(−→e ) under consideration are indepen-
dent ofAl, demonstrating µ ∗ (B) = µ ∗ (θ−1(B)) reduces to establishing the independence
of {X(−→e ),−→e ∈

−→
E h,l}, which can be inferred from the argument outlined in Lemma 1.

3.1.2 Deduction of Theorem 11

Now that was discussed the concept of a spatially invariant matching, there are all the necessary
components to deduce a proof of Theorem 11 with the addition of some technical details. In
the preceding section, was denoted a randommatching in the n× n random assignment prob-
lem asπn, but it can alternatively be represented as ann×nmatrixM = (m(i, j))with entries
in 0, 1. A matching, represented in this manner, is considered spatially invariant if the joint dis-
tribution ((c(i, j),m(i, j)), 1 ≤ i, j ≤ n) remains invariant under various automorphisms of
the complete bipartite graph, including permutations of i, permutations of j, and complete in-
terchange of i and j. By applying a uniform randomautomorphism to any randomn-matching,
is possible to obtain a spatially invariant n-matching with the same distribution of average cost
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per edgeAn. Consequently, it suffices to consider only spatially invariant n-matchings without
any loss of generality.
Because is possible to consider only spatial invariant matching is also possible to see that the

following result, that was proven in the previous work of Aldous [25], imply Theorem 11.

Theorem 13. LetM be a spatially invariant matching on the PWIT with EW (ϕ,
−→
M(ϕ)) <

∞. Then there exists spatially invariant n-matchings,Mn such thatMn locally converges toM
and (c(1,

−→
Mn(1)), 1 ≤ n <∞) is uniformly integrable.

To better clarify the statement, will be given in (3.3) a more precise notion of local conver-
gence forMn →d

localM that will also imply that:

c(1,
−→
Mn(1))→d W (ϕ,

−→
M(ϕ)). (3.2)

Theorem 13 along with the equation (3.2), imply Theorem 11. This can be deduced as follows:
First apply Theorem 13 considering as spatial invariant matchingMopt stated in section 2.3.
Then the theorem implies that there is a sequence of n-matchings, which essentially represents
the solution of the random assignment problem ,Mn that converges locally toMopt and that
the cost of (1,Mn(1)) has finite and well defined expected value. Subsequently, from the local
convergence follows the property 3.2. Then starting from this, by taking the expected value
and recalling thatMopt achieve the infimum over {E{W (ϕ,

−→
M(ϕ))}}, is possible to obtain

the statement of Theorem 11.
At this point is only needed further notation to formalize local convergence and get the equa-

tion (3.2). To begin let’s fixn, defineV (n) as the set of vertices v = v1v2 . . . vl satisfying v1 < n

and vi ≤ n− 1 for i ≥ 2 and denote the corresponding subtree of T as T (n) = (V (n), E(n)).
Then, letGnn represent the complete bipartite graph with vertex-set {1, 2, . . . n} × {1, 2}.
Afterwards, to establish a connection between T (n) and Gnn with a given realization c =

(c(i, j)) of the cost matrix, it is necessary to define a graph homomorphism ψ = ψc from T (n)

ontoGnn. A graph homomorphism is a function from the vertex set of one graph to the vertex
set of another, which preserves edges. Formally, it can be stated as:

Definition 5. A graph homomorphism f from a graph G = (V (G), E(G)) to a graphH =

(V (H), E(H)), denoted as f : G→ H , is a function from V (G) to V (H) that preserves edges.
Specifically, if (u, v) ∈ E(G), then (f(u), f(v)) ∈ E(H) for all pairs of vertices u, v in V (G).

In this context, a graph homomorphism ψ maps each vertex v in T (n) to a vertex ψ(v) in
Gnn, ensuring that the edges in T (n) are preserved in Gnn under the mapping ψ. This homo-
morphism ψ can be defined as follows:
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• ψ(ϕ) = (1, 1).

• For i ∈ {1, 2, 3, . . . , n}, define ψ(i) = (j, 2), for the j such that c(1, j) is the i’th
smallest of {c(1, u), 1 ≤ u ≤ n}.

• For i ∈ {1, 2, 3, . . . , n − 1} and i′ ∈ {1, 2, . . . , n} define ψ(i′, i) = (k, 1), for the
k such that c(k, 1) is the i′the smallest of {c(ψ(v), u), 1 ≤ u ≤ n, (u, 2) ̸= ψ(v−)}
where v− is the parent of v.

• For v = v1v2 . . . v2m+1, for i ∈ {1, 2, 3, . . . , n − 1}, define ψ(vi) = (k, 1), for the k
such that c(k, ψ(v)) us the i′the smallest of {c(u, ψ(v)), 1 ≤ u ≤ n, (u, 1) ̸= ψ(v−)}.

This foldingmapψc induces anunfoldingmapwhichuses thematrix c todefine edge-weights
(W (n)(e)) on the edge-setE(n):

W (n)(v, vk) = c(i, j) if ψc(v) = (i, 1) and ψc(vk) = (j, 2)

or if ψc(v) = (j, 2) and ψc(vk) = (i, 1).

Now, for h ≥ 1, let’s defineE(h) ⊂ E as the set of edges, each of which has both end-vertices
in the form v1v2 . . . vl, where l ≤ h andmaxi vi ≤ h. Thus, E(h) constitutes a finite set of
edges. Upon fixing h, it becomes possible to see that:(

W (n)(e), e ∈ E(h)

) d−→ (W (e), e ∈ E(h)),

where the limits correspond to the edge-weights in the PWIT. The random n-matchings are
denoted as 0, 1-valued random variablesMn(e), which are indexed by the edges e ∈ Gnn.
Utilizing the homomorphism ψ, can be defined:

M̃n(e) =Mn(ψ(e)), e ∈ E(n).

Now can be stated also the concept of local convergenceMn
d−−→

local
M that means: for each

fixed h,
((W (n)(e),M̃n(e)), e ∈ E(h))

d−→ ((W (e),M(e)), e ∈ E(h)). (3.3)

3.2 Proof of proposition 2

The proof of this proposition requires two different steps. In the first part it will be shown that
proving the proposition is equivalent to proving Lemma 8 and then will be given a proof of the
last result.
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3.2.1 Equivalent result to Proposition 2

ConsiderM as a spatially invariant matching, and denote A as the event
−→
M(ϕ) ̸=

−→
M opt(ϕ).

OnAwrite:
(v−1, v0, v1) = (

−→
M opt(ϕ), ϕ,

−→
M(ϕ)). (3.4)

Then on this event it can be defined a doubly-infinite path . . . , v−2,−1 , v0, v1, v2, . . . by:
∀ −∞ < m <∞

(v2m−1, v2m) is an edge ofMopt,

(v2m, v2m+1) is an edge ofM.

