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Abstract

The growing danger posed by ransomware has been a signi昀椀cant concern for both the public
and private sectors. The emergence of new strains of this malware has outpaced the develop-
ment of e昀昀ective defense mechanisms. Despite the numerous proposed frameworks that em-
ploy static and dynamic analysis, these approaches frequently prove ine昀昀ective in the face of
advanced obfuscation and evasion techniques.

One common characteristic among di昀昀erent ransomware strains is the need to encrypt the
昀椀lesystem data at some point. The bytes’ distribution of encrypted 昀椀les seems random, while
in normal 昀椀les it tends to be more structured. By measuring such unpredictability through
statistical tools, it is possible to leverage this characteristic and distinguish between encrypted
and normal 昀椀les. One of the metrics used to perform this task is the Shannon Entropy.

Researchers tend to compute the Entropy of the bytes’ distribution using the entire 昀椀le,
which is not precise, slow, and requires a lot of resources. To overcome these limits, Davies et
al. [1] proposed the use of only a 昀椀xed segment at the start of the 昀椀le, called the header. Given
the promising results of their ransomware classi昀椀cation method, it seems that computing the
昀椀les’ header Entropy provides relevant information to successfully deploy a working defense
mechanism.

However, computing the Entropy of a bytes sequence, whether for the entire 昀椀le or only the
header, is prone to Entropy neutralization techniques. Such attacks aim to reduce the Entropy
of the encrypted 昀椀le by encoding it in a di昀昀erent format, for example, Base64. Various works
have explored sophisticated neutralization strategies, and over the years it has become clear that
if a defense mechanism uses some form of Entropy values, its performance needs to be tested
against such techniques. Among past works, only two Entropy-based ransomware detection
methods proposed by Lee et al. [2] and Venturini et al. [3] included such veri昀椀cation in their
proposals, leaving all the others potentially vulnerable.

By collecting small 昀椀xed-length segments of the 昀椀les, this thesis proposes a lightweight, fast,
and reliable ransomware detection method. The proposed defense mechanism uses only small
portions of the 昀椀les, from which Entropy or the Di昀昀erential Areas (between real and ideal
昀椀le’s Entropy graphs) are computed and provided to amachine learning algorithm. The use of
such features allows for e昀昀ectively distinguishing between ransomware-encrypted 昀椀les and le-
gitimate 昀椀les, and requires very few system resources. To strengthen the feature extraction pro-
cess and make it more resistant to Entropy tampering, three additional random 昀椀le segments
selection strategies were implemented.

Unlike past works, each feature, machine learning algorithm, and feature extraction strategy
were tested against di昀昀erent Entropy neutralization techniques to highlight which combina-
tion is themost resilient against such attacks. To do so, the ransomware headers were tampered

v



with to lower their Entropy, and the models were tested once more. This allows the develop-
ment of an Entropy-based ransomware detection method capable of adapting to both known
ransomware strains and future ransomware designed to neutralize their header Entropy values.
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1
Introduction

From 2005 and on, ransomware have been a growing threat, damaging private companies and
public institutions for millions and millions of dollars. A report from Chainanalysis (https:
//www.chainalysis.com/blog/ransomware-2024/) states that the capital moved by ran-
somware attacks in 2023 alone is near 1 billion dollars.

Over the years, cybersecurity companies and researchers developed di昀昀erent defense mech-
anisms against this threat, but it is di昀케cult to keep up with the quick evolving nature of ran-
somware.

However, independently of the techniques they use and their complexity, all the di昀昀erent
ransomware strains need to encrypt 昀椀lesystemdata at somepoint during their execution. When
a昀椀le is encrypted, its bytes’ distribution changes fromapredictable sequence due to the 昀椀le type
and content, to a seemingly random one. Leveraging this bytes’ distribution change, it is pos-
sible to build a ransomware detection method able to ideally adapt to unforeseen ransomware
strains. The logic is simple: detect if a 昀椀le is being encrypted or not, and alert the user if it is.

Measuring the randomness of bytes to tell apart ransomware-encrypted 昀椀les from legitimate
ones is common in ransomware detection. This typically involves using statistical tools on the
昀椀le bytes’ distribution and checking the resultingmetric. Tools like the ArithmeticMean, Chi-
Square, andShannonEntropy are oftenused. In this thesis, I argue that in real-world situations,
waiting for the whole 昀椀le to be encrypted before detecting ransomware is not e昀케cient. Also,
calculating these metrics on thousands or tens of thousands of bytes can be resource-intensive.

Fortunately, Davies et al. [1] obtained promising results proposing a ransomware classi昀椀ca-
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tion analysis based on Shannon Entropy of only the 昀椀les’ header, a 昀椀xed segment at the start of
the 昀椀le.

Davies et al. [1] work, and in general all the ransomware detection strategies based on En-
tropy, are vulnerable to Entropy neutralization techniques, as proved by McIntosh et al. [5],
Lee et al. [6, 7], Venturini et al. [3] and Bang et al. [8].

This thesis innovative approach compared to previous methodologies is the use of the Shan-
non Entropy computed on small 昀椀xed-length segments paired with machine learning, for a
quick and light defensemechanism. Theuse ofmachine learning allows themodel tobe trained
on di昀昀erent neutralization techniques and eventually adapt to their presence, compensating
most Entropy-based ransomware detection methods vulnerability.

This thesis is structured as follows. After this Introduction, Chapter 2 gives some back-
ground information to better understand the concepts used throughout this thesis. Chapter 3
discusses the methodology used to structure the experiment, starting with the initial hypothe-
ses, followed by how the experiment was designed and implemented in order to verify them.
Lastly, Chapter 4 reports all the obtained results and proofs.

More speci昀椀cally, in the Introduction, in Section 1.1 ransomware is brie昀氀y introduced, de-
tailing its origin and evolution from the initial emergence in 1989 to becoming a signi昀椀cant
threat post-2005. Then, the two principal types of ransomware are explained, and the di昀昀er-
ent ransomware analyses used to defend against such threats are explored.

In Section 1.2, various past proposed detection methodologies are brie昀氀y discussed, to pro-
vide context around the objective of this thesis. In Subsection 1.2.1 the reader can 昀椀nd a general
de昀椀nition of encryption and which tools are used to measure data predictability.

In Section 1.3 themost relevant ransomware detection researches are reportedmore in detail,
with a focus on the ones using some form of Entropy computations. Next, past ransomware
defense mechanisms involving the use of machine learning are discussed, and the works high-
lighting the vulnerability tied to the use of Entropy features are described. In Subsection 1.3.1,
some works in a di昀昀erent but related 昀椀eld are introduced.

1.1 Ransomware

The term ”ransomware” is derived from the fusion of ”ransom” and ”malware.” It refers to
malicious software that typically operates by demanding payment in exchange for restoring
functionality that it has compromised [9].

Although the 昀椀rst ransomwarewas used in 1989 by JosephPopp, whodistributed a program
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named ”AIDS” via 昀氀oppy disks, it was not until after 2005 that ransomware attacks began to
emerge as a signi昀椀cant threat [10]. Over time, the targets of these attacks have evolved, shifting
from individual users to larger enterprise systems, where the potential for damage —and thus
the ransom demands— can be substantially higher.

Ransomware attacks can be classi昀椀ed into two principal categories: Locker-Ransomware
and Crypto-Ransomware. Locker-Ransomware functions by locking the victim’s device, pre-
venting access to the PC in exchange for money. Until the ransom is paid, it typically leaves the
underlying system and 昀椀les intact. In contrast, Crypto-Ransomware employs encryption algo-
rithms to cipher the victim’s data, rendering them inaccessible until the victim pays for the de-
cryption key [11]. Locker-Ransomware is e昀昀ective onlywhen it employs social engineering tac-
tics to pressure victims into paying, whereas the direct attack on data by Crypto-Ransomware
makes them a far more dangerous threat.

A pivotal moment in the evolution of ransomware attacks occurred in May 2017 with the
emergence of the Crypto-Ransomware WannaCry [12]. This ransomware attacked major in-
dustries, healthcare facilities, and government institutions on a global scale. It was a signi昀椀cant
shift from its predecessors, which principally targeted private citizens and requested generally
small fees. In the span of just a few days,WannaCry infected over 230,000MicrosoftWindows
systems across 150 countries [13].
After WannaCry, a series of similarly infamous ransomware attacks followed. NotPetya,

which was speci昀椀cally targeted at Ukrainian businesses and government entities, BadRabbit,
which was known for its spread through enterprise networks, and SamSam, which focused on
healthcare and government institutions [12].

In the modern interconnected world, the successful deployment of Crypto-Ransomware
can have severe consequences, as digital information is fundamental to the operations of both
public and private organizations. The WannaCry attack, along with others of similar nature
[11], serve as a clear signal of the potential impact that a ransomware can have on essential
infrastructure and services. To mitigate the potential for harm posed by Crypto-Ransomware,
increased levels of vigilance and robust cybersecurity measures are required.

1.2 Ransomware Detection

Security researchers havemainlydirected their attentions toward the categoryofCrypto-Ransomware
due to its e昀昀ectiveness and e昀케ciency. This intensi昀椀ed focus has resulted in the emergence of
three principal detection methodologies.
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Signature or static analysis is a technique employed in cybersecurity to examine executable
code prior to its execution, with the objective of identifying known malicious patterns or se-
quences of bytes. The key aspects of signature/static analysis include:

• Pattern matching: Primary method employed in the identi昀椀cation of malware. This
involves the scanning of executable code for speci昀椀c sequences of bytes that match a
database of known malware signatures. The database is updated on a continuous basis
with new signatures as new malware/ransomware is discovered.

• Hashing: The application of hash functions to executable 昀椀les results in the generation
of unique identi昀椀ers (hashes) for each 昀椀le. Hashes are then compared against a list of
hashes that are known to be associated with malicious 昀椀les. The most commonly em-
ployed hashing algorithms include MD5, SHA-1, and SHA-256.

• Heuristic analysis: It involves examining the code for suspicious features or behaviors
that are commonly observed inmalware, even if there is no exactmatchwith a known sig-
nature. Such an examination may include the identi昀椀cation of anomalous instructions,
the use of obfuscation techniques, and the presence of previously identi昀椀ed exploitation
patterns.

• Disassembly: The executable code is converted into assembly language in order to facili-
tate a more detailed examination of its structure and operations. Subsequently, analysts
are able to manually inspect the disassembled code in order to identify any potentially
malicious instructions or logic.

• String Analysis: Search inside the executable for speci昀椀c strings of text that are com-
monly found in malware, such as URLs, IP addresses, suspicious command-line argu-
ments, or knownmalicious function names.

• Control Flow Graph (CFG) Analysis: The process of examining the control 昀氀ow of a
program in order to gain an understanding of its execution pathways and to identify po-
tential anomalies or suspicious branching structures. This approach can help in identi-
fying complex malware that may employ sophisticated control 昀氀ow techniques to evade
detection.

• Static Behavioral Indicators: Identify static indicators of malicious behavior, such as
the presence of embedded scripts, macros, or other executable content within docu-
ments or other 昀椀le types. This may also include the presence of known exploit payloads
or shellcode.

Behavioral or dynamic analysis is amethodof observing the actions andpatterns of processes
in order to identify any suspicious activities or potential threats.
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This type of analysis is crucial, as it allows for the identi昀椀cation and prevention of malware
infections and other cyberattacks. By comparing the behavior of processes against known at-
tack pro昀椀les, the analysis can determine whether a process may be malicious.

The techniques for behavioral analysis can be classi昀椀ed into four broad categories:

• File-based detection: Process of identifying and analyzing speci昀椀c 昀椀les within a system
by searching for suspicious behaviors, such as unusual 昀椀le creation, modi昀椀cation, dele-
tion, or access patterns, which may indicate the presence of malware.

• System-based Behavior detection: This category includesmonitoring system calls, pro-
cess creation and termination, as well as tracking the behavior of system services that
could indicate an attack.

• Resource-based Behavior detection: This technique entails the observation of the uti-
lizationof system resources, including the central processingunit (CPU), random-access
memory (RAM), storagemedia, and network bandwidth. It can be reasonably assumed
that unusual or excessive resource usage may be indicative of malicious activity

• Connection-based Behavior detection: This approach employs the monitoring of net-
work connections and communication patterns in order to identify any suspicious ac-
tivities. Some indicators could be: incoming and outgoing tra昀케c, unusual connection
attempts and knownmalicious IP addresses or domains [14, 15, 16, 17].

Hybrid analysis is a method of ransomware analysis that combines both static and dynamic
analysis techniques. The integration of both approaches provides a more comprehensive view
of the ransomware and its capabilities.

Over time, new defensive mechanisms have been developed, in the form of complex frame-
works and algorithms that integrate various techniques from both static and dynamic analysis.
However, ransomware has evolved alongside these defensive mechanisms, deploying increas-
ingly sophisticated attacks that incorporate polymorphism, encryption, multiprocess executa-
bles, and other techniques to evade detection.

Polymorphism allows ransomware to change its code with each infection, making signature-
based detection methods less e昀昀ective. Encryption ensures that the ransomware’s payload is
hidden from analysis until it is executed. Multiprocess executables complicate detection by
distributing malicious activities across several processes [14, 17].

These advancements in ransomware imply that themajority of existing detection algorithms
and frameworks struggle to adapt to di昀昀erent strains of ransomware, particularly those with
novel execution patterns. Consequently, detection systems are prone to high false positive rates,
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where legitimate 昀椀les are erroneously identi昀椀ed as malicious, and false negative rates, where
actual ransomware goes undetected.

To compensate the de昀椀ciencies and enhance detection accuracy, these systems may neces-
sitate the gathering of extensive data, which may result in signi昀椀cant overhead on machine
resources such as CPU and RAM [18, 19, 20, 21, 22, 23, 24, 25, 26, 27].
However, even the most complex ransomware variants have a common requirement: they

need to encrypt data and write it to the disk, eventually [19]. The stronger the encryption,
the more random the resulting 昀椀le data distribution will be. Recognizing this characteristic,
past security researchers have used various statistical metrics to measure the randomness of en-
crypted 昀椀les, distinguishing them from normal 昀椀les. Encryption and the metrics to measure
data predictability are discussed in Subsection 1.2.1. Among the di昀昀erent possibilities, some
metrics widely used are di昀昀erent forms of the Entropy. In particular, high Entropy values are
typically indicative of the presence of an eventual ransomware in action [15, 19, 28, 29, 22, 18,
30, 21, 22, 23, 24, 25, 26, 27].
Some defensive mechanisms use the Shannon Entropy and aim to quantify the randomness

of an entire 昀椀le bytes’ distribution in order to identify encrypteddata [18, 19, 20, 21, 22, 31, 24].
However, this approach requires a signi昀椀cant amount of computational resources, speci昀椀cally
for large 昀椀les, and is not e昀昀ective in di昀昀erentiating between 昀椀le types where byte distribution
seems almost as random as encrypted 昀椀les, such as compressed or PDF 昀椀les [30].

To address these limitations, Davies et al. [1] proposed to focus on a 昀椀xed-length segment of
the 昀椀le, the header, where the di昀昀erence in Entropy between 昀椀les should be more prominent.
This is in general due to the presence of metadata bytes, a descriptive sequence of bytes tied to
the 昀椀le type. This, paired with the removal of the dependence of the metric on the 昀椀le length,
could improve and fasten the computations. Their 昀椀ndings looked promising, achieving im-
pressive results in terms of accuracy and F1 score on the considered dataset.

Kim et al. [32] proposed a technique based on a similar idea. They combined the computed
Entropy of the header with another feature derived from segment byte probabilities and fed
these features into a neural network (NN), a support vector machine (SVM), and a threshold-
based algorithm. Their approach yielded notable results, obtaining good detection accuracy
scores.

Despite the advantages of computing Entropy for 昀椀xed-size 昀椀le segments, both segment
and entire 昀椀le Entropy analyses are vulnerable to Entropy neutralization techniques. If a ran-
somware implemented such methods, it would be able to standardizes data distribution in or-
der to lower the Entropy of the encrypted 昀椀les, rendering the analyses ine昀昀ective.
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McIntosh et al. [17] demonstrated that by using Base64 encoding and distributed partial
encryption. Such algorithms manipulate the bytes’ distribution, lowering the Entropy and
bypassing Entropy-based defenses. Lee et al. [6] improved on this by developing an algorithm
that selects encoding types to match original 昀椀le Entropy, enhancing attack performance.

Davies et al. [33] tested 53 Entropy computationmethods, concluding that puremathemat-
ical techniques like Shannon Entropy are ine昀昀ective for distinguishing ransomware-encrypted
昀椀les from compressed 昀椀les due to their similarities. They suggested combining Entropy calcu-
lations with byte correlation coe昀케cients and incorporating encoding detection.

Lee et al. [2] proposedmachine learning algorithms to counteract ransomware using encod-
ing to neutralize Entropy, achieving 98% accuracy. Then, in a subsequent work [7], they devel-
oped a format-preserving encryption neutralization method which should be stronger against
machine learning detection techniques.

Bang et al. [8] introduced Entropy sharing, a lightweight method that integrates with cryp-
tographic functions, masking high Entropy blocks and resisting reversing techniques thanks to
a secret parameter called ”order of shares”.

Venturini et al. [3] showed that tamperingwith 昀椀le header bytes could defeat theDi昀昀erential
Area Analysis (DAA) proposed by Davies et al. [1]. They suggested three mitigations against
header tempering techniques. Such mitigations are based on random sampling along the 昀椀les
to reduce DAA’s dependency on the header distribution.

