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Abstract

Since their introduction, diffusion models have achieved significant success in various applica-

tions, demonstrating superiority over other generativemodels. This work explores the feasibility

of applying diffusion models to the segmentation of the choroid plexus, a crucial brain structure

for the diagnosis and study of various pathologies. Using magnetic resonance imaging (MRI)

and manual segmentations performed by expert radiologists on healthy subjects and patients

with relapsing-remitting multiple sclerosis (RRMS), several models were trained to generate

accurate and consistent segmentations from the input images. In addition to the direct training

of Denoising Diffusion Probabilistic Models, advanced deep learning techniques were imple-

mented to enhance performance and make the application of diffusion models in the medical

field more feasible. Specifically, transfer learning and self-supervised learning techniques were

adopted to assess whether efficient pre-training could reduce the number of images required for

model training, given the limited availability of freely usable medical data. Additionally, patch-

based techniques were employed to segment complete three-dimensional volumes, aiming to

reduce the time needed to generate segmented volumes, which is a crucial factor in the medical

context. Our results indicate that, while diffusion models were not initially designed for seg-

mentation tasks, they can be successfully adapted for this purpose. However, further research

is necessary to achieve state-of-the-art performance and fully leverage deep learning techniques

such as data augmentation, transfer learning, and self-supervised learning. Nevertheless, our

findings provide valuable insights for future research, guiding efforts toward improved perfor-

mance and generalization. In conclusion, among various generative models, diffusion models

present a promising alternative to traditional methodologies used in medical segmentation, with

potential improvements achievable through the combination with other deep learning techniques

and the ability to provide quick results even for three-dimensional segmentations.
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Chapter 1

Introduction

1.1 Diffusion Models

Generative modelling using neural network has been a driving force in the past decade of

deep learning, significantly impacting various domains such as images [1], audio [2] and text

[3]. From a probabilistic point of view, generative models are designed to synthesize samples

x̃ ~ pθ(x̃) that come from the same distribution as the training data x ~ pd(x) [4].

In recent years, advancements in general deep learning architectures as well as in computa-

tion power have enabled the training of larger models on more extensive datasets, leading to

a resurgence of interest in generative models and unveiling improved visual fidelity and sam-

pling speed. Specifically, generative adversarial networks(GANs) [5], variational autoencoders

(VAEs) [6], and normalizing flows (NFs) [7] have emerged.

Fig. 1.1. This figure highlights various generative models and their principles: (a) GAN trains

a generator and discriminator adversarially; (b) EBM uses an energy-based function and prior

input for generation; (c) VAE projects data to a latent space and samples via a decoder; (d) NF

employs an invertible flow function for transformation and generation. [4]
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In addition to these, generative models based on diffusion processes have gained traction. These

models do not require aligning posterior distribution, estimating intractable partition functions,

introducing of additional discriminator networks or imposing network constraints. To date,

diffusion models have proven useful in a wide variety of areas, ranging from generative mod-

elling tasks such as image generation [8], [9], image super-resolution [10], image inpainting

[11], [12] to discriminative tasks such as image segmentation [13], classification [14], contrast

harmonization [15], and anomaly detection [16]. Moreover, they are versatile, applicable to

bi-dimensional, tri-dimensional, and even four-dimensional data, where the fourth dimension

refers to time.

Fig. 1.2. The diagram shows the number of diffusion-based research papers published in the

medical domain, highlighting an annual growth rate and emphasizing the significance of diffu-

sion models for future research. The total number of papers is 103. [4]

Denoising diffusion probabilistic models (DDPMs) [17] have recently outperformed other ap-

proaches in modelling the distribution of natural images, excelling in both realism and diversity

of samples. These advantages have enabled DDPMs to achieve impressive results, often sur-

passing GANs in various applications [18].

2



Fig. 1.3. This figure illustrates diffusion models, which progressively add noise to the input

until it becomes a noise distribution, then apply a reverse process to remove the noise step by

step during sampling. [4]

The scientific community’s interest in diffusion models has led to the development of various

DDPM variants in recent years, specifically aimed at achieving better performance and enhanc-

ing the models’ efficiency both in terms of time and computational resources required for train-

ing and sampling. Among these are denoising diffusion implicit models (DDIMs) [19] and latent

diffusion models (LDMs) [20]. In addition to these structural and methodological variants of

diffusion models, alternative training techniques have also been developed in recent years to

make the training process more effective for applying models to three-dimensional volumes,

such as patch-based techniques [21].

Fig. 1.4. The diagram shows a schematic representation of latent diffusion models functioning.

[4]

Overall, deep generative models of all kinds have produced high-quality samples across various

data modalities. GANs, autoregressive models, flows, and VAEs have generated remarkable

images and audio samples, while advances in energy-based modeling and score matching have

produced images comparable to those of GANs. Diffusion models, in particular, are straightfor-
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ward to define, efficient to train, and capable of generating high-quality samples, demonstrating

superiority over other generative architectures even in discriminative tasks.

1.2 Training Strategies

1.2.1 Transfer Learning

In recent years, deep neural networks, including convolutional neural networks (CNNs), recur-

rent neural networks (RNNs), graph neural networks (GNNs), and attention neural networks,

have been extensively utilized for a variety of artificial intelligence tasks. Unlike traditional

non-neural models that heavily depend on hand-crafted features and statistical methods, neural

models can automatically learn low-dimensional continuous vectors from data, which serve as

task-specific features. Despite their success, deep neural networks face a significant challenge:

they are data hungry. With their large number of parameters, these models are prone to overfit-

ting and have poor generalization ability when trained on insufficient data [22].

To address this issue, substantial efforts have been made to create high-quality datasets for AI

tasks, facilitating the learning of effective neural models that outperform conventional non-

neural models. However, investing in data gathering is increasingly impractical due to the rarity,

inaccessibility, expense, time consumption and difficulty of compiling these datasets [23].

A breakthrough in tackling this problem is the introduction of transfer learning (TL). Transfer

learning is a machine learning technique where a model developed for a particular task is reused

as the starting point for a model on a second task. It leverages the knowledge gained from a

pre-trained model on a large dataset to improve the performance of a related task with limited

data. This approach is particularly useful in scenarios where labeled data is scarce or expensive

to obtain.

Transfer learning has become increasingly popular due to its effectiveness in improving model

accuracy, reducing training time, andminimizing the need for extensive labeled data. It is widely

applied in various fields such as natural language processing, computer vision, and speech recog-

nition.

The concept of transfer learning is based on the hypothesis that many tasks share common un-

derlying features. For instance, in computer vision, the initial layers of a convolutional neural

network typically capture generic features like edges and textures, which are useful for many

different tasks. By reusing these layers, we can save computational resources and improve

model performance. However, it is important to note that transferred knowledge does not al-

ways positively impact on new tasks; if the target learner is negatively affected by the transferred

knowledge, the phenomenon is termed negative transfer [24].

The study of TL is heavily motivated by the fact that humans can rely on previously learned
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knowledge to solve new problems and even achieve better results. More formally, transfer

learning aims to capture important knowledge from multiple source tasks and then apply the

knowledge to a target task. The primary components of TL include [25]:

• Source Domain (Ds): The domain from which the model is initially trained.

• Target Domain (Dt): The domain to which the model is transferred.

• Source Task (Ts): The task associated with the source domain.

• Target Task (Tt): The task associated with the target domain.

and the final goal is to improve the performance on Tt by leveraging knowledge from Ds and

Ts.

In transfer learning, source tasks and target tasks may have completely different data domains

and task settings, yet the knowledge required to handle these tasks is consistent [22]. It is thus

important to select a feasible method to transfer knowledge from source tasks to target tasks.

To this end, various methods have been proposed to facilitate the transfer of knowledge from

source tasks to target tasks. These methods can be broadly categorized into:

• Feature Extraction: Feature extraction methods pre-train effective feature representations

to pre-encode knowledge across domains and tasks [26]. The pre-trained model is then

used to extract useful feature from the target domain data. Typically, the last few layers

of the model are replaced with layers specific to the target task, while the rest of the model

remains unchanged. For instance, a convolutional neural network (CNN) pre-trained on

ImageNet can be used to extract features from medical images, which are then fine-tuned

on a smaller medical dataset to improve diagnostic accuracy.

• Fine-Tuning: This method follow an intuitive assumption that source tasks and target

tasks can share model parameters or prior distributions of hyper-parameters. Fine-tuning

involes taking a pre-trained model and updating the weights for all or some layers based

on the target task data [27]. This requires careful tuning of hyperparameters, such as

the learning rate, and the selection of the pre-trained layers to unfreeze in order to avoid

catastrophic forgetting of the pre-traiend knowledge. An example is using a language

model pre-trained on a large corpus of text and fine-tuning it on a specific downstream

task like sentiment analysis or question answering.

• Domain Adaptation: Domain adaptation addresses situation where the Ds and Dt have

different distributions [28]. Techniques like adversarial training or domain adversarial

neural networks are used to minimize the discrepancy between the source and target do-

mains, ensuring that the knowledge transfer is effective even when the domains differ

significantly.
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• Multi-task Learning: In multi-task learning, the model is trained simultaneously on mul-

tiple related tasks, allowing the model to learn shared representation that benefit all tasks

[29]. This approach can be seen as a form of transfer learning where the transfer happens

during the training process.

• Self-supervised Learning: Self-supervised learning involves training a model on pretext

task for which labels are automatically generated [30]. The pre-trained model can then be

fine-tuned on the target task, leveraging the representations learned from the pretext task.

Transfer learning applied in the context of deep learning offers several significant advantages:

• Reduced training time: By starting with a pre-trained model, the number of epochs re-

quired to achieve good performance on the target task is significantly reduced.

• Improved model performance: Transfer learning often results in higher accuracy and bet-

ter generalization, particularly when the target dataset is small.

• Lower data requirements: Effective learning can occur even with limited labeled data in

the target domain, as the pre-trained model provides a strong initialization.

• Increased versatility: Models pre-trained on large and diverse datasets can be adapted to

a wide range of tasks, making transfer learning highly versatile.

Diffusion models usually employ a U-Net-like neural network for the denoising. Training such

a model from scratch is challenging due to the scarcity of labeled images, particularly in the

medical field. Transfer learning can be very useful here to pre-train the network on publicly

available datasets and then fine-tune it on the target dataset to adapt the model weights to the

specific characteristics of the target domain. During this fine-tuning phase, a lower learning

rate is used to prevent overfitting.

Transfer learning offers significant advantages for enhancing diffusion models, including

improved performance, reduced training time, and lower data requirements. By leveraging

pre-trained models, diffusion models can achieve higher quality and efficiency, making them

highly effective for tasks such as image generation, data augmentation, and beyond. The

integration of transfer learning into diffusion models showcases the versatility and power of

this technique in modern deep learning applications.
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Fig. 1.5. Schematic comparison between traditional learning and transfer learning methods. (A

Comprehensive Hands-on Guide to Transfer Learning with Real-World Applications in Deep

Learning)

1.2.2 Self-supervised learning

Numerous real-world deep learning applications encounter the issue of having a large amount

of unlabeled training data while only a small fraction is labeled. Obtaining labeled examples

can be expensive, labor-intensive, and time-consuming, as it requires skilled human annotators

with domain-specific expertise. For example, in the medical field, unlabeled data can be readily

obtained from routine medical exams. However, assigning diagnoses to a vast number of cases

imposes a significant burden on medical professionals. Additionally, biases and discrepancies

among experts can introduce uncertainty into the ground truth labels [30].

Fig. 1.6. Schematic representation of the SSL framework. [30]
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To overcome these challenges of supervised learning, various machine learning paradigms have

emerged, including self-supervised learning (SSL). Self-supervised learning [31] is a prominent

example of a transfer learning method, particularly valued for its ability to operate without re-

lying on labeled data. This makes it exceptionally useful in real-world applications where there

is an abundance of unlabeled training instances and a limited number of labeled ones. SSL al-

gorithms capitalize on extensive unlabeled data by generating pseudo-labels for pre-training,

which allows models to leverage the vast amount of available data to learn meaningful repre-

sentations.

Fig. 1.7. Barchart depicting the number of SSL publications by year. [30]

In SSL, the process of generating output labels is intrinsic to the input data. These labels are

derived directly from the data examples themselves by revealing the relationships between data

components or various views of the data. An autoencoder (AE), for instance, can be viewed

as an SSL algorithm where the output labels are the data itself. This intrinsic labeling allows

the model to learn features that are beneficial for downstream tasks without needing external

annotations.

The essence of SSL is akin to solving a puzzle where parts of the input are missing, and the goal

is to predict those missing segments. This methodology can be generalized to encompass any

approach that operates without human-annotated labels, thus broadening the scope of SSL.
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Pretext tasks, also known as surrogate or proxy tasks, are central to SSL. These tasks are not the

primary objectives but serve as a means to generate robust pre-trained models. Each pretext task

requires distinct loss functions to achieve its goals. The fundamental idea is to create tasks that,

when solved, force the model to learn useful representations of the data. Common categories of

pretext tasks include:

• Context-based methods.

• Contrastive learning (CL).

• Generative algorithms.

• Contrastive generative methods.

Context-based methods rely on the inherent contextual relationships among data examples, in-

cluding spatial structures and both local and global consistency. An example is rotation predic-

tion, where a model learns to recognize geometric transformations applied to images. A deep

neural network is trained to predict the rotation transform, thus learning valuable image rep-

resentations in the process. Given an image, different rotated version of it are generated and

classified accordingly to the rotation angle applied. Thus, by learning to recognize these trans-

formations, the model captures features relevant to the image’s spatial properties.

Fig. 1.8. Three common examples of input in context-based methods.

Another context-based method is image colorization. Color prediction offers the advantageous

feature of requiring freely available training data. The deep neural network utilizes the light-

ness channel L of a color image as input, and predicts the color channels ab in the CIE Lab

color space. The network is trained using a multinomial cross-entropy loss between the true and

predicted color channels [32], allowing it to learn how to restore a grayscale image to its original

colorful state by concatenating together L, a and b.

The jigsaw approach divides an image into patches that are shuffled. The model’s task is to
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reconstruct the original order of the patches, which encourages it to understand the contextual

relationships within the image.

Contrastive SSL aims to learn invariant representations by contrasting different augmented

views of the same image. These methods extract the information in unannotated images by treat-

ing each unannotated image as a positive pair with its counterpart supervisory signal obtained

through some transformation and considering the supervisory signals of other unannotated im-

ages as negative pairs. In other words, views originating from the same instance are treated as

positive examples for an anchor sample, while views from different instances serve as negative

examples. The goal is to pull together representations of similar (positive) pairs and push apart

those of dissimilar (negative) pairs within a latent space.

Fig. 1.9. Schematic representation of contrastive learning principle.[33]

For example, the Momentum Contrast (MoCo) [34] framework uses a query q and a dictionary

of keys k0, k1, k2 ... to learn visual representations by optimizing a contrastive loss function.

More in details, MoCo maintains the dictionary of encoded representations that is updated with

a momentum mechanism. The model learns representations by contrasting the query with the

keys in the dictionary, using a contrastive loss to align similar representations and separate dis-

similar ones. The value of this function is low when q is similar to its positive key k+ in the

dictionary (which is unique) and dissimilar to all other negative keys. In the MoCo framework,
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the InfoNCE loss function [35], a form of contrastive loss, is utilized:

Lq = − log
exp q k+

τ∑︁K
i=0 exp q

ki
τ

where τ represents the temperature hyper-parameter.

Fig. 1.10. Schematic representation of Momentum Contrast (MoCo). MoCo trains a visual

representation encoder by matching an encoded query q to a dictionary of encoded keys using

a contrastive loss. Keys are encoded by a momentum-updated encoder, providing a large and

consistent dictionary for learning visual representations.[34]

Similarly, SimCLR [36] uses a mini-batch sampling strategy with N instances to form positive

and negative pairs, leveraging a contrastive loss to learn useful representations. Each instance in

the batch is augmented twice, generating a total of 2N instances, and the model learns to bring

the augmented views of the same instance closer in the representation space while pushing apart

views from different instances. Notably, SimCLR does not explicitly select negative instances.

Instead, for a given positive pair, the remaining 2(N−1) augmented instances in the mini-batch

are treated as negatives. Let sim(u, v) = uTv/(∥u∥∥v∥) represent the cosine similarity be-

tween two instances u and v. The loss function of SimCLR for a positive instance pair (i,j) is
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defiend as:

li,j = log
exp

sim(zi,zj)

τ∑︁2N
k=1 1[k ̸=i] exp

sim(zi,zk)
τ

where 1[k ̸=i] ∈ 0,1 is an indicator function equal to 1 if k ̸= i, and τ denotes the temperature

hyper-parameter. The overall loss is computed across all positive pairs, including both (i,j) and

(j,i), within the mini-batch.

Fig. 1.11. Schematic representation of SimCLR functioning. Two data augmentation operators

are sampled from the same family and applied to each data example to create two correlated

views. A base encoder f(·) and a projection head g(·) are trained to maximize agreement using

a contrastive loss. After training, the projection head is discarded, and the encoder and repre-

sentation h are used for downstream tasks.(SimCLR Visually Explained)

Generative SSL methods involve generating plausible outputs from corrupted or incomplete in-

puts, obtained through different transformation. A common approach uses autoencoders where

the encoder compresses the data into a latent representation and the decoder reconstructs the

original input [37]. The model is trained using a reconstruction loss that evaluates how well the

reconstructed output matches the original input, thus learning features that are useful for data

reconstruction and other downstream tasks.

