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Abstract

Recent experiments revealed surprisingly high water-flow rates in narrow carbon nanotubes, with
permeabilities that tend to diverge when the nanotube diameter is decreased towards the nanometer
scale. This physical phenomenon could not be explained within classical fluid mechanics, and could
not even be reproduced by semi-classical molecular dynamics. Here we aim to investigate the problem
from a quantum-mechanical viewpoint, starting from state of the art ab-initio simulations. Systematic
characterization of water-nanotube interactions under different phases/conditions will help the com-
prehension of the subtle mechanisms that eventually cause quasi-frictionless flow. On the same basis,
possible relations to superfluidity will be explored.
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Chapter 1
Introduction

Carbon nanotubes (CNTs) represent a paradigmatic example of quasi one-dimensional systems:
referring to Figure 1.1, a CNT can be described as a graphite sheet rolled up into a cylinder, matching
crystallographically equivalent sites (in the case of the figure points along OB with points along AB′).
The type of nanotubes considered in this thesis work, i.e. single-walled CNTs, is characterized by
one-atom thickness, a circumference of the order of 1 nm, and ideally infinite length. CNTs are described
in terms of the chiral vector C⃗h

C⃗h = na⃗1 +ma⃗2 , (1.1)

with (n,m) two integer numbers called chiral coefficients and a⃗1, a⃗2 the vectors of the basis of the
hexagonal (or triangular) honeycomb direct lattice

a⃗1 =

(√
3

2
,
1

2

)
a , a⃗2 =

(√
3

2
,−1

2

)
a , (1.2)

a =
√
3 aC−C = 2.46Å being the lattice constant of graphite, with aC−C = 1.42Å being its nearest

neighbour C − C distance.
In terms of chiral coefficients n and m, one can define the CNT diameter dCNT as

dCNT =
Ch

π
=

√
3 aC−C

√
n2 + nm+m2

π
, (1.3)

with Ch being the length of the chiral vector, and the angle θ formed by C⃗h with respect to the zigzag
direction of a⃗1, called chiral angle, as

θ = arctan

[√
3

m

m+ 2n

]
; (1.4)

Figure 1.1: Graphene direct honeycomb lattice with primitive lattice vectors a⃗1 and a⃗2 and with the chiral
vector C⃗h. The picture is taken from Ref. [1].
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2 CHAPTER 1. INTRODUCTION

Figure 1.2: Ratio between experimental water flow rates and predictions from continuum flow model for different
double-walled carbon nanotube (DWNT) membranes; polycarbonate membrane data serve as
reference. Data are taken from Ref. [4].

Figure 1.3: Water permeability kNT for CNT and boron nitride nanotubes (BNNT) of different radius R; the
reference value krefno−slip = R2

8 corresponds to the permeability of a nanotube of radius R with no-slip
boundary condition at its surface. The plot is taken from Ref. [5].

this angle ranges from 0◦ (corresponding to zigzag CNTs) to 30◦ (characteristic of armchair nanotubes).
Consequently, a CNT can be identified in terms of either (n,m) or (dCNT, θ). All armchair CNTs

are characterized by n = m.
The type of electronic energy band structure of a CNT depends on the values of indices (n,m): if

they satisfy
2n+m = 3q, q integer, (1.5)

the nanotube is metallic (which occurs with approximately 1/3 of the possible CNTs), otherwise it is
semiconducting. From this condition one can see that all armchair nanotubes (n, n) present a metallic
conduction behaviour. [1]

In the last years [2–4], experiments evidenced enhanced water flow through CNT membranes,
compared to classical fluid-mechanics predictions. Measured enhancements amount to one order of
magnitude at pore size of 44 nm, 4÷ 5 orders of magnitude at pore size of 7 nm and 3÷ 4 orders of
magnitude when pore size varies between 1.3 nm and 2.0 nm, as reported in Figure 1.2 for the last case.
Experimental water-flow enhancements are huge, but exhibit scattered magnitude. Hence, presently
unexplored factors could play a non-trivial role in water-CNT friction effects. Water permeability
in individual CNTs was also experimentally seen to increase as the CNT radius decreases, and was
expected to diverge for radii smaller than 10 nm [5], as seen in Figure 1.3.

Recent theoretical investigations [6, 7] showed that single helium atoms or single water molecules
(shown in Figure 1.4) can flow through a (5, 5) CNT experiencing no friction if their initial velocity
is smaller than a critical value vcrit. Indeed, below this threshold, water-CNT phonon scattering
(responsible for the energy transfer between flowing particle and CNT) is not allowed and, in the absence
of such energy transfer, the flowing particle experiences no friction. This phenomenon presents evident
analogies with superfluidity. However, even though both mechanisms rely on Landau’s superfluidity
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Figure 1.4: Representation of a water molecule in a (5, 5) armchair carbon nanotube, realized with the visual-
ization program XCrySDen [8]: carbon atoms are in grey, oxygen atoms in red and hydrogen atoms
in white.

criterion, the present remains a single-particle effect, whereas superfluidity is a many-body effect. For
instance, the dispersion relation used in superfluidity stems from many-body excitations in the flowing
medium. In the case under analysis (that could be denoted as superflow or quasi-frictionless flow),
instead, it is the CNT to present many-body effects, while the flowing He atom or H2O molecule behaves
as a quasi-free particle.

Quasi-frictionless flow could neither be explained by classical fluid mechanics, nor by semi-classical
molecular dynamics simulations. In this thesis CNTs will be addressed employing different theoretical
and computational tools in order to examine complementary points of view. The relevance of this
specific subject is both theoretical (due to the novelty of the phenomenon), and technological (due to
possible development of non-dissipative transport). The study and rationalization of friction properties
could eventually enable efficient water filtration at the nanometer scale, or nanofluidical injection.
From the physical viewpoint, it is also interesting to shed light on the reasons why Born-Oppenheimer
molecular dynamics could not describe frictionless flow.

In Chapter 2 a classical effective model is developed to describe the interaction between a flowing
particle and a (5, 5) CNT. The dispersion relation of the chain will effectively account for a phonon
mode that can be excited upon scattering with the flowing particle.

In Chapter 3 Born-Oppenheimer molecular dynamics simulations (BOMDs) with different types of
force fields are performed using the aforementioned effective model: the comparison of these results
with quantum-mechanics will help to identify possible classical dissipation mechanisms absent in the
quantum-mechanical case below the critical speed.

In Chapter 4 ab-initio simulations are used to characterize corrugation potentials (i.e. the barrier
experienced by an encapsulated particle during its flow) for a single water molecule and for a chain of
interacting H2O in CNTs with different chiralities. First-principle calculations are also used to extract
realistic parameters for the (5, 5) CNT effective model. Corrugation of interface potentials and phonon
dispersions are two of the main parametrization tasks. In fact, these will directly contribute to the
energy-exchange between water and CNT.

A number of relevant results are found in this thesis.

1. BOMD simulations of the particle-chain effective model show that:

(a) in the purely harmonic case, the particle initially releases a small fraction of its energy to the
chain. However, after a short transient, periodic oscillations emerge and persist throughout
the trajectory. The particle either oscillates between two carbons or flows along the chain,
with oscillating particle-chain energy exchange, and oscillating chain energy;

(b) if suitable anharmonic contributions are added in the chain, one can observe an enhancement
in the particle-chain energy exchange (i.e. the particle loses more energy) and disappearance
of its periodic oscillations. The values of the anharmonic coefficients at which the energy
exchange becomes the highest depend on the height of the corrugated potential and on the
initial velocity of the particle; the energy of the particle is transferred and harvested in the
chain;
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(c) if viscous contributions further act on chain atoms, one finds energy losses both in the chain
and in the particle, which increase with the height of the corrugated potential and with
the values of the damping coefficient. The chain energy loss does not occur immediately: it
first requires the particle to transfer part of its energy to the chain, and follows a specific
behaviour which varies as a function of involved parameters;

2. First-principle simulations show that the corrugation of the interface potential tends to decrease
when the CNT diameter increases. This is true both for the single water molecule and for a
periodic quasi-1D ice structure, with a higher barrier per unit molecule when water molecules are
interacting. Moreover, metallic CNTs are consistently associated with weaker corrugations.



Chapter 2
Carbon nanotube classical model

Due to the complexity of the (5, 5) armchair CNT, we will simplify our simulations introducing
an effective model that retains the most important features, i.e. periodicity, phonon spectrum and
interaction with a particle flowing along the CNT axis. This effective model consists of a one-dimensional
periodic linear chain, with a supercell containing N carbon atoms of mass M interacting with nearest
neighbours by means of identical springs (which mimic phonons) of elastic constant K and rest length
L (representing the lattice parameter of the carbon chain); the chain Hamiltonian is then

Hchain =
N∑

n=1

P 2
n

2M
+
K

2

N∑
n=1
n per

(Xn −Xn−1 − L)2 , (2.1)

where Xn = L
2 + (n − 1)L1 is the position of the nth C atom, Pn = MVn is its momentum, Vn its

velocity and “n per” in the summation ensures that periodic boundary conditions are enforced.
Considering a particle (in particular a He atom or a H2O molecule) of mass m and position x

flowing through the CNT along its longitudinal axis with a non-zero velocity v, the isolated particle
Hamiltonian is

Hpart =
p2

2m
, (2.2)

with p being its momentum, and the interaction potential between the particle and the chain can be
modeled with the periodic potential

Vpart,chain(x; {Xn}) = V0

N∑
n=1
n per

e−
(

x−Xn
∆

)2
. (2.3)

By adjusting the parameters V0 and ∆ one can reproduce different interactions between the two
sub-systems: V0 describes the amplitude of the potential and ∆ the width of the Gaussians. A visual
representation of this effective model is shown in Figure 2.1.

1The zero of the x-axis is taken between the first C atom and the preceding periodic replica of the N th one, i.e. such
that the position of the former is L

2
.

Figure 2.1: Representation of the classical effective model used to describe the flow of a particle (helium in this
case) inside a (5, 5) CNT. It was realized with the visualization program XCrySDen [8]: carbon
atoms are in grey while the flowing particle is in turquoise.
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6 CHAPTER 2. CARBON NANOTUBE CLASSICAL MODEL

2.1 Dispersion relation calculations

We used this effective model to compute dispersion relations relative to the chain and to the flowing
particle.

2.1.1 Isolated chain phonon spectrum

Expressing the nth carbon atom position Xn in Fourier series (in which “IBZ” stands for “First
Brillouin Zone”) 

Xn = 1√
N

∑
kl∈IBZ

X̃kle
iklLn = 1√

N

N/2∑
l=−N/2+1

X̃kle
2πi ln

N

X̃kl =
1√
N

N∑
n=1

Xne
−iklLn = 1√

N

N∑
n=1

Xne
−2πi ln

N

(2.4)

(where second equalities come from periodicity, i.e. to satisfy eiklLN = 1, yielding kl = 2π
L

l
N , with

l = 0,±1, . . . , N2 ) and doing the same with momentum Pn, one obtains

Hchain =

N/2∑
l=−N/2+1

{
|P̃kl |2

2M
+

1

2

[
4K sin2

(
πl

N

)]
|X̃kl |

2

}
+
K

2
L2 , (2.5)

which is the Hamiltonian of a set of uncoupled quantum harmonic oscillators, whose l-dependent
oscillation frequency is provided by:

Mω2
l = 4K sin2

(
πl

N

)
=⇒ ωl = ω(kl) =

√
4K

M

∣∣∣∣sin(πlN
)∣∣∣∣ =

√
4K

M

∣∣∣∣sin(klL2
)∣∣∣∣ . (2.6)

In order to be later able to compare the chain phonon spectrum with the energy bands of a flowing
particle encapsulated in the periodic CNT, we impose that the slope of ωl at l = 0 corresponds
to the velocity of the slowest mode among acoustic ones in the nanotube, i.e. the velocity of the
transverse-acoustic mode vTA = 9.841× 103m/s [7]; thus we get, expanding (2.6) for small kl√

4K

M

L

2
= vTA =⇒

√
4K

M
= ω =

2vTA
L

or K =
M

4

(
2vTA
L

)2

=
Mω2

4
. (2.7)

Proceeding this way we end up with the following phonon spectrum for the isolated chain

ωl = ω(kl) =
2vTA
L

∣∣∣∣sin(πlN
)∣∣∣∣ = ω

∣∣∣∣sin(πlN
)∣∣∣∣ , (2.8)

which is shown in Figure 2.2.
Finally, we can rewrite the linear chain Hamiltonian as

Hchain =
N∑

n=1

P 2
n

2M
+
Mω2

8

N∑
n=1
nper

(Xn −Xn−1 − L)2 . (2.9)

2.1.2 Particle dispersion relation [9]

So as to find the energies of the particle in presence of the chain, to be later compared with the
chain phonon spectrum, we solve the corresponding Schrödinger equation[

− ℏ2

2m
∇2 + Vpart,chain(x; {Xn})

]
ψpart(x) = E ψpart(x) , (2.10)

in which the chain-particle interaction plays the role of an external potential.
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Figure 2.2: Phonon energy band for the linear chain of carbons. The coefficient in front of the module of the
sine function is 52.686meV (or 79.936THz in terms of frequency ω).