This thesis exploits the e昀昀ectiveness of using Shannon Entropy or Di昀昀erential Area (rela-
tive to an ideal random 昀椀le) computed only from the 昀椀le header bytes as features for various
machine learning algorithms. Contrary to other methods which either use a lot of features
or slowly compute the entropy of the entire 昀椀le, extrapolating only the header features is a
lightweight procedure. Fewer operations mean less overhead on machine resources, quick ran-
somware detection and more 昀椀les saved. Subsequently, it will simulate an Entropy neutraliza-
tion attack where the header is tampered, recollect the Entropy features and test them again us-
ing the same algorithms. To compensate the vulnerability of collecting the features only from
the header, a sample strategy based on selecting random 昀椀le segments is implemented. Simi-
larly to the mitigations proposed by Venturini et al. [3]), two, three and four segments were
randomly sampled along the 昀椀les. The performances of the machine learning algorithms with
the new features collected are then reevaluated. By doing so, this thesis aims to test if segments’
Entropy-based machine learning detection methods work against known ransomware strains
and also against Entropy neutralization strategies.
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1.2.1 Encryption and Randomness

The objective of encryption algorithms is to produce a sequence, known as ciphertext, from
which it is extremely di昀케cult to deduce the original input, or plaintext, without the appropriate
decryption key.

To achieve this, one requirement is that the ciphertext and the plaintext data distribution
have to be statistically independent asmuch as possible and also that the ciphertext data should
be uniformly distributed.

The stronger the encryption algorithm is, the more uniform and independent of the input
the ciphertext data are. The uniform distribution ensures that an attacker can only make ran-
dom guesses about the original values, signi昀椀cantly increasing the di昀케culty of breaking the
encryption.

The primary distinctions between normal binary 昀椀les and encrypted binary 昀椀les is that the
bytes’ distribution in normal 昀椀les tends to be more structured and repeated compared to en-
crypted 昀椀les.

Several statistical metrics can be employed to measure the randomness of a bytes’ distribu-
tion:

• ArithmeticMean: Thismetric involves summing the individual byte values of a 昀椀le and
dividing by the total number of bytes. Byte values range from 0 to 255, so an arithmetic
mean close to 127.5 suggests that the data ismore random. This is because, in a perfectly
random distribution, the byte values would be evenly spread across the entire range.

• Chi-Square: The Chi-Square test compares the actual distribution of byte values to a
model distribution. For randomness detection, the model distribution is typically the
uniform distribution, where each byte value is equally likely. A signi昀椀cant deviation
from the uniform distribution can indicate non-randomness.

• Monte Carlo: This method involves repeatedly sampling the data uniformly and per-
forming a statistical analysis on the time-averaged results. TheMonteCarlomethod can
provide insights into the overall randomness of the data by assessing howwell the sample
data 昀椀ts a randommodel.

• Serial Byte Correlation Coe昀케cient: This coe昀케cient measures the relationship be-
tween consecutive byte values. In a random sequence, there should be little to no corre-
lation between successive bytes. High correlation values suggest a lack of randomness.

• Shannon Entropy: In information theory, Entropy is a measure of the uncertainty as-
sociated with a given input. Shannon Entropy quanti昀椀es the amount of information
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contained within each byte. Higher Entropy values indicate greater randomness and
more information content per byte, which is characteristic of encrypted data [34].

1.3 RelatedWorks

Previous works for ransomware detection that used Entropy have either applied Entropy anal-
ysis to the entire 昀椀le [18, 19, 20, 21, 22, 31, 24] or, if they focused on a segment header [1, 32],
they did not propose a mitigation for the eventual tampering of the analyzed 昀椀le segment, ex-
cept for Venturini et al. [3] and Lee et al. [2]. This oversight has left a signi昀椀cant gap in the
robustness of these detection methods.

Computing the Entropy of an entire 昀椀le has been a longstanding approach, particularly in
the 昀椀eld of 昀椀le identi昀椀cation. For example, Hall et al. [28] successfully demonstrated that
English text 昀椀les typically have an Entropy between 3.25 and 4.5 bits, while compressed 昀椀les
such as zip 昀椀les exhibit higher Entropy values, generally over 6 bits. This di昀昀erence in Entropy
values helps distinguish between various 昀椀le types based on their data distribution patterns.
However, Zhao et al. [30] identi昀椀ed amajor challenge when using full-昀椀le Entropy for 昀椀le type
classi昀椀cation: compressed and encrypted data often show similar high Entropy characteristics.
This similarity complicates the di昀昀erentiation between these 昀椀le types, underscoring the need
for further investigation into the applicability of Entropy metrics for these purposes.

In the context ofmalware detection, Entropy has often beenused as one of several features to
identify malicious activity. Typically, the Entropy of the entire 昀椀le is calculated and combined
with other features such as the 昀椀le’s magic number, 昀椀le extension, and behavioral patterns to
improve detection accuracy. This approach can be found in a lot of systems. Some of the 昀椀rst
technique proposed were ShieldFS [19], DropIT [18] and Unveil [20], among many others.
However, it has been shown that, in a way or another, these additional features can bemanipu-
lated by attackers to evade detection. In particular, 昀椀le extension andmagic numbers are prone
to tempering [35]. Thus, to compensate the additional features vulnerabilities and since com-
puting the Entropy of the entire 昀椀le can be unreliable, as demonstrated by Zhao et al. [30] and
Davies et al. [33], they need to collect and analyze extensive supplementary data which leads to
signi昀椀cant overhead in terms of CPU and RAM usage, impacting system performances.

Addressing these limitations, Davies et al. [1] proposed a novel approach that involves an-
alyzing 昀椀xed-length segments of a 昀椀le, speci昀椀cally from the beginning, referred to as the 昀椀le
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header. They hypothesized that the beginning of a 昀椀le often contains metadata bytes, which
would naturally have a lower Entropy compared to the rest of the 昀椀le. By focusing on these seg-
ments, they aimed to reduce computational load and improve detection accuracy. They com-
puted the Entropy of di昀昀erent header lengths, compared it with the Entropy of an ideal 昀椀le
through the use of Di昀昀erential Area (DA) and tested the obtained Bit-Byte area with di昀昀erent
thresholds values. If theDAwas low, it meant that the Entropy of the original 昀椀le was high and
close to the random ideal 昀椀le, therefore a possible ransomware encrypted 昀椀le. To measure the
accuracy of the proposed technique, they compared the computed Bit-Byte areas values with
di昀昀erent thresholds. This comparison was called the Di昀昀erential Area Analysis and is better
explained in Section 2.4. With a header length between 128 and 256 bytes and a threshold value
between 32 and 56 Bit-Bytes the used metrics (accuracy, f1, precision and recall) were near or
over 99.5%. However, not only their method did not account for the possibility of attackers
deliberately modifying the ransomware header to lower its Entropy, but they also modi昀椀ed a
speci昀椀c ransomware bytes’ distribution (Phobos) by removing all the zeros at the beginning.
Both of these scenarios would have resulted in a ransomware with low Entropy, thus evading
the proposed detection technique.

In the same year, Lee et al. [21, 22] proposed a ransomware detection technique for cloud
storage services. They combinedmachine learning andEntropy analysis to classify ransomware
infected 昀椀les. In particular, some user’s reference 昀椀les are used by the backup system to ex-
trapolate the Entropy features and train the algorithms. The Entropy features extracted are:
the most common value estimate, the collision test estimate, theMarkov test estimate, and the
compression test estimate. Once the training phase is over, a threshold is extracted and synchro-
nized with the local user machine. Such threshold is used by the user local software client to
distinguish between ransomware or legitimate 昀椀les. Even in the event of a user’s system being
compromised, the proposed technique can restore original 昀椀les from backups by identifying
the infected 昀椀les that have been synced to the backup. Thanks to the adaptability given by the
tailored threshold parameter computed speci昀椀cally from each user’ 昀椀les, the analysis results
demonstrated that this method o昀昀ers a high detection rate with low error rates in comparison
to existing detection methods. Unfortunately, not only the feature extraction depends on the
昀椀le format which can be easily spoofed by an attacker [35], but also multiple Entropy values of
the entire 昀椀les are computed, slowing the process signi昀椀cantly.

Subsequently, Fei et al. [23] proposed an introspection based approach to detect Crypto-
Ransomware, called RansomSpector. Such detection approach is based on a virtual machine
introspection technique, and it resides in the hypervisor layer under the operating systemwhere
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the ransomware eventually executes. It monitors both the 昀椀lesystem and the network activities
and once both the 昀椀les access pattern and the network pattern match the precomputed ran-
somware patterns, it computes the average Entropy of the received written data. Then, if the
value is bigger than a threshold, the user is alerted. This method obtains good results, but the
used ransomware dataset was small and thus need to be tested on more samples before further
evaluating its performances.

Starting from the ransomware analysis proposed by Davies et al. [1], Venturni et al. [3]
proved a critical vulnerability against such method, which is to focus only on the 昀椀le header to
compute the Entropy and proposed some strengthen versions that couldmitigate the problem.
Such alternatives sampled random segments along the 昀椀le and through an averaging strategy
performed classi昀椀cation.

Hsu et al. [24] proposed a ransomware detection approach based on the extraction of dif-
ferent Entropy values and the classi昀椀cation thanks to Support Vector Machine and Support
Vector Machine with poly trick. The dataset used was a combination of 1000 encrypted 昀椀les
from four di昀昀erent ransomware (WannaCry, Phobos, GrandCrab andGlobeImposter) and an
unspeci昀椀ed number of normal 昀椀les (DLL, GIF, etc.). Their claim is that thanks to the seven-
teen di昀昀erent features extracted, towhich di昀昀erent type of Entropy computations are included,
the SVCwith poly trick is able to obtain a detection rate of 92.33% in the worst case. However,
due to the missing number of normal 昀椀les and the high number of features computed from a
single 昀椀le, it is not clear if such system could be used in real life scenarios.

Kim et al. [32] developed a technique similar to that of Davies et al., which also relies on
header Entropy, but with an innovative integration of machine learning. Their ransomware
classi昀椀cationmethodwas based on the Entropy of the header and another feature derived from
segmentbyte probabilities used as input for variousmachine learningmodels. Suchmodelwere
a neural network (NN), a support vector machine (SVM), and a threshold-based algorithm.
This comprehensive approach resulted in impressive outcomes, achieving high detection accu-
racy scores and demonstrating the e昀昀ectiveness of their method in identifying anomalies.

Kim et al. [25] proposed a hybrid framework consisting of the combination between de-
coy deployment and 昀椀le traversal Entropy. The decoy 昀椀les are ad-hoc 昀椀les used to appeal ran-
somware and generally to monitor suspicious process. File traversal Entropy is the Entropy of
each process’s 昀椀le pattern path. Highly randompaths, thus high Entropy values, could indicate
the indiscriminate access of a ransomware process trying to quickly encrypt the most possible
昀椀les. By combing these two values they claimed to obtain 99% accuracy against the tested ran-
somware.
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A recently proposed ransomware detection approach by Ayub et al. [26] is called RWAr-
mor. Their defense mechanism collect ransomware static features thanks to di昀昀erent sandbox
emulators. This features, including Entropy, are fed into a Random Forest and a Decision tree
classi昀椀ers which output two probability scores of the input sample being a ransomware. The
highest probability is selected to estimate the con昀椀dence of a running ransomware.

Generally speaking, in the ransomware detection 昀椀eld, there has been a steady shift towards
the use of machine learning algorithms.

In a survey wrote by Razulla et al. [36] which considered 125 papers from 2016 to 2022,
70% of the analyzed ransomware detectionmechanisms have used some form ofmachine learn-
ing methods. In particular, 82.6% of these used simpler machine learning techniques, with the
more frequent ones being Support VectorMachine, RandomForest, DecisionTrees andLogis-
tic Regression. Support Vector Machines (SVM) and Random Forests have been particularly
prominent. Random Forests, in particular, have been generally preferred, with a 16.9% out of
the 125 papers analyzed by [36], and generally show good performances as shown in a 2019
study by Noorbehbahani et al. [37].

However, the trend seems to be moving in favor of deep learning algorithms like DeepNeu-
ral Network, Multi Layer Perceptron, Long-Short TermMemory, Recurrent Neural Network
and Convolutional Neural Network. This is con昀椀rmed by a recent survey wrote by Ispahany
et al. [38] in which, even though they analyzed only the papers from 2018 to 2024 that speci昀椀-
cally centered around theWindows operating system, theDeepLearning approacheswere used
in 41% of the selected papers.

Based on these 昀椀ndings, the selectedmachine learning algorithms used in this thesis are Sup-
port Vector Machine, Random Forest and Neural Network.

Some examples of features used by the machine learning algorithms are the process I/O re-
quests, the system calls, the DLL activities [39], the Assembly codes [39], the network tra昀케c
[40] and the API calls [41]. If the reader is interested in a complete list, please refer to the
surveys wrote by Razulla et al. [36] and by Ispahany et al. [38].

Notably, RansomWall [31], studies by Lee et al. [21, 22], Hsu et al. [24], Ayub et al. [26]
and Kim et al. [32], among others features incorporated also the Entropy. However, in these
cases, theEntropywas still calculated over the entirety of the 昀椀le, which limits their e昀昀ectiveness
given the similitude between compressed and encrypted 昀椀les and slow the computations.

Therefore, based on the 昀椀ndings of Davies et al. [1] andKim et al. [32], the selected features
for the usedmachine learning algorithms are derived from theEntropyof only the 昀椀le segments,
enabling a quick and lightweight defense mechanism.
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Independently of using a mathematical or an arti昀椀cial intelligence approach to develop a
defense mechanism, if the Entropy is used, the mechanism has a critical vulnerability. If a
ransomware was able to modify the encrypted 昀椀les, header included, to standardize the data
distribution and lower the Entropy, the analyses become ine昀昀ective.

This weakness was highlighted bymultiple studies in recent years, both in the case of defense
mechanisms using the Entropy of the entire 昀椀le and on the speci昀椀c case of using 昀椀les’ header
Entropy.

First it was addressed by the work of McIntosh et al. [5], in which they state that by us-
ing Base64-Encoding andDistributedNon-Selective Partial Encryption the Entropy of the en-
crypted 昀椀les could be manipulated, and the defense mechanisms based on Entropy computa-
tion bypassed.

Subsequently, Lee et al. [6] took the work of McIntosh et al. [5], recognized the potential
and improved the attack performances. In particular, they stated that, even if the use of encod-
ing to lower the Entropy of the encrypted 昀椀les works, some 昀椀les maintained a clear di昀昀erence
between the legitimate original 昀椀le and the respective encryption-encoded counterpart. Thus,
they developed an algorithm that, once the legitimate 昀椀le is encrypted, it chooses from di昀昀er-
ent types of encoding based on which encoding algorithm obtains the closest possible Entropy
value with respect to the original 昀椀le Entropy.

To tackle the problem from the root, Davies et al. [33] tested 53 distinct Entropy computa-
tion methods and compared their accuracy in distinguishing ransomware encrypted 昀椀les and
legitimate 昀椀les. The general conclusion was that using pure mathematical techniques, such as
Shannon Entropy, computed on the entire 昀椀le, is not an ideal indicator for identifying Crypto-
Ransomware encrypted 昀椀les. This was principally due to the di昀케culties on distinguishing en-
crypted 昀椀les from compressed or archived 昀椀les. They found that using the mathematical com-
putations paired with serial byte correlation could improve the results. They also stated that,
since theworks fromMcIntosh et al. [5] andLee et al. [6]were e昀昀ective in creating ransomware
able to bypass Entropy-based defensive mechanism, future works can still use 昀椀le Entropy fea-
tures, but should include encoding detection techniques.

The work of Lee et al. [2] focused exactly on this vulnerability. They proposed some ma-
chine learning algorithms as countermeasures against ransomware that use encoding after the
encryption to neutralize the ciphertext Entropy. Various features were used, Entropy included,
and di昀昀erent machine learning algorithm tested. They evaluated the algorithm’s ability to dis-
tinguish between the same 昀椀le in di昀昀erent stages, in particular: plaintext, ciphertext, Base64
encoding, optimal encoding, system 昀椀le. They found that the average accuracy was 98% and

13



stated that using machine learning is an e昀昀ective way to counter neutralization technologies
and detect ransomware correctly.

Another ransomware detectionneutralization technique, proposedbyLee et al. [7] focus on
the use of more sophisticated neutralization technologies aside encoding which they state that
can be detected. Given this motivation, the formulated three requirements for a neutralization
method: it must not be decoded, it must support encryption using secret information and
the Entropy of the generated ciphertext must be similar to that of a plaintext. To satisfy such
conditions, format-preserving encryption was used.

Lastly, Bang et al. [8] stated that previous neutralization techniques required a lot of com-
putations and therefore could be easily predicted. To overcome this limit, they proposed a new
concept called Entropy sharing. A method that can be easily integrated with standard crypto-
graphic function, is composed of lightweight operations which mask the high Entropy blocks
and cannot be easily nulli昀椀ed without knowing a parameter that they called order of shares.

In the case of only 昀椀le headers tempering, Venturini et al.[3], given the Di昀昀erential Area
Analysis of 昀椀le header Entropy proposed by Davies et al., proved how a simple tampering of
the header bytes distribution could defeat the proposed Entropy-based detectionmethod. Sub-
sequently, they proposed somemitigations based on the random sampling along the 昀椀les, com-
pensating the dependency of the DAA from the header distribution.

To the best of my knowledge, only the works from Lee et al. [2] and Venturni et al. [3]
tested the proposed Entropy-based method against ransomware detection neutralization tech-
nologies. Thus, di昀昀erently from the past works which use the Entropy as a metric or a feature
to propose a defense mechanism and do not test its resilience against such vulnerability, this
thesis also uses three neutralization techniques and test the proposedmodels to strengthen the
ransomware detection mechanism.

