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Abstract

Vector word embeddings are powerful tools, but they do not naturally express uncertainty
about the target concept. Furthermore, they do not naturally model asymmetric relations
since they are compared using symmetric distance functions, such as dot product, cosine
similarity, or Euclidean distance. This has led to the exploration of new ways of representing
words based on Geometric Representations. Word2Box is a geometric extension ofWord2Vec
that learns region-based word representations that allow to perform set-theoretic operations
between words. In fact, it is a fuzzy set interpretation of box embeddings, where each word
is represented by an n-dimensional hyperrectangle, also called ”box”. This innovative ap-
proach enables the modeling of uncertainty and asymmetric relationships between words,
offering a significant improvement over traditional vector embeddings. By leveraging the
properties of fuzzy sets and geometric shapes, WordzBox provides a more nuanced and flex-
ible representation of word meanings, allowing to capture complex linguistic relationships
that cannot be represented with point-based embeddings. This thesis presents the analysis
of the Word2Box algorithm, and provides a comprehensive explanation of the codebase, in-
cluding some considerations on its effectiveness in capturing semantic relationships and its
potential to enhance natural language processing tasks.
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1
Introduction

In this chapter, I will introduce some concepts that are necessary to fully understand the
work presented inmy dissertation. I will start by providing an overview of Natural Language
Processing (NLP).Then, I will proceed with a brief introduction toWord Embeddings. I will
explain the differences between Static and Dynamic Word Embeddings, and I will linger on
one of the most famous static word embedding models, Word2Vec, and its two variants:
SkipGram and CBOW.

1.1 NATUrAL LANGUAGE PrOCESSING

Natural Language Processing (NLP) is a subfield of artificial intelligence that focuses on the
interaction between computers and humans through human language. The ultimate objec-
tive of NLP is to allow machines to read, process, and derive meaning from written text.

As an interdisciplinary area of research, NLP combines several fields, such as cognitive
sciences, computer science, information theory, linguistics, machine learning and mathe-
matical logic. Its multifaceted nature allows researchers to approach the challenges using
the knowledge collected in a range of research fields in order to tackle a wide variety of
tasks, including but not limited to Information Retrieval, Machine Translation, Question
Answering, Sentiment Analysis, Speech Recognition, Text Classification, and Word Disam-
biguation.
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INFOrMATION RETrIEVAL Information retrieval involves the process of extracting rele-
vant information from a vast amount of unstructured text data. This task is fundamental
in various applications, such as search engines, where the goal is to find documents or data
that satisfy the user’s query. The challenge lies in efficiently searching through, often large,
datasets to find pieces of information that are relevant to the specific needs or questions
of the user, requiring sophisticated algorithms to index, search, and rank results based on
relevance.

MACHINE TrANSLATION Machine translation is the automated process of translating text
from one language to another. This field has seen significant advancements with the advent
of neural networks and deep learning techniques, enabling more accurate and contextually
appropriate translations. Despite these advancements, machine translation continues to face
challenges, particularly with languages that have significant structural differences or when
translating idioms and culturally specific references.

QUESTIONANSWErING Question answering systems aim to automatically provide answers
to questions posed in natural language. These systems must understand the question’s intent,
search through a potentially vast knowledge base or the internet to find relevant information,
and then present that information in a concise and understandable answer. The complexity
of natural language and the broad range of possible questions make this a challenging area
of NLP.

SENTIMENT ANALYSIS Sentiment analysis involves analyzing text to determine the senti-
ment expressed within it, whether positive, negative, or neutral. This task is widely used in
monitoring social media, customer feedback, and market research to gauge public opinion
or emotional responses. The subtlety of language and the presence of sarcasm or irony make
sentiment analysis a particularly challenging task, as the same words can be used to convey
different sentiments in different contexts.

SPEECHRECOGNITION Speech recognition technology converts spoken language into writ-
ten text. This involves recognizing the words being spoken and understanding the speaker’s
intent, which can be complicated by accents, speech impediments, background noise, and
the natural variability in human speech. Advances in machine learning and natural language
processing have significantly improved speech recognition accuracy, making it a crucial tech-
nology in virtual assistants and voice-controlled applications.
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TEXT CLASSIfICATION Text classification involves assigning predefined categories or tags
to text based on its content. This task is essential for organizing and categorizing content
for easier retrieval, such as filtering spam emails, news article categorization, or sentiment
analysis. The challenge in text classification lies in understanding the nuances of language
and the context in which words are used to accurately categorize the text.

WOrDDISAMBIGUATION Word disambiguation is the process of determining whichmean-
ing of a word is being used in a given context. This is crucial for many NLP tasks, as many
words have multiple meanings depending on their usage. Effective word disambiguation
requires understanding the context in which a word appears and how it relates to the sur-
rounding text, a task that requires deep linguistic analysis and contextual understanding.

What emerges from the above examples is that the complexity of human languages poses
several challenges to NLP. In the following paragraphs, I will briefly introduce some of the
most common ones.

UNDErSTANDING CONTEXT Machines often struggle with understanding the context in
which words or phrases are used, a critical aspect of language comprehension. Context pro-
vides essential background that influences themeaning of linguistic expressions. For humans,
this understanding is intuitive, built on a complex web of cultural, situational, and historical
knowledge. Machines, however, must rely on algorithms and models to infer context, a task
that remains a significant challenge in the field of natural language processing (NLP).

LANGUAGE AMBIGUITY Ambiguity in language presents a considerable challenge for com-
putational systems. A single word can carry multiple meanings, and its intended interpre-
tation often depends on the context in which it is used. For instance, the word ”bank” can
refer to a financial institution or the side of a river, with the correct meaning only discernible
through context. This ambiguity requires machines to not only process the language but also
understand the nuances and subtleties that dictate meaning in human communication.

UNDErSTANDING COMPLEX SENTENCES Complex sentences, characterized by their mul-
tiple clauses and layers of meaning, pose a significant challenge for machine comprehen-
sion. These sentences can express nuanced ideas, conditional information, or relationships
between concepts that require a deep understanding of grammar and syntax. For machines,
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parsing these complex structures and extracting the intendedmeaning involves sophisticated
algorithms that can analyze and interpret the various components and their interrelations.

SArCASM, IrONY, ANDHUMOr Detecting and understanding sarcasm, irony, and humor in
text is a daunting task for machines. These forms of communication often rely on subtle cues,
tone, or context that machines find difficult to interpret. The complexity lies in the fact that
these expressions frequently conveymeanings that are opposite to their literal interpretation,
requiring a level of semantic and pragmatic analysis that goes beyond the current capabilities
of many NLP systems.

LANGUAGE EVOLUTION The constant evolution of language creates a moving target for
NLP techniques. New words, phrases, and changes in meanings emerge as cultures evolve,
technologies advance, and societal norms shift. This dynamism requires NLP systems to be
adaptable and continually updated to understand contemporary language use. The challenge
is not only in tracking these changes but also in predicting and responding to new linguistic
trends, ensuring that machines can understand and process language as it is used in real-time.

Most of these challenges stem from properties of natural languages, such as ambiguity,
compositionality, recursion, and hidden structure.

AMBIGUITY One of the fundamental challenges in understanding natural languages is am-
biguity. This property manifests in various forms, such as phonetic ambiguity where the
same sound can lead to different transcriptions, lexical ambiguity where words can carry
multiple meanings depending on the context, and syntactic ambiguity that allows sentences
to be interpreted in more than one way. Ambiguity challenges both human understanding
and computational language processing, requiring sophisticated mechanisms for accurate
interpretation.