In order to do it, we proceed2 to expand both ψpart(x) and Vpart,chain(x; {Xn}) in Fourier modes{
ψpart(x) =

∑
q Cqe

iqx

Vpart,chain(x; {Xn}) =
∑

Gm
VGme

iGmx
, (2.11)

with VGm = 1
L

∫ L
2

−L
2

dxVpart,chain(x; {Xn}) e−iGmx, q being a generic one-dimensional vector of the

reciprocal space and Gm = 2π
L m (m ∈ Z) a one-dimensional vector in the reciprocal lattice due to the

periodicity of Vpart,chain.
Inserting (2.11) in (2.10) one gets that

ℏ2q2

2m
Cq +

∑
Gl

VGl
Cq−Gl

− E Cq = 0 ; (2.12)

however, noticing that every point in reciprocal space can be described as sum of the vector G′
l pointing

to the corresponding cell in reciprocal lattice and of the vector k in the cell pointing to that point

q = k −G′
l , (2.13)

with suitable changes of dummy indices one obtains in the end

ℏ2

2m
(k −Gl)

2Ck−Gl
+
∑
G′

l

VG′
l−Gl

Ck−G′
l
= E Ck−Gl

. (2.14)

This equation can be rewritten in matrix form as

Â(k) C⃗(k) = E C⃗(k) , (2.15)

in which Â(k) is a (2NG+1)× (2NG+1) matrix (where 2NG+1 is the number of considered G-vectors),
whose matrix elements are

Ahl(k) =
ℏ2

2m

(
2π

L

)2

(nk − l)2δh,l + Vh−l , (2.16)

2This is the same procedure used to get, from the Schrödinger equation of a single electron in the periodic potential of
a metal, the corresponding Central Equation, since the problem is the same but with the particle in place of the electron
and with C atoms in place of metallic nuclei. A different approach, using the expression for ψpart coming from Bloch
theorem and yielding anyway the same result, is shown in Appendix A.
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(a) He energy bands
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(b) H2O energy bands

Figure 2.3: Energy bands for He and for H2O interacting with the chain for different values of the amplitude V0:
red bands correspond to 1meV, orange ones to 0.5meV, green ones to 0.1meV and blue ones to
0.05meV. Eigenenergies were shifted suitably to have the minimum of the lowest band in 0 and
were computed using NG = 20. They become more and more bent for smaller V0 and they are
flatter for water than for helium due to the higher mass of the former.

where nk ∈
{
− 1

2 + 1
N , . . . ,

1
2 − 1

N ,
1
2

}
is such that k = 2π

L nk ∈ IBZ. Moreover, the coefficient Vh−l is

Vh−l =
1

L

∫ L
2

−L
2

dxVpart,chain(x; {Xn}) e−i(Gh−Gl)x ≈

≈ V0
L

N∑
n=1

∫ +∞

−∞
dx e−

(
x−Xn

∆

)2
e−i(Gh−Gl)x =

√
π
V0N∆

L
e−

[
π∆
L

(h−l)
]2
(−1)(h−l) , (2.17)

with the last factor (−1)(h−l) related to the fact that Xn = L
2 + (n− 1)L.

Eigenenergies are obtained solving numerically the eigenproblem (2.15) (e.g. using the C++ template
library for linear algebra Eigen [10]): they arrange on band structures as functions of the wave vector
kl, as illustrated in Figure 2.3a for He and in Figure 2.3b for H2O, obtained using NG = 20. As one can
see, bands become more and more bent for smaller V0 and they are flatter for water than for helium
due to the higher mass of the former.



Chapter 3
Born-Oppenheimer molecular dynamics
simulations

In order to better understand why Born-Oppenheimer molecular dynamics simulations (also ab-
breviated as BOMDs) are not able to properly describe characteristic features of water flow in CNTs,
the effective model developed in the previous chapter was combined with different features: first of all
purely harmonic C − C bonds were considered, then anharmonic contributions were added. Finally,
viscous terms acting on C atoms were introduced (both with and without anharmonic coefficients).

Two different algorithms were used in order to integrate the equations of motion throughout
dynamical simulations. Every time the stability and reasonableness of numerical results were explicitly
checked.

3.1 General computational details on BOMDs

In this section details regarding simulations with all kinds of C − C bonds are reported.

3.1.1 Values of parameters

Equations of motion were integrated, regardless of the algorithm employed, with a timestep dt
smaller or equal to 1 fs1, for different simulation lengths (of the order of 5 ns) and with the parameters
exposed in Table 3.1. In particular, the values of L and ∆2 were obtained fitting ab-initio data from a
preliminary characterization of the water-(5, 5) CNT corrugation potential when the water dipole was
rotated by −48◦ with respect to the CNT axis, as shown in Figure 3.1a; the software Gnuplot [11] was
used for the fit. Figure 3.1b shows the resulting interaction potential.

In all molecular dynamics simulations the particle was considered at a distance of 3.409 595Å from
the chain (i.e. along the CNT axis), and was placed at t = 0 either between the second and third C
atom (i.e. at xlab0 = 2L and hence with minimum initial potential energy) or above the second carbon

1The timestep was estimated as one tenth of the characteristic time of the fastest motion in the system, corresponding
in this case to the oscillation of C atoms, since characteristic frequencies of He and H2O (estimated as the frequency
associated with the average energy jump between the lowest and the following band) are of O(10THz), i.e. much smaller
than ω = 79.936THz, hence providing longer timesteps (whose magnitude is larger than 10 fs).

2The error associated with this parameter was estimated to be of 0.004Å.

Table 3.1: Values of parameters of the model considered in BOMDs.

L ∆ V0 ω K =Mω2/4 xlab0 N
(Å) (Å) (meV) (THz) (N/m) (Å)

2.462 0.568 0.005÷ 1.0 79.936 31.859 1.5L, 2L 10, 20

9
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(a) Ab-initio data (in blue) of water-(5, 5) CNT cor-
rugation potential (obtained with PBE-D2 func-
tional, see Chapter 4) with the water dipole ro-
tated by −48◦ with respect to the CNT axis and
corresponding fitting function (2.3) (in red) for
L = 2.462Å and ∆ = 0.568Å

0 2 4 6
0

0.2

0.4

0.6

0.8

1

Position (Å)

V
p
a
rt
,c
h
a
in
(m

eV
)

(b) Plot of particle-chain interaction potential (2.3)
for L = 2.462Å, ∆ = 0.568Å and V0 = 1.0meV

Figure 3.1

(namely at xlab0 = 1.5L with maximum initial potential energy), in both cases with a non-zero initial
velocity; C atoms instead were always initialized at rest in their equilibrium lattice position.

3.1.2 Choice of the flowing particle

As previously stated, both single helium atoms and water molecules can exhibit superflow inside a
(5, 5) armchair CNT [6, 7]; nevertheless, given that:

1. the aim of this study is identifying possible sources of dissipation coming into play during the
flow, meaning that we are interested just in global trends and not in precise values;

2. He bands are more parabolic and hence associated with higher flow velocities (obtained as band
slope), as one can see in Figure 2.3;

3. in these BOMDs helium and water differ just by their mass m since the interaction with the chain
is modeled in the same way (V0 will be treated as a variable parameter);

BOMDs were performed here adopting He as the reference flowing particle. However in the end, for
physically relevant results these simulations will be repeated with a water molecule and with realistic
parameters estimated in Chapter 4 to verify such findings.

3.2 Harmonicity and anharmonicity

In this first case, Newton’s equations were solved employing the velocity Verlet integrator [12],
exposed in Appendix B.2. This algorithm was chosen first of all because it is symplectic, i.e. it conserves
the energy of the system under analysis when integrating its equations of motion. Moreover, if compared
to the original Verlet integrator [13], velocity Verlet equations are numerically more stable on computers
with finite precision, even though mathematically equivalent. [12]

In order to better interpret our results for this kind of BOMDs, we considered the reference frame of
the center of mass (CM), unless differently stated; indeed, if we were in the laboratory frame we would
see the motion of the particles in the CM reference frame superposed to the one of the CM (which is
uniform).
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Galileian transformations performed from the laboratory to the CM reference frame are{
XCM(t) = X lab(t)− (VCMt+XCM(0))

V CM(t) = V lab(t)− VCM

, (3.1)

where superscripts denote the corresponding reference frame; VCM = m
Mtot

vlab0 is the CM velocity (since
only the particle has a non-zero initial velocity and since no external forces are acting on the total
system) and Mtot = m+NM is the total mass of the system.

3.2.1 Preliminary checks

First of all, so as to ensure energy conservation, it was always checked that total energy percentage
wise fluctuations ∆Etot,% with respect to the mean Ētot

∆Etot,%(t) =
Etot(t)− Ētot

Ētot
× 100 (3.2)

were below the threshold of 0.01% in module, as shown in Figure 3.2a. Moreover, it was always verified
that no artificial external contributions were acting on the system by checking that the center of mass
motion was uniform and consequently by ensuring its position remained constant in its reference frame.
XCM

CM fluctuations were indeed found to have an upper limit of O(10−9 Å) and were attributed to
numerical noise associated with finite precision. An example can be seen in Figure 3.2b.

Then an analysis of the effect of timestep duration dt was carried out. In the harmonic case
(anharmonic contributions will be introduced later), dt solely affects percentage wise fluctuations of
particle’s maximum velocity ∆v% with respect to vlab0 (see later), of particle’s minimum velocity with
respect to vlab0 and of the total energy ∆Etot,%; these quantities increase as dt increases (except for
minimum velocity fluctuations, which vary without following any specific trend with dt). Also the
behaviour of ∆Etot,% with the timestep was checked: using series expansion of position and velocity
shown in Appendix B.2 one obtains

Etot(t+ dt) = Etot(t) + dt
∑
i

vi(t)

[
1

2
Fi(t) +

1

2
Fi(t+ dt) +

∂Epot

∂xi
({xj(t)})

]
+O(dt2) , (3.3)

in which Fi(t) is the force acting on ith particle at time t and Epot({xj(t)}) system potential energy at
the same instant, depending only on particles’ positions at time t. However, if the system is subject to
only conservative forces, Fi(t) = −∂Epot

∂xi
({xj(t)}) and if a sufficiently small value is taken for dt, the

term in square brackets is null or quite small, getting that energy is conserved up to errors of order dt2,
with an expected parabolic trend. This can indeed be seen in Figure 3.3, in which data have been fitted
in a satisfactory way by quadratic polynomials ax2 + bx+ c.

On the other hand, it was discovered that single spring energies, single spring displacements and
shape of the total energy of the system are independent of dt. Anyway, the latter is not random but
follows a specific, periodic behaviour: indeed, as shown in Figure 3.4a, plotting the system total energy
together with the rescaled and shifted total potential energy Epot (which is sum of the particle-chain
interaction energy Eint and of springs’ elastic energies) one can see that Etot follows the periodicity of
Epot (which coincides with the periodicity of Eint) and that some relative points of the total energy
correspond to minima and maxima of the interaction potential. Remaining relative points are due to
the sum of functions representing profiles of total potential and total kinetic energies3, as one would
expect from the definition of total mechanical energy and as illustrated in Figure 3.4b.

However, it was observed that replacing double precision values with single precision ones in the
code of BOMDs led to fluctuations ∆Etot,% with a different shape (and also with a different and larger
order of magnitude). With double precision, even decreasing dt down to 1× 10−8 fs, these fluctuations
did not disappear, as instead one would expect. From these two observations one could infer that
total energy percentage wise fluctuations may be mainly numerical noise fluctuations associated with
computer finite precision.

3This was checked for different values of xlab0 and ∆.
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(a) Total energy percentage wise fluctuations, always below
the threshold of 0.01% in module

(b) Center of mass position in its reference frame: fluc-
tuations are deemed to be caused by numerical noise
related to finite precision

Figure 3.2: Quantities used for preliminary checks in BOMDs, showing that total energy is conserved and that
the center of mass stays fixed in time (except for numerical noise associated with finite precision);
these data were obtained with V0 = 0.1meV, vlab0 = 630m/s and xlab0 = 2L.
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Figure 3.3: Plots of minima and maxima of percentage wise total energy fluctuations ∆Etot,% at different
timestep lengths dt for vlab0 = 30m/s and xlab0 = 2L in the harmonic case. Each set of data is fitted
with a quadratic polynomial ax2 + bx+ c in a satisfactory way, as expected theoretically.

(a) Comparison of rescaled data for total kinetic energy Ekin

(in violet), total potential energy Epot (in green) and total
mechanical energy Etot (in light blue)
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(b) Functions used to represent simu-
lation data: the violet line was ob-
tained fitting the total kinetic en-
ergy Ekin, the green line fitting the
total potential energy Epot and the
light blue line is the sum of the two,
hence representing total mechanical
energy Etot; this plot shows how rel-
ative points of Etot not present in
Epot come from the sum of func-
tional profiles of total kinetic and
total potential energy

Figure 3.4
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(a) Harmonic case (b) Anharmonic case

Figure 3.5: Displacement of the second spring in absence of the flowing particle and of its Gaussian interaction;
both harmonic and anharmonic cases are considered, with an initial displacement of 5.0× 10−6 Å.
These plots were found to be in agreement with what expected theoretically from Figure 3.6.

3.2.2 Code reasonableness

In order to assess the reasonableness of the employed code, periodic chain dynamics were studied in
absence of the particle and of its periodic Gaussian interaction, with both harmonic and anharmonic
contributions. Anharmonic terms can be introduced in the Hamiltonian of the system as follows:

Hharm
chain =

N∑
n=1

P 2
n

2M + Mω2

8

N∑
n=1
n per

(Xn −Xn−1 − L)2

Hanharm
chain = K3

N∑
n=1
n per

(Xn −Xn−1 − L)3 +K4

N∑
n=1
nper

(Xn −Xn−1 − L)4

Hchain = Hharm
chain +Hanharm

chain

. (3.4)

In these expressions quartic terms are also retained for two reasons: first of all because an Hamiltonian
with only cubic terms (even though small enough to be considered small perturbations) is unstable;
secondly, because conservation laws often impose rather stringent restrictions on processes produced by
cubic terms and hence these third-order processes are so few that their transition rates are comparable
with those of four-phonon processes, even though the latter is smaller [9].

BOMDs of the carbons alone were studied and, in order to keep the CM at rest and have Echain
tot =

Echain
pot,0 , just the second carbon of the chain was displaced from its equilibrium position by 5.0× 10−6 Å

with null initial velocity (consequently, just second and third springs have a non-zero energy since
they are the only ones affected by this displacement). It was found that, with just pure harmonicity,
displacements of a single spring ∆Xn − L (with ∆Xn = Xn − Xn−1) were symmetric (as shown in
Figure 3.5a) and in discrete agreement with those expected theoretically considering the initial potential
energy of the chain (which coincides with its total energy), as illustrated in Figure 3.6 by the red plot and
by the orange line. Introducing anharmonic coefficients (K3,K4) = (−6.0×1016N/m2, 1.0×1032N/m3),
chosen because they produce an appreciable variation in the shape of spring elastic energy, springs’
displacements became asymmetric instead, as one can see in Figure 3.5b, and still in agreement with
the corresponding predictions (black line in Figure 3.6). Discrepancies can be explained with the fact
that the second spring was not isolated and hence redistributed its initial potential energy with the
others through excitation of vibrational modes.