1.3.1 File Segments Analysis

File fragment classi昀椀cation is a related 昀椀eld of research that focuses on determining the type of
昀椀le by analyzing only a portion or fragment of it. This method is particularly useful in digital
forensics. Techniques used in this 昀椀eld include Entropy analysis, n-gram analysis, statistical
analysis and machine learning.

McDaniel and Heydari [35] developed a method that uses byte frequency analysis of a 昀椀le’s
header and footer to create a 昀椀ngerprint for identifying similar 昀椀le types. Their 昀椀ndings in-
dicated that this approach is viable but should be combined with other methods to improve

14



accuracy. They also suggested that 昀椀le header/trailer analysis could be used for ransomware
detection, requiring only a small sample for successful identi昀椀cation.

Li et al. [42] used n-gram analysis on the 昀椀rst 20 or 200 bytes of a 昀椀le to determine 昀椀le
types, reporting successful identi昀椀cation with better computational performance compared to
whole-昀椀le analysis. However, their tests did not include compressed or encrypted 昀椀les.

Hall et al. [28] noted that certain 昀椀le types with structured formats, such as GIF or PPT,
exhibit varying Entropy levels within di昀昀erent parts of the 昀椀le. For example, a 昀椀le with a text-
format header and a compressed data body di昀昀ers from a binary 昀椀le with random values. To
distinguish these structured formats from other 昀椀les with similar overall Entropy, a sliding win-
dow approach to measurement has been evaluated.

Jung andWon [29] analyzed Entropy on 昀椀le fragments, including headers and trailers, with
promising results but limited their study to PDF documents.
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2
Background

In this chapter, general knowledge is provided on the topics used in this thesis. In particular, it
is explained what the statistical tool Shannon Entropy is and how it is computed in Section 2.1.
The Composite Trapezoidal Rule and the DA are also brie昀氀y summarized, in Section 2.2 and
in Section 2.3, since they are used by the ransomware classi昀椀cation analysis proposed byDavies
et al. [1], which is also here reported and explained in Section 2.4. Lastly, the general theory
behind the concepts of machine learning is introduced and a quick round down of the used
algorithms is performed in Section 2.5.

2.1 Shannon Entropy

The concept of entropy is de昀椀ned as a measure of randomness or disorder. In the 昀椀eld of infor-
mation theory, speci昀椀cally de昀椀ned byClaude Shannon [34], the entropy of a variable is de昀椀ned
as the average level of uncertainty associated with the potential outcomes of the variable itself.
Given a discrete random variable X that can assume values between 1 to n with their relatives
probabilities of appearance p(xi), the Shannon entropy can be expressed using the following
formula:

H(X) = −
n

∑

i=1

P(xi)log2P(xi). (2.1)

In this thesis, 昀椀le bytes’ distribution are considered. Therefore, the entropy can be seen as a
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measure of the predictability of the next 昀椀le’s bytes, based on the previous ones. A structured
and regular 昀椀le presents high predictability, hence low entropy, whereas a 昀椀le composed of
random values will exhibit high entropy. Equation 2.1 provide a value measured in bits.

2.2 Composite Trapezoidal Rule

The area under the curve is de昀椀ned as the region bounded by the function and vertical lines
representing the function’s bounds and the x-axis. This can be computed by integrating the
function in the given interval. If the integral is considered in a de昀椀nite interval then an approx-
imation of the results can be obtained thanks to the Trapezoidal Rule, which can be seen as the
average of the left and right Riemann sums. A technique to better approximate the integral
is to partition the original interval into smaller subinterval and then apply the trapezoidal rule
to each subinterval. This technique is also known as the Composite Trapezoidal Rule and a
graphical representation can be seen at Figure 2.1 and formal de昀椀nition can be found in [43].
Let [a, b] be the interval of integration with a partition a = x0 < x1 < < xn = b. Then the
formal Composite Trapezoidal rule is de昀椀ned as:

∮ b

a

f(x)dx ≈
1
2

n
∑

j=1

(xj − xj−1)[f(xj−1) + f(xj)]. (2.2)

If the partition is uniformly spaced, i.e. xj − xj−1 = h for all j ∈ {1...n}, then the Composite
trapezoidal rule is also given by:

∮ b

a

f(x)dx ≈
h
2

[

f(a) + 2
∑

f(x+ hi) + f(b)

]

. (2.3)

Since the Di昀昀erential Area Analysis for ransomware classi昀椀cation, introduced by Davies et
al. [1] and brie昀氀y explained in Section 2.4, compute the area of functions which domains are
discrete with the subintervals evenly spaced apart, the equation used to compute such areas is
the Equation 2.3.
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Figure 2.1: Composite Trapezoidal Rule with uniform subintervals
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2.3 Differential Area (DA)

The Di昀昀erential Area (DA) between two functions f(x) and g(x) over an interval [a, b] can be
de昀椀ned as the area of the region bounded by these two functions. Mathematically, it can be
expressed as:

DA =

∫ b

a
|f(x)− g(x)| dx

.
This integral calculates the total areawhere the two functions di昀昀er, considering the absolute

value to ensure all areas between the curves are summed positively.
The di昀昀erential area between two generic functions, f(x) = sin(x) + 1 and g(x) = cos(x),

over the interval [0, 2π] is illustrated in Figure 2.2 as the gray shade.
Since this thesis computes the Di昀昀erence Areas of discrete Entropy functions, the areas are

computed using the equation Equation 2.3 and the DAs are the sum of the absolute values of
the di昀昀erence between the areas for each subinterval.

2.4 RansomwareClassificationwithDifferentialArea
Analysis (DAA)

Di昀昀erential Area Analysis (DAA) is a method that can be used for ransomware classi昀椀cation
and was 昀椀rstly proposed by Davies et al. [1].
As the name suggests, it is based on the Di昀昀erential Area (DA) de昀椀ned in Section 2.3. In

the particular case proposed by Davies et al. [1] for ransomware detection, the two considered
functions are the same, which can informally be called the Entropy function. The Entropy
function is a map that given a byte sequence compute the corresponding entropy value, in
bits, as de昀椀ned in Section 2.1. The functions are the same, but the output values are di昀昀erent
because the inputs are di昀昀erent. In particular, one input is the selected 昀椀le to eventually classify
as legitimate or ransomware, the other is a reference ideal 昀椀le composed of random values. An
example can be seen in Figure 2.5. The reason behind comparing the 昀椀les to and random 昀椀le is
because encrypted 昀椀les bytes’ distribution is ideally uniform, thus the encrypted bytes are closer
to a seemingly random sequence than a legitimate more structured 昀椀le bytes distribution.

Davies et al. [1] focused only on the header of the 昀椀le, analyzing header lengths from 8 bytes
up to a maximum of 256 bytes, and their approach is straightforward [1]:
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Figure 2.3: Header bytes distribu琀椀on between a PDF 昀椀le (le昀琀, green) and a pseudorandom 昀椀le (right, blue)

1. Take a segment (bytes) at the beginning of the 昀椀le, called header

2. Compute the entropy (in bits) by taking subsequences of bytes starting from the 8th
byte and moving up by multiple of 8, until the end of the sampled header

3. Compute the entropy (in bits) of an ideal 昀椀le composed of random bytes

4. Subtract the entropy values (in bits) of the real 昀椀le from the entropy values (in bits) of
the ideal 昀椀le

5. With the obtained values compute the area under the graph by using the Composite
Trapezoidal Rule and a partition distance equal to 8 bytes, see Section 2.2, obtaining a
Bit-Bytes area value

6. Compare the obtained Bit-Bytes area with a threshold

7. If the area is less or equal than the threshold, the header probably belongs to a ran-
somware encrypted 昀椀le, otherwise is from a legitimate 昀椀le

The 昀椀rst three steps create a graph composed of two entropy functions, the ideal 昀椀le and
the real 昀椀le header Entropy function. Step 4 and 5 computed the DA between these two func-
tions. Please look at Figure 2.5 for a better understanding of the resulting DA. The last two
steps perform the classi昀椀cation, deciding if the selected 昀椀le is either a ransomware encrypted or
legitimate 昀椀le.

The aforementioned process is repeated with multiple 昀椀les andmultiple thresholds in order
to assess the best thresholds in terms of classi昀椀cation accuracy.

The DAA by Davies et al. [1] works really well because of two reasons. One is because,
as explained in Section 2.1, the higher the randomness of a sequence of bytes is, the higher
the Shannon Entropy value will be. Therefore, in a sequence where all bytes probabilities are
equally likely, as in encrypted 昀椀les, the Entropy value is high. Conversely, if some byte values
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are repeated, the Entropy will be low. Examples of bytes distribution can be seen in Figure 2.3
and the respective Entropy functions graph is Figure 2.5. The second reason is that legitimate
昀椀les tends to have a special sequence of metadata bytes at the beginning, while encrypted 昀椀les
are random right from the start. Therefore, the di昀昀erence between Entropy values is more
prominent at the start of the 昀椀les rather than at later positions.

These two di昀昀erences between ransom-encrypted and legitimate 昀椀les are used by the DAA.
If the Bit-Byte area of the 昀椀le is close to the random 昀椀le ideal area, the byte values are uniformly
distributed and so the 昀椀le is probably encrypted, otherwise it is legitimate (closeness between
graphs is evaluated through the di昀昀erence of the areas and a threshold parameter). An example
of this can be seen in Figure 2.4 where it is clear that the ransom 昀椀le graph is closer to the ideal
昀椀le than the PDF 昀椀le.

The reason to why the ransom Bit-Bytes entropy graph is close to the ideal 昀椀le header graph
is due to ransomware strains generally using AES Section A.1 which is a strong encryption al-
gorithm. Thus, the encrypted 昀椀les header have almost uniform data distributions, as explained
in Subsection 1.2.1, and are closer to an ideal random 昀椀le than legitimate and more structured
昀椀les’ header.
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To brie昀氀y summarize, the ransom 昀椀le has gone through an encryption algorithm, which is
an algorithm that given an input called plaintext has the objective of computing a sequence of
bytes called ciphertext di昀케cult to inverse. This implies that, among other things, the output
bytes’ distribution probabilities has to be close to the uniform distribution, denying any possi-
ble correlation between plaintext and ciphertext. Therefore, the resulting ciphertext 昀椀les have
higher entropy values w.r.t. to the unencrypted 昀椀les.

Davies et al. [1] implied that since ransomware will at one point cipher the data on the 昀椀le
system, if we are able to spot the encryption of a 昀椀le the attack could be prevented.

Therefore, in the case of ransomware detection the encryption is considered an adversary
operation and the proposed DAA seems to be e昀昀ective if used to identify such operation in
order to distinguish ransomware from legitimate 昀椀les and ultimately detect an ongoing attack.

2.5 Machine Learning

In this section,Machine Learning as a concept is shortly introduced and the theory behind the
algorithms used in this thesis is brie昀氀y explained. All the concept reported in this section and
much more can be found at [4, 44].
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The term machine learning is typically employed to describe the modi昀椀cations to systems
that perform tasks associated with arti昀椀cial intelligence (AI). These tasks involve recognition,
diagnosis, planning, robot control, prediction, and other related functions. The ”changes”may
be either enhancements to existing systems or the creation of entirely new systems.

There are three main categories when approaching machine learning: output domain, sta-
tistical nature of the technique and type of training.

Output domain is divided in discrete (classi昀椀cation) or continuous (regression). Discrete is
when the data fall into one orN classes, continuous in a real number line.

The statistical nature of a givenphenomenonmaybe eitherprobabilistic ornon-probabilistic.
A technique is probabilistic when it incorporates some data using a summary in the form of
a statistical distribution, thus not all data are required for the training process. In contrast, a
technique is de昀椀ned as non-probabilistic when it employs the data to perform a speci昀椀c action,
such as determining the proximity of new data to existing data within a given dataset.

The process of machine learning can be divided into three distinct phases: training, vali-
dation and evaluation. The training phase may be either supervised or unsupervised. In su-
pervised learning, the data are known and labelled, and the training process entails the model
learning the relationship between input and output data. In unsupervised learning, the data
are unknown, and the objective is to identify a summary or description that will facilitate an
understanding of the distribution. The validation phase is employed to optimize themodel hy-
perparameters, while the evaluation phase enables the assessment of the model’s performance
when presented with previously unseen data.

The techniques used in this thesis are Support VectorMachines, Random Forests which are
speci昀椀callynon-probabilistic, andNeuralNetwork that can alsobemodelled asnon-probabilistic.

The thesis addresses the problem of ransomware detection, which can be modelled as fol-
lows: given some 昀椀le features belonging either to a ransomware-encrypted 昀椀le or to a legitimate
昀椀le, the objective is to understand the relationship between the features and the label. There-
fore, all three models are included within the discrete (binary), non-probabilistic supervised
category.

2.5.1 SVM

SVMs are useful for a wide range of classi昀椀cation and regression problems, and form part of a
family of techniques known as margin methods. The fundamental objective of margin meth-
ods, and speci昀椀cally SVMs, is to create as much separation between data points and decision
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Figure 2.6: SVM with hard margins

boundaries as possible.
The fundamental concept underlying SVMs is that we should construct a linear hyperplane

in our feature space that maximally separates our classes. This means that the di昀昀erent classes
should be as far from that hyperplane as possible. The distance of the data from the hyperplane
is referred to as the margin, and it is shown in Figure 2.6. Larger margins often lead to more
generalizable models, since they providemore room to correctly classify unseen data (new data
can be seen as a perturbation on current data).

Margins are broadly divided into two categories: hard margin and soft margin. The term
”hardmargin” refers to the condition in which no data is classi昀椀ed incorrectly. If it is not possi-
ble to 昀椀nd ahyperplane that perfectly separates the data basedon class, the hardmargin classi昀椀er
will return no solution. This approach is e昀昀ective when classes are linearly separable, which is
the basis of the hard margin formulation for SVMs. However, what if they are not? It is nec-
essary to relax the constraints. The soft margin approach permits some of the data points to
be closer to or even on the incorrect side of the hyperplane, as seen in 昀椀g Figure 2.7. To enable
the soft margin formulation, slack variables are introduced, which simply relax the constraint
from what is imposed in the hard margin formulation.

Given the margins de昀椀nitions, it’s possible to understand what a support vector is. Simply
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Figure 2.7: SVM with so昀琀 margins

put, support vectors are the points that are the closest to the hyperplane.
Accordingly, a support vector in a hard-margin SVM formulationmust be a data point that

is on the margin boundary of the optimal solution, whereas in a soft margin formulation the
support vectors are permitted to eventually be within the margins.

SVMs are typically used in a non-probabilistic settings with discrete outputs, and labeled
training data are needed to identify the relevant hyperplane in an SVMmodel.

2.5.2 Random Forests

A random forest is de昀椀ned as a collection of classi昀椀cation and regression decision trees (CaRT).
They fall within the broad category of ensemble learning, which is a technique that combines
weak classi昀椀ers to enhance performance. This approach emerged from the insight that, rather
than utilizing a single decision tree for learning, aggregating multiple decision trees, and subse-
quently enabling each classi昀椀er to cast a vote for a class, would enhance the overall accuracy. To
encourage diversity among the trees and prevent over昀椀tting, some randomness is involved dur-
ing the computations. The most prevalent methodology for the construction of a random for-
est is the combination of Bagging with randomClassi昀椀cation and Regression Trees (rCaRTs).
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Bagging, also known as Bootstrap aggregation, is a technique of ensemble learning that is em-
ployed to circumvent over昀椀tting and enhance stability and accuracy. The bagging technique
comprises two distinct phases. The bootstrap of a sample set and the subsequent aggregation
constitute the fundamental steps of the Bagging technique. In essence, bootstrap can be de-
昀椀ned as the generation of smaller, randomly selected data subsets, derived from a given initial
set. In more speci昀椀c terms, given the initial learning set L, K smaller or equal learning sets are
generated by uniform sampling with replacement from L (it is possible that some samples may
be repeated among the smaller sets). Generally, the subsets generated by the random forest al-
gorithm have the same dimension as the starting set L. Subsequently, the learning process is
performed, whereby a randomCaRT is learned for each subset generated.

First, all the labeled samples are initially assigned to the root node. Then given a random
subset of features, 昀椀nd the feature-threshold parameters that better split the assigned sampled
into two subsets, left and right, and also that maximize the label purity within these subsets.
Purity could be computed in di昀昀erent ways, one of which is the Shannon Entropy [34], brie昀氀y
described in Section 2.1, of the subset.

Once the feature-threshold parameters have been identi昀椀ed, they should be assigned to the
node, with the root node serving as the starting point. The aforementioned procedure should
be repeated for both the left and right splits, with each iteration involving the assignment of
a feature-threshold parameter to the left and right nodes. This process should continue until
the splits are deemed too small to be divided. In such a case, two child leaf nodes should be
attached to the current node, with the left leaf being tagged with the most prevalent label in
the left split, and the same process repeated with the right leaf.

A random drawing of features is repeated at each node to avoid over昀椀tting and reduce com-
putational load.

A useful image describing the process of decision tree creation, taken by [4], is Figure 2.8.
For a formal explanation, please refer to [45].

Once the Random CaRTs are created, if new samples are provided, the Aggregation step is
performed. Given a new sample, a decision is formulated based on the majority vote among
the K predictions over the total votes.
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Figure 2.8: A general Decision Tree model taken by [4]

2.5.3 Neural Networks

NeuralNetworks are known as universal function approximators. Thismeans thatwith a large
enough network, it is possible to approximate any function.

Neural networks can operate over discrete or continuous outputs and are primarily used to
solve regression or classi昀椀cation problems, which involve training on data sets with example
inputs and outputs, making this a supervised technique. While there exist probabilistic exten-
sions for neural networks, they primarily operate in the non-probabilistic setting.