COMPOSITIONALITY The principle of compositionality plays a crucial role in the construc-
tion and comprehension of linguistic expressions. It posits that the meaning of complex
expressions can be derived from the meanings of their constituent expressions and the rules
used to combine them. This hierarchical structuring allows for the creation of a vast array
of sentences from a limited set of words and grammatical rules, enabling the expression of
an infinite number of ideas and concepts.
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RECUrSION Recursion is a property of language that enables the creation of new sentences
by repeatedly applying grammatical rules. This feature allows for the generation of an infi-
nite number of sentences from a finite set of elements, facilitating endless creativity and
variation in language use. Through recursion, languages can build complex structures by
nesting phrases within phrases, each layer adding to the overall meaning of the sentence.

HIDDEN STrUCTUrE The concept of hidden structure in language refers to the underly-
ing grammatical and semantic frameworks that govern sentence formation and interpreta-
tion. This invisible scaffold ensures coherence and meaning, guiding how words and phrases
are assembled. However, it also implies that even minor alterations in a sentence’s struc-
ture can significantly impact its overall meaning, highlighting the complexity and delicacy
of language processing. Understanding and modeling this hidden structure is a significant
challenge in linguistics and natural language processing.

In conclusion, the field of natural language processing faces a myriad of challenges that
stem from the inherent properties of human language. The issues of ambiguity, composi-
tionality, and recursion highlight the complexity of language and the sophisticated under-
standing required to process it effectively. As language continues to evolve, NLP systems
must also advance, adapting to new linguistic trends and the ever-changing landscape of hu-
man communication. The ability to accurately interpret and respond to natural language is
crucial for the development of intelligent systems that can seamlessly interact with humans.
Thus, addressing these challenges is not only a matter of technological advancement but also
a step towards more natural and intuitive human-computer interactions.

1.2 WOrD EMBEDDINGS

Word Embeddings are tools for representing words in a mathematical form, making it pos-
sible for NLP algorithms to process them. In fact, word embedding models map discrete
words to numerical vectors in a continuous vector space.

These models originated from two main ideas: the first idea comes from Osgood et al.
(1957), who suggested representing words using points in three-dimensional space; the sec-
ond idea comes from linguists like Joos (1950), Harris (1954), and Firth (1957) who proposed
to define the meaning of a word by its distribution in language use [1]. The latter idea is
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called distributional hypothesis and states that words that occur in similar contexts tend to
have similar meanings.

Thefirst word embeddingmodels used to represent words using frequency-basedmethods,
thus creating sparse, high-dimensional embedding vectors. To address the problems caused
by the so-called curse of dimensionality and the sparsity of the embedding vectors, Bengio et al.
(2003) [2] proposed to use neural networks to learn dense, low-dimensional embeddings from
large text corpora using unsupervised learning. This new approach has proven to significantly
improve the outcomes of downstream NLP tasks, due to its ability to capture the semantic
and syntactic properties of words.

A common way of classifying the existing types of Word Embeddings consists of dividing
them into two categories: Static Word Embeddings and Dynamic Word Embeddings. I will
briefly introduce both of them in the following sections. However, since this dissertation
focuses on a static word embedding algorithm, I will delve deeper into this type of word
embeddings.

1.2.1 STATIC WOrD EMBEDDINGS

StaticWord Embeddings are vector representations of words that univocally associate a fixed,
precomputed embedding vector to each word type * in the vocabulary V . This means that
the same word will always have the same embedding, regardless of the context in which it
appears.

This characteristic makes static embedding models easy to implement, train and use. In
fact, they are usually based on matrix factorization or on shallow neural networks. However,
it also constitutes a big limitation when it comes to word sense disambiguation and polysemic
word * representation. For example, the word ”bank” would have the same embedding vector
whether it’s used in the context of a financial institution or in the context of the side of a river,
making it impossible for the model to distinguish between the two meanings. Another issue
is represented by the incapability of static embedding models to generate an embedding for
words that are not present in the training corpus. This makes dealing with out-of-vocabulary
words very problematic.

Learning from a fixed corpus, these embeddings are designed to approximate the statis-

*Word types are unique words in the vocabulary, while word tokens are the occurrences of these words in a
text.

*Polysemic words are words that have multiple meanings. An example of polysemic word is the word ”bank”.
This word can refer to a financial institution or to the side of a river.
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tical patterns of word co-occurrences in the corpus. Several embedding algorithms have
been developed for the purpose, each one of them exploiting different strategies. In section
1.3, I will talk about Word2Vec, which is the most famous and widely used model for learn-
ing static word embeddings. Thereafter, I will explain how its two variants, SkipGram and
CBOW work. CBOW is particularly relevant for the work presented in this dissertation, as
it is the model on which the analyzed algorithm is based.

1.2.2 DYNAMIC WOrD EMBEDDINGS

Dynamic Word Embeddings, also called Contextualized Word Embeddings, associate each
token (i.e. each word occurrence) with a different embedding vector that takes into account
the context in which the word appears. Thus, the same word type will have different embed-
dings, depending on the neighbouring words (i.e. the context †) of its occurrences.

For this reason, dynamic embeddings are able to deal with polysemic words and are success-
ful in word sense disambiguation tasks.

On the other hand, they are computationally more expensive than static embeddings,
since they are computed dynamically (i.e. at the moment of the task execution) by Large
Language Models (LLMs) that have been pre-trained on large text corpora and then fine-
tuned on the downstream NLP task at hand.

1.3 WOrD2VEC

Word2Vec consists of two architectures for learning static word embeddings, proposed by
Mikolov et al. (2013). The primary goal of these architectures is to minimize the computa-
tional complexity of the training process, while still producing high-quality word embed-
dings. To achieve this, the authors proposed two models based on a feedforward neural net-
work, where they removed the non-linear hidden layer. This way, they were able to obtain
large improvements in accuracy at a much lower computational cost [3].

Word2Vec embeddings are learnt in a way that the embeddings of words with similar
meanings (e.g. “king” and “queen”) are closer than the embeddings of words with completly
different meanings (e.g. “king” and “carpet”). Nontheless, Word2Vec embeddings allow to

†The target word is the word for which we want to compute the embeddings, while the context words are
the words surrounding the target word.
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compute word analogies using simple mathematic operations on vectors. For example, king
— man + woman = queen [3].

In the following sections, I will explain how the twoWord2Vec architectures, CBOW and
SkipGram, work. Then, I will introduce the concept ofNegative Sampling and how it has been
combined with SkipGram to form a new model called SkipGram with Negative Sampling
(SGNS).

1.3.1 CBOW

The first architecture that has been proposed is CBOW, which stands for Continuous Bag
of Words. The name ”Bag Of Words” comes from the fact that, as in standard bag-of-words
models, the order of context words does not influence the resulting embedding. However,
unlike standard bag-of-words models, CBOW uses a continuous distributed representation
of the context words to predict the target word [3].

Figure 1.1 shows a visual representation of the CBOW architecture. It is similar to the
feedforward NNLM (Neural Net Language Model) model proposed by Bengio et al. (2003)
in [2]. However, the non-linear hidden layer has been removed in order to improve the
computational efficiency. The input words (e.g. the context) are encoded using one-hot
encoding, and are selected using a window of sizeL, centered in the target word. As you can
see in Figure 1.1, the projection layer is shared for all words, thus their vectors are averaged
[3]. Finally, a hierarchical softmax ‡ activation function is used in the output layer to predict
the target word.

1.3.2 SKIPGrAM

SkipGram is similar to the CBOW architecture, but instead of predicting the target word
based on the contex, it predicts the context words given the target word [3].

Figure 1.1 shows a visual representation of the SkipGram architecture. The context words
are predicted whithin a window of size L, centered in the target word, using a hierarchical
softmax activation function in the output layer [3].

‡Hierarchical softmax is a computationally efficient approximation of the full softmax activation function.
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Figure 1.1: A comparison between CBOWand SkipGram architectures. This picture is taken from paper [3].