3.2.3 Code stability

While performing BOMDs with anharmonic terms, it was noticed that, for vlab0 = 630m/s,
(K3,K4) = (−6.0 × 1016N/m2, 1.0 × 1032N/m3), N = 20, dt = 1.0 fs and a duration of 5 × 106

timesteps, after approximately 2 208 340 steps all quantities become “NaN”. So as to assess the stability
of the code, this simulation was repeated with the same parameters just listed but using single precision
and with 10 carbons in the chain with both precisions. It was observed that in all four cases there is a
specific timestep at which physically relevant quantities (e.g. positions, velocities, accelerations and
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Figure 3.6: Plots of the potential of the nth spring between two adjacent atoms of the carbon chain alone for
anharmonic coefficients (K3,K4) = (−6.0×1016 N/m2, 1.0×1032 N/m3): the red plot is the harmonic
potential, the green one presents the additional K3 contribution and the blue one represents the
potential with also the K4 term; the orange line represents the initial potential energy of the second
spring in the harmonic case and the black one its initial potential energy in the anharmonic case,
both for an initial displacement of 5.0× 10−6 Å.

Figure 3.7: Comparison of total energy percentage wise fluctuations between the original Verlet algorithm [13]
(in green) and the velocity one [12] (in violet) in the harmonic case for vlab0 = 630m/s, V0 = 0.1meV,
xlab0 = 2L and dt = 0.6 fs: as one can see, in both cases energy is conserved but velocity Verlet
integrator provides stabler fluctuations (the same occurs with the center of mass position XCM

CM ).
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energies) become anomalous, i.e. start differing largely from the values assumed until that step, and
that this anomaly emerges sooner if single precision is used and later if less carbons are considered; such
an anomaly is then followed by “NaN” values. A closer inspection showed that this anomaly followed by
“NaN” values solely affects the chain, since particle’s quantities do not present any deviation from usual
values (obviously until “NaN” values occur). Furthermore, the cause could not be the particle, since
its energy was still finite while the chain’s one became anomalous (meaning that no abnormal energy
transfer between the two occurred), neither could be functions used in the Fortran code (i.e. dnint and
dexp), since “NaN” values were returned only after their appearance in other physical quantities. It
was also noticed that the larger the helium initial velocity was, the sooner the anomaly appeared. On
the other hand, “NaN” appeared later if dt was decreased and anomalies were absent if only harmonic
terms were present.

In order to understand whether the employed velocity Verlet algorithm could be responsible for
the observed anomaly, some simulations were performed using also the original Verlet algorithm [13],
which is explained in Appendix B: first of all, in absence of anharmonicity the total energy was still
conserved but original Verlet integrator provided total energy fluctuations which were more chaotic than
those obtained with its velocity version, as one can see from Figure 3.7; also CM position fluctuations
were larger, since XCM

CM deviated from 0 up to O(10−5 Å). Nevertheless, using the same values of the
parameters that caused the appearance of “NaN” with velocity Verlet algorithm, one finds that the
aforementioned anomalies occur at larger times; this however is not regarded to be a good enough
reason to use original Verlet integrator in place of the velocity one, since the same result (i.e. a delay in
the onset of these anomalies) can be achieved reducing the timestep.

Based on these observations, such anomalies are regarded to be caused by the accumulation of
numerical errors related to the finite precision in the representation and to the integration step dt;
these anomalies are also deemed to be amplified by the large anharmonic coefficients used. It was also
observed that anomalies correlated with unphysical crossing between C atoms within the chain. In
practice, accumulation of numerical noise can eventually lead to unphysical configurations. These can
be avoided in any case by a suitable choice of the timestep.

3.2.4 Analysis of results

After these checks, dynamical simulations were interpreted from a physical point of view and
particularly interesting quantities were studied varying available parameters.

System dynamics

With initial conditions vlab0 ≲
√

2V0
m and xlab0 situated between two C atoms, the particle oscillates

between the same two atoms since the corresponding potential barrier is too high (i.e. the particle
is confined); if instead the particle has sufficient velocity, or equivalently xlab0 is on top of one of the
carbons, the barrier is overcome and the particle moves along the chain (whose atoms move or oscillate
in the opposite direction with respect to the particle). Such dynamics are shown in Figure 3.8 in the
harmonic case for V0 = 0.1meV and 0.5meV, for different values of vlab0 and either with xlab0 = 2L or
1.5L. These behaviours occur both with and without anharmonic contributions, but the introduction
of anharmonicity causes in general a phase shift in positions, velocities and energies (as one can see for
example in Figure 3.9a) and makes oscillations more chaotic for both velocities and energies, as shown
in Figure 3.9b.

Moreover, in the anharmonic case carbon velocities’ oscillation amplitude increases compared to the
harmonic case (see Figure 3.9c for instance), while helium velocity presents oscillations that decrease
with time; these observations can be explained in terms of an enhancement of helium-chain energy
exchange when anharmonicity is considered (see below).

Dissipation curves

Other two relevant differences arising when anharmonic contributions are taken into account are
the disappearance of periodicity in helium maximum velocity percentage wise fluctuations ∆v% (see
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Figure 3.8: Plots of carbon atoms and helium particle positions during BOMDs in the harmonic case: green
lines correspond to He position, while other colored lines to carbon ones; in particular, blue lines
(i.e. the lowest ones) are associated with the first C, red lines with the second, orange lines with the
third and so on. These BOMDs were performed for different values of the triplet (V0, v

lab
0 , xlab0 ) and

are in agreement with classical mechanics expectations.
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(a) Comparison of the first carbon atom velocity V1 be-
tween the harmonic (in violet) and the anharmonic (in
green) case towards the end of a 5 ns-long simulation at
(V0, v

lab
0 , xlab0 ) = (0.1meV, 30m/s, 2L). This behaviour

occurs also at 630m/s

(b) Comparison of total energy percentage wise fluc-
tuations ∆Etot,% between the harmonic (in violet)
and anharmonic (in green) case at (V0, v

lab
0 , xlab0 ) =

(0.1meV, 30m/s, 2L). This behaviour occurs also at
630m/s

(c) Comparison of the first carbon atom velocity V1 between
the harmonic (in violet) and the anharmonic (in green)
case at (V0, v

lab
0 , xlab0 ) = (0.1meV, 30m/s, 2L). This

behaviour occurs also at 630m/s

(d) Comparison of helium maximum velocity fluctua-
tions ∆v% between the harmonic (in violet) and
the anharmonic (in green) case at (V0, v

lab
0 , xlab0 ) =

(0.1meV, 30m/s, 2L); the inset shows the oscillating
harmonic case alone

Figure 3.9: Plots showing the effect of the introduction of anharmonic coefficients (K3,K4) = (−6.0 ×
1016 N/m2, 1.0 × 1032 N/m3), i.e. the presence of a phase shift in positions, velocities and en-
ergies, more chaotic oscillations of velocities and energies, a change in velocity oscillation amplitude
and an increase in particle-chain energy exchange (with disappearance of periodic oscillations).
These data were obtained in 5 ns-long simulations with dt = 0.6 fs.
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Table 3.2: Values of percentage wise fluctuations ∆vend% and ∆Eend
He,% in the harmonic and anharmonic case for

(K3,K4) = (−6.0 × 1016 N/m2, 1.0 × 1032 N/m3) and V0 = 0.1meV. Different vlab0 are considered;
values shown are taken towards the end of 5 ns-long simulations with dt = 0.7 fs.

vlab0 ∆vharm,end
% ∆vanharm,end

% ∆Eharm,end
He,% ∆Eanharm,end

He,%
(m/s) (10−3%) (10−3%) (10−2%) (10−2%)

30 −7.0× 10−3 −6.7 −2.79× 10−3 −1.19
45 −7.1× 10−3 −7.6 −1.65× 10−3 −1.45
65 −7.0× 10−3 −4.5 2.29× 10−3 −0.87
100 −6.0× 10−3 −5.4 1.46× 10−3 −1.04
165 −0.2 −5.3 −5.83× 10−2 −1.05
230 −1.7 −2.6 −0.15 −0.49
400 −1.0 −2.1 −5.90× 10−2 −0.43
630 −0.3 −1.4 −1.33× 10−2 −0.28

later for their definition), which is present instead in the purely harmonic case as shown in the inset of
Figure 3.9d, and the increase in their magnitude for suitable values of K3 and K4, as one can see in the
aforementioned figure.

Considering helium energy EHe as sum of its kinetic energy and of the particle-chain interaction
energy, i.e. as

EHe =
1

2
mv2 + Eint , (3.5)

percentage wise fluctuations of helium maximum velocity ∆v% and of helium energy transferred to the
chain ∆EHe,% were defined at time t as∆v% =

vlabmax(t)−vlab0

vlab0
× 100

∆EHe,% =
ĒHe(t)−ĒHe,0

ĒHe,0
× 100

. (3.6)

Here vlabmax(t) is the maximum of helium velocity profile around instant t and ĒHe(t) denotes helium
average total energy at that time, i.e. computed from minima and maxima of EHe around t; a “0” as
subscript denotes that the quantity is taken at the start of the simulation. When these quantities are
computed towards the end of a simulation, a subscript “end” is used.

As one can see from data in Table 3.2, modules of these quantities are always larger when large
anharmonic contributions are introduced; the facts that ∆Eharm,end

He,% is positive (meaning that energy
was transferred from the chain to He) at 65m/s and 100m/s and that it has a value almost comparable
to the anharmonic one at 230m/s can be attributed to fluctuations of minima and maxima of EHe.

In order to understand how these fluctuations vary with K3, dissipation curves were studied: they
consist of {(|K3|,∆vend% )} and {(|K3|,∆Eend

He,%)} data at fixed V0 and vlab0 . Since we are interested in
the study of a particle flowing inside the CNT, for every value of V0 (namely 0.1meV, 0.5meV and
1.0meV), values of vlab0 were chosen in the set {100, 190, 230, 400, 630} m/s provided that they allowed
the particle to flow. Furthermore, in order to avoid the appearance of previously described “NaN”
anomalies due to numerical noise and so as to guarantee energy conservation, timestep duration was
progressively decreased with potential barrier height: for V0 = 0.1meV it was chosen to be 0.6 fs, for
V0 = 0.5meV it was reduced to 0.4 fs and for V0 = 1.0meV to 0.2 fs.

To construct these dissipation curves, percentage wise fluctuations in (3.6) were considered towards
the end of 5 ns-long simulations, deemed to be long enough for relevant He-chain energy exchange
to occur. Just as a check, results were compared for different BOMDs durations: as illustrated in
Figure 3.10a for the case (V0, v

lab
0 ) = (0.1meV, 190m/s), ∆vend% percentage wise fluctuations (but also

∆Eend
He,% ones since, as it will be shown later, the two have the same qualitative behaviour) preserve

almost the same trend even for longer time lengths, with the magnitude changing slightly in module;
this indeed occurs because equilibrium was not reached, and it is neither expected to be reached after
longer times, as one can see from Figure 3.10b.
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(a) Comparison of dissipation curve details
at (V0, v
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different time durations. Data were ac-
quired towards the end of 5 ns-long sim-
ulations

(b) Comparison of maximum particle velocity fluctuations ∆v% at
(V0, v
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0 ) = (0.1meV, 190m/s) for different time durations: blue

points correspond to 5 ns, red ones to 6 ns and green ones to 7 ns

Figure 3.10: Comparison of dissipation curve details and ∆v% at (V0, v
lab
0 ) = (0.1meV, 190m/s) for different

time durations, showing that in dissipation curves the trend is almost the same even for longer
durations and that in BOMDs an equilibrium is not reached.

Dissipation curves for V0 = 0.1meV are shown in Figure 3.11: first of all one can notice how ∆vend%

and ∆Eend
He,% have the same qualitative behaviour but different magnitudes. As K3 decreases in module,

both percentage wise fluctuations decrease (i.e. there is an increase in the loss of velocity and energy,
transferred from He to chain), reaching an absolute minimum; then they increase, until the harmonic
regime is recovered. One can notice the presence of irregularities, that were checked not to be an
artifact of simulations by reducing dt: as illustrated in Figure 3.12 (in which just velocity fluctuations
are considered since the trend is the same), decreasing the timestep length does not remove such
irregularities, that slightly reduce or increase their height, except for the case at vlab0 = 400m/s, at
which the peak disappears for dt = 0.5 fs.

An interesting feature to notice is that the absolute minimum of these dissipation curves seems to
decrease as vlab0 increases, meaning that the larger the initial velocity the higher the maximum amount
of velocity and energy that can be transferred from He to the chain, even if such minimum occurs at
different K3.

Concerning higher values of the potential barrier, one can see from Figure 3.13a and Figure 3.13b
that dissipation curves follow the same qualitative behaviour as those at V0 = 0.1meV, with anomalous
peaks appearing just for vlab0 = 400m/s at 0.5meV and for 630m/s at 1.0meV. As previously noticed,
as vlab0 increases keeping V0 fixed, the maximum transfer of velocity and energy increases, occurring
however at smaller values of |K3|; this trend occurs also increasing the potential amplitude V0 while
keeping vlab0 fixed, as can be seen comparing these curves with those in Figure 3.11.

Thus, these dissipation curves effectively showed how anharmonic contributions in a given range
can cause a significant increase in particle-chain transfer of velocity and energy with respect to the
purely harmonic case; these exchanges are also not monotonic with |K3|. The comparison also showed
how one cannot identify a precise trend of ∆vend% (or ∆Eend

He,%) with vlab0 at fixed (|K3|, V0) due to the
complexity of dissipation curve profiles.

3.3 Viscous contributions

In the previous section anharmonicity was observed to enhance the amount of velocity and energy
transferred from the flowing particle to the chain. Now it is interesting to study energy dissipation in
the CNT. Such dissipation is meant to effectively mimic possible radiative decays or couplings to the
environment. The question is whether continuous energy losses in the CNT can favour energy transfer
from the flowing particle to the CNT, with consequent enhancement of friction forces.