Now, utilizing the concept of spatial invariance is possible to prove the following result.

Lemma 6. Conditional onA, the distributions ofX(v−2, v−1) andX(v0, v1) are the same.

Proof. The core point of this proof lies in the equivalence between the distribution ofX(v0, v1)

with ϕ = v0 as the distinguished vertex (as explained in section 3.1.1) and the distribution of
X(v0, v1) with v2 as a distinguished vertex. By a relabel is possible to see also that the distribu-
tion of X(v0, v1) with v2 as a distinguished vertex is the distribution of X(v−2, v−1) as seen
from v0 = ϕ. This series of equivalences can be formally expressed as follows:

P (A,X(v0, v1) ∈ ·) = P (
−→
M(ϕ)) = P

(−→
M(ϕ) ̸=

−−−→
Mopt(ϕ), X(ϕ,

−→
M(ϕ)) ∈ ·

)
= µ ∗

(−→
M(ϕ) ̸=

−→
Mopt(ϕ), X(ϕ,

−→
M(ϕ)) ∈ ·,

−→
M(ϕ) is distinguished

)
= µ ∗

(−→
M(ϕ) ̸=

−→
Mopt(ϕ), X(

−→
M(ϕ), ϕ) ∈ ·,

−→
M(ϕ) is distinguished

)
.

Using spatial invariance to change the root from ϕ to
−→
M(ϕ), after noticing that the event

−→
M(ϕ) ̸=

−→
Mopt(ϕ) is identical to the event

−→
M(
−→
M(ϕ)) ̸=

−→
Mopt(

−→
M(ϕ)), is possible to rewrite

the last member of the previous equation as:

µ ∗
(−→
M(ϕ) ̸=

−→
Mopt(ϕ), X(

−→
M(ϕ), ϕ) ∈ ·,

−→
M(ϕ) is distinguished

)
.

This can be done because theµ∗-measure doesn’t depend on the rule for distinguishing a vertex.
Then, using spatial invariance to switch the root from ϕ to

−→
Mopt(ϕ) it can be rewritten as:

µ ∗ (
−→
M(
−→
Mopt(ϕ)) ̸=

−→
Mopt(

−→
Mopt(ϕ)), X(

−→
M(
−→
Mopt(ϕ)),

−→
Mopt(ϕ)) ∈ ·,

−→
Mopt(ϕ) is distinguished).
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Which is equal to:

= µ ∗
(−→
M(ϕ) ̸=

−→
Mopt(ϕ), X(

−→
M(
−→
Mopt(ϕ)),

−→
Mopt(ϕ)) ∈ ·

−→
Mopt(ϕ) is distinguished

)
,

because the events are identical.

Then because v−1 =
−→
Mopt(ϕ) and v−2 =

−→
M(v−1):

= P
(−→
M(ϕ) ̸=

−→
Mopt(ϕ), X(

−→
M(
−→
Mopt(ϕ)),

−→
Mopt(ϕ)) ∈ ·

)
= P (A,X(v−2, v−1) ∈ ·) .

At this stage, further reasoning begins by considering that:

X(v−2, v−1) = min
y∼v−1,y ̸=v−2

(W (v−1, y)−X(v−1, y)) , by (2.8).

which simplifies to:
X(v−2, v−1) = W (v−1, v0)−X(v−1, v0),

by (2.9), because (v−1, v0) is inMopt. Additionally, thanks to (2.8):

X(v−1, v0) ≤ W (v0, v1)−X(v0, v1), (3.5)

so that:
D

.
= W (v0, v1)−X(v0, v1)−X(v−1, v0) ≥ 0. (3.6)

Combining (3.5) with this definition ofD gives:

W (v0, v1)−W (v0, v−1) = D +X(v0, v1)−X(v−2, v−1).

Thus,
EW (ϕ,

−→
M(ϕ))− EW (ϕ,

−→
Mopt(ϕ))

= E(W (v0, v1)−W (v0, v−1))1A

= ED1A + EX(v0, v−11A − EX(v−2, v−1)1A)

= ED1A by Lemma 6.

(3.7)
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SinceD ≥ 0 this is enough to establish the weak inequality:

EW (ϕ,
−→
M(ϕ)) ≥ EW (ϕ,

−→
Mopt(ϕ)).

To prove that the strict inequality also holds, suppose for contradiction thatEW (ϕ,
−→
M(ϕ)) =

EW (ϕ,
−→
Mopt(ϕ)). Then (3.7) would imply that ED1A = 0, and then (3.6) that onA is true

that:
v1 = argmin

[2]
i (W (ϕ, i)−X(ϕ, i)),

wheremin[2] denotes the second-smallest value. This equation comes fromthe fact that
−→
M(ϕ) =

v−1 = argmini(W (ϕ, i)−X(ϕ, i)).
So without restricting toA:

P
(−→
M(ϕ) = argmini(W (ϕ, i)−X(ϕ, i)) or argmin

[2]
i (W (ϕ, i)−X(v, i))

)
= 1.

By an use of spatial invariance comes that under that hypothesis the same property should hold
for every v ∈ V , which can be written as:

P
(−→
M(v) = argmini(W (v, i)−X(v, i)) or argmin

[2]
i (W (v, i)−X(v, i))

)
= 1. (3.8)

To conclude the argument, it is essential to demonstrate the impossibility of this scenario, which
would be implied by the following Proposition:

Proposition 3. The only spatially invariant randommatching on the PWIT satisfying (3.8) is
−→
Mopt.

Demonstrating this result equals to complete the proof of Proposition 2, so the remaining
part of the section will be dedicated to its proof.
The demonstration starts by defining a path ϕ = w0, w−1, w−2, w−3, . . . inductively by:

form = 1, 2, . . .

w−2m+1 = argminy∼w−2m+2
(W (w−2m+2, y)−X(w−2m+2, y)),

w−2m = argmin[2](W (w−2m+1, y)−X(w−2m+1, y)).

Then:
(w−2m+1, w−2m+2) is an edge ofMopt, eachm = 1, 2, 3, . . .

SupposeM is a spatially invariant matching that satisfies equation (3.8), with the set A .
=
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−→
M(ϕ) ̸=

−→
Mopt(ϕ) having P (A) > 0. Then, on the setA, the following property holds:

(w−2m, w−2m+ 1) is and edge ofM, eachm = 1, 2, 3, . . . .

So, by (3.8), for v = w−2m is also true that:

A ⊆ Bm
.
=
{
w−2m+1 = argmin[2]

y∼w−2m
(W (w−2m, y)−X(w−2m, y))

}
,

and so:
A ⊆ B

.
= ∩∞

m=1Bm.