Contrastive generative methods combine elements of both contrastive and generative ap-

proaches. For example, a hybrid loss function might incorporate both a reconstruction loss

and a contrastive loss. The encoder’s latent representations are optimized using a contrastive

loss, while the decoder’s output is optimized using a reconstruction loss, providing a balanced

learning approach. The latter ensure the decoder accurately rebuilds the input while the former

12
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Fig. 1.12. Schematic comparison of contrastive (a) and generative (b) SSL method applied to

graph data.[38]

ensure that similar inputs are close in the latent space. The overall function could be:

L = Lrec + LclLrec

where Lrec is the reconstruction loss and Lcl is the contrastive loss. This scheme helps in

balancing the influence of the two losses in a generative SSL framework.

Diffusion models can also be applied in SSL [39]. The forward process of these models can

be used to add noise to the input image x0 iteratively, producing a corrupted version xt. A

U-Net-based network then predicts the noise that takes x0 to xt, using the difference between

predicted and actual noise to optimize the network. The pre-trained network, which learns to

extract meaningful features through this process, can then be fine-tuned for specific downstream

tasks. During the fine-tuning, is necessary to always impose t = 0 since the network has

embedding layers for the pretext diffusion task.

In summary, self-supervised learning encompasses a broad range of techniques that allow

models to learn from unlabeled data by creating and solving pretext tasks. These tasks force

the model to uncover useful data representations that are beneficial for various downstream

applications. By leveraging the inherent structure and relationships within the data, SSL

methods can achieve remarkable performance without the need for extensive labeled datasets.
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Fig. 1.13. Schematic representation of GenSelfDiff, an example of framework implementing

diffusion for pre-training with histological images. (a) Self-supervised pre-training with dif-

fusion: The UNet model (encoder-decoder) processes the corrupted image xt along with the

corresponding time embedding te to predict the noise that transforms x0 into xt, utilizing a

P2 weighted loss function. f(·) represents a function that reconstructs xt−1 from xt. (b) Down-

stream segmentation: The self-supervised pre-trained UNet is fine-tuned in a supervised manner

to accurately predict segmentation masks. [39]

1.3 Medical image segmentation

Medical imaging is a cornerstone of modern healthcare, offering non-invasive diagnostic

capabilities by generating structural and functional representations of the human body and

its organs. These images are essential for diagnosing a multitude of conditions. The field of

medical imaging can be broadly divided into two main components: image formation and

image processing and analysis.

Image formation involves generating two-dimensional (2D) images from three-dimensional

(3D) objects, often utilizing iterative algorithms to reconstruct images from projection data.

On the other hand, image processing focuses on enhancing image properties, such as removing

noise, while image analysis extracts quantitative information or features to identify or classify

objects within the image.

Technological advancements have greatly facilitated image acquisition, leading to the produc-

tion of vast quantities of high-resolution images at reduced costs. This surge in image data
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has spurred significant progress in biomedical image processing algorithms, paving the way

for automated image analysis techniques that can extract valuable information [40]. A critical

step in automated analysis is segmentation, which divides an image into distinct regions based

on visual characteristics that are meaningful for a given problem. These regions often have

consistent gray levels, textures, or colors. Accurate segmentation is crucial for further analysis,

such as assessing texture homogeneity or measuring layer thickness.

In the context of image segmentation, there is a fundamental distinction between instance and

semantic segmentation. Sometimes the image may contain multiple objects of the same class,

and the segmentation process may segregate regions containing these objects while ignoring

other classes. This is known as instance segmentation. Conversely, semantic segmentation

differentiates between classes but does not segregate objects of the same class. Semantic seg-

mentation is a well-studied area in medical image analysis, with automated lesion segmentation

using machine learning showing promising diagnostic results [13].

Another important distinction in the segmentation field is between manual, semi-automatic

and fully automatic segmentation. Manual segmentation, where experts delineate regions of

interest (ROI) by drawing precise boundaries to annotate each pixel, is vital for creating ground

truth labeled images needed for developing semi-automatic and fully automatic segmentation

methods. However, this approach is time-consuming, subjective, and impractical for large

datasets. Moreover, manual segmentation is highly dependent on the expertise and experience

of the annotator, leading to variability between different experts and even the same expert

over time. Semi-automatic segmentation methods require limited user input combined with

automated algorithms to achieve accurate segmentation. Typically, the user selects an initial

ROI, which the algorithm then uses to segment the entire image. On the other hand, fully

automatic segmentation methods eliminate user interaction but often rely on supervised

learning approaches that require extensive labeled training data, usually obtained through

manual segmentation. For this reason, they are affected by the same challenges and limitations

mentioned before.

In recent years, deep learning techniques have become prominent in semantic segmentation

for both natural and biomedical images. The rise of deep learning in this field has been driven

by the availability of powerful central processing units (CPUs) and graphics processing units

(GPUs), access to large datasets, and advancements in learning algorithms. Deep learning

models, such as U-Net and its variants, have significantly improved the accuracy and efficiency

of segmenting anatomical structures and abnormalities from imaging modalities like MRI

and CT, becoming the state of the art architecture for medical segmentation. An example of

this is given by nnU-Net, which is currently considered the best choice for biomedical image

segmentation [41].
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Fig. 1.14. U-Net architecture. [42]

Generative models such as GANs and VAEs have been applied as data augmentation tech-

niques to improve the performance of segmentation models [43]. In the last years, diffusion

models have also been successfully applied for medical image segmentation, demonstrating

the potential to outperform conventional and current state-of-the-art models. This can be

achieved by exploiting the conditional process of the models, which allows the use of images

as anatomical prior.

In conclusion, image segmentation plays a vital role in medical image analysis by providing

automated methods to precisely delineate and separate different anatomical structures and

pathological entities. Automated segmentation allows clinicians to obtain detailed visu-

alizations and quantitative assessments of lesions and other structural anomalies, thereby

facilitating computer-aided diagnosis, treatment planning, and monitoring of disease progres-

sion. Therefore, multidisciplinary research efforts are essential to develop new fully automatic

segmentation methods that are both computationally and temporally efficient, aiding clinicians

in the medical field.
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1.4 The Choroid plexus

The choroid plexus is a small, highly vascular structure located within the lateral, third, and

fourth ventricles of the brain. It is primarily responsible for producing cerebrospinal fluid

(CSF) through the activity of ependymal cells lining the ventricles. This production is essential

for maintaining the brain’s environment, providing cushioning, regulating intracranial pressure,

and removing metabolic waste [44]. The choroid plexus also forms the blood-CSF barrier, a

critical interface that controls the exchange of substances between the blood and CSF, thereby

protecting the brain from toxins and pathogens. Additionally, it secretes various growth factors

that maintain the stem cell pool in the subventricular zone, playing a role in brain development

and repair [45].

Fig. 1.15. Schematic representation of the choroid plexus and its functionalities. [46]

Pathological conditions affecting the choroid plexus include a spectrum ranging from benign

cysts to malignant carcinomas and metastases. These abnormalities can manifest in different

forms: focal enlargements, such as papillomas and carcinomas, present as localized growths,

while diffuse enlargements, like diffuse villous hyperplasia of the choroid plexus (DVHCP), re-

sult in widespread tissue expansion. Changes in the choroid plexus structure and function have

been linked to various neurological and psychiatric disorders. For instance, in Alzheimer’s

disease, the choroid plexus may contribute to impaired CSF circulation and amyloid-beta

accumulation. Its role in immune regulation and surveillance is also significant in conditions
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such as multiple sclerosis, where it influences immune cell trafficking into the central nervous

system [47].

Given the choroid plexus’s role in numerous pathophysiological conditions, accurate segmen-

tation in MRI scans is crucial for both clinical and research purposes. MRI provides detailed

images of the brain’s soft tissues, making it an effective tool for visualizing the choroid plexus.

However, segmentation is challenging due to the structure’s small size, complex morphology,

and individual variability. Advanced image processing techniques and deep learning algorithms

are increasingly used to enhance segmentation accuracy and efficiency. These technological

advancements have significant potential to improve the diagnosis and monitoring of conditions

such as hydrocephalus, Alzheimer’s disease, and other disorders involving CSF dynamics [48].

Fig. 1.16. Brain MRI scans with short white lines and arrows to highlight the choroid plexus.

[47]

As mentioned before, the state-of-the-art in medical segmentation, including choroid plexus

segmentation from MRI images, is currently represented by the U-Net and its variants. Eisma
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et al. [49] developed a method using a fully convolutional U-Net architecture, which involves

registering input images to MNI152 space, cropping around the choroid plexus based on a

probabilistic atlas, and using these cropped images to train a 3D U-Net with 41 overlapping

patches per participant. The outputs are then reassembled in MNI space and transformed back

to the native imaging space. Yazdan-Panah et al. [48] proposed a method using two cascaded

3DU-Nets. The first U-Net processes down-sampled whole images to identify probable choroid

plexus locations. Patches are then randomly selected around high-probability voxels, which the

second U-Net uses to segment the choroid plexus. The segmented patches are merged using a

Hann windowing technique to create the final segmentation mask, ensuring smooth integration

and normalization of the output.

In conclusion, understanding the anatomy and function of the choroid plexus is fundamental

to advancing knowledge of the brain’s ventricular system and its role in health and disease.

AccurateMRI segmentation of the choroid plexus is a critical step in diagnosing and researching

various neurological conditions. Continued research and technological advancements in this

field are essential for improving clinical outcomes and expanding our understanding of the

central nervous system.

1.5 Aim of the thesis

Given the growing interest in diffusion models within the scientific community and their

expanding use in medical research, this study aims to develop a method utilizing Denoising

Diffusion Probabilistic Models for the segmentation of the choroid plexus in brain MRI images.

Inspired by [13], who successfully applied diffusion models to segment brain tumors with

superior performance compared to current state-of-the-art methods, this study seeks to replicate

and adapt their approach specifically for choroid plexus segmentation.

In pursuit of further improving the model’s performance, various pre-training and self-

supervised learning techniques have been considered and evaluated. Therefore, the objective

of this work is to develop a methodology that leverages recent technological advancements in

deep learning to assist the medical field in the study and analysis of the pathophysiology of the

choroid plexus, a delicate and critical brain structure.
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Chapter 2

State of the art

2.1 Diffusion Models

2.1.1 Denoising Diffusion Probabilistic Models

Denoising Diffusion Probabilistic Models represent a powerful class of generative models that

leverage the concept of diffusion processes to generate high-quality samples from complex data

distribution. These models have gained significant attention for their ability to produce realis-

tic data by iteratively denoising randomly sampled noise. This section describes the detailed

functioning of DDPMs, including the forward and reverse processes, training procedure, and

inference.

Fig. 2.1. The diagram represents the forward and reverse diffusion process in DDPMs.(What

are Diffusion Models?)

DDPMs are latent variable models where x1,..., xT are latent of the same dimensionality as the

data x0 ~ q(x0). In fact, the forward diffusion process in Denoising Diffusion Probabilistic Mod-
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els is a Markov chain that gradually adds Gaussian noise to the data over a series of time steps

[50]. Therefore, given an input data point x0 (e.g., an image), the forward process produces a

sequence of noisy samples x1, x2..., xT where T is the total number of time steps. This process

can be formulated as:

q(xt|xt−1) = N(xt;
√︁
1− βtxt−1,βtI)

where βt is a variance schedule that controls the amount of noise added at each time step t. The

entire forward process can be expressed as:

q(x1:T |x0) =
T∏︂
t=1

q(xt|xt−1)

A notable property of the forward process is that it admits sampling xt at any arbitrary time step

t in closed form [17]: using the notation αt = 1− βt and αt =
∏︁t

s=1 αs, we have

q(xt | x0) = N(xt;
√
αtx0,(1− αt)I)

The reverse diffusion process aims to denoise the noisy sample xT back to the original data point

x0. This process is also a Markov chain but in the reverse direction:

p(xt−1|xt) = N(xt−1;µθ(xt,t),Σθ(xt,t))

where µθ(xt,t) and Σθ(xt,t) are the mean and the variance predicted by a neural network

parametrized by θ. Therefore, the goal during training is to learn the parameters θ that mini-

mize the discrepancy between the true posterior q(xt−1|xt) and the model posterior pθ(xt−1|xt).

Training a DDPM involves optimizing the parameter of the neural network to approximate the

reverse process. This is done byminimizing the variational bound on the negative log-likelihood

of the data. The loss function can be derived as:

L = Eq

[︄
T∑︂
t=1

(DKL (q(xt−1|xt, x0) ∥ pθ(xt−1|xt))) + const

]︄

Here,DKL denotes the Kullback-Leibler divergence between the true posterior q(xt−1|xt, x0) and

the model posterior pθ(xt−1|xt). This function measures how much one probability distribution

pθ(xt−1|xt) diverges from a second, reference probability distribution q(xt−1|xt, x0) and can be

viewed as the amount of information lost when the former is used to approximate the latter.

Thus, this loss encourages the model to learn the reverse diffusion process effectively [51].

The success of Denoising Diffusion Probabilistic Models hinges on their parametrization, which

22



directly affects their ability to accurately model the reverse diffusion process. This is possible

since the mean and the variance of the real distribution can be written as follow:

µt(xt,x0) =

√
αt−1βt

1− αt

x0 +

√
αt(1− αt−1)

1− αt

xt

and

Σt = β̃tI where β̃t =
1− αt−1

1− αt

βt

It is also possible to reparametrize xt, allowing to define other possible strategies to train the

diffusion model:

xt(x0,ϵ) =
√
αtx0 +

√
1− αtϵ for ϵ ~N(0,I)

Thanks to above mentioned reparametrisation and some straightforward calculations is possible

to define different training strategies for the DDPMs, each with its own advanges and trade-offs:

• Mean and Variance Parametrisation:

As stated before, in the original formulation of DDPMs, the neural network is used to

predict both the mean µθ(xt,t) and the variance Σθ(xt,t) of the reverse diffusion step.

This parametrisation ensures that the model captures the full conditional distribution at

each time step:

p(xt−1 | xt) = N(xt−1;µθ(xt,t),Σθ(xt,t))

The variance is often fixed or parametrised [8] in a way to ensure stability during training,

for example, by using a schedule similar to the forward process variance schedule βt. This

means imposing Σθ(xt,t) = βt. Once the predicted mean and variance are available it is

possible to sample xt−1 ~ pθ(xt−1 | xt)

• Noise Prediction Paramtrisation:

A more popular approach, particularly for its simplicity and effectiveness, is the noise

prediction parametrisation [17]. In this approach, the neural network predicts the added

noise ϵ at each time step rather than directly predicting the mean and variance. The model

learns to minimize the difference between the true noise added during the forward process

and the noise predicted by the neural network:

Lsimple = Et,x0,ϵ[∥ϵ− ϵθ(xt, t)∥2]

where ϵ is the noise added to the data point x0 at time step t, and ϵθ is the noise predicted

by the neural network. This parametrisation is beneficial because it directly targets the

denoising task, simplifying the learning objective and often leading to more stable train-

ing. Once the predicted noise at the time step t is available, is possible to compute xt−1
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as follow:

xt−1 =
1
√
αt

(︃
xt −

βt√
1− αt

ϵθ(xt,t)

)︃
+ βtz where z ~N(0,I)

• Direct prediction of x0:

Another approach involves predicting the original data x0 from the noisy sample xt [17].

This can be advantageous because it aligns the model’s objective closely with the ultimate

goal of reconstructing the original data. The model is trained to minimize the reconstruc-

tion error:

Lx0 = Et,x0,ϵ[∥x0 − xθ(xt,t)∥2]

where x0 is the original samples and xθ(xt,t) is its parametrisation provided by the model.

Although this approach can be intuitive, it may not always capture the underlying noise

distribution as effectively as noise prediction parametrisation.

• Score-Based Parametrisation:

Inspired by score-based generativemodels, this approach involves parametrising the score

function [52], which is the gradient of the log probability density with respect to the data.

The neural network predict the score of the data distribution, which is then used to itera-

tively refine the noisy samples:

Lscore = Et,x0,ϵ[∥sθ(xt,t)−∇xt log(q(xt | x0))∥2]

where sθ(xt,t) is the parametrised score function provided by themodel and∇xt log(q(xt |
x0)) is the real score function. Score-based parametrisation can provide a more principled

approach to modeling the underlying data distribution, but it may require more complex

training procedures. Langevin dynamics can produce samples from a probability density

p(x) using only the score function ∇x log(p(x)). Given a fixed step size γ > 0, and an

initial value x̃0, the Langevin method recursively computes the following:

x̃t = x̃t−1 +
γ

2
∇x log(p(x̃t−1)) +

√
γzt for zt ~N(0,I)

Therefore, by approximating the score function with sθ(xt,t) and inverting the equation,

it is possible to implement the reverse diffusion process.

As mentioned before, each parametrisation techniques offers different trade-offs in terms of

model complexity, training stability and performance:

• Mean and Variance Parametrisation provides a comprehensive approach but can be more

challenging to train due to the need to accurately model both mean and variance.
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• Noise Prediction Parametrisation is simpler and more stable, make it the most popular

choise for many practical applications.