With this aim, in order to reduce the average lifetime of CNT vibrations (consequently preventing
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Figure 3.11: Dissipation curves in terms of ∆vend% and ∆Eend
He,% at different fixed velocities for constant ratio

K3/K4 = −6.0 × 10−16 m and V0 = 0.1meV. Data were acquired towards the end of 5 ns-long
simulations with dt = 0.6 fs and are shown with a logarithmic x-axis. The absolute minimum
decreases with vlab0 .
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Figure 3.12: Irregularities in ∆vend% dissipation curves of Figure 3.11 for different values of dt at V0 = 0.1meV.
These data were acquired towards the end of 5 ns-long simulations and show that, except for the
case at vlab0 = 400m/s, decreasing the timestep length does not remove irregularities, which just
slightly reduce or increase their height. The same occurs for ∆Eend

He,%.
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Figure 3.13: Dissipation curves in terms of ∆vend% at different fixed velocities for constant ratio K3/K4 =
−6.0 × 10−16 m and V0 = {0.5, 1.0}meV. Data were acquired towards the end of 5 ns-long
simulations and are shown with a logarithmic x-axis. The absolute minimum decreases with
vlab0 . The same trends (with different magnitudes) were observed for the corresponding ∆Eend

He,%
dissipation curves.
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(a) Comparison of the first carbon atom velocity V1 in the
harmonic case between the velocity Verlet integrator (in
violet) and the Fourth order Runge-Kutta algorithm (in
green) at vlab0 = 30m/s towards the end of a 5 ns-long
simulation. This behaviour occurred also at 630m/s,
but with larger discrepancies

(b) Comparison of the chain total energy Echain in the
harmonic case between the velocity Verlet integrator
(in violet) and the Fourth order Runge-Kutta algorithm
(in green) at vlab0 = 30m/s towards the end of a 5 ns-long
simulation. This behaviour occurred also at 630m/s,
but with larger discrepancies

Figure 3.14: Plots showing the comparison of different quantities in the harmonic undamped case between
velocity Verlet and Fourth order Runge-Kutta integrators. These data were obtained in simulations
with V0 = 0.1meV and xlab0 = 2L. As one can see, trends are the same, assessing the reasonableness
of the employed Runge-Kutta algorithm.

them from persisting for the whole trajectory), viscous contributions of the kind −ζVi were added in
the ith equation of motion of the chain, ζ being a positive damping coefficient and Vi the velocity of
the ith carbon atom. However, the previously employed velocity Verlet algorithm could not be used
anymore, since it is symplectic, while in this case energy is not conserved; the integrator had to be
changed also because (as one can see from (B.5) in Appendix B.2) to obtain the ith carbon velocity at
time t+ dt the corresponding acceleration at time t+ dt is required, but such acceleration now needs
the unknown velocity Vi(t+ dt) in order to be computed. To overcome this problem the Fourth order
Runge-Kutta algorithm [14, 15] was used, whose equations are exposed in Appendix B.3.

Proceeding as in the case of the velocity Verlet integrator, first of all the reasonableness of the
code was checked comparing Runge-Kutta harmonic dynamics in absence of viscous coefficient with
velocity Verlet ones in Section 3.2 for xlab0 = 2L and dt = 1.0 fs, whose reasonableness was already
assessed. First of all, we defined the percentage wise difference of a quantity Q (either the position or
the velocity) between its velocity Verlet and Runge-Kutta versions at the same time t as

∆Qcomparison,%(t) =
QVV(t)−QRK(t)

QVV(t)
× 100 , (3.7)

QVV(t) being the velocity Verlet version of Q at time t and QRK(t) the corresponding Runge-Kutta
one. For vlab0 = 30m/s we observed that positions differed in module at max by 1.5× 10−4%, while
for vlab0 = 630m/s the module of these percentage wise differences was ≲ 5× 10−3%. Also velocities
presented a good agreement, exhibiting the same trend in both cases with what was deemed to be a
satisfactory overlap, as exposed for instance in Figure 3.14a. As for the total energy, its behaviour was
different since Runge-Kutta algorithm is not symplectic; nevertheless, magnitudes were comparable.
Moreover, the trend of chain total energy was exactly the same at 30m/s, as shown in Figure 3.14b,
while for 630m/s values were slightly different but positions of minima and maxima almost coincided.
These observations were deemed enough to certify the reasonableness of this new integrator.

In order to study the general behaviour of particles in viscous molecular dynamics, a reference value
of the damping coefficient was estimated based on characteristic quantities of the system under analysis,
i.e. the initial helium velocity vlab0 and the carbon mass M , and it was chosen in such a way that the
viscous force was comparable with the average carbon acceleration without damping, i.e.

ζvlab0 ∼MO(amax
C ) , (3.8)

amax
C being the maximum value of the acceleration of a carbon of the chain in absence of viscous

coefficients. This estimate yielded the value of O(10−16 kgs−1), which is comparable with estimates
provided by Ref. [16] and Ref. [17], i.e. 1.0× 10−17 kgs−1 and 1.0× 10−15 kgs−1 respectively.
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3.3.1 Viscous dynamics

Focusing only on cases with xlab0 = 2L since they are the most interesting ones, using the reference
value ζ = 1.0 × 10−16 kgs−1 and the reference pair of anharmonic coefficients (K3,K4) = (−6.0 ×
1016N/m2, 1.0× 1032N/m3), viscous dynamics were studied in the harmonic and anharmonic case for
V0 = 0.1meV, dt = 1.0 fs, xlab0 = 2L (i.e. He starts between the second and the third carbon atom) and
vlab0 both equal to 30m/s and 630m/s. At variance with what done with velocity Verlet results, now
the analysis is carried out in the laboratory reference frame.

For vlab0 = 30m/s in the harmonic case, after an initial drift (deemed to be caused by the dissipation
of the CM initial velocity due to viscous contributions) both carbon and helium atoms oscillate with
oscillations that get damped with time, as one can see in Figure 3.15a; the same damping occurs also
to velocities (see, for instance, Figure 3.15b). Hence, if the initial energy of the flowing particle is not
high enough to overcome the energy barrier, this remains confined between two carbons (as shown
in Figure 3.15c), oscillating with a progressively decreasing amplitude. The He energy decreases with
time (Figure 3.15d); also ∆v% decreases but with a much stronger rate (Figure 3.15e) compared to the
undamped case, in which periodic oscillations are present. If anharmonicity is introduced, position,
velocity and He energy behaviours are the same, but the phase shift seen in the undamped case
occurs here too; it has to be pointed out that ∆vanharm% and EHe are slightly smaller (see for instance
Figure 3.15f), meaning that more velocity and energy are transferred or lost in presence of anharmonic
terms. Instead, Echain will be studied later separately.

For vlab0 = 630m/s in the harmonic case, from Figure 3.16a one can see how, for large enough
times, the position of the carbon atoms do not oscillate anymore around zero but around a straight
linear trajectory with finite positive small slope, while the coordinate of He keeps growing with a slope
which slightly reduces with time due to the energy exchange with the chain (see the corresponding
inset). Velocities oscillate around a non-zero value with an almost constant amplitude after a first
transient, as illustrated, for instance, in Figure 3.16b: this is deemed to occur because, after a first gain,
energy dissipation occurs due to viscous contributions until a quasi-stationary state is reached. As it
happens for vlab0 = 30m/s, both ∆v% and EHe do not oscillate anymore (at variance with corresponding
undamped cases) but decrease, as it can be seen in Figure 3.16c. The introduction of anharmonic
contributions causes fluctuations to become more chaotic and, as for energy and velocity exchange, for
the considered values of ζ and V0 the particle loss becomes greater (see Figure 3.16d as an example).

From these observations, it seems that if the initial energy of helium is not sufficient to overcome
the energy barrier, damped oscillations occur; if instead the initial energy is high enough, the particle
flows with v that decreases while carbon velocities stabilize after a transient. This stabilization can be
seen computing the percentage wise ratio between carbons’ average acceleration and the corresponding
amplitude for vlab0 = 630m/s:

ri,% =
Āi

AAi

× 100 , (3.9)

Āi being the ith carbon atom average acceleration and AAi its corresponding acceleration amplitude
after the transient (i.e. approximately after 1.5 ns). It was found that their modules lay in the range
[1× 10−4; 2× 10−3]%, meaning that carbon average accelerations are approximately null.

3.3.2 Effects of viscous contributions

In this part of the thesis work the effect of viscous contributions was characterized by studying the
behaviour of the already presented particle maximum velocity percentage wise fluctuations ∆vend% and
of chain total energy percentage wise fluctuations ∆Echain,% at the end of simulations; the latter is
defined as

∆Eend
chain,% =

Ēchain(tend)− Ēchain,0

Ēchain,0
× 100 , (3.10)

in which Ēchain(t) is the average energy of the chain obtained averaging minima and maxima around
time t and a “0” as subscript denotes that the energy is taken at the start of the simulation. These
two kinds of percentage wise fluctuations were studied for different values of the four parameters
characterizing the system, i.e. the chain damping coefficient ζ, the third order anharmonic coefficient
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(a) Comparison of positions of the second carbon atom X2

(in violet), of the He particle x (in green) and of the
third carbon atom X3 (in light blue) in the harmonic
case

(b) Plot of the velocity of the second carbon atom V2 in
the harmonic case

(c) Comparison of positions of the second carbon atom X2

(in violet), of the He particle x (in green) and of the
third carbon atom X3 (in light blue) in the harmonic
case at the end of a 5 ns-long simulation

(d) Plot of helium total energy EHe in the harmonic case

(e) Plot of particle maximum velocity fluctuations ∆v% in
the harmonic case

(f) Comparison of helium total energy EHe between the
harmonic case (in violet) and the anharmonic one (in
green) at the end of a 5 ns-long simulation

Figure 3.15: Plots showing quantities associated with system damped harmonic dynamics and comparing them
with the corresponding anharmonic case. These data were obtained in 5 ns-long simulations for
ζ = 1.0× 10−16 kgs−1 and (dt, V0, x

lab
0 , vlab0 ) = (1.0 fs, 0.1meV, 2L, 30m/s) and show how, if vlab0

is small enough, the particle is confined and exhibits both damped oscillations and enhanced
monotonic particle-chain energy and velocity exchange (slightly increased in presence of suitable
anharmonicity).
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(a) Plot of the position of the first carbon atom X1 in
the harmonic case. The inset shows in light blue the
position of the helium particle x in the same case

(b) Plot of the velocity of the first carbon atom V1 in the
harmonic case

(c) Plot of particle maximum velocity fluctuations ∆v% in
the harmonic case

(d) Comparison of particle maximum velocity fluctuations
∆v% between the harmonic case (in violet) and the
anharmonic one (in green)

Figure 3.16: Plots showing quantities associated with system damped harmonic dynamics and comparing them
with the corresponding anharmonic case. These data were obtained in 5 ns-long simulations for
ζ = 1.0 × 10−16 kgs−1 and (dt, V0, x

lab
0 , vlab0 ) = (1.0 fs, 0.1meV, 2L, 630m/s) and show how the

particle can flow with an enhanced and monotonic particle-chain energy and velocity exchange,
increased when suitable anharmonic coefficients are included.
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Table 3.3: Values of parameters (ζ,K3, V0, v
lab
0 ) employed in simulations used to characterize effects of viscous

contributions.

ζ K3 V0 vlab0

(kgs−1) (N/m2) (meV) (m/s)

Value 1 0.0 0.0 0.1 100
Value 2 1.0× 10−16 −5.4× 1013 0.5 190
Value 3 1.0× 10−12 −6.0× 1016 1.0 230
Value 4 – – – 400
Value 5 – – – 630

Figure 3.17: Example of chain total energy Echain initial increase during the first picoseconds, deemed to
correspond to the activation of vibrational modes. This plot was realized for (ζ,K3, V0, v

lab
0 ) =

(1.0× 10−12,−5.4× 1013, 0.5, 230).

K3
4, the potential barrier height V0 and helium initial velocity in the laboratory reference frame vlab0 .

For each of these parameters at least three values were always considered, as shown in Table 3.3:
in particular, the value K3 = −5.4 × 1013N/m2 was chosen as a possible realistic estimate of the
anharmonicity of a (5, 5) carbon nanotube at zero temperature, as shown in Appendix C. It has to be
pointed out that not all values of vlab0 were used at every V0: being interested only in flowing particles,
we considered only initial velocities which allowed the particle to flow over the chain for that specific
value of the barrier. Moreover, simulations with these values of parameters were always performed
with a timestep dt = 0.2 fs, since it was the interval that guaranteed numerically stable results in the
previous study of undamped dissipation curves for every V0.

However, before studying possible trends of ∆vend% and ∆Eend
chain,% for different parameter values, it

is interesting to describe the shape of chain total energy with time, so as to better grasp the effects of
vibrational mode damping.

Echain shape

First of all, it has to be underlined that the initial energy of the chain was always zero in all
simulations, since all C atoms start at rest in their equilibrium position. However, regardless of the
value chosen for the four parameters, an energy increase in the first picoseconds was always detected
and it is deemed to correspond to the activation of vibrational modes due to the very first interaction
of the chain with the He, as illustrated in Figure 3.17 as an example.

Moving on to the analysis of the shape of chain total energy, in the undamped case (i.e. ζ = 0)
there are two possibilities:

• one in which minima and maxima remain constant (except for some fluctuations), as shown
in Figure 3.18a, characteristic of the harmonic case and of the weakly anharmonic one (i.e.
K3 = −5.4× 1013N/m2) for the two smallest velocities at V0 = 0.1meV;

• one which is characterized by a net upward drift, as depicted in Figure 3.18b, in Figure 3.18c and
in Figure 3.18d, arising in presence of anharmonicity.

4The fourth order anharmonic coefficient K4 was always considered in such a way that the ratio K3/K4 was kept fixed
at −6.0× 10−16 m.
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(a) (ζ,K3, V0, v
lab
0 ) = (0, 0, 0.1, 190). The same result oc-

curs for all possible V0 in the undamped harmonic case,
for (0,−5.4×1013, 0.1, 100) and (0,−5.4×1013, 0.1, 190)

(b) (ζ,K3, V0, v
lab
0 ) = (0,−6.0 × 1016, 0.5, 230). Similar

shapes are present in all cases not contemplated in
Figure 3.18a

(c) (ζ,K3, V0, v
lab
0 ) = (0,−5.4 × 1013, 0.5, 230). Similar

shapes are present in all cases not contemplated in
Figure 3.18a

(d) (ζ,K3, V0, v
lab
0 ) = (0,−6.0 × 1016, 0.5, 400). Similar

shapes are present in all cases not contemplated in
Figure 3.18a

Figure 3.18: Examples of Echain shapes in the undamped case (i.e. ζ = 0) for different values of parameters
(ζ,K3, V0, v

lab
0 ) (units of measurement are omitted for simplicity).

When ζ = 1.0× 10−16 (corresponding to weak damping), two kinds of behaviours can be observed:

• one in which, after a quick and steep increase, the energy starts fluctuating chaotically and
irregularly; this is characteristic of the anharmonic case with velocities either 400m/s or 630m/s
and an example is illustrated in Figure 3.19a;

• one, such as the one shown in Figure 3.19b, in which, after a transient, chain energy oscillations
“stabilize” (except for some fluctuations) and their upper and lower profiles can drift either
upwards, downwards or get damped; this occurs with both harmonicity for every velocity and
anharmonicity for small velocities.