Writing
Bq

.
= ∩qm=1Bm,

then:
if P (A) > 0, then lim

q→∞
P (Bq+1)/P (Bq) = 1. (3.9)

Now, to continue the proof, the following Lemma is necessary:

Lemma 7. P (Bq+1) = P (Bq ∪ B∗), where:

B∗ =
{
ϕ = argmin[2]

y∼w1
(W (w1, y)−X(w1, y))

}
,

with:
w1

.
= argmin

[2]
y∼ϕ (W (ϕ, y)−X(ϕ, y)) .

Proof. The argument of the proof is similar to the one used for Lemma 6. The central idea is
that the probability ofBq ∩B∗with ϕ = w0 as the distinguished vertex is the same, by spatial
invariance, as the probability ofBq ∩ B∗withw2 = argminw∼w1

(W (w1, w)−X(w1, w)),
which by relabeling is the probability ofBq+1 observed fromw0 = ϕ.

Then using Lemma 7:

lim
q→∞

P (Bq+1)

P (Bq)
= lim

P (Bq ∩B∗)
P (Bq)

=
P (B ∩ B∗)
P (B)

= P (B ∗ |B).

Thus, by equation (3.9), to complete the proof of Proposition 3 and so of Proposition 2, it is
sufficient to prove the following result.

Lemma 8. If P (B) > 0 then P (B ∗ |B) < 1.
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Lemma 8 appears to be clear for the following reason. Event B depends solely on what oc-
curs along the branch from ϕ through w−1, while B∗ depends only on what happens along
the branch through w1. Although there is some dependency between these branches, this de-
pendency is not expected to be strong enough to make B∗ conditionally certain to happen.
To formalize this idea, is required a study of the effect of conditioning the PWIT, that will be
explained in the next section.

3.2.2 Proof Lemma 8

The proof of Lemma 8 requires a further construction that will be synthetized here. First, it
is essential to define what is a bi-infinite tree. Recall that λ represents the distribution of the
edge-weights of the PWIT, and that λ is a probability measure onW = (0,∞)E . To include
a distinguished neighbour of ϕ, consider the state space w × {1, 2, 3, . . . } and introduce the
σ-finite measure λ× count.
A different representation of this structure, useful for certain calculations withMopt is now

described. Take two copies of the PWIT, labeled T+ and T−, with their vertices denoted as+v
and −v. Then construct a new “bi-infinite” tree T↔ by connecting the roots +ϕ and −ϕ of
T+ and T− with a distinguished edge (+ϕ,−ϕ). This new tree has an edge set denotedE↔.
Now the edge weights in each of T+ and T− follow the distribution of the PWIT indepen-

dently on both sides of T↔. Then define a σ-finite measure λ↔ onW↔ .
= (0,∞)E

↔ by en-
suring that the weightW (−ϕ,+ϕ) on the distinguished edge has a uniform distribution over
(0,∞), independent of the other edge-weights.
This construction is useful because there is a natural bijection betweenW × {1, 2, 3, . . . }

andW↔ which transforms λ× count to λ↔. Specifically, if k is the distinguished vertex of T ,
the vertices can be relabeled according to the following rules:

1. Relabel k as−ϕ.

2. Relabel j as+j for j ≤ k − 1 and as+(j − 1) for j ≥ k + 1.

3. Relabel descendants accordingly.

This relabeling process generates a map ψ : W × 1, 2, 3, . . .→ W↔ that is invertible. The
same relabelingused todefineψ canbeutilized to establish a family (X(−→e ),−→e being a directed
edge of T↔)basedon theX(−→e )on the directed edges of thePWITconstructed inLemma3. It
can be verified that the joint distribution of (W (e), X(−→e ); e,−→e being edges of T↔) obtained
in this manner matches the distribution obtained by applying the construction in Lemma 3 to
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Figure 3.1: A bi‐infinite tree with edge weights assigned according to a Poisson point process.

(W (e), e ∈ E↔), substituting
−→
Eh in the construction with:

←→
bEh = {−→e = (+v,+vj) : |v| = h, j ≥ 1}∪{−→e = (−v,−vj) : |v| = h, j ≥ 1} . (3.10)

Then the matchingMopt can be defined on T↔ in the same way as on T:

e is an edge ofMopt ⇐⇒ W (e) < X(−→e ) +X(←−e ).

The following lemma illustrates the usefulness of working with the bi-infinite tree for calcula-
tions. Informally, it describes the distribution ofMopt as viewed from a typical edge within
Mopt, and demonstrates a conditional independence property for the restrictions ofMopt on
the two sides of the tree defined by that edge.
On the PWIT defineX↓ = mini≥1(W (ϕ, i)−X(ϕ, i)) and denote by νx the conditional

distribution of the family (W (e), e ∈ E;X(−→e ),−→e ∈
−→
E ,−→e directed away from ϕ), given

X↓ = x. Returning to the bi-infinite tree, let λ1 be the measure obtained by restricting λ↔ to
the set {W (−ϕ,+ϕ) < X(−ϕ,+ϕ) +X(+ϕ,−ϕ)}. So under λ1, inMopt the vertex+ϕ is
almost surely matched with vertex−ϕ.

Lemma 9. λ1 is a probability measure. Under λ1 we have:

1. the joint density of (W (−ϕ,+ϕ), X(−ϕ,+ϕ), X(+ϕ,−ϕ)) at (w, x1, x2) is equal to
f(x1)f(x2)1(0<w<x1+x2), where f is the logistic density;
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2. conditional on (W (−ϕ,+ϕ), X(−ϕ,+ϕ), X(+ϕ,−ϕ)) = (w, x1, x2), the distribu-
tion of the family:(

W (e), e ∈ E+;X(−→e ),−→e ∈
−→
E +,−→e directed away from + ϕ

)
,

is the image of νx1 under the natural embedding T → T+ ⊂ T↔; the distribution of the
family: (

W (e), e ∈ E−;X(−→e ),−→e ∈
−→
E −,−→e directed away from − ϕ

)
,

is the image of νx2 under the natural embedding T → T− ⊂ T↔; and these two families
are conditionally independent.

An important observation is that because+ϕ ismatched to−ϕ,X(+j,+ϕ) = W (+ϕ,−ϕ)
−X(+ϕ,−ϕ), one can recursively construct X(−→e ) for −→e directed toward (−ϕ,+ϕ). So
Lemma 9 is sufficient to specify the joint distribution of all the X(−→e ) and, consequently, of
Mopt under λ1.