A multitude of neural network types exist, and in this thesis, the model utilized is a fully
connected feed-forward neural network. A feed-forward neural network is a series of inter-
connected layers that transform an input data point, into an output data point. Each layer is
composed of nodes, and the term ”fully connected” indicates that every node of a layer is con-
nected to all the nodes of the successive layer. Since the ransomware classi昀椀cation problem in
this thesis is tackled as a binary classi昀椀cation, a single output node is employed to represent the
predicted probability of the positive class (K outputs would have been used in case of multi-
classi昀椀cation). An example of a network used for binary classi昀椀cation, similar but smaller to
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Figure 2.9: A simple Neural Network

the one implemented in this thesis, can be seen in Figure 2.9. In the context of a regression
problem, the number of nodes may vary depending on the dimensions of the output.

Except for the input layer, the value of a node in a layer for a fully-connected network can be
computed by multiplying all the nodes’ values from the previous layer by their corresponding
weight, adding them together, and using the resulting sum as input for a function called the
activation function, which will then produce an output.

A binary classi昀椀cation task is usually modeled through a single sigmoid output activation
unit and with the negated log-likelihood (or cross-entropy) as the loss function. The function
is described in Figure 2.5.3.

Training consist in 昀椀nding the weight parameters that minimize the objective function. To
do so, 昀椀rst we need to compute the errors of the current weights, and then we need to update
the weights accordingly. The technique used to compute the errors is called Backpropagation.

Backpropagation refers speci昀椀cally to the portion of neural network training during which
thederivative of the objective functionwith respect to theweight parameters is computed. This
is done by ”propagating errors backwards” through the network, which in practicemeans using
the chain rule property applied to the computed derivatives. Once the errors are computed, the
weights are updated accordingly to the Gradient descent algorithm or some variant of it.
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Figure 2.10: The Rec琀椀昀椀ed Linear Unit (ReLU) func琀椀on

Activation Functions

The outputs of the hidden units is associated with an activation function. Typical activation
functions are the sigmoid function, the tanh function and the Recti昀椀ed Linear Unit, ReLU
function.

TheReLU activation function is de昀椀ned as follows:

ReLU(x) = max(0, x). (2.4)

A graphical representation can be seen in the Figure 2.10

The sigmoid activation function is de昀椀ned as:

σ(x) =
1

1+ e−x . (2.5)

Which graphically results in Figure 2.11
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Loss functions

Loss function or objective function refers to the same concept: the function to optimize to
train the model.

Among all the possible functions, since the problem in this thesis is formulated as a binary
classi昀椀cation problemwhere data are either in class 0 or class 1, the function to be optimized is
the Binary Cross-Entropy(BCE), which is de昀椀ned as:

BCE(y) = (y log(p) + (1− y) log(1− p)). (2.6)

Where log is the natural log, y is the actual binary label (0 or 1) of the observed data and p is
the predicted probability of the observed data of being in class 1.

2.5.4 Metrics

Throughout this thesis, four standardmetrics were used to evaluate the performance of attacks,
countermeasures andmodels. Namely, accuracy, precision, recall, and F1 score. In this section,
they are brie昀氀y summarized and adapted to the ransomware classi昀椀cation problem as described
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Table 2.1: Parameters used in the metrics.

Classi昀椀cation Description

True Positive (TP) Encrypted 昀椀les correctly classi昀椀ed
False Positive (FP) Unencrypted 昀椀les erroneously classi昀椀ed as encrypted
True Negative (TN) Unencrypted 昀椀les correctly classi昀椀ed
False Negative (FN) Encrypted 昀椀les erroneously classi昀椀ed as normal unencrypted

by Venturni et al. [3]. For the sake of completeness, Table 2.1 clari昀椀es the terms used in the
metrics.
Accuracy is the total number of 昀椀les that have been classi昀椀ed correctly.

Accuracy =
TP+ TN

TP+ TN+ FP+ FN
. (2.7)

Precision represents the ratio of the 昀椀les correctly identi昀椀ed as encrypted by ransomware
among the total number of 昀椀les classi昀椀ed as encrypted by a ransomware.

Precision =
TP

TP+ FP
. (2.8)

Recall also known as sensitivity, represents the ratio of the 昀椀les correctly identi昀椀ed as en-
cryptedby ransomware among the total numberof昀椀les really encryptedby a ransomware. Both
Precision and Recall are therefore based on relevance.

Recall =
TP

TP+ FN
. (2.9)

F1 Score is the harmonic mean of the Precision and Recall.

F1 =
2 · Precision · Recall
Precision+ Recall

. (2.10)
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3
Methodology

Ransomware have been a steadily growing threat since 2005, causing billions of dollars of dam-
age during the years, as previously described in Section 1.1.

The ongoing arm race between security researchers and ransomware has evolved a lot over
the time, but given the adaptive nature of such ransomware attacks, the proposed mitigations
techniques fall quickly behind. Therefore, there is always the need for new and improved de-
fense mechanisms, adapted to the ransomware evolution.

The ransomware nature imply that at one point, some 昀椀lesystem data will be encrypted. A
general used feature by defensemechanisms to detect ongoing encryption is the Entropy. How-
ever, computing the Entropy of the entire 昀椀le is time-consuming, a crucial resource against
ransomware quick execution.

The aim of this thesis is to achieve a fast, lightweight ransomware classi昀椀cationmethod, able
to adapt to di昀昀erent ransomware strains. To do so, inspired by the work of Davies et al. [1], a
defense mechanism based on 昀椀les’ header Entropy and the Di昀昀erential Area (DA) is proposed.
To understand what the DA is and how it is computed, please refer to Section 2.3 and Sec-
tion 2.4. Once the aforementioned features are extracted, three machine learning algorithms
are trained and tested.

Using the Entropy as a distinctive feature is prone to Entropy neutralization techniques. To
compensate this vulnerability, inspired by the work of Venturini et al. [3], three random 昀椀le
segments selection strategies were applied. Then, the selected features were tested against three
Entropy neutralization strategies tailored to target the 昀椀les’ header.
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This allows to strengthen the 昀椀ndings because, as Davies et al. speci昀椀ed in [33], to develop
a reliable defense mechanism based on the Entropy, it needs to be tested against Entropy neu-
tralization techniques.

In this chapter, Section 3.1 is used to formalize this thesis hypotheses. In Section 3.2 each
part of the experiment design is discussed. Section 3.3 describe the used datasets. In Section 3.4
it is assessed how each component was implemented.

3.1 Hypotheses

Generally, ransomware detection methods require a lot of resources to obtain signi昀椀cant re-
sults. The main hypothesis that this thesis explores is the possibility of building a reliable,
lightweight ransomware defense mechanism that can quickly and accurately identify a work-
ing ransomware.

The use of machine learning seemed a good starting point, given the algorithm’s ability to
learn data correlation and generalize to future unseen data, including unknown ransomware
strains.

Another point was that the features selected needed to be limited, since collecting a lot of
data could slow the detection.

By looking at past works, the DAA by Davies et al. [1] was able to obtain very good re-
sults using fewer features than other ransomware classi昀椀cation methods. They sampled a 昀椀xed
length segment at the beginning of the 昀椀le, extrapolated the Entropy, and compared it against
the Entropy of an ideal random 昀椀le of the same length. The comparison was done by 昀椀rst sub-
tracting them, thus computing the Di昀昀erential Area, and then comparing the results against a
threshold. For more information, please refer to Chapter 2.

Thus, the Entropy and the Di昀昀erential Area (DA) of the 昀椀les’ header, which can be com-
puted quickly, seemed to carry relevant information for ransomware classi昀椀cation and there-
fore can theoretically be used as features to learn from for machine learning algorithms.

As a result of using these features, the sub-hypothesis exploredwas if using theEntropyor the
DA paired with machine learning could be e昀昀ective at distinguishing ransomware encrypted
昀椀les from legitimate 昀椀les or if the extracted information were not enough to perform such task.

3.2 Design

Some steps were required to prove the hypothesis expressed in Section 3.1.
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The 昀椀rst step was to assess if the Entropy, the DA and the DAA de昀椀ned by Davies et al. are
computed correctly. Checking if the Entropy and theDA evaluated rightfully is useful because
they are later used as features for the machine learning algorithms.

Regarding the DAA, checking if it is computed as intended allows to later prove that the
Entropy and the DA still carries relevant information for the known ransomware strains classi-
昀椀cation.

The second step was divided into two sub-steps. First sub-step, using step 1, prove that
the DAA still works with known ransomware. By doing so, it is demonstrated that Entropy
and DA can still be useful with current ransomware. The second sub-step is proving that the
DAA is vulnerable to 昀椀les’ header Entropy neutralization techniques, pointing out the need
for stronger defense mechanisms.

The third step was to implement the mitigations proposed by Venturini et al. [3]. Prov-
ing that their segment selection strategies carries meaningful information and can mitigate the
header Entropy neutralization techniques. This is useful because the same features extraction
processes are later used by machine learning algorithms.

The fourth step was to provide to themachine learning algorithms the Entropy and theDA,
extrapolated either as de昀椀ned by the DAA from Davies et al. or as de昀椀ned by the selection
strategies de昀椀ned by Venturini et al.

The 昀椀fth and last step was to test such features against three header entropy normalization
techniques to assess if the robustness of the proposed features-model combo.

The fourth step is the concrete implementation of a lightweight ransomware defensemecha-
nism, but the prior steps are needed to verify if the features used by the algorithms carry relevant
information for ransomware classi昀椀cation and also the need for stronger, more generalizable
approaches. The 昀椀fth step is essential in proving if the extracted features and models, which
depend on the Entropy, could be strong against the Entropy neutralization techniques.

3.3 Datasets

To complete the steps and verify the hypotheses written in Section 3.1 three di昀昀erent datasets
were used. One 昀氀aw of the major researches in the literature is the use of limited datasets, if
not on the raw number of 昀椀les itself, surely on the di昀昀erent 昀椀le types. Fortunately, Davies et al.
created a dataset, calledNapierOne [46], composed not only of ransomware strains up to 2022,
but also with a lot of di昀昀erent 昀椀le classes. In particular, the dataset focus on legitimate 昀椀le ex-
tensions with high entropy values. This allows to enhance the results obtained, because if the
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computed entropy between ransomware encrypted 昀椀les and legitimate 昀椀les were too di昀昀erent,
the classi昀椀cation problem would have been trivial. The dataset has three possible sizes: tiny,
small and total. The tiny size includes 100 昀椀les for each category, the small 1000 and the total
comprehend all the 昀椀les. To allows for repeated and quicker tests, the dataset size chosen was
the tiny. Future works, instead of testing multiple parameters, could focus on this thesis 昀椀nd-
ings by selecting the best performing ones and extend the dataset to better train the algorithms
and improve the 昀椀ndings.

The three di昀昀erent datasets in this thesis are addressed with the names: OldNapierOne,
NapierOne and Attack Dataset.

OldNapierOne, since it is the same used from Venturini et al. [3], was used to con昀椀rm the
correctness of the computedEntropy andDAand to check if the rewrittenDAAalgorithmwas
correct by comparing the obtained results with the results of Davies et al. [1] and Venturini et
al. [3].

NapierOne is an up-to-date and extended version of the previous dataset. It has more cate-
gories of ransomware and legitimate 昀椀les, and thus more 昀椀les in general.

Since in machine learning the datasets are divided into three splits, generally named train,
validation and test, this dataset was split according to this standard approach. This was done
because even if it is used by the rewrittenDAA and the 2F, 3F, 4Fmitigations, which do not se-
lect and test the parameters due to their analytic nature, itwas also usedby themachine learning
algorithms.

The train split was used to evaluate the DAA and the 2F,3F,4F methods and to compute
the input features for training themachine learning algorithms, the validation split was used to
tune the machine learning hyperparameters and the test split was used to evaluate the machine
learning algorithm’s ability to ”generalize” and predict unseen data.

The DAA and the 2F,3F and 4F were evaluated on the train split and not on the validation
or test split because neitherDavies et al. [1] norVenturini et al. [3] provided a selectionmethod
for the best parameters but only proposed the methods as possible ransomware classi昀椀cation
strategies. Thus, the selection of the best parameters and the validation/test on new data to
evaluate the generalization ability of the proposedmethods evade the scope of this thesis, which
only aims to use theDAAand the 2F, 3F and 4F to demonstrate the correct computation of the
features and as a comparison reference between di昀昀erent ransomware classi昀椀cation approaches.

Both the OldNapierOne and the NapierOne to create encrypted 昀椀les used common 昀椀les.
In particular, DOC, DOCX, JPG, PDF, PPTX, XLS, and XLSX categories were selected and
applied to di昀昀erent ransomware strains.
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Since each ransomware when encrypting the 昀椀le disk use the original AES 128/256-bit algo-
rithm or a more modern version of it, please refer to Section A.1 to understand which opera-
tions are performed during a ransomware 昀椀le encryption phase.

As stated before, the original NapierOne is divided in three sizes: tiny, small and total. The
tiny version consists of 100 昀椀les for each 昀椀le types of the dataset. More information on the
original dataset, size, 昀椀le structure, procedures and more can be found at [46].

Thedataset canbedownloaded, prior to anoti昀椀cation to the researchers, athttp://napierone.
com/Website/index.html.
Lastly, theAttackDataset is the dataset used to simulate the attacks described indetail in later

Subsection 3.4.4. This is done by simply taking the ransomware 昀椀les in theNapierOne dataset,
modifying the headers in the three ways as described in Subsection 3.4.4 and adding them to
the 昀椀nal dataset, which will basically be the NapierOne dataset plus the modi昀椀ed ransomware
昀椀les.

3.3.1 OldNapierOne

This dataset is better described in [3] and is an older version of the tiny version of the used
NapierOne dataset. It contains around 2900 昀椀les, 100 昀椀les per category, which are:

• Legitimate 昀椀les: 7ZIP (BZIP2, ENCRYPTED, HIGH-COMPRESSED), CSS, DLL,
DOC, DOCX, GIF, JPG, MKV, MP3, MP4, PDF, PNG, PPTX, RAR, TAR, XLS,
XLSX, XML

• Ransomware encypted昀椀les: BADRABBIT,DHARMA,MAZE,NETWALKER,NOT-
PETYA, PHOBOS, RYUK, SODINOKIBI, WANNACRY.

3.3.2 NapierOne

This dataset is the up-to-date tiny version of the NapierOne dataset. It contains 100 昀椀les for
122 categories, for a total of 12200 昀椀les.

The categories are:

• Legitimate昀椀les: 7ZIP (BZIP2, ENCRYPTED,HIGH-COMPRESSION,LZMA,LZMA2,
PPMD), APK, BIN, BMP-FROM-WEB, CSS, CSV, DLL, DOC (NOMAGIC, PASS-
WORD),DOCX(NOMAGIC,PASSWORD),DWG-FROM-WEB,ELF,EPUB,EPS-
FROM-WEB, EXE,GIF-FROM-WEB,GZIP,HTML, ICS, JAVASCRIPT, JPG(from-
web, q001, q025, q050, q075, q100), JSON, MKV, MP3, MP4-FROM-WEB, ODS,
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OXPS, PDF (NOMAGIC, PASSWORD), PNG (c0, c3, c5, c7, c9, FROM-WEB), PPT
(NOMAGIC, PASSWORD), PPTX (NOMAGIC, PASSWORD), PS1, RANDOM
(PSEUDO, PURE), RAR, SVG (FROM-WEB), TAR, TIF-RESIZED, TXT, WEBP
(lossless-c0, lossless-c2, lossless-c4, lossless-c6, q50-c0, q50-c2, q50-c4, q50-c6), XLS
(NOMAGIC, PASSWORD), XLSX (NOMAGIC, PASSWORD), XML, ZLIB, ZIP
(BZIP2, DEFLATE, ENCRYPTED, HIGH-COMPRESSION, LZMA, PPMD).

• Ransomware encypted昀椀les: JIGSAW,DARKSIDE,WASTEDLOCKER,BLACKMAT-
TER, BLACKCAT, NETWALKER, BLACKBASTA, RANSOMEXX, LOCKBIT,
CUBA,MAZE,BADRABBIT,DHARMA,LORENZ,SODINOKIBI,WANNACRY,
PHOBOS,MEDUZALOCKER,CERBER,CHIMERA,AVOSLOCKER,TESLACRYPT,
CONTI, RYUK,GANDCRAB, SUNCRYPT,HELLOKITTY,CRYPTOLOCKER,
NOTPETYA, CLOP.

In total the common 昀椀les categories are 92 with 100 昀椀les each, thus the total legitimate 昀椀les
are 9200.

The ransomware encrypted 昀椀les counts 30 ransomware strains, each having 100 昀椀les, for a
total of 3000 ransomware 昀椀les.

As mentioned before, the dataset was split in three parts: train, validation and test.
In machine learning, this is done to follow the concept of generalization, which is to learn

from known data in order to predict new data. Generally, given that data are di昀케cult to obtain,
the dataset is divided into two splits, one where the machine learning algorithm can learn and
the other split to evaluate the model ability to generalize on unseen data.

Hence, the training split from which the model can learn, and the test split to address the
model performance. The validation split is a subpart of the training split and is used during
the training phase to check if the model is over-昀椀tting (good on predicting seen data, bad at
predicting unseendata) and adjust the hyperparameters (parameterswhich in昀氀uence themodel
behavior) and tune the hyperparameters. The split rule followed the classic 60% of total as
training data, 20% as validation data and 20% as test data.

Given that the 4F countermeasure, described in Subsection 3.4.5, and the H+3RS 昀椀le seg-
ments selection strategy, described in Subsection 3.4.6, select 4 segments in total, to keep the
data coherent between di昀昀erent algorithms and runs, all the 昀椀les shorter than 4 times the max-
imum segment length chosen were excluded. Since the greater segment length analyzed is 256
bytes, 昀椀le shorter than 1024 bytes were 昀椀ltered and not taken into consideration.