The strong damping case (i.e. ζ = 1.0× 10−12 kgs−1) is also rather interesting:

• for V0 = 0.1meV and for all values of K3 and vlab0 , the energy oscillates with either an upward or
downward drift or with an increase of oscillation amplitude after the initial gain; an example is
illustrated in Figure 3.20a;

• for V0 = 0.5meV and for all values of K3 and vlab0 , a bump appears after an enhancement of
oscillations, followed by an important damping of the energy, as it can be seen in Figure 3.20b;

• for V0 = 1.0meV and for all values of K3 and vlab0 , the aforementioned bump occurs earlier and
the damping is more evident when compared to the previous case at the same fixed anharmonicity
and velocity; looking at Figure 3.20c, the shape of the tail at the end allows to infer that the
damping would have continued if simulations had been longer.

Moreover, the insurgence of such a bump corresponds to a change in the behaviour of ∆v%: comparing
Figure 3.20b and the violet line in Figure 3.20d, one can see how at approximately 1.6 ns there is a
change in both plots, with in particular ∆v% changing from a linear trend to one in which the velocity
decrease rate reduces, since its slope becomes smaller in module with time; the same change occurs at
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(a) (ζ,K3, V0, v
lab
0 ) = (1.0 × 10−16,−5.4 × 1013, 0.5, 630).

The same result occurs at every V0 for (ζ,K3, v
lab
0 ) =

(1.0 × 10−16,−5.4 × 1013, {400, 630}) and (1.0 ×
10−16,−6.0×1016, 630) and at (ζ,K3, V0, v

lab
0 ) = (1.0×

10−16,−6.0× 1016, 0.1, 400)

(b) (ζ,K3, V0, v
lab
0 ) = (1.0×10−16,−5.4×1013, 0.1, 230). A

similar shape is present in all cases not contemplated
in Figure 3.19a

Figure 3.19: Examples of Echain shapes in the weakly damped case (i.e. ζ = 1.0 × 10−16 kgs−1) for different
values of parameters (ζ,K3, V0, v

lab
0 ) (units of measurement are omitted for simplicity).

approximately 0.1 ns when comparing Figure 3.20c and the green line in Figure 3.20d. This change can
be interpreted as follows: after having gathered velocity (and hence energy) from the flowing particle,
the chain starts feeling viscous effects more strongly, with a fast damping of its energy and a slowdown
in He-chain energy exchange. Furthermore, it was noticed that keeping V0 and vlab0 fixed, the height of
this bump decreases when |K3| increases; vice versa, when keeping K3 and vlab0 constant an increase
of V0 causes a rise in the bump height; if instead V0 and K3 are fixed, the bump shifts rightwards as
vlab0 is increased, as illustrated in Figure 3.20e. In Figure 3.20f the comparison of ∆v% corresponding
to data in Figure 3.20e is illustrated, showing how increasing vlab0 causes also a rightward shift of the
onset of deviation from linear behaviour. To our current knowledge, such a particular delay in energy
dissipation has never been detected before in scientific literature.

∆vend% study

Percentage wise fluctuations of the maximum of He velocity were studied at the end of 5 ns-long
simulations as a function of vlab0 , V0 and ζ; the trend with K3 was not considered since it was previously
shown in undamped dissipation curves how the dependence on anharmonicity is quite complex and
changes significantly with other parameters.

While no peculiar trends were observed for data {(vlab0 ,∆vend% )} (as one could have expected given
the results of undamped dissipation curves), it was found out that ∆vend% decreases both with ζ at fixed
(K3, V0, v

lab
0 ) (except for (−5.4 × 1013N/m, 0.1meV, 230m/s)) and with V0 at constant (ζ,K3, v

lab
0 )

(except for (0, 0, 230m/s)), as illustrated in Figure 3.21.
This means that the velocity (and hence the energy) exchange is enhanced if either the viscosity in

C − C bonds or the barrier height is increased. These results could be especially relevant when the
radius of the armchair nanotube is decreased while keeping all the other parameters fixed, since, as
it is described in Subsection 4.2.2 for (5, 5) and (7, 7) CNTs, decreasing chiral coefficients causes an
increase of the corrugation in the interface potential. Given the physical importance of this finding,
these BOMDs were repeated for a water molecule with realistic parameters shown in Table 4.2 from
ab-initio calculations, confirming the observed trends.

∆Eend
chain,% study

First of all, it has to be pointed out that these percentage wise fluctuations can be both positive
(particularly common in the undamped case) or negative. Performing simulations with all possible
combinations of values listed in Table 3.3, the following peculiar trends of ∆Eend

chain,% were identified:

1. an increase with vlab0 for every fixed (ζ,K3) pair when V0 = 1.0meV, for every (ζ, V0) pair
when K3 = −6.0 × 1016N/m2 and for (ζ,K3, V0) equal to ({0,−1.0 × 10−16} kgs−1,−5.4 ×



30 CHAPTER 3. BORN-OPPENHEIMER MOLECULAR DYNAMICS

(a) (ζ,K3, V0, v
lab
0 ) = (1.0 × 10−12,−5.4 × 1013, 0.1, 230);

the green line is a guide for the eye to understand
the increase of oscillation amplitude. A similar shape
is present for every K3 and vlab0 at (ζ, V0) = (1.0 ×
10−12, 0.1)

(b) (ζ,K3, V0, v
lab
0 ) = (1.0 × 10−12,−5.4 × 1013, 0.5, 230).

Similar shapes occur for every K3 and vlab0 at (ζ, V0) =
(1.0× 10−12, 0.5)

(c) (ζ,K3, V0, v
lab
0 ) = (1.0 × 10−12,−5.4 × 1013, 1.0, 230).

Similar shapes occur for every K3 and vlab0 at (ζ, V0) =
(1.0× 10−12, 1.0)

(d) (ζ,K3, V0, v
lab
0 ) = (1.0× 10−12,−5.4× 1013, {0.5, 1.0}, 230):

violet data correspond to V0 = 0.5meV and green ones
to V0 = 1.0meV

(e) (ζ,K3, V0, v
lab
0 ) = (1.0× 10−12,−5.4× 1013, 0.5, variable):

violet data correspond to 190m/s, green ones to
230m/s and light blue ones to 400m/s; the larger vlab0

the more shifted rightwards the bump

(f) (ζ,K3, V0, v
lab
0 ) = (1.0× 10−12,−5.4× 1013, 0.5, variable):

violet data correspond to 190m/s, green ones to
230m/s and light blue ones to 400m/s; the larger vlab0

the more shifted rightwards the onset of deviation
from linear behaviour

Figure 3.20: Examples of Echain shapes and ∆v% in the strongly damped case (i.e. ζ = 1.0× 10−12 kgs−1) for
different values of parameters (ζ,K3, V0, v

lab
0 ) (units of measurement are omitted for simplicity).
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(b) ζ = 1.0×10−12 kgs−1, K3 = −6.0×1016 N/m2, differ-
ent fixed vlab0 . The same trend occurs at every fixed
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0 ), except for (0, 0, 230m/s)

Figure 3.21: Examples of peculiar trends of ∆vend% for different values of (ζ,K3, V0, v
lab
0 ). For data points

{(ζ,∆vend% )} a logarithmic scale is used and values of the damping coefficient are increased by
1.0× 10−20 kgs−1 in order to show also the value corresponding to zero. Velocities here considered
always allowed the particle to flow, regardless of the barrier height V0. Data were acquired towards
the end of 5 ns-long simulations with dt = 0.2 fs and show an enhancement of particle-chain velocity
transfer with ζ and V0.

1013N/m2, 0.5meV); examples of these behaviours are illustrated in the first three plots of
Figure 3.22 respectively;

2. an increase with |K3| for every fixed vlab0 at (ζ, V0) = (1.0× 10−12 kgs−1, 1.0meV), as shown in
Figure 3.22d;

3. a decrease with ζ for every fixed (K3, v
lab
0 ) pair at V0 = 1.0meV (which pairs with the first trend

in 1) and for every (V0, v
lab
0 ≥ 190m/s) at K3 = −5.4× 1013N/m2 (except for (0.1meV, {190,

230}m/s)), whose examples can be seen in Figure 3.23a and Figure 3.23b respectively;

4. a decrease with V0 for every fixed (ζ, vlab0 ) at K3 = −6.0 × 1016N/m2 (except for (1.0 ×
10−16 kgs−1, 230m/s)) and for every K3 at (ζ, vlab0 ) = (1.0 × 10−16 kgs−1, 400m/s) and (1.0 ×
10−12 kgs−1, 230m/s), as illustrated respectively in Figure 3.23c and Figure 3.23d.

Looking at these plots, a pattern can be identified: keeping fixed all other parameters, chain energy
percentage wise fluctuations tend to increase (namely, less energy is dissipated) if either helium initial
velocity vlab0 or anharmonicity |K3| is increased. Chain energy fluctuations tend instead to decrease
(that is, more dissipation occurs) if the damping coefficient or the barrier height is enhanced, as one
would expect. Moreover, only the last three enumerated trends find a counterpart in particle maximum
velocity percentage wise fluctuations ∆vend% . Nevertheless, none of these trends is general, i.e. all of
them require at least one of the parameters to be fixed, and hence no extension to all possible values of
(ζ,K3, V0, v

lab
0 ) is possible.

In spite of this last observation, these particular trends can still be relevant to understand dissipation
mechanisms: supposing that the pair (K3, V0) = (−5.4× 1013N/m2, 0.5meV) represents realistic values
for parameters of our model for a (5, 5) armchair CNT5, fixing vlab0 and increasing ζ cause a reduction
of chain energy percentage wise fluctuations and an increase of dissipation (or, since ∆Eend

chain,% can also
be positive, a decrease in the energy gain from the particle). These trends were confirmed also for a
water molecule, by repeating these simulations with values in Table 4.2.

5Indeed the order of magnitude of K3 was estimated in Appendix C at zero temperature from literature molecular
dynamics results, while a similar value of V0 was estimated in Subsection 4.2.2.
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Figure 3.22: Examples of peculiar and common increasing trends of ∆Eend
chain,% for different values of

(ζ,K3, V0, v
lab
0 ). For data points {(|K3|, Eend

chain,%)} a logarithmic scale is used and values of
the third order anharmonic coefficient are increased by 1.0 × 1010 N/m in order to show also
the value corresponding to zero. Velocities here considered always allowed the particle to flow,
regardless of the barrier height V0. Data were acquired towards the end of 5 ns-long simulations
with dt = 0.2 fs and show an increase of chain percentage wise energy fluctuations with either vlab0

or |K3|.
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Figure 3.23: Examples of peculiar and common decreasing trends of ∆Eend
chain,% for different values of

(ζ,K3, V0, v
lab
0 ). For data points {(ζ,∆Eend

chain,%)} a logarithmic scale is used and values of the
damping coefficient are increased by 1.0×10−20 kgs−1 in order to show also the value corresponding
to zero. Velocities here considered always allowed the particle to flow, regardless of the barrier
height V0. Data were acquired towards the end of 5 ns-long simulations with dt = 0.2 fs and show
a decrease of chain percentage wise energy fluctuations with either ζ or V0.



34 CHAPTER 3. BORN-OPPENHEIMER MOLECULAR DYNAMICS

Table 3.4: Summary of the relevant results found in BOMDs for different kinds of interactions between carbons
in the chain.

C − C interaction Particle dynamics Behaviour of energies

Purely harmonic When the particle has an initial
velocity vlab0 ≲

√
2V0
m and xlab0 is

located between two C atoms, the
particle remains confined; if in-
stead its initial velocity is high
enough or if xlab0 is on top of
a C atom, the particle can flow;
in both cases periodic oscillations
emerge and persist throughout the
whole dynamics

The particle transfers a small frac-
tion of its energy to the chain;
then, both exchanged and chain
energy oscillate periodically

Anharmonic Same as in the harmonic case, but
with a phase shift and with more
chaotic oscillations

Particle-chain energy exchange is
enhanced (i.e. the particle loses
more energy) and its periodic oscil-
lations disappear; the transferred
energy is harvested in the chain.
For fixed vlab0 and V0, there exist
specific values of K3 which provide
the highest energy transfer

With viscous contributions Always considering the particle ini-
tially between two carbons, when
the initial velocity is small enough
the particle remains confined and
shows damped oscillations, other-
wise it can flow

Now both the particle and the
chain experience an energy loss,
which becomes greater with the
entity of the damping coefficient
ζ and with V0. The chain energy
loss does not occur immediately
and follows different behaviours
depending on the values of charac-
terizing parameters

The robustness of these results in a small region close to (−5.4×1013N/m2, 0.5meV) is suggested by
the fact that, except close to absolute minima, undamped dissipation curve profiles of Subsection 3.2.4
do not present abrupt changes and by the monotonicity of trends seen in Figure 3.21b, Figure 3.22d,
Figure 3.23c and Figure 3.23d.

In Table 3.4 a summary of the most relevant results found with BOMDs is presented.



Chapter 4
Density Functional Theory calculations

In order to provide realistic parameters for the Gaussian interaction of the effective model exposed in
Chapter 2 and used in Born-Oppenheimer molecular dynamics simulations, ab-initio Density Functional
Theory (DFT) calculations were performed using the suite Quantum ESPRESSO [18–20]. In particular,
DFT data allowed us to estimate the barrier (called corrugation potential) experienced by either a
single water molecule or a linear chain of interacting H2O molecules (a quasi-one dimensional ice
structure named 1D ice) while flowing inside a carbon nanotube. A proper description of van der
Waals interactions in DFT (see below) was essential for an accurate determination of such corrugation
potentials with different chiralities.

4.1 Theoretical background

Density Functional Theory describes the energy of a system of N particles by a functional E which
does not depend explicitly on the N -particle wave function Ψ(r⃗1, . . . , r⃗N ), characterized by 3N degrees
of freedom, but on the system local density ρ(r⃗), with only three degrees of freedom, thanks to the
two powerful theorems by Hohenberg and Kohn [21], reported in the next subsection. The ground
state density of the system and the corresponding energy can then be obtained applying the variational
principle.

4.1.1 Hohenberg-Kohn theorems [21, 22]

Theorem 1. For a system of N electrons under an external potential U(r⃗), the density ρ(r⃗) is a unique
functional of U(r⃗) and U(r⃗) is a unique functional of ρ(r⃗).