Proof of Lemma 9. The joint density takes the form given in the first point of the lemma by
construction, and so its total mass is

∫ ∫
(x1 + x2)

+f(x1)f(x2)dx1dx2 which is equal to 1 as
shown in Lemma 2. Moreover, using the construction based on (X(−→e ),−→e ∈

←→
bEh) at 3.10, it

is possible to see that under λ↔ the families:{
W (e), e ∈ E+;X(−→e ),−→e ∈

−→
E +,−→e directed away from + ϕ

}
∪X(−ϕ,+ϕ),

and {
W (e), e ∈ E−;X(−→e ),−→e ∈

−→
E −,−→e directed away from − ϕ

}
∪X(+ϕ,−ϕ),

are independent from each other and fromW (−ϕ,+ϕ). Since λ1 is defined by an event that
depends only on {X(+ϕ,−ϕ), X(−ϕ,+ϕ),W (+ϕ,−ϕ)} the desired conditional indepen-
dence property is obtained. Each family under λ↔ is the distributed as the image of the corre-
sponding family on the PWIT (withX(−ϕ,+ϕ) corresponding toX↓), and therefore, due to
the independence underλ↔, the conditional distribution underλ1 depends only onx1 (respec-
tively x2).

Now recall the map ψ : W × {1, 2, 3, . . . } → W↔ which takes λ× count to λ↔. The
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inverse image of the event {W (−ϕ,+ϕ) < X(−ϕ,+ϕ) +X(+ϕ,−ϕ)}, under this map, is:

ψ−1 {W (−ϕ,+ϕ) < X(−ϕ,+ϕ) +X(+ϕ,−ϕ) =Mopt(ϕ) is distinguished } .

Thus the inverse image of the probabilitymeasureλ1 is obtained by restrictingλ× count to the
set where the vertexMopt(ϕ) is distinguished. After removing this distinction, what remains is
the probability distribution λ on the PWIT.
In summary what was done was establishing the following “relabeling principle”.

Given (Z(−→e )) and henceMopt on the PWIT, map the whole structure to the bi-
infinite tree by relabeling (ϕ,

−→
Mopt(ϕ)) as (+ϕ,−ϕ) and relabeling other vertices

accordingly; then the resulting distribution on the bi-infinite tree is λ1.

Then on the bi-infinite tree define:

C∗ .=
{
+ϕ = argmin

[2]
y∼+I(W (+I, y)−X(+I, y))

}
,

where:
I = argmini≥1 (W (+ϕ,+i)−X(+ϕ,+i)) .

F+ = σ
(
X(−→e ),W (e) : e,−→e edges of T+

)
,

F− = σ
(
X(−→e ),W (e) : e,−→e edges of T−) ,

Fϕ = σ (X(+ϕ,−ϕ), X(−ϕ,+ϕ),W (+ϕ,−ϕ)) .

Now consider the two following results, each provided with its corresponding proof:

Lemma 10. Define:
X↓ = min

i≥1
(W (ϕ, i)−X(ϕ, i)),

I = argmini≥1(W (ϕ, i)−X(ϕ, i)).

For−∞ < b < a <∞ define:

g(a, b) = P (W (ϕ, I)) = min
k≥1

(W (I, Ik)−X(I, Ik)).

Then g(a, b) > 0.

Proof. GivenX(ϕ, I) = x, the remaining values of {W (I, Ik) −X(I, Ik), k ≥ 1} form an
inhomogeneous Poisson process on (x,∞), and so:

P
(
min

[2]
k≥1 (W (I, Ik)−X(I, Ik)) ∈ [y, y + dy]|X(ϕ, I) = x

)
= βx(y)dy, (3.11)
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for a certain function βx(·) such that βx(y) > 0 for all y > x. The quantities in (3.11) are
independent ofW (ϕ, I). Thus:

g̃(a, b, x)
.
= P (W (ϕ, I)− b
> min

[2]
k≥1(W (I, Ik)−X(I, Ik))|X(ϕ, I) = x,W (ϕ, I) = a+ x),

satisfies g̃(a, b, x) > 0 for all −∞ < b < a < ∞ and −∞ < x < ∞. Since X↓ =

W (ϕ, I)−X(ϕ, I), it is possible to see:

g(a, b) = E
(
g̃(a, b,X(ϕ, I))|X↓ = a

)
> 0,

as required.

Lemma 11. λ1{C ∗C |F−,Fϕ} = g(X(−ϕ,+ϕ),W (+ϕ,−ϕ)−X(+ϕ,−ϕ)) for g defined
in the previous Lemma.

Proof. C∗ isF+-measurable, so by the conditional independence assertion of Lemma 9 comes
that:

λ1{C ∗C |F−,Fϕ} = λ1{C ∗C |Fϕ}.

Therefore, it is necessary to demonstrate that:

λ1
{
C ∗C |(W (−ϕ,+ϕ), X(−ϕ,+ϕ), X(+ϕ,−ϕ)) = (w, x1, x2)

}
= g(x1, w − x2).

(3.12)
Under this conditioning, Lemma 9 implies that the family (W (e), e ∈ E+;X(−→e ),−→e ∈
−→
E ,−→e directed away from+ϕ) is distributed as the imageof the family (W (e), e ∈ E;X(−→e ),−→e
directed away from ϕ) conditioned on {X↓ = x1}. According to the definition of g(a, b) in
Lemma 10,

g(x1, w − x2) = λ1{W (+ϕ,+I)− (w − x2)

>
[2]

min
y∼+I

(W (+I, y)−X(+I, y))

|(W (−ϕ,+ϕ), X(−ϕ,+ϕ), X(+ϕ,−ϕ)) = (w, x1, x2)}.

However, under this conditioning

W (+ϕ,+I)− (w − x2) = W (+ϕ,+I)− (W (+ϕ,−ϕ)−X(+ϕ,−ϕ))
= W (+I,+ϕ)−X(+I,+ϕ),
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by (2.8).

Because underλ1 the vertex+ϕ is alwaysmatched to−ϕ. Substituting into (3.12), is possible
to see that the event in (3.12) is precisely the event C∗C as required. So finally, it is possible to
complete the proof of Proposition 2 by proving Lemma 8.

Proof of Lemma 8. The relabeling principle shows thatP (B ∗ |B) can be rewritten as λ1{C ∗
|C}, for a certain eventC which isFϕ-measurable and such that P (B) = λ1{C}. Now:

λ1{C ∗C |C} = Eλ11Cg(X(−ϕ,+ϕ),W (+ϕ,−ϕ)−X(+ϕ,−ϕ)) by Lemma 11
> 0 if λ1{C} > 0 by Lemma 10,

establishing Lemma 8.
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4
Privacy preserving wireless communication

using Bipartite Matching

To emphasize the significance of the random assignment problem and the importance of esti-
mating algorithmic costs, this chapter will explore a practical application related to the problem
analyzed in this thesis. Specifically, it will focus on the article: “Privacy preserving wireless com-
munication using bipartite matching in social big data” [2] which explain how to employ a
bipartite matching method to address a privacy protection issue. The first section of this chap-
ter will introduce the privacy protection problem, detailing the proposed model and providing
an illustrative example to clarify the construction process. Following that, in Section 4.2, will
be presented the algorithm, its application to the initial example and briefly explained the exper-
imental results presented in the article.