1.3.3 NEGATIVE SAMPLING

Negative Sampling (NEG) is a NLP technique inspired byNoise Contrastive Estimation (NCE),
which states that a good model should be able to distinguish between data and noise using
logistic regression [4]. To do so, the dataset is augmented with negative examples drawn
from a noise distribution Pn(w). There are k negative examples for each data sample and
the optimal value of k depends on the dataset size [4]:

• If the dataset is small, k should be in the range of 5-20.

• If the dataset is large, k should be in the range of 2-5.

SKIPGrAM WITH NEGATIVE SAMPLING

SkipGramwith Negative Sampling (SGNS) is a variant of the SkipGrammodel that implements
the Negative Sampling technique together with a logistic regression classifier trained on a
binary classification task [1]. The goal is to discern between the target word w0 and a set of
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negative examples drawn from a noise distribution Pn(w) [4]. The NEG objective function
is a simplified version of the NCE objective function, however it guarantees that the quality
of the learned vectors is not compromised [4].

The advantages of using Negative Sampling to train the Skip-Gram model are the follow-
ing [4]:

• First of all, it reduces the computational complexity of the training, making it faster.

• Secondly, it improves the vector representation for frequent words.

Finally, Negative Sampling can be used also with the CBOWmodel [4], as it will be shown
later in this dissertation.
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2
Geometric Representations

Vector word embeddings are powerful tools, but they do not naturally express uncertainty
about the target concept. Furthermore, they do not naturally model asymmetric relations
since they are compared using symmetric distance functions, such as dot product, cosine
similarity, or Euclidean distance [5]. This has led to the exploration of new ways of repre-
senting words. In this chapter, I will define the concept of Geometric Representation and
its advantages compared to other approaces. Subsequently, I will introduce the main models
based on this idea and, for each model, I will list the pros and cons.

Geometric Representations are ways to represent entities as geometric objects in a high-
dimensional space. Different kinds of geometric embeddings have been developed, based
on different geometric objects. Nontheless, they all share the ability to represent polysemy
and asymetry, and to answer complex queries [6]. Furthermore, they have a geometry that is
more suitable to express relationships in the domain [7] and provide a strong inductive bias
when labelled data is scarce [6].

Figure 2.1 displays two examples of geometric representations of words in a 2D space.
Figure 2.1 (a) shows the 2D representation of Gaussian embeddings, while Figure 2.1 (b)
shows the 2D representation of Box embeddings. It is clearly visible how entailment can be
represented as inclusion among geometric objects [7].

In the following sections, wewill explore the some geometric representationmodels useful
for the analysis of the algorithm analyzed in this dissertation.
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Figure 2.1: Geometric representations of word embeddings in a 2D space. The embeddings are computed using 2 different

algorithms: (a) Gaussian Embeddings; (b) Box Embeddings. This picture is taken fromVilnis doctoral thesis [6].

2.1 GAUSSIAN EMBEDDINGS

Gaussian Embeddings is a geometric word embedding algorithm proposed in 2015 by Vilnis
and McCallum in [5]. The goal of the algorithm is to map words to Gaussian distributions in
an infinite-dimensional space, in such a way that the linguistic properties of the words are
represented by the properties of and the relationships between the distributions [5].

The model is trained on a set of positive and negatives examples using KL-divergence be-
tween Gaussian distributions as the energy function, and max-margin as the loss function [5].
Max-margin is a ranking-based loss that pushes scores of positive pairs above negatives by a
margin. Thus, the model learns Gaussian distributional embeddings to predict the context
words given the target word and rank the context words by their likelihood [5].

More formally, the KL-divergence between Gaussian distributions defines the following
negative energy that the model tries to optimize:
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−E(Pi, Pj) = DKL(Nj||Ni) =

∫
x∈Rn

N (x;µi,Σi)log
N (x;µj,Σj)

N (x;µi,Σi)
dx

=
1

2

(
tr(Σ−1

i Σj) + (µi − µj)
TΣ−1

i (µi − µj)− d− log
|Σj|
|Σi|

) (2.1)

The advantages of representing words through Gaussian embeddings are mostly two:

• Probability densities better represent asymmetry and uncertainty on the representa-
tion, compared to point vectors [5].

• KL-divergence is straightforward to compute, naturally asymmetric and has a geomet-
ric interpretation as an iclusion between families of ellipses [5].

However, Gaussian Embeddings are not a truly probabilistic model. In fact, this kind of
geometric representation does not model asymmetry and relations in terms of probabilities,
but in terms of asymmetric comparison functions, such as KL-divergence [8].

2.2 OrDEr EMBEDDINGS

Order Embeddings (OE) is a method introduced in 2016 by Vedrov et al. [9] to learn ordered
representations in order to explicitly model the partial order structure of hierarchical data.

The goal of OE is to learn an order-preserving mapping from the partially-ordered data
domain to some other partially-ordered space that will enable generalization. This provides
the model with the capacity of solving Partial Order Completion tasks, such as hypernym or
entailment prediction [9]. Furthemore, OE also represents a standard constructions of a vec-
tor lattice * in which the operations ofmeet † and join ‡ are defined as the pointwise maximum
and minimum of two vectors, respectively [8].

More formally, a function f : (X,⪯X) → (Y,⪯Y ) is an orded embedding if ∀u, v ∈ X ,
u ⪯X v ⇔ f(u) ⪯Y f(v). The choice of Y and ⪯Y depends on the application [9].

*A lattice is a partially ordered set where any subset of elements has a single unique least upper bound and
greatest lower bound. It is equipped with two binary operations: ∨ (join) and ∧ (meet) [6].

†Meet is a binary operation that computes the greates lower bound of two elements a, b ∈ P and it is
denoted as a ∧ b [6].

‡Join is a binary operation that computes the least upper bound of two elements a, b ∈ P and it is denoted
as a ∨ b [6].
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The main advantage of representing entities through Order Embeddings is its ability to
impose transitivity and antisymmetry of the partial order, making it suitable to model tran-
sitive relational data, e.g. entailment graphs [9]. However, this model learns a deterministic
knowledge base, thus posing a limit to the expressiveness of queries and to the usage of un-
certainty during learning and inference [8].

2.3 PrOBABILISTIC OrDEr EMBEDDINGS

Probabilistic Order Embeddings (POE) have been proposed in 2017 by Lai andHockenmaier
in [10] as part of a framework that aims to capture the denotational probabilities of words and
phrases. Denotational probabilities are based on the truth-conditional semantics concept of
denotanion of a declarative sentence s, which refers to the set of possible worlds in which
the sentence is true, and are computed as the number of images in the visual denotation of
s over the size of the corpus [10]. These probabilities can be used to improve the outcome of
textual entailment prediction tasks, where the goal is to predict whether a sentence is true,
false or neither given a premise sentence [10].

Figure 2.2: A 2D embedding space that expresses the individual probabilities of eventsX andY and their joint probability

P (X,Y ). This picture is taken from paper [10].

In more formal words, POE models learn a mapping from a phrase x to a n-dimensional
vector x ∈ Rn

+ such that the vector x = (x1, ..., xn) defines the denotational probability
of x as PJK(x) = exp(−

∑
i xi), which is a Bernoulli random variable [10]. Figure 2.2 shows

that a phrase vector x defines a region in the embedding space that is proportional to the
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phrase’s denotational probability. In fatc, the Bernoulli probability of each concept or joint
set of concepts is given by the volume of this region under the exponential measure, thus
offering a probabilistic interpretation of the cone lattice’s volume [8].

Representing entities through Probabilistic Order Embeddings has the following advan-
tages:

• POE is a valid probability distribution over concepts [8];

• It is able to model asymmetric transitive relations [8];

• And finally, it has the ability to perform rich joint and conditional queries over arbi-
trary sets of concepts [8].