• Direct prediction of x0 aligns the training objective with the end goal but may struggle

with capturing the noise distribution accurately.

• Score-Based Parametrisation offers a theoretically groundedmethod but can bemore com-

plex to implement and train effectively.

In practice, the choice of parametrisation depends on the specific requirements of the applica-

tion, the nature of the data, and the computational resources available.

Fig. 2.2. Examples of sampling from a DDPM with intermediate results. [17]

During inference, new data samples are generated by sampling from a Gaussian distribution

and iteratively applying the learned reverse diffusion process in order to remove the noise and

recover the image structures. This iterative denoising continues until the final sample x0 is ob-

tained, which should resemble one extracted from the training data distribution.

For the implementation of DDPMs there are three important aspect to define: the neural network

architecture, the variance schedule and the training hyperparameters.

The neural network used in DDPMs typically employs a U-Net architecture, known for its ef-

fectiveness in capturing multi-scale features [42]. This is achieved thanks to the characteristic

residual connections, that allow to keep track of the features extracted by the encoder and pass

them to corresponding decoder levels. The input to the network includes the noisy samples xt

and the time step t, encoded using positional embeddings, necessitating modifications to the

U-Net to incorporate layers capable of extracting them [53].

The variance schedule βt in DDPMs dictates the rate at which noise is added during the forward

diffusion process. Commonly used schedules include linear increasing with t or cosine anneal-

ing schedules that ensure a smooth transition from low to high noise levels across the diffusion

steps t. The forward process variances can be learned by reparametrisation or held constant as

hyperparameter [17]. The choice of scheduler impacts the model’s ability to generate realistic

samples and is crucial for stable training and accurate inference.
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Setting training hyperparameters is essential, including the learning rate, optimizer, and batch

size. The learning rate is a crucial hyperparameter in neural networks that controls how quickly

themodel updates its weights during training. A rate that is too high can lead to divergence, while

one that is too low may slow down convergence. The optimizer is the algorithm that adjusts the

model’s weights to minimize the loss function; common choices include Stochastic Gradient

Descent (SGD) and Adam, each with unique features designed to enhance learning efficiency

and stability. Finally, the batch size determines the number of samples processed through the

network in each iteration; larger batch sizes can take advantage of hardware parallelization but

require more memory, whereas smaller batch sizes allow for more frequent updates, potentially

affecting the training process’s speed and stability.

The learning rate is crucial for DDPMs due to their iterative denoising process and must be

chosen carefully to ensure stable training dynamics and avoid issues such as divergence or slow

convergence. Typically, learning rates for diffusion models are selected through empirical test-

ing and validation on training data, starting with a conservative initial value and adjust it based

on observed training dynamics and performance metrics. The choice of the optimizer also plays

a crucial role for the same reason mentioned before. Adam optimizer is commonly used for

its ability to adaptively adjust learning rates for each parameter based on the gradients’ magni-

tudes, thereby accelerating convergence and mitigating issues related to vanishing or exploding

gradients. In addition to these, when working with DDPMs, is fundamental to set the number

of diffusion steps T and the variance scheduler parameters βt. These hyperparameters are typ-

ically tuned using techniques such as grid search or Bayesian optimization to maximize model

performance and stability during training.

A key advantages of DDPMs lies in their ability to incorporate additional information or context

c into the generative process through conditioning. During training and inference, DDPMs can

conditionally generate samples xcond
T that combine the noisy sample xT with c:

xcond
T = [xT ,c]

where xT is the output of the forward diffusion process and c represents the conditioning data.

In biomedical image sythesis, the conditioning data c can include various forms of information

such as:

• Anatomical priors providing spatial constraints or structural information [13].

• Contextual information including subject demographics, clinical metadata, or environ-

mental factors relevant to the data generation context [52].

The effectiveness of conditioning in DDPMs relies on the neural network architecture used to

process the conditional inputs c. Commonly, architectures such as U-Net or convolutional neural
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networks (CNNs) are employed to encode and fuse xT and c, yielding parameters µθ(x
cond
T ) and

Σθ(x
cond
T ) of the distribution from which the denoised sample x0 is estimated during the reverse

diffusion process.

Implementing conditional DDPMs requires careful consideration of several practical factors:

• Relevance of Conditioning Data: Selecting conditioning data c that is informative and

relevant to the generative task is crucial for enhancing sample quality and relevance.

• Computational Efficiency: Balancing the computational overhead of integrating condi-

tioning data with the overall efficiency of model training and inference.

• Generalization Across Conditions: Ensuring that conditional DDPMs generalize well

across different conditions or contexts for robust performance in diverse applications.

Fig. 2.3. Schematic representation of LSegDiff, an example of LDM that uses a conditional

encoder with convolutional layers to extract features from the context before combining them

with xt. [7]

There are several effective techniques employed to integrate conditioning in DDPMs, thereby

improving their performance across various applications. One straightforward approach

involves concatenating [12], [13], [15], [54] the conditioning information c with the noisy

sample xT obtained from the forward diffusion process. This creates a joint input vector

xcond
T = [xT ,c], which is subsequently processed by the neural network architecture of the

DDPM. This method is widely used due to its simplicity and direct integration of c into the

model’s input space.

To handle diverse types of conditioning information c, multi-modal fusion networks are

employed [55]. These specialized architectures facilitate the integration of inputs from
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Fig. 2.4. Schematic representation of a DDPM for segmentation that uses concatenation to

incorporate an anatomical prior [13].

different modalities (e.g., images, text, numerical data), allowing the DDPM to learn complex

interactions between heterogeneous sources of information. By leveraging complementary data

types, multi-modal fusion enhances the richness and accuracy of generated samples.

Fig. 2.5. Schematic representation of multi-modal fusion using deep neural networks. Image

related feature and text feature are combined together in order to generate a multi-modal em-

bedding used as context by the diffusion model. [56]

Another possibility involves the usage of the attention mechanisms [53]. These provide a mech-

anism for selectively focusing on relevant parts of the conditioning data c during the generation

process. By assigning weights to different components or features of c, these mechanisms

enable the DDPM to dynamically adjust its generation strategy based on the importance of

various context elements. This approach improves model flexibility and adaptability to diverse

types and scales of conditioning data.
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The conditional properties of DDPMs empower these models to leverage additional infor-

Fig. 2.6. Schematic representation of attention mechanisms with query, keys and values. [57]

mation effectively, enhancing their capability to generate realistic and contextually relevant

samples across diverse applications. By integrating conditioning mechanisms, such as anatom-

ical priors in medical imaging or contextual cues in natural language processing, DDPMs

contribute to advancing generative modeling capabilities and addressing real-world data

challenges.

The aim of this study is to employ Denoising Diffusion Probabilistic Models for the segmen-

tation of the choroid plexus in MRI scans. The model is trained to synthesize segmentation

maps starting from Gaussian random noise. In this context, it is crucial to use the conditional

processes of DDPMs to introduce anatomical priors during the sampling phase. The goal is to

generate a segmentation map specific to a given MRI image, rather than a random segmentation

map. By conditioning on the MRI scan, the model can extract anatomical information that

serves as constraints during the sampling phase, ensuring the resulting segmentation mask is

tailored to the specific image.

2.1.2 Denoising Diffusion Implicit Models

Denoising Diffusion Implicit Models are an advancement of Denoising Diffusion Probabilistic

Models, designed to overcome the high computational cost associated with the latter. One of

the main disadvantages of DDPMs is the lengthy sampling procedure. Given T as the number

of time steps used during the model’s training, the reverse process in DDPMs, which is still a

Markov chain, requires iterating T times, making the sampling process computationally inten-

sive and time-consuming.

As discussed in the previous section, the general idea of diffusion models is to generate a series

of noisy images x0, x1,..., xT from an input image x by adding small amounts of noise over

many time steps T . Then, a U-Net-like network is trained to predict xt−1 from xt, for any time
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step t ∈ 1,...,T .

In DDPMs, the noise prediction can be parametrized and rewritten using:

σt =

√︃
1− αt−1

1− αt

√︄
1− αt

αt−1

This results in the update rule:

xt−1 =
√︁

αt−1

(︃
xt −

√
1− αtϵθ(xt,t)√

αt

)︃
+
√︁

1− αt−1 − σ2
t ϵθ(xt,t) + σtz

where z ~N(0,I) represents a stochastic element presents in each sampling steps. In DDIMs

however, σt is set to 0, resulting in an implict, non-Markovian structure that allows for deter-

ministic generation and improved sample quality [16]. This update rule allows for a more direct

and efficient denoising process, significantly reducing the number of steps required for high-

quality sample generation.

Fig. 2.7. Schematic representations of Denoising Diffusion Probabilistic Models (left) and De-

noising Diffusion Implicit Models. [19]

A fascinating aspect of DDPMs is that the objective functions used can learn not only a gen-

erative process for the Markovian inference process but also generative processes for various

non-Markovian processes parameterized by σt. Different choices of σt result in different gener-

ative processes, all while using the same model, thus eliminating the need for re-training. This

means we can use pre-trained DDPMs and set σt = 0 to implement the deterministic sampling

procedure.

One of the key advantages of DDIMs is their ability to perform accelerated sampling [19]. Tradi-

tional DDPMs require a large number of diffusion steps to generate high-quality samples, which

can be computationally intensive. DDIMs, however, can achieve comparable or even superior

sample quality with significantly fewer steps. This accelerated sampling process leverages the

deterministic nature of the implicit sampling method. By carefully choosing the noise sched-

ule, which influences the αt values, and the number of diffusion steps, DDIMs can maintain

the quality of the generated samples while reducing the computational load. This is particularly

important for applications that require real-time or near-real-time performance.
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Fig. 2.8. Graphical representation of the accelerated sampling with DDIMs. [19]

The flexibility of the implicit model allows to skip certain steps in the diffusion process without

sacrificing sample fidelity. This is achieved by adjusting the update rule to account for larger

time intervals between steps, effectively reducing the number of steps needed:

xt−k =
√︁

αt−k

(︃
xt −

√
1− αtϵθ(xt,t)√

αt

)︃
+
√︁

1− αt−kϵθ(xt,t)

where k represents the step size. Increasing k allows the model can generate samples more

quickly while still following the underlying diffusion process.

Moreover, we can rewrite the DDIMs generative process in order to highlight its similarity with

the Euler method [19] to solve an ordinary differential equation (ODE):

xt−∆t√
αt−∆t

=
xt√
αt

+

(︄√︄
1− αt−∆t

αt−∆t

−
√︃

1− αt

αt

)︄
ϵθ(xt,t)

To derive the corresponding ODE, we can reparameterize (1−α
α

) with σ and (x/
√
α) with x. In

the continuous case, σ and x are function of t, where σ is a non negative, increasing function

with σ(0) = 0. Thus, the ODE is given by:

dx(t) = ϵθ

(︃
x(t)√
σ2 + 1

,t

)︃
dσ(t)

where the initial condition is x(T ) ~N(0,σ(T )) for a very large σ(T ). This suggests that with

enough discretization steps, it is possible to reverse the generation process, encoding x0 to xT

and simulating the reverse of the ODE [16]. Therefore, xt can be encoded into xt+1 as follows:

xt+1 = xt +
√︁

αt+1

[︄(︄√︃
1

αt

−

√︄
1

αt+1

)︄
xt +

(︄√︄
1

αt+1

− 1−
√︃

1

αt

− 1

)︄]︄
ϵθ(xt,t)
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This suggests that unlike DDPMs, DDIMs can be used to obtain encodings of the observations,

which might be useful for other downstream application requiring latent representations of the

data.

Denoising Diffusion Implicit Models provide a powerful framework for generative modeling,

offering a deterministic and efficient approach to sample generation. By introducing an im-

plicit, non-Markovian trajectory, DDIMs achieve high-quality sample generation with fewer

steps, making them particularly suitable for applications like medical anomaly detection. The

accelerated sampling process further enhances their practicality, allowing for real-time or near-

real-time performance.

2.1.3 Patch-Based techniques

Diffusion models have emerged as a powerful class of generative models capable of producing

high-quality images by learning to reverse a noise diffusion process. While effective, train-

ing these models on high-resolution images or three-dimensional (3D) volumes poses signifi-

cant computational challenges. These models are computationally expensive and data-intensive,

with training costs increasing exponentially with higher resolution and data diversity. To ad-

dress these challenges, the patch-based training method has been developed, offering a scalable

approach to handle large volumes of data efficiently.

The primary motivation for adopting patch-based methods in training diffusion models stems

from the need to manage computational resources efficiently. High-resolution images require

extensive memory and processing power, making direct training on entire images impractical.

The patch-based approach mitigates these issues by focusing on smaller, more manageable im-

age segments.

Patch-based techniques involve dividing each image into smaller patches, typically of a fixed

size, such as 64x64 or 128x128 pixels. Each patch is treated as an individual training example.

Once extracted, these patches undergo the standard diffusion process, where the model learns

to denoise each patch. This approach significantly reduces memory usage and speeds up the

training process.

To maintain the contextual integrity of the generated images, patches are often extracted with

overlapping regions. This overlap ensures that the model captures the relationship between ad-

jecent patches, leading to more coherent and seamless image generation.

During inference, the trained model generates patches which are then combined to form the

complete image. Techniques like blending and smoothing are applied to handle overlapping

regions and potential boundary artifacts, ensuring the final image is free from noticeable seams.

An example of patch-based method applied to diffusion model is Patch-DM [58]. Patch-DM

trains on patches and uses feature collage to systematically combine partial features of neigh-
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boring patches. This method addresses the high computational costs associated with generating

high-resolution images, as it is resolution-agnostic.

In Patch-DM, training images are split into patches denoted as x
(i,j)
0 , where (i,j) is the row and

column number of the patch. Instead of generating the full image x0, the model generates x
(i,j)
0

patches, which are then concatenated to form the complete image. A basic approach involves

feeding the noised image patch x
(i,j)
t to the diffusion model and outputting the corresponding

noise ϵ
(i,j)
t . However, this method can lead to severe boundary artifacts since patches do not

interact with each other.

To mitigate this, patches can be shifted during each time step. At different time steps, the model

processes either the original split patch x
(i,j)
t or the shifted split patch x

′ (i,j)
t , a technique called

”patch collage”. While this reduces boundary artifacts, they can still occur.

Fig. 2.9. Patch Generation for Image Synthesis. (a) Basic patch-wise synthesis by splitting

images, causing severe border artifacts. (b) Reduces artifacts using shifted windows and patch

collage in pixel space. (c) Patch-DM patch collage method in feature space, avoiding border

artifacts and generating high-quality images. [58]

To further improve, a feature collage mechanism is implemented. Instead of performing ”patch

collage” in the pixel space, it is performed in the feature space. This allows the patches to be

more aware of adjacent features, preventing border artifacts. More formally, the internal feature

maps generated by the U-Net encoder are split and merged to generate shift patches, which are

then processed by the network’s decoder to predict the noise of the shifted patches. Position and

semantic embeddings are added to generate more semantically consistent images.

During inference, at each time step t, image xt is decomposed into patches and fed into the en-

coder. Before a feature map goes through the decoder, a split and collage operation is applied.

The decoder then outputs the predicted noise of the shifted patch, leading to the denoised patches

33



and finally the denoised image xt−1.

To avoid reconstructing images from generated patches, methods like Patch Diffusion [21] train

the diffusion model on patches while sampling the entire image. In Patch Diffusion, by gener-

alizing to an infinite number of noise scales, T → ∞, the forward diffusion process could be

characterized by a stochastic differential equation (SDE) and converted to an ordinary differen-

tial equation. The closed form of the reverse SDE is given by:

dx = [f(x,t)− g2(t)∇x log(pσt(x)]dt+ g(t)dw

where f(·,t) is a vector-valued function called the drift coefficient, g(t) is a real-valued function
called the diffusion coefficient, dt represents a negative infinitesimal time step,w denotes a stan-

dard Brownian motion, and dw can be viewed as infinitesimal white noise. The corresponding

ODE of the reverse SDE is name probability flow ODE, given by:

dx = [f(x,t)− 0.5g2(t)∇x log(pσt(x)]dt

Solving the reverse SDE or the ODE requires knowing the score function∇x log(pσt(x)), which

is generally intractable. Instead, a neural network parameterized score function sθ(x,σt) is

learned.

Fig. 2.10. Training and sampling with Patch Diffusion. [21]

Patch Diffusion learns this score function on random-size patches. For each training example,

small patches xi,j,s are randomly cropped, where (i,j) are the coordinate of the left-upper cor-

ner, and s denotes the patch size. Coordinates are then normalized to [−1,1] with respect to the
original image resolution, by setting the upper left corner of the image as (−1, − 1) while the

bottom right corner as (1,1). Denoising score matching on image patches is conducted with the
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corresponding patch locations and sizes as the conditions. The conditioning is obtain through

concatenation of the pixel coordinates as additional channels to the original image. When com-

puting the loss, the reconstructed coordinated channels are ignored and only the loss on the

image channel is considered. In this way, the conditional score function sθ(x,σt,i,j,s) is de-

fined on each local patch. This approach significantly boosts training speed but challenges the

score function to capture global dependencies between local patches. In fact, the conditional

score function sθ(x,σt,i,j,s) has only seen local patches and may have not captured the global

cross-region dependencies. To resolve this, strategies like random patch sizes and involving a

small ratio of full-size images are used. Training patch sizes are sampled form a mixture of

small and large patch sizes, with large patches seen as sequences of smaller patches. This helps

the score function learns how to unite scores from small patches into a coherent score map. Full-

size images are also included during training to ensure the reverse diffusion converges towards

the original data distribution.