4.1 Introduction to the problem

Recent research has explored the development of advanced privacy protectionmeasures inwire-
less communications, a crucial factor for boosting the performance of electronic infrastructure
to satisfy the varying demands across fields like social networks and big data. Many technologies
in this field applymulti-channel communication systems, which possess the flexibility to switch
channels based on immediate needs and real-time channel conditions.
The primary benefit of using multi-channel communication over static channel configura-

tions lies in its ability to efficiently connect service requesters with providers, avoiding traffic
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congestion and minimizing channel conflicts. In addition to that, multi-channel systems op-
timize interconnections by striking a balance between privacy protection and response times.
However, in practical scenarios, communication can be disrupted due to inefficient response
times, often coming from poor channel scheduling. This challenge becomes more significant
as data volumes expand within social networks, and the complexity of channel scheduling is
further compounded when integrating privacy considerations with the need for dynamic, ad-
justable communication. Achieving higher levels of privacy protection within the same time
constraints generally results in increased energy consumption. This issue becomes more pro-
nounced as data volumes increase in social networks, and the complexity of channel scheduling
is even worsened when privacy considerations and the need for dynamic, adjustable communi-
cation are taken into account.
To address this issue, the analyzed paper proposes a novel approach that optimizes privacy

protection inwireless communications through an efficient task schedulingmethod. The focus
is on achieving privacy-preserving scheduling by enhancing the execution of Channel Schedul-
ing Controller (CSC) systems. The primary strategy involves dynamically selecting different
communication channels across various social networks to enhance privacy protection. The au-
thors introduced an optimal task scheduling method, focusing on the social networks scenario
where multiple communication channels are needed between users. The goal of their model is
to allocate tasks across heterogeneous nodes, which in this context represent connection points
that can both transmit wireless signals and perform optional processing computations.
The proposed model utilizes channel scheduling techniques to enhance privacy protections

while adhering to timing constraints and employs a heuristic method called Task Scheduling
by Bipartite Matching (TSBM). This method obtains a near-optimal solution with minimal
computational cost. Experimental results demonstrate that the TSBM strategies can reduce
privacy protection costs by 23.37%with four nodes when the time constraint is relaxed.

4.1.1 Overview of the Channel scheduling Controller model

The CSC model introduced in the study deals with a network ofM nodes, denoted as a set
N = ⟨N1, N2, . . . , NM⟩, each responsible for managing both computational tasks and com-
munication processes. In the context of social networks, these nodes correspond to physical
devices that handle the distribution of information and execute certain computations. Each
node serves as an interconnecting point for various media, where task scheduling is arranged by
CSC systems.
The architecture of a CSC model is relatively straightforward. In its simplest form it can be

represented as two nodes, N1 and N2, connected by a direct communication link. This link
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represents the point-to-point communication between the nodes and, in some cases, this com-
munication link can be thought as a separate node with an associated weight that quantifies the
communication delay associated with the link.
The Task Data Flow Graph (TDFG) is modeled using Directed Acyclic Graphs (DAGs), de-

noted as G = ⟨V,E, T ⟩ where each node in V represents a task, and the set E comprises
directed edges that define the precedence relationships between tasks. For example, an edge
E(u→ v) indicates that task v can only start after task u finishes, with the edge weight reflect-
ing the communication cost between these tasks. The set T contains the execution times for
tasks, where Tvi = ⟨T (i, 1), T (i, 2), . . . , T (i,M)⟩ specifies the computation time for task vi
on each nodeNx. The TDFGmodel, exemplified by a graph with 7 tasks in Figure 4.1, shows
how tasks from social networking applications are partitioned into coarse-grained units, such as
functions or code blocks. These coarse-grained tasks have higher computation costs compared
to finer tasks, but their communication overhead is null when scheduled on the same node due
to a high Computation-to-Communication Ratio (CCR).

A

B C

D

F G

E

2 1

3 1

1

2

1

Figure 4.1: Example of a Task Data FlowGraph (TDFG), where nodes represent tasks, directed edges indicate task precedence,
and edge weights reflect communication costs between tasks.

4.1.2 The privacy-preserving model

The privacy-preserving model described aims to maximize privacy protection in CSC systems.
However, before evaluating the system’s privacy protection level, it is necessary to first develop
a task schedule for an application across nodes in the target system. An illustrative example of
task scheduling is illustrated in Figure 4.2 involving 7 task nodes and 3 communication nodes.
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Figure 4.2: A simple task scheduling plot that provides a visual representation of the task dependencies and execution flow.

An important assumption here is that the task completion failure rate is zero, ensuring that tasks
are completed without any failures in the computation components.

Now can be defined the privacy protection component as follows: Consider a system with
M node and defineFi and T (i, j) as the failure rate of the componentSi and the computation
time of task vi on the component j, respectively. The failure rate refers to the likelihood of the
protection failure attached to a type of defining method, caused either by a processor or by an
interconnectionbetweenprocessors. It is denoted asFi and in this analysis the hypothesis is that
each component in the system experiences failures that adhere to a Poisson distribution so that
the time until a failure occurs is modeled by an exponential distribution. The computational
time T (i, j) is counted in the unit of the time depending on the implementation scenario. The
cost of the privacy protection is associated with T (i, j) using the same timing counts. Based
on the system’s schedulingmechanisms, the level of privacy protection, denoted as PPL, can be
formulated as indicated in the following equation, based on the scheduling.

PPL =
N∏
i=1

M∏
j=1

(1− Fj)
T (i,j)

=⇒ lim
Fj→0

PPL =
N∏
i=1

M∏
j=1

(e)−Fj ·T (i,j) when Fj is very small.

(4.1)

Then it is possible to prove that the problem of maximizing the overall privacy protection level
can be rewritten as minimizing the privacy protection cost, that can be defined as:

PC =
N∑
i=1

M∑
j=1

Fj · T (i, j).
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Proof. Equation (4.1) implies:

(1− Fj)
T (i,j) = eT (i,j) ln(1−Fj) and lim

Fj→0
ln(1 + Fj) = Fj

=⇒ lim
Fj→0

(1− Fj)
T (i,j) = e−Fj ·T (i,j).

The expression of the privacy protection in limFj→0(1 − Fj)
T (i,j) = e−Fj ·T (i,j) is nonlinear.

It is possible to obtain its maximum by utilizing an equivalent linear form as (4.2) through
a logarithmic operation. Its important to notice that limFJ→0(1 − Fj)

T (i,j) = e−Fj ·T (i,j)

and (4.2) has the same optimal solution for maximization, although they may have different
function values.

N∑
i=1

M∑
j=1

ln(e−Fj ·T (i,j)) =
N∑
i=1

M∑
j=1

(−Fj · T (i, j))

=⇒ PC =
N∑
i=1

M∑
j=1

Fj · T (i, j)

=⇒ PCi,j = Fj · T (i, j).