However, POE has also a limitation: it is not able to model negative correlations between
concepts [8].

2.4 PrOBABILISTIC BOX EMBEDDINGS

Probabilistic Box Embeddings are a region-based representation similar to POE of Lai et al.,
proposed in 2018 by Vilnis et al. in [8]. Likewise POE, also this model adopts a dual approach:
on one hand, a probabilistic approach is used to model uncertainty about relationships and
attributes, while, on the other hand, a geometric approach is used to base the probability on
a latent space of geometric objects that have natural structural biases for modeling transitive,
asymmetric relations [8].

Box Embeddings aims at representing objects, concepts, and events as high-dimentional
products-of-intervals (e.g. hyperrectangles, also called boxes), where the event’s unary prob-
ability comes from the box volume and the joint probabilities of events come from the box
overlaps. Box Embeddings is defined as a pair of vectors (x−,x+) such thatx−,x+ ∈ [0, 1]n,
where x− and x+ represent the minimum and maximum at each coordinate, respectively [8].
The model is trained by minimizing the weighted cross-entropy of both the unary marginals
and the pairwise conditional probabilities [8].

In Figure 2.3, we can see a comparison between POE lattices and the box lattices produced
by the Box Embeddings model. The examples are in a 2D space to allow for visualization,
but both models can be extended to higher dimensions [8]. We can clearly see that POE
is anchoring the lattices to a corner, while Box Embeddings are able to occupy the entire
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Figure 2.3: A 2D comparison between POE lattices (a) and Box lattices (b). This picture is taken from paper [8].

space, thus proving more expressivity and a richer capacity to model positive and negative
correlations [8].

We can summarize the main advantages of using a Probabilistic Box Embeddings model
as the following:

• First of all, the model is able to capture anticorrelation and disjoint concepts [8];

• Secondly, it has the ability to perform rich joint and conditional queries over arbitrary
sets of concepts [8];

• And finally, it is able to learn from and predict calibrated uncertainty [8].

However, this model has also some limitations:

• First of all, it cannot represent all possible probability distributions or concepts as
embedded box. For example, the complement of a box is not a box. Nontheless, the
cases in which representing true complements is required are very rare [8].

• Secondly, requiring the total probability mass covered by boxes to equal 1 is a difficult
box-packing problem and not generally possible [6].

• Thirdly, learning is not straightforward. In fact, the gradient of the joint probability
with respect to the box embedding parameters is nonzero when boxes intersect, but it
has zero derivative otherwise [8]. Thus, the model is unsuitable for optimization and
the author proposes to optimize a lower bound instead [8].
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3
Word2Box

In this chapter, I will present the Word2Box model, a geometric extension of Word2Vec
that learns region-based word representations that allow to perform set-theoretic operations
between words [11]. I will introduce the concepts of Gumbel Boxes and Fuzzy Sets, and I will
explain how they are combined together in Word2Box to offer an improvement to the box
embeddings proposed by Vilnis et al. (2018).

Figure 3.1: A 2D representation of the word embeddings generated by theWord2Box algorithm and examples of set-theoretic

operations that can be performed on these embeddings. This picture is taken from paper [11].

Word2Box has been proposed by Dasgupta et al. (2022) in [11] as a fuzzy set interpretation
of box embeddings for words. The model is based on a variant of box embeddings called
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GumbelBox, introduced in [7]. Each word is represented by an n-dimensional hyperrect-
angle, also called box. However, unlike the original box embeddings and the GumbelBox
model, the training objective of Word2Box is set-theoretic. This choice is motivated by the
fact that many relationships between words can be naturally expressed set-theoretically [11].
As shown in figure 3.1, boxes are intepreted as fuzzy sets, making it possible to perform set-
theoretic operations such as union, intersection, and difference between words. This allows
to capture relationships between words that cannot be grasped with traditional methods like
Word2Vec [11].

3.1 GUMBEL BOXES

As anticipated in Section 2.4, Vilnis et al. (2018) [8] defined the box embeddings of an ele-
ment a as a Cartesian product of intervals:

Box(x) :=
d∏

i=1

[x−
i , x

+
i ] = [x−

1 , x
+
1 ]× . . .× [x−

d , x
+
d ] ⊆ Rd (3.1)

where x = (x−
1 , ..., x

−
d , x

+
1 , . . . , x

+
d ) ∈ R2d and x−

i ≤ x+
i .

The unary probability of an event a is defined as the volume of the boxBox(x) associated
with it:

P (a) = |Box(x)| =
d∏

i=1

max(0, x+
i − x−

i ) (3.2)

While the joint probability of two events a, b is defined as the volume of the intersection of
their boxes, i. e. Box(x) and Box(y) respectively:

P (a, b) = |Box(x) ∩Box(y)| = |
d∏

i=1

[max(x−
i , y

−
i ),min(x+

i , y
+
i )]| (3.3)

However, these hard max and min operations are not differentiable, resulting in large
areas of the parameter space where the gradient is zero [11]. To address this problem, Das-
gupta et al. (2020) [7] proposed to model the corners of the boxes {x±

i }with Gumbel random
variables {X±

i } and named the resulting boxes Gumbel Boxes. The Gumbel distribution

f(x;µ, β) =
1

β
exp

(
−x− µ

β
− e−

x−µ
β

)
(3.4)
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is min/max stable, meaning that the minimum and maximum of two Gumbel random vari-
ables are also Gumbel distributed [7]. This property assures that the intersection between
two Gumbel boxes is still a Gumbel box [11]. Furthermore, Dasgupta et al. (2020) [7] showed
that the GumbelBox method outperforms other variants of box embeddings, and stated that
it should be the default method for training probabilistic box embeddings [7]. Finally, Bo-
ratko et al. (2021) [12] proved that Gumbel boxes embedded in a space of finite measure have
a rigorous probabilistic interpretation.

3.2 FUZZY SETS

Fuzzy sets (also called uncertain sets) are sets whose elements have degrees ofmembership, and
therefore they can be considered a generalization of the classical definition of set. In fact, in
classical set theory an element either belongs or does not belong to the set. By contrast, fuzzy
set theory permits the gradual assessment of the membership of elements in a set, using a
membership function valued in [0, 1].

More formally, a fuzzy set is a pair (U,m) where U is a set (often required to be non-
empty) andm : U → [0, 1] is a membership function. Let x ∈ U . Then x is called:

• not included in the fuzzy set (U,m) ifm(x) = 0;

• fully included in (U,m) ifm(x) = 1;

• partially included in (U,m) if 0 < m(x) < 1.

The definition of set intersection for fuzzy sets depends on the concept of t-norm, a binary
operation T : [0, 1] × [0, 1] → [0, 1] that satisfies the commutative, associative and mono-
tonic properties. Examples of t-norms are the minimum and product operations. Given any
t-norm T , the intersection of fuzzy sets A and B has membership function mA∩B(x) =

T (mA(x),mB(x)) [11]. Likewise, the definition of the union between fuzzy sets depends
on the concept of t-conorm, a binary operation defined as ⊥ (a, b) = 1 − T (1 − a, 1 − b).
Each t-norm has a corresponding t-conorm; for example, the t-conorm of the minimum t-
norm is the maximum operation. The union of fuzzy setsA andB has membership function
mA∪B(x) =⊥ (mA(x),mB(x)) [11]. Finally, the complement of a fuzzy set A has member-
ship functionmAc(x) = 1−mA(x) [11].