During sampling, the process can be done globally, without explicitly sampling separate local

patches and merge them afterward. Firtsly, full image coordinates are computed and param-

eterized, and the additional coordinate channels are concatenated with the image sample for

conditioning at each step. Finally, the reconstructed coordinate channels are ignored at each

reverse iteration, considering only the denoised samples.

An example of application of patch-based methods to diffusion models for the processing of 3D

data is given by PatchDDM [54], that reduces resource consumption for 3D diffusion models.

As for Patch Diffusion, PatchDDM can be applied to the total volume during inference while

the training is performed only on patches. This is extremely important since limitations related

to the computational resources only allow the processing of small 3D volumes, which impedes

the processing of high-resolution biomedical images.

Fig. 2.11. Training and sampling with Patch-DDM. The diffusion model is optimized for mem-

ory efficiency and speed by training on coordinate-encoded patches. The input includes noised

segmentation xt, volumes b for segmentation as a condition, and coordinate encoding (CE) for

the patches. [54]
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The 2D-U-Net-based network architecture is adapted for the application on 3D data. In fact, for

3D data, the attention blocks in the network use disproportionally more memory, which made it

infeasible to use on current hardware. For this reason, they are completely removed. The second

fundamental change regards the skip connections. Instead of concatenation, averaging is used

to reduce computational cost and avoid numerical issues like exploding gradients.

PatchDDM trains on randomly sampled patches, reducing computations and memory usage per

iteration.The network is conditioned on patch positions by concatenating Cartesian coordinate

grids to the input, where each coordinate is represented by one channel as a linear gradient rang-

ing from -1 to 1 [59]. During inference, the entire volume is processed at once without having

to sample patches and reassemble them. This means no boundary and stitching artifacts that can

appear in traditional patch-based approaches.

PatchDDM has been successfully applied to segmentation tasks. In order to generate the seg-

mentation of an input image, is necessary to condition the generation of the segmentation mask

on that given image. The idea is to follow the method proposed in [13], where the input images

are concatenated to every xt as a condition. Thus, during training the original images are con-

catenated together with the coordinates embeddings, while during sampling only the image to

be segmented is used to condition the process.

The patch-based methods for training diffusion models represent a practical and efficient so-

lution for handling high-resolution image generation. By focusing on smaller patches, these

approaches balance computational efficiency with the ability to produce high-quality images,

making them a valuable technique in the field of generative modelling.
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Chapter 3

Material and methods

3.1 Datasets

The data used for training the diffusion models originate from three different studies, for a total

of 205 subjects [60]. For descriptive purposes, the datasets used will be referred to as dataset 1,

dataset 2, and dataset 3.

Datasets 1 and 2 were provided by the Multiple Sclerosis Center of the University Hospital of

Verona and were acquired prospectively between March 2019 and October 2021. Each par-

ticipant in the acquisition process provided informed consent prior the starting of the studies,

and all subsequent data acquisition and management procedures were conducted in accordance

with the Declaration of Helsinki. Furthermore, the protocols were approved by the local Ethics

Committee. A detailed description of the datasets is as follows:

• Dataset 1: This dataset comprises 67 subjects (21 males and 46 females) divided into

24 healthy controls (HC) and 43 patients with Relapsing-Remitting Multiple Sclerosis

(RRMS). For the HC group, the mean age was 37.3 years, with a standard deviation of 9.5

years, while for the RRMSgroup, themean agewas 40.9 years with a standard deviation of

9.9 years. The hardware used for acquiring T1-w MRI images was a Philips Achieva TX

with an 8-channel head coil (Software version R3.2.3.2). The parameters for the 3D T1-

w MPRANGE sequence were as follows: resolution of 1x1x1 mm, SENSE acceleration

factor of 2.5, echo time (TE) of 3.7 ms, repetition time (TR) of 8.4 ms, flip angle (FA) of

9°, and a total acquisition time of 4 minutes and 50 seconds.

• Dataset 2: This dataset consists exclusively of RRMS patients, totaling 61 subjects, di-

vided into 13 males and 48 females. The mean age of the participants was 36.7 years, with

a standard deviation of 10.1 years. The T1-w MRI images were acquired using a Philips

Elition S scanner with a 36-channel head coil (Software version R5.7.2.1). The parame-
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ters for the acquisition sequence, identical to the one used previously, were: resolution of

1x1x1 mm, compressed SENSE acceleration factor of 4, TE of 3.7 ms, TR of 8.4 ms, FA

of 8°, and a total acquisition time of 3 minutes and 20 seconds.

Dataset 3 was acquired in the United Kingdom as part of the Biomarkers in Depression Study

(BIODEP, NIMA consortium, https://www.neuroimmunology.org.uk/). All procedures fol-

lowed during the study were approved by the local ethics committee in advance and were con-

ducted in accordance with the Declaration of Helsinki. Before participating in the study, all

subjects provided informed consent. The BIODEP study was also approved by the NRES Com-

mittee East of England Cambridge Central. Dataset 3 includes data from 77 subjects, 26 males

and 51 females. Fifty-one of these subjects suffered from depression, with a mean age of 36.2

years and a standard deviation of 7.3 years. The remaining 26 subjects were healthy controls,

with a mean age of 37.3 years and a standard deviation of 7.8 years. For each participant, struc-

tural MRI images were acquired simultaneously with PET images using a GE SIGNA PET/MR

scanner. The parameters for the 3D T1-w Fast SPGR sequence were: resolution of 1x1x1 mm,

TE of 2.99 ms, TR of 6.96 ms, FA of 12°, and a total acquisition time of 6 minutes.

In addition to the previously introduced datasets, this study also includes publicly available

datasets employed for the pre-training procedures of the diffusion models. The used datasets

are listed and described as follows:

• VOC2012: The PASCAL Visual Object Classes 2012 (VOC2012) dataset is a standard

benchmark for object recognition and detection in natural images [61]. It contains 11,540

images with 27,450 annotated objects across 20 categories. Each image has an annotation

file giving a bounding box and object class label for each object in one of the twenty classes

present in the image. Additionally, a subset of 2,913 images is annotated with pixel-wise

segmentation of each object by experts. Multiple objects from various classes may appear

in a single image. This dataset was originally released as part of the PASCAL Visual

Object Class Challenge in 2012 at http://host.robots.ox.ac.uk/pascal/VOC/voc2012/.

• BraTS2021: The Brain Tumor Segmentation 2021 (BraTS2021) dataset focuses on the

segmentation of brain tumors from MRI scans and was released as part of the RSNA-

ASNR-MICCAI BraTS 2021 challenge [62], [63]. It includes data from 2,000 patients

with glioma, encompassing both high-grade (HGG) and low-grade (LGG) tumors, with a

total of 8,000 multiparametric MRI scans. The MRI scans, provided in the Neuroimag-

ing Informatics Technology Initiative (NIfTI) format (.nii.gz) for segmentation tasks,

consist of T1-weighted (T1-w), post-contrast T1-weighted (T1Gd), T2-weighted (T2-w),

and T2 Fluid Attenuated Inversion Recovery (FLAIR) volumes. These scans were ac-

quired from multiple different institutions under standard clinical conditions, but with
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different equipment and imaging protocols, resulting in a vastly heterogeneous image

quality reflecting diverse clinical practices. Pre-processing steps include co-registration

to the same anatomical template, interpolation to a common resolution of 1x1x1 mm

and skull-stripping. Annotations for segmentation tasks were done manually by one to

four raters, with approval from board-certified neuro-radiologists. These annotations

include labels for the GD-enhancing tumor (ET), peritumoral edematous/invaded tis-

sue (ED), and the necrotic tumor core (NCR). Additional infromation could be found

at https://www.med.upenn.edu/cbica/brats2021/.

• Figshare Brain Tumor: The Figshare Brain Tumor dataset [64], [65] contains 3,064 T1-

weighted contrast-enhanced images from 233 patients, including 708meningiomas, 1,426

gliomas, and 930 pituitary tumors. The images have an in-plane resolution of 512×512

with a pixel size of 0.49×0.49 mm². The slice thickness is 6 mmwith a 1 mm gap between

slices. Tumor borders were manually delineated by three experienced radiologists. The

intensity values at the 1st and 99th percentiles were computed and used to scale intensity

values to the [0, 1] range using the min-max method for normalization. The data are orga-

nized in Matlab data format (.mat file). Each file stores a struct containing the following

field for an image;

– Label: 1 for meningioma, 2 for glioma and 3 for pituitary tumor.

– PID: Patient ID.

– Image: Image data,

– TumorBorder: A vector storing the coordinates of dicrete points on tumor border.

– TumorMask. A binary image with 1s indicating the tumor region.

The data can be found at https://figshare.com/articles/dataset/brain_tu-

mor_dataset/1512427.

• IXI: The IXI dataset consists of brain MRI scans from 600 healthy individuals, including

both males and females, aged between 20 and 86 years. The data collections is part of the

project ”IXI - Information eXtraction from Images” funded by EPSRC (Engineering and

Physical Sciences Research Council) with grant reference GR/S21533/02. TheMR image

acquisition protocol for each subject includes: T1-w, T2-w, ProtonDensity weighted (PD-

w), magnetic resonance angiography (MRA) and diffusion-weighted images (DWI). The

scans were acquired using three different scanners:

– Ge 1.5T MRI system from the Istittute of Psychiatry.

– Philips 1.5T MRI system from Guy’s Hospital.
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– Philips 3T MRI system from Hammersmith Hospital.

All the images are provided in NIfTI format. More information could be found at

https://brain-development.org/ixi-dataset/.

• Medical Segmentation Decathlon - Brain Tumor: This dataset, part of the Medical Seg-

mentation Decathlon challenge [66], focuses on the segmentation of brain tumors in MRI

images. It comprises 750 4D volumes of multiparametric MRI data, with 484 volumes

allocated for training and 266 for testing. These data are sourced from patients diagnosed

with glioblastoma or low-grade glioma. The acquisition sequences used include: T1-w,

T1Gd, T2-w, and FLAIR, acquired using different scanners. The spatial dimensions of

the images are 240x340 pixels. This datasets focuses on the segmentation of three target

region: edema, non-enhanced tumor and enhanced tumor. Segmentations were manu-

ally annotated by experts and validated to ensure the accuracy of the ground truth data.

All images were transposed (without resampling) to the most approximate right-anterior-

superior coordinate frame, and converted to the NIFTI radiological standard. More infro-

mation about the dataset can be found at http://medicaldecathlon.com/

By integrating these comprehensive and diverse datasets, the diffusionmodels can be pre-trained

on a wide range of imaging conditions and scenarios, enhancing their robustness and perfor-

mance across various applications.

3.2 Preprocessing

The preprocessing steps applied to the datasets varied depending on the source. Images from

Datasets 1 and 2 were used as-is without undergoing any preprocessing steps prior to their

inclusion in this study. In contrast, images from Dataset 3 were subjected to a rigid-body

transformation aligning them to the MNI Talairach ICBM 152 2006c template, facilitated by

MIAKAT v4.2.6 software available at http://www.miakat.org/MIAKAT2/index.htm.

The ground truth (GT) manual segmentation for each subject was conducted in the native

space of the T1-weighted images. Specifically, segmentation of the choroid plexus (ChP) was

confined to the two lateral ventricles due to challenges in reliably distinguishing ChP in the

third and fourth ventricles using conventional 3T MRI imaging [67]. For Datasets 1 and 2,

ChP segmentation was performed through consensus by a junior and senior neuroradiologist

using ITK-snap. Similarly, Dataset 3 underwent ChP segmentation using Analyze software

v.12, available at https://analyzedirect.com. The GT data served as the basis for training the

diffusion models and as a reference for evaluating their performance during validation and
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testing phases.

3.3 Implementation

3.3.1 Basic Training Procedure

This part of the study implements a traditional diffusion model training approach specifically

tailored for segmenting brain MRI images, as proposed by [13]. The Python environment uti-

lized key libraries such as MONAI [68], TorchIO [69], and StyleAugmentation [70], along with

other standard libraries.

Firstly, Dataset 1 was loaded and split into training, validation and test sets with a 80/10/10

split, resulting in 846 training slices and 105 validation slices. Using MONAI, TorchIO, and

StyleAugmentation, a series of transformations were defined to prepare both datasets for the

training loop.

For the training set, transformations included restructuring tensors containing images and seg-

mentations to ensure compatibility with MONAI’s diffusion model implementations. Adjust-

ments were made to standardize the data to the RAS orientation, and images and segmentations

were interpolated to a resolution of 1x1x1 mm (bilinear interpolation for the images and near-

est neighbour for the segmentation). A central volume of 128x128x32 voxels was cropped to

focus on regions likely to contain the choroid plexus, thereby minimizing empty segmentation

masks. Image intensities were then scaled between 0 and 1, with the original intensities rang-

ing from 0 to 99.5. Data augmentation techniques, including random affine transformations,

elastic deformations, and various types of noise addition (bias field, blur, spike, motion arti-

fact) with randomized parameters, were applied to simulate commonMRI imaging artifacts and

enhance the model’s robustness. Then, each axial slice of the cropped volume was extracted

to obtain two-dimensional training images. Finally, StyleAugmentation was used to alter im-

age styles while preserving semantic content. All the data augmentation techniques mentioned

above were applied randomly with a probability of 0.2, except for the random spike noise, which

was applied with a probability of 0.1.

The transformations applied for data augmentation are detailed as follows:

• RandAffine: This technique applies a random affine transformation to the image. The

transformation parameters are sampled randomly as they are not specified in advance.

• RandElasticDeformation: This method introduces a nonlinear deformation based on con-

trol points, with maximum deformations of 5, 5, and 0 along the respective axes. The

smoothness of the deformation is regulated by setting the number of control points to 5.
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• RandomBiasField: This technique simulates low-frequency artifacts due to inhomo-

geneities in the scanner’s magnetic field. The strength of the artifact is controlled by

a coefficient, which was set to 0.5.

• RandomBlur: This method applies a Gaussian blur with a filter of random size to the

image. The standard deviations along the axes are set to their default values.

• RandomSpike: This technique introduces random spike artifacts typical of MRI scans.

Default parameters are used for this augmentation.

• RandomMotion: This method simulates random motion artifacts in MRI images. The

simulated movements are set to 5, and nearest-neighbor interpolation is used.

• StyleAugmentation: This technique alters the image style through randomization of a

style transfer network’s actions. The style embedding produced by the network can be

linearly interpolated with the image’s embedding, controlled by a parameter α. A higher

α value results in a more significant change in style. The default α value of 0.5 was

employed in this work.

For the validation set, similar transformations were applied, excluding data augmentation

techniques. With transformations defined, both datasets were processed to create data loaders

for subsequent model training and validation, with batch sizes set to 128.

The diffusion model was defined by establishing a deep neural network for noise prediction,

a scheduler, and an inferer. The network was based on a modified 2D U-Net architecture,

incorporating self-attention mechanisms in the bottleneck and additional layers in the initial

levels to obtain temporal embeddings of the timesteps. The model took two inputs—the image

and the segmentation map—and outputted the predicted noise added to the segmentation map.

The scheduler defines the noising and denoising processes. During initialization, the number

of timesteps used was set to 1000, following recommendations from multiple diffusion model

studies. Once the scheduler was defined, it initialized the model’s inferer for sampling by

reversing the forward diffusion process used to add the noise. Before training, the optimizer

was set to Adam with a learning rate of 2.5×10−5, as recommended by [13], and Mean Squared

Error (MSE) loss was selected to minimize the error between predicted and actual noise added

to images.

Training spanned over 6000 epochs, where each iteration involved random timestep values

for noise addition via the scheduler. Anatomical priors were introduced by concatenating

images with noisy segmentations, serving as model inputs alongside corresponding timesteps.

The model then predicted the noise added to the segmentation mask. Loss calculation,

backpropagation with Adam optimizer, and model parameter updates followed.
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Algorithm 1 Training Procedure

Require: [b,xb,0], the training dataset containing images and corresponding segmentation

masks

Require: fθ(·), the 2D U-Net-based model parameterized by θ
1: for epoch← 1 to 6000 do
2: for b, xb,0 ← [b, xb,0] do
3: sample t ∼ U(0,1000)
4: sample ϵ ∼ N (0, I)
5: xb,t ←

√
αtxb,0 +

√
1− αtϵ

6: Xt ← b⊕ xb,t

7: ϵθ(Xt,t)← fθ(Xt, t)
8: L← Et,xb,0,ϵ[∥ϵ− ϵθ(Xt, t)∥2]
9: Update model parameters θ using L and Adam

10: end for

11: end for

Every 50 epochs, validation was performed. The model was switched to validation mode,

and the same process described for the training phase was applied to the validation data until

the calculation of the loss function. After a burn-in period of 10 validations, early stopping

was checked to prevent overfitting. Two methods were considered: comparing the current

validation loss with that obtained 10 validation cycles earlier, or using a moving average

window of 5 samples with an overlap of 3 samples and comparing the mean validation loss

in the two windows. In both cases, if for 10 consecutive cycles the current validation loss or

the current window’s average loss exceeded the validation loss obtained 10 validation cycles

earlier or the previous window’s average loss, early stopping was triggered. These methods

focused on the underlying trend to avoid issues from the oscillatory nature of validation loss,

which could trigger early stopping even without an increasing trend. Correct implementation of

early stopping during validation is crucial for diffusion models, as they are prone to overfitting,

causing a lack of diversity during the sampling process.