The total number of 昀椀ltered 昀椀les is 345, no ransomware encrypted 昀椀les were excluded. Each
category and the relative number of eliminated 昀椀les can be found at Table 3.1.

The resulting number of 昀椀les for each split can be found at Table 3.2.
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Table 3.1: Filtered Files per Category

Category Filtered Files
TXT 20
ICS 33
JSON 2
PS1 17
CSS 27
CSV 27
RANDOM-PURE 31
JPG-from-web 1
JAVASCRIPT 52
RANDOM-PSEUDO 46
PNG-FROM-WEB 3
GIF-FROM-WEB 8
XML 70
SVG-FROM-WEB 8
Total 345

Table 3.2: Number of 昀椀les for each NapierOne split

Split Ransomware Legitimate Total

Train 1849 5471 7320
Filtered Train 1849 5258 7107
Validation 588 1852 2440
Filtered Validation 588 1786 2374
Test 563 1877 2440
Filtered Test 563 1811 2374

41



Table 3.3: Number of 昀椀les for each A琀琀acks Dataset split

Split Ransomware Tempered Ransomware Legitimate Total

Train 1849 5547 5471 12867
Filtered Train 1849 5547 5258 12654
Validation 588 1764 1852 4204
Filtered Validation 588 1764 1786 4138
Test 563 1689 1877 4129
Filtered Test 563 1689 1811 4063

3.3.3 Attacks Dataset

To simulate the results that ransomware strains would obtain by applying the three attacks
proposed by Venturini et al. [3], NapierOne dataset Subsection 3.3.2 was enhanced by adding
modi昀椀ed encrypted 昀椀les. The header of ransomware 昀椀les encrypted from di昀昀erent strains was
modi昀椀ed at run times in order to obtain three di昀昀erent versions:

• Files prepending a low-entropy 256 bytes block (i.e., a repetition of the character ’a’);

• Files repeating the 昀椀rst 8 bytes for 32 times;

• Files substituting the 昀椀rst 256 bytes of the 昀椀le with a random succession of various low-
entropy sequences. The uppercase alphabet, the lowercase alphabet, some common
words, numbers between 0 and 22, and a repetition of the number zero were used.

Given that the original ransomware encrypted 昀椀les were 3000 and each 昀椀le produced three
modi昀椀ed 昀椀les, 9000 tempered ransomware encrypted 昀椀les are added. Therefore, the total num-
ber of 昀椀les become 21200.

As for the NapierOne dataset, the 昀椀les smaller than 1024 bytes were 昀椀ltered. In total, the
eliminated 昀椀les are 345, and in fact are the same legitimate 昀椀les excluded inNapierOne dataset.

The resulting number of 昀椀les for each split can be found at Table 3.3.

3.4 Implementation

In this section, it is assessed how each component was implemented.
As described in Section 3.1 the general hypothesis that this thesis aims to explore is if it is

possible to build a reliable lightweight ransomware defensemechanism and therefore given the
chosen features if the Entropy or the DA can be used as features for di昀昀erent machine learning
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models for ransomware detection. This section, will report how the steps described in Sec-
tion 3.2 were implemented, what limitations were encountered and what approach has been
used to overcome them.

All the following described algorithms were implemented with the use of the TensorFlow
python library (version 2.14). Speci昀椀cally, it was used the tensor昀氀ow-2.14-gpu docker on the
datacenter of the Örebro university ORU-GDX. TheNapierOne dataset was manually down-
loaded from http://napierone.com/Website/index.html and con昀椀gured using the
TensorFlow Dataset API library. The Attack dataset was implemented by starting from the
NapierOne dataset and bymodifying the ransomware 昀椀les at run time with the use of the Ten-
sorFlowAPIs. The Entropy, the DAA and theMitigations were implemented in python using
the TensorFlow library. The machine learning algorithms SVC and Random Forest were im-
plemented by importing themodels from the scikit-learn python library. TheNeuralNetwork
was realized thanks to the combination of the Keras python library and TensorFlow.

3.4.1 Entropy

TheEntropywas computed only on some昀椀le’s segments, similarly asDavies et al. [1]. In partic-
ular, until the segment of length segment_length is reached, the Entropy is computed starting
from the beginning of the segment on smaller chunks of the segment in 8 bytes increments.
An exampled can help understand the described process. If the segment is 32 bytes long, then
the entropy is computed on the 昀椀rst 8 bytes, then on the 昀椀rst 16 bytes, on the 昀椀rst 24 and so on
up until 32. A visual explanation of the aforementioned exampled is provided in Figure 3.1.

A basic outline of the experimental steps performed to obtain the Entropy values is reported
in Algorithm 3.1

3.4.2 DA

Once the Entropy values have been computed, the Di昀昀erential Area (DA) is computed by
subtracting the entropy_values vector from the ideal_entropy_values. ideal_entropy_values is
computed by applying the Algorithm 3.1 to an ideal 昀椀le composed of random bytes. The pseu-
docode of the DA algorithm is Algorithm 3.2.
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Figure 3.1: Entropy values computa琀椀on of a 32 bytes long 昀椀le’s segment

Algorithm 3.1 Pseudocode of the Entropy computation method
Require: 昀椀le_segment: Tensor containing the 昀椀le’s segment bytes for which the Entropy is to

be calculated.
Ensure: entropy_values: Tensor containing the entropy values for di昀昀erent partitions of the

昀椀le.
Begin
entropy_values← []
for ( i← 8 ; i < length(file_segment) ; i← i+ 8 )
entropy← compute_entropy(file[: i])
entropy_values.append(entropy)

end for
return entropy_values
End
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Algorithm 3.2 Pseudocode of the DA
Require: entropy_values: Tensor containing the 昀椀le Entropy values for which theDA is to be

calculated.
Require: ideal_昀椀le: Tensor containing the ideal 昀椀le bytes for which the Entropy is to be cal-

culated.
Ensure: da_values: Tensor containing the DA values for di昀昀erent partitions of the 昀椀le.
Begin
ideal_entropy_values← []
for ( i← 8 ; i < 256 ; i← i+ 8 )
ideal_entropy← compute_entropy(ideal_file[: i])
ideal_entropy_values.append(ideal_entropy)

end for
da_values← []
for ( i← 0 ; i < len(entropy_values) ; i← i+ 1 )

da← composite_trapezoidal_rule((ideal_entropy_values[: i]− entropy_values[: i]))
da_values.append(da)

end for
return da_values
End

3.4.3 DAA

The pseudocode described in Algorithm 3.3 is the general approach to compute the DAA.
However, if it was implemented exactly as described, the complexity would quadratically de-
pend on the number of thresholds tested and the number of DA elements. Fortunately, it is
possible to reduce the number of computations by expanding the analyzed DA vector into a
matrix, with the number of rows equal to the number of thresholds and each matrix row com-
posed of the initial DA vector. Then each row is compared with a di昀昀erent threshold value in
parallel.

For the sake of the reader and simplicity, since the outputs are the same, the following pseu-
docodes reported are the base version, which are ine昀케cient but easier to understand.

When the DA is computed, the DAA is performed by comparing the values to di昀昀erent
thresholds. Here is the pseudocode of the algorithm Algorithm 3.3.
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Algorithm 3.3 Pseudocode of the DAA
Require: da_values: Tensor containing the DA values between the real and the ideal 昀椀le for
which the DAA is to be calculated.

Ensure: daa_values: Tensor containing True if the DA is less or equal than a threshold, false
if the DA is greater.
Begin
daa_values← []
for ( threshold← 0 ; threshold < 256 ; threshold← threshold+ 1 )
for ( i← 0 ; i < 32 ; i← i+ 1 )
if da_values[i] ≤ threshold

daa_values.append(True)
else

daa_values.append(False)
end if

end for
end for
return daa_values
End

3.4.4 Attacks

Subsequently, the attacks proposed by Venturini et al. [3] were implemented via the Attacks
dataset, explained in Subsection 3.3.3).

The goal of the attacks is to lower the 昀椀les’ header entropy and thus enlarge the DA between
ransomware encrypted 昀椀les and ideal 昀椀le. Neutralizing the Entropy is performed to evade
Entropy-based ransomware detection methods. This can be achieved in several ways, and in
this thesis the three alternatives proposed by Venturini et al. [3] were implemented:

• Prepending to the 昀椀le header a block of 256 byteswith low entropy, such as a single letter
repeated to 昀椀ll the block;

• Filling up the 256 bytes header with 32 repetitions of the 昀椀rst 8 bytes;

• Inserting low-entropy entries in random or 昀椀xed positions of the header, for example
common words or repetitions of the alphabet.

The general approach in the literature is to use encoding to implement neutralization tech-
niques, as described in [6, 33, 2, 7, 8].
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3.4.5 Mitigations

The attacks mentioned in Subsection 3.4.4 are made possible by the fact that DAA focuses on
analyzing only a prede昀椀ned and limited part of a 昀椀le.

Even though e昀昀ective, this makes the approach predictable and easy to circumvent. There-
fore, it is necessary to strengthenDAA in such away that it can resist tomaliciousmanipulation
of 昀椀le headers.

Thus, the Mitigations proposed by Venturini et al. [3] were implemented and to better un-
derstand them, it could be useful to brie昀氀y describe the parameters that are used by such miti-
gations.

Threshold

In order to perform the Di昀昀erential Area Analysis, it is necessary to establish the range within
the computed entropy value that is considered too close to the curve of a random 昀椀le Entropy
graph line. This signal indicates that the 昀椀le in question is encrypted.

This is the same parameter used in the DAA by Davies et al. [1], more information can be
found in Section 2.4

Distance

In regular unencrypted 昀椀les, fragments positioned far away from the header have a relatively
higher chance to exhibit high entropy with respect to the header, since structural information
is stored between 昀椀le portions close to the beginning.

Given that the mitigations analyze the header fragment and one (or more) additional frag-
ments, it is essential to consider the higher entropy (and consequently, the smaller Di昀昀erential
Area) of the random-position fragment. This is crucial to prevent any skewed behavior of the
algorithms in favor of the random fragments. To this end, a parameter designated ”distance”
is introduced, which reduces the Di昀昀erential Area associated with the header fragment when
compared to the Di昀昀erential Area of the random-position fragment(s). This has the e昀昀ect
of increasing the priority of header entropy information over the randomly selected fragment,
which is of particular importance when analyzing unencrypted 昀椀les. By adjusting the distance
parameter, the number of false positives is reduced, thereby reducing the likelihood of incor-
rectly classifying regular 昀椀les as ransomware-encrypted 昀椀les.
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Subfragment length

As for the DAA, which analyses 256 bytes in incremental subfragments that grow from 8 up
to 256 bytes at 8 bytes at a time, the mitigations’ accuracy is monitored at each incremental 8
bytes step. It is useful to correlate the results with the subfragments length and compare same
length results for the three di昀昀erent mitigations.

2-Fragments (2F) Mitigation

As previously described, DAA analyses one fragment, the header, of 256 bytes. With 2F, two
fragments are analyzed, one being the header, and one picked at a randombyte position, within
the range [length(header), ..., length(file) − length(randomsegment)]. A brief analysis of the
2F mitigation assuming 昀椀xed threshold, distance, and fragment length.

First, a vector called ideal_昀椀le containing o random bytes is created, which is used as a refer-
ence fragment for performing the Di昀昀erential Area analysis. For each subfragment i ∈ [i · 8],
昀椀rst the algorithm computes the entropy. Then each entropy value is used to calculate the Dif-
ferential Area for the header areaH and for the fragment selected at a random position areaR.
Then, given the distance parameter d, the algorithm subtracts d from areaH. If areaH − d
is less than areaR then, areaH is chosen and assign to area, otherwise areaR is selected and
assigned.

The distance d helps to increase the weight of the header on the 昀椀nal result, since Venturini
et al. [3] observed that in some occasions (such as with unencrypted 昀椀les) the header tends
to be more reliable than the result obtained from the random fragment. In fact, they state
that without subtracting d, the algorithm would correspond to simply choosing the smaller
Di昀昀erential Area, hence the result that yields the greatest entropy, implying more false positive
for high entropy legitimate 昀椀les.

Finally, the algorithm compares the selected area to the threshold t and returns True if the
area is smaller than t, signalling the presence of a ransomware. Otherwise, it returns False. For
the pseudocode of the 2F refer to [3].

3-Fragments (3F) Countermeasure

In this approach, instead of analyzing the header and one additional fragment selected at a
random point of the 昀椀le, two fragments were analyzed in addition to the header.

As previously described, the vector ideal_昀椀le is created containing o random bytes. Then,
two segments at random positions of length o are sampled. Similarly to the 2F, the algorithm
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computes the Di昀昀erential Area of the header areaH and of the segments areaR1 and areaR2.
But in this case, since there is more than one segment, the area taken is the average of the two
random areas, areaR1 and areaR2, called avg. Then, given the distance parameter d, the algo-
rithm subtracts d from areaH. If areaH − d is less than areaR, areaH is stored inside area,
areaR otherwise.

The main di昀昀erence between 2F and 3F lies in how the Di昀昀erential Areas are used. In 2F,
the Di昀昀erential Area of the header was directly compared to the Di昀昀erential Area of the (only)
additional fragment. In 3F, the Di昀昀erential Area of the header fragment areasH minus the
distance d (i.e., areasH − d) is compared with the average avg of the Di昀昀erential Areas of the
additional two random fragments. Again, the smaller value is stored inside area and 昀椀nally
compared with the threshold t.

To better understand how the fragments are chosen, the example used byVenturini et al. [3]
could be useful. Assume that theDi昀昀erential Area calculated for the header isDH = 71, for the
昀椀rst random fragment isDF1 = 32 and for the second random fragment isDF2 = 54. In this
case, the prede昀椀ned value for the threshold is t = 46 and for the distance is d = 35. The goal
is to select one of the three Di昀昀erential Areas and compare it with the threshold to determine
if the 昀椀le is suspicious or not. The selection process follows these steps:

1. Compute the Di昀昀erential Areas of the random fragments and calculate the average avg.
In our example, (DF1 +DF2)/2 = (32+ 54)/2 = 43;

2. Subtract distance d from the Di昀昀erential Area of the headerDH,DH − d = 36. Then,
compare the latter result with avg = 43;

3. DH− dist is smaller than avg (i.e., 36 < 43). Therefore, the Di昀昀erential Area selected is
DH = 71.

Last, to classify the 昀椀le as encrypted or unencrypted, the algorithm compares the selected
area with the threshold. Referring to our example,DH = 71, t = 46. SinceDH > t, the 昀椀le is
classi昀椀ed as unencrypted.

The example showcases the importance of introducing the distance value for preventing the
occurrence of false positives. In this example, without the use of a d parameter, the minimum
value chosen would have been avg = 43 which is smaller than the threshold t = 46, leading
to erroneously classify the normal PDF 昀椀le as an encrypted 昀椀le. This scenario is not unusual,
as in normal 昀椀les the entropy tends to grow larger with the increasing distance between a ran-
dom fragment and a header fragment. Therefore, the distance parameter helps to give a higher
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weight to the header fragment as it is generally more reliable for classi昀椀cation purposes, espe-
cially with unencrypted 昀椀les. For the pseudocode of the 3F please refer to [3].

4-Fragments (4F) Countermeasure

The steps are the same as the 3F countermeasure explained in Subsection 3.4.5, with the only
di昀昀erence that, while 3F uses the header and two additional random fragments, 4F analyses the
header and other three random fragments. For the pseudocode of the 4F, please refer to [3].
The mitigations implemented by Venturini et al. [3] are similar to the DAA of Davies et

al. [1] but with an added parameter called distance, which makes the computation explode
cubically since theDA elements now need to be tested for each distance and for each threshold.
Like theDAAneededrow, these algorithmswereparallelized thanks to theTensorFlowmethods
that are based onmatrix computations. This time the parallelization is a bit more complicated:
First the selected 昀椀le header is expanded into a matrix where each row is the header minus the
distance, for all the distances, obtaining a matrix that has the number of rows equal to the
number of distances. Then, since each row needed to be tested with all the threshold values,
every row is repeated as much as many threshold values there are. Lastly, the threshold vector
is repeated until it match the rows dimension of the matrix. The resulting matrices are then
compared, thus evaluating the di昀昀erent distances with each threshold, signi昀椀cantly reducing
the computation time.

Since the results are very similar, for the sake of the reader, please refer to the pseudocodes of
[3]. They implemented the slower, less e昀케cient version, but is signi昀椀cantly easier to read and
understand.

3.4.6 Machine Learning

A bene昀椀t of using machine learning and one of the main reasons behind this thesis research is
that in theory the machine learning models are able to learn from known data and generalize
for unknown data. In the case of ransomware classi昀椀cation, this means that the models could
predict unseen ransomware strains.

In this thesis, the problem of ransomware classi昀椀cation was formulated as a binary classi昀椀ca-
tion problem, with the ransomware encrypted 昀椀les labeled as 0 and the legitimate 昀椀les labeled
as 1.

The approach used in this thesis to tackle the problem of learning is divided into three steps.
The 昀椀rst step taken is the training step, then the validation step and ultimately the test step.
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The training is needed to allow the algorithm to learn the relation between data, the valida-
tion step is performed on di昀昀erent data and used to check the hyperparameters (parameters
speci昀椀c for each model) values and tune them accordingly, and the test is used to evaluate the
model and how it would behave with new unseen data.

In the speci昀椀c case of this thesis, some data preprocessing was also performed before the
training phase. Instead of feeding directly the 昀椀les’ bytes into the algorithms, the objective was
to compute the Entropy of the 昀椀les’ header and the DAs as de昀椀ned by Davies et. [1] and by
Venturini et al. [3]. The Davies et al. selection strategy focused only on the header, while the
Venturni et al. selection strategies sampled the header and some random segments, as described
in Subsection 3.4.5.