(4.2)

In order to maximize the overall system privacy protection level PPL is sufficient to maximize
the value of (4.2). Since PPL is a decreasing function, the maximal PPL can be obtained by
minimizing

∑NDAG

i=1

∑M
j=1 Fj · T (i, j). This expression is denoted as privacy cost PC of the

targetCSC system. Then a variablePCi,j is introduced to denote the privacy protection cost of
allocating task vi to node j. For a specific task, the privacy protection cost can be represented by
the step of equation 4.2. The overall system privacy protection costPC for a CSC is calculated
as the summation of the privacy protection cost incurred by allocating each task in the system
formulated by the following equation.

PC =

NDAG∑
i=1

M∑
j=1

PCi,j.

Therefore, the problem of maximizing the system’s privacy protection level is equivalent to
minimize the privacy protection cost of the system. The privacy protection cost indicates the
expense incurred by the system when a set of real-time tasks is assigned to it.
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4.1.3 ExampleofTask Schedulingand its ImpactonPrivacyPro-
tection Costs

In this section is presented an example to illustrate the problem and demonstrate the impact of
different task scheduling outcomes on the privacy protection cost of a system. Consider a CSC
with two nodes, namelyN0 andN1, each with low failure rates assumed to be 0.6 and 0.2, re-
spectively. The communication costs between inter-task connections are randomly generated
and represented by edge weights in Figure 4.1. Additionally, the failure probability of the com-
munication link betweenN0 andN1 is assumed to be 0.1. A task DAG representing a simple
application in social networks is depicted in Figure 4.1, and the execution times for each task on
N0 andN1 are detailed in Table 4.1.Suppose the given time constraint for this application is 16
time units. In the figure 4.3 there are some examples of valid schedules, where the arrows rep-

Data A B C D E F G
N0 2 2 3 3 5 3 4
N1 2 4 2 4 3 3 5

Table 4.1: Example of data. In this table, based on the network in figure 4.1 are represented the execution time of each task
inN0 andN1.

resent the communication links between 2 nodes. All three schedules meet the time constraint
which is based on the given DAG in Figure 4.1. The schedule lengths of these three scheduling
methods are 16, 11 and 16 respectively. The privacy protection costs can be computed as the
sum of three different components, which for the first scheduling method are:

• Privacy protection costs of the operations scheduled onN0, which is the product of the
failure rate ofN0 with the sum of the time for operations A,B,D,F,G if scheduled onN0:
0.6× (2 + 2 + 3 + 3 + 4) = 8.4.

• Privacy protection costs of the operations scheduled onN1, which is the product of the
failure rate of N1 with the sum of the time for operations c and E if scheduled on N1:
0.2× (2 + 3) = 1.

• Privacy protection costs of the communication links, which can be computed as the fail-
ure rate of the communication link, multiplied by the times of the communication be-
tween operations on different nodes, that in this case are between A and C, B and E, E
and F and C and G. The result of this operation is : 0.1× (1 + 1 + 1 + 2) = 0.5

By summing all these costs is possible to see that the privacy protection cost of the first
scheduling in figure 4.3 is 8.4 + 1 + 0.5 = 9.9 and in a similar way can be computed that
for the second one is 8.7 and 7.5 for the third one. By comparison of these scheduling can be
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Figure 4.3: Plot of three valid scheduling, based on the DAG in figure 4.1.

seen that the second one leads to a reduction in schedule length by 31.25% and a reduction
in privacy protection cost by 12.12%, while the third one achieves a reduction in the privacy
protection cost by 24.24%within the time constraint.
This example gives two optimal scheduling for different metrics, the second scheduling in

figure 4.3 has the shortes scheduling time and the third one has the lowest privacy protection
cost. Therefore there are two results that follows:

1. Scheduling strategies significantly impact on the privacy protection cost and the schedule
length of an application.

2. The shortest scheduling does not always yield the smallest privacy protection cost.
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4.2 Proposed algorithm for task-scheduling

This sectionwill outline the formulationof theprivacyprotectionoptimizationproblemwithin
aCSC system. Theproblem is quite complex, in fact task schedulingwith real-time constraint is
classified as an NP-complete problem and as a consequence is also true that optimizing privacy
protection costs for heterogeneous CSC systems with real-time requirements is NP-complete.
Due to this complexity, the introduction of an heuristic algorithm based on a bipartite match-
ing strategy is highly beneficial because this approach can closely approximate the optimal so-
lution without excessive computational time, which is crucial for practical applications in such
systems.

4.2.1 Problem definition

The privacy protection cost optimization problem for CSCs is defined as follows:

• A target CSC system withM nodes represented by a the setN = ⟨N1, N2, . . . , NM⟩.

• A set ofN tasks organized in a DAGG= ⟨V,E⟩.

• The execution times of each task at different nodes.

• A timing constraint TC that can result in the minimum privacy protection costs for the
system.

Theproposedheuristic algorithmto analyze this complex issue incorporates abipartitematch-
ing technique which re -schedules tasks based on an initial scheduling arrangement. This Task
Scheduling by Bipartite Matching (TSBM) strategy specifically focuses on efficiently realign-
ing tasks to balance privacy protection costs against real-time constraints. Its key steps can be
explained as follows.

1. Using anAs Last As Possible (ALAP) algorithm to schedule the given DAG and gain the
Latest Start Time (LST) for each task.

2. Constructing a bipartite matching graph by putting the schedulable tasks in the task set.

3. Rescheduling the tasks to different nodes byusing a bipartite-matching algorithm tomin-
imize the privacy protection cost.

These three stages, summarized here, are detailed in Algorithm 4.1, Algorithm 4.2, and Al-
gorithm 4.3.
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Algorithm 4.1 Initial scheduling for TSBM algorithm.
Require: ADAGG = ⟨V,E⟩.
Ensure: An initial scheduling of the DAGG.
1: Using as soon as possible scheduling to gain the earliest star-time for each task.
2: Using as late as possible scheduling to gain the latest start-time and the finish-time for each
task.