Once model training was completed, its performance was evaluated on unseen images from the

test set, which consisted exclusively of data from Dataset 1, totaling 105 samples.

Post-training, the same transformations used on the validation set were applied to the test data

to ensure congruence with the images used for model training. Since the sampling process in

Denoising Diffusion Probabilistic Models has a random component, applying the model multi-

ple times (n times) to a given image results in n different segmentation maps. As demonstrated

in [13], these n sampled maps can be used to generate an average segmentation map, improving

segmentation quality, and a variability map, highlighting regions where the model exhibits

greater uncertainty. Therefore, by using a value of n equal to 5, five segmentation maps were
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generated for each image by applying the model. Starting from two-dimensional pure Gaussian

noise, denoising was performed over 1000 steps, as initially set in the scheduler definition.

For each timestep t from 1000 to 0, the concatenation of the noisy sample and one slice of the

image was given as input to the model for the prediction of the noise added at timestep t. Then,

through the inferer, the predicted noise was removed to obtain a slightly denoised version of the

noisy sample. By proceeding this way for each timestep t, a segmentation map was generated

by the model. Finally, after generating segmentation masks for each slice of the volume, these

individual masks were stacked together to reconstruct the entire segmentation volume.

Once the ensemble of segmentations for each image was obtained, the average map and the

uncertainty map were calculated. The Dice Score was used to evaluate the model. This score

was calculated for each segmentation volume obtained, as well as for the average volume, to

assess whether the ensemble improves the segmentation of the choroid plexus. The Dice Score

for the average can also be evaluated by varying the value of n to find the optimal value that

maximizes segmentation quality. Finally, the uncertainty map can be plotted alongside the

average map to visualize where the model has the most difficulty in segmenting the images.

Algorithm 2 Sampling Procedure

Require: b, the original brain MRI

Ensure: xb,0, the predicted segmentation mask

1: sample xb,T ∼ N (0, I)
2: for t← 1000 to 1 do
3: Xt ← b⊕ xb,t

4: xb,t−1 ← 1√
αt

(︂
xb,t − βt√

1−αt
ϵθ(Xt,t)

)︂
+ βtz, with z ∼ N (0, I)

5: end for

3.3.2 Pre-training VOC

This part of the study investigates the potential of pre-training on non-biomedical images

to enhance the performance of the diffusion model. Pre-training tasks utilized the public

VOC2012 dataset for segmentation, retaining the architecture, scheduler, inferer, and loss

function from prior implementation with notable adjustments. The first difference lies in the

learning rate for the Adam optimizer during pre-training, set to an higher value of 5× 10−4.

The transformations applied to the VOC2012 dataset differ from those applied to the brain

MRI dataset. The dataset was divided into training and validation sets with a 90/10 split,

resulting in 2622 training samples and 291 validation samples. Transformations adapted dataset

structures to align with MONAI’s diffusion model requirements. RGB images were converted
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to grayscale, resized uniformly to 128x128 pixels, and intensity from 0 to 99.5 were rescaled

to [0,1]. Only the images underwent affine transformations with random parameters for data

augmentation. Since the segmentation masks can contain multiple classes and values other than

0 and 1, all classes were unified into a single one.

Validation set transformations mirrored those of the training set, omitting affine transforma-

tions. Data loaders were configured with a batch size of 128 after transformations were applied

to both datasets.

Pre-training spanned 2000 epochs with validation and early stopping checks every 50 epochs,

following a similar methodology as previously described, with the only difference being the

use of natural images.

After completing the pre-training process, fine-tuning was performed to specialize the model

in the task of choroid plexus segmentation from brain MRI images. This phase was conducted

using data from Dataset 1. The fine-tuning process was executed in the same manner as the

training process described in the previous section, with the number of epochs reduced to 2450

due to the prior pre-training phase where the model learned generic information from natural

images. Additionally, the learning rate was reverted to 2.5× 10−5.

Upon completion of the fine-tuning process, the model’s performance was evaluated in terms

of Dice Score. As in the previous case, the average map was also assessed to determine if it

improved segmentation performance, together with the uncertainty map to highlight the regions

where the model showed greater difficulty in segmenting the choroid plexus.

3.3.3 Pre-training encoder

The objective of this study segment is to assess the efficacy of utilizing self-supervised learning

methods with unlabeled biomedical data for pre-training the encoder of the network employed in

the diffusion model, aiming to enhance performance in the subsequent choroid plexus segmen-

tation task. The images used for pre-training come from the publicly available medical datasets

listed before, excluding the IXI dataset, along with the combined training sections from datasets

1 and 2.

First, all data were loaded without considering the segmentation maps, simulating a condition

where ample unlabeled data is available alongside a small fraction of labeled data. To exploit

all the unlabeled data, self-supervised learning algorithms were implemented to allow the model

to learn latent representations of the data, which can later be leveraged for discriminative tasks.

The total number of data points is 14,635. The data was then split into training and validation

sets, with percentages of 90% and 10% respectively, resulting in a total of 13,172 training data

and 1,463 validation data. Subsequently, transformations were defined for both datasets.

45



For the training set, transformations mirrored those used during the fine-tuning phase described

earlier, up to the addition of different types of noise. At this point, two copies of each image

were generated. Since the pretext task will be a reconstruction task, it was necessary to apply

random holes and shuffle image regions with random parameters, different for each copy of the

image, so that they become unrecognizable by a simple pixel comparison. This process allows

the network to learn to reconstruct the original image and generates suitable representations in

the latent space that can be used later for the segmentation task. Similar transformations were

applied to the validation set.

The transformations applied to generate the model’s input are detailed as follows:

• RandCoarseDropoutd 1: This transformation randomly generates eight holes in the image,

with each hole having a spatial dimension sampled uniformly from a range of 5 to 32

pixels. These holes are filled with null (zero) values.

• RandCoarseDropoutd 2: This variant generates eight holes with spatial dimensions uni-

formly sampled from a range of 20 to 64 pixels. Unlike the first variant, these holes are

filled with random values.

• RandCoarseShuffled: This method randomly selects ten regions in the image, each with

a dimension of 8 pixels. Within each selected region, the pixels are shuffled with a prob-

ability of 0.8.

For each copy of the original image, one of the first two transformations is applied. The

selection between these two transformations is made randomly, with each having an equal

probability of 0.5.

The network used for pre-training has a different architecture compared to the previous sections.

It is still based on the U-Net architecture but without the initial layer for time embeddings, as it

is not necessary. This resulted in a more generic network, applicable to various tasks, including

reconstruction, but which still shares a significant portion of weights with the original network,

allowing them to be pre-trained. In addition, the network output included reconstructed images

from modified inputs and their respective latent representations. During pre-training, only the

encoder part of the network was retained for subsequent fine-tuning. As in previous cases, the

Adam optimizer was chosen with a learning rate of 1 × 10−4 while the batch size was reduced

to 32 for computational reason.

The pre-training process was carried out over 2000 epochs, with validation and early stopping

checks every 50 epochs. For each epoch, the two modified versions of each image were given

as input to the model, generating both the latent representations of the two images and the

reconstructed images. To achieve the training goal, a hybrid loss was defined [71], consisting
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Algorithm 3 Pre-training Procedure

Require: [b,b1,b2], the training dataset containing original images and their modified versions

Require: gΘ(·), the pre-training model parameterzied by Θ
1: for epoch← 1 to 2000 do
2: for b, b1, b2 ← [b,b1,b2] do
3: x1, z1 ← gΘ(b1)
4: x2, z2 ← gΘ(b2)
5: Lrecon ← Eb[∥b− x1∥]
6: LCL ← LSimCLR(z1,z2)
7: L← Lrecon + Lrecon · LCL

8: Update model parameters Θ using L and Adam

9: end for

10: end for

of Mean Absolute Error (L1 loss) for the reconstruction task and SimCLR contrastive loss, with

a temperature value of 0.05, to increase the similarity of the latent representations generated by

similar images. In particular, the L1 loss was calculated using the reconstructed output from

one of the modified version and the original image, while the constrastive loss was calculated

using the two latent representations of both the modified version of each image. The hybrid

loss was then calculated, and the model’s parameters were updated by backpropagation with

the Adam optimizer.

Once the pre-training process was completed, the fine-tuning phase was carried out, using

Dataset 1. The model was redefined in the same way as in the previous sections, but with the

weights of the encoder initialized based on the pre-trained network’s weights. In order to do

so, was necessary to check which weights are in common between the encoders of the two

networks. The training loop followed the same steps described in previous sections. At the

end of the fine-tuning phase, the model’s performance was evaluated in terms of Dice Score.

Additionally, the average map and uncertainty map were assessed to evaluate the quality of the

final segmentation.

3.3.4 Diffusion Self-supervised learning

Similarly to preceding sections, this part of the study explores the potential of self-supervised

learning with unlabeled biomedical data to bolster the model’s performance in choroid plexus

segmentation. To this end, the same datasets used in the implementation described in the previ-

ous subsection will be employed.

Although self-supervised learning techniques were again used during the pre-training phase,

there are significant differences compared to the previous approach. First and foremost, the
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pretext task will be a denoising task. This is to assess the feasibility of using diffusion process

for the pre-training of non-diffusion models. Therefore, the network used during pre-training

remains a two-dimensional U-Net architecture adapted to the context of diffusion processes.

However, in this case, a single input to the network was chosen—the image itself—since the

data available for self-supervised learning ware assumed to be unlabeled. The scheduler, in-

ferer, and dataset transformations mirrored those in the preceding sections, with training and

validation sets identical in size and makeup. The optimizer used is Adam with a learning rate

of 1× 10−4.

Another key departure from previous approaches involves the loss function used during

diffusion-based training. In the previous implementations, an MSE loss was used, applied to

the predicted error and ground truth, without any weighting of its components based on the

timesteps. However, in this case, the goal is to learn effective visual representations of the im-

ages using diffusion in a self-supervised learning process. This can be achieved by focusing

more on the content and disregarding insignificant or trivial details of the image. This is not

guaranteed if an uniform weighting is used for all timesteps. Therefore, a perception-prioritized

(P2) weighting was chosen [72], which provides a good inductive bias for learning rich visual

representations by increasing the weighting in the coarse and content phases and suppressing

the weights in the initial timesteps, i.e., when the signal-to-noise ratio (SNR) is high. The for-

mulation of the P2 loss is as follows:

Lt = Ex0,ϵ[
1

(k + SNR(t))γ
∥ϵ− ϵθ(xt,t)∥2],

LP2 =
∑︂
t≥1

Lt

where γ is an hyperparameter that controls the strength of the weight reduction on learning

imperceptible details, while k is an hyperparameter that prevents the weights from exploding

for extremely low SNR values and determines the sharpness of the weighting scheme. Both were

empirically setted to 1. The signal-to-noise ratio SNR(t) of the noisy sample xt was obtained

by taking the ratio of the squares of the coefficients of x0 and ϵ, corresponding to the signal and

noise variances, respectively:

SNR(t) =
αt

1− αt

Following these preparations, the pre-training process mirrored previous implementations,

incorporating the same setup for training the diffusion model. The only difference is the need

to extract the αt values from the scheduler necessary to calculate the weights for the P2 loss.

Fine-tuning, conducted solely on Dataset 1, maintained consistency in data transformations and
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Algorithm 4 Self Supervised Pre-Training Procedure

Require: b0, the training dataset containing images

Require: fθ(·), the 2D U-Net-based model parameterized by θ
1: for epoch← 1 to 2000 do
2: for b0 ← b0 do

3: sample t ∼ U(0,1000)
4: sample ϵ ∼ N (0, I)
5: bt ←

√
αtb0 +

√
1− αtϵ

6: ϵθ(bt,t)← fθ(bt,t)
7: αt ←

∏︁t
s=1 αs

8: SNR(t)← αt

1−αt

9: LP2 ← Eb0,ϵ[
1

(k+SNR(t))γ
∥ϵ− ϵθ(bt,t)∥2]

10: Update model parameters θ using LP2 and Adam

11: end for

12: end for

optimizer choice but employed each axial slice instead of randomly extracting one per data and

utilized a lower learning rate of 2.5 × 10−5. As in the previous implementations, the utilized

loss function was the mean square error loss and the fine-tuning loop was carried out over 2600

epochs.

Algorithm 5 Fine-Tuning Procedure

Require: [b,xb], the training dataset containing images and corresponding segmentation masks

Require: fθ(·), the 2D U-Net-based pre-trained model parameterized by θ
1: for epoch← 1 to 2600 do
2: for b, xb ← [b, xb] do
3: set t← 0
4: xb̂ ← fθ(b,t)
5: L← Et,xb

[∥xb − xb̂∥2]
6: Update model parameters θ using L and Adam

7: end for

8: end for

A substantial difference directly concerns the procedure followed in the training loop. Here,

the task used for fine-tuning is not a denoising task, as the goal is to develop a model that does

not use diffusion processes for segmentation but only during pre-training. Instead of defining

a new network that shares weights with the pre-trained one and only loading those, it was

decided to use the same architecture with the pre-trained weights. To this end, the timestep

value provided as input with the images to be segmented must be setted to zero, as no noise

was added. The prediction was used together with the ground truth masks for the calculation of

the aforementioned loss. Through backpropagation and Adam, the loss was used to update the

49



parameters. In this way, at the end of the training loop, a model is obtained that takes as input

one slice of a brain MRI image and outputs the segmentation of the choroid plexus without

implementing any diffusion, but making good use of the visual representations learned during

pre-training via the diffusion process.

Since the random component in generating segmentation maps is lost, the model was evaluated

solely in terms of Dice Score calculated on the single segmentations obtainable for each image.

It is necessary to remember that when applying the model, it is not sufficient to provide only

the image to be segmented as input, but a null timestep value is also required.

3.3.5 Patch-Based Diffusion

The objective of this part of the study is to verify the feasibility of a diffusion model for the 3D

segmentation of the choroid plexus. To achieve this, patch-based approaches were implemented

along with other techniques to enhance the performance in segmenting 3D images.

Firstly, Dataset 1 was loaded and split into training, validation, and test sets with an 80/10/10

split, resulting in 846 training samples and 105 validation samples. Using MONAI, TorchIO,

and StyleAugmentation, a series of transformations were defined to prepare both datasets for

the training loop.

For the training set, the same transformations used in the basic training procedure described

earlier were applied, up to the addition of noise. A notable difference involves the central

volume cropping: instead of extracting a central volume of 128x128x32 voxels, a central

volume of 128x128x128 voxels was used. This is because the entire 3D volume was employed

for training. The entire volume underwent a modified version of StyleAugmentation that

operates on 3D data, altering the image style of each slice within the same volume consistently.

Specifically, this version of StyleAugmentation defines the new style using one slice and then

applies it to all slices of the volume, ensuring consistency for the 3D training loop.

Following the process suggested by [54], a custom transformation was applied to extract the

normalized voxel coordinates into three tensors, one per dimension, and concatenate these with

the images. Additionally, a custom random patch extractor was defined. Similar to PatchDDM,

this transformation extracts random patches from the images by selecting the coordinates

of the center from a probability distribution given by p = U [−1/3,1/3] + U [−2/3,2/3],
centered in the central voxel. Moreover, following [21], the patch size was randomly sampled

to allow different sizes, which are beneficial for learning the relationships between patches.

Specifically, the sizes could be 32x32x32, 64x64x64, or 128x128x128. Allowing for a small

fraction of full-resolution images is fundamental to help the model learn how to combine

different patches, ensuring the reverse diffusion converges toward the original data distribution.
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The random patch extractor sampled five patches from each image to obtain multiple views of

the 3D volume and reduce the loss of information.

For the validation set, the same transformations were applied, excluding data augmentation

techniques. With transformations defined, both datasets were processed to create data loaders

for subsequent model training and validation, with batch sizes set to 4. Each batch was defined

by patches of the same size to avoid issues during training.

The scheduler, inferer, and optimizers were defined as in the earlier section, while the model

underwent some modifications. Following [54], the U-Net architecture used previously was

modified by removing the attention mechanisms at each level and substituting the concatenation

in the residual skips with an averaging operation. Both changes were made for computational

reasons, allowing for a deeper structure compared to the one used with two-dimensional data.

The network received as input three-dimensional data with five channels, given by the image,

the corresponding label, and the three tensors containing the Cartesian coordinates of the

voxels.

The training loop was executed as in the earlier section for 2650 epochs, using the MSE loss to

update the model parameters. Every 50 epochs, validation was performed, and after a burn-in

period of 10 validations, early stopping was checked to prevent overfitting. Once the model

training was completed, its performance was evaluated on unseen images from the test set.