From now on, the collection of only the header is de昀椀ned as H, the header and a random
segment will be referred as H+RS, the header and two ransom segments as H+2RS and the
header and three random segments as H+3RS. Finally, to end the preprocess phase, for each
segment, the Entropy and the DA as de昀椀ned by Davies et al. [1] were computed.

Subsequently, the selected features were tested with three machine learning algorithms in
an ascendant fashion: At the beginning, only the header features were considered. Then the
features of H+RSwere tested. Then it was the turn of theH+2RS, and in the end theH+3RS
were evaluated.

The machine learning algorithms used during all the tests were SVC (a subclass of SVM
speci昀椀cally for Classi昀椀cation), Random Forest and Neural Network.

Given that the NapierOne dataset is unbalanced in favor of legitimate 昀椀les (75%) w.r.t. ran-
som encrypted 昀椀les (25%) undersampling, which is the practice of reducing the size of the over-
represented class to the size of the under-represented, was tested. However, noticeable results
were evaluated only on theNeural Network, therefore SVC andRandomForest are trained on
the totality of the original dataset.

After theproposed features, features selection strategies andmodelswere tested via theNapierOne
dataset, the same parameters were tested on the Attack dataset, which simulate three neutral-
ization strategies and is used to demonstrate the robustness of the models.

Preprocessing

Given that the 昀椀les in the datasets are by de昀椀nition a sequence of bytes, some preprocessing
was needed to provide the Entropy and the DA as input features for the machine learning algo-
rithms. A general scheme is shown in Figure 3.2.
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Figure 3.2: Data preprocessing phase to compute machine learning algorithm input features

The 昀椀rst step was sampling a given number of segments. Such segments could be only the
header, referred as the decision strategy H, the header and a random segments called H+RS,
header and two random segments identi昀椀ed by H+2RS and the header with three random
segments as H+3RS. Together with the choice of the selection strategy, this 昀椀rst part included
also the choice of the length of the segments, which started from a minimum of 8 bytes to a
maximum of 256 bytes.

Once the segments and their lengths were chosen and sampled, the Entropy, the DA or a
combination of both were computed for each segment separately. In the case of the Entropy,
the computationwas performed as described in Subsection 3.4.1with theAlgorithm3.1, while
the DA was computed as de昀椀ned in Subsection 3.4.2 by the Algorithm 3.2. An example to
better understand this process could help the reader.

Let’s suppose that the selection strategy was the H+2RS with a length of 32 bytes. This
means that the header and two random segments 32 bytes long were collected from each 昀椀le
in the dataset, for a total of three segments. Then the Entropy or the DA were computed for
each segment, starting from the header. Imagine that the feature chosen to be computed was
the Entropy. Since it is computed at 8 bytes increment re-starting from the beginning of the
segment each time, the computed values are 4. The 昀椀rst is for the bytes from 0 to 8, the second
is for the bytes from 0 to 16, the third for the bytes from 0 to 24 and the fourth for the bytes
from 0 to 32. The described computations are shown in Figure 3.1. This process was repeated
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for all the segments, obtaining a vector composed of 4 elements for all the 3 segments, thus a
12 elements vector. Similar steps were performed if the chosen feature was the DA, computed
as described in Subsection 3.4.2. If the feature chosen were Entropy and DA combined, the
resulting vectors are simply attached to one another.

The maximum number of possible input features is with the H+3RS segments selection
strategies with segment lengths of 256 bytes and the use of both the Entropy and the DA as
features. This is because, sampling 4 segments of 256 bytes obtains 32 values of Entropy and
32 values of DA for each segment, resulting in 64 times 4, thus 256, features.

After the features were computed, the resulting vector was provided in input to themachine
learning algorithms.

SVC

The Support Vector Classi昀椀cation (SVC) is a subclass of the Support Vector Machine (SVM)
algorithms.

The training was performed on the training split of the NapierOne or the Attack dataset
and can be summarized in four steps:

1. The parameters are initialized

2. The kernel matrix is precomputed

3. The construction of the best decision function that best separate the data

4. The return of the model.

A general idea of the training can be extracted from the pseudocode Algorithm A.1, found
in the Appendix A.

The validation phase is performed using the validation split of the datasets and allowed to
tune the hyperparameters. The hyperparameters used to de昀椀ne the model and their meanings
can be found at https://scikit-learn.org/stable/modules/generated/sklearn.
svm.SVC.html. The main one to be noted here is the C parameter, which indicates the reg-
ularization applied. The higher the value the lower the regularization is, obtaining ”softer”
margins SVC, vice versa otherwise. For the di昀昀erence between soft and hard margin, please
refer to Chapter 2. The used value for C was 1.0.

All the other hyperparameters values were provided by the default values of the Scikit-learn
library, please refer to the aforementioned URL for more information.
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The testingphasewasused to evaluatehowthemodelwouldbehavewithunseen ransomware-
encrypted and legitimate 昀椀les. The test split of the datasets was used.

Random Forest

Random forest training design is quite straightforward from the theory. It was performed on
the training split of the NapierOne or the Attack dataset and can be summarized as:

1. Initialization of the empty decision tree list

2. Filling of such list with di昀昀erent trees trained on di昀昀erent bootstrap sample

3. Construction of the Random Forest model using the decision trees list just built

4. Return of the trained model.

The training phase of a random forest is brie昀氀y reported thanks to the following pseudocode
Algorithm A.2 which can be found in Appendix A.

The validation phase is performed using the validation split of the datasets and allowed to
tune the hyperparameters. The hyperparameters used to de昀椀ne the model and their meanings
can be found at https://scikit-learn.org/stable/modules/generated/sklearn.
ensemble.RandomForestClassifier.html . Themainone tobenotedhere is then_estimator
parameter, which indicates the number of trees in the forest.

All the other hyperparameters values were provided by the default values of the Scikit-learn
library, please refer to the aforementioned URL for more information.

The testingphasewasused to evaluatehowthemodelwouldbehavewithunseen ransomware-
encrypted and legitimate 昀椀les. The test split of the datasets was used.

Neural Network

Neural Network are a bit more complicated and involve more hyperparameters and steps dur-
ing the training. The general idea is toupdate theweights in order tominimize the loss function.
The steps can be brie昀氀y summarized as:

1. De昀椀nition of the network structure,

2. Weights and biases of each layer are initialized,

3. Forward propagation, computation of the loss and backward propagation for a certain
number of times equal to the speci昀椀ed epochs
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4. Trained model is returned.

The implemented Neural Network model is composed of an Input layer which size change
based on the number of features in input, computed as described in Subsection 3.4.6.

Then there is one hidden layer of 昀椀xed size equals to 256 nodes, all de昀椀ned with the ReLU
activation function, and lastly the output layer which has only one node with the Sigmoid as
the output function. The functions are explained in Section 2.5.

As mentioned before, to balance the dataset and improve the results, a speci昀椀c type of un-
dersampling was performed. At each epoch, all the ransomware 昀椀les and an equal number of
random legitimate 昀椀les were selected. This was repeated for 500 epochs and paired with the
early stopping practice with max tolerance of 10 epochs on the F1 score implemented. Even if
for each epoch the dataset was undersampled, since the selection of the 昀椀les was random, con-
昀椀guring many epochs allow to almost deterministically train with all the legitimate 昀椀les sooner
or later. And if the model was starting to over昀椀t the data, the early stopping mechanism stops
the training and pick the weights that had the best F1 score.

The chosen batch size was of 256 elements.
The training phase was performed on the training split of the NapierOne or the Attack

dataset, and its objective is to learn the weights by minimizing the Loss function. Since the
implemented problem is a binary classi昀椀cation problem, the chosen function to reduce is the
Binary-Cross Entropy, de昀椀ned in Figure 2.5.3. The training phase pseudocode of a Neural
Network is brie昀氀y reported Algorithm A.3, in Appendix A.

The validation phase is performed using the validation split of the datasets and allowed to
tune the hyperparameters of themodel. Among others, some are the activation function, num-
ber of layers and number of neurons for each layer. For a complete list of the possible hyperpa-
rameters, please refer to https://keras.io/api/.
The test phase in the binary classi昀椀cation problem is used to evaluate themodel by counting

howmany 昀椀les are correctly labeled. The test split of the datasets was used.
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4
Evaluation

In this chapter, the results obtained from the experiment steps described in Section 3.2 are
discussed.

The results of the 昀椀rst step, described in Section 3.2, are discussed in Section 4.1 and are
needed to prove the correct computations of the used features.

The results of the second step, a de昀椀nitionofwhich canbe found inSection3.2, are discussed
in Section 4.2. Such 昀椀ndings are used to prove the usefulness of the used features in classifying
known ransomware strains.

The third step’s results, always described in Section 3.2, are discussed in Section 4.3. These
were used to prove the e昀昀ectiveness of using random segments sampling strategies to compen-
sate for ransomware deploying header entropy normalization techniques, while maintaining
good information if used with the known ransomware strains.

The fourth and 昀椀fth step’s results, which are de昀椀ned as the others in Section 3.2, are dis-
cussed in Section 4.4. These results are used to assess the performances of the di昀昀erent hyper-
parameters: features used, number of segments collected and algorithm combinations. The
ones that performed well enough on both the known ransomware and the Entropy normaliz-
ing ransomware were highlighted as possible foundations for a ransomware detection method.
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4.1 Entropy, DA andDAACorrectness

In this section, the step one reported on the Design in Section 3.2 is shown and proved. The
proof that the Entropy, the DA and the DAAwere computed correctly is provided.

Since the Entropy, the DA and the DAA were rewritten from scratch, to prove that they
work as intended by the original author Davies et al. [1] is su昀케cient to compare the accuracy
results obtained using the rewritten DAA and the original DAA on the same dataset.

However, since the dataset used on the original work from Davies et al. [1] has prohibitive
dimensions, testing the rewritten DAA on that precise dataset would bring this thesis out of
the original scope, recreating the original study by Davies et al. [1]. Fortunately, Venturini et
al. [3] obtained similar results to the one of Davies et al. [1] but on a smaller dataset, in this
thesis referred as OldNapierOne.

Thanks toTable 4.1 it is possible to see that the rewrittenDAAand the originalDAAobtain
similar results, around 98% accuracy, with the rewrittenmethod actually obtaining slightly bet-
ter results. The di昀昀erence in the parameters and the slight di昀昀erence in the results is probably
due to both the complexity oriented improvements that were applied during the rewrite of the
DAA and the di昀昀erent libraries/variable types used.

Thanks to this comparison, it is possible to safely state that the Entropy, the DA and the
DAA are computed as de昀椀ned byDavies et al. [1]. The Entropy, the DA and theDAA correct-
ness is proved.

If the reader is curious on how the accuracies change for the rewritten DAA based on di昀昀er-
ent header lengths and thresholds, please take a look at Figure A.2 in Appendix A. Instead, for
the original DAA, please look at Figure A.3 always in Appendix A.

4.2 DAA

In this section, the second step reported on the Design in Section 3.2 is shown and proved.
First is proved that the DAA still works for the known ransomware strains, implying that the
Entropy and theDA, later used bymachine learning algorithms, carry relevant information for
ransomware classi昀椀cation. Then, simple entropy neutralization techniques are tested and the
DAA is rendered useless, thus the need for stronger defense mechanism is proved.

Due to the proof in Section 4.1 the rewritten DAA has been demonstrated to work as in-
tended by the original writers Davies et al. [1].
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Table 4.1: Comparison of the best results obtained by the handwri琀琀en DAA and the DAA by Venturini et al. on the
OldNapierOne dataset

Rewrote DAA DAA by Venturini et al.

Length 216 152
Threshold 124 40
Accuracy (%) 98.55 98.24
Precision (%) 99.88 99.30
Recall (%) 95.44 95.00
F1 (%) 97.61 97.10

Thanks to this result, we can now test the rewritten DAA on the newer dataset NapierOne
and on the AttackDataset. Testing the rewrittenDAA on theNapierOne dataset has a double
scope. First, if the DAA is able to performwell enough, it means that the Entropy and the DA,
from which the DAA and the proposed machine learning models depend on, still carry rele-
vant information for the ransomware classi昀椀cation problem. Second, it allows the comparison
between di昀昀erent approaches, one more mathematical and the other more machine learning
oriented.

Testing on theAttack dataset is useful to prove that ransomware detectionmethodsEntropy-
based are prone to Entropy normalization techniques and if a technique used some form of
Entropy values it has to take in account this vulnerability, otherwise is rendered useless.

Figure 4.1 shows the results for di昀昀erent header lengths on the NapierOne dataset and Fig-
ure 4.2 for the Attack dataset. At Table 4.2 the best results in terms of F1 score is displayed.

From Table 4.2 it is clear that in the case of known ransomware strains the DAA still per-
forms really well, obtaining 94.37% accuracy, and thus the Entropy and the DA carry relevant
information. But if some ransomware strains were able to modify the headers’ entropy of the
encrypted 昀椀les, the DAA and thus a mathematical interpretation of the Entropy and the DA,
would be rendered useless, as demonstrated by theDAAhaving 58.45% accuracy on theAttack
dataset. Thus, the need for stronger ransomware detection methods arise.

4.3 Mitigations

In this section, the third step de昀椀ned in Section 3.2 is proved. This is done to understand if
random segment selection strategies are useful against Entropy neutralizing strategies focused
on the header.
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Figure 4.1: Accuracy of the rewri琀琀en DAA on the NapierOne Dataset
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Figure 4.2: Accuracy of the rewri琀琀en DAA on the A琀琀ack Dataset
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Table 4.2: Comparison of the best F1 Score results between NapierOne and A琀琀ack dataset.

DAA onNapierOne DAA on Attack

Length 80 8
Threshold 23 12
Accuracy (%) 94.37 58.45
Precision (%) 94.41 58.45
Recall (%) 84.31 100
F1 (%) 88.63 73.78

The idea behind the proposedmitigations byVenturini et al. [3] was to strengthen theDAA
proposed by Davies et al. [1].
In this thesis, they were implemented to verify if the random segments sampling strategies,

implemented as de昀椀ned by Venturni et al. [3], were useful in countering Entropy neutralizing
techniques and thus carry relevant information. This proof is useful because such sampling
strategies will be later used to select the features for the machine learning algorithms. Also, by
obtaining the results on the same datasets as themachine learning algorithms allows comparing
di昀昀erent detection methods.

Given that the mitigations involves the selection of random segments, multiple runs are
needed, which in the case of this thesis are ten, in order to exclude outsiders and e昀昀ectively
evaluate the performances.

Since ten runs were executed, the reported metrics are chosen by picking the triplet of pa-
rameters (length, distance and threshold) that obtain the best result on average in terms of F1
score. Such results can be found at Table 4.3. The full graphs for all the threshold and distance
values are shown in Figure A.4 for the 2F, in Figure A.5 for 3F and Figure A.6 for 4F, located
in the Appendix A.

All the threemitigations performs similarly, with the 3F having slightly better results, which
is coherent with the 昀椀ndings of Venturini et al. [3]. A peculiarity that is worth nothing is that,
even if for di昀昀erent runs the best distance and threshold in F1 score terms slightly change, the
best performing length was always 72 bytes an all the ten runs.

All the three sampling strategies obtain an F1 score close to 90% as shown in Table 4.3, thus
the usefulness of the random segments selecting strategies is proved.

Having veri昀椀ed that in the speci昀椀c case of ransomware strains which neutralize the entropy
of the header the mitigations performs well, there is the need to test if such methods perform
well for the known ransomware or if their usefulness is limited to this particular attack scenar-
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Table 4.3: Mi琀椀ga琀椀ons mean results and standard devia琀椀on of ten runs on the A琀琀ack dataset

2F 3F 4F

Length 72 72 72
Distance 114 113 115
Threshold 21 20 20
Accuracy (%) 87.55± 0.19 88.02± 0.11 88.16± 0.21
Precision (%) 85.87± 0.17 87.03± 0.10 87.88± 0.18
Recall (%) 94.20± 0.19 93.42± 0.12 92.50± 0.22
F1 (%) 89.84± 0.15 90.11± 0.09 90.13± 0.18

Table 4.4: Mi琀椀ga琀椀ons mean results and standard devia琀椀on of ten runs on the NapierOne dataset

2F 3F 4F

Length 40 40 40
Distance 72 74 72
Threshold 9 20 20
Accuracy (%) 93.22± 0.09 93.47± 0.06 93.58± 0.06
Precision (%) 86.68± 0.27 87.61± 0.14 88.01± 0.15
Recall (%) 87.35± 0.14 87.25± 0.11 87.19± 0.10
F1 (%) 87.02± 0.17 87.43± 0.11 87.60± 0.10

ios.
All the three sampling strategies obtain an F1 score close to 87% as shown inTable 4.4, thus it

is proved that the random segments selecting strategies works alsowith the known ransomware
strains.

The results were selected in the same way as what is described in the previous paragraph.
As before, the best run results for di昀昀erent distance and threshold values, are located in Ap-
pendix A and shown in Figure A.7 for 2F, in Figure A.8 for 3F and in Figure A.9 for 4F.

Similarly to the peculiarity reported before, the distance and the threshold that performed
the best during the ten runs changed, but the best sequence length was always 40 bytes.

4.4 Machine Learning Algorithms

In this section, the results from step four and 昀椀ve from the experiment design explained in
Section 3.2 are reported.

The problem of ransomware classi昀椀cationwas formulated as a binary classi昀椀cation problem,
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where the 昀椀les were either labeled as ransomware or as legitimate. Then the header and some
random segments were extrapolated, and the Entropy or the DA extracted and provided as
input features both singularly and in combination (referred to as Entropy+DA).