3: for allNj ∈ N
4: SL(Nj ← 0);
5: end for
6: Set the overall privacy level: OPC ← 0;
7: return The initial scheduling;

Algorithm 4.2 Construction of the bipartite matching graph.
Require: ADAGG = ⟨V,E⟩, a node set Vp, a task set VT
Ensure: A bipartite matching graphGB = ⟨V B,EB⟩
1: for all vi ∈ VT
2: for allNj ∈ Vp
3: tmpSLj ← SL(Nj)
4: Use equation (4.2) to calculate PCi,j

5: UpdateEB by adding e(vi, Nj) between vi andNj

6: if max(tmpSLj, EST (vi)) + T (i, j) ≤ FT (vi)
7: W (EB(vi, Nj))← PCi,j

8: else
9: W (EB(vi, Nj))←∞
10: end if
11: end for
12: end for
13: V B ← VT ∪ Vp
14: return GB
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Algorithm 4.3 Task scheduling by bipartite matching (TSBM)
Require: ADAGG = ⟨V,E⟩, task set VT , processor set VP , and task constraints TC
Ensure: A schedule with the overall privacy protection costOPC
1: Use Algorithm 4.1 to obtain an initial scheduling
2: while not AllTasksVisited()
3: for allNj ∈ N
4: if a schedulable task vi with the earliest start-timeEST (vi) is found at nodeNj

5: Insert task vi into VT
6: end if
7: Insert nodeNj into Vs
8: end for
9: Using Algorithm 4.2 to constructGB = ⟨V B,EB⟩
10: for all i = 1→ |EB|
11: e(vi, Sj)←minimal weight edgeW (EB(vi, Pj))

12: TmpSL← max(EST (vi), SL(Sj))+T (i, S(vi))where SL denote the schedule
length

13: W (EB(vi, Sj))←minimal weight edgeW (EB(vi, Pj))

14: TmpSL← max(EST (vi), SL(Sj)) + T (i, S(vi))

15: if TmpSL ≥ FT (vi)

16: W (EB(vi, Sj))←∞
17: continue
18: end if
19: Set vi to be visited;N(vi)← Nj

20: OPC ← W (EB(vi, Nj)) + OPC

21: SL(N(vi))← TmpSL

22: end for
23: for all vk ∈ Succ(vi)
24: Delete precedence dependency between vk and vi
25: if EST (vk) < SL(N(vi))

26: EST (vk)← SL(N(vi))

27: end if
28: end for
29: end while
30: return OPC
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Figure 4.4: Visual representation of the procedure described in Algorithm 4.3.

4.2.2 Example of application

To show the utility of the proposed algorithm this section will present its application to the
example introduced in section 4.1.3. In this case, an initial scheduling is obtained using the
ALAP scheduling method showed in algorithm 4.1. Based on this initialization it can be subse-
quently achieved a scheduling that assigns tasksA,B,C,E and F toN0 and taskD andG to
N1. Meanwhile is also possible to get that the finish times of taskA,B,C,D,E, F andG are
2, 6, 11, 15, 14, 18 and 20. According to the inital schedule, it can be employed the bipartite
matching strategy to get a tighter and more reliable schedule for the target CSC system by first
applying algorithm4.2 to construct the bipartitematching associatedwith the initial scheduling
and the utilize algorithm 4.3 to improve the scheduling, as showed in figure 4.4. The algorithm
4.3 starts by comparing the weights of the edges in the constructed bipartite matching graph
for the node A. This evaluation determines that assigning task A to node N1 results in the
lowest privacy protection cost. Consequently, taskA is reassigned toN1 following the TSBM
scheduling method. Following this reassignment, task A is marked as visited, and are updated
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the related information for its descendant tasks. These updates include revising theEarliest Start
Times (ESTs) and adjusting for precedence constraints, as detailed in lines18 to28ofAlgorithm
4.3. As a result, the earliest start times are adjusted, setting taskB to start at time 4 on nodeN0

and taskC to begin at time 2 on nodeN1. Once these tasks become schedulable, taskA, along
with tasksB andC , are added to the set VT . Following this, is constructed a bipartite matching
graph for tasks B and C , as illustrated in Figure 4.4b, by repeating the same steps. From this
newly formed graph, it becomes apparent that the edge e(C, S1) represents the lowest privacy
protection cost. Consequently, task C is allocated to nodeN1, marked as completed, and the
schedule length forN1 is updated to4 timeunits. In the subsequent scheduling phase, although
the edge e(B,N1) initially appears to offer the lowest privacy protection cost, scheduling task
B to nodeN1 would result in a schedule length of 8. This length surpasses the required finish
time of taskB, which is 6. Therefore, to ensure proper execution, taskB must be allocated to
nodeN0. Once this decision is made, tasksD,E, andG become eligible for execution. The the
same scheduling strategies are applied until all tasks are marked as visited. The scheduling for
the remaining tasks is illustrated in figures 4.4c and 4.4d.

A C E G

N0 B D F

N1

Figure 4.5: Final task scheduling, obtained utilizing the proposed algorithm.

The outcome of applying the TSBM algorithm to the Directed Acyclic Graph (DAG) de-
picted in 4.1 is presented in Fig. 4.5. Through this scheduling the privacy protection cost is 7.6,
which closely aligns with the optimal value of 7.5 showed in Section 4.1.3. This demonstrates
the algorithm’s capability to efficiently reduce privacy protection costs in CSC systems.
The key insight from the algorithm is that the bipartite matching process for a task is con-

strained by its finish time as defined by the As Late As Possible (ALAP) scheduling. This con-
straint ensures that, in theworst-case scenario, a task canbe assigned to the samenode as itwould
be in the ALAP scheduling. Consequently, TSBM consistently produces a valid schedule for
tasks in a DAG, provided that a valid ALAP schedule exists. This robustness and efficiency
in achieving near-optimal scheduling for privacy protection costs underscore the algorithm’s
effectiveness for systems requiring both efficient task scheduling and privacy considerations.
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4.2.3 Experimental results

In the concluding section of the article, were presented the experimental results of the proposed
TSBM algorithm. Its performances were evaluated by comparing it against the Integral Linear
Programming (ILP) algorithm, whichwas introduced in the same article, and the existingHigh-
est Level First with Estimated Times (HLFET) algorithm [28]. When comparing TSBM with
the ILP algorithm, it’s crucial to recognize that ILP is designed to find anoptimal solution to the
scheduling problem, though it requires substantial computational time. In contrast, theTSBM
algorithm is directed towards finding an approximate solution more quickly. Consequently,
while superior accuracy is expected from the ILP method, a comparison with the HLFET al-
gorithm is sufficient to demonstrate the practical applicability of the TSBM approach. The
HLFET algorithm provides a reasonable benchmark because it focuses on efficiently schedul-
ing tasks based on their priority levels without the extensive computational overhead associated
with ILP.
As a metric was defined theTight Time Constraint (TTC) as the sum of the average minimal

execution time of each NDAG tasks onM processors.

MinT () = min{T (i, 1), T (i, 2), . . . , t(i,M)},

TTC =

∑N
i=1MinT (i)

M
.

Next, was applied theRelax Time Constraint (RTC) with a relax coeffiecient α.

RTC = α · TTC.