In this way ρ(r⃗) uniquely determines U(r⃗), the Hamiltonian Ĥ (since kinetic and electron-electron
interaction parts are formally known if one models the latter with Coulomb interaction) and in the end
also the many-body wave function Ψ by solving its Schrödinger equation, meaning that effectively the
energy functional E can be expressed in terms of ρ. But there is more: one can separate the different
contributions in the energy functional E[ρ] of a given system, writing it as a sum of the internal energy
functional F [ρ] (which is universal for the system under analysis, being independent of the number of
particles and of the external potential applied) and of the external energy contribution, namely as

E[ρ] = F [ρ] +

∫
dr⃗ U(r⃗)ρ(r⃗) , (4.1)

with F [ρ] = T [ρ] + Eee[ρ] = ⟨Ψgs|T̂ + V̂ee|Ψgs⟩, i.e. sum of the kinetic and of the exact interaction
energy of the system in its ground state Ψgs.

Theorem 2. For a system of N identical interacting particles under an external potential U(r⃗), the
density functional E[ρ] is such that E[ρ] ≥ E[ρgs] = Egs ground state energy and the equality holds for
ρ(r⃗) = ρgs(r⃗) ground state density.

However, in practice the expression for F [ρ] is unknown: in the two following subsections some
useful, practical recipes are presented.

35
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4.1.2 Thomas-Fermi-Dirac-von Weizsäcker functional [22]

A first phenomenological expression for the energy functional E is based on the model proposed
separately by Thomas [23] and Fermi [24] in 1927 to compute properties of atoms (such as the electron
distribution around the nucleus and atomic fields), in which electrons are described as a uniform
degenerate gas.

Given a system of N electrons of local density

ρ(r⃗) = N

∫
dr⃗2 . . . dr⃗N |Ψ(r⃗, r⃗2, . . . , r⃗N)|2 , (4.2)

Ψ(r⃗, r⃗2, . . . , r⃗N) being the N -electron many-body wave function, according to this model the Thomas-
Fermi energy functional ETF[ρ(r⃗)] is expressed as (omitting the spatial dependence in the functional
argument)

ETF[ρ] = TTF[ρ] + EH[ρ] + Eext[ρ] . (4.3)

In this model TTF is the generalization of the kinetic energy of a uniform electron gas to a slowly
varying local density (generalization called Local Density Approximation or LDA)

TTF[ρ] =

∫
dr⃗

3

5

ℏ2

2m
(3π)

2
3 ρ

5
3 (r⃗) , (4.4)

EH is the electrostatic interaction energy between electrons described in the Hartree approximation
(for this reason also called direct interaction energy)

EH[ρ(r⃗)] =
1

2

∫
dr⃗ dr⃗′

e2

4πε0|r⃗ − r⃗′|
ρ(r⃗)ρ(r⃗′) , (4.5)

and Eext is the interaction energy due to an external potential U(r⃗) (usually the electron-nuclei
interaction in the case of condensed matter)

Eext[ρ(r⃗)] =

∫
dr⃗ U(r⃗)ρ(r⃗) . (4.6)

In 1930 Dirac [25] proposed a functional correction EX[ρ] to this model, called exchange term since
it accounts for the exchange energy contribution in Hartree-Fock theory for a homogeneous gas of
electrons with Coulomb interaction, supposed to hold also for a non-homogeneous system:

EX[ρ] = −CX

∫
dr⃗ ρ

4
3 (r⃗) , (4.7)

in which CX is a constant equal to
[
3
4

e2

4πε0

(
3
π

) 1
3

]
.

Another relevant correction was proposed in 1935 by von Weizsäcker [26], correcting the kinetic
energy of the system by introducing a gradient contribution:

EW[ρ] = λW

∫
dr⃗

ℏ2

2m

(
∇⃗
√
ρ(r⃗)

)2
, (4.8)

with λW (called von Weizsäcker coefficient) being an adjustable phenomenological parameter; this
correction provides an improvement only for systems with one or two electrons, but it is still relevant
since it is the first historical example of gradient correction.

Consequently, the final expression for the Thomas-Fermi-Dirac-von Weizsäcker energy functional is

ETFDW[ρ] = TTF[ρ] + EH[ρ] + Eext[ρ] + EX[ρ] + EW[ρ] . (4.9)
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4.1.3 Kohn-Sham equations [27]

A very important practical recipe to implement DFT is the one proposed by Kohn and Sham in
1965: it consists of replacing the true system of interacting electrons with a fictitious non-interacting
one with the same density of the original system and subject to a suitable external potential.

Starting from (4.1), one can add and subtract the kinetic energy of the fictitious non-interacting
system TS[ρ] and the Hartree-like electron-electron interaction energy EH[ρ], obtaining:

EKS[ρ] = TS[ρ] + EH[ρ] + EXC[ρ] +

∫
dr⃗ U(r⃗)ρ(r⃗) ; (4.10)

in this equation EXC[ρ] = (T − TS)[ρ] + (Eee − EH)[ρ] is the exchange-correlation energy contribution,
a quantity that unfortunately can only be approximated since its exact expression is unknown, while
TS is actually a functional which depends on the orthonormal wave functions {φi(r⃗)}i=1,...,N (called
Kohn-Sham orbitals) of the non-interacting system,

TS = − ℏ2

2m

N∑
i=1

∫
dr⃗ φ∗

i (r⃗)∇2φi(r⃗) . (4.11)

The local density is consequently defined as ρ(r⃗) =
∑N

i=1|φi(r⃗)|2.
Since ρ(r⃗) is expressed in terms of φi(r⃗) and φ∗

i (r⃗), these Kohn-Sham orbitals are now the variational
parameters and applying the variational principle1 one obtains a set of N coupled equations for them

{
− ℏ2

2m
∇2 +

∫
dr⃗′

e2

4πε0|r⃗ − r⃗′|
ρ(r⃗′) +

δEXC[ρ(r⃗)]

δρ(r⃗)
+ U(r⃗)

}
φi(r⃗) = εiφi(r⃗) , i = 1, . . . , N . (4.12)

These equations are single-particle Schrödinger equations and coincide with those of the fictitious
non-interacting system if the last three terms in curly brackets are identified with a fictitious external
potential called Kohn-Sham external potential UKS(r⃗)

UKS(r⃗) =

∫
dr⃗′

e2

4πε0|r⃗ − r⃗′|
ρ(r⃗′) +

δEXC[ρ(r⃗)]

δρ(r⃗)
+ U(r⃗) ≡ UH(r⃗) + UXC(r⃗) + U(r⃗) , (4.13)

leading to

HKS φi(r⃗) =

{
− ℏ2

2m
∇2 + UKS(r⃗)

}
φi(r⃗) = εiφi(r⃗) , i = 1, . . . , N , (4.14)

called Kohn-Sham equations. These equations are coupled since the Kohn-Sham external potential
depends on all single-electron orbitals and therefore they have to be solved self-consistently; once
{φi(r⃗)}i=1,...,N have been determined, one can compute the energy and the density of the original
system, but also other properties such as forces acting on nuclei.

As examples, in LDA the exchange-correlation functional EXC can be expressed as

ELDA
XC =

∫
dr⃗ ρ(r⃗)ϵunifXC (ρ) , (4.15)

ϵunifXC (ρ) being the exchange-correlation energy density of a uniform system of electrons, while in the
generalized gradient approximation (GGA) one has

EGGA
XC =

∫
dr⃗ f(ρ, ∇⃗ρ) , (4.16)

f(ρ, ∇⃗ρ) being a particular function of system density and of its gradient. It has to be specified that,
even if DFT is able to provide the exact energy of the ground state taking into account also van der
Waals energies, all LDA and GGA functionals cannot reproduce such contributions due to the nature
of these two approximations, which describe the system as an inhomogeneous gas of electrons [28].
Nevertheless, new approaches were developed in order to describe also van der Waals contributions (see
below).

1Since single-particle orbitals are normalized, one has to introduce N Lagrangian multipliers {εi}i=1,...,N and to
minimize the new functional EKS[ρ]−

∑N
i=1 εi|φi|2.
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4.1.4 Quantum ESPRESSO suite

Quantum ESPRESSO is an open-source suite for electronic-structure calculations and nanoscale
materials modeling. Among the many adjustable parameters present in an input file, particularly
relevant are:

• the type and dimension of the supercell, i.e. the periodically repeated unit of the system;

• values for parameters ecutwfc and ecutrho, which represent respectively the kinetic energy cutoff
in the expansion of the wave function in terms of plane-wave basis set and the kinetic energy
cutoff in the charge density expansion;

• the type of exchange-correlation functional (input_dft) and of van der Waals correction (vdw_corr)
used;

• the type of pseudopotential used to mimic the true potential generated by the nucleus and by core
electrons (which usually are little affected by bonds and clusters formations); they can be chosen
for each chemical species involved in the calculation and allow to save computational time by
freezing inner electrons, hence focusing only on valence ones. When ultra-soft pseudopotentials
are used, as in this thesis work, ecutrho parameter should be approximately 6÷ 8 times ecutwfc;

• positions of atoms of the different chemical species inside the supercell.

Moreover, different kinds of calculations can be performed, but in this thesis work two were mainly
used: self-consistent wave function optimization (’scf ’ option) and geometry optimization (’relax’
option).

A ’scf ’ (self-consistent field) calculation consists of solving Kohn-Sham equations self-consistently,
computing at every iteration the system total energy, until the difference between energies of the last
two iterations is lower than a given threshold (whose default value is 1× 10−6Ry).

A ’relax’ calculation allows to optimize the system configuration keeping fixed the periodic supercell
and consists of a series of ’scf ’ cycles (at least one). At the end of each relaxation step (i.e. after
a ’scf ’ cycle ended) both system energy and forces acting on nuclei are computed and all ions are
moved according to these forces; then a new ’scf ’ cycle starts. This kind of calculations ends when
differences in forces and energies of the last two cycles are below given thresholds (whose default values
are respectively 1× 10−3Ry/Bohr and 1× 10−4Ry).

4.2 Corrugation potential characterization

4.2.1 Computational setup

Supercell dimensions

The choice of the supercell was particularly relevant. In all calculations performed, a primitive
tetragonal cell was used, whose dimensions orthogonal and along the CNT axis were respectively

a ≳ 2dCNT , c = nreplLCNT , (4.17)

in which dCNT was provided by (1.3), nrepl was the number of considered replicas of the elementary
unit of the CNT and LCNT was the length of such elementary unit. a was chosen in such a way that
CNTs and encapsulated systems were isolated along directions orthogonal to the CNT axis. As for nrepl,
its value depended on the chirality of the CNT (and hence on the number of C atoms in its smallest
unit of repetition) and on the system encapsulated in it, also considering the computational cost of
simulations: in the case of a single water molecule, 6 replicas were employed for a (5, 5) CNT, 5 for a
(7, 7) and 3 for a (9, 9); as for 1D ice, 6 replicas were used for (5, 5) chirality, 4 in (7, 7) and 2 in (9, 9).
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Figure 4.1: Convergence test of total energy as a function of the ecutwfc parameter; the inset shows a zoom of
the region where convergence was almost achieved.

Convergence of the ecutwfc parameter

Before computing energy values for corrugation potential evaluation, we studied the convergence of
the total energy as a function of the ecutwfc parameter. This was carried by several self-consistent field
calculations for a single H2O water in a (5, 5) CNT with PBE-D2 van der Waals correction (see later).
The total energy convergence was performed starting from the value 10.0Ry up to 65.0Ry, increasing
it by steps of 5.0Ry, getting Figure 4.1. A first observation is that the convergence is achieved from
above, as it is expected since ecutwfc is a variational parameter. Furthermore, looking at the inset,
one can see how the curve flattens from 50.0Ry onwards, which is the value that was chosen for the
following calculations, also considering that the largest recommended minimum cutoff value for the three
pseudopotentials used to describe the behaviour of H, C and O inner shells is 47.0Ry. Consequently,
ecutwfc and ecutrho were always set to 50.0Ry and 330.0Ry respectively.

Corrugation potential points methodology

Energy data used to characterize a single corrugation potential were obtained by adopting the
following procedure:

1. a first ’relax’ calculation was performed, keeping fixed the z-coordinate of the O atom of the first
water molecule and the first C atom of the CNT (in order to prevent the whole nanotube from
moving together with the water structure); alternatively all C atoms of the nanotube were kept
fixed. In both cases the CNT initial configuration was taken from Ref. [29];

2. the optimized water structure was then used to get data with a series of ’scf ’ calculations, in
which again the pristine configuration form Ref. [29] was used for the nanotube; before each new
calculation, the water structure was translated along the z-axis (i.e. the CNT axis)2 by 0.1Å.

Unless differently specified, default thresholds for forces and energy were used.

4.2.2 Single water corrugation potential

Study of the best functional and configuration

First of all, different exchange-correlation functionals and van der Waals corrections and two different
water dipole orientations were compared in order to assess which functional is more suited for the
description of the corrugation profile and which configuration is more energetically favorable. As for
corrections and functionals, the following were considered:

2It has to be specified that in Chapter 2 and Chapter 3 the CNT axis was chosen along the x-axis, while in this
chapter it was considered along the z-axis.
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(a) Dipole along the z-axis (b) Dipole inclined by −48◦ with respect to the z-axis

Figure 4.2: Representations of the supercell of a water molecule in a (5, 5) armchair carbon nanotube with two
different dipole orientations, realized with the visualization program XCrySDen [8]: carbon atoms
are in grey, oxygen atoms in red and hydrogen atoms in white.

• PBE [30], which is a GGA functional providing a simpler and numerically similar version of
another exchange-correlation GGA functional, i.e. PW91 [31]; PBE is characterized by the facts
that all its parameters are fundamental constants and that it solves some of PW91 problems, like
overparametrization, complexity and non transparency of the function f(ρ, ∇⃗ρ) in (4.16). Since,
as pointed out, LDA and GGA are not able to describe van der Waals energy contributions, this
kind of functional will be denoted as no van der Waals or no-vdW ;

• Grimme-D2 (or PBE-D2) [32], which is a semiempirical GGA parametrized in order to introduce
damped dispersion corrections between pairs of atoms of the form C6

R6 fdmp(R), in which fdmp(R)
is a damping function inserted to avoid singularities for small interatomic distances R;

• rVV10 [33], a revision of the VV10 functional [34], in which a nonlocal correlation functional

Enl
c =

ℏ
2

∫ ∫
dr⃗dr⃗′ ρ(r⃗)Φ(ρ, ∇⃗ρ, |r⃗ − r⃗′|)ρ(r⃗′) (4.18)

is added together with a LDA/GGA exchange functional. The revision consists of a simple and
sound modification of the expression for Φ(ρ, ∇⃗ρ, |r⃗ − r⃗′|);

• vdW-DF-cx [35], which is a nonempirical exchange-correlation functional based on plasmon
description, depending on density and its gradients in a nonlocal manner.