Post-training, the same transformations used on the validation set were applied to the test data,

except for the random patch extraction. As proposed in both [54] and [21], the aim is to train the

model on patches to make the process faster and then apply the model to the entire 3D volume

to obtain the complete segmentation, avoiding the need to reconstruct images from patches.

The model’s performance was evaluated in terms of Dice Score. Additionally, the model was

applied multiple times to the same 3D image, allowing for the definition of the mean map and

the uncertainty map. These were assessed to evaluate the quality of the final segmentation.

3.3.6 Three-dimensional Diffusion Self-supervised learning

Building on the methodology used in the two-dimensional case, this section aims to determine

whether pre-training the model using self-supervised learning with unlabeled biomedical images

can enhance its performance. For this purpose, the same datasets from the two-dimensional

analysis are utilized, except the Figshare dataset, which consists only of two-dimensional

images, is replaced by the IXI dataset. This substitution, preferred over the solely removal,

ensures a comparable volume of data to that used previously.

Initially, all data were loaded without segmentation maps, simulating a scenario with abundant

unlabeled data and a smaller fraction of labeled data. The total number of data points is 15,045,
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split into training and validation sets with a 90% to 10% ratio, resulting in 13,441 training data

points and 1,604 validation data points. Transformations were then defined for both datasets.

The same transformations described in the previous section were applied to both training and

validation data. In fact, the pretext task involved denoising, aiming to use the diffusion process

for pre-training a non-diffusion model. Therefore, the model used for pre-training was the

same modified three-dimensional U-Net-like network from the previous section, with the only

difference being the absence of labels and the focus on image denoising. The network expected

four input channels: the image and three tensors containing the Cartesian coordinates of the

voxels. Finally, the scheduler and inferer mirrored those in the preceding section, while the

Adam optimizer was used with a learning rate of 1× 10−4.

As in the two-dimensional case, uniformweighting of theMSE loss was replaced by perception-

prioritized weighting. The resulting P2 loss enhances learning of rich visual representations by

emphasizing coarse and content phases and de-emphasizing initial timesteps. The hyperparam-

eters were consistent with those used in the two-dimensional scenario.

The pre-training loop was executed for 2000 epochs. Every 50 epochs, validation was

performed, and after 10 validations, early stopping was checked to prevent overfitting. During

each epoch, images and corresponding Cartesian coordinates were loaded and separated into

different tensors. Random noise was added to the images for a random number of timesteps

uniformly distributed between 0 and 1000. The Cartesian coordinates were then concatenated

with the images into a single tensor and fed into the model. The noise prediction and ground

truth noise were used to compute the P2 weighted loss, which was used in backpropagation

with the Adam optimizer to update the parameters.

Upon completing pre-training, images from the training section of Dataset 1 were loaded and

split into training, validation, and test sets for fine-tuning. The fine-tuning phase maintained

consistency in data transformations and optimizer choice, but labels were loaded, and the

learning rate was set to 2.5 × 10−5. A MSE loss function was used and the fine-tuning loop

was carried over 100 epochs.

During the fine-tuning training loop, the task was not denoising, as the goal was to develop a

model that uses the diffusion process only during pre-training, not for segmentation. Instead of

extracting the pre-trained weights and updating those of a new network, the entire pre-trained

network was used. To this end, the timesteps value provided as input with the images to be

segmented must be set to zero, as no noise was added. Then, the prediction, along with the

ground truth segmentations, was used to calculate the aforementioned loss, which was finally

used to update the parameters through backpropagation with Adam.

At the end of the training loop, the resulting model could take a brain MRI volume as input

and output the corresponding segmentation of the choroid plexus without implementing any
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diffusion, effectively leveraging the visual representations learned during pre-training.

Since the random component during sampling is eliminated, the model was evaluated solely

based on the Dice Score calculated from the single segmentation obtainable per image. It is

important to remember that when applying the model, both the image to be segmented and

a null timestep value must be provided as input. The evaluation images were taken from the

initially defined test set and underwent the same transformations as the validation set, except

for random patch extraction. The training process was accelerated by training on patches, but

then the model was applied to the entire 3D volume to obtain the complete segmentation, thus

avoiding errors that could arise from reconstructing the image from patches.
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Chapter 4

Results

4.1 Two-Dimensional Segmentation

During the evaluation phase, all images form the test set were processed using the trained

models according to the Algorithm 2. For the diffusion SSL model, a single segmentation mask

was produced per image. In contrast, for other models, n segmentation maps were generated

for each image to create an ensemble. These masks were then thresholded at 0.5 to yield binary

segmentations. The performance of the models were evaluated in terms of Dice Score, which

was calculated between the predicted maps and the corresponding ground truth annotations for

each image.

Table 4.1 reports the average Dice scores obtained from the first sample generated for each

image. For the diffusion SSL model, the reported value is the average Dice score from

the single mask produced per image. These results were compared with those reported by

Wolleb et al. [13]. For this comparison, the model proposed by Wolleb et al., available at

https://github.com/JuliaWolleb/Diffusion-based-Segmentation, was adapted for the specific

task of choroid plexus segmentation and trained using Dataset 1. The same procedure outlined

in Algorithm 2 was employed to generate the ensemble for each image, and the average Dice

score for the first sample was calculated.

For models generating an ensemble of masks, the mean segmentation map was calculated by

averaging, pixel-wise, the n segmentation maps for each image. These mean maps were then

thresholded at 0.5 to produce binary segmentations, and the corresponding Dice scores were

calculated and reported in Table 4.1. This approach aimed to determine whether the ensemble

of segmentations could enhance performance.

In addition to the average Dice scores calculated and reported in Table 4.1, variance values

were also computed to provide insight into the distribution of Dice scores around the mean.

To facilitate a more direct visualization of this distribution, histograms and boxplots of the
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performance metric values were also plotted. These visualizations not only allow for a clearer

view of the distribution of scores but also help identify potential outliers, offering a deeper

understanding of the mean and variance values obtained across different models. The boxplots

for each model applied to the three different testing set are shown in Fig. 4.1, while the variance

values are reported in Table 4.1 alongside the average values, enclosed in square brackets.

Fig. 4.1. Boxplots of mean Dice score and ensemble Dice score for the two-dimensional models.

To determine the optimal number of samples for the ensembles, we plotted the Dice Score of

the mean map as a function of the ensemble size n for the baseline model. For each image, the

mean map was evaluated across different ensemble sizes, and the corresponding Dice Score

was calculated. The goal was to identify the ensemble size that, on average, provides the best

performance improvement across all images in the test set. To achieve this, the Dice Score

curves obtained for each image were averaged element-wise. The optimal ensemble size was

then chosen by identifying the point where this averaged curve maximizes the performance

metric. In making this choice, also the trade-off between performance improvements and

temporal resources was considered. The curve calculated for the baseline model is reported in

Fig. 4.2.

For models generating an ensemble of masks, an uncertainty map was calculated from twenty

samples. This process involved using the available segmentation maps for each image to

compute the pixel-wise variance. The pixel-wise variance serves as a measure of uncertainty,
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Method Mean Dice score Ensemble Dice score

Baseline 0.700 [0.004] 0.780 [0.002]

2D BR 0.587 [0.003] 0.668 [0.006]

Pre-training VOC 0.656 [0.003] 0.727 [0.003]

SSL reconstruction 0.556 [0.003] 0.612 [0.005]

SSL Diffusion 0.745 [0.002] -

Table 4.1: Segmentation scores of my 2D methods and baseline in terms of Dice score.

Fig. 4.2. Ensemble performance with respect to the number of samples.

highlighting areas where the model’s predictions were inconsistent. Higher variance indicates

regions where the model was less certain about the segmentation boundaries, while lower

variance suggests greater confidence.

By analyzing these uncertainty maps alongside the mean segmentation map, we can gain deeper

insights into the reliability of the model’s predictions. The mean map, representing the average

segmentation across the ensemble, provides a central tendency of the model’s predictions.

When combined with the uncertainty map, it becomes possible to identify regions of the image

where the segmentation is most trustworthy and where caution is warranted.

Finally, the total sampling time for generating the ensemble of segmentations was calculated

for all models, except for the diffusion SSL, where the sampling time for a single segmentation

map was recorded. For models generating an ensemble, the average total sampling time is

reported in Table 4.2, alongside the sampling time for diffusion SSL.

To explore the potential for reducing sampling time, the DDIM sampler was also tested.

The corresponding total sampling times are included in Table 4.2. Additionally, the mean

Dice scores are reported to assess whether the reduction in sampling time maintains high

performance.
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Fig. 4.3. Anatomical prior, ground truth segmentation, first prediction, mean map and uncer-

tainty map for the diffusion-based models.

Method
DDPM DDIM

Mean Sampling Time Mean Dice Score Mean Sampling Time Mean Dice Score

Baseline 15.098 0.700 12.514 0.777

2D BR 15.097 0.475 14.067 0.432

Pre-training VOC 15.909 0.656 13.998 0.547

SSL reconstruction 16.302 0.556 14.968 0.462

SSL diffusion 0.046 0.745 - -

Table 4.2: Mean sampling times and mean dice scores for both scheduler

To evaluate the generalization capability of the trained models, especially given that data

augmentation techniques were introduced in the proposed methodologies compared to the

baseline, we applied the different models, including the baseline, to the testing portion of

Dataset 2 and Dataset 3. These datasets are drawn from a different population than the one

58



Method
Dataset 2 Dataset 3

Mean Dice Score Ensemble Dice Score Mean Dice Score Ensemble Dice Score

Baseline 0.533 [0.026] 0.655 [0.026] 0.392 [0.034] 0.459 [0.044]

2D BR 0.404 [0.015] 0.474 [0.022] 0.324 [0.004] 0.362 [0.006]

Pre-training VOC 0.503 [0.013] 0.590 [0.026] 0.378 [0.003] 0.433 [0.009]

SSL reconstruction 0.419 [0.012] 0.499 [0.014] 0.205 [0.004] 0.245 [0.005]

SSL Diffusion 0.667 [0.028] - 0.556 [0.015] -

Table 4.3: Dice scores of the 2D methods and the baseline over the testing fraction of Dataset 2

and Dataset 3.

used for training, making it ideal for assessing the models’ ability to generalize. The same

metrics used for evaluating the test fraction of Dataset 1 were employed here, and the results

are presented in Table 4.3. By analyzing the Dice Score values, we can evaluate the accuracy of

the models in segmenting the choroid plexus in brain MRI images from different populations,

and consequently, their effectiveness in generalizing to new, unseen populations.

Fig. 4.4. Boxplots of mean Dice score for the two-dimensional models over Dataset 1, Dataset

2 and Dataset 3.
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4.2 Three-Dimensional Segmentation

During the evaluation phase, the test set images, preserved in their original 3D format, were

processed using the trained three-dimensional models following the procedure outlined in

Algorithm 2. For each image, n segmentation volumes were generated using all models to

create an ensemble, except for the diffusion SSL model, where only a single segmentation

mask was produced. These volumes were subsequently thresholded at 0.5 to produce binary

segmentations. The performance of the models was assessed using the Dice Score, calculated

by comparing the predicted segmentations with the corresponding ground truth annotations for

each image.

Table 4.4 presents the average Dice scores obtained from the first sample generated for

each image. For diffusion SSL model, the reported value is the average Dice score from

the single mask produced per image. These results were compared with those reported by

Bieder et al. [54]. For this comparison, the model proposed by Bieder et al, available at

https://github.com/florentinbieder/PatchDDM-3D, was replicated within the same workflow

context used for the two-dimensional models. The model was adapted for the specific task of

choroid plexus segmentation and trained using Dataset 1. The same procedure described in

Algorithm 2 was employed to generate the ensemble for each image, and the average Dice

score for the first sample was calculated.

Additionally, for the models generating an ensemble of masks, the mean segmentation volume

was determined by averaging the n segmentation masks obtained for each image on a voxel-

wise basis. These mean volumes were then thresholded at 0.5 to produce binary segmentations,

and the corresponding Dice scores were calculated and reported in Table 4.4. This approach

was intended to evaluate whether the ensemble of segmentations could improve performance.

As in the two-dimensional case, variance values were computed and visualized using boxplots

4.5 to better understand the score distribution and identify potential outliers.

Method Mean Dice score Ensemble Dice score

Baseline 0.520 [0.012] 0.528 [0.013]

3D BR 0.456 [0.009] 0.457 [0.009]

SSL diffusion 0.413 [0.010] -

Table 4.4: Segmentation scores of my 3D methods and baseline in terms of Dice score.

For models generating an ensemble of masks, an uncertainty map was derived from twenty
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Fig. 4.5. Boxplots of mean Dice score and ensemble Dice score for the three-dimensional mod-

els.

available samples by computing the voxel-wise variance across the segmentation maps for

each image. This variance serves as a measure of uncertainty, highlighting areas where the

model’s predictions showed inconsistency. By analyzing these uncertainty maps alongside the

mean segmentation volume, deeper insights into the reliability of the model’s predictions can

be gained.

Fig. 4.6. Anatomical prior, ground truth segmentation, first prediction, mean map and uncer-

tainty map for the diffusion-based models. Only the axial and saggital plane are reported since

is difficult to appreciate the choroid plexus in the coronal plane.
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In addition, the total sampling time required to generate the ensemble of segmentations was

calculated for all models, and the average total sampling time is reported in Table 4.5. For

the diffusion SSL model, only the sampling time for a single segmentation map was recorded.

Also in this case, the DDIM sampler was tested and the corresponding total sampling times are

included in Table 4.5. Mean Dice scores are also reported to assess whether the reduction in

sampling time maintains high performance.

Method
DDPM DDIM

Mean Sampling Time Mean Dice Score Mean Sampling Time Mean Dice Score

Baseline 185.929 0.520 133.490 0.228

3D BR 184.900 0.456 184.036 0.338

SSL diffusion 5.518 0.413 - -

Table 4.5: Mean sampling times and mean dice scores for both scheduler

Finally, similar to the two-dimensional case, the generalization capability of the proposed

models was evaluated by applying them to the testing fractions of Dataset 2 and Dataset 3.

The same metrics used for Dataset 1’s test subset were calculated and are presented in Table

4.6. This analysis allows us to assess the accuracy of the models in segmenting the choroid

plexus in volumes derived from different populations than the one used during training, thereby

evaluating the models’ ability to generalize to new, unseen populations.

Method
Dataset 2 Dataset 3

Mean Dice Score Ensemble Dice Score Mean Dice Score Ensemble Dice Score

Baseline 0.469 [0.013] 0.472 [0.013] 0.077 [0.013] 0.077 [0.013]

3D BR 0.355 [0.009] 0.355 [0.009] 0.266 [0.012] 0.266 [0.013]

SSL Diffusion 0.277 [0.010] - 0.228 [0.005] -

Table 4.6: Dice scores of the 3D methods and the baseline over the testing fraction of Dataset 2

and Dataset 3.
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Fig. 4.7. Boxplots of mean Dice score for the three-dimensional models over Dataset 1, Dataset

2 and Dataset 3.
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Chapter 5

Discusssion

5.1 Two-Dimensional Segmentation

5.1.1 Dice Scores

The comparison of average Dice Scores in Table 4.1 indicates that the model developed by

Wolleb et al. [13] achieves excellent performance in segmenting the choroid plexus. Originally

designed for brain tumor segmentation from MRI, this model also effectively segments the

choroid plexus, despite its significantly smaller size compared to the original target. Wolleb

et al.’s model served as a baseline for evaluating other methodologies that build upon its

foundational idea, incorporating additional deep learning techniques. Contrary to expectations,

only one of the proposed models show improvement in the performance. The following sections

will analyze the reasons for the observed results expressed in terms of Dice Score values.

Firstly, unlike the baseline model, other models used data augmentation for part of the training

data, including affine transformations, elastic deformations, and the application of various MRI

artifacts. This approach aims to realistically emulate the quality and conditions of data available

in clinical practice. Furthermore, to emphasize this aspect, data duplication was avoided for

the transformed data, better simulating real-world conditions where data is often corrupted by

artifacts and noise, and clean versions are unavailable. This led to a lower representation of

artifact-free data in the training and validation sets compared to those used for training Wolleb

et al.’s model, thus justifying the inferior performance of the proposed models when tested on

data coming from the artifact-free population, as shown in Table 4.1.

Another possible factor contributing to the decline observed in the proposed models is the

premature interruption of the training loops. Due to time constraints, the training for all models

was halted before reaching completion or triggering early stopping, which likely prevented the

models from fully learning from the data and achieving optimal performance. Consequently,
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future work should involve resuming the training from the last checkpoint to determine if

extended training can enhance model performance.

The performance of the models were further analyzed through the distribution of Dice Scores,

as shown in the boxplots 4.1. As previously discussed, these plots illustrate the decline

in performance for three of the proposed models compared to the baseline. Specifically, a

decrease in the median can be observed, although it tends to increase across the various methods

presented due to the incorporation of pre-training and self-supervised learning. The boxplots

also offer insights into the variability of the results. Both the boxplots and the reported variance

values indicate variability comparable to that of the baseline, resulting in similar deviations

around the mean. The observed values suggest that all models exhibit stability around the

median, with relatively small deviations from the central tendency. However, the presence of

some outliers suggests significant deviations in model performance in certain instances. Since

these outliers represent only a small fraction of the test set, they do not substantially impact the

overall distribution, allowing us to conclude that the models demonstrate general stability on

the test set.