In this final equation, the parameter α served as an input control to modulate the strictness
of the timing constraints. By adjusting the value of α these constraints can be tightened or re-
laxed. The α values were set to vary within a range from 1.2 to 2.0. The provided experiments
included two different heterogeneous configurations for the target systems: The first configura-
tion involved 2nodes, while the second one utilized 4nodes. The failure rates for each processor
and the communication links between processors were modeled using the Poisson distribution.
The experimental results were measured using the Success Rate, defined as the ratio Nsucc

N
,

where Nsucc is the number of successfully executed tasks, and N is the total number of tasks.
The performances of the three algorithms: ILP (Integer Linear Programming), TSBM (Task
Scheduling with BipartiteMatching), andHLFET (Highest Level First with Estimated Times),
were evaluated under different timing constraints, represented by the relaxation coefficient α
for which the obtained results can be summarized as follows:
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• Under tight timing constraints (α = 1.2), ILP and TSBM outperformed HLFET, with
success rates of about 84% for ILP, 78% for TSBM, and 47% for HLFET. ILP’s opti-
mal scheduling and TSBM’s effective task reorganization using ALAP led to their higher
success rates compared to HLFET, which struggled under strict timing constraints.

• When the timing constraint was moderately relaxed (α = 1.6), the success rates for both
the ILP and TSBM algorithms improved significantly. In contrast, the HLFET algo-
rithm sawonly amodest increase in performance and remained less effective overall. This
suggests that ILP and TSBMwere better able to accommodate and schedule tasks under
less stringent timing constraints.

• Under extensively relaxed timing constraints (α = 2.0), all three algorithm achieved
similarly high success rates, successfully scheduling almost all tasks. This indicates that
withwider time range, theperformancedifferences between the algorithmsdiminish, and
each can meet the scheduling requirements effectively.

The analysis also investigated the privacy protection costs of each algorithm. In systems with
only twonodes, theHLFETalgorithm exhibited the lowest privacy protection costs under tight
timing constraints (α = 1.2 and 1.6). This was due to fewer scheduled tasks, resulting in
reduced overall costs. In contrast, TSBM incurred higher costs compared to ILP, despite having
a slightly lower success rate.
With a further relaxation of the timing constraint (α = 2.0), both ILP and TSBM algo-

rithms demonstrated improved efficiency in reducing privacy protection costs compared to
HLFET. On average, ILP reduced costs by 28.33%, and TSBM by 21.33%. In systems with
four nodes, overall privacy protection costs were higher across all algorithms. However, ILP
andTSBM still significantly outperformedHLFET.Under relaxed constraints, ILP andTSBM
achieved average reductions inprivacy costs of32.62% and23.37%, respectively. TSBMdemon-
strated increasinglynoticeableperformancebenefits as timing constraints tightened. It enhanced
system privacy protection in many cases by leveraging ALAP scheduling, although its effective-
ness was slightly less pronounced compared to ILP under strict constraints. However, TSBM
proved to be more computationally efficient, requiring less time to generate scheduling solu-
tions compared to ILP.
In summary, TSBM achieved a balanced approach between efficient scheduling and cost

management, particularly beneficial undermoderate timing constraints. HLFET, although less
effective under tight scheduling conditions, demonstrated lower privacy protection costs in sce-
narios with fewer scheduled tasks. As timing constraints relaxed, the performance distinctions
between the algorithms diminished, with all algorithms demonstrating effective task scheduling
and management of privacy protection costs.
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5
Conclusions

This thesis focused on the analysis of the Random Assignment Problem and its bounds, a
continuous challenge in combinatorial optimization. For many years, this problem remained
unresolved until improvement were achieved through connections with other fields of study.
Surprisingly the most significant advancement came from physicists Giorgio Parisi and Marc
Mézard that utilizing the replica method and the theory of spin glasses, proposed a conjecture
for the bound of the bipartite matching problem. The first chapter of this work was in fact fo-
cused on the historical and theoretical foundations of the problem. In this beginning part was
illustrated the evolution of the problem from early contributions by Monge, Frobenius, and
König to modern interpretations, culminating in Parisi and Mézard result, with also a replica
of their experiment to prove the validity of the bound. The central focus of this thesis, com-
prehensively covered in Chapters 2 and 3, is the detailed explanation of Aldous’s proof of the
bound derived using the theory of spin glasses. This proof specifically addresses the expected
value of the optimal allocation in the random assignment problem. The main discovery that
came from the analysis of Aldous’s work is that the bipartite matching problem is equivalent to
find a matching on the PoissonWeighted Infinite Tree, as developed in Chapter 2, and that the
estimation of the bound can be derived from the properties of this optimal matching. Chapter
3 explained deeper the mathematical relationships between these two problems by proving the
equivalence between the bipartite matching problem and the PWITmodel.

Following the theoretical analysis, the thesismoved to a practical applications of the Bipartite
matching Problemwhich focused on enhancing privacy and efficiency within wireless commu-
nication systems. In Chapter 4 was examined how the principles of bipartite matching can be
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used to develop algorithms for privacy-preserving task scheduling in social big data environ-
ments. This investigation led to the use of the Channel Scheduling Controller model, a system
which is a good example of how theoretical advancements can be effectively adapted to address
modern challenges in data security within social networks.
This work showed both the theoretical and practical dimensions of the Random Assign-

ment Problem. Aldous’s proof, with its rigor, stands as an important contribution to the field,
while the application in privacy-preserving wireless communication underscores the versatility
of these theoretical models, demonstrating how they can be translated into effective solutions
for real-world problems. For this reasons several future directions could emerge from this study.
Firstly, Aldous’s research, besides solving a problem that has been uncomplete for many years,
highlighted how the analysis of mathematical problems can benefit from statistical physics con-
cepts such as spin glasses and the cavity method. This study serves as a crucial reference point
for these approaches. Some examples of other problems where statistical physics could pro-
vide the foundations formathematical studies are reported in the articles: “Statistical Physics of
Hard Optimization Problems” [29], “Statistical Mechanics of Deep Learning”[30], and “The
Number of Matchings in RandomGraphs” [31], which utilize the cavity method to obtain an
estimation of matchings in random graphs. These examples illustrate the potential for future
theoretical advancements through the application of statistical physics to other mathematical
problems.
From a practical point of view, the flexibility of bipartite matching extends to a wide range

of applications. This thesis has mentioned some uses of bipartite matching, demonstrating its
adaptability to diverse challenges. Other recent relevant applications include its use in machine
learning, as seen in the studies: “A Bipartite Matching-Based Feature Selection for Multi-Label
Learning” [32] and “Conflict-Aware Weighted Bipartite B-Matching and Its Application to E-
Commerce” [33]. These works show how the theory of bipartite matching can be applied to
modern issues, providing effective solutions to contemporary problems.
In conclusion, this thesis showed that theRandomAssignment Problem not only represents

a significant theoretical challengebut also serves as a foundational basis for future advancements,
providing substantial contributions to both theoretical and practical fields.
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