In particular, in this section when only the header is used to extrapolate the features it will
be referred as H, in the case of the header and a random segment H+RS, the header and two
random segments as H+2RS and 昀椀nally the header and three segments as H+3RS.

Thanks to the results obtained in Section 4.2 for the DAA and in Section 4.3 for the mitiga-
tions, it is possible to infer that the Entropy and theDAcan be used as features to e昀昀ectively dis-
tinguish between ransomware and legitimate 昀椀les. In particular, in the case of H+RS, H+2RS
and H+3RS, the Entropy and DA carry information both for the know ransomware and for
the entropy neutralization ransomware. Instead in the case of only H, when neutralization
strategies are applied, selecting only the header do not obtain substantial results. This mean
that in theory, in the case of the known ransomware strains, all segments selection strategies
could work if paired with machine learning. Instead, if a ransomware deploy entropy neutral-
ization techniques, only the H+RS, the H+2RS and the H+3RS selection strategies should
work.

The chosen algorithms to test the features were SVC,RandomForest, referred to as RF, and
Neural Network shorted to NN. As for the mitigations, to exclude outsiders ten runs were
executed for each types of segments selection (H, H+RS, H+2RS, H+3RS, thus 4), for each
segment length (from 8 to 256 bytes with 8 bytes jumps, thus 32), for each type of feature
extracted (Entropy,DAorEntropy+DA, thus 3), for each algorithm(SVC,RFandNN, thus 3)
and for each and for datasets (NapierOne andAttack dataset). In total 7680 runs per algorithm
were performed.

For the sake of clarity, in this section it will be reported only the general graphs based on the
best averaged metrics values of the ten runs for each algorithm with both the NapierOne and
Attack dataset. If the reader is interested on seeing the accuracy of a speci昀椀c combination of
segments selection strategy, feature extracted and algorithm used, please refer to the graphs in
Appendix A. Keep in mind that each point in the graph is the mean of ten runs. The standard
deviation is also reported.

Of all themetrics, the results discussed analyze the F1 Score, which is generally a good bench-
mark to evaluate amachine learning algorithmperformance, for the accuracy refer toAppendix
Appendix A.

Before diving deep to the single case analysis, it could be useful to compare the best results
for each algorithm for the di昀昀erent datasets, always remembering that the DAA and the mit-
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Table 4.5: Machine Learning best mean F1 Scores paired with the standard devia琀椀on on the NapierOne dataset

SVC NN RF

Segments H H H+3RS
Segments Length 152 48 144
Statistic Entropy Entropy+DA DA
F1 Score (%) 90.55± 13.07 91.62± 2.41 94.09± 1.33

igations results are the best value on the training split of such datasets, while for the machine
learning algorithms all the values are computed from the test set, which means on new un-
seen data. Nevertheless, it is still interesting comparing how and hypothetical mathematical
approach would perform against a machine learning one.

Taking into consideration the NapierOne dataset, which represent the known unmodi昀椀ed
ransomware strains, a quick comparison can be performed by looking at the best results of the
DAATable 4.2, of the mitigations Table 4.4 and of the machine learning algorithms Table 4.5.
The NN obtained similar result to the 2F, 3F and 4F algorithms, while the RF was closer to
the DAA. Therefore, the use of the Entropy+DA with the NN and the DA with the RF can
be considered as a plausible working combination for the known ransomware strains.

For the Attack Dataset, which represent ransomware using header entropy neutralization
technique, the DAA is not e昀昀ective. However, all the features performed similar to the mitiga-
tions proposed by Venturini et al. [3], regardless of the machine learning algorithm used.

These results have an important implication. It seems that when using machine learning, a
ransomware implementing entropy neutralization techniques can be e昀昀ectively detected inde-
pendently of the use of Entropy, DA or Entropy+DA. This means in order to have a working
defense mechanism that uses Entropy, DA or Entropy+DA is su昀케cient to select the best per-
forming feature-segments-algorithm combo against known ransomware strains and eventually
train the model on encoded segments.

Two possible candidates which can be used to build a quick and reliable defense mecha-
nism to detect both known ransomware and entropy neutralization ones is the DA-H+3RS-
RF combo, as show by looking at Figure 4.5 and Figure 4.6 or the Entropy+DA-NN combo
with one of all the segments selection strategy as shown by looking at Figure 4.7 and Figure 4.8.

64



Table 4.6: Machine Learning best mean F1 Scores paired with the standard devia琀椀on on the A琀琀ack dataset

SVC NN RF

Segments H H H+3RS
Segments Length 112 40 184
Statistic Entropy Entropy Entropy + DA
F1 Score (%) 95.29± 5.71 95.82± 2.46 97.09± 4.91

4.4.1 Entropy

In this subsection, the use ofEntropy as a feature takenby either the header or by theheader and
some random segments along the 昀椀le is explored and evaluated. It was tested both against the
known ransomware strains via the use of NapierOne and also against new ransomware strains
that target Entropy speci昀椀cally via the Attack Dataset.

FromFigure 4.3, it’s possible to see that on average, extrapolating the Entropy only from the
header performs poorly with the chosen Neural Network. Little improvements can be noted
whenmore segments are collected, with the best results obtainedwith theH+2RS. It is possible
that this bad performances, given that all the selection strategy has similar F1 scores, could be
due to the used NNmodel needing more tuning of the hyperparameters.

The Support Vector Classi昀椀cation (SVC) and the Random Forest (RF) algorithms obtain
better results on averagebuthavehighvariancebetweendi昀昀erent runs, signalinghigh instability
on the outcome when the Entropy is used as feature.

Both the SVC and the RF performs better only when the header is used, which means that
in the case of known ransomware and 昀椀les the biggest entropy values di昀昀erence and thus in-
formation can be founded on the 昀椀les’ header. Speci昀椀cally, the SVC obtain the best result on
the H-Entropy combination, as reported Table 4.5. This is coherent both with the 昀椀ndings
of Davies et al. [1], and with Venturini et al. [3] which observed a decrement in Accuracy
when other random segments were collected along with the header, as opposed to the use of
the header only.

However, while with the SVC algorithm, the more segments were collected the less the F1
Scores obtained were, the Random Forest algorithm, even if it obtained lower scores, it main-
tained similar enough performances.

Due to the high variance between di昀昀erent runs, the use of the Entropy, is not a suitable start-
ing point to build a defense mechanism based on SVC, NN or RF. This is true independently
of the segment selection strategy used.
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Figure 4.3: Best average F1 Scores for Support Vector Classi昀椀ca琀椀on (SVC), Neural Network (NN) and Random Forest (RF)
for each segment extrac琀椀on strategy and Entropy as feature on the NapierOne dataset
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Figure 4.4: Best average F1 Scores for Support Vector Classi昀椀ca琀椀on (SVC), Neural Network (NN) and Random Forest (RF)
for each segment extrac琀椀on strategy and Entropy as feature on the A琀琀ack dataset
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On contrary of what the attacks have obtained for the DAA byDavies et al., which required
some strengthen strategies like the ones proposed by Venturini et al. in the case of the threema-
chine learning algorithms chosen they simpli昀椀ed the problem and the algorithms performed
better with the Attack Dataset than with NapierOne dataset, basically stating that such neu-
tralization attacks are nulli昀椀ed by the use of machine learning algorithms. Results for the use
of the Entropy combined with the Neural Network for the attacks can be found at Figure 4.4.

Regarding the attacks, Random Forest on average obtained slightly better results than the
other algorithms. However, on the speci昀椀c case of sampling only the header (H), the Neural
Network and the RF had a similar result, but the NN had less variance between the runs. This
could mean that in this particular case, the model is steadily able to learn the relation between
the extracted Entropy features and the label, converging to a meaningful model.

Thus, in the case of the simulated attacks, the Entropy combined with the used segments se-
lection strategies can generally be used to e昀昀ectively distinguish betweenmodi昀椀ed ransomware
and legitimate 昀椀les, with some speci昀椀c optimal results. In particular, the best performances
obtained by the SVC and NN algorithms when trained and tested on the Attack Dataset are
with the use of the Entropy, as depicted on Table 4.6. However, when using the same features
and selection strategies for the real ransomware strains, even if there are some good scores, the
variance between the runs is too big to consider this feature reliable in real world scenarios.

4.4.2 DA

In this subsection, the DA as feature for di昀昀erent machine learning models is explored.
It was tested both against the known ransomware strains via the use of NapierOne and also

against new ransomware strains that target header Entropy speci昀椀cally via the Attack Dataset.
Aside from some speci昀椀c cases, using only the DA performed worse than the use of the En-

tropy for all the algorithms, as illustrated by comparing Figure 4.5 and Figure 4.3.
By looking at Figure 4.5 it is possible to see that the SVC algorithm, independently of the

segments selection strategy used, had a lot of variance between di昀昀erent runs. Therefore, the
use of theDA as a feature pairedwith the SVC algorithm can not be reliably used to distinguish
between ransomware encrypted 昀椀les and legitimate 昀椀les.

The same reasoning can be applied to theNNalgorithmwith the speci昀椀c case of theH+2RS
segment selection strategy, which has a low variance value. However, since the corresponding
F1 Score is slightly above 80% it can not be safely stated that such parameters’ combination can
be e昀昀ectively used for ransomware classi昀椀cation.
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In the case of the RF algorithm, similar conclusions to the previous paragraph can be for-
mulated for the segments’ selection strategies H, H+RS and H+2RS. However, unlikely as all
the other results obtained with the DA as a feature, the H+3RS segments selection strategy
paired with the DA has very good performances with the RF. Not only the average result is
high, but also the variance is small, implying that if trained correctly, it could be used as a part
of a ransomware defense mechanism in a real world scenario.

This result is also reported in Table 4.5, which means that for RF this is the best results
among all the possible parameters combinations and in particular among all the tested features.

Given the RF results with the combination of DA and H+3RS, it seems that such features
carry useful information and could be used to build a working defense mechanism. However,
the current SVC and NN models are not able to detect meaningful correlation. Future work
could focus on this DA and H+3RS features combo and better tune the SVC and NN hyper-
parameters to improve results.

As in the prior case, the implemented attacks are countered by the use of machine learning
algorithms alone. It does not matter if the extracted features are directly the Entropy values of
the 昀椀le or the DA values between the real and the ideal 昀椀le Entropy, all the three algorithms are
able to neutralize the attacks, rendering the tempering of the Entropy header ine昀昀ective against
machine learning in general.

This is probably due to the simplicity of the perpetuated attacks, since they aim to simply
nullify the entropy header, they probably create a new class of ransomware easily distinguish-
able from the legitimate 昀椀les. This is because real world 昀椀les, even with low entropy values,
never truly touch the zero mark.

Results of the best performing F1 score are illustrated in Figure 4.6.
This implication carries an important discovery, which is that if the perpetuated attackswere

simple and a ransomware detection method was based on machine learning, the attacks are
quickly rendered useless.

More sophisticated attacks that temper the header, like copying and attaching the header of
other legitimate 昀椀les inside the 昀椀le system, or the ones proposed by [6, 7, 8], would probably
work better. Future works are required to distinctively address these alternatives.

4.4.3 Entropy + DA

Generally speaking, machine learning algorithms performs better if they have more data and
thus features to be trained on. This is the simple idea behind combining the Entropy and the
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Figure 4.5: Best average F1 Scores for Support Vector Classi昀椀ca琀椀on (SVC), Neural Network (NN) and Random Forest (RF)
for each segment extrac琀椀on strategy and DA as feature on the NapierOne dataset
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Figure 4.6: Best average F1 Scores for Support Vector Classi昀椀ca琀椀on (SVC), Neural Network (NN) and Random Forest (RF)
for each segment extrac琀椀on strategy and DA as feature on the A琀琀ack dataset
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Figure 4.7: Best average F1 Scores for Support Vector Classi昀椀ca琀椀on (SVC), Neural Network (NN) and Random Forest (RF)
for each segment extrac琀椀on strategy and Entropy+DA as feature on the NapierOne dataset

DAs values and give the resulting vector as input feature for the machine learning algorithms,
hoping for a better 昀椀le classi昀椀cation.

Computationally speaking, it is basically identical to using only the DAs, since the Entropy
values are computed anyway, but not used.

Unfortunately, this reasoningdidnot translate into signi昀椀cant results for theRandomForest
and the SVC algorithms, as shown in Figure 4.7.

TheRFon average obtain better results than the SVC, however both algorithms exhibit high
variance between di昀昀erent runs (aside forH+2RSwith SVCwhich has a low F1 Score anyway)
and so can not reliably be used to classify between ransomware encrypted 昀椀les and legitimate
昀椀les.

However, this is not the case for the implementedNeuralNetwork. The combination of the
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Figure 4.8: Best average F1 Scores for Support Vector Classi昀椀ca琀椀on (SVC), Neural Network (NN) and Random Forest (RF)
for each segment extrac琀椀on strategy and Entropy+DA as feature on the A琀琀ack dataset

73



Entropy and DA obtain high F1 Scores with low variance values for all the segments’ selection
strategies.

This means that the algorithm is able to converge to a meaningful model independently
of the collected segments, which imply that Entropy+DA features carry useful information
regardless of the sampled segments. This is a meaningful result, because it could imply that a
defense mechanism build on such a combination could be quick, able to e昀昀ectively be used in
a real world scenario and also generalize to new ransomware that speci昀椀cally target the selected
features.

SVC and RF probably need more hyperparameter tuning to reduce the variance and obtain
better performances as NN.

As with the use of Entropy and DA singularly, the combined features are quite e昀昀ective
against the formulated attacks. In particular, the RF has better average performances as shown
in Table 4.6 butNN,which follow shortly after in terms of F1 scores for all segments’ selection
strategies, has lower variance values and therefore can be consideredmore stable than the other
models. Results are shown in Figure 4.8.
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5
Conclusion

Ransomware threat has been growing steadily, targeting and damaging both public agencies
and also private companies. Unfortunately, given the continuous evolution of ransomware
strains, which regularly deploy new and improved techniques to evade defense mechanisms, a
lite mitigation technique, able to keep up with the up-to-date ransomware changes has yet to
be found.

Many frameworks, based on static analysis, dynamic analysis or a combination of both were
proposed,with someof themcomposedofdata collected fromdi昀昀erent steps. However, sooner
or later, such algorithms are destined to fall victims to the evolution of obfuscation techniques
and evasion methods alike.

However, given the ransomware nature and scope, independently of how much the strain
is convoluted, at one point it will need to encrypt 昀椀le system data. If a defense mechanism was
able to distinguish between the legitimate 昀椀le on the disk and encrypted 昀椀les, it could detect
the presence of an ongoing ransomware attack and stop it.

Given the scope of an encryption algorithm, which is to create a ciphertext from which the
plaintext can not be understood, they output seemingly randomvalues starting from any input.
Since legitimate 昀椀les tend to have repeated bytes due to their type structure, if such randomness
could be evaluated through a metric, it could be possible to distinguish between encrypted
and normal 昀椀les. One of the most widely used statistic metric in ransomware classi昀椀cation to
evaluate data distribution randomness, is the Shannon Entropy.

The truly new idea of Davies et al. [1] was not to use the Entropy for ransomware classi昀椀-
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cation, which was already explored, but it was to compute the Entropy only on the 昀椀le header.
Such analysis was proposed because 昀椀les have metadata at the start, which are bytes related to
昀椀le type and are used to describe general 昀椀le information. Thus, instead of considering the
totality of the 昀椀le, which would return Entropy values similar between encrypted and com-
pressed 昀椀les, focusing only on the header classi昀椀cation is faster and lighter than other proposed
methods.

The results were promising, but it was not addressed what would have happened to the anal-
ysis in the case the attacker was able to tamper with the encrypted 昀椀les header, and lower the
Entropy. Such vulnerability was explored by Lee et al. [6, 7] and Bang et al. [8] for the entire
昀椀le and by Venturini et al. [3] with a focus on the header. In particular, Venturini et al. [3],
also proposed some strengthening strategies to compensate the header Entropy analysis critical
昀氀aw. Venturini et al.[3]mitigations were based on the collection of random segments along the
昀椀les pairedwith the header so that if an attacker were able to tamper it, it would still be possible
to perform the analysis.

This thesis tried to explore the plausibility of implementing a light ransomware detection
method based on a machine learning algorithm and the features extracted following similar
methodologies as in Davies et al. [1] and Venturini et al. [3]. The algorithms used were SVC,
NN and RF. Entropy and DA of the 昀椀les header were tested and a formulation based on the
results was provided.

To achieve this, the correctness of the Entropy andDA computations was veri昀椀ed by rewrit-
ing the DAA and comparing the accuracy score with that of Davies et al. [1]. Since the Davies
et al. [1] dataset was too large for a quick proof, theVenturini et al. [3] dataset was used instead.
The accuracy score obtained was similar to that of Davies et al. [1].

Once this was veri昀椀ed, the DAA was computed on the up-to-date NapierOne dataset and
on the Attack dataset. The 昀椀rst was done to prove the usefulness of the Entropy and the DA,
used byDAA, to classify known ransomware strains, the secondwas implemented to prove the
DAA vulnerability to neutralization techniques and the need for a new and improvedmethod.

Then themitigations proposedbyVenturini et al. [3], basically aDAAversionmore resilient
against header tempering, ware implemented. They were run ten times, and averaged, to prove
the usefulness of random segments sampling strategies against header Entropy neutralization
techniques and as a comparison benchmark with the machine learning algorithms.

Ultimately, three algorithms—SVC, RF, and NN—were implemented, and various feature
combinations were tested with ten runs each. Speci昀椀cally, four types of 昀椀le segment selections
were performed, with each segment having a length between 8 and 256 bytes, incrementing by
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8 bytes. For the selected segments, the Entropy, DA, or both were computed and used as input
features for the algorithms.