One of the main reason to use fuzzy sets instead of the classical sets is that it is not possible
to learn a set representation in a gradient-based model using a hard membership function
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[11]. Furthermore, fuzzy sets can be used tomodel the concept of graded similarity [11]. Graded
similarity inNLP refers to the capabilty of measuring the degree of similarity betweenwords,
phrases, sentences, or documents, not just in binary terms (similar or not similar), but along
a continuum or scale. This approach acknowledges that linguistic items can share varying
degrees of meaning or context, rather than being entirely identical or completely different.

3.3 GUMBEL BOXES AS FUZZY SETS

In [11], Dasgupta et al. interpreted Gumbel boxes as fuzzy sets where the soft membership
function m(z) of a point z ∈ Rd is given by the probability of z being inside the Gumbel
box. Therefore, a Gumbel box BoxG(x), x ∈ R2d, corresponds to the fuzzy set (Rd,m)

wherem : Rd → [0, 1] is defined as:

m(z) = P (z ∈ BoxG(x)) =
d∏

i=1

P (zi > X−
i )P (zi < X+

i ) (3.5)

where {X±
i } are Gumbel random variables that define the corners of the box. For simplicity,

the authors called this fuzzy set BoxF (x) [11].
Set operations on BoxF (x) can be easily defined as follows:

• Complement: BoxF (x)
c has membership functionmc(z) = 1−m(z) = 1−P (z ∈

BoxG(x)), which is the probability of z not being inside the Gumbel box BoxG(x).

• Intersection: BoxF (x) ∩ BoxF (y) has membership function defined by the product
t-norm of themembership functions of the two fuzzy sets: m(z) = P (z ∈ BoxG(x)∩
BoxG(y)) = P (z ∈ BoxG(x))P (z ∈ BoxG(y)).

• Union: BoxF (x)∪BoxF (y) has membership function defined by the t-conorm of the
membership functions of the two fuzzy sets: m(z) = P (z ∈ BoxG(x)∪BoxG(y)) =
P (z ∈ BoxG(x)) + P (z ∈ BoxG(y))− P (z ∈ BoxG(x))P (z ∈ BoxG(y)). This
corresponds to the probability of z being inside at least one of the two Gumbel boxes.

The size ofBoxF (x) is obtained by intregrating the membership functionm(z) overRd:

|BoxF (x)| =
∫
Rd

P (z ∈ BoxG(x))dz (3.6)

As prooved in [7] and [12], the integral in equation 3.6 can be approximated by the follow-
ing formula:

20



|BoxF (x)| ≈
d∏

i=1

βlog(1 + exp(
µ+
i − µ−

i

β
− 2γ)) (3.7)

Paper [11] shows that also the size of the fuzzy set intersection |BoxF (x)∪BoxF (y)| and
the size of the fuzzy set difference |BoxF (x) \BoxF (y)| can be approximated in the same
way.

3.4 TrAINING

Before describing how the Word2Box model is trained, I will clarify some concepts and ter-
minology that are needed to understand the training process. I will then talk about the
training dataset used by Dasgupta et al. (2022) [11].

Let’s start with some notation: the vocabulary, indexed in a fixed but arbitrary order, is
indicated as V = {vi}Ni=1, where N is the number of words in the vocabulary. A sentence
s = (s1, . . . , sj), si ∈ V is a variable-length sequence of words in the vocabulary, and
the corpus C = {si}Mi=1 can be defined as the multiset of all the sentences in the corpus
[11]. Given a fixed window size ℓ and a sentence s, the window centered at the i-th word si is
defined aswi = [si−ℓ, . . . , si, . . . , si+ℓ]. Given a windowwi, the center word is indicated as
cen(wi) = si and the context, which is made of all the remaining words in the window, is
indicated as con(wi). Finally, CW is the multiset of all the windows in the corpus C [11].

In paper [11], Dasgupta et al. also define the set of windows centered at a word v ∈ V as:

cenW (v) := {w ∈ CW : cen(w) = v} (3.8)

and the set of windows whose context contains the word v ∈ V as:

conW (v) := {w ∈ CW : v ∈ con(w)} (3.9)

However, to allow the representation of a word u to overlap with the representation of a
word v when they have a similar meaning, the authors define the following fuzzy sets:

c̃enW (v) := {w ∈ CW : cen(w) = u, u is similar to v}
c̃onW (v) := {w ∈ CW : u ∈ con(w), u is similar to v}

(3.10)

The aim of the Word2Box model is to learn the following center and context box rep-
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resentations, based on the fuzzy sets defined in 3.10, for each word v in the vocabulary V
[11]:

cenB(v) := BoxF (c̃enW (v))

conB(v) := BoxF (c̃onW (v))
(3.11)

To do so, Word2Box uses amax-margin training objective where the score for a given window
w is defined as [11]:

f(w) :=

∣∣∣∣cenB(w0) ∩
⋂
i ̸=0

conB(wi)

∣∣∣∣ (3.12)

Max-margin loss is used to encourage the model to rank the correct output higher than any
of the incorrect outputs. This is achieved by maximizing the margin between the score of
the correct output and the scores of the incorrect outputs. Thus, the max-margin loss helps
the model improve prediction accuracy by making the correct output clearly distinguishable
from the incorrect ones.

Finally, the model has been compared with a baseline consisting in the Word2Vec model
trained using CBOW with negative sampling. This version of Word2Vec has been imple-
mented in Pytorch using Stochastic Gradient Descent with varying batch sizes and trained
using a GPU [11].

3.4.1 DATASET

Dasgupta et al. (2022) [11] trained the Word2Box model using the ukWaC corpus, which is
a large English corpus created by Baroni et al. (2019) [13] using web crawling. They further
preprocessed the corpus by removing all punctuation, replacing numbers with the <num>

token, and lowercasing all words. The resulting dataset is composed of 0.9 billion tokens
and has a vocabulary of more than 112k unique words [11].

During the training process, the dataset is augemented using the negative sampling tech-
nique. Negative examples w′ are sampled from the vocabulary applying the negative sam-
pling procedure used for CBOW in [4]. This procedure consists in replacing the center word
w0 with a word sampled from the unigram distribution raised to the power of 3/4 [11]. Sub-
sampling of context words is also performed as in [4].
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3.5 MODEL EVALUATION

To better undestand the model’s performances, Dasgupta et al. (2022) [11] compared a 64-
dimensional Word2Box model with a 128-dimensional Word2Vec model, considering that
a n-dimensional box embedding has 2n parameters. The two models have been evaluated
on both quantitative and qualitative tasks related to semantic similarity, relatedness, lexical
ambiguity, and uncertainty [11].

3.5.1 WOrD SIMILArITY BENCHMArKS

Thefirst set of evaluations has been done using word similarity benchmarks, which consist in
datasets made of word pairs (both nouns and verbs) annotated by humans with a similarity
score [11]. As we can see in Table 3.1, Word2Box outperforms Word2Vec in most of the
word similarity tasks, especially in those involving rare words. In particular, the authors
noticed that the differences in performances between the two models are more pronounced
as the amount of frequent words in the similarity datasets dicreases. This can be seen in
the plots of Figure 3.2, that show the Spearman’s correlation computed on word pairs vs the
word treshold frequency in log scale for some of the similarity datasets used for the models’
evaluation [11].

Table 3.1: Results of the word similarity task onword similarity benchmarks. For comparison, also the reported results of Gaus-

sian and Poicaré embeddings are shown, however theymight not be directly comparable. This table is taken from paper [11].

Figure 3.2: Spearman’s correlation vs the Treshold Frequency in log scale for Standord RW, SimLex-999, SimVerb-3500, and

WordSim-353 datasets. This picture is taken from paper [11].
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TheWord2Box better performances might be explained by the fact that box embeddings
are a more flexible representation of words, capable of handling sets of mutually disjoint
words, such as rare words, which co-occure with a more common word. In fact, the many
corners of box embeddings lead to a great flexibility in representing the intersections also
in cases of complicated co-occurences [11].