Despite the performance drop observed in most of the proposed models, data augmentation is

generally expected to enhance the robustness and generalization capability of these models. By

training with augmented data, the models are anticipated to demonstrate greater resilience to

noise and artifacts present in input images, effectively segmenting the region of interest even

when the images are corrupted. This reduces the need for extensive pre-processing, thereby

decreasing the overall time required to generate segmentation maps from image acquisition.

Additionally, models trained with data augmentation are expected to generalize better, yielding

more accurate segmentations on data from populations different from the training set. To verify

this generalization capability, Dataset 2 and Dataset 3, containing data not used for training

and from a different population than Dataset 1, were used. Contrary to the expectation, the

results reported in Table 4.3 indicate a decline in the performance of the proposed models on

Dataset 2 and Dataset 3. The reported values are not only lower than those obtained with the

baseline model, which did not use data augmentation, but the performance drop is comparable

to or even more pronounced in the proposed models than in the baseline. However, examining

the distribution of Dice Scores reveals an important insight. Both the boxplots 4.4 and the

calculated variance indicate a decrease in variability, particularly in Dataset 3, which includes

data from a population most distinct from the training data. This increased stability in the

proposed models on unseen populations is attributable to the data augmentation applied during

training. A notable exception is the model pre-trained with a diffusive pre-text task. In this

case, the model performed better on Dataset 2 and Dataset 3 than the baseline, highlighting its

superior generalization ability. The results suggest that traditional data augmentation techniques
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are effective for non-diffusive models, such as those based on the U-Net architecture, but that

more specific augmentation strategies may be required for diffusive models to enhance their

generalization ability. Nevertheless, the performance on unseen data underscores a critical

point: while data augmentation can improve generalization, the limited amount of training

data available does not allow the models to achieve performance levels comparable to those

on Dataset 1. Therefore, a possible future direction could be to retrain the models using larger

datasets to achieve good performance across different data populations and explore different

data augmentation modalities, specifically tailored for diffusive models. For example, it could

be beneficial to implement offline data augmentation by coregistering the training data with

each other. This approach would increase the volume of data and enhance variability, leading

to more robust model training and improving the generalization ability.

A potential explanation for the limited effectiveness of data augmentation methods on

diffusion-based models could be related to the intrinsic workings of these models. As pre-

viously mentioned, diffusion models are trained to remove Gaussian noise added to images,

enabling them to generate segmentation masks starting from pure noise. Some of the data

augmentation techniques proposed in this work involve adding simulated noise that mimics

the types typically observed in MRI images. During training, the model might identify this

simulated noise as an artifact specifically introduced for training purposes. Consequently,

the model could learn to predict and remove this added noise rather than generalize from

it, thereby diminishing the effectiveness of the data augmentation and reducing its potential

to enhance model generalization. This phenomenon could explain the observed reduction

in the effectiveness of data augmentation for improving the performance of diffusion-based

models. However, this explanation remains a hypothesis based on the nature of noise addition

techniques and the theoretical foundations of diffusion models. To validate this hypothesis,

future research should attempt to replicate the study while excluding these data augmentation

techniques. This would help determine whether there is a significant difference in results when

applied to Datasets 2 and 3, thus providing more insight into the impact of noise addition on

model performance.

The results presented in Table 4.3 allow for another significant observation: the decline in

performance is more pronounced on Dataset 3 compared to Dataset 2. This outcome can be

explained by considering the nature of the data contained within the two datasets. The data in

Dataset 2 were obtained from subjects diagnosed with Relapsing-Remitting Multiple Sclerosis.

Since the majority of subjects in Dataset 1 also suffered from the same condition, the models

were able to learn how to accurately segment images with features characteristic of RRMS

during the training phase. This, in turn, led to a smaller drop in performance when applied to

the testing portion of Dataset 2. However, as discussed in the previous chapters, while both
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datasets were acquired using scanners from the same manufacturer, they involved different

models, software versions, and some variations in acquisition sequence parameters. These

factors contribute to a shift in the statistical distribution of the data, resulting in reduced model

performance on previously unseen data.

The situation with Dataset 3 is even more challenging. The data in this dataset were acquired

in London, as opposed to Verona, where the previous datasets were collected. Furthermore,

Dataset 3 includes a small fraction of healthy subjects and a majority of patients with depres-

sion. The absence of data with features typical of depressed subjects in the training images is

likely a key reason for the observed drop in performance. Additionally, the use of a scanner

from a different manufacturer introduces a phenomenon known as manufacturer shift [73].

This is recognized as a major cause of changes in statistical distributions, as different MRI

scanners produce images with distinct characteristics related to the specific MRI physics of the

manufacturer. For these two reasons—the lack of relevant features in the training data and the

manufacturer shift—when the models are applied to Dataset 3, the performance degradation

is more significant compared to their application on Dataset 2. The nature of the data in the

former leads to a more substantial shift in the statistical distribution of the images relative to

those used for training.

As previously mentioned, the conclusions regarding the generalization capabilities of the

proposed models are further supported by the analysis of Dice Score distributions. Specifically,

the boxplots reveal a bigger or comparable decline in the median value for the proposed method-

ologies when applied to data from Dataset 2 and Dataset 3. Additionally, the interquartile

range and whiskers indicate a lower variance in Dice Scores compared to those observed in the

baseline model, reflecting reduced variability due to the use of data augmentation, especially

over Dataset 3. However, the variability remains higher than that recorded for Dataset 1,

underscoring the need for larger training sets that include data from diverse populations and

scenarios to achieve performance comparable to that on the test fraction of Dataset 1. The

measured variances of the Dice Score distributions further reinforce this observation. The

proposed methodologies demonstrate smaller variance values, indicating greater stability

compared to the baseline when applied to unseen data from populations different from those

represented in the training data.

Another important observation is the improvement in model performance with pre-training

on non-biomedical images, increasing the average Dice Score and reaching the second-best

performance among all proposed models. This result is significant given the difficulty of

obtaining large quantities of biomedical images, crucial for achieving excellent performance

without transfer learning. The results show that it is possible to compensate for the lack of brain

MRI images by using natural images and pre-training and fine-tuning practices. In this specific
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case, VOC2012 was used due to the limited computational resources available. However,

using larger publicly available datasets of non-biomedical images, such as Microsoft COCO

[74], could lead to further performance improvements, especially in scenarios with even more

limited training data.

The benefit of using natural images comes at the cost of implementing a pre-training phase

with a vast amount of data, followed by a fine-tuning phase. This can increase the training time

due to the larger data volume handled during pre-training. Nevertheless, the number of epochs

in the fine-tuning phase can be reduced, partially compensating for the required training time.

The goal of pre-training is to approach the global minimum of the loss function, facilitating

its attainment during fine-tuning with fewer data. Therefore, a higher learning rate can be

used in the initial phase, allowing for faster convergence and reducing the required time. It

is noteworthy that among all the proposed methodologies, pre-training with natural images

required the least training time, thanks in part to the validation loss check that triggered early

stopping during the pre-train phase, preventing overfitting and saving time.

The results presented in Table 4.1 indicate that the model pre-trained with a contrastive gener-

ative pre-text task performed the worst. Unexpectedly, it not only underperformed compared

to the model pre-trained on non-biomedical images but also lagged behind the model that did

not utilize any pre-training. This poor performance can be attributed to two potential factors,

aside from the premature interruption of the training loop. First, the choice of loss function

during pre-training may have contributed to the suboptimal results. The pre-training utilized

a hybrid loss function, combining a reconstruction loss with a contrastive loss applied to the

latent representation at the network bottleneck. However, this specific hybrid function, along

with the chosen temperature hyperparameter, may not have been well-suited for the model

architecture. Future work should explore different configurations to identify the optimal loss

function and hyperparameter settings for this specific model. Second, only the encoder of the

network was pre-trained, and the pre-trained weights were transferred to the encoder of the final

network for fine-tuning. This transfer of weights can introduce errors, especially if there are

differences between the architectures of the two networks. To mitigate this, it would be more

appropriate to pre-train the encoder of the same network that will be used for fine-tuning. For

example, setting the timesteps to zero during pre-training could prevent the diffusion process

and make the pre-training more relevant to the final task. Additionally, pre-training the entire

network, rather than just the encoder, could potentially lead to greater improvements in model

performance. Therefore, future work should explore these alternative strategies to determine if

they lead to better outcomes. Implementing these solutions could provide insights into whether

such adjustments would improve the model’s performance.

Among the proposed methodologies, the one employing diffusion in a self-supervised learning
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context for pre-training a non-diffusive segmentation model achieves the best results. This

underscores the importance of self-supervised learning methods in research. Beyond the chal-

lenge of obtaining large volumes of medical images, acquiring corresponding segmentations

is also difficult, as discussed in previous chapters. Therefore, the ability to leverage unlabeled

data is crucial as it improves model performance. Diffusion models are particularly useful as

they learn significant latent representations of images during training, which are beneficial for

subsequent segmentation. Additionally, using the same U-Net architecture for noise prediction

during pre-training and fine-tuning avoids errors in weight transfer between networks and

inconsistencies between the network structure and the implemented pretext task. Nevertheless,

it is worth noting that this model is based on the direct application of a U-Net network, which is

recognized as a state-of-the-art architecture for medical segmentation tasks. This could explain

the superior performance of this model.

Another point of reflection concerns the choice of loss function. To maintain consistency

with Wolleb et al.’s work, Mean Square Error was used during model fine-tuning. However,

given the nature of the choroid plexus, a different loss function might improve performance.

Comparing the baseline results with those of Wolleb et al.’s original work shows a significant

reduction in Dice Score, likely due to the size difference between the target regions. Using a

custom-built loss function, including for example a Focal Loss term, could enhance perfor-

mance by addressing the high background pixel proportion relative to the unitary pixels in the

segmentations. Additionally, the weighted MSE used in pre-training with diffusion models

could be a useful alternative for all models, focusing more on the image content and ignoring

insignificant details by increasing the weighting in the coarse and content phases and reducing

the weights in the initial timesteps when the SNR is high. Nonetheless, these suggestions

are hypotheses and have not been tested; therefore, it is not guaranteed that the suggested

modifications will yield the discussed results.

A final consideration similar to the previous one regards the choice of the optimizer. For all the

different methodologies, Adam was chosen based on Wolleb et al.’s original work. However,

even if it is a solid and reasonable choice supported by multiple works in the literature, the

models could benefit from different choices, such as AdamW. Another important aspect

is the choice of the learning rate. In this work, few experiments were conducted with this

hyperparameter and finally, supported by the evidence, the selected value was the same utilized

for the baseline model. Nevertheless, a more accurate grid search could be done to evaluate if

there is a better value to be chosen.

In conclusion, despite seemingly unsatisfactory results, the methodologies proposed highlight

several positive aspects. They increase robustness to MRI artifacts and enhance model

generalization, even if on a reduced scale than the expected. Furthermore, they demonstrate the
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effectiveness of transfer learning, both with labeled natural images and unlabeled biomedical

images, emphasizing its importance in common practice. Finally, they suggest potential future

modifications to improve model performance based on the region of interest’s nature and the

implemented diffusion process.

5.1.2 Ensemble

As mentioned in the previous chapters, one of the advantages of diffusion models is the ability

to generate an ensemble of segmentation maps for each image. Due to the probabilistic nature

of the sampling process, repeating it for a given image generates a different segmentation map

each time. Therefore, with models using a diffusion process, this phenomenon was exploited

to generate an ensemble of segmentations, resulting in an average map and an uncertainty map.

The following section discusses the obtained results.

First, it is crucial to address the choice of ensemble dimensionality. As discussed earlier, we

evaluated the Dice Score of the average map by varying the number of samples per image to

determine the dimensionality that yields the most significant improvement in performance. For

the baseline model, we generated a Dice Score curve for each image in the test set and then

averaged these curves. By identifying the number of samples that maximized the performance

metric, we determined the optimal ensemble size for each model.

As shown in Figure 4.2, the highest average Dice Score for the baseline model is achieved with

thirteen samples. However, this number was not selected as the ensemble size. The difference

in Dice Score between using 2 and 13 samples is 0.013, while the difference between 2 and 5

samples is 0.010. In other words, the increase in Dice Score from using 13 samples instead of

5 is, on average, 0.003. However, this marginal gain comes with a significant increase in the

time required for sampling the entire ensemble. Specifically, obtaining 13 samples takes more

than two and a half times the time required to sample 5. Given the need to balance performance

improvement with sampling time, an ensemble size of 5 was chosen. This decision also aligns

with the original work of Wolleb et al., allowing for a more direct comparison of the results.

For this reason, the same value was chosen for the proposed models, a decision supported by

the results shown in Table 4.1, which indicate an improvement in performance when comparing

the single map to the average map. However, it is likely that different models may have distinct

optimal ensemble sizes. Therefore, future work should involve replicating the test conducted on

the baseline for each model, in order to determine whether specific values for each model could

further enhance performance.

The average Dice Scores for the ensembles, presented in Table 4.1, indicate that all diffusion-

based models benefit from using an average map. This suggests that the pixel-level averaging
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of the segmentations can lead to better delineation of the choroid plexus. The averaging pro-

cess attenuates segmentation errors while preserving correctly classified pixels. Consequently,

thresholding the average maps helps assign erroneously classified pixels to the background,

thereby improving segmentation accuracy. Despite requiring quintuple the sampling time, this

approach is advantageous since each segmentation sampling takes approximately 15 seconds,

making the temporal compromise worthwhile for performance gains. The improvement in per-

formance gained by considering the mean maps is further confirmed looking at the boxplots.

By comparing the distribution of the Dice Scores for the single sample and the mean map, an

increase in the median value is observable across all the different methodology.

Another benefit of generating an ensemble is the ability to calculate an uncertainty map (Fig-

ure 4.3) as the pixel-level variance of the different segmentation masks. When paired with the

average map, the uncertainty map reveals where the model is most uncertain in segmenting

the region of interest, providing valuable insights for clinicians. Our results show that all pro-

posed methodologies exhibit greater uncertainty along the choroid plexus borders. This can be

attributed to several factors:

• Boundary Ambiguity: In medical images, object boundaries often present gradual transi-

tions rather than sharp edges, making it challenging for the model to precisely delineate

where the object ends and the background begins. This is particularly evident in the case

of the choroid plexus in T1-weighted MRI images, where it is challenging to delineate the

region of interest within the ventricles.

• Inter-annotator Variability: Training segmentations were annotated by different special-

ists, introducing a certain degree of inter-user variability in the defined boundaries. This

inter-user variability contributes to the model’s uncertainty.

Additionally, uncertainty maps highlight a limitation of diffusion models in segmenting very

small structures like the choroid plexus. In some slices, the plexus may be represented by

a single pixel or a small cluster of pixels. In such cases, the model shows high variance in

segmenting the region of interest in these areas. This is closely related to the nature of diffusion

models. During training, Gaussian noise is progressively added to the data, which the model

learns to remove. This allows generating a segmentation map from a pure Gaussian noise

image during sampling. Such regions consisting of single pixels or small isolated pixel clusters

may be interpreted by the model as random occurrences of Gaussian noise, leading to their

removal from the final segmentation maps, in particular if there are uncertainties in the ground

truth segmentations. As mentioned before, a possible future direction to avoid this problem is

the usage of tailored loss functions during the training phase that allow to focus more on the

region of interest and its peculiar features.
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In any case, it is important to acknowledge that uncertainty maps obtained with ensembles of

few samples provide only a rough estimate of variance. For more precise maps, increasing

the ensemble size is necessary. However, as indicated in Wolleb et al.’s study, even with 100

samples per ensemble, the highest variance is typically observed around the tumor perimeter,

corroborating our previous discussions. To illustrate this, we selected three images and

calculated the variance among the twenty sampled masks, which are presented as examples of

uncertainty maps.

In conclusion, generating multiple segmentation maps for each image enables the calculation

of average maps that enhance segmentation performance and uncertainty maps that identify

where the model struggles the most in segmenting the region of interest. Despite the increased

sampling time, these methods offer significant advantages in improving the accuracy and

reliability of medical image segmentation.

5.1.3 Schedulers

As previously mentioned, the remarkable success of diffusion models has led to the develop-

ment of several variants aimed at enhancing performance. One such variant is the Denoising

Diffusion Implicit Model, which replaces the stochastic sampling process with a deterministic

one. This approach allows skipping steps in the reverse diffusion process, thereby reducing the

sampling time while minimizing the impact on model performance. In this work, we tested the

use of both types of schedulers, leveraging the fact that the model only needs to be trained once

with either method. The following section discusses the results obtained from this comparison.

As shown in Table 4.2, in almost all cases, the choice of the DDIM scheduler reduces the

sampling times but at the cost of decreased performance, measured in terms of the average

Dice Score for the first sample. Although the time reduction is on the order of a few seconds,

this modest gain is insufficient to justify the observed decline in performance. The primary

objective in medical image segmentation is to achieve the highest possible accuracy, as

even small improvements can be critical in clinical settings. Therefore, the slight reduction

in sampling time does not outweigh the negative impact on segmentation quality. This is

especially true given that the classic scheduler already operates within a reasonable timeframe

and maintains higher performance levels. An exception to this trend is observed in the baseline

model, where the application of the DDIM scheduler results in both a performance increase

and a reduction in sampling time by approximately two and a half seconds. This outcome is

unexpected and contradicts the established theory and results reported in other studies involving

DDIMs. Therefore, further investigation is warranted to understand the underlying reasons

for this phenomenon. If it is determined that this result is not due to an evaluation error, the
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baseline model using the DDIM scheduler would represent the most effective model proposed

in this study.