The Entropy feature performed poorly in terms of F1 score with all the machine learning
algorithms on both datasets, having either lower average values or high variances.

The DA feature also had mediocre results for both datasets, except when it was computed
on the header, and on three random 昀椀le segments, and provided as input for the RF algorithm.
This couldmean that theDAcanpotentially carry useful information, andmaybe it performed
poorly on other algorithms due to how the algorithms were modeled, more than due to the
feature itself.

The combination of the Entropy and theDAalso performedwell on both datasets with only
one algorithm, the Neural Network. However, di昀昀erently from the use of the DA alone with
RF, the results remained almost the same with di昀昀erent selection strategies.

In both cases, DA alone and DA combined with Entropy, the results are interesting and
show that if a defense mechanismwas built using the RF andNN respectively it would be able
to quickly and e昀昀ectively distinguish between ransom encrypted 昀椀les and legitimate 昀椀les.

However, independently of the machine learning algorithm, no single feature performed
universally better than the others. This could be either due to the limitations of the features,
or of the algorithms used.

Futureworks could explore unsupervisedmachine learning algorithms, tobetter understand
why certain features are not as good as others, focus on the best performing features, and cal-
ibrate the machine learning models to improve the results, try di昀昀erent supervised machine
learning models or implement more sophisticated attacks to stress test the algorithms.
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A
Appendix

A.1 Advanced Encryption Standard (AES)

Generally speaking, there are two sides in an encrypted communication: the sender, who en-
crypts the data, and the recipient, who decrypts it. Encryption is divided into two main cate-
gories, asymmetric and symmetric encryption. The former, as the name suggests, is di昀昀erent
on each side; the sender and the recipient use two di昀昀erent keys. Asymmetric encryption, also
known as public key encryption, uses a public key-private key pairing: data encrypted with the
public key can only be decrypted with the private key.

In symmetric encryption instead, the same key both encrypts and decrypts data. For sym-
metric encryption to work, the two or more communicating parties must know what the key
is; for it to remain secure, no third party should be able to guess or steal the key. From the data
collected during the years of ransomware activity, which can be found inMITRE | ATT&CK
catalogue (https://attack.mitre.org/software/), it is evident that when ransomware
need to encrypt data on the 昀椀le system they tend to use the Advanced Encryption Standard
(AES) or its modern derivatives, thus it could be useful to have a brief summary of such algo-
rithm.

AES is a block cipher based on the substitution-permutation network used for symmetric
encryption. It is a speci昀椀c implementation of the Rijndael block cipher with the block size lim-
ited to 128 bit and a key size of 128, 192 or 256 bits.
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The AES algorithm is based on the Substitution, Transposition and Linear maps iterated ci-
phering model, (S,T,L) for short, with n=10,12 or 14 rounds.
The AES algorithm holds a 4 by 4 array of bytes called the state, that is initialized to the input
to the cipher (note that the input is 128 bits which is exactly 16 bytes as the block size). The
substitution and permutation operations (providing confusion and di昀昀usion) are all applied
to the state array. Here are the steps, brie昀氀y summarized:

1. KeyExpansion– round keys are derived from the cipher key using theAESkey schedule.
AES requires a separate 128-bit round key block for each round plus one more.

2. Initial round key addition:

(a) AddRoundKey – each byte of the state is combined with a byte of the round key
using bitwise XOR.

3. For 9, 11 or 13 rounds:

(a) SubBytes–anon-linear substitution stepwhere eachbyte is replacedwith another
according to a lookup table.

(b) ShiftRows – a transposition step where the last three rows of the state are shifted
cyclically a certain number of steps.

(c) MixColumns – a linear mixing operation which operates on the columns of the
state, combining the four bytes in each column.

(d) AddRoundKey

4. Final round (making 10, 12 or 14 rounds in total):

(a) SubBytes
(b) ShiftRows
(c) AddRoundKey

Figure A.1 is a visual representation of the above described steps. Decryption is performed
by the inverse blocks in reverse order. Formore information on the AES encryption algorithm,
please refer to [47].
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Figure A.1: AES Encryp琀椀on Model provided by Professor Lauren琀椀 Nicola during the Informa琀椀on Security course
https://didattica.unipd.it/off/2024/LM/SC/SC2542/000ZZ/SCQ0089463/N0

A.2 Pseudocodes

Algorithm A.1 SVC Training
Require: Xtrain: training data features
Require: ytrain: training data labels
Require: C: regularization parameter
Require: kernel: kernel type (linear, polynomial, RBF, etc.)
Require: tol: tolerance for stopping criterion
Require: max_iter: maximum number of iterations (optional)
Ensure: model: trained SVCmodel
Begin
1. Initialize parameters:

a. Select the kernel function based on the input kernel type.
b. Initialize Lagrange multipliers (α) to zero.
c. Set up threshold value (b) to zero.

2. Pre-compute the kernel matrix if necessary:
K[i, j] = kernel(Xtrain[i],Xtrain[j])

3. Optimization (typically using SMO algorithm):
a. Repeat until convergence or max_iter:
i. For each sample i in Xtrain:
1. Compute the decision function:

f(i) =
∑

(α[j] · ytrain[j] · K[i, j]) + b
2. Compute the error for sample i:

Ei = f(i)− ytrain[i]
3. Check the KKT conditions and select the sample to optimize.
4. Optimize the chosen sample pair (i, j):

a. Compute the second error Ej and update α[i] and α[j].
b. Update the threshold value b.

ii. Check convergence based on tolerance (tol).
4. Construct the decision function using the optimized α and b.
5. Return the model containing α, b, and the kernel function.
End
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Algorithm A.2 Random Forest Training
Require: Xtrain: training data features
Require: ytrain: training data labels
Require: n_trees: number of trees in the forest
Require: max_features: maximum number of features to consider for each split
Require: max_depth: maximum depth of each tree (optional)
Require: min_samples_split: minimumnumber of samples required to split an internal node
(optional)

Require: min_samples_leaf: minimum number of samples required to be at a leaf node (op-
tional)

Ensure: forest: trained RandomForest model
Begin
1. Initialize an empty list to hold the individual decision trees.
2. For each tree t in range(1, n_trees):

a. Draw a bootstrap sample from the training data:
Xbootstrap, ybootstrap = bootstrap_sample(Xtrain, ytrain)

b. Train a decision tree on the bootstrap sample:
tree = train_decision_tree(Xbootstrap, ybootstrap,

max_features,max_depth,
min_samples_split,min_samples_leaf)

c. Add the trained tree to the list of trees.
3. Construct the RandomForest model using the list of decision trees.
4. Return the RandomForest model.
End
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Algorithm A.3Neural Network Training
Require: Xtrain: training data features
Require: ytrain: training data labels
Require: input_shape: shape of the input data
Require: output_shape: shape of the output data
Require: layers: list of layer con昀椀gurations (type, units, activation function, etc.)
Require: loss_function: loss function to be used
Require: learning_rate: learning rate for the optimizer
Require: epochs: number of epochs to train the model
Require: batch_size: number of samples per gradient update
Ensure: model: trained Neural Network model
Begin
1. Initialize the neural network:

a. De昀椀ne the architecture:
- Input layer: match the input_shape
- Hidden layers: as per the layers con昀椀guration (units, activation function)
-Output layer: match the output_shape, typicallywith a softmax or sigmoid activation

2. Initialize weights and biases for each layer:
For each layer l in the network:
a. Initialize weightsW[l]with small random values
b. Initialize biases b[l]with zeros

3. For each epoch in range(epochs):
a. Shu昀툀e the training data
b. For each batch in the training data:
i. Extract batch data Xbatch and ybatch
ii. Forward propagation:

- For each layer l:
z[l] = W[l] · a[l− 1] + b[l] (a[0] = Xbatch)

a[l] = activation_function(z[l])
iii. Compute loss:

loss = loss_function(ybatch, a[output_layer])
iv. Backward propagation:

- Initialize gradients for the output layer
- For each layer l from output to input:

Compute gradient of loss with respect to a[l],W[l], and b[l]
Update weights and biases:
W[l] = W[l]− learning_rate · dW[l]
b[l] = b[l]− learning_rate · db[l]

4. Return the trained model with updated weights and biases
End
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Figure A.2: Accuracy of the rewri琀琀en DAA on the OldNapierOne Dataset
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Figure A.3: Accuracy of the DAA by Venturini et al. on the OldNapierOne Dataset
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A.3 DAA

A.4 Mitigations
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Figure A.4: Best 2F mi琀椀ga琀椀on metrics values for all distance‐threshold pairs on the A琀琀ack dataset

86



0 16 32 48 64 80 96 112 128
Distance 0

16
32

48
64

80
96

112
128

Th
res

ho
ld

0
10
20
30
40
50
60
70
80
90
100

Accuracy

0

20

40

60

80

100

0 16 32 48 64 80 96 112 128
Distance 0

16
32

48
64

80
96

112
128

Th
res

ho
ld

0
10
20
30
40
50
60
70
80
90
100

F1_Score

0

20

40

60

80

100

0 16 32 48 64 80 96 112 128
Distance 0

16
32

48
64

80
96

112
128

Th
res

ho
ld

0
10
20
30
40
50
60
70
80
90
100

Precision

0

20

40

60

80

100

0 16 32 48 64 80 96 112 128
Distance 0

16
32

48
64

80
96

112
128

Th
res

ho
ld

0
10
20
30
40
50
60
70
80
90
100

Recall

0

20

40

60

80

100

Segments Length 72

Figure A.5: Best 3F mi琀椀ga琀椀on metrics values for all distance‐threshold pairs on the A琀琀ack dataset
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Figure A.6: Best 4F mi琀椀ga琀椀on metrics values for all distance‐threshold pairs on the A琀琀ack dataset
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Figure A.7: Best 2F mi琀椀ga琀椀on metrics values for all distance‐threshold pairs on the NapierOne dataset
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Figure A.8: Best 4F mi琀椀ga琀椀on metrics values for all distance‐threshold pairs on the NapierOne dataset
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Figure A.9: Best 4F mi琀椀ga琀椀on metrics values for all distance‐threshold pairs on the NapierOne dataset
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A.5 Machine Learning

A.5.1 Mean Runs

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Header Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Header Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

F1
_S

co
re

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Header Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Pr
ec

isi
on

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Header Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Re
ca

ll 
(%

)

Figure A.10: Accuracy obtained by Entropy of header as feature for Neural Network on the NapierOne Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.11: Accuracy obtained by Entropy of 2F as feature for Neural Network on the NapierOne Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.12: Accuracy obtained by Entropy of 3F as feature for Neural Network on the NapierOne Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.13: Accuracy obtained by Entropy of 4F as feature for Neural Network on the NapierOne Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.14: Accuracy obtained by Entropy of header as feature for Neural Network on the A琀琀ack Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.15: Accuracy obtained by Entropy of 2F as feature for Neural Network on the A琀琀ack Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.16: Accuracy obtained by Entropy of 3F as feature for Neural Network on the A琀琀ack Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.17: Accuracy obtained by Entropy of 4F as feature for Neural Network on the A琀琀ack Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.18: Accuracy obtained by Entropy of header as feature for Random Forest on the NapierOne Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.19: Accuracy obtained by Entropy of 2F as feature for Random Forest on the NapierOne Dataset. Each lying point
is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.20: Accuracy obtained by Entropy of 3F as feature for Random Forest on the NapierOne Dataset. Each lying point
is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.21: Accuracy obtained by Entropy of 4F as feature for Random Forest on the NapierOne Dataset. Each lying point
is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.22: Accuracy obtained by Entropy of header as feature for Random Forest on the A琀琀ack Dataset. Each lying point
is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.23: Accuracy obtained by Entropy of 2F as feature for Random Forest on the A琀琀ack Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.24: Accuracy obtained by Entropy of 3F as feature for Random Forest on the A琀琀ack Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.25: Accuracy obtained by Entropy of 4F as feature for Random Forest on the A琀琀ack Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.26: Accuracy obtained by Entropy of header as feature for SVC on the NapierOne Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.27: Accuracy obtained by Entropy of 2F as feature for SVC on the NapierOne Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.28: Accuracy obtained by Entropy of 3F as feature for SVC on the NapierOne Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.29: Accuracy obtained by Entropy of 4F as feature for SVC on the NapierOne Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.30: Accuracy obtained by Entropy of header as feature for SVC on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.31: Accuracy obtained by Entropy of 2F as feature for SVC on the A琀琀ack Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.32: Accuracy obtained by Entropy of 3F as feature for SVC on the A琀琀ack Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.33: Accuracy obtained by Entropy of 4F as feature for SVC on the A琀琀ack Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.34: Accuracy obtained by DA of header as feature for Neural Network on the NapierOne Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.35: Accuracy obtained by DA of 2F as feature for Neural Network on the NapierOne Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.36: Accuracy obtained by DA of 3F as feature for Neural Network on the NapierOne Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.37: Accuracy obtained by DA of 4F as feature for Neural Network on the NapierOne Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.38: Accuracy obtained by DA of header as feature for Neural Network on the A琀琀ack Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.39: Accuracy obtained by DA of 2F as feature for Neural Network on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.40: Accuracy obtained by DA of 3F as feature for Neural Network on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.41: Accuracy obtained by DA of 4F as feature for Neural Network on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.42: Accuracy obtained by DA of header as feature for Random Forest on the NapierOne Dataset. Each lying point
is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.43: Accuracy obtained by DA of 2F as feature for Random Forest on the NapierOne Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.44: Accuracy obtained by DA of 3F as feature for Random Forest on the NapierOne Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.45: Accuracy obtained by DA of 4F as feature for Random Forest on the NapierOne Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.46: Accuracy obtained by DA of header as feature for Random Forest on the A琀琀ack Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.47: Accuracy obtained by DA of 2F as feature for Random Forest on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.48: Accuracy obtained by DA of 3F as feature for Random Forest on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.49: Accuracy obtained by DA of 4F as feature for Random Forest on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.50: Accuracy obtained by DA of header as feature for SVC on the NapierOne Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.51: Accuracy obtained by DA of 2F as feature for SVC on the NapierOne Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.52: Accuracy obtained by DA of 3F as feature for SVC on the NapierOne Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.53: Accuracy obtained by DA of 4F as feature for SVC on the NapierOne Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Header Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Header Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

F1
_S

co
re

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Header Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Pr
ec

isi
on

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Header Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Re
ca

ll 
(%

)

Figure A.54: Accuracy obtained by DA of header as feature for SVC on the A琀琀ack Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.55: Accuracy obtained by DA of 2F as feature for SVC on the A琀琀ack Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.56: Accuracy obtained by DA of 3F as feature for SVC on the A琀琀ack Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.57: Accuracy obtained by DA of 4F as feature for SVC on the NapierOne Dataset. Each lying point is the average
results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.58: Accuracy obtained by Entropy and DA of header as features for Neural Network on the NapierOne Dataset.
Each lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.59: Accuracy obtained by Entropy and DA of 2F as features for Neural Network on the NapierOne Dataset. Each
lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.60: Accuracy obtained by Entropy and DA of 3F as features for Neural Network on the NapierOne Dataset. Each
lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.61: Accuracy obtained by Entropy and DA of 4F as features for Neural Network on the NapierOne Dataset. Each
lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.62: Accuracy obtained by Entropy and DA of header as features for Neural Network on the A琀琀ack Dataset. Each
lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.63: Accuracy obtained by Entropy and DA of 2F as features for Neural Network on the A琀琀ack Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.64: Accuracy obtained by Entropy and DA of 3F as features for Neural Network on the A琀琀ack Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.65: Accuracy obtained by Entropy and DA of 4F as features for Neural Network on the A琀琀ack Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.66: Accuracy obtained by Entropy and DA of header as features for Random Forest on the NapierOne Dataset.
Each lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on

122



8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Segments Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Segments Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

F1
_S

co
re

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Segments Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Pr
ec

isi
on

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Segments Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Re
ca

ll 
(%

)

Figure A.67: Accuracy obtained by Entropy and DA of 2F as features for Random Forest on the NapierOne Dataset. Each
lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.68: Accuracy obtained by Entropy and DA of 3F as features for Random Forest on the NapierOne Dataset. Each
lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.69: Accuracy obtained by Entropy and DA of 4F as features for Random Forest on the NapierOne Dataset. Each
lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.70: Accuracy obtained by Entropy and DA of header as features for Random Forest on the A琀琀ack Dataset. Each
lying point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.71: Accuracy obtained by Entropy and DA of 2F as features for Random Forest on the A琀琀ack Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.72: Accuracy obtained by Entropy and DA of 3F as features for Random Forest on the A琀琀ack Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.73: Accuracy obtained by Entropy and DA of 4F as features for Random Forest on the A琀琀ack Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.74: Accuracy obtained by Entropy and DA of header as features for SVC on the NapierOne Dataset. Each lying
point is the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on

126



8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Segments Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Ac
cu

ra
cy

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Segments Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

F1
_S

co
re

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Segments Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Pr
ec

isi
on

 (%
)

8 24 40 56 72 88 104 120 136 152 168 184 200 216 232 248 256
Segments Length

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95

100

Re
ca

ll 
(%

)

Figure A.75: Accuracy obtained by Entropy and DA of 2F as features for SVC on the NapierOne Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.76: Accuracy obtained by Entropy and DA of 3F as features for SVC on the NapierOne Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.77: Accuracy obtained by Entropy and DA of 4F as features for SVC on the NapierOne Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.78: Accuracy obtained by Entropy and DA of header as features for SVC on the A琀琀ack Dataset. Each lying point is
the average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.79: Accuracy obtained by Entropy and DA of 2F as features for SVC on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.80: Accuracy obtained by Entropy and DA of 3F as features for SVC on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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Figure A.81: Accuracy obtained by Entropy and DA of 4F as features for SVC on the A琀琀ack Dataset. Each lying point is the
average results obtained from ten runs. The ver琀椀cal lines represent the standard devia琀椀on
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