3.5.2 SET THEOrETIC OPErATIONS

The second part of the evaluation has been done performing set-theoretic operations on
the word embeddings generated byWord2Box andWord2Vec with the aim of evaluating the
models’ capabilty of representing sets. To do so, the authors created a dataset of homographs
and polysemous words, consisting of triples of words (A, B, C) where A ◦ B should yield a set
similar to C, for some set-theoretic operations ◦. The dataset contains 52 examples for both
Union and Negation, and 20 examples for Intersection [11].

Defining union and intersection in the vector space is not trivial, therefore the authors
tried different strategies. Nonehtless, the results show thatWord2Box yields a higher rank for
the target C thanWord2Vec over 90% of the time, thus proving the model’s capabilty to cap-
ture the underlying set theoretic aspects of the words in the corpus [11]. Finally, Word2Box
shows a better consistency in the results of logical queries compared to Word2Vec, as can be
seen in the example queries of Table 3.2 [11].

Table 3.2: Output ofWord2Box andWord2Vec for various set operations. This table is taken from paper [11].
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4
Experiments

In this chapter, I will present my work on theWord2Box algorithm. I will start by presenting
the dataset I used to train the Word2Box model and the preprocessing steps I executed to
prepare the data for training. I will then talk about the exploratory data analysis I did to
better understand the data. Finally, I will present the code analysis and explanation of the
Word2Box algorithm.

4.1 DATASET

To train the Word2Box model, I used an extract of the enwik8 dataset created by Matt Ma-
honey *, to which I applied the preprocessing steps described in Section 4.2. enwik8 contains
the first 108 bytes of the EnglishWikipedia dumpmade onMar. 3, 2006. The text is primarily
in English and it consists of UTF-8 encoded XML, as shown in Figure 4.1.

Mahoney also provides a preprocessed version of the enwik8 dataset, called text8. text8
is a 100 MB file, where XML tags, citations, footnotes, and markup are removed. Further-
more, hyperlinks are converted to ordinary text, numbers are spelled out (e.g. ”20” becomes
”two zero”), letters are lowercased, and all sequences of characters not in the range a − z

are converted to a single space, including punctations. Figure 4.2 shows an extract of the
preprocessed dataset and the differences between the two datasets are evident.

*The enwik8 dataset is freely available at https://mattmahoney.net/dc/textdata.html
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Figure 4.1: An extraxt of the enwik8 dataset.

Figure 4.2: An extraxt of the text8 dataset.

After an initial analysis of the enwik8 and text8 datasets, I chose to use the enwik8 one.
The main reason of my choice is the fact that I would like to perform the preprocessing in a
slightly different way, in order to keep the information provided by the punctuation marks.
Also, I would like to represent numbers using the <NUM> token, as it has been done in [11].

4.2 DATA PrEPrOCESSING

The first phase of the data preprocessing consists in applying part of the preprocessing steps
used by Mahoney to create the text8 dataset. These steps are contained in a Perl script
provided by Mahoney, together with the datasets. In particular, I removed the part of the
script that spells out the numbers and the part that converts punctations into spaces. The
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resulting script is the following:

1 #!/usr/bin/perl

2

3 $/=">"; # input record separator

4 while (<>) {

5 if (/<text /) {$text=1;} # remove all but between <text> ... </text>

6 if (/#redirect/i) {$text=0;} # remove #REDIRECT

7 if ($text) {

8 # Remove any text not normally visible

9 if (/<\/text>/) {$text=0;}

10 s/<.*>//; # remove xml tags

11 s/&amp;/&/g; # decode URL encoded chars

12 s/&lt;/</g;

13 s/&gt;/>/g;

14 s/<ref[^<]*<\/ref>//g; # remove references <ref...> ... </ref>

15 s/<[^>]*>//g; # remove xhtml tags

16 s/\[http:[^] ]*/[/g; # remove normal url, preserve visible text

17 s/\|thumb//ig; # remove images links, preserve caption

18 s/\|left//ig;

19 s/\|right//ig;

20 s/\|\d+px//ig;

21 s/\[\[image:[^\[\]]*\|//ig;

22 # show categories without markup

23 s/\[\[category:([^|\]]*)[^]]*\]\]/[[$1]]/ig;

24 s/\[\[[a-z\-]*:[^\]]*\]\]//g; # remove links to other languages

25 s/\[\[[^\|\]]*\|/[[/g; # remove wiki url, preserve visible text

26 s/{{[^}]*}}//g; # remove {{icons}} and {tables}

27 s/{[^}]*}//g;

28 s/\[//g; # remove [ and ]

29 s/\]//g;

30 s/&[^;]*;/ /g; # remove URL encoded chars

31

32 # Convert to lowercase letters and spaces

33 $_=" $_ ";

34 tr/A-Z/a-z/;

35 tr/a-z.,;:"-()!?0-9/ /cs;

36 chop;

37 print $_;

38 }

39 }
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In Figure 4.3 you can see how the dataset looks like after the first part of the preprocessing
is applied.

Figure 4.3: An extraxt of the enwik8 dataset after the first part of the preprocessing is applied.

The second phase of data preprocessing consists in the following steps:

• All numbers are replaced with the <NUM> token, as in [11].

• All punctuation marks are replaced with the corresponding token (e.g. the question
mark ? is replaced with the <QUESTION_MARK> token, and so on). I decided to keep all
the punctuation marks in the dataset because they provide useful information about
the text structure. However, this is different to what has been done in [11], where the
punctuations are removed.

• Stopwords are defined as words that carry very little information and therefore are not
essential to understand the meaning of a text. They are usually very frequent words,
such as articles, prepositions, and conjunctions. They have been removed from the
dataset in order to let the algorithm focus on more meaningful words.

• Low-frequency words which appear in the dataset with a frequency lower than 5 are
removed.

The resulting dataset contains 8, 858, 098 words and 53, 693 unique words. Figure 4.4
shows how the dataset looks like after the second part of the preprocessing is applied.

Figure 4.4: An extraxt of the enwik8 dataset after the second part of the preprocessing is applied.

I implemented the preprocessing steps using Python; the complete code snippet is avail-
able in a Colab notebook.
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4.3 EXPLOrATOrY DATA ANALYSIS

Once the data has been fully preprocessed, I performed an exploratory data analysis to better
understand the dataset. First of all, I computed the frequency of each word type in the
corpus. Then, I extracted the maximun and minimum frequencies, I computed the average
frequency, the average word length and the weighted average word length. For simplicity, I
didn’t exclude the punctuation tokens and the <NUM> token from the analysis. The results
are shown in Table 4.1.

Metric Value
Maximum Frequency 718,889
Minimum Frequency 1
Average Frequency 165
Average Word Length 7.42
Weighted Average Word Length 7.12

Table 4.1: Statistics of the enwik8 dataset after preprocessing.

We can see that the average word length and the weighted average word length are very
similar. The average word frequency is 165, which means that the dataset is not too sparse.
Nonetheless, themaximum frequency is 718, 889, which is very high compared to the average
frequency. This is due to the fact that the dataset contains a lot of punctuation marks and
numbers, which are repeated many times.

After that, I investigated which are the most frequent and less frequent words. Table 4.2
displays the 20most frequent words in the dataset, together with their frequency. As we can
see, the 7 most frequent word types are punctations and numbers. Table 4.3 shows the 20
least frequentwords. As expected, if we exclude the <eos> token (i.e. the token that indicates
the end of the dataset), the smallest word frequency is 6. In fact, less frequent words have
been removed during the data preprocessing. It’s interesting to note that, among the rarest
words, there are some mispelled words, such as transfered and corea.

To conclude, I implemented the exploratory data analysis using the Python libraries torchtext
and pandas. The complete code snippet is available in the same Colab notebook used for
the data preprocessing.