In conclusion, while DDIM schedulers can offer a reduction in sampling time, the marginal

gains do not compensate for the reduction in segmentation performance. Therefore, the classic

scheduler remains the preferred choice for achieving higher performance in a reasonable

timeframe.

5.2 Three-Dimensional Segmentation

5.2.1 Dice Scores

The analysis of the three-dimensional models followed a similar approach to that of the

two-dimensional models, revealing comparable trends in the outcomes. Specifically, three

models were evaluated: the baseline model, the model with data augmentation, and the model

pre-trained using a diffusive self-supervised learning approach. The key observations and

findings are discussed below.

The baseline model achieved the highest performance among the models tested. However, its

results were not comparable to those reported in the original work by Bieder et al. [54]. This

discrepancy may be attributed to the structural differences between the regions of interest, as the

model was originally developed for brain tumor segmentation from MRI images. Despite this,

the application of data augmentation techniques, as discussed for the two-dimensional models,

is expected to improve the model’s robustness to typical distortions found in real MRI images.

However, this came at the cost of a relevant reduction in overall performance, as measured by

the Dice Score and highlighted by the median values in the boxplots, on artifact-free data. This

performance decrease is likely due to the introduction of more realistic training conditions,

better simulating the challenges encountered in clinical practice. While there was a reduction in

performance, the model’s ability to generalize to different data populations outside the training

set is expected to improve.

Interestingly, the results from Dataset 2 and Dataset 3 reveal a similar trend from the two-

dimensional case. The performance of the three-dimensional models with data augmentation on

data from unseen populations experienced a more significant decline compared to the baseline

model. This trend is clearly illustrated in Table 4.6 and the accompanying boxplots 4.7, which

show a more pronounced performance drop for the augmented models on Dataset 2. However,

a notable deviation occurs with Dataset 3: contrary to the two-dimensional scenario, the

models incorporating data augmentation actually performed better. Despite this improvement,

the results obtained with the baseline model on Dataset 3 are unexpectedly low, which is
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likely due to an error during the evaluation phase, especially since this trend is not observed

on Dataset 2, which is more similar to the training population. An alternative explanation

could be that the data augmentation had a positive effect only on the most diverse population,

thereby compromising performance on both Dataset 1 and Dataset 2. However, this alternative

explanation is less likely, as it would suggest a highly selective and unusual effect of data

augmentation that contradicts the principle at the base of this methodology. Additionally, the

variance for the proposed models is comparable or even high than that of the baseline model,

indicating less stable results across different data populations. The boxplots further confirm

this instability, showing a wider interquartile range for the proposed models compared to the

baseline, which suggests that 50% of the recorded results are more dispersed around the median

value.

One potential reason for this difference from the two-dimensional trend could be the premature

interruption of the training process. Due to time constraints, the training loops for both three-

dimensional models were halted before completion, potentially preventing the models from

learning adequately to perform well on unseen populations. Notably, the three-dimensional

models were trained for significantly fewer epochs compared to their two-dimensional coun-

terparts. To fully assess their potential, future work should involve completing the training to

determine whether performance improves. If the performance does not improve, it may indicate

that the implemented data augmentation is less effective in enhancing model generalizability in

three-dimensional scenarios compared to two-dimensional ones, necessitating the evaluation of

alternative techniques.

Another noteworthy observation concerns the model pre-trained with a diffusive pretext task.

In the two-dimensional case, this model was the best performer, but in the three-dimensional

scenario, it was the worst-performing one. This discrepancy is largely attributed to the fact that,

due to time constraints, the pre-training was halted after 300 epochs instead of the intended 2000

before proceeding to fine-tuning, determining a substantial difference with its two-dimensional

counterpart. Given that this model, which utilizes a straightforward U-Net architecture without

diffusive processes, is expected to perform well, future work should ensure that the pre-training

is fully completed before beginning fine-tuning to achieve the anticipated results.

Another critical factor contributing to the performance drop is the amount of data available. In

the two-dimensional case, 32 slices per image were used as training examples, resulting in a

larger training set. In contrast, in the three-dimensional case, only 5 patches were extracted per

volume, making the training set approximately six times smaller. This substantial reduction in

training data likely contributed to the lower performance observed, as the model was trained

on a much more restricted dataset. As mentioned in the context of the two-dimensional case,

future work should prioritize retraining the models with larger and more diverse datasets. One
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potential approach is to implement offline data augmentation through the coregistration of

training data, which could enhance the models’ performance and improve their generalization

capabilities.

The difference in performance decline between Dataset 2 and Dataset 3 in the three-dimensional

models mirrors the pattern observed in the two-dimensional models. As previously mentioned,

Dataset 1 and Dataset 2 are more similar, whereas Dataset 1 and Dataset 3 differ more

significantly. This underscores the importance of different acquisition protocols and the need

to maximize model generalization through data augmentation techniques. Among the various

factors contributing to performance decline, the most significant is the manufacturer shift.

Different MRI scanners produce images with distinct characteristics due to variations in MRI

physics, leading to changes in statistical distributions. Despite the benefits of data augmentation

in enhancing generalization, the small amount of available training data limited the models’

ability to achieve performance levels comparable to those on Dataset 1.

A significant finding from the analysis of the three-dimensional models is the clear need for

further research and experimentation to validate the effectiveness of transfer learning and data

augmentation techniques in enhancing model generalization, especially when training data is

limited. However, it is also clear that the limited amount of training data impacted the models’

ability to perform well across all datasets. This finding reiterates the need to further explore the

choice of loss functions and optimizers, as mentioned earlier for the two-dimensional models,

to better optimize the performance of three-dimensional models, considering the specificities

of the target regions to be segmented.

Finally, it is worth discussing the patch-based methods employed and the structural modifica-

tions made to the U-Net architecture. Regarding the former, the proposed models incorporate

three key aspects: the number of patches extracted per image, the sampling of the patch centers,

and the sampling of patch sizes. In this specific case, five patches per image were extracted

to remain consistent with the approach taken by Bieder et al. in their work, which was also

replicated in the baseline model. However, it is certainly possible to conduct additional tests

to fine-tune this hyperparameter for optimal model performance. It should be noted, though,

that increasing the number of patches also increases the volume of data used during training,

which in turn requires more time and computational resources. Additionally, the centers of

these patches were sampled from a distribution similar to that implemented by Bieder et al.

This choice was made not only to ensure consistency with the baseline for fair performance

comparison but also because the proposed distribution assigns a higher probability to selecting

central regions of the volume as patch centers. Given the location and anatomical structure of

the choroid plexus, this approach frequently extracts patches containing the region of interest,

enabling the model to learn relevant features for subsequent image segmentation. Nevertheless,
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slight adjustments to the distribution, tailored to the specific location and characteristics of the

choroid plexus, could potentially enhance performance. Thus, exploring these modifications

represents a possible future direction for this work.

The final aspect mentioned above pertains to the sampling of patch sizes. To ensure faster

training and reduce computational demands, patches with dimensions of 32x32x32 were

predominantly used. To avoid neglecting relationships between different regions within the

overall volume, a small proportion of patches with dimensions of 64x64x64 and a very small

proportion of full-resolution images (128x128x128) were also included. This was achieved

by randomly sampling patch sizes, assigning a 75% probability to 32, 15% to 64, and 10%

to 128. These values were primarily chosen based on the available computational resources.

However, the selected values are quite reasonable given the goal of including larger patches

and full-resolution images. That said, a potential future development of this work could involve

fine-tuning these percentages to further optimize model performance.

As for the architectural modifications made to the U-Net, the decision to use additive skip

connections allows for a significant increase in the network’s depth while still maintaining

rapid training. In fact, compared to the two-dimensional models, the three-dimensional models

required less training time. Therefore, it may be interesting to test additive skip connections

in two-dimensional models in the future to see if they also reduce training time without

significantly affecting performance. This could be an important step in using diffusion models

in the medical context, where it is essential for the model to be ready for use in a short time.

In conclusion, the results obtained with the three-dimensional models confirm the observations

made for the two-dimensional models while offering new insights for improving segmentation

techniques in three-dimensional contexts. These findings underscore the need to continue

exploring pre-training strategies, data augmentation, and methodological choices to address

the challenges posed by the different characteristics of the datasets used. Furthermore, the

patch-based methods require further investigation to improve performance and enhance the

time and computational efficiency of diffusion models when dealing with three-dimensional

volumes. Therefore, although this is just an initial attempt to adapt diffusion models and patch-

based techniques for the three-dimensional segmentation of the choroid plexus, the results

underscore valuable insights that can guide future research aimed at enhancing performance

and generalization ability.

5.2.2 Ensemble

In the context of three-dimensional models, the approach taken for the ensemble analysis and

performance evaluation mirrors that described for the two-dimensional models, with some

77



differences due to the volumetric nature of the data. Here, too, the goal was to determine the

optimal ensemble size by assessing the impact of the number of samples on the average Dice

Score of the resulting segmentation maps and analyse the mean and uncertainty maps.

Regarding the choice of ensemble dimensionality, the decision was made to retain the value

identified in the two-dimensional baseline case. This coincides with the value used in the

original work by Bieder et al., thereby enabling a direct comparison of the results. However,

it is important to note that, based on the findings, the selected value is unlikely to represent

the optimal dimensionality for the two three-dimensional models based on diffusion processes.

It is reasonable to expect that these two models have different optimal ensemble sizes that

could improve performance, especially given the transition from two-dimensional to three-

dimensional mask generation. Therefore, as previously suggested, future work should focus on

testing the models to identify their optimal dimensionalities and determine whether these allow

for a favorable balance between performance improvement with the average map and the time

required for ensemble acquisition.

When comparing the average Dice Scores for individual samples and the mean maps, only

marginal improvements are evident. Given the time required to sample an entire volume using

diffusion-based models, the minimal performance gain does not justify the significant increase

in sampling time. Specifically, with an ensemble size of five, the Dice Score improvement is

less than 0.01 for both the baseline model and the model with data augmentation. This small

improvement does not warrant a fivefold increase in sampling time, indicating that evaluating

a single sample may be the more efficient option. This is further confirmed looking at the

median values and the variability of the Dice Scores distribution in the boxplots. This is likely

due to the premature interruption of the training loops, which prevents observing a significant

performance improvement, as well as the chosen ensemble dimensionality, which has not been

specifically optimized for three-dimensional models. Nonetheless, generating an ensemble

remains valuable for other purposes, such as the evaluation of uncertainty maps.

Regarding the calculation of uncertainty maps, the three-dimensional models also exhibit

greater variability near the choroid plexus boundaries. This phenomenon can be attributed

to factors already discussed in the previous section, such as boundary ambiguity and inter-

annotator variability. However, the problem is further exacerbated by the three-dimensional

nature of the images, where the volumetric representation can make it even more challenging

for the model to accurately delineate the boundaries. In particular, it was noted that very small

structures, similar to what was observed in the two-dimensional models, tend to be treated as

Gaussian noise by the model. This results in high variance in the uncertainty maps, suggesting

that more focused training techniques, such as the use of tailored loss functions, may be

necessary for more precise segmentation of such structures.
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In summary, applying ensembles in three-dimensional models does not lead to significant

Dice Score improvements when evaluating the average map, particularly when considering the

substantial increase in sampling time. However, the trend observed in two-dimensional models

regarding variance is confirmed in the three-dimensional uncertainty maps, offering valuable

insights into the areas most challenging to segment accurately.

5.2.3 Scheduler

In line with the previous experiments using two-dimensional models, the application of a

different scheduler was also tested with the three-dimensional models employing diffusion

mechanisms. Specifically, the Denoising Diffusion Implicit Models scheduler was explored to

determine if it could reduce sampling time without significantly compromising the previously

achieved performance. This section discusses the outcomes of this analysis.

The results, summarized in Table 4.5 show that while using the DDIM scheduler reduces the

sampling time for the proposed diffusion-based model, similar to the 2D models, the time

savings are minimal—on the order of a second. This small gain becomes particularly relevant

when considering performance differences between schedulers. Specifically, the reduction

in sampling time with the DDIM scheduler is negligible compared to the classical scheduler,

while segmentation accuracy, measured by the mean Dice Score, decreases significantly, by

more than 0.1. For the baseline model, the reduction in sampling time is more pronounced,

approximately 50 seconds. However, the performance drop is even more substantial than with

the other model, making the time savings less justifiable given the trade-off in accuracy. In

the medical context, where both quick results and high accuracy are critical, this trade-off

is crucial when selecting a scheduler. Consequently, the classical scheduler is the preferred

choice, offering a better balance between performance and sampling time compared to the

DDIM scheduler.

Although comparing the sampling times of the entire segmented volume between 2D and 3D

models was not the primary focus of this section, it is worth addressing briefly. For the 2D

models, the times reported in Table 2 pertain to the sampling of a single slice, not the entire

volume, which consists of 32 slices. In contrast, the 3D models directly sample a volume

comprising 128 axial slices. To make a fair comparison, the sampling times of the 2D models

should be multiplied by 32 and then compared with those of the 3D models, considering that

the latter involves four times as many slices.

Focusing on the DDPM scheduler, the time required to sample 32 slices is two and a half

times longer than that needed by the 3D model to sample the entire volume. The disparity

increases with data-augmented models, where the time required to sample the 32 slices exceeds
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three times that of the 3D model. Conversely, when considering the DDIM scheduler, the

difference is more contained—about two times longer for the 2D model compared to the 3D

model—and unlike before, it improves for the data-augmented model compared to the baseline.

This improvement is due to the fact that, for the 2D models, the DDIM scheduler offers a better

compromise between reduced sampling time and performance, compared to the 3D models.

Overall, it is evident that sampling the entire segmented volume is significantly more time-

efficient than sampling individual slices. In the former case, the diffusion process only needs

to be performed once per volume, whereas in the latter, it must be repeated for each slice.

This represents one of the main advantages of developing 3D models directly, which, thanks

to the advancement of patch-based techniques, are becoming temporally and computationally

efficient even during the training phase, thereby addressing their primary limitation.

In summary, the three-dimensional models demonstrate that, although offering potential time

savings, the adoption of a DDIM scheduler does not justify the loss of segmentation accuracy,

making the classic scheduler the preferred choice. Furthermore, the comparison between the

sampling times of two-dimensional and three-dimensional models shown the advantage of

developing models directly capable of segmenting the entire volume, allowing for a significant

reduction in the sampling times.
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Chapter 6

Conclusion

In this preliminary work, several methodologies based on Denoising Diffusion Probabilistic

Models were proposed and compared to already published and available models taken as

reference baseline. Both two-dimensional and three-dimensional segmentation of the choroid

plexus in brain MRI images was tested. The main objective was to explore techniques

commonly used in deep learning to improve performance compared to the baselines. One of

the major challenges in the field of artificial intelligence applied to the medical domain is the

limited availability of training data and the frequent lack of corresponding labels. This presents

a significant obstacle to the development of effective models for automatic segmentation.

Our results reveal that techniques such as data augmentation, transfer learning, and self-

supervised learning hold considerable promise for enhancing deep learning models in medical

segmentation tasks. Data augmentation has demonstrated its potential to help models gen-

eralize better to diverse populations, even with limited training data. Transfer learning and

self-supervised learning allow the incorporation of external datasets, including non-biomedical

or unlabeled data, to further boost model performance. However, our findings also suggest that

more research is needed to optimize these techniques for diffusion-based models, especially

regarding data augmentation. Tailored approaches for data augmentation and innovative

transfer learning strategies should be explored to fully leverage these models’ capabilities.

Another crucial aspect emerging from this work is the choice of DDPMs. Although these

models were not originally designed for discriminative tasks like medical segmentation, they

offer a notable advantage: the ability to generate ensembles of different segmentation masks

for each image. This allowed us to demonstrate that using the average map can, in some cases,

improve the accuracy of segmentations in terms of Dice Score. Furthermore, the ability to

generate multiple segmentation masks for each image enables the creation of uncertainty maps,

an aspect of great value in the medical context. These maps help to identify areas where the

model is more uncertain in its predictions and those where it provides more reliable results,
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offering clinicians a valuable tool to improve the analysis of the obtained segmentations

and minimize the risk of erroneous clinical decisions, or to provide insight on the intrinsic

difficultness of the automatic segmentation task, potentially provide a spatial varying index of

reliability.

Finally, our exploration into three-dimensional segmentation yielded less favorable results but

offered valuable insights. The initial outcomes underscore the need for further refinement of

patch-based techniques tailored to the anatomical specifics of the choroid plexus. Additionally,

as observed in the two-dimensional scenario, expanding the training dataset, and developing

data augmentation methods specifically designed for diffusion-based models are crucial for

improving performance and generalization.

In conclusion, while the results are promising, there is still a need for ongoing research to

enhance the effectiveness of these models. Future work should focus on developing specialized

approaches that address the unique complexities of the choroid plexus and other similar

anatomical structures.
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