As for orientations, the water molecule dipole was considered either aligned along the CNT axis or
inclined with an angle of approximately −48◦ with respect to the z-axis; the latter was chosen as one of
the many possible reasonable water configurations with inclined dipole. These two orientations can be
seen in Figure 4.2. This preliminary study, performed for a (5, 5) CNT, yielded corrugation potentials
shown in Figure 4.3a and in Figure 4.3b, whose data were obtained leaving all C atoms free to move in
the CNT (except for the first one) in step 1 and performing ’scf ’ calculations in step 2 but every 0.2Å;
thresholds were considered equal to 2 × 10−5Ry for energy and to 4.5 × 10−4Ry/Bohr for forces to
account for small deformations in CNT structure.

In the first place, all corrugation potentials are periodic, as one would expect from the periodic
structure of the CNT, even though the periodicity for rVV10 and vdW-DF-cx corrections in the aligned
case is not as evident as in the other cases due to the numerical noise caused by ’scf ’ calculations,
which dominates over corresponding barriers, as one can see in Figure 4.3c. Moreover, looking at these
plots, one can notice how the periodicity is different depending on the angle formed by the dipole with
respect to the z-axis, being roughly 1.2Å in the aligned case and 2.5Å when it is inclined.

Referring to Figure 4.3a, PBE-D2 correction provides the smallest barrier, while no-vdW the highest;
instead, looking at Figure 4.3b, in the aligned case no-vdW provides a quite small barrier, while rVV10
and vdW-DF-cx profiles exhibit many irregularities due to the already pointed out ’scf ’ numerical noise
dominance over the barrier. Furthermore, barriers are higher when the water dipole is not aligned with
the z-axis. Consequently, PBE-D2 was deemed to be the most suited functional to be used for further
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(a) Dipole inclined by −48◦ with respect to z-axis
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(c) Case of dipole along the z-axis for rVV10 (in orange)
and vdW-DF-cx (in red) functionals

Figure 4.3: Comparison between corrugation potentials obtained with different van der Waals corrections and
exchange-correlation functionals for two different orientations of the water dipole in the (5, 5) CNT:
green lines represent data obtained using the PBE functional, blue lines represent PBE-D2 functional,
orange ones rVV10 and red ones vdW-DF-cx. ∆Ecorr is the value of the total energy with respect
to the minimum, i.e. ∆Ecorr = Etot − Emin

tot . PBE-D2 and the oriented configuration were deemed
to be respectively the most suitable functional and the most stable configuration.
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Table 4.1: Differences between the energies of a single water molecule in a (5, 5) CNT with inclined dipole Eincl
corr

and with dipole along the z-axis Ez
corr for different van der Waals corrections and exchange-correlation

functionals: when such differences are positive, alignment with the z-axis is favoured. Displacements
are computed with respect to the configuration with oxygen z-position at 5.91Å, whose value should
not affect the result since water z-coordinates were shifted by multiples of 0.1 or 0.2Å and since
the system is periodic, with large enough supercell to prevent interactions between replicas. With
PBE-D2 correction the aligned configuration is stabler than inclined one.

(a) no-vdW

Displacement Eincl
corr − Ez

corr

(Å) (meV)

0 −0.742
0.2 −0.117
0.4 0.206
0.6 0.086
0.8 −0.525
1 −1.497
1.2 −2.551
1.4 −3.329
1.6 −3.595
1.8 −3.321
2 −2.657
2.2 −1.817
2.4 −0.983
2.6 −0.286

(b) PBE-D2

Displacement Eincl
corr − Ez

corr

(Å) (meV)

0 15.413
0.2 16.123
0.4 16.379
0.6 16.052
0.8 15.444
1 14.977
1.2 14.821
1.4 14.843
1.6 14.782
1.8 14.560
2 14.387
2.2 14.565
2.4 15.173
2.6 15.934

(c) rvv10

Displacement Eincl
corr − Ez

corr

(Å) (meV)

0 1.132
0.2 1.637
0.4 2.029
0.6 2.021
0.8 1.543
1 0.694
1.2 −0.160
1.4 −0.888
1.6 −1.135
1.8 −0.930
2 −0.450
2.2 0.206
2.4 0.943
2.6 1.515

(d) vdW-DF-cx

Displacement Eincl
corr − Ez

corr

(Å) (meV)

0 −1.917 95
0.2 −1.442 62
0.4 −1.119 24
0.6 −1.161 58
0.8 −1.636 64
1 −2.476 61
1.2 −3.337 15
1.4 −4.067 78
1.6 −4.315 86
1.8 −4.071 73
2 −3.532 54
2.2 −2.8422
2.4 −2.115 52
2.6 −1.5672
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corrugation potential studies, since in the aligned case it is the only one able to describe a profile whose
height is of the same magnitude of other results reported in literature, such as those of Ref. [7].

As for the identification of the most stable configuration, in Table 4.1 the energy difference (at
the same displacement with respect to the configuration with oxygen z-position at 5.91Å3) between
the inclined case Eincl

corr and the oriented one Ez
corr is showed for different corrections and functionals:

as one can see, with PBE-D2 correction such difference is always positive, meaning that the energy
of H2O in a (5, 5) CNT with inclined dipole is always higher than the aligned case, and hence that
the rotated-dipole configuration is more unstable. Differences for no-vdW, rVV10 and vdW-DF-cx
corrections are also reported for completeness.

In conclusion, from now on only the PBE-D2 correction will be employed (also for 1D ice calculations)
and single water molecules will be considered with the dipole along the CNT axis, since it represents a
stabler configuration compared to the inclined one.

Effect of CNT chirality

Data used to characterize single water corrugation potentials were obtained following the methodology
explained above, keeping all carbons in the nanotube fixed in step 1.

Results for (5, 5) and (7, 7) armchair CNT are represented by blue points in Figure 4.4a and
Figure 4.4c respectively: both corrugation potentials present a periodicity of roughly 1.2Å, but data
for the (7, 7) chirality are more irregular due to the lower barrier they provide, more susceptible to
numerical noise from ’scf ’ calculations4 (this is why points are connected with lines, in order to guide
the eye).

These points were shifted in such a way that the minimum was in zero and were then fitted with
the expression5

Vint(x) = V0

3∑
n=−3

e−
(

x−nLfit

∆

)2
+ C (4.19)

using the software Gnuplot, with Lfit = 1.231 179Å. These fits (shown in red in the aforementioned
figures) yielded parameter values shown in Table 4.2 for each chirality. Uncertainties of the three
quantities were found following this procedure:

1. a preliminary fit was performed using (4.19) and taking parameters V0, ∆ and C as fitting
parameters;

2. since errors provided by Gnuplot in this first fit were fairly large (i.e. comparable with quantities
themselves, if not even greater), a second fit was performed keeping V0 fixed equal to the value
found in 1;

3. point 2 was repeated keeping fixed first only ∆ and then only C;

4. results of fits in 2 and 3 were compared and found to be in agreement every time within their
corresponding standard deviation; the final uncertainty was estimated as the highest error from
these fits, in order to avoid underestimations.

It has to be pointed out that originally the value for C(5,5),fit was (−1.35± 0.01)meV, but it was then
chosen to be (−1.34 ± 0.01)meV in order to always have positive corrugation potentials, with the
introduced variation that was within the standard error and hence deemed acceptable (however, the
value of this parameter is not relevant since it causes a trivial rigid shift of energies).

3Such a value of initial oxygen z-position should not affect the result since water structure’s z-coordinates were shifted
by multiples of 0.1 or 0.2Å and since the system is periodic, with large enough supercell to prevent interactions between
replicas.

4Actually, ’relax’ calculations were performed at first, but every time they ended with a single ’scf ’ cycle and hence
with no optimization, meaning that their results coincide with those of ’scf ’ calculations.

5The x variable was actually shifted in such a way that, for every chirality, the first maximum of the corrugation
potential was in correspondence of zero displacement; this choice should not affect the final result thanks to the equivalence
of initial configurations with respect to which displacements can be computed.
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(a) Water-(5, 5) CNT corrugation potential
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(b) Energy bands for water in a (5, 5) CNT
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(c) Water-(7, 7) CNT corrugation potential
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(d) Energy bands for water in a (7, 7) CNT
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(e) Water-(9, 9) CNT corrugation potential

Figure 4.4: Corrugation potential points of a single water molecule (blue points), with the corresponding
fitting function (4.19) (in red), in armchair carbon nanotubes with different chirality for PBE-D2
correction. Corresponding energy bands (in green) are also shown and compared with chain phonon
spectrum (in orange). ∆Ecorr is the value of the total energy with respect to the minimum, i.e.
∆Ecorr = Etot−Emin

tot . Comparing the three corrugation potentials one can see that the height of the
barrier tends to decrease as chiral coefficients (and consequently CNT radius) increase. Comparing
also the energy bands one can understand how no water-CNT energy transfer is possible when the
flowing particle is in its lowest energy band.
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Table 4.2: Values of parameters of (4.19) obtained from fits of single water corrugation potentials with different
chiralities shown in Figure 4.4. (9, 9)-chirality parameters are not present since no fit could be
performed due to the dominance of numerical noise over the barrier.

Chirality V fit
0 ∆fit Cfit

(10−2meV) (Å) (10−2meV)

(5, 5) 180± 1 0.620± 0.001 −134± 1
(7, 7) 6.5± 0.7 0.67± 0.02 −5.3± 0.7

Figure 4.5: Representation of the supercell of 1D ice structure in a (5, 5) armchair carbon nanotube, realized
with the visualization program XCrySDen [8]: carbon atoms are in grey, oxygen atoms in red and
hydrogen atoms in white.

It has to be specified also that there is a crucial difference between the value of V0 in BOMDs and the
one from these ab-initio calculations: due to value of the Gaussian width ∆ chosen in Chapter 3, there is
a one-to-one correspondence between V0 and the maximum of the Gaussian interaction (corresponding
to the height of the barrier); instead, in these corrugation potentials the values of ∆fit are such that the
height of the barrier corresponds not to V fit

0 alone, but to V fit
0 + Cfit. This difference has to be taken

into account when comparing barriers in Chapter 3 and from this chapter.
In order to understand whether an exchange of energy was possible between the water molecule

and the CNT, water energy bands (computed using the effective model as exposed in Subsection 2.1.2
and with parameter values from Table 4.2) were compared with the chain phonon spectrum, obtaining
Figure 4.4b and Figure 4.4d: as one can notice, our model predicts that no energy transfer is possible
when the flowing particle is in its lowest energy band, since in this case the two dispersion relations
intersect only at kl = 0, corresponding to water at rest.

In the end, peculiar is the case of the (9, 9) CNT: as one can see from Figure 4.4e, the energy barrier
is so small that numerical noise dominates, making it impossible to perform any fit; this is why for this
chirality no values are reported in Table 4.2 and no energy bands were computed.

Comparing all these three single-water corrugation potentials, one can see that the height of the
barrier tends to decrease as chiral coefficients (and consequently CNT radius) increase.

4.2.3 1D ice corrugation potential

In order to estimate barriers for 1D ice, represented in Figure 4.5, all carbon atoms were again kept
fixed during the first ’relax’ calculation in step 1 of the methodology exposed above. Resulting barriers
per unit molecule are illustrated in Figure 4.6: as one can see, again the barrier decreases as the radius
increases, with even a change in the shape. Also in this case the barrier in a (9, 9) CNT is so small that
numerical noise from ’scf ’ convergence dominates.

It has to be noted that, at variance with the previous case of single water, in which the dimension
of the supercell was enough to prevent interactions, now water molecules interact not only within
the supercell but also with other molecules in periodic replicas along the CNT axis. The presence of
such interactions causes a relevant increase of the corrugation potential height, enhancement which is
higher the larger the radius. Furthermore, compared again to the single-water case, 1D ice corrugation
potentials present a periodicity equal to that of the supercell, i.e. approximately 2.4Å.



46 CHAPTER 4. DENSITY FUNCTIONAL THEORY CALCULATIONS

0 0.5 1.0 1.5 2.0 2.5
0

1

2

3

4

Displacement (Å)

∆
E

co
rr
(m

eV
/
m
ol
ec
u
le
)

(a) 1D ice-(5, 5) CNT corrugation potential
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(b) 1D ice-(7, 7) CNT corrugation potential
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(c) 1D ice-(9, 9) CNT corrugation potential

Figure 4.6: Study of the corrugation potential per unit molecule of 1D ice in an armchair carbon nanotube
with different chirality for PBE-D2 correction. In this case ∆Ecorr is the value of the system total
energy with respect to the minimum, normalized to the number of water molecules in the chain,
i.e. ∆Ecorr =

Etot−Emin
tot

NH2O
. Comparing the three corrugation potentials, one can see that also in this

case the height of the barrier tends to decrease as chiral coefficients (and consequently CNT radius)
increase.



Chapter 5
Conclusions

Some interesting results were achieved in this thesis. In Chapter 2 we developed a model to
effectively describe the flow of a particle in a (5, 5) armchair carbon nanotube, later used to compute
particle dispersion relations and chain phonon spectrum. In Chapter 3 Born-Oppenheimer molecular
dynamics simulations were performed, combining the aforementioned model with different kinds of C−C
interaction: among the most relevant results exposed in Table 3.4, particularly striking ones regard
particle-chain energy transfer and chain energy dissipation. With only harmonicity, little particle-chain
exchange occurs and it is oscillating in time. With anharmonicity this transfer increases and loses its
periodicity, the energy being harvested in the chain; moreover, this exchange can become maximum
for particular values of the third-order anharmonic coefficient K3, which depend on particle initial
velocity vlab0 and barrier height V0. If damping contributions are further introduced (corresponding
to CNT radiative decays or couplings to the environment), also the chain experiences an energy loss,
which is enhanced with the damping coefficient ζ and with the barrier height V0, as it also occurs with
particle-chain energy exchange. In Chapter 4 the corrugation of interface potential was studied for
both a single water molecule and for 1D ice encapsulated in armchair CNTs with different chiralities:
we detected a decrease of the barrier height as the CNT radius was increased. Furthermore, realistic
parameters for the developed model were estimated and exposed in Table 4.2 and it was shown how,
when in its lowest energy band, water cannot scatter with the CNT, with hence no energy transfer.

Applying results of Chapter 3 and Chapter 4 to the real case of water in armchair nanotubes, we
can then predict an increase of particle-chain energy transfer if the CNT radius (and consequently its
chirality) is reduced or if the damping coefficient ζ is increased and an enhancement of chain energy
loss with ζ.

To the best of our knowledge, no other studies reporting similar results in the subject matter of this
work were done as for now.

One of the possible future perspectives provided by this thesis work would be, for instance, repeating
the study of anharmonicity and damping effects in BOMDs with other K3/K4 ratios. Furthermore,
since in Figure 4.3 different water dipole moment orientations are shown to lead to different periodicity
and magnitudes of the corrugation potential, one could possibly refine the proposed effective model by
including an internal degree of freedom of the particle, i.e. the presence of a dipole moment. A study of
1D ice dynamics through BOMDs could be also performed, with the consequent development of a new
interaction potential to use as a fitting function for profiles in Figure 4.6a and in Figure 4.6b. Moreover,
it would be interesting to repeat quantum-mechanical calculations of Ref. [7] but with anharmonic
effects, in order to compare those results with classical ones of this thesis. In addition, one could take
a step further with respect to what done in this work going beyond Born-Oppenheimer molecular
dynamics, hence including also quantum-mechanical effects for both a single flowing molecule and for
1D ice. As last possible research direction opened up by this project, corrugation potentials could
be studied with other corrections and functionals, but also with other chiralities in order to acquire
a broader view of the phenomenon of superflow. Experimental data of corrugation potentials would
represent a valuable resource as well, allowing a comparison with ab-initio results.

47



48 CHAPTER 5. CONCLUSIONS



Appendix A
Bloch theorem approach to Central equation

Using Bloch theorem (since the external potential is periodic), one can express the particle wave
function in Bloch state (n, k), with n being the band number and k a IBZ vector, as{

ψn
k (x) = eikxunk(x)

unk(x+ L) = unk(x)
(A.1)

and expressing also unk(x) in Fourier series one has

unk(x) =
∑
Gm

Cn
k+Gm

eiGmx =⇒ ψn
k (x) =

∑
Gm

Cn
k+Gm

ei(k+Gm)x . (A.2)

Inserting then this expansion in (2.10) one obtains

∑
Gm

ℏ2

2m
(k+Gm)2ei(k+Gm)Cn

k+Gm
+
∑
G′

m

∑
Gm

VG′
m
Cn
k+Gm

ei(k+Gm+G′
m)x = En

k

∑
Gm

ei(k+Gm)Cn
k+Gm

; (A.3)

translating in the second left hand side term G′
m → G′

m−Gm and swapping G′
m and Gm in place (since

they are dummy variables) yields to

ℏ2

2m
(k +Gm)2Cn

k+Gm
+
∑
G′

m

VGm−G′
m
Cn
k+G′

m
= En

kC
n
k+Gm

. (A.4)

Finally, since Gm = 2π
L m with m ∈ Z, its sign (and the one of G′

m) can be reversed when summing
over it, getting exactly (2.14).
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Appendix B
Algorithms employed in BOMDs

Supposing to be in one dimension as it is done in the effective model developed in Chapter 2,
algorithms used in BOMDs are now presented.

B.1 Original Verlet

The Verlet algorithm [13] allows to solve Newton’s equations for a system of particles conserving its
energy, i.e. it is symplectic. Knowing the position xi of the ith particle of the system and its derivatives
at time t, one can expand its positions at time t+ dt and t− dt in Taylor series up to third order as:{

xi(t+ dt) = xi(t) + ẋi(t)dt+
1
2 ẍi(t)dt

2 + 1
3!

...
x i(t)dt

3 +O(dt4)

xi(t− dt) = xi(t)− ẋi(t)dt+
1
2 ẍi(t)dt

2 − 1
3!

...
x i(t)dt

3 +O(dt4)
; (B.1)

summing these two equations yields the first equation used in the algorithm

xi(t+ dt) = 2xi(t)− xi(t− dt) + ai(t)dt
2 +O(dt4) . (B.2)

In order to obtain the velocity, one can use the standard formula for numerical derivation:

vi(t+ dt) =
xi(t+ dt)− xi(t− dt)

2dt
+O(dt2) , (B.3)

which represents the second formula of the algorithm.

B.2 Velocity Verlet

At variance with its original version, in velocity Verlet algorithm [12] one expands both xi(t+ dt)
and xi(t) up to second order:{

xi(t+ dt) = xi(t) + ẋi(t)dt+
1
2 ẍi(t)dt

2 +O(dt3)

xi(t) = xi(t+ dt)− ẋi(t+ dt)dt+ 1
2 ẍi(t+ dt)dt2 +O(dt3)

(B.4)

and sums them to obtain the expression for the velocity

vi(t+ dt) = vi(t) +
1

2
[ai(t) + ai(t+ dt)]dt+O(dt2) . (B.5)

Introducing the velocity after half a timestep vi(t+ dt/2) = vi(t) +
1
2ai(t)dt, one can rewrite the

two equations for this algorithm as{
xi(t+ dt) = xi(t) + vi(t+ dt/2)dt

vi(t+ dt) = vi(t+ dt/2) + 1
2ai(t+ dt)dt

. (B.6)

51



52 APPENDIX B. ALGORITHMS EMPLOYED IN BOMDS

For the system under analysis in presence of anharmonicity, expressions for the accelerations used
both in original Verlet and velocity Verlet are

K{[(Xi−1 −Xi)nn + L] + [(Xi+1 −Xi)nn − L]}+

−2V0
∆2 e

[
− (x−Xi)

2
nn

∆2

]
(x−Xi)nn+

+3K3{−[(Xi−1 −Xi)nn + L]2 + [(Xi+1 −Xi)nn − L]2}+
+4K4{[(Xi−1 −Xi)nn + L]3 + [(Xi+1 −Xi)nn − L]3} for the chain

2V0
∆2

∑N
j=1 e

[
−

(x−Xj)
2
nn

∆2

]
(x−Xj)nn for the particle

, (B.7)

with (Xi+1 −Xi)nn denoting the distance between the two closest replicas of the (i+ 1)th and of the
ith particle.

B.3 Runge-Kutta

Runge-Kutta algorithms [14, 15] allow to integrate ordinary differential equations with initial
conditions, such as {

dy
dt = f(t, y)

y(t0) = y0
. (B.8)

The version employed in this work is the Fourth order Runge-Kutta, in which four coefficients are
introduced, defined as 

k1 = f(tn, yn)

k2 = f(tn + dt
2 , yn + k1

dt
2 )

k3 = f(tn + dt
2 , yn + k2

dt
2 )

k2 = f(tn + dt, yn + k3dt)

, (B.9)

with tn = t0 + ndt; then, given yn = y(tn), one can compute yn+1 as

yn+1 = y(tn+1) = yn + dt
(k1 + 2k2 + 2k3 + k4)

6
. (B.10)

This algorithm was used to integrate Newton’s equations of motion for the system of interest in
presence of viscous terms acting on the CNT, rewriting second order differential equations as a system
of first order ones; furthermore, since time does not appear explicitly in these equations, functions
f(t, y) are time-independent.

Denoting with X⃗ = (X1, . . . , XN , x) the vector of the N + 1 positions and with V⃗ = (V1, . . . , VN , v)
the vector of velocities, one can write: 

˙⃗
X = V⃗

v̇ = f1(X⃗)

V̇i = f3(X⃗, V⃗ , i)

, (B.11)

with

f1(X⃗) =
1

m

2V0
∆2

N∑
j=1

e

[
−

(x−Xj)
2
nn

∆2

]
(x−Xj)nn (B.12)

and

M f3(X⃗, V⃗ , i) = K{[(Xi−1 −Xi)nn + L] + [(Xi+1 −Xi)nn − L]}+

− 2V0
∆2

e
−
[

(x−Xi)
2
nn

∆2

]
(x−Xi)nn + 3K3{−[(Xi−1 −Xi)nn + L]2 + [(Xi+1 −Xi)nn − L]2}+

+ 4K4{[(Xi−1 −Xi)nn + L]3 + [(Xi+1 −Xi)nn − L]3} − ζVi . (B.13)
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In order to solve these differential equations, one has to introduce two vectors of coefficients k⃗ and l⃗,
associated respectively with X⃗ and V⃗ :

k1,i =
[
V⃗
]
i

k2,i =
[
V⃗
]
i
+ l1,i

dt
2

k3,i =
[
V⃗
]
i
+ l2,i

dt
2

k4,i =
[
V⃗
]
i
+ l3,idt

,


l1,i = f(X⃗, V⃗ )

l2,i = f(X⃗ + k⃗1
dt
2 , V⃗ + l⃗1

dt
2 )

l3,i = f(X⃗ + k⃗2
dt
2 , V⃗ + l⃗2

dt
2 )

l4,i = f(X⃗ + k⃗3dt, V⃗ + l⃗3dt)

(B.14)

with

f(X⃗, V⃗ ) =

{
f3(X⃗, V⃗ , i) for the chain
f1(X⃗) for the particle

. (B.15)
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Appendix C
Estimate of anharmonicity in a (5, 5) CNT

To the best of our knowledge, until now values of anharmonic coefficients K3 and K4 in carbon
nanotube Hamiltonian (3.4) have not been estimated explicitly or measured for a single CNT, since in
scientific literature results are reported either for linear carbon chains with different numbers of bonds
between C atoms [36], for rigid bunches of CNTs [37] or for anharmonic effects on Raman shifts [38, 39].

So as to estimate the order of magnitude of K3, we consider the expression for the elastic potential
energy of the chain within the CNT effective model for N carbons in presence of anharmonicity:

Vanharm,N =
K

2

N∑
n=1
n per

(∆Xn − L)2 +K3

N∑
n=1
nper

(∆Xn − L)3 +K4

N∑
n=1
nper

(∆Xn − L)4 , (C.1)

with ∆Xn = Xn −Xn−1 being the distance between nearest replicas of the nth and of the (n− 1)th

carbon. In order to simplify the analytic evaluation, the contribution of K4 is neglected in the following
analysis.

Looking at Figure 3.6 one can see how, if just K3 is present and if it is large enough, the potential is
well-defined and stable only for negative displacements, while in the other half plane it grows becoming
more and more negative; the idea is then to mirror the left side of this potential, making it stable also
on the right side (i.e. for positive displacements), as shown in Figure C.1. This corresponds to replacing
the original anharmonic potential of the nth spring with an effective harmonic one:

V eff
anharm =

1

2
(∆Xn − L)2

[
K + 2K3(∆Xn − L)

]
=
Mω2

eff

2
(∆Xn − L)2 . (C.2)

One can then express ωeff using the formula describing the temperature dependence of the frequency
of radial breathing modes (RBM)1 provided in Ref. [38]:

ωanharm(T ) = ω0(1 + pT ) , (C.3)

ω0 = 36.3× 1012Hz being the zero-temperature RBM frequency and p being a temperature coefficient
whose value was estimated to be −5 × 10−5K−1 from molecular dynamics simulations of a (10, 10)
CNT [40]. Consequently:

K + 2K3|(∆Xn − L)| =Mω2
eff =Mω2

anharm(T ) =Mω2
0(1 + pT )2 , (C.4)

in which the module of the displacement was taken because K3 must be negative and because
Mω2

anharm(T ) < K, since Mω2
0 < K and p is negative.

This idea is now used with two different methods and in both cases the consistency of this procedure
will be ensured, checking whether the original potential is always positive for the obtained estimate of
K3.

1Radial breathing modes are collective modes of the nanotube in which C atoms move in the radial direction, i.e.
orthogonally to the CNT axis, causing an expansion or a contraction of the CNT radius.
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Figure C.1: Visual representation of the idea used to estimate the anharmonic coefficient K3; the green line
represents the anharmonic potential for K3 = −6.0× 1016 N/m2, while the red one its “stabilization”
for positive displacements.

C.1 Finite temperature case: comparison with the thermal quantum

In the first method the effective potential energy is compared with the thermal quantum kBT :

V eff
anharm =

Mω2
eff

2
(∆Xn − L)∗2T = kBT , (C.5)

obtaining an expression for the spring displacement (∆Xn − L)∗T at temperature T :

|(∆Xn − L)∗T | =

√
2kBT

Mω2
0(1 + pT )2

. (C.6)

One can then estimate K3 by inserting (C.6) in (C.4)

K
(1)
3 =

Mω2
0(1 + pT )2 −K

2
√

2kBT
Mω2

0(1+pT )2

, (C.7)

procedure which yields a value of approximately −1.8× 1011N/m2 for a temperature of 300K.

C.2 Zero-temperature estimate

In the second method one starts from

K + 2K3(∆Xn − L)∗T =Mω2
0(1 + pT )2 (C.8)

and inserts T = 0K and |(∆Xn − L)∗0| = O(5.2× 10−4 Å), corresponding to the average amplitude of
spring displacements for (V0, v

lab
0 ) = (0.1meV, 230m/s) and (1.0meV, 630m/s) in the harmonic case.

This procedure yields to a second estimate:

K
(2)
3 =

(Mω2
0 −K)

2|(∆Xn − L)∗0|
≈ −5.4× 1013N/m2 . (C.9)

C.3 Comments on the two estimates

First of all, both estimates are deemed to be self-consistent with the initial hypothesis of neglecting
K4 since, for the values of K and L used in Chapter 3 of this thesis project, they are able to provide a
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Figure C.2: Plots of the anharmonic potential with the estimated values ofK3 and with K4 = K3/(−6×10−16 m):
the red plot is the harmonic potential, the green one presents the K3 contribution and the blue
one also the K4 term. At variance with K(1)

3 , K(2)
3 gives rise to appreciable effects in the harmonic

potential.

potential which is always positive and hence stable also in absence of K4 contribution, as shown in
Figure C.2. Furthermore, both of them are in the range of values of K3 used to study dissipation curves,
i.e. [−1017,−1010] N/m2.

Anyway, as one can see from Figure C.2, K(1)
3 is too small to produce an appreciable difference with

respect to the purely harmonic case, even when a K4 = K3/(−6× 10−16m) is introduced, while K(2)
3 is

able to change the shape of the potential, even in absence of K4. Consequently, K(2)
3 was deemed to be

a more relevant estimate for the third order anharmonic coefficient.
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