29



Word Type Frequency
<COMMA> 718,889
<PERIOD> 569,330
<N> 418,395
<QUOTATION_MARK> 333,538
<RIGHT_PAREN> 169,757
<LEFT_PAREN> 169,649
<APOSTROPH> 93,119
<COLON> 84,702
<SEMICOLON> 31,773
first 20,970
used 17,629
new 17,196
time 15,303
see 14,744
world 13,198
american 12,571
people 10,920
states 10,868
use 10,836
known 10,800

Table 4.2: Most frequent word types in the dataset.

Word Type Frequency
<eos> 1
citium 6
regimentation 6
girondins 6
communitarian 6
climaxed 6
realign 6
luddites 6
leftism 6
agitators 6
woodworth 6
bayonets 6
caplan 6
freetown 6
bleuler 6
kanner 6
unwinding 6
transfered 6
shyness 6
corea 6

Table 4.3: Less frequent word types in the dataset.

4.4 CODE ANALYSIS

The last section of this chapter is dedicated to the analysis and explanation of the code of
the Word2Box algorithm. The original code is written in Python and it is freely available on
GitHub at the following link: https://github.com/iesl/word2box. However, since it
contains several bugs and it is not well documented, on one hand I decided to fork the reposi-
tory and fix the bugs, and on the other hand I created a ready-to-runColab notebook to train
and test the model, with a detailed code explanation. The (hopefully) bug-free codebase is
available at the following GitHub repository: https://github.com/ChiaraBi/word2box.

In the following subsections, I will provide an insight into the project structure. Then, I
will dive deep into the models and loss functions available in the codebase. Finally, I will
explain how the training is performed and how to evaluate the model.
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4.4.1 PrOȷECT STrUCTUrE

TheWord2Box codebase is organized into four modules: datasets, box, models and train.
I will briefly describe each module in the paragraphs below.

DATASETS The datasets module contains the classes that represent the dataset and the
dataset loader, Word2VecDatasetOnDevice and LazyDatasetLoader respectively. It also
contains the functions to read and tokenize the dataset, extract the vocabulary and perfom
a subsampling.

BOX The box module contains the classes that represent the box tensors (BoxTensor and
DeltaBoxTensor) and the box embedding layer (BoxEmbedding). BoxTensor exposes the
methods to compute the intersection between two boxes, the volume of a box, the volume
of the intersection and the volume of the intersection of Gumbel boxes.

MODELS The modelsmodule contains the classes that represent the models for Word2Box,
Word2Vec and Word2Gauss. I will provide a more in depth explanation of the Word2Box
models in Section 4.4.2.

TrAIN The trainmodule contains the loss functions, the classes that perfom the negative
sampling for bothCBOW(RandomNegativeCBOW) and SkipGram (RandomNegativeSkipGram),
the trainers (Trainer and TrainerWordSimilarity) and the training function, which
takes in input the hyperparameters and other model configurations, and executes the train-
ing of the selected model.

4.4.2 MODELS

In this section I will focus on the two variants of the Word2Box algorithm available in the
codebase, i.e. Word2Box and Word2BoxConjunction.

WOrD2BOX

Word2Box is the SkipGram implementation of the Word2Box algorithm. It inherits from
BaseModule, a class that exposes themethods needed to save and load themodel’s parameters
and the training checkpoints. The constructor (__init__) initializes the model and creates
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the BoxEmbedding layers for the target and context words. In addition, Word2Box exposes
three methods: word_similarity, conditional_similarity and forward.

word_similarity takes in input two words and computes the box embedding for each
one of the words. Then, it computes the volume of the intersection between the two box
embeddings.

conditional_similarity is similar to word_similarity, and in addition it computes
the _log_soft_volume_adjusted defined in the BoxTensor class.

However, it is not really possible to use the Word2Box model because, when used, it gives
the following error message: "Gumbel intersection is not possible". Therefore, I
decided not to report the implementation of the forward method in the code below.

1 class Word2Box(BaseModule):

2 def __init__(self, TEXT=None, embedding_dim=50, batch_size=10, n_gram=4,

3 volume_temp=1.0, intersection_temp=1.0, box_type="BoxTensor", **kwargs):

4 super(Word2Box, self).__init__()

5

6 # Model

7 self.batch_size = batch_size

8 self.n_gram = n_gram

9 self.vocab_size = len(TEXT.itos)

10 self.embedding_dim = embedding_dim

11

12 # Box features

13 self.volume_temp = volume_temp

14 self.intersection_temp = intersection_temp

15 self.box_type = box_type

16

17 # Create embeddings

18 self.embeddings_word = BoxEmbedding(

19 self.vocab_size, self.embedding_dim, box_type=box_type

20 )

21 self.embedding_context = BoxEmbedding(

22 self.vocab_size, self.embedding_dim, box_type=box_type

23 )

24

25 def forward(self, idx_word, idx_context, context_mask, train=True):

26 pass

27

28 def word_similarity(self, w1, w2):

29 with torch.no_grad():
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30 word1 = self.embeddings_word(w1)

31 word2 = self.embeddings_word(w2)

32 score = word1.gumbel_intersection_log_volume(word2,

33 volume_temp=self.volume_temp,

34 intersection_temp=self.intersection_temp)

35 return score

36

37 def conditional_similarity(self, w1, w2):

38 with torch.no_grad():

39 word1 = self.embeddings_word(w1)

40 word2 = self.embeddings_word(w2)

41 score = word1.gumbel_intersection_log_volume(word2,

42 volume_temp=self.volume_temp,

43 intersection_temp=self.intersection_temp)

44 # Word1 Word2 queen royalty 5.93

45 # Word2 is more general P(royalty | queen) = 1

46 # Thus we need p(w2 | w1)

47 score -= word1._log_soft_volume_adjusted(word1.z, word1.Z,

48 temp=self.volume_temp, gumbel_beta=self.intersection_temp)

49 return score

WOrD2BOXCONȷUNCTION

Word2BoxConjunction is the CBOW implementation of the Word2Box algorithm. It inher-
its from the Word2Box class and overrides the forward method of Word2Box. Furthermore,
it defines a new method called intersect_multiple_box, which applies a mask to the in-
put boxes and turns them into Gumbel random variables. Note that intersection_temp,
which represent the β parameter of the Gumbel distribution, should always be ! = 0, in
order to avoid a division by 0.

1 class Word2BoxConjunction(Word2Box):

2 def intersect_multiple_box(self, boxes, mask):

3 beta = self.intersection_temp

4 z = boxes.z.clone()

5 Z = boxes.Z.clone()

6 z[~mask] = float("-inf")

7 Z[~mask] = float("inf")

8 z = beta * torch.logsumexp(z / beta, dim=1, keepdim=True)

9 Z = -beta * torch.logsumexp(-Z / beta, dim=1, keepdim=True)

10

33



11 return BoxTensor.from_zZ(z, Z)

12

13 def forward(self, idx_word, idx_context, mask_context, train=True):

14 context_boxes = self.embedding_context(idx_context) # Batch_size * 2 * dim

15 word_boxes = self.embeddings_word(idx_word) # Batch_size * ns+1 * 2 * dim

16 # Note that the context is not masked yet. We need to mask it as well:

17 pooled_context = self.intersect_multiple_box(context_boxes, mask_context)

18

19 score = word_boxes.gumbel_intersection_log_volume(

20 pooled_context,

21 volume_temp=self.volume_temp,

22 intersection_temp=self.intersection_temp,

23 )

24 return score

4.4.3 LOSS FUNCTIONS

The Word2Box codebase provides three different loss functions: Noise Contrastive Estima-
tion, Negative Log Likelihood andMaxMargin. The default loss function forWord2Box, and
the one used in [11], is MaxMargin, however I trained the model using the NCE loss function.
The type of loss function to be used by the model should be specified in the configurations
passed in input to the training function.

MAX MArGIN

The Max Margin (max_margin) loss function provided in the codebase is specific for box
embeddings and its goal is to increase the similarity score of the positive examples more
than a margin from the negative examples’ scores. If that margin is satisfied then the loss is
zero. The input scores are the unnormalised similarity scores for the positive and negative
examples (pos and neg respectively).

1 def max_margin(pos, neg, margin=5.0):

2 zero = torch.tensor(0.0).to(device)

3 return torch.sum(torch.max(zero, neg - pos + margin), dim=1)

NOISE CONTrASTIVE ESTIMATION

Noise Contrastive Estimation (nce) is the loss function used byWord2Vec, however it can be
used also for box embeddings. NCE takes in input the unnormalised probabilities of the posi-
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tive and negative examples (pos and neg respectively). These probabilities are passed through
a sigmoid function (nn.functional.logsigmoid) in order to get a normalised score.

1 def nce(pos, neg, **kwagrs):

2 return -(nn.functional.logsigmoid(pos)

3 + torch.sum(nn.functional.logsigmoid(-neg), dim=1))

NEGATIVE LOG LIKELIHOOD

TheNegative Log Likelihood (nll) loss function provided in the codebase is specific for box
embeddings. It takes in input the log probabilities of the positive and negative examples
(pos and neg respectively).

1 def nll(pos, neg, **kwagrs):

2 assert (pos < 0).all(), "Log probabiltiy can not be positive"

3 assert (neg < 0).all(), "Log probabiltiy can not be positive"

4

5 # Note that log1mexp(neg) = log(1-exp(neg))

6 return -(pos + torch.sum(log1mexp(neg), dim=1))

4.4.4 TrAINING

The training function is the training entry point. It takes in input the configurations and
hyperparameters needed to train the model. After setting the seed, it creates an instance of
LazyDatasetLoader to load and preprocess the training dataset. Then, it creates the correct
model, based on the config["model_type"] value. After that, it creates a trainer of type
TrainerWordSimilarity and calls the trainer.train_modelmethod to start the model’s
training.

Note that I slightly modified the training function to make it return the model and
the trainer, since they are necessary to test the model. Furthermore, I kept only the
Word2BoxConjunctionmodel and the CBOW model_mode, since I didn’t use the othermod-
els.

1 def training(config):

2 # Set the seed

3 if config["seed"] is None:

4 config["seed"] = random.randint(0, 2**32)

5 torch.manual_seed(config["seed"])

6 random.seed(config["seed"])
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7

8 # get_iter_on_device is defined in datasets.utils

9 TEXT, train_iter = get_iter_on_device(

10 config["batch_size"],

11 config["dataset"],

12 config["model_type"],

13 config["n_gram"],

14 config["subsample_thresh"],

15 config["data_device"],

16 config["add_pad"],

17 config["eos_mask"],

18 )

19

20 if config["model_type"] == "Word2BoxConjunction":

21 model = Word2BoxConjunction(

22 TEXT=TEXT,

23 embedding_dim=config["embedding_dim"],

24 batch_size=config["batch_size"],

25 n_gram=config["n_gram"],

26 intersection_temp=config["int_temp"],

27 volume_temp=config["vol_temp"],

28 box_type=config["box_type"],

29 )

30 else:

31 raise ValueError("Model type is not valid. Please enter a valid model type")

32

33 if use_cuda:

34 model.cuda()

35

36 # Instance of trainer

37 trainer = TrainerWordSimilarity(

38 train_iter=train_iter,

39 val_iter=None,

40 vocab=TEXT,

41 lr=config["lr"],

42 n_gram=config["n_gram"],

43 loss_fn=config["loss_fn"],

44 negative_samples=config["negative_samples"],

45 model_mode="CBOW",

46 log_frequency=config["log_frequency"],

47 margin=config["margin"],
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48 similarity_datasets_dir=config["eval_file"],

49 subsampling_prob=None, # pass: subsampling_prob, when you want to adjust

neg_sampling distn

50 )

51

52 trainer.train_model(

53 model=model,

54 num_epochs=config["num_epochs"],

55 path=config.get("save_dir", False),

56 save_model=config.get("save_model", False),

57 )

58

59 return model, trainer

The core of the training process happens inside the train_model. This method takes in
input the model to train, the number of epochs, the path where to save the model and the
flag save_model. It uses the Adam optimizer and a custom loss function. The method also
includes a training loop that iterates over the training data, computes the loss, and updates
the model parameters. It also checks for NaN or infinite values in the loss or parameters,
which could indicate problems with the training. The method also provide intermediate
and a final evaluations of the model. It computes the Spearman’s correlation on the Simlex-
999 dataset and keeps track of the best value of this metric. If the save_model flag is set, it
saves to disk the current model and the best model according to the metric.

To train the Word2BoxConjunction, I mainly used the default values provided in [11].
However, I changed the training dataset and the loss function. Furthermore, I used only 1
training epoch due to time and hardware constraints.

1 SAVED_MODELS_DIR = '/content/saved-models'

2 DATASET_NAME = 'enwik8-preprocessed'

3

4 config = {

5 "alpha_dim": 32,

6 "batch_size": 1024,

7 "cuda": True,

8 "data_device": 'cpu',

9 "diag_context": 0,

10 "eval_file": "./data/similarity_datasets/",

11 "eos_mask": True,

12 "embedding_dim": 50,

13 "int_temp": 0.01,
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14 "log_frequency": 100,

15 "lr": 0.01,

16 "margin": 10,

17 "n_gram": 4,

18 "negative_samples": 5,

19 "sep_output": 0,

20 "subsample_thresh": 0.001,

21 "vol_temp": 1.0,

22 "num_epochs": 1,

23 "box_type": "DeltaBoxTensor",

24 "dataset": DATASET_NAME,

25 "loss_fn": "nce",

26 "model_type": "Word2BoxConjunction",

27 "save_dir": SAVED_MODELS_DIR,

28 "save_model": True,

29 "seed": 5,

30 }

4.4.5 MODEL EVALUATION

After themodel has been trained, it can be evaluated using the trainer.model_evalmethod.
This method takes in input the trained model and, if the similarity_datasets_dir is de-
fined, it evaluates the model using model.word_similarity method on each row of each
dataset present in the folder. Then, it computes the Spearman’s correlation between the pre-
dicted scores and the target scores. Finally, it returns a dictionary containing the correlation
value obtained for each similarity dataset.
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5
Conclusion

The Word2Box algorithm represents a significant advancement in the field of natural lan-
guage processing by introducing a geometrically inspired method for word representation.
By representing words as n-dimensional hyperrectangles called ”boxes”, it offers a novel
way to express uncertainty and model asymmetric relationships between words, overcoming
some limitations of traditional vector word embeddings. This approach not only enhances
the representation of semantic relationships, but also facilitates set-theoretic operations on
word meanings, providing a richer linguistic representation of polysemic words. Furthe-
more, Dasgupta et al. (2022) [11] have shown that Word2Box outperforms Word2Vec in both
the word similarity task and on logical queries based on set operations, proving the effec-
tiveness of the algorithm in capturing the word semantic.

Due to time and resource constraints, I was not able to train the Word2Box model on
the full dataset and I had to limit the number of epochs to 1. As a future improvement, it
would be interesting to investigate how a properly trained Word2Box model would perform
in downstream NLP tasks, in order to fully understand the algorithm’s potential. In partic-
ular, it would be interesting to compare Word2Box with the static word embedding model
proposed by Ahmet Onur Akman in his Master’s Thesis ”Design of a Third-Order Word
Embedding Model Using Vector Projections” (2023) [